WorldWideScience

Sample records for surface mn ions

  1. Surface modification of spinel λ-MnO2 and its lithium adsorption properties from spent lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Li; Qu, Wenjie; Liu, Fang; Zhao, Taolin; Zhang, Xiaoxiao; Chen, Renjie; Wu, Feng

    2014-01-01

    Highlights: • A method is designed to synthesize a λ-MnO 2 ion-sieve for lithium ions adsorption. • Ultrasonic treatment with acid is highly efficient for lithium ions extraction. • Surface modification by CeO 2 is used to improve the adsorption capacity. • A 0.5 wt.% CeO 2 -coated ion-sieve shows the best adsorption properties. • λ-MnO 2 ion-sieves are promising for recovering scarce lithium resources. - Abstract: Spinel λ-MnO 2 ion-sieves are promising materials because of their high selectivity toward lithium ions, and this can be applied to the recovery of lithium from spent lithium ion batteries. However, manganese dissolution loss during the delithiation of LiMn 2 O 4 causes a decrease in adsorption capacity and poor cycling stability for these ion-sieves. To improve the lithium adsorption properties of λ-MnO 2 ion-sieves, surface modification with a CeO 2 coating was studied using hydrothermal-heterogeneous nucleation. The structure, morphology and composition of the synthesized materials were determined by XRD, SEM, TEM and EDS. The effect of hydrothermal synthesis conditions and the amount of CeO 2 coating on the adsorption performance of λ-MnO 2 were also investigated. A 0.5 wt.% CeO 2 -coated ion-sieve was synthesized by heating at 120 °C for 3 h and it had better adsorption properties than the bare samples. The effect of ultrasonic treatment on the lithium extraction ratio from LiMn 2 O 4 upon acid treatment at various temperatures was studied and the results were compared with conventional mechanical stirring. We found that ultrasonic treatment at lower temperature gave almost the same maximum lithium extraction ratio and was more efficient and economic

  2. Surface decoration with MnO{sub 2} nanoplatelets on graphene/TiO{sub 2} (B) hybrids for rechargeable lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinlu, E-mail: lixinlu@cqu.edu.cn; Zhang, Yonglai; Zhong, Qineng; Li, Tongtao; Li, Hongyi; Huang, Jiamu

    2014-09-15

    Graphical abstract: - Highlights: • The surface of graphene/TiO{sub 2} (B) hybrids is decorated by ultrathin MnO{sub 2} nanoplatelets. • MnO{sub 2}@graphene/TiO{sub 2} (B) composites exhibit high specific surface area of 283.9 m{sup 2} g{sup −1}. • The reversible capacity of graphene/TiO{sub 2} (B) hybrids is greatly improved by surface decoration with low content of MnO{sub 2}. - Abstract: Hierarchically ultrathin MnO{sub 2} nanoplatelets are decorated on the surface of graphene-based TiO{sub 2} (B) hybrids by a facile water-bath reaction to fabricate MnO{sub 2}@graphene/TiO{sub 2} (B) composites. The multi-component composites show high specific surface area of 283.9 m{sup 2} g{sup −1}, facilitating the electrochemical reactions with solvented lithium ions in the enlarged interface area. The reversible capacity of the composites remains 243 mA h g{sup −1} after 150 cycles, with capacity retention of 83.5%. In comparison with graphene/TiO{sub 2} (B) hybrids, the MnO{sub 2}@graphene/TiO{sub 2} (B) composites perform better rate capability, suggesting that surface decoration with MnO{sub 2} nanoplatelets can be a promising strategy to enhance the electrochemical performance of anode materials for lithium ion batteries.

  3. Enhancing the Ion Transport in LiMn1.5Ni0.5O4by Altering the Particle Wulff Shape via Anisotropic Surface Segregation.

    Science.gov (United States)

    Huang, Jiajia; Liu, Haodong; Zhou, Naixie; An, Ke; Meng, Ying Shirley; Luo, Jian

    2017-10-25

    Spontaneous and anisotropic surface segregation of W cations in LiMn 1.5 Ni 0.5 O 4 particles can alter the Wulff shape and improve surface stability, thereby significantly improving the electrochemical performance. An Auger electron nanoprobe was employed to identify the anisotropic surface segregation, whereby W cations prefer to segregate to {110} surface facets to decrease its relative surface energy according to Gibbs adsorption theory and subsequently increase its surface area according to Wulff theory. Consequently, the rate performance is improved (e.g., by ∼5-fold at a high rate of 25C) because the {110} facets have more open channels for fast lithium ion diffusion. Furthermore, X-ray photoelectron spectroscopy (XPS) depth profiling suggested that the surface segregation and partial reduction of W cation inhibit the formation of Mn 3+ on surfaces to improve cycling stability via enhancing the cathode electrolyte interphase (CEI) stability at high charging voltages. This is the first report of using anisotropic surface segregation to thermodynamically control the particle morphology as well as enhancing CEI stability as a facile, and potentially general, method to significantly improve the electrochemical performance of battery electrodes. Combining neutron diffraction, an Auger electron nanoprobe, XPS, and other characterizations, we depict the underlying mechanisms of improved ionic transport and CEI stability in high-voltage LiMn 1.5 Ni 0.5 O 4 spinel materials.

  4. Improvement of Cycling Performance of Na2/3Co2/3Mn1/3O2 Cathode by PEDOT/PSS Surface Coating for Na Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yatim Lailun Ni’mah

    2018-02-01

    Full Text Available The surface-modified Na2/3Co2/3Mn1/3O2 is coated with a conductive Poly (3,4-Ethylene dioxy thiophene-poly (styrene sulfonate (PEDOT/PSS polymer, and their resulting electrochemical properties were investigated as Na-ion battery cathode. The surface-modified Na2/3Co2/3Mn1/3O2 cathode material exhibits a high discharge capacity and good rate capability due to enhanced electron transport by surface PEDOT/PSS. The presence of PEDOT/PSS surface layer suppresses the growth of a resistive layer, while the dissolution of transition metals of the active cathode materials is inhibited as well. The resulting surface-modified Na2/3Co2/3Mn1/3O2 shows superior cycling performance, which is much stable than the pristine one as being the Na-ion battery cathode.

  5. Surface passivation: a new way to reduce self-output in LiMn{sub 2}O{sub 4}/Li lithium ion rechargeable batteries; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Sigala, C.; Blyr, A.; Tarascon, J.M. [Amiens Univ., 80 (France). Laboratoire de Reactivite et de Chimie des Solides; Amatucci, G. [Bellcore, (United States); Alphonse, P. [Toulouse-3 Univ., 31 (France). Laboratoire de Chimie des Materiaux Inorganiques

    1996-12-31

    The new generation of performing rechargeable lithium-ion batteries (``rocking-chair``-type) are penalized by important self-output phenomena linked with the use of highly oxidizing positive electrodes. In order to limit this problem in LiMn{sub 2}O{sub 4}/C batteries, two different passivation techniques were used in order to limit the surface contact between the positive electrode and the electrolyte. Thanks to these treatments, a significant reduction of the percentage of irreversible capacity losses is effectively observed. (J.S.) 3 refs.

  6. [Metal ions restrain the elimination of 4-tert-octylphenol by delta-MnO2].

    Science.gov (United States)

    Li, Fei-Li; Mou, Hua-Qian

    2013-06-01

    The effect of metal ions on elimination of 4-t-OP by synthetic delta-MnO2 suspension at pH 4.0 was studied. Experiments indicated that the removal of 4-t-OP by delta-MnO2 achieved 100% at reaction time of 150 min. However, the removal of 4-t-OP by delta-MnO2 was restrained when metal ions were added, and the higher concentration of metal ion was, the stronger the inhibition produced. Additionally, there were apparent differences among the inhibitory effect of the tested metal ions. Firstly, Pb2+ and Mn2+ had the strongest effect at pH 4.0, followed by the transition metal ions, then the alkaline earth ions, while the alkali metal ions had little influence on the removal of 4-t-OP by delta-MnO2. Also comparing the adsorption results of metal ions by delta-MnO2, Pb2+ showed the greatest attraction with delta-MnO2, and among the other metal ions, transition metal ions were adsorbed a little more strongly on delta-MnO2 than alkaline earth metal ions. Consequences showed that the inhibitory effects of metal ions were due to their occupying reactive sites on delta-MnO2 surface, which competed with 4-t-OP. Moreover, the dissimilar suppressions were contributed by the different adsorption capacities, surface structure change of MnO2 and the difference of free metal ion percentage in solution as well as metal ions radii.

  7. Surface modification of LiCo 1/3Ni 1/3Mn 1/3O 2 with Y 2O 3 for lithium-ion battery

    Science.gov (United States)

    Wu, Feng; Wang, Meng; Su, Yuefeng; Chen, Shi

    The surface of LiCo 1/3Ni 1/3Mn 1/3O 2 cathode material was coated with 1.0 wt.% Y 2O 3 via a simple method to improve the cycling performance for lithium-ion batteries. Cyclic voltammetry showed Y 2O 3-coating inhibited structural change of LiCo 1/3Ni 1/3Mn 1/3O 2 and reaction with the electrolyte on cycling. The Y 2O 3-coated material showed a higher capacity with good cyclability. The discharge capacity of coated sample was 137.5 mAh g -1 at 2.0 mA cm -2 while that of bared one was only 116.2 mAh g -1. The rate of capacity decrease after 20 cycles for the coated sample was 0.7%, much smaller than that of the bared one (2.8%). X-ray photoelectron spectroscopy (XPS) data represented that the presence of two different environmental O1s ions corresponded to the surface-coated Y 2O 3 and core material. ICP-OES and EIS displayed the coating layer could protect the LiCo 1/3Ni 1/3Mn 1/3O 2 from being corroded by the electrolyte and benefit to decrease the cathode charge-transfer resistance at delithiated state.

  8. Synthesis, characterization and crystal structure determination of Mn (II) ion based 1D polymer constructed from 2, 2′ bipyridyl and azide group, its thermal stability, magnetic properties and Hirshfeld surface analysis

    International Nuclear Information System (INIS)

    Mudsainiyan, R.K.; Jassal, Amanpreet Kaur; Chawla, S.K.

    2015-01-01

    The 1-D polymeric complex (I) is having formula [Mn(2,2′-BP).(N 3 ) 2 ] n , which has been crystallized in distilled water and characterized by elemental analyses, FT-IR spectrum, powder X-ray diffraction analyses and single-crystal diffraction analysis. This polymer possesses 1D helical chains or coils where Mn–azide–Mn forms the base of the coil which is alternatively garlanded by rigid bi-pyridine rings, where coordinates are in anti-fashion. The Mn (II) ions in the repeating units are linked by two end-on azide groups which extend through the two end-to-end azide ligands to the next unit forming a 1-D polymeric chain. The present study suggests that the use of this rigid and neutral building block leads to give better arrangement of the polymeric motif with [010] chains in 2-c uninodal net. During investigation of strong or weak intermolecular interactions, X-ray diffraction analysis and Hirshfeld surface analysis give rise to comparable results but in Hirshfeld surface analysis, two-third times more results of close contacts are obtained. The fingerprint plots demonstrate that these weak non-bonding interactions are important for stabilizing the crystal packing. Magnetic properties of the complex (I) were analyzed on the basis of an alternating ferro- and antiferromagnetic Heisenberg chain of Mn (II) ions. The J-exchange parameters found are J 1 =64.3 K (45.3 cm −1 ), and J 2 =−75.7 K (−53.3 cm −1 ). Magnetic properties are discussed in comparison with those of other similar molecular magnets of [Mn(L–L)(N 3 ) 2 ] n type. - - Highlights: • Synthesized 1-D polymeric complex of Mn (II) ions with 2, 2′ bipyridyl and azide group. • X-ray data of complex (I) is in a good agreement with TGA and other spectroscopic techniques. • DFT calculations were done and compared with the parameter of experimental and theoretical data. • Intermolecular interactions calculated by Hirshfeld surface analysis compared with X-ray data

  9. Nano "Koosh Balls" of Mesoporous MnO2: Improved Supercapacitor Performance through Superior Ion Transport.

    Science.gov (United States)

    Maqbool, Qysar; Singh, Chanderpratap; Jash, Priyajit; Paul, Amit; Srivastava, Aasheesh

    2017-03-23

    Manganese dioxide nanomaterials with "Koosh-ball"-like morphology (MnO 2 -KBs) as well as worm-like nanotubes (MnO 2 -NWs) are obtained by employing Tween 20 as the reducing and structure-directing agent, and KMnO 4 as a MnO 2 precursor. Whereas the MnO 2 -KBs are interconnected through tubular extensions, the MnO 2 -NWs are largely disconnected. Both MnO 2 -KBs and MnO 2 -NWs have large BET surface areas (>200 m 2  g -1 ), and are thermally robust up to 300 °C. Electrochemical studies reveal that the highest specific capacitance (C sp ) obtained for MnO 2 -KBs (272 F g -1 ) is significantly higher than that of MnO 2 -NWs (129 F g -1 ). The C sp values correlate well with the electroactive surface areas of the materials: MnO 2 -KBs have a significantly higher electrolyte-accessible surface area. Electrochemical impedance spectroscopy (EIS) reveals a higher electron-transfer rate at the electrode/electrolyte interface for MnO 2 -KBs than for MnO 2 -NWs. The multiple tubular interconnections between individual MnO 2 -KBs allow improved ion penetration and act as conduits for their propagation, shortening the diffusion distances of the ions from external electrolytes to the interior of the MnO 2 framework. Thus, this work exemplifies the importance of interconnections for enhancing the electrochemical performance of nanomaterials employed for energy storage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. NiCo2O4 surface coating Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as cathode material for high-performance lithium ion battery

    Science.gov (United States)

    Ye, Pan; Dong, Hui; Xu, Yunlong; Zhao, Chongjun; Liu, Dong

    2018-01-01

    Here we report a novel transitional metal oxide (NiCo2O4) coated Li[Ni0.03Mn1.97]O4 micro-/nano- spheres as high-performance Li-ion battery cathode material. A thin layer of ∼10 nm NiCo2O4 was formed by simple wet-chemistry approach adjacent to the surface of Li[Ni0.03Mn1.97]O4 micro-/nano- spheres, leading to significantly enhanced battery electrochemical performance. The optimized sample(1 wt%) not only delivers excellent discharge capacity and cycling stability improvement at both room temperature and elevated temperatures, but also effectively prevents Mn dissolution while retaining its coating structure intact according to XRF and TEM results. The CV and EIS break-down analysis indicated a much faster electrochemical reaction kinetics, more reversible electrode process and greatly reduced charge transfer and Warburg resistance, clearly illustrating the dual role of NiCo2O4 coating to boost electron transport and Li+ diffusion, and alleviation of manganese dissolving. This approach may render as an efficient technique to realize high-performance lithium ion battery cathode material.

  11. Cryogenic surface ion traps

    International Nuclear Information System (INIS)

    Niedermayr, M.

    2015-01-01

    Microfabricated surface traps are a promising architecture to realize a scalable quantum computer based on trapped ions. In principle, hundreds or thousands of surface traps can be located on a single substrate in order to provide large arrays of interacting ions. To this end, trap designs and fabrication methods are required that provide scalable, stable and reproducible ion traps. This work presents a novel surface-trap design developed for cryogenic applications. Intrinsic silicon is used as the substrate material of the traps. The well-developed microfabrication and structuring methods of silicon are utilized to create simple and reproducible traps. The traps were tested and characterized in a cryogenic setup. Ions could be trapped and their life time and motional heating were investigated. Long ion lifetimes of several hours were observed and the measured heating rates were reproducibly low at around 1 phonon per second at a trap frequency of 1 MHz. (author) [de

  12. Surface modification of LiCo{sub 1/3}Ni{sub 1/3}Mn{sub 1/3}O{sub 2} with Y{sub 2}O{sub 3} for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Feng; Wang, Meng; Su, Yuefeng; Chen, Shi [School of Chemical Engineering and Environment, Beijing Institute of Technology, National Development Center of High Technology Green Materials, Beijing 100081 (China)

    2009-04-01

    The surface of LiCo{sub 1/3}Ni{sub 1/3}Mn{sub 1/3}O{sub 2} cathode material was coated with 1.0 wt.% Y{sub 2}O{sub 3} via a simple method to improve the cycling performance for lithium-ion batteries. Cyclic voltammetry showed Y{sub 2}O{sub 3}-coating inhibited structural change of LiCo{sub 1/3}Ni{sub 1/3}Mn{sub 1/3}O{sub 2} and reaction with the electrolyte on cycling. The Y{sub 2}O{sub 3}-coated material showed a higher capacity with good cyclability. The discharge capacity of coated sample was 137.5 mAh g{sup -1} at 2.0 mA cm{sup -2} while that of bared one was only 116.2 mAh g{sup -1}. The rate of capacity decrease after 20 cycles for the coated sample was 0.7%, much smaller than that of the bared one (2.8%). X-ray photoelectron spectroscopy (XPS) data represented that the presence of two different environmental O1s ions corresponded to the surface-coated Y{sub 2}O{sub 3} and core material. ICP-OES and EIS displayed the coating layer could protect the LiCo{sub 1/3}Ni{sub 1/3}Mn{sub 1/3}O{sub 2} from being corroded by the electrolyte and benefit to decrease the cathode charge-transfer resistance at delithiated state. (author)

  13. Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries

    Science.gov (United States)

    Hwang, Taejin; Lee, Joong Kee; Mun, Junyoung; Choi, Wonchang

    2016-08-01

    Surface-modified carbon nanotubes were utilized as a coating for LiNi0.5Mn1.5O4 (LNMO) via a mechano-fusion method as a strategy to prevent unfavorable carbothermal reduction. Two types of carbon nanotubes were investigated as coating materials: carbon nanotubes (CNTs) and oxidized carbon nanotubes (OCNTs), which were prepared by a simple re-oxidation process. The samples coated with CNTs or OCNTs were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy, Raman spectroscopy, and elemental analyses. The OCNT-coated LNMO presented a highly enhanced discharge capacity retention (95.5%) and a coulombic efficiency of 99.9% after 80 cycles between 3.5 and 4.9 V (versus Li/Li+), whereas the CNT-coated LNMO exhibited poor retention of 47.2% and a coulombic efficiency of 95.3%. In addition, post-mortem XPS and electrochemical impedance spectroscopy (EIS) analysis proved that the OCNT coating improved the surface electrochemical stability and rate capability, whereas the CNT coating formed a thick resistive solid electrolyte interphase (SEI) film by accelerating the surface side reactions.

  14. Electron paramagnetic resonance parameters of Mn4+ ion in h ...

    Indian Academy of Sciences (India)

    The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, ...

  15. Surface modification of cathode material 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 by alumina for lithium-ion batteries

    Science.gov (United States)

    Li, Yonghu; Chang, Xingping; Xu, Qunjie; Lai, Chunyan; Liu, Xinnuan; Yuan, Xiaolei; Liu, Haimei; Min, Yulin

    2018-02-01

    In an attempt to overcome the irreversible capacity loss occurred during the first cycle and stabilize the surface structure, an alumina coating layer has been triumphantly prepared on the surface of 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2 cathode material with different amounts (1, 2, and 3 wt%) through a simple hydrolysis reaction, followed by an annealing process. The results reveal that the coated materials have a higher crystallinity and the particles are evenly distributed. As a cathode material for lithium-ion batteries, the 2-wt% coated sample delivers initial discharge specific capacity of 211.7 mAh g-1 at a rate of 1 C between 2.0 and 4.8 V with an initial columbic efficiency of 73.2%. Meanwhile, it exhibits the highest discharge specific capacity of 206.2 mAh g-1 with 97.4% capacity retention after 100 cycles at and much elevated rate capability compared to uncoated material. The excellent cycling stability and more superior rate property can be ascribed to alumina coating layer, which has a surface stabilization effect on these cathode materials, lessening the dissolution of metal ions. The electrochemical impedance and cyclic voltammetry studies indicate that coated by alumina improved the kinetic performance for lithium-rich layered materials, showing a prospect for practical lithium battery application.

  16. Spectral analysis of Cu 2+ and Mn 2+ ions doped ...

    Indian Academy of Sciences (India)

    We report here on the development and spectral analysis of Cu2+ (0.5 mol%) and Mn2+ (0.5 mol%) ions doped in two new series of glasses. The visible absorption spectra of Cu2+ and Mn2+ glasses have shown broad absorption bands at 820 nm and 495 nm, respectively. For Cu2+ BFP glasses, excitation at 380 nm, ...

  17. Structural and optical characterization of Mn doped ZnS nanocrystals elaborated by ion implantation in SiO2

    International Nuclear Information System (INIS)

    Bonafos, C.; Garrido, B.; Lopez, M.; Romano-Rodriguez, A.; Gonzalez-Varona, O.; Perez-Rodriguez, A.; Morante, J.R.; Rodriguez, R.

    1999-01-01

    Mn doped ZnS nanocrystals have been formed in SiO 2 layers by ion implantation and thermal annealing. The structural analysis of the processed samples has been performed mainly by Secondary Ion Mass Spectroscopy (SIMS) and Transmission Electron Microscopy (TEM). The data show the precipitation of ZnS nanocrystals self-organized into two layers parallel to the free surface. First results of the optical analysis of samples co-implanted with Mn show the presence of a yellow-green photoluminescence depending on the Mn concentration and the size of the nanocrystals, suggesting the doping with Mn of some precipitates

  18. Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion ...

    Indian Academy of Sciences (India)

    The Co, Cr and Al-doped LiMnO2 powders were prepared by ion exchange. Phase identification, surface morphology and electrochemical properties were studied by X-ray diffraction, scanning electron microscopy and galvanostatic charge–discharge experiments. The results show that the doped LiMnO2 keeps the ...

  19. Direct evidence of the existence of Mn3+ ions in MnTiO3

    Science.gov (United States)

    Maurya, R. K.; Sharma, Priyamedha; Patel, Ashutosh; Bindu, R.

    2017-08-01

    We investigate the room temperature electronic properties of MnTiO3 synthesised by different preparation conditions. For this purpose, we prepared MnTiO3 under two different cooling rates, one is naturally cooled while the other is quenched in liq.nitrogen. The samples were studied using optical absorbance, photoemission spectroscopy and band structure calculations. We observe significant changes in the structural parameters as a result of quenching. Interestingly, in the parent compound, our combined core level, valence band and optical absorbance studies give evidence of the Mn existence in both 2+ and 3+ states. The fraction of Mn3+ ions has been found to increase on quenching MnTiO3 suggests an increase in oxygen non-stoichiometry. The increase in the fraction of the Mn3+ ions has been manifested a) as slight enhancement in the intensity of the optical absorbance in the visible region. There occurs persistent photo-resistance when the incident light is terminated after shining; b) in the behaviour of the features (close to Fermi level) in the valence band spectra. Hence, the combined analysis of the core level, valence band and optical absorbance spectra suggests that the charge carriers are hole like which further leads to the increase in the electrical conductivity of the quenched sample. The present results provide a recipe to tune the optical absorption in the visible range for its applications in optical sensors, solar cell, etc.

  20. Spectral analysis of Cu and Mn ions doped borofluorophosphate ...

    Indian Academy of Sciences (India)

    WINTEC

    2+ doped BFP glasses have pink colour. Figures 1–4 present photographs of both reference and. Figure 1. Photographs of reference and Cu. 2+. : borofluoro- phosphate glasses. Figure 2. Photographs of reference and Cu. 2+. : borofluoro- phosphate glasses. 0⋅5 mol% Cu. 2+ and Mn. 2+ ions doped borofluorophosphate.

  1. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    International Nuclear Information System (INIS)

    Mackova, A.; Malinsky, P.; Miksova, R.; Pupikova, H.; Khaibullin, R.I.; Slepicka, P.; Gombitová, A.; Kovacik, L.; Svorcik, V.; Matousek, J.

    2014-01-01

    Polyimide (PI), polyetheretherketone (PEEK) and polyethylene terephthalate (PET) foils were implanted with 80 keV Mn + ions at room temperature at fluencies of 1.0 × 10 15 –1.0 × 10 16 cm −2 . Mn depth profiles determined by RBS were compared to SRIM 2012 and TRIDYN simulations. The processes taking place in implanted polymers under the annealing procedure were followed. The measured projected ranges R P differ slightly from the SRIM and TRIDYN simulation and the depth profiles are significantly broader (up to 2.4 times) than those simulated by SRIM, while TRIDYN simulations were in a reasonable agreement up to the fluence 0.5 × 10 16 in PEEK. Oxygen and hydrogen escape from the implanted layer was examined using RBS and ERDA techniques. PET, PEEK and PI polymers exhibit oxygen depletion up to about 40% of its content in virgin polymers. The compositional changes induced by implantation to particular ion fluence are similar for all polymers examined. After annealing no significant changes of Mn depth distribution was observed even the further oxygen and hydrogen desorption from modified layers appeared. The surface morphology of implanted polymers was characterized using AFM. The most significant change in the surface roughness was observed on PEEK. Implanted Mn atoms tend to dissipate in the polymer matrix, but the Mn nanoparticles are too small to be observed on TEM micrographs. The electrical, optical and structural properties of the implanted and sub-sequently annealed polymers were investigated by sheet resistance measurement and UV–Vis spectroscopy. With increasing ion fluence, the sheet resistance decreases and UV–Vis absorbance increases simultaneously with the decline of optical band gap E g . The most pronounced change in the resistance was found on PEEK. XPS spectroscopy shows that Mn appears as a mixture of Mn oxides. Mn metal component is not present. All results were discussed in comparison with implantation experiment using the various ion

  2. Ion beam synthesis of Mn/Sb clusters in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steinert, M; Wesch, W [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Undisz, A; Rettenmayr, M [Institut fuer Materialwissenschaft und Werkstofftechnologie, Friedrich-Schiller-Universitaet Jena, 07743 Jena (Germany); Nunes, W C; Borges, R P; Godinho, M [Centro de Fisica da Materia Condensada, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Rubinger, R M; Carmo, M C; Sobolev, N A, E-mail: michael.steinert@uni-jena.d, E-mail: werner.wesch@uni-jena.d [Departamento de Fisica and I3N, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2009-02-07

    In order to investigate the formation of Mn/Sb clusters embedded in crystalline silicon, sequential ion implantation with fluences of 1 x 10{sup 16} at cm{sup -2} and 2 x 10{sup 16} at cm{sup -2}, respectively, was used to incorporate Mn and Sb ions at high concentrations into Si(0 0 1). Based on investigations with Rutherford backscattering spectroscopy (RBS) and corresponding channelling measurements (RBS/c), we report on a temperature dependent redistribution of the implanted species during the rapid thermal annealing process governed by the radiation-induced defects. Additionally performed cross-sectional TEM analyses, including EDX measurements, clearly show the presence of hexagonal shaped elementary Sb precipitates as well as compound clusters consisting of Mn and Sb, which are aligned to the crystal structure of the host silicon. In electron magnetic resonance measurements many samples exhibit broad resonance bands persisting up to approximately 60 K. For out-of-plane rotations, the bands show a weak angular dependence of the resonance field but a strong angular dependence of the intensity. Zero-field-cooled and field-cooled magnetization curves were measured on selected samples with a SQUID magnetometer between 10 and 400 K at different applied fields. The curves show a weak magnetic signal generated by different magnetic phases while at least one can be ascribed to superparamagnetic nanoparticles of MnSb.

  3. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings

    International Nuclear Information System (INIS)

    Dong, Youzhong; Zhao, Yanming; Duan, He; Liang, Zhiyong

    2014-01-01

    By a simple wet ball-milling method, Li 3 VO 4 -coated LiMnPO 4 samples were prepared successfully for the first time. The thin Li 3 VO 4 coating layer with a three-dimensional Li + -ion transport path and high mobility of Li + -ion strongly adhered to the LiMnPO 4 material reduces Mn dissolution and increases the Li + flux through the surface of the LiMnPO 4 itself by preventing formation of phases on the surface that would normally block Li + as well as Li + -ion permeation into the surface of the LiMnPO 4 electrode and therefore improve the rate capability as well as the cycling stability of LiMnPO 4 materials. The electrochemical testing shows that the 5% Li 3 VO 4 -coated LiMnPO 4 sample shows a clear voltage plateau in the charge curves and a much higher reversible capacity at different discharge rates compared with the pristine LiMnPO 4 . EIS results also show that the surface charge transfer resistance and Warburg impedance of the Li 3 VO 4 -coated LiMnPO 4 samples significantly decreased. The surface charge transfer resistance and Warburg impedance for the pristine LiMnPO 4 are 955.1 Ω and 400.3 Ω, respectively. While, for the 5% Li 3 VO 4 -coated LiMnPO 4 , the value are only 400.2 Ω and 283.6 Ω, respectively. The surface charge transfer resistance decreases more than half. All of the improved performance will be favorable for application of the LiMnPO 4 in high-power lithium ion batteries

  4. Electron paramagnetic resonance parameters of Mn4+ ion in h ...

    Indian Academy of Sciences (India)

    569–575. Electron paramagnetic resonance parameters of Mn4+ ion in h-BaTiO3 crystal from a two-mechanism model. WU XIAO-XUAN1,4,∗, FANG WANG2, FENG WEN-LIN2,3 and. ZHENG WEN-CHEN2,4. 1Department of Physics, Civil Aviation Flight University of China, Guanghan 618307,. People's Republic of China.

  5. Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jian Zeng

    2013-03-01

    Full Text Available Spinel LiMn2O4 is an appealing candidate cathode material for Li-ion rechargeable batteries, but it suffers from severe capacity fading, especially at higher temperature (55 °C during discharging/charging. In recent years, many attempts have been made to synthesize modified LiMn2O4. This paper reviews the recent research on the preparation and doping modes of doped LiMn2O4 for modifying the LiMn2O4. We firstly compared preparation methods for doped spinel LiMn2O4, such as solid state reactions and solution synthetic methods. Then we mainly discuss doping modes reported in recent years, such as bulk doping, surface doping and combined doping. A comparison of different doping modes is also provided. The research shows that the multiple-ion doping and combined doping modes of LiMn2O4 used in Li-ion battery are excellent for improving different aspects of the electrochemical performance which holds great promise in the future. From this paper, we also can see that spinel LiMnO4 as an attractive candidate cathode material for Li-ion batteries.

  6. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    An historical overview of the main advances in the understanding of bombardment-induced surface topography is presented. The implantation and sputtering mechanisms which are relevant to ion bombardment modification of surfaces and consequent structural, electronic and compositional changes are described. Descriptions of plasma and ion-beam sputtering-induced film formation, primary ion-beam deposition, dual beam techniques, cluster of molecule ion-beam deposition, and modification of thin film properties by ion bombardment during deposition are presented. A detailed account is given of the analytical and computational modelling of topography from the viewpoint of first erosion theory. Finally, an account of the possible application and/or importance of textured surfaces in technologies and/or experimental techniques not considered in previous chapters is presented. refs.; figs.; tabs

  7. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  8. Systematic study on surface and magnetostructural changes in Mn-substituted dysprosium ferrite by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Rekha, G. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Tholkappiyan, R. [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates); Vishista, K., E-mail: raovishista@gmail.com [Department of Physics, College of Engineering Guindy, Anna University, Sardar Patel Road, Chennai 600025 (India); Hamed, Fathalla [Department of Physics, College of Science, UAE University, Al-Ain 15551 (United Arab Emirates)

    2016-11-01

    Highlights: • Garnet type Dy{sub 3}Fe{sub 5-x}Mn{sub x}O{sub 12} (x = 0–0.06) nanoparticles of 88.4–86.8 nm were synthesized by hydrothermal method. • The Dy, Mn, Fe and O elements in the ferrites were confirmed from XPS. • The multiple oxidation states of Fe and Mn ions, bonding energy and cationic distributions of the samples were examined by XPS. • The magnetic property shows ferromagnetic behavior from VSM technique. • The results from these studies are correlated with respect to Mn dopant. - Abstract: Dysprosium iron garnets are of scientific importance because of the wide range of magnetic properties that can be obtained in substituting dysprosium by a rare earth metal. In the present work, the effect of Mn substitution on magnetostructural changes in dysprosium ferrite nanoparticles is studied. Highly crystalline pure and Mn doped dysprosium ferrite nanoparticles were synthesized by hydrothermal method. The samples were calcined at 1100 °C for 2 h in air atmosphere which is followed by characterization using XRD, FT-IR analysis, SEM, XPS and VSM. The average crystallite size of synthesized samples were calculated by X-ray diffraction falls in the range of 88.4–86.8 nm and was found to be in cubic garnet structure. For further investigation of the structure and corresponding changes in the tetrahedral and octahedral stretching vibrational bonds, FT-IR was used. The synthesized samples consist of multiple oxidation (Fe{sup 3+} and Fe{sup 2+}) states for Fe ions and (Mn{sup 3+} and Mn{sup 2+}) Mn ions analyzed in three ways of Fe 2p and Mn 2p spectra from the XPS analysis. With respect to Mn dopant in Dy{sub 3}Fe{sub 5}O{sub 12}, the cationic distributions of elements were discussed from high resolution XPS spectra by peak position and shift, area, width. To find out the porous/void surface morphology of the sample, scanning electron microscopy was used. From XPS analysis, the presence of elements (Dy, Mn, Fe and O) and their composition in the

  9. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g-1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  10. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  11. Surface microhardening by ion implantation

    International Nuclear Information System (INIS)

    Singh, Amarjit

    1986-01-01

    The paper discusses the process and the underlying mechanism of surface microhardening by implanting suitable energetic ions in materials like 4145 steel, 304 stainless steel, aluminium and its 2024-T351 alloy. It has been observed that boron and nitrogen implantation in materials like 4145 steel and 304 stainless steel can produce a significant increase in surface hardness. Moreover the increase can be further enhanced with suitable overlay coatings such as aluminium (Al), Titanium (Ti) and carbon (C). The surface hardening due to implantation is attributed to precipitation hardening or the formation of stable/metastable phase or both. The effect of lithium implantation in aluminium and its alloy on microhardness with increasing ion dose and ion beam energy is also discussed. (author)

  12. Surface engineering by ion implantation

    International Nuclear Information System (INIS)

    Nielsen, Bjarne Roger

    1995-01-01

    Awidespread commercial applica tion iof particle accelerators is for ion implantation. Accelerator beams are used for ion implantation into metals, alloying a thin surface layer with foreign atoms to concentrations impossible to achieve by thermal processes, making for dramatic improvements in hardness and in resistance to wear and corrosion. Traditional hardening processes require high temperatures causing deformation; ion implantation on the other hand is a ''cold process'', treating the finished product. The ionimplanted layer is integrated in the substrate, avoiding the risk of cracking and delamination from normal coating processes. Surface properties may be ''engineered'' independently of those of the bulk material; the process does not use environmentally hazardous materials such as chromium in the surface coating. The typical implantation dose required for the optimum surface properties of metals is around 2 x 10 17 ion/cm 2 , a hundred times the typical doses for semiconductor processing. When surface areas of more than a few square centimetres have to be treated, the implanter must therefore be able to produce high beam currents (5 to 10 mA) to obtain an acceptable treatment time. Ion species used include nitrogen, boron, carbon, titanium, chromium and tantalum, and beam energies range from 50 to 200 keV. Since most components are three dimensional, it must be possible to rotate and tilt them in the beam, and control beam position over a large area. Examples of industrial applications are: - surface treatment of prostheses (hip and knee joints) to reduce wear of the moving parts, using biocompatible materials; - ion implantation into high speed ball bearings to protect against the aqueous corrosion in jet engines (important for service helicopters on oil rigs); - hardening of metal forming and cutting tools; - reduction of corrosive wear of plastic moulding tools, which are expensive to produce

  13. Selective deintercalation of apex over face-shared oxide ions in the topotactic reduction of Sr7Mn4O15 to Sr7Mn4O12.

    Science.gov (United States)

    Hayward, M A

    2004-01-21

    Sodium hydride selectively deintercalates the apex rather than face-shared oxide ions within the structure of Sr(7)Mn(4)O(15) leading to the formation of the structurally related reduced phase Sr(7)Mn(4)O(12).

  14. Ion bombardment modification of surfaces

    International Nuclear Information System (INIS)

    Auciello, O.

    1984-01-01

    Ion bombardment-induced modification of surfaces may be considered one of the significant scientific and technological developments of the last two decades. The understanding acquired concerning the underlying mechanisms of several phenomena occurring during ion-surface interactions has led to applications within different modern technologies. These include microelectronics, surface acoustical and optical technologies, solar energy conversion, thin film technology, ion implantation metallurgy, nuclear track technology, thermonuclear fusion, vacuum technology, cold welding technology, biomedicine (implantology). It has become clear that information on many relevant advances, regarding ion bombardment modification of surfaces is dispersed among journals involving fields sometimes not clearly related. This may result, in some cases, in a loss of the type of interdisciplinary exchange of ideas, which has proved to be so fruitful for the advancement of science and technology. This book has been planned in an attempt to collect at least some of today's relevant information about the experimental and theoretical knowledge related to surface modification and its application to technology. (Auth.)

  15. Preparation of Porous MnO@C Core-Shell Nanowires as Anodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Shouhui Chen

    2016-01-01

    Full Text Available Porous MnO@C core-shell nanowires were prepared via a simple and facile method. The morphologies, the phase purity, the mass contents, and the BET surface area of the composite were characterized by SEM, XRD, TGA, and N2 adsorption test, respectively. When the composite served as an anode for lithium-ion batteries, it showed superior electrochemical performances. The MnO@C composite presented a reversible capacity of 448.1 mAh g−1 after 100 cycles at the current rate of 200 mA g−1.

  16. Adsorption of Mn(II) and Co(II) ions from aqueous solution using ...

    African Journals Online (AJOL)

    The adsorption of Mn(II) and Co(II) ions from aqueous solution was investigated using batch adsorption experiment at room temperature. The effect of pH, contact time, metal ion concentration and temperature were evaluated. The residual concentrations of the metal ions were determined by atomic absorption ...

  17. Mn{sup 2+} ions distribution in doped sol–gel deposited ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Mariana, E-mail: mstefan@infim.ro [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Ghica, Daniela; Nistor, Sergiu V.; Maraloiu, Adrian V. [National Institute of Materials Physics, P.O. Box MG-7, 077125 Magurele (Romania); Plugaru, Rodica [National Institute for R & D in Microtechnologies (IMT), Erou Iancu Nicolae Str. 126A, 077190 Bucharest (Romania)

    2017-02-28

    Highlights: • Several Mn{sup 2+} centers observed by EPR in sol–gel ZnO films. • Mn{sup 2+} ions localized at Zn{sup 2+} sites in ZnO grains and disordered ZnO phase. • Sixfold coordinated Mn{sup 2+} ions localized in inter-grain region. • Aggregated Mn in insular-like regions between ZnO grains in the ZnO:5%Mn film. • Aggregated Mn phase presence and distribution observed by EPR and EDX-STEM. - Abstract: The localization and distribution of the Mn{sup 2+} ions in two sol–gel deposited ZnO films doped with different manganese concentrations were investigated by electron paramagnetic resonance spectroscopy and analytical transmission electron microscopy. In the lightly doped sample the Mn{sup 2+} ions are mainly localized substitutionally at isolated tetrahedrally coordinated Zn{sup 2+} sites in both crystalline ZnO nanograins (34%) and surrounding disordered ZnO (52%). In the highly doped ZnO film, a much smaller proportion of manganese substitutes Zn{sup 2+} in the crystalline and disordered ZnO (10%). The main amount (85%) of manganese aggregates in a secondary phase as an insular-like distribution between the ZnO nanograins. The remaining Mn{sup 2+} ions (14% and 5% at low and high doping levels, respectively) are localized at isolated, six-fold coordinated sites, very likely in the disordered intergrain region. Annealing at 600 °C induced changes in the Mn{sup 2+} ions distribution, reflecting the increase of the ZnO crystallization degree, better observed in the lightly doped sample.

  18. Surface-defect induced modifications in the optical properties of α-MnO2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO 2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO 2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO 6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn 3+ ) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO 2 . These studies suggest that

  19. Facile synthesis and Li-ion storage properties of porous Mn-based oxides microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaojuan, E-mail: houxiaojuan@nuc.edu.cn [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); Zhu, Jie [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China); School of Computer and Remote Sensing Information Technology, North China Institute of Aerospace Engineering, Langfang, Hebei Province 065000 (China); Shi, Shuzheng [School of Mechanical Engineering, Hebei University of Architecture, Zhangjiakou, Hebei Province 075000 (China); He, Jian; Mu, Jiliang; Geng, Wenping; Chou, Xiujian; Xue, Chenyang [Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education, School of Instrument and Electronics, North University of China, Taiyuan, Shanxi Province 030051 (China)

    2017-05-15

    Highlights: • The Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4} microspheres were fabricated with the same method. • Capacities present an increasing trend as with the increasing percentage of Co element. • Plateaus present a lower trend as with the increasing percentage of Mn element. • Mn{sub 2}O{sub 3} microspheres present the most excellent cycling stability. - Abstract: Porous nanosheets assembled Mn-based oxides (Mn{sub 2}O{sub 3}, MnCo{sub 2}O{sub 4} and CoMn{sub 2}O{sub 4}) microspheres of diameters about 3–6 μm and pore size distribution mainly around 10 nm have been synthesized by the same facile solvothermal route without any surfactant followed by a calcination process. In virtue of the porous nanosheets constructed microspheres, the Mn-based oxides microspheres Mn{sub 2}O{sub 3} present specific capacities of 650 mAh/g after 100 charge and discharge cycles. Additionally among the three Mn-based oxides the representative specific capacities present an increasing trend as with the increasing percentage of Co element, the plateau of charge and discharge present a lower trend as with the increasing percentage of Mn element which is more suitable as anode materials in high output full batteries. Then the oxides with different components could be applied in different conditions such as the need for high specific capacity or high output lithium-ion batteries. Consequently the easy fabrication of microspheres and excellent electrochemical performances demonstrate Mn-based oxides’ great potential in lithium-ion batteries.

  20. Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment

    Science.gov (United States)

    Xu, Xiaoyue; Wang, Tao; Bi, Yujing; Liu, Meng; Yang, Wenchao; Peng, Zhe; Wang, Deyu

    2017-02-01

    LiMnPO4 has attracted massive interests due to its appropriate redox potential and the success of its iron comparative in the lithium ion batteries. The bulk substitution has been widely used to address the poor electrochemical activity of LiMnPO4, which is much lower than that of LiFePO4. In this work, we compare the performance of the core-shell structure and the homogeneous substitution with the same Mn/Fe molar ratio of LiMn0.8Fe0.2PO4. The core-shell phosphate material after carbon coating is composed of a core part of quasi-single LiMnPO4 phase, and a 3-4 nm shell layer of quasi-single LiFePO4-phase, separated by the phase boundary with 1-2 nm thickness. It is interesting to reveal that the core-shell samples exhibit capacities of 156.4, 144.5, 128.2 mAh g-1 under 0.1C, 1C and 5C respectively, which are 5-10% higher than that of the homogenous substituted LiMn0.8Fe0.2PO4 at the corresponding rates, while both of these samples present excellent cyclic stability, still retaining ∼95% of the initial capacities after 1000 cycles under 1C discharging rate. Our results demonstrate that the main reason for LiMnPO4's poor electrochemical activity should be emphasized on the surface polarization, whereas the tardiness on bulk transportation is not as serious as it was presumed.

  1. Surface modification technique of structural ceramics: ion implantation-assisted multi-arc ion plating

    International Nuclear Information System (INIS)

    Peng Zhijian; Miao Hezhuo; Si Wenjie; Qi Longhao; Li Wenzhi

    2003-01-01

    Through reviewing the advantages and disadvantages of the existed surface modification techniques, a new technique, ion implantation-assisted multi-arc ion plating, was proposed. Using the proposed technique, the surfaces of silicon nitride ceramics were modified by Ti ion implantation, and then three kinds of ternary coatings, (Ti,Al)N, (Ti,Zr)N and (Ti,Cr)N, were deposited on the as-implanted ceramics. The coatings prepared by this technique are of high-hardness and well adhesive to the ceramic substrates. The maximal hardness measured by nanoindentation tests is more than 40 GPa. The maximal critical load by nanoscratch tests is more than 60 mN. The cutting tools prepared by this technique with the presented coatings are of excellent performance in industrial applications. The technique may be promising for the surface modification of structural ceramics. (orig.)

  2. Formation of Mn3O4(001) on MnO(001): Surface and interface structural stability

    International Nuclear Information System (INIS)

    Bayer, Veronika; Podloucky, Raimund; Franchini, Cesare; Allegretti, Francesco; Xu, Bo; Parteder, Georg; Ramsey, Michael G.; Surnev, Svetlozar; Netzer, Falko P.

    2007-01-01

    X-ray absorption and photoemission spectroscopies, high-resolution electron energy loss spectroscopy, spot profile analysis low energy electron diffraction, and density functional theory calculations are employed to study the growth of (001) oriented Mn 3 O 4 surfaces on a Pd(100)-supported MnO(001) substrate, with the Hausmannite planar lattice constants aligned along the [110] direction of the underlying MnO(001) support. We show that despite the rather large lattice mismatch, abrupt interfaces may exist between rocksalt MnO and Hausmannite. We argue that this process is facilitated by the relatively low computed strain energy and we propose realistic models for the interface. An atop site registry between the Mn(O) atoms of the oxygen rich Mn 3 O 4 termination and the MnO(001) O(Mn) atoms underneath is found to be the energetically most favorable configuration. The significant planar expansion is accompanied by a large compression of the Mn 3 O 4 vertical lattice constant, yielding structural distortion of the O-Mn-O octahedral axis. Spot profile analysis low energy electron diffraction experiments show that the conversion reaction proceeds easily in both directions, thus indicating the reversible redox character of the transition

  3. Preparation of PPy-Coated MnO2Hybrid Micromaterials and Their Improved Cyclic Performance as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Feng, Lili; Zhang, Yinyin; Wang, Rui; Zhang, Yanli; Bai, Wei; Ji, Siping; Xuan, Zhewen; Yang, Jianhua; Zheng, Ziguang; Guan, Hongjin

    2017-09-02

    MnO 2 @PPy core-shell micromaterials are prepared by chemical polymerization of pyrrole on the MnO 2 surface. The polypyrrole (PPy) is formed as a homogeneous organic shell on the MnO 2 surface. The thickness of PPy shell can be adjusted by the usage of pyrrole. The analysis of SEM, FT-IR, X-ray photoelectron spectroscopy (XPS), thermo-gravimetric analysis (TGA), and XRD are used to confirm the formation of PPy shell. Galvanostatic cell cycling and electrochemical impedance spectroscopy (EIS) are used to evaluate the electrochemical performance as anode for lithium-ion batteries. The results show that after formation of MnO 2 @PPy core-shell micromaterials, the cyclic performance as anode for lithium-ion batteries is improved. Fifty microliters of PPy-coated caddice-clew-like MnO 2 has the best cyclic performances as has 620 mAh g -1 discharge specific capacities after 300 cycles. As a comparison, the discharge specific capacity of bare MnO 2 materials falls to below 200 mAh g -1 after 10 cycles. The improved lithium-storage cyclic stability of the MnO 2 @PPy samples attributes to the core-shell hybrid structure which can buffer the structural expansion and contraction of MnO 2 caused by the repeated embedding and disengagement of Li ions and can prevent the pulverization of MnO 2 . This experiment provides an effective way to mitigate the problem of capacity fading of the transition metal oxide materials as anode materials for (lithium-ion batteries) LIBs.

  4. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  5. Bio-functionalizing of α-MnO{sub 2} nanorods with natural L-amino acids: A favorable adsorbent for the removal of Cd(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Mallakpour, Shadpour, E-mail: mallak@cc.iut.ac.ir [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of); Motirasoul, Forough [Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-04-15

    α-MnO{sub 2} nanorods were prepared by hydrothermal method and then the surface of these nanorods were covalently biofunctionalized with natural L-amino acids (alanine, phenylalanine, leucine, isoleucine, methionine, and valine). The modified α-MnO{sub 2} nanorods were analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. Morphological studies were carried out by field emission scanning electron microscopy and transmission electron microscopy. The morphology of nanorods was improved after biofunctionalization and aggregation was reduced. In addition, the thermal gravimetric analysis was used for demonstrating a successful grafting of amino acids to the surface of α-MnO{sub 2} nanorods and determine the degree of functionalization. The amount of amino acids grafted onto α-MnO{sub 2} surface was estimated to be 5–32 wt%. Finally, the α-MnO{sub 2} and α-MnO{sub 2}-L-valine were investigated as adsorbents for the removal of cadmium ions from aqueous solution. The results showed that they have a potential to be used as effective adsorbents for cadmium ions removal from the aqueous solution. The equilibrium adsorption data showed the best fit for the pseudo-second-order and the Freundlich models. - Highlights: • α-MnO{sub 2} nanorods were biofunctionalized with natural L-amino acids. • Biofunctionalized α-MnO{sub 2} nanorods by solvothermal strategy were fully characterized. • Cadmium adsorption property of α-MnO{sub 2} and α-MnO{sub 2}-L-valine was studied.

  6. Absorption spectrum of Mn2+ ions doped in diammonium ...

    Indian Academy of Sciences (India)

    containing stoichiometric quantities of ammonium sulfate and magnesium sulfate, to which 0.01 mol% of MnSO4 was added. The optical absorption spectrum was recorded in the wavelength range 195–725 nm at room temperature using UNICAM. 5625 spectrophotometer. The spectra recorded in the visible and ultraviolet ...

  7. Preparation of well-defined samples of AlPdMn quasicrystals for surface studies

    Science.gov (United States)

    Jenks, C. J.; Delaney, D. W.; Bloomer, T. E.; Chang, S.-L.; Lograsso, T. A.; Shen, Z.; Zhang, C.-M.; Thiel, P. A.

    1996-12-01

    We have developed a method for preparing single-grain, quasicrystalline AlPdMn samples for surface studies in ultrahigh vacuum. The main issues of concern are phase purity, the quality of the surface structure, and the surface, and the surface composition. Phase purity is enhanced by annealing the sample in ultra-pure Ar in a sealed quartz ampoule for several days before polishing. Polishing with colloidal silica allows secondary phases to be detected readily with an optical microscope. As a final precaution, phase purity can be checked sensitively with scanning Auger microscopy. After this stage, the sample can be cleaned in ultrahigh vacuum with ion bombardment. Annealing is required after bombardment to restore surface structure and to obtain a low-energy electron diffraction (LEED) pattern of an oriented sample. However, both ion bombardment and heating to temperatures above 870 K in vacuum, produce Pd-rich surfaces. As a final step, for the five-fold surface, we recommend heating briefly to 1050-1100 K and then annealing at 870 K for several hours. This produces both an excellent LEED pattern, and a surface composition close to that of the bulk.

  8. Scattering of ion beams from surfaces

    International Nuclear Information System (INIS)

    Heiland, W.; Taglauer, E.

    1978-01-01

    A review is presented of the scattering of ion beams from surfaces and the physical phenomena which are probably most important for the formation of the final state (charge and excitation) of the secondary particles. The subject is treated under the headings: ion scattering, desorption by ion impact, and neutralization. (U.K.)

  9. Study of the Local Environment of Mn Ions Implanted in GaSb

    International Nuclear Information System (INIS)

    Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.T.; Barcz, A.; Hallen, A.; Arvanitis, D.

    2010-01-01

    The first attempts to establish an implantation process leading to formation of ferromagnetic inclusions inside the GaSb matrix are presented. Gallium antimonide containing ferromagnetic MnSb precipitations is considered as a promising material for novel spintronic applications. It is possible to obtain such inclusions during the molecular beam epitaxy (MBE) growth. However, for commercial application it would be also important to find an optimal way of producing this kind of inclusions by Mn ions implantation. In order to achieve this goal, several parameters of implantation and post annealing procedures were tested. The ion energy was kept at 10 keV or 150 keV and four different ion doses were applied, as well as various annealing conditions. The analysis of X-ray absorption spectra allowed to estimate the local atomic order around Mn atoms. Depending on the implantation energy and annealing processes, the manganese oxides or manganese atoms located in a heavily defected GaSb matrix were observed. The performed analysis helped in indicating the main obstacles in formation of MnSb inclusions inside the GaSb matrix by Mn ion implantation. (author)

  10. Kinetics of the exchange between fibrous manganese dioxide and Mn2+ ions in solution

    International Nuclear Information System (INIS)

    Rophael, M.W.

    1983-01-01

    The rate of exchange between fibrous manganese dioxide epsilon-MnO 2 and a 0.1 M MnSO 4 solution at 25 0 C and pH 2.0 was higher than the corresponding rate at pH 5.4. When the solid was washed with dilute acid (pH 2.0) before the exchange at pH 2.0, the results of the exchange at the two pH values were similar. When epsilon-MnO 2 was partially reduced with N 2 H 4 .H 2 O solution before the exchange, the rate of exchange was appreciably higher than that obtained for the unreduced solid. The exchange, at nearly pH 2.0, between epsilon-MnO 2 and various concentrations of Mn(NO 3 ) 2 solutions was increased to a small extent as the concentration increased tenfold. The exchange was followed by using 56 Mn-labelled MnO 2 and by measuring the β activity acquired by the Mn 2+ ion solution. The activity induced in the solid MnO 2 was produced by irradiation with thermal neutrons from a 241 Am- 9 Be laboratory neutron source. The neutron activation of manganese oxides has the following advantages: (i) a relatively high level of activity can be induced in the 55 Mn of the irradiated oxide because of its 100% abundance and its high neutron activation cross section, whereas the oxygen is unaffected; (ii) the half-life of the product 56 Mn is 9274 s which is convenient for kinetic studies; (iii) the activity produced almost decays in 24 h. (Auth.)

  11. Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries

    CSIR Research Space (South Africa)

    Seteni, Bonani

    2017-06-01

    Full Text Available Lithium-manganese-rich cathode material Li1.2Mn0.54Ni0.13Co0.13O2 is prepared by combustion method, and then coated with nano-sized LiFePO4 and nano-sized Al2O3 particles via a wet chemical process. The as-prepared Li1.2Mn0.54Ni0.13Co0.13O2, LiFePO4...

  12. Rietveld analysis, dielectric and impedance behaviour of Mn /Fe ion ...

    Indian Academy of Sciences (India)

    Abstract. The polycrystalline samples of Pb(Zr0·65−xAxTi0·35)O3 (A = Mn/Fe), (x = 0·00, 0·05) (PZM/FT) were synthesized by conventional solid-state reaction technique. X-ray diffraction (XRD) pattern was recorded at room temperature and the samples were found in single phase form. All the observed peaks could be ...

  13. Ion implantation into concave polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Sakudo, N. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan)]. E-mail: sakudo@neptune.kanazawa-it.ac.jp; Shinohara, T. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Amaya, S. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Endo, H. [Kanazawa Institute of Technology, Advanced Materials R and D Center, 3-1 Yatsukaho, Matto, Hakusan, Ishikawa 924-0838 (Japan); Okuji, S. [Lintec Corp., 5-14-42 Nishiki-cho, Warabi, Saitama 335-0005 (Japan); Ikenaga, N. [Japan Science and Technology Corp., Nomigun, Ishikawa 923-1121 (Japan)

    2006-01-15

    A new technique for ion implantation into concave surface of insulating materials is proposed and experimentally studied. The principle is roughly described by referring to modifying inner surface of a PET (polyethylene terephthalate) bottle. An electrode that is supplied with positive high-voltage pulses is inserted into the bottle. Both plasma formation and ion implantation are simultaneously realized by the same high-voltage pulses. Ion sheath with a certain thickness that depends on plasma parameters is formed just on the inner surface of the bottle. Since the plasma potential is very close to that of the electrode, ions from the plasma are accelerated in the sheath and implanted perpendicularly into the bottle's inner surface. Laser Raman spectroscopy shows that the inner surface of an ion-implanted PET bottle is modified into DLC (diamond-like carbon). Gas permeation measurement shows that gas-barrier property enhances due to the modification.

  14. Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses

    International Nuclear Information System (INIS)

    Wan, Ming Hua; Wong, Poh Sum; Hussin, Rosli; Lintang, Hendrik O.; Endud, Salasiah

    2014-01-01

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ( 4 T 1g → 6 A 1g ). • As the concentration of Mn 2+ ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn 2+ ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn 2+ ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper 4 T 1g → 6 A 1g ground state of Mn 2+ ions. As the concentration of Mn 2+ ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of 4 T 1g level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn 2+ concentrations. From the emission characteristic parameters of 6 A 1g (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices

  15. Surface Heterostructure Induced by PrPO4Modification in Li1.2[Mn0.54Ni0.13Co0.13]O2Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay.

    Science.gov (United States)

    Ding, Feixiang; Li, Jianling; Deng, Fuhai; Xu, Guofeng; Liu, Yanying; Yang, Kai; Kang, Feiyu

    2017-08-23

    Lithium-rich layered oxides (LLOs) have been attractive cathode materials for lithium-ion batteries because of their high reversible capacity. However, they suffer from low initial Coulombic efficiency and capacity/voltage decay upon cycling. Herein, facile surface modification of Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material is designed to overcome these defects by the protective effect of a surface heterostructure composed of an induced spinel layer and a PrPO 4 modification layer. As anticipated, a sample modified with 3 wt % PrPO 4 (PrP3) shows an enhanced initial Coulombic efficiency of 90% compared to 81.8% for the pristine one, more excellent cycling stability with a capacity retention of 89.3% after 100 cycles compared to only 71.7% for the pristine one, and less average discharge voltage fading from 0.6353 to 0.2881 V. These results can be attributed to the fact that the modification nanolayers have moved amounts of oxygen and lithium from the lattice in the bulk crystal structure, leading to a chemical activation of the Li 2 MnO 3 component previously and forming a spinel interphase with a 3D fast Li + diffusion channel and stable structure. Moreover, the elaborate surface heterostructure on a lithium-rich cathode material can effectively curb the undesired side reactions with the electrolyte and may also extend to other layered oxides to improve their cycling stability at high voltage.

  16. Spinel LiMn 2 O 4 Nanorods as Lithium Ion Battery Cathodes

    KAUST Repository

    Kim, Do Kyung

    2008-11-12

    Spinel LiMn 2O 4 is a low-cost, environmentally friendly, and highly abundant material for Li-ion battery cathodes. Here, we report the hydrothermal synthesis of single-crystalline β-MnO 2 nanorods and their chemical conversion into free-standing single-crystalline LiMn 2O 4 nanorods using a simple solid-state reaction. The LiMn 2O 4 nanorods have an average diameter of 130 nm and length of 1.2 μm. Galvanostatic battery testing showed that LiMn 2O 4 nanorods have a high charge storage capacity at high power rates compared with commercially available powders. More than 85% of the initial charge storage capacity was maintained for over 100 cycles. The structural transformation studies showed that the Li ions intercalated into the cubic phase of the LiMn 2O 4 with a small change of lattice parameter, followed by the coexistence of two nearly identical cubic phases in the potential range of 3.5 to 4.3V. © 2008 American Chemical Society.

  17. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  18. Ion surface treatments on organic materials

    Science.gov (United States)

    Iwaki, Masaya

    2001-04-01

    A study has been made of surface modification of various organic materials by ion bombardment or implantation to make the surface properties of high and multiple functions in RIKEN. Substrates used were polyimide (PI), polyacetylene, polytetrafluoroethylene (PTFE), polystyrene (PS), silicone rubber, various kinds of proteins and so on. Bombarded or implanted ions were inert gas elements, chemically active gaseous elements and metallic elements. Surface properties such as electrical conductivity, wettability and cell adhesion of implanted layers have been investigated. Surface characterization of implanted materials has been carried out by means of transmission electron microscopy, laser Raman spectroscopy, X-ray photoelectron spectroscopy and Rutherford backscattering spectroscopy. In this paper, studies in RIKEN are reviewed of electrical conductivity, optical absorbance, wettability and cell adhesion depending on current densities and doping elements. Applications of ion bombardment to biomedical materials are introduced using cell adhesion control. It is concluded that ion bombardment or implantation is useful to change and control surface properties of various organic materials.

  19. Surface generation of negative hydrogen ion beams

    International Nuclear Information System (INIS)

    Bommel, P.J.M. van.

    1984-01-01

    This thesis describes investigations on negative hydrogen ion sources at the ampere level. Formation of H - ions occurs when positive hydrogen ions capture two electrons at metal surfaces. The negative ionization probability of hydrogen at metal surfaces increases strongly with decreasing work function of the surface. The converters used in this study are covered with cesium. Usually there are 'surface plasma sources' in which the hydrogen source plasma interacts with a converter. In this thesis the author concentrates upon investigating a new concept that has converters outside the plasma. In this approach a positive hydrogen ion beam is extracted from the plasma and is subsequently reflected from a low work function converter surface. (Auth.)

  20. Rietveld analysis, dielectric and impedance behaviour of Mn /Fe ion ...

    Indian Academy of Sciences (India)

    in the formation of oxygen ion vacancies to reserve the local electrical neutrality and causes thermally ... phase in the titanium rich side of the binary system and rhombohedral phase in the zirconium rich side (Xu et al ..... meters, occupancy, fractional atomic positions, etc were taken as free parameters during fitting. Here, we ...

  1. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II) Ions in Aqueous Solution

    Science.gov (United States)

    Heo, Jungho; Hwang, Cheong-Soo

    2016-01-01

    Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS) absorption spectrum and photoluminescence (PL) emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM) image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV) in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II) cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions. PMID:28335210

  2. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II Ions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jungho Heo

    2016-04-01

    Full Text Available Water-dispersible ZnS:Mn nanocrystals (NCs were synthesized by capping the surface with polar L-aspartic acid (Asp molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS absorption spectrum and photoluminescence (PL emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions.

  3. Optical surfacing via linear ion source

    International Nuclear Information System (INIS)

    Wu, Lixiang; Wei, Chaoyang; Shao, Jianda

    2017-01-01

    We present a concept of surface decomposition extended from double Fourier series to nonnegative sinusoidal wave surfaces, on the basis of which linear ion sources apply to the ultra-precision fabrication of complex surfaces and diffractive optics. The modified Fourier series, or sinusoidal wave surfaces, build a relationship between the fabrication process of optical surfaces and the surface characterization based on power spectral density (PSD) analysis. Also, we demonstrate that the one-dimensional scanning of linear ion source is applicable to the removal of mid-spatial frequency (MSF) errors caused by small-tool polishing in raster scan mode as well as the fabrication of beam sampling grating of high diffractive uniformity without a post-processing procedure. The simulation results show that optical fabrication with linear ion source is feasible and even of higher output efficiency compared with the conventional approach.

  4. Uniform MnCo2O4Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions.

    Science.gov (United States)

    Kong, Xiangzhong; Zhu, Ting; Cheng, Fangyi; Zhu, Mengnan; Cao, Xinxin; Liang, Shuquan; Cao, Guozhong; Pan, Anqiang

    2018-03-14

    Three-dimensional (3D) binary oxides with hierarchical porous nanostructures are attracting increasing attentions as electrode materials in energy storage and conversion systems because of their structural superiority which not only create desired electronic and ion transport channels but also possess better structural mechanical stability. Herein, unusual 3D hierarchical MnCo 2 O 4 porous dumbbells have been synthesized by a facile solvothermal method combined with a following heat treatment in air. The as-obtained MnCo 2 O 4 dumbbells are composed of tightly stacked nanorods and show a large specific surface area of 41.30 m 2 g -1 with a pore size distribution of 2-10 nm. As an anode material for lithium-ion batteries (LIBs), the MnCo 2 O 4 dumbbell electrode exhibits high reversible capacity and good rate capability, where a stable reversible capacity of 955 mA h g -1 can be maintained after 180 cycles at 200 mA g -1 . Even at a high current density of 2000 mA g -1 , the electrode can still deliver a specific capacity of 423.3 mA h g -1 , demonstrating superior electrochemical properties for LIBs. In addition, the obtained 3D hierarchical MnCo 2 O 4 porous dumbbells also display good oxygen evolution reaction activity with an overpotential of 426 mV at a current density of 10 mA cm -2 and a Tafel slope of 93 mV dec -1 .

  5. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Science.gov (United States)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  6. Ion Motion Stability in Asymmetric Surface Electrode Ion Traps

    Science.gov (United States)

    Shaikh, Fayaz; Ozakin, Arkadas

    2010-03-01

    Many recently developed designs of the surface electrode ion traps for quantum information processing have asymmetry built into their geometries. The asymmetry helps rotate the trap axes to angles with respect to electrode surface that facilitate laser cooling of ions but introduces a relative angle between the RF and DC fields and invalidates the classical stability analysis of the symmetric case for which the equations of motion are decoupled. For asymmetric case the classical motion of a single ion is given by a coupled, multi-dimensional version of Mathieu's equation. In this poster we discuss the stability diagram of asymmetric surface traps by performing an approximate multiple scale perturbation analysis of the coupled Mathieu equations, and validate the results with numerical simulations. After obtaining the stability diagram for the linear fields, we simulate the motion of an ion in a given asymmetric surface trap, utilizing a method-of-moments calculation of the electrode fields. We obtain the stability diagram and compare it with the ideal case to find the region of validity. Finally, we compare the results of our stability analysis to experiments conducted on a microfabricated asymmetric surface trap.

  7. Amplification of the discharge current density of lithium-ion batteries with spinel phase Li(PtAu)0.02Mn1.98O4 nano-materials

    CSIR Research Space (South Africa)

    Ross, N

    2014-05-01

    Full Text Available capacity retention of 99% after 50 cycles. Faster charge transportation at high current rates proved to prevent the pronounced pile-up of Li(sup+) ions and undesired Mn(sup3+) ions on the surfaces. The electrochemical impedance spectroscopy (EIS) results...

  8. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  9. Synthetic, structural, spectroscopic and theoretical study of a Mn(III)-Cu(II) dimer containing a Jahn-Teller compressed Mn ion

    DEFF Research Database (Denmark)

    Berg, Nelly; Hooper, Thomas N.; Liu, Junjie

    2013-01-01

    The heterobimetallic complex [Cu(II)Mn(III)(L)(2)(py)(4)](ClO(4))·EtOH (1) built using the pro-ligand 2,2'-biphenol (LH(2)), contains a rare example of a Jahn-Teller compressed Mn(III) centre. Dc magnetic susceptibility measurements on 1 reveal a strong antiferromagnetic exchange between the Cu...... anisotropy also correlates well with experiment. A larger cluster anisotropy for the S = 3/2 state compared to the single-ion anisotropy of Mn(III) is rationalised on the basis of orbital mixing and various contributions that arise due to the spin-orbit interaction....

  10. Synthesis and optoelectrochemical properties of ZnS:Mn nanocrystals.

    Science.gov (United States)

    Shen, Bin; Zhou, Hong; Chen, Zhiren; Wang, Zhifei; Sheng, Yujie; Chen, Jia; Geng, Binbin

    2012-05-01

    Mn2+ ions doped ZnS semiconductor nanocrystals (ZnS:Mn NCs) were synthesized using colloidal chemical method at 70 degrees C without any capping agents. The as-prepared undoped ZnS and ZnS:Mn NCs were characterized by UV-Vis absorption spectra, fluorescent emission spectra, X-ray powder diffraction (XRD), inductively coupled plasma analysis (ICP), X-ray photoelectron spectroscopy (XPS), Dynamic light scattering (DLS), cyclic voltammogram and electronic transmission microscopy (TEM). The dependence of photoluminescence of ZnS:Mn NCs on dopant concentration was studied. The results show that Mn2+ ions mainly stay at ZnS nanocystal surface, and Mn2+-surface defect state complex was formed, as a result of which, surface defect emission of ZnS nanocrystals was substituted with Mn2+-related PL emission. The strongest fluorescent emission intensity was obtain at 1.85 at% Mn2+ doped ZnS:Mn NCs. The Mn2+ doped ZnS:Mn NCs are of 5 nm in diameter. The emission peak at 575 nm is attributed to d-d (4T1 --> 6A1) transition of Mn2+ ions. The existence of Mn2+-related photoluminescence could be well correlated with cyclic voltammogram of Mn2+-doped NCs, where pair of oxidation and reduction peaks were clearly observed due to the doped Mn2+ ions. The adsorbed Mn2+ ions on ZnS NCs produced neither Mn2+ emission nor redox peaks. For heavily doped ZnS:Mn NCs (4.87 at%), redox peaks gap in cyclic voltammogram became larger and new oxidation peak appeared. Correspondingly, when the Mn2+ doping concentration reached 4.87 at%, the Mn2+-related emission totally disappears due to the Mn-Mn interactions. This work implys that electrochemical technique is possibly an useful tool to probe the local structure of doped Mn2+ ions.

  11. Structural and luminescence properties of Mn{sup 2+} ions doped calcium zinc borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Ming Hua, E-mail: wanminghua819@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Wong, Poh Sum, E-mail: pohsumwong@gmail.com [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Hussin, Rosli, E-mail: roslihussin@utm.my [Phosphor Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Lintang, Hendrik O., E-mail: hendrik@ibnusina.utm.my [Catalytic Science and Technology (CST) Research Group, Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Endud, Salasiah, E-mail: salasiah@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-05-15

    Highlights: • FT-IR revealed that the network structures are from borate and phosphate network. • The PL spectrum exhibits a green emission band at 582 nm ({sup 4}T{sub 1g} → {sup 6}A{sub 1g}). • As the concentration of Mn{sup 2+} ions is increased, the emission band had been red shifted. • These glasses are found to have potential applications as luminescent optical materials. - Abstract: Calcium zinc borophosphate glasses (CaZnBP) doped with various concentrations of Mn{sup 2+} ions and borate and phosphate as variable were prepared using conventional melt quenching technique. The structure of obtained glasses were examined by means of use: X-ray diffraction (XRD) and fourier transform infrared (FT-IR). XRD analysis confirmed amorphous nature of glass samples. The FT-IR spectra reveals the presence of both borate and phosphate vibrational modes in the prepared glasses. The doping of Mn{sup 2+} ions (2–10 mol%) shows no significant changes in the main IR vibrational bands. Optical properties were studied by measuring the near infrared photoluminescence (PL) spectra. CaZnBP glasses exhibited intense green emission peak (582 nm) (tetrahedral symmetry), which is assigned to a transition from the upper {sup 4}T{sub 1g} → {sup 6}A{sub 1g} ground state of Mn{sup 2+} ions. As the concentration of Mn{sup 2+} ions increases, the emission band increases from 582 nm to 650 nm and exhibited a red light emission (octahedral symmetry). The decay curves of {sup 4}T{sub 1g} level were examined for all concentrations and the measured lifetimes are found to depend strongly on Mn{sup 2+} concentrations. From the emission characteristic parameters of {sup 6}A{sub 1g} (S) level, it shows that the CaZnBP glasses could have potential applications as luminescent optical materials, visible lasers and fluorescent display devices.

  12. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  13. Magnetoresistance and Curie temperature of GaAs semiconductor doped with Mn ions

    International Nuclear Information System (INIS)

    Yalishev, V.Sh.

    2006-02-01

    Key words: diluted magnetic semiconductors, magnetoresistance, ferromagnetism, ionic implantation, molecular-beam epitaxy, magnetic clusters, Curie temperature. Subjects of the inquiry: Diluted magnetic semiconductor GaAs:Mn. Aim of the inquiry: determination of the possibility of the increase of Curie temperature in diluted magnetic semiconductors based on GaAs doped with Mn magnetic impurity. Method of inquiry: superconducting quantum interference device (SQUID), Hall effect, magnetoresistance, atomic and magnetic force microscopes. The results achieved and their novelty: 1. The effect of the additional doping of Ga 0,965 Mn 0,035 As magnetic epitaxial layers by nonmagnetic impurity of Be on on the Curie temperature was revealed. 2. The exchange interaction energy in the investigated Ga 0,965 Mn 0,035 As materials was determined by the means of the magnetic impurity dispersion model from the temperature dependence of the resistivity measurements. 3. The effect of magnetic clusters dimensions and illumination on the magnetoresistance of GaAs materials containing nano-dimensional magnetic clusters was studied for the first time. Practical value: Calculated energy of the exchange interaction between local electrons of magnetic ions and free holes in Ga 1-x Mn x As magnetic semiconductors permitted to evaluate the theoretical meaning of Curie temperature depending on concentration of free holes and to compare it with experimental data. Sphere of usage: micro- and nano-electronics, solid state physics, physics of semiconductors, magnetic materials physics, spin-polarized current sources. (author)

  14. A ferromagnetic ground state for Mn-Co surface ordered alloy on Co(001) substrate

    International Nuclear Information System (INIS)

    M'Passi-Mabiala, B.; Meza-Aguilar, S.; Demangeat, C.

    2001-07-01

    Recent Low-energy electron diffraction experiments concerning submonolayer Mn coverage on Co/Cu(001) substrates displayed a well-defined Mn 0.5 Co 0.5 surface ordered alloy. Through the Magneto-optic Kerr effect and X-ray magnetic circular dichroism a ferromagnetic coupling between Mn and Co was obtained. Ab initio density functional theory within generalized gradient approximation is able to explain these results. (author)

  15. Characterization of PEEK, PET and PI implanted with Mn ions and sub-sequently annealed

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Mikšová, Romana; Pupíková, Hana; Khaibullin, R. I.; Slepička, P.; Gombitová, A.; Kováčik, L.; Švorčík, V.; Matoušek, J.

    2014-01-01

    Roč. 325, APR 15 (2014), s. 89-96 ISSN 0168-583X R&D Projects: GA MŠk(XE) LM2011019; GA ČR GA106/09/0125; GA ČR GBP302/12/G157 Institutional support: RVO:61389005 Keywords : Mn ion implantation * polymers * depth profiles * RBS * TEM * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  16. Freestanding graphene/MnO2 cathodes for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Şeyma Özcan

    2017-09-01

    Full Text Available Different polymorphs of MnO2 (α-, β-, and γ- were produced by microwave hydrothermal synthesis, and graphene oxide (GO nanosheets were prepared by oxidation of graphite using a modified Hummers’ method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X-ray diffraction (XRD and Raman spectroscopy. The surface and cross-sectional morphologies of freestanding cathodes were investigated by scanning electron microcopy (SEM. The charge–discharge profile of the cathodes was tested between 1.5 V and 4.5 V at a constant current of 0.1 mA cm−2 using CR2016 coin cells. The initial specific capacity of graphene/α-, β-, and γ-MnO2 freestanding cathodes was found to be 321 mAhg−1, 198 mAhg−1, and 251 mAhg−1, respectively. Finally, the graphene/α-MnO2 cathode displayed the best cycling performance due to the low charge transfer resistance and higher electrochemical reaction behavior. Graphene/α-MnO2 freestanding cathodes exhibited a specific capacity of 229 mAhg−1 after 200 cycles with 72% capacity retention.

  17. Simulation of surface evolution during ion bombardment

    International Nuclear Information System (INIS)

    Katardjiev, I.V.

    1988-01-01

    Some theoretical aspects of surface topography evolution during ion beam erosion are discussed. In particular, the theory of characteristics is considered in some detail and its limitations pointed out. Further theoretical development based on the Huygens principle of wave propagation is discussed also with respect to numerical evaluation of surface evolution. A new numerical algorithm based on the contemporary theoretical concepts of surface and edge propagation is proposed and compared with existing numerical models and theoretical expectations

  18. Diagnosing, Optimizing and Designing Ni & Mn based Layered Oxides as Cathode Materials for Next Generation Li-ion Batteries and Na-ion Batteries

    Science.gov (United States)

    Liu, Haodong

    The progressive advancements in communication and transportation has changed human daily life to a great extent. While important advancements in battery technology has come since its first demonstration, the high energy demands needed to electrify the automotive industry have not yet been met with the current technology. One considerable bottleneck is the cathode energy density, the Li-rich layered oxide compounds xLi2MnO3.(1-x)LiMO 2 (M= Ni, Mn, Co) (0.5= Co) (0.5=discharge capacities greater than 280 mAh g-1 (almost twice the practical capacity of LiCoO 2). In this work, neutron diffraction under operando battery cycling is developed to study the lithium and oxygen dynamics of Li-rich compounds that exhibits oxygen activation at high voltage. The measured lattice parameter changes and oxygen position show movement of oxygen and lattice contractions during the high voltage plateau until the end of charge. Lithium migration kinetics for the Li-rich material is observed under operando conditions for the first time to reveal the rate of lithium extraction from the lithium layer and transition metal layer are related to the different charge and discharge characteristics. In the second part, a combination of multi-modality surface sensitive tools was applied in an attempt to obtain a complete picture to understand the role of NH4F and Al2O3 surface co-modification on Li-rich. The enhanced discharge capacity of the modified material can be primary assigned to three aspects: decreased irreversible oxygen loss, the activation of cathode material was facilitated with pre-activated Mn3+ on the surface, and stabilization of the Ni redox pair. These insights will provide guidance for the surface modification in high voltage cathode battery materials of the future. In the last part, the idea of Li-rich has transferred to the Na-ion battery cathode. A new O3 - Na0.78Li0.18Ni0.25Mn 0.583Ow is prepared as the cathode material for Na-ion batteries, delivering exceptionally high

  19. Development of Pseudocapacitive Properties in Nanostructured LiMn2O4 as a Fast Charging Cathode for Lithium Ion Batteries

    Science.gov (United States)

    Lesel, Benjamin

    Pseudocapacitive materials provide a high energy density solution to fast charging, long cycle life energy storage. This work explores the pseudocapacitive characteristics and attempts to optimize nanostructured LiMn2O 4 for use as a cathode material in fast charging, long cycle lifetime lithium ion batteries. Because slow kinetics in traditional batteries is linked to long lithium ion diffusion lengths through micron sized grains, the key to achieving pseudocapacitance in most materials is through nanostructuring to reduced diffusion distance. One of the most effective methods for producing nanostructures is through nanocrystal/polymer templating, which produces a porous structure with interconnected nanoscale walls capable of intercalating lithium ions at pseudocapactive rates. To make a full pseudocapacitive lithium ion battery a reality, however, a pseudocapacitive material of each electrode type, anode and cathode, must be paired. To date, many pseudocapacitive materials have been identified, but nearly all of them are redox active in a voltage range more suitable for anode materials. Recently, we identified a pseudocapacitive cathode material, nanostructured LiMn2O4 which shows impressive rate capabilities. Unfortunately, the improvements came at the cost of energy density, which decreased significantly with decreasing crystallite size. Kinetics for different crystallite sizes, however, increased suddenly below a certain critical crystallite size. We found that this critical crystallite size, below which pseudocapacitance occurred, was linked to a suppression of phase transition in nanoscale LiMn2O4. To address the capacity loss due to dissolution in high surface area nanostructured LiMn 2O4 powders, a sol-gel templating method which formed dissolution resistant surfaces was employed. The resulting materials had long needle-like morphology and showed higher capacity and less dissolution than a similarly sized material synthesized with a different structure

  20. Surface analysis with low energy ion scattering

    International Nuclear Information System (INIS)

    Taglauer, E.; Heiland, W.

    1976-01-01

    Principles and applications of low energy ion scattering for surface analysis are presented. Basic features are the binary collision concept, the scattering cross-sections and the ion neutralization process. The potential and the limitations of the method are outlined. Some pertinent experimental aspects are considered. In a number of examples the performance of the technique is demonstrated for qualitative composition analysis and for studies of surface structures. Finally a few comparisons are made with other techniques, such as AES, LEED, or SIMS. (orig.) [de

  1. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    International Nuclear Information System (INIS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-01-01

    Graphical abstract: - Highlights: • A uniform MnO 2 layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO 2 modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO 2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO 2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO 2 modification increased more than six times. And the adsorption of Pb 2+ on the MnO 2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix

  2. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  3. Dissolution, Migration, and Deposition of Transition Metal Ions in Li-ion Batteries Exampled by Mn-based cathodes- a Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Chun; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2018-02-01

    Unlike the revolutionary advances in the anodes of lithium-ion batteries from Li intercalation materials to Li alloy and/or conversion reaction materials, the development of the cathode is still dominated by the Li intercalation compounds. Transition metal ions are essential in these cathodes as the rapid redox reaction centers, and one of the biggest challenges for the TM-based cathodes is the capacity and power fading especially at an elevated temperature, which is directly associated with the dissolution-migration-deposition (DMD) process of TMs from the cathode materials. This process not only alters the surface structure of the cathode materials, but more importantly, changes the SEI composition at the anode side. There is no doubt that the TM-DMD issue should be addressed thoroughly to unlock the potential of these compounds to enable a prolonged battery lifetime. This review article mainly focuses on research activities with regard to the DMD process in TM-based cathode materials. In the first four sections, we choose Mn-based cathodes as an example to discuss how Mn DMD relates to the capacity fade of the cell, and what possible approaches might suppress the DMD process by modification of the electrode or electrolyte. In the fifth section, we discuss the TM DMD process in Ni-, Co-, Fe- and V-containing cathode materials. This article reviews the frontier electrochemical research on TM-based cathodes and summarizes the progress and challenges, thereby helping to advance future R&D of LIBs.

  4. Synthesis of Si-Induced MnO/Mn2SiO4@C Cuboids as High-Performance Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Wei, Hang; Xia, Zhonghong; Xia, Dingguo

    2017-12-20

    The exploration of anode materials of lithium-ion batteries (LIBs) is still a great challenge because of their low electrical conductivity and poor durability. Transition-metal oxides are proposed as a potential alternative, even though their dimension and structure greatly affect their electrochemical properties. In this study, MnO/Mn 2 SiO 4 @C cuboids were prepared via the polymerization-pyrolysis process. Larger MnCO 3 precursor particles embedded into a monolithic carbon framework and formed smaller nanoparticles owing to the inducing effect of Si element in phthalocyanino silicon (SiPc), giving MnO/Mn 2 SiO 4 @C cuboids. The micron-scaled cuboid composite can lead to higher tap density and greater electrical performance due to lower interparticle resistance. Therefore, the as-prepared MnO/Mn 2 SiO 4 @C electrode exhibits stable specific capacities of 585.9 and 423.9 mA h g -1 after 1000 discharge/charge cycles at 1 and 2 A g -1 , respectively. Meanwhile, an excellent rate capacity of 246.3 mA h g -1 was achieved even at 30 A g -1 . Additionally, this facile and economical strategy to improve electrode performance provides a commercially feasible way for the construction of high-performance LIBs.

  5. Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimer's disease.

    Science.gov (United States)

    Wallin, Cecilia; Kulkarni, Yashraj S; Abelein, Axel; Jarvet, Jüri; Liao, Qinghua; Strodel, Birgit; Olsson, Lisa; Luo, Jinghui; Abrahams, Jan Pieter; Sholts, Sabrina B; Roos, Per M; Kamerlin, Shina C L; Gräslund, Astrid; Wärmländer, Sebastian K T S

    2016-12-01

    Growing evidence links neurodegenerative diseases to metal exposure. Aberrant metal ion concentrations have been noted in Alzheimer's disease (AD) brains, yet the role of metals in AD pathogenesis remains unresolved. A major factor in AD pathogenesis is considered to be aggregation of and amyloid formation by amyloid-β (Aβ) peptides. Previous studies have shown that Aβ displays specific binding to Cu(II) and Zn(II) ions, and such binding has been shown to modulate Aβ aggregation. Here, we use nuclear magnetic resonance (NMR) spectroscopy to show that Mn(II) ions also bind to the N-terminal part of the Aβ(1-40) peptide, with a weak binding affinity in the milli- to micromolar range. Circular dichroism (CD) spectroscopy, solid state atomic force microscopy (AFM), fluorescence spectroscopy, and molecular modeling suggest that the weak binding of Mn(II) to Aβ may not have a large effect on the peptide's aggregation into amyloid fibrils. However, identification of an additional metal ion displaying Aβ binding reveals more complex AD metal chemistry than has been previously considered in the literature. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries.

    Science.gov (United States)

    Xia, Yang; Xiao, Zhen; Dou, Xiao; Huang, Hui; Lu, Xianghong; Yan, Rongjun; Gan, Yongping; Zhu, Wenjun; Tu, Jiangping; Zhang, Wenkui; Tao, Xinyong

    2013-08-27

    Hollow porous micro/nanostructures with high surface area and shell permeability have attracted tremendous attention. Particularly, the synthesis and structural tailoring of diverse hollow porous materials is regarded as a crucial step toward the realization of high-performance electrode materials, which has several advantages including a large contact area with electrolyte, a superior structural stability, and a short transport path for Li(+) ions. Meanwhile, owing to the inexpensive, abundant, environmentally benign, and renewable biological resources provided by nature, great efforts have been devoted to understand and practice the biotemplating technology, which has been considered as an effective strategy to achieve morphology-controllable materials with structural specialty, complexity, and related unique properties. Herein, we are inspired by the natural microalgae with its special features (easy availability, biological activity, and carbon sources) to develop a green and facile biotemplating method to fabricate monodisperse MnO/C microspheres for lithium-ion batteries. Due to the unique hollow porous structure in which MnO nanoparticles were tightly embedded into a porous carbon matrix and form a penetrative shell, MnO/C microspheres exhibited high reversible specific capacity of 700 mAh g(-1) at 0.1 A g(-1), excellent cycling stability with 94% capacity retention, and enhanced rate performance of 230 mAh g(-1) at 3 A g(-1). This green, sustainable, and economical strategy will extend the scope of biotemplating synthesis for exploring other functional materials in various structure-dependent applications such as catalysis, gas sensing, and energy storage.

  7. [Detection of the lethal process in plankton noctiluca by means of a forbidden transition of ESR of Mn2+ ion].

    Science.gov (United States)

    Kamenev, S E; Kopvillem, U Kh; Pasynkov, A S; Sharipov, R Z

    1981-01-01

    A forbidden ESR line of Mn2+ that is connected with the penetration of Mn into the plancton organism and binding it to a marcomolecule is selected from the experiment. A method for saturating the plancton organism with paramagnetic ions is proposed. It is shown that the constant of the axial electric field in the spin hamiltonian of Mn2+ ion described the dynamics of a selforganizing system. It is tested that the lethal process in the plancton with paramagnetic ion enrichment originated from boson avalanche. Experiments are performed with plancton noctiluca which illustrate the occurrence of avalancheline lethal process in the case of paramagnetic ion enrichment with limiting concentration. The meaning of these results for the problems of oceanology and pollution-ocean inhabitants interaction in the case of paramagnetic ions is discussed.

  8. Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries.

    Science.gov (United States)

    Zhang, Zailei; Wang, Yanhong; Tan, Qiangqiang; Zhong, Ziyi; Su, Fabing

    2013-05-15

    We report the synthesis and characterization of the mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for Li-ion batteries. MnFe2O4 microspheres were synthesized by a facile solvothermal method using Mn(CH3COO)2 and FeCl3 as metal precursors in the presence of CH3COOK, CH3COOC2H5, and HOCH2CH2OH. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric, X-ray photoelectron spectroscopy, temperature programmed reduction, and temperature programmed oxidation. The synthesized mesoporous MnFe2O4 microspheres composed of nanoparticles (10-30 nm) were 100-500 nm in diameter and had surface areas between 60.2 and 86.8 m(2) g(-1), depending on the CH3COOK amounts added in the preparation. After calcined at 600°C, MnFe2O4 was decomposed to Mn2O3 and Fe2O3 mixture. The mesoporous MnFe2O4 microspheres calcined at 400°C showed a capacity of 712.2 mA h g(-1) at 0.2C and 552.2 mA h g(-1) at 0.8C after 50 cycles, and an average capacity fading rate of around 0.28%/cycle and 0.48%/cycle, much better than those of the samples without calcination and calcined at 600°C. The work would be helpful in the fabrication of binary metal oxide anode materials for Li-ion batteries. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Ion-induced surface modification of alloys

    International Nuclear Information System (INIS)

    Wiedersich, H.

    1983-11-01

    In addition to the accumulation of the implanted species, a considerable number of processes can affect the composition of an alloy in the surface region during ion bombardment. Collisions of energetic ions with atoms of the alloy induce local rearrangement of atoms by displacements, replacement sequences and by spontaneous migration and recombination of defects within cascades. Point defects form clusters, voids, dislocation loops and networks. Preferential sputtering of elements changes the composition of the surface. At temperatures sufficient for thermal migration of point defects, radiation-enhanced diffusion promotes alloy component redistribution within and beyond the damage layer. Fluxes of interstitials and vacancies toward the surface and into the interior of the target induce fluxes of alloying elements leading to depth-dependent compositional changes. Moreover, Gibbsian surface segregation may affect the preferential loss of alloy components by sputtering when the kinetics of equilibration of the surface composition becomes competitive with the sputtering rate. Temperature, time, current density and ion energy can be used to influence the individual processes contributing to compositional changes and, thus, produce a rich variety of composition profiles near surfaces. 42 references

  10. Crystal field distortion of La3+ ion-doped Mn-Cr ferrite

    Science.gov (United States)

    Abdellatif, M. H.; El-Komy, G. M.; Azab, A. A.; Salerno, M.

    2018-02-01

    Ion doping in crystals can result in lattice modifications triggering interesting magnetic and optical properties of the material, understood as a compensation of the crystal deformation and microstrain. We investigated the spinel structure of Mn-Cr ferrite after doping with La3+ ions. The structure was first characterized by X-ray diffraction and high-resolution transmission electron microscopy. Raman scattering spectra were taken that could also be interpreted in terms of crystal field distortion due to La3+ ion doping. On assessing the magneto-impedance of the doped ferrite, it showed giant magneto-impedance behavior, with a strong drop of over 50%. The saturation magnetization was characterised by vibrating sample magnetometer and was found to be 20.25 emu/g with remnant magnetization of 1.47 emu/g.

  11. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  12. Interaction of nitrogen ions with beryllium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Katharina [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria); Köppen, Martin [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Oberkofler, Martin [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Lungu, Cristian P.; Porosnicu, Corneliu [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania); Höschen, Till; Meisl, Gerd [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Linsmeier, Christian [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria)

    2014-12-01

    The interaction of energetic nitrogen projectiles with a beryllium surface is studied using a highly sensitive quartz crystal microbalance technique. The overall mass change rate of the beryllium sample under N{sub 2}{sup +} ion impact at an ion energy of 5000 eV (i.e. 2500 eV per N) is investigated in situ and in real-time. A strong dependency of the observed mass change rate on the nitrogen fluence (at constant flux) is found and can be attributed to the formation of a nitrogen-containing mixed material layer within the ion penetration depth. The presented data elucidate the dynamics of the interaction process and the surface saturation with increasing nitrogen fluence in a unique way. Basically, distinct interaction regimes can be discriminated, which can be linked to the evolution of the surface composition upon nitrogen impact. Steady state surface conditions are obtained at a total cumulative nitrogen fluence of ∼80 × 10{sup 16} N atoms per cm{sup 2}. In dynamic equilibrium, the interaction is marked by continuous surface erosion. In this case, the observed total sputtering yield becomes independent from the applied nitrogen fluence and is of the order of 0.4 beryllium atoms per impinging nitrogen atom.

  13. An investigation of electron paramagnetic resonance spectra of Mn+2 ion in silver nitrate single crystals

    International Nuclear Information System (INIS)

    Korkmaz, M.

    1974-01-01

    X-band EPR spectra of Mn +2 ion in AgNO 3 single crystals have been investigated as a function of temperature. Because of the small size of the fine structure constant 'a' and the large size of the hyperfine constant 'A' in this crystal, all electronic transitions are superimposed. For this reason, spectra consist of a group of six hyperfine components. The spectra appeared to be isotropic, although the symmetry of the host lattice is orthoromibc. This shows that the local symmetry of the paramagnetic ions is of cubic type. EPR signal disappears completely at -40 0 C. As the temperature is increased from this value the signal intensity increases steadily and reaches a maximum value at +40 0 C. If the temperature is raised further the signal tends to decrease. In other words in this crystal Mn +2 ion shows antiferromagnetic property below +40 0 C and paramagnetic property above +40 0 C. We also found that, in the antiferromagnetic region, the line width increases as the temperature is decreased. In the paramagnetic region the line width increases as the temperature is increased. Other spectral parameters A and g do not change with the temperature. Spectra obtained at room temperature and at different temperatures are also discussed. (Korkmaz, M.)

  14. Morphology of ion-sputtered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A. E-mail: makeev@baton.phys.lsu.edu; Cuerno, Rodolfo; Barabasi, Albert-Laszlo

    2002-12-01

    We derive a stochastic nonlinear continuum equation to describe the morphological evolution of amorphous surfaces eroded by ion bombardment. Starting from Sigmund's theory of sputter erosion, we calculate the coefficients appearing in the continuum equation in terms of the physical parameters characterizing the sputtering process. We analyze the morphological features predicted by the continuum theory, comparing them with the experimentally reported morphologies. We show that for short time scales, where the effect of nonlinear terms is negligible, the continuum theory predicts ripple formation. We demonstrate that in addition to relaxation by thermal surface diffusion, the sputtering process can also contribute to the smoothing mechanisms shaping the surface morphology. We explicitly calculate an effective surface diffusion constant characterizing this smoothing effect and show that it is responsible for the low temperature ripple formation observed in various experiments. At long time scales the nonlinear terms dominate the evolution of the surface morphology. The nonlinear terms lead to the stabilization of the ripple wavelength and we show that, depending on the experimental parameters, such as angle of incidence and ion energy, different morphologies can be observed: asymptotically, sputter eroded surfaces could undergo kinetic roughening, or can display novel ordered structures with rotated ripples. Finally, we discuss in detail the existing experimental support for the proposed theory and uncover novel features of the surface morphology and evolution, that could be directly tested experimentally.

  15. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  16. Resonant structure of the 3d electron's angular distribution in a free Mn+Ion

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Dolmatov, V.K.

    1995-01-01

    The 3d-electron angular anisotropy parameter of the free Mn + ion is calculated using the open-quotes spin-polarizedclose quotes random-phase approximation with exchange. Strong resonance structure is discovered, which is due to interference with the powerful 3p → 3d discrete excitation. The effect of the 3p → 4s transition is also noticeable. The ordering of these respective resonances with phonon energy increase proved to be opposite in angular anisotropy parameter to that in 3d-photoionization cross section. A paper describing these results was published

  17. Auger processes in ion-surface collisions

    International Nuclear Information System (INIS)

    Zampieri, Guillermo.

    1985-01-01

    Bombardment of solid targets with low-energy noble gas ions can produce Auger electron emission from the target atoms and/or from the projectiles. In the case of Auger emission from the projectile, Auger emission was observed during the bombardment of Na, Mg, Al and Si with Ne + ions. This emission was studied as a function of the energy, incidence angle and charge state of the projectile. From the analysis, it is concluded that the emission originates in the decay in vacuum of excited and reflected Ne atoms, moving outside the surface. Auger emission was not observed during the bombardment of K, V and Ni with Ar + ions; Zr and Cs with Kr + , and Xe + ions, respectively; and Li and Be with He + ions. In the case of Auger emission from the target, studies of certain aspects of the Na, Mg and Al Auger electron emission spectra were made. The results allow to identify two components in the Auger feature, coresponding to two kinds of Auger transition. The total spectra results from the superposition of both kinds of emission. Auger spectra from K obtained during Ar + and K + bombardment of K-implanted Be, Mg, Al and Cu were also analyzed. Similar to the Na, Mg and Al Auger spectra, the K Auger feature is composed of an atomic like peak superimposed on a bandlike structure. Both components correspond to Auger transitions in K atoms with a 3p vacancy, occuring in vacuum and inside the solid, respectively. (M.E.L.) [es

  18. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Rakhi, Raghavan Baby

    2016-07-05

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were formed on MXene nanosheet surfaces (ε-MnO2/Ti2CTx and ε-MnO2/Ti3C2Tx) to make nanocomposite electrodes for aqueous pseudocapacitors. The ε-MnO2 nanowhiskers increase the surface area of the composite electrode and enhance the specific capacitance by nearly three orders of magnitude compared to pure MXene based symmetric supercapacitors. Combined with enhanced pseudocapacitance, the fabricated ε-MnO2/MXene supercapacitors exhibited excellent cycling stability with ~88% of the initial specific capacitance retained after 10000 cycles which is much higher than pure ε-MnO2 based supercapacitors (~74%). The proposed electrode structure capitalizes on the high specific capacitance of MnO2 and the ability of MXenes to improve conductivity and cycling stability.

  19. Analytical Chemistry of Surfaces: Part III. Ion Spectroscopy.

    Science.gov (United States)

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    The fundamentals of two surface techniques--secondary-ion mass spectrometry (SIMS) and ion-scattering spectrometry (ISS)--are discussed. Examples of how these techniques have been applied to surface problems are provided. (JN)

  20. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery

    Science.gov (United States)

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603

  1. Mn2C sheet as an electrode material for lithium-ion battery: A first-principles prediction

    International Nuclear Information System (INIS)

    Zhou, Yungang; Zu, Xiaotao

    2017-01-01

    Graphical abstract: Combined with strong Li bond, low Li diffusion barrier, superior electrical conductivity and high theoretical capacity, Mn 2 C Sheet is found to be a new promising electrode material for Lithium-Ion Battery. - Highlights: • Li atom bind strongly with Mn 2 C sheet with a very low adsorption energy. • Pristine Mn 2 C sheet exhibits metallic character. • Li atom can easily and freely migrate on the Mn 2 C sheet. • Lithiation to a high content is feasible. • Theoretical capacity of Mn 2 C sheet arrives at 879 mAhg −1 . - Abstract: A search for high-efficiency electrode materials is crucial for the application of Li-ion batteries (LIBs). Using density functional theory (DFT), we assess the Mn 2 C sheet, a new MXene, as a suitable electrode material. Our studies show that Li atoms can bind strongly to the Mn 2 C sheet, with low adsorption energy of −1.93 eV. A pristine Mn 2 C sheet exhibits metallic characteristic, offering an intrinsic advantage for the transportation of electrons in material. A very low energy barrier of 0.05 eV is predicted, showing that Li ion can easily and freely migrate on the Mn 2 C sheet. In addition, with the increase of Li content, adsorption energy varies minimally within a range of energy that spans only 0.27 eV, showing that lithiation to a high content is feasible. Furthermore, we found that, because of the bilayer adsorptions on both sides of the Mn 2 C sheet, the theoretical capacity of the Mn 2 C sheet is 879 mAhg −1 , which is greater than that of most two-dimentional (2D) electrode materials. All these results reveal a new promising MXene material for LIBs. We also studied the effects of oxidation and fluorination on the electrochemical properties of the Mn 2 C sheet and found that oxidation and fluorination will fade the electrochemical properties of the Mn 2 C sheet in general.

  2. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  3. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  4. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  5. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.

    Science.gov (United States)

    Lee, Kyu Tae; Jeong, Sookyung; Cho, Jaephil

    2013-05-21

    Motivated by new applications including electric vehicles and the smart grid, interest in advanced lithium ion batteries has increased significantly over the past decade. Therefore, research in this field has intensified to produce safer devices with better electrochemical performance. Most research has focused on the development of new electrode materials through the optimization of bulk properties such as crystal structure, ionic diffusivity, and electric conductivity. More recently, researchers have also considered the surface properties of electrodes as critical factors for optimizing performance. In particular, the electrolyte decomposition at the electrode surface relates to both a lithium ion battery's electrochemical performance and safety. In this Account, we give an overview of the major developments in the area of surface chemistry for lithium ion batteries. These ideas will provide the basis for the design of advanced electrode materials. Initially, we present a brief background to lithium ion batteries such as major chemical components and reactions that occur in lithium ion batteries. Then, we highlight the role of surface chemistry in the safety of lithium ion batteries. We examine the thermal stability of cathode materials: For example, we discuss the oxygen generation from cathode materials and describe how cells can swell and heat up in response to specific conditions. We also demonstrate how coating the surfaces of electrodes can improve safety. The surface chemistry can also affect the electrochemistry of lithium ion batteries. The surface coating strategy improved the energy density and cycle performance for layered LiCoO2, xLi2MnO3·(1 - x)LiMO2 (M = Mn, Ni, Co, and their combinations), and LiMn2O4 spinel materials, and we describe a working mechanism for these enhancements. Although coating the surfaces of cathodes with inorganic materials such as metal oxides and phosphates improves the electrochemical performance and safety properties of

  6. The Effect of Crystal Packing and Re(IV) Ions on the Magnetisation Relaxation of [Mn6 ]-Based Molecular Magnets

    OpenAIRE

    Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K

    2015-01-01

    The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6 O2 (R-sao)6 (X)2 (solvent)y ] (saoH2 =salicylaldoxime; X=mono-anion; y=4-6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6 ][ClO4 ]2 family members, in which the coordinating X ions we...

  7. In situ cosmogenic 53Mn production rate from ancient low-denudation surface in tropic Brazil

    International Nuclear Information System (INIS)

    Fujioka, T.; Fifield, L.K.; Stone, J.O.; Vasconcelos, P.M.; Tims, S.G.; Chappell, J.

    2010-01-01

    Preliminary results of 53 Mn measurements for seven Brazilian haematites are presented. The production rate of 53 Mn due to cosmic-ray induced disintegration of iron is estimated to be 103 ± 19 atoms g(Fe) -1 yr -1 at sea level and high latitude. This is consistent with the only previously published measurement. The muon contribution to the total 53 Mn production at the surface is estimated to be ∼7%. Cosmogenic-isotope dating employing 53 Mn is applicable to any rock/mineral type that contains iron as a major constituent, such as haematite, goethite, pyroxene and olivine. The method has the potential to extend the time scale of cosmogenic exposure dating to >10 Ma.

  8. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  9. Constructing heterostructured Li-Fe-Ni-Mn-O cathodes for lithium-ion batteries: effective improvement of ultrafast lithium storage.

    Science.gov (United States)

    Zhao, Taolin; Zhou, Na; Zhang, Xiaoxiao; Xue, Qing; Wang, Yuhua; Yang, Minli; Li, Li; Chen, Renjie

    2017-08-23

    Surface modification is proved to be an effective strategy to improve the power density of lithium-ion batteries (LIBs) applied in electric vehicles. In this article, a protective modification layer (FeF 3 /LiF) is successfully deposited onto the surface of a low-cost cathode material, Li 6/5 [Fe 1/10 Ni 3/20 Mn 11/20 ]O 2 , for realizing the improvement of ultrafast lithium storage. The reversible specific capacity and ultrahigh rate capability are effectively improved. The modified sample can achieve a higher reversible discharge specific capacity of 171.8 mA h g -1 at 0.2C. A discharge specific capacity of 150.4 mA h g -1 is delivered at 1C after 60 cycles. Even at 2C and 5C, the discharge specific capacities are still maintained at 135.7 and 124.5 mA h g -1 . Notably, when charged and discharged at 20C, a discharge specific capacity of 73.4 mA h g -1 can be achieved after 200 cycles by the heterostructured Li-Fe-Ni-Mn-O cathode, almost twice that of the bare material. The good fast lithium storage capability can be ascribed to the effective suppression of interfacial side reactions, the conversion reaction from the FeF 3 phase, and the harmonious coexistence of layered and spinel phases. The triple benefits from the heterostructured cathode provide a promising route for constructing advanced LIBs.

  10. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  11. Solvothermal synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Yan-Chao; Zhao, Shi-Xi; Zhai, Peng-Yuan; Li, Fang; Nan, Ce-Wen

    2014-01-01

    Highlights: • Li 2 MnSiO 4 /C nanocomposite has been synthesized by the solvothermal method. • The particles of Li 2 MnSiO 4 /C are much smaller and more uniform. • The presence of Ni improves discharge capacity of Li 2 MnSiO 4 /C cathode material. • The initial discharge capacity of Ni-modified Li 2 MnSiO 4 /C is 274.5 mAh g −1 at 25 °C. - Abstract: Orthorhombic structure Li 2 MnSiO 4 /C with Pmn2 1 space group is synthesized by the solvothermal method. Carbon coating and Ni 2+ doping are used to improve the electronic conductivity and the cycling performance of Li 2 MnSiO 4 cathode material, respectively. The particles of Li 2 MnSiO 4 /C are much smaller and more uniform than those of Li 2 MnSiO 4 due to the carbon coating. It is shown that Ni 2+ has been reduced into metal Ni during the synthesis process. The synthesized Ni-modified Li 2 MnSiO 4 /C (denoted as (LMS@Ni)/C) cathode material exhibits better electrochemical performance in comparison with Li 2 MnSiO 4 /C, attributing to higher lithium ion diffusion coefficient as well as electronic conductivity. The initial discharge capacity of (LMS@Ni)/C is 274.5 mA h g −1 and the reversible capacity after 20 cycles is 119.8 mA h g −1 at 25 °C

  12. Backscattering of light ions from metal surfaces

    International Nuclear Information System (INIS)

    Verbeek, H.

    1975-07-01

    When a metal target is bombarded with light ions some are implanted and some are reflected from the surface or backscattered from deeper layers. This results in an energy distribution of the backscattered particles which reaches from zero to almost the primary energy. The number of the backscattered particles and their energy, angular, and charge distributions depends largely on the energy and the ion target combination. For high energies (i.e., greater than50 keV for protons) particles are backscattered in a single collision governed by the Rutherford cross section. Protons and He-ions with energies of 100 keV to several MeV are widely used for thin film analysis. For lower energies multiple collisions and the screening of the Coulomb potential have to be taken into account, which makes the theoretical treatment more difficult. This energy region is, however, of special interest in the field of nuclear fusion research. Some recent results for energies below 20 keV are discussed in some detail. (auth)

  13. Luminescence property and emission enhancement of YbAlO3:Mn4+ red phosphor by Mg2+ or Li+ ions

    Science.gov (United States)

    Cao, Renping; Luo, Wenjie; Xu, Haidong; Luo, Zhiyang; Hu, Qianglin; Fu, Ting; Peng, Dedong

    2016-03-01

    YbAlO3:Mn4+, YbAlO3:Mn4+, Li+, and YbAlO3:Mn4+, Mg2+ phosphors are synthesized by high temperature solid-state reaction method in air. Their crystal structures and luminescence properties are investigated. Photoluminescence excitation (PLE) spectrum monitored at 677 nm contains broad PLE band with three PLE peaks located at ∼318, 395, and 470 nm within the range 220-600 nm. Emission spectra with excitation 318 and 470 nm exhibit three emission band peaks located at ∼645, 677, and 700 nm in the range of 610-800 nm and their corresponding chromaticity coordinates are about (x = 0.6942, y = 0.3057). The possible luminous mechanism of Mn4+ ion is analyzed by the simple energy level diagram of Mn4+ ion. The optimum Mn4+-doped concentration in YbAlO3:Mn4+ phosphor is about 0.4 mol% and the luminescence lifetime of YbAlO3:0.4%Mn4+ phosphor is ∼0.59 ms. Emission intensity of YbAlO3:0.4%Mn4+ phosphor can be enhanced ∼6 times after Mg2+ ion is co-doped and it is ∼2 times when Li+ ion is co-doped. The content in the paper is useful to research new Mn4+-doped luminescence materials and improve luminescence property of other Mn4+-doped phosphors.

  14. Ion-beam-induced ferromagnetism in Mn-doped PrFeO{sub 3} thin films grown on Si (100)

    Energy Technology Data Exchange (ETDEWEB)

    Sultan, Khalid; Ikram, M.; Mir, Sajad Ahmad; Habib, Zubida; Aarif ul Islam, Shah [National Institute of Technology, Solid State Physics Lab. Department of Physics, Srinagar, J and K (India); Ali, Yasir [Saint Longwal Institute of Engineering and Technology, Sangrur, Punjab (India); Asokan, K. [Inter University Accelerator Centre, Materials Science Division, New Delhi (India)

    2016-01-15

    The present study shows that the ion beam irradiation induces room-temperature ferromagnetic ordering in pulsed laser-deposited Mn-doped PrFeO{sub 3} thin films on Si (100) apart from change in the morphological, structural and electrical properties. Dense electronic excitation produced by high-energy 120 MeV Ag{sup 9+} ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ions irradiation. The appearance of ferromagnetism at 300 K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. (orig.)

  15. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  16. Study of paramagnetic contrast agents for NMR imaging: theoretical and experimental aspects (the case of Mn2+ ion)

    International Nuclear Information System (INIS)

    Chavoix, M.E.

    1984-06-01

    The use of contrast enhancing agents and the evaluation of magnetic properties of tissues, extend the diagnostic usefulness of Nuclear Magnetic Resonance (NMR) imaging. From this point of view, proton T 1 (spin-lattice) relaxation times of rat tissue, following parenteral administration of Mn(II) to increase the relaxation rate (R 1 =1/T 1 ), have been studied at 20 MHz. Differenciation of free (MF) and bound (Mb) manganese in these tissues was thus determined by measuring, total exogenous Mn ++ ions by Atomic Absorption spectrometry and free (non protein complexed) ions by Electron Spin Resonance Analysis. From these results, the diffusion of Mn ++ into various organs, was evaluated 15 min. after injection. A significant difference in the fixation of manganese occured between the liver and the pancreas with uptakes of 50% and 1% of the administration dose respectively [fr

  17. Structural, electronic and magnetic properties of Mn3N2(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Mandru, Andrada-Oana; Wang, Kangkang; Takeuchi, Noboru; Cocoletzi, Gregorio H.; Smith, Arthur R.

    2015-01-01

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn 3 N 2 (0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  18. Novel Li₂MnO₃ nanowire anode with internal Li-enrichment for use in a Li-ion battery.

    Science.gov (United States)

    Wang, Dandan; Zhao, Yunlong; Xu, Xu; Hercule, Kalele Mulonda; Yan, Mengyu; An, Qinyou; Tian, Xiaocong; Xu, Jiaming; Qu, Longbing; Mai, Liqiang

    2014-07-21

    Anode materials which undergo a conversion reaction can achieve larger specific capacities than conventional carbon-based materials. They can even achieve higher energy densities when used at low voltages. However, the large amounts of Li₂O generated in the interior of these structures when Li ions are inserted can cause volume expansion and mechanical fracturing from the inside out. This leads to a poor cycling performance and limits their commercial application. To overcome this limitation, we introduced Li ions into the interior of the cells of manganese oxide materials and successfully synthesized a novel Li-rich anode material (Li₂MnO₃). The reversible capacity reached 1279 mA h g(-1) after 500 cycles, much higher than that of pure MnO₂ or other commercial anodes. This optimization of the internal Li-enrichment and its application in Li₂MnO₃ nanowires used as low voltage anodes in Li-ion batteries have rarely been reported. Further investigations by X-ray diffraction and photoelectron spectroscopy suggested that the strategy of optimizing the internal Li-enrichment of this novel Li₂MnO₃ anode is a promising development for Li-ion batteries.

  19. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime

    Science.gov (United States)

    Waller, G. H.; Brooke, P. D.; Rainwater, B. H.; Lai, S. Y.; Hu, R.; Ding, Y.; Alamgir, F. M.; Sandhage, K. H.; Liu, M. L.

    2016-02-01

    Aluminum oxide coatings deposited on LiMn2O4/carbon fiber electrodes by atomic layer deposition (ALD) are shown to enhance cathode performance in lithium-ion batteries. With a thin Al2O3 coating derived from 10 ALD cycles, the electrodes exhibit 2.5 times greater capacity retention over 500 cycles at a rate of 1C as well as enhanced rate capability and decreased polarization resistance. Structural and surface studies of the electrodes before and after cycling reveal that a near-surface phenomenon is responsible for the improved electrochemical performance. The crystal structure and overall morphology of the LiMn2O4 electrode are found to be unaffected by electrochemical cycling, both for coated and uncoated samples. However, evidence of Mn diffusion into the ALD coatings is observed from both transmission electron microscopy/energy-dispersive X-ray spectroscopy (TEM-EDS) and X-ray Photoelectron Spectroscopy (XPS) after electrochemical cycling. Furthermore, XPS analysis of the Al 2p photoemission peak for the ALD coated electrodes reveal a significant shift in binding energy and peak shape, suggesting the presence of an Al-O-F compound formed by sequestering HF in the electrolyte. These observations provide new insight toward understanding the mechanism in which ultrathin coatings of amphoteric oxides can inhibit capacity loss for LiMn2O4 cathodes in lithium-ion batteries.

  20. First principles study of elemental mercury (Hg0) adsorption on low index CoMnO3 surfaces

    International Nuclear Information System (INIS)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen; Shen, Zhemin; Fan, Maohong

    2017-01-01

    Highlights: • Hg 0 adsorption on low index CoMnO 3 surface was predicted by DFT method. • Hg 0 is adsorbed on the CoMnO 3 surface with chemisorption interaction. • Hg 0 has highest adsorption energy on CoMnO 3 (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg 0 has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg 0 ) adsorption on CoMnO 3 surface for the first time. GGA/PBE functional were selected to determine the potential Hg 0 capture mechanisms. The results show that Hg 0 has good affinity with CoMnO 3 surfaces with chemical adsorption. The adsorption energy of Hg 0 -CoMnO 3 (1 0 0), Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg 0 was oxidized to its valence state of 0.236 on Mn site in CoMnO 3 (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg 0 -CoMnO 3 (1 0 1) and Hg 0 -CoMnO 3 (1 1 0) with 0.209e − and 0.189e − transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO 3 catalyst performed excellent in Hg 0 oxidation. Exposing CoMnO 3 (1 0 0) is most favorable in Hg 0 control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  1. Mn site substitution of La0.67Ca0.33MnO3 with closed shell ions ...

    Indian Academy of Sciences (India)

    All substituents were found to suppress both the metal–insulator and ferromagnetic transition temperatures ... mechanism could explain the general feature viz., the metallic state coexisting with the fer- romagnetic ... average Mn–O bond length (dMn–O) and the average Mn–O–Mn bond angle (〈Mn–O–Mn〉) in controlling the ...

  2. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    Lee, Jae-Suk; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M.

    1992-01-01

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na + , N 2 + , O 2 + , Ar + and Kr + were implanted to the polymer surface with ion fluences between 1 x 10 15 and 3 x 10 17 ions/cm 2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  3. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn4N(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2017-01-01

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn 4 N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn 4 N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  4. On the state of Mn in Mn{sub x}Zn{sub 1−x}O nanoparticles and their surface modification with isonipecotic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Hernández, L.; Estévez-Hernández, O. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico); Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Hernández, M.P. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba); Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Díaz, J.A.; Farías, M.F. [Universidad Nacional Autónoma de México (UNAM), Centro de Nanociencias y Nanotecnología (CNyN), Ensenada, Baja California, México (Mexico); Reguera, E., E-mail: edilso.reguera@gmail.com [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología de Avanzada, Unidad Legaria, Ciudad México, México (Mexico)

    2017-03-15

    Mn-doped ZnO (Mn{sub x}Zn{sub 1−x}O) nanoparticles were synthesized by the co-precipitation method and coated with isonipecotic acid as capping ligand. The structure, composition and morphology of the resulting nanomaterial were investigated by energy disperse X-ray analysis, X-ray diffraction, and transmission electron microscopy data. Such measurements showed that the solid obtained contains 6 at% of Mn and it is formed by a highly crystalline material with 3–5 nm range of crystallite size, and only a small elongation of its cell parameter with respect to undoped ZnO wurtzite unit cell. Information on the state of manganese atom in the Mn{sub x}Zn{sub 1−x}O nanostructures formed was obtained from X-ray photoelectron (XPS) and electron energy loss (EELS) spectroscopies. XPS and EELS spectra are composed of four peaks, corresponding to two species of Mn(II) and signals from Mn(III) and Mn(IV). Such spectral data on the state of Mn in the material studied is consistent with the mapping of Mn distribution observed in recorded transmission electron microscopy images, which reveal presence of clusters of Mn atoms. Only a fraction of doping Mn atoms were found forming a solid solution with the host ZnO structure. The functionalization of the nanoparticles system with Isonipecotic acid shows that this molecule remains anchored to the nanoparticles surface mainly through its N basic site. The availability of free carboxylate groups in the capping molecule was tested by conjugation to type IV horseradish peroxidase. - Graphical abstract: State of Mn atoms in Mn-doped ZnO nanostructures prepared by the precipitation method, their capping with isonipecotic acid and subsequent conjugation to peroxidase. - Highlights: • State of manganese in manganese-doped zinc oxide nanoparticles. • Isonipecotic acid as surface modifier of ZnO nanoparticles. • Peroxidase conjugation to ZnO nanoparticles modified with isonipecotic acid.

  5. Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries.

    Science.gov (United States)

    Wang, Xuanpeng; Xu, Xiaoming; Niu, Chaojiang; Meng, Jiashen; Huang, Meng; Liu, Xiong; Liu, Ziang; Mai, Liqiang

    2017-01-11

    K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of K precursor materials. However, the main challenge lies on the lack of stable materials to accommodate the intercalation of large-size K-ions. Here we designed and constructed a novel earth abundant Fe/Mn-based layered oxide interconnected nanowires as a cathode in KIBs for the first time, which exhibits both high capacity and good cycling stability. On the basis of advanced in situ X-ray diffraction analysis and electrochemical characterization, we confirm that interconnected K 0.7 Fe 0.5 Mn 0.5 O 2 nanowires can provide stable framework structure, fast K-ion diffusion channels, and three-dimensional electron transport network during the depotassiation/potassiation processes. As a result, a considerable initial discharge capacity of 178 mAh g -1 is achieved when measured for KIBs. Besides, K-ion full batteries based on interconnected K 0.7 Fe 0.5 Mn 0.5 O 2 nanowires/soft carbon are assembled, manifesting over 250 cycles with a capacity retention of ∼76%. This work may open up the investigation of high-performance K-ion intercalated earth abundant layered cathodes and will push the development of energy storage systems.

  6. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  7. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  8. Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Zhao, Xin; Du, Yuxuan; Jin, Lei; Yang, Yang; Wu, Shuilin; Li, Weihan; Yu, Yan; Zhu, Yanwu; Zhang, Qinghua

    2015-01-01

    Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphitic structure of carbon nanofibers. The hybrids consist of isolated MnO nanoparticles beading in the porous carbon and demonstrate superior performance when being used as a binder-free anode for lithium-ion batteries. With an optimized amount of MnO (34.6 wt%), the anode exhibits a reversible capacity of as high as 987.3 mAh g−1 after 150 discharge/charge cycles at 0.1 A g−1, a good rate capability (406.1 mAh g−1 at 3  A g−1) and an excellent cycling performance (655 mAh g−1 over 280 cycles at 0.5 A g−1). Furthermore, the hybrid anode maintains a good electrochemical performance at bending state as a flexible electrode. PMID:26374601

  9. Rust Layer Formed on Low Carbon Weathering Steels with Different Mn, Ni Contents in Environment Containing Chloride Ions

    Directory of Open Access Journals (Sweden)

    Gui-qin FU

    2016-11-01

    Full Text Available The rusting evolution of low carbon weathering steels with different Mn, Ni contents under a simulated environment containing chloride ions has been investigated to clarify the correlation between Mn, Ni and the rust formed on steels. The results show that Mn contents have little impact on corrosion kinetics of experimental steels. Content increase of Ni both enhances the anti-corrosion performance of steel substrate and the rust. Increasing Ni content is beneficial to forming compact rust. Semi-quantitative XRD phase analysis shows that the quantity ratio of α/γ*(α-FeOOH/(γ-FeOOH+Fe3O4 decreases as Mn content increases but it increases as Ni content increases. Ni enhances rust layer stability but Mn content exceeding 1.06 wt.% is disadvantageous for rust layer stability. The content increase of Mn does not significantly alter the parameters of the polarization curve. However, as Ni contents increases, Ecorr has shifted to the positive along with decreased icorr values indicating smaller corrosion rate especially as Ni content increases from 0.42 wt.% to 1.50 wt.%.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12844

  10. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xinyi Zhang

    2015-11-01

    Full Text Available Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4 cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g−1 increases from 112.2 mAh g−1 of Li2.0MnTiO4 to 187.5 mAh g−1 of Li2.4Mn0.8TiO4. In addition, the ex situ XRD experiments indicate that the monoclinic Li2MnTiO4 tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li2MnTiO4 phase shows better structural reversibility and stability.

  11. Surface morphology and physical properties of partially melt textured Mn doped Bi-2223

    Directory of Open Access Journals (Sweden)

    Indu Verma

    2011-09-01

    Full Text Available The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30 were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy (SEM & AFM results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223 samples.

  12. Lithium ion adsorptive properties of spinel-type manganese oxide obtained from MnOOH and Li2CO3

    International Nuclear Information System (INIS)

    Ooi, Kenta; Miyai, Yoshitaka; Katoh, Shunsaku; Abe, Mitsuo.

    1991-01-01

    Spinel-type manganese oxides were prepared by heating a mixture of MnOOH and Li 2 CO 3 (Li/Mn = 0.5) at different temperatures followed by an acid treatment with a HCl solution. Their adsorptive properties for alkali metal ions were investigated by measurement of distribution coefficient (Kd) and by pH titration. The adsorptive properties varied depending on the heating temperature. The sample obtained at 400degC showed the highest Li + adsorptivity from seawater. (author)

  13. Synthesis and Characterization Materials M-Barium Hexaferrite Doping Ions Co-Mn Nano Particle

    Science.gov (United States)

    Susilawati; Doyan, A.; Sahlam

    2017-05-01

    This research has been success in the synthesis of M-Barium hexaferrite (BaM) doping Co-Mn ions using coprecipitation method are expected to be applied as a base material in the coating RADAR. M-Barium hexaferrite (BaM) are BaFe12-2xCoxMnxO19 synthesized with various concentrations (x = 0.0, 0.1, 0.2, 0.3) and the calcinations temperature (T = 400°C, 600°C, 800°C). The materials characterization using a X-Ray Diffraction (XRD), Transmission Electron Microscope (TEM), Inductance Capacitance and resistance (LCR) meter, and Vibrating Sample Magnetometer (VSM) Instruments. The measurement results using XRD shows the material has a hexagonal crystalline structure. The measurement results using a TEM show a sample of nano crystal materials with grain diameters up to 40 nm and spacing of the crystal lattice. The measurement results using a LCR-meter shows the electric conductivity of 1.15 × 10-6 S/cm to BaM without doping, 3.75 × 10-6 S/cm to 0.1 doping concentration calcination temperature of 400 °C, and 1,23 × 10-5 S/cm to 0.3 doping concentration calcination temperature of 800 °C, thus including semiconductor materials. The magnetic properties of materials using a VSM test results show the value of coercivity of 0.1 T; remanence value of 0.06 emu/g; and the saturation value of 0.42 emu/g. The results above show BaM Co-Mn metal doping potential as anti-radar material.

  14. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  15. Studies of the surface regions of (Cd,Mn)Te crystals

    International Nuclear Information System (INIS)

    Kochanowska, Dominika; Witkowska-Baran, Marta; Mycielski, Andrzej; Rasinski, Marcin; Lewandowska, Malgorzata

    2014-01-01

    The growth process conditions affect quality of the crys-tal. Structural defects such as grains, twin boundaries and precipitates are formed during the crystal growth. The defects (especially-inclusions) at the surface can be investigated in a microscale by the scanning electron microscopy (SEM). It is shown in the article that a well known etchant, usually used for visual inspection of the quality of the CdTe-related crystals, can be applied to the preparation of the (Cd,Mn)Te surface for SEM investigations. Samples, cut from different parts of a (Cd,Mn)Te crystal, were ground, mechano-chemically polished, and treated by the special etchant (to indicate polarity and to reveal twinning). After that treatment the defects (grain and twin boundaries, tellurium inclusions) at the surface became much more accessible for both SEM and visual investigations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Study on surface modification of M2 steel induced by Cu ions and Al ions implantation

    International Nuclear Information System (INIS)

    Wang Chao; Liu Zhengmin

    2001-01-01

    Changes of surface hardness and wear resistances in M2 type steel implanted by Cu Al ions were reported. The dependence of surface strengthening on ion species and dose was studied by X-ray diffraction (XRD) and Rutherford Backscattering Spectroscopy (RBS) for microhardness and wear resistances measurement. It is shown that both hardness and wear resistance increases apparently after ion implantation. XRD analysis indicates that different phases formed after Al Cu ions implanted. It is also suggested that Cu, Al ions have different role in surface strengthening

  17. Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries

    Science.gov (United States)

    Ding, Yu; Chen, Lihui; Pan, Pei; Du, Jun; Fu, Zhengbing; Qin, Caiqin; Wang, Feng

    2017-11-01

    High performance nitrogen-doped carbon (NC) materials decorated with MnO hybrid (MnO@NC) composites with a nanopeapod appearance were synthesized by with a simple hydrothermal method and insuit-polymeric route. As an anode material for lithium ion batteries (LIBs), the nanopeapod structure of MnO@NC composites with internal void spaces exhibits good rate capability, high conductivity and excellent cycling stability. After 200 cycles, the nanopeapod composites yield a specific capacity of 775.4 mAh g-1 at 100 mA g-1 and a high-rate capacity of 559.7 mAh g-1 at 1000 mA g-1. The proposed synthesis of nanopeapod structure composites with an internal room is an efficient design with excellent electrode materials for rechargeable LIBs.

  18. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

    Science.gov (United States)

    Zhang, Lifeng; Song, Jiajia; Liu, Yi; Yuan, Xiaoyan; Guo, Shouwu

    2018-03-01

    Developing high energy storage lithium ion batteries (LIBs) using manganese oxides as anodes is an attractive challenge due to their high theoretical capacity and abundant resources. However, the manganese oxides anodes still suffer from the low initial Coulombic efficiency and poor rate performance. Herein, we demonstrate that nano-sized morphological engineering is a facile and effective strategy to improve the electrochemical performance of the manganese dioxide (MnO2) for LIBs. The tailored MnO2 nanoparticles (NPs) exhibit high reversible capacity (1095 mAh g-1 at 100 mA g-1), high initial Coulombic efficiency (94.5%) and good rate capability (464 mAh g-1 at 2000 mA g-1). The enhanced electrochemical performance of MnO2 NPs can be attributed to the presences of numerous electrochemically active sites and interspaces among the NPs.

  19. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  20. Surface Polarization Effects on Ion-Containing Emulsions

    Science.gov (United States)

    Shen, Meng; Li, Honghao; Olvera de la Cruz, Monica

    2017-09-01

    Surface polarization in ion-containing heterogeneous dielectric media such as cell media and emulsions is determined by and determines the positions of the ions. We compute the surface polarization self-consistently as the ions move and analyze their effects on the interactions between electro-neutral, ion-containing droplets using coarse-grained molecular dynamics simulations based on the true energy functional. For water droplets immersed in oil, the interdroplet interaction is attractive, and the surface polarization makes the major contribution. By contrast, for oil droplets in water, the ion-surface induced charge interaction is repulsive and counteracts the attraction between the ions, leading to a small attractive interaction between the droplets. This research improves our understanding of self-assembly in mixed phases such as metal extraction for recovering rare earth elements and nuclear waste as well as water purification.

  1. BIOSORPTION OF MN (II IONS FROM AQUEOUS SOLUTION BY JERUSALEM ARTICHOKE (HELIANTHUS TUBEROSUS L. STALKS

    Directory of Open Access Journals (Sweden)

    Tsvetko PROKOPOV

    2017-09-01

    Full Text Available The purpose of this paper is to tested Jerusalem artichoke stalks as a cheap biosorbent for its ability to remove Mn (II ions from aqueous solution. Batch experiments were carried out to evaluate the effects of pH, biosorbent particle size, dosage, initial metal concentration and contact time. The maximum removal efficiency of about 97.0 % was reached at pH 8.0 by using of biosorbent particle size 530-850  m, adsorbent dosage 30 g/L, initial metal concentration 10 mg/L, temperature 20 oC, agitation speed 120 rpm and contact time 90 min. Pseudo-first order and pseudo-second order models were applied to describe the obtained kinetic data. The pseudo-second order model provided the best fit for experimental data with coefficient of determination R2 > 0.99. Freundlich and Langmuir isotherm models were used to describe metal adsorption. Equilibrium data agreed well with Langmuir isotherm with R2 = 0.993.

  2. Advanced surface polishing using gas cluster ion beams

    Science.gov (United States)

    Insepov, Z.; Hassanein, A.; Norem, J.; Swenson, D. R.

    2007-08-01

    The gas cluster ion beam (GCIB) treatment can be an important treatment for mitigation of the Q-slope in superconducting cavities. The existing surface smoothening methods were analyzed and a new surface polishing method was proposed based on employing extra-large gas cluster ions (X-GCIB).

  3. Argon ion beam interaction on polyethylene terephthalate surface by ...

    Indian Academy of Sciences (India)

    Polyethylene terephthalate surface treatment; Amirkabir plasma focus; plasma focus ... and ion-assisted coating [5], ion implantation and thermal surface treatment [6]. ..... after one month for steps (a) and (b). Therefore, in many applications it is suggested that the adhesion takes place immediately after plasma exposure to ...

  4. Lithium-Excess Research of Cathode Material Li₂MnTiO₄ for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-11-20

    Lithium-excess and nano-sized Li 2+x Mn₁ - x /2 TiO₄ ( x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li 2.0 MnTiO₄ and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20-30 nm. The further electrochemical tests reveal that the charge-discharge performance of the material improves remarkably with the lithium content increasing. Particularly, the first discharging capacity at the current of 30 mA g -1 increases from 112.2 mAh g -1 of Li 2.0 MnTiO₄ to 187.5 mAh g -1 of Li 2.4 Mn 0.8 TiO₄. In addition, the ex situ XRD experiments indicate that the monoclinic Li₂MnTiO₄ tends to transform to an amorphous state with the extraction of lithium ions, while the cubic Li₂MnTiO₄ phase shows better structural reversibility and stability.

  5. Zn–Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Loukil, N., E-mail: nloukil87@gmail.com; Feki, M.

    2017-07-15

    Highlights: • Zn-Mn co-deposition from an additives-free chloride bath is possible. • Effect of Mn{sup 2+} ion concentration and current density on Zn-Mn electrodeposition and particularly Mn content into Zn-Mn deposits were investigated. • A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ion concentration as well as the applied potential on Zn-Mn nucleation process. • Effect of current density on the morphology and structure of Zn-Mn alloys deposits. • A transition from crystalline to amorphous structure may occur in the Mn alloy electrodeposits at high current densities. - Abstract: Zn–Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn–Mn co-deposition. The electrochemical results show that with increasing Mn{sup 2+} ions concentration in the electrolytic bath, Mn{sup 2+} reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn–Mn deposits. A dimensionless graph model was used to analyze the effect of Mn{sup 2+} ions concentration on Zn–Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn{sup 2+} concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn{sup 2+} ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn–Mn coatings. It was found that the Mn content increases with increasing the applied current density j{sub imp} and Mn{sup 2+} ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn–Mn coatings. The phase structure and surface morphology of Zn–Mn deposits are characterized by means of X-ray diffraction analysis and Scanning

  6. Surface noise analysis using a single-ion sensor

    Science.gov (United States)

    Daniilidis, N.; Gerber, S.; Bolloten, G.; Ramm, M.; Ransford, A.; Ulin-Avila, E.; Talukdar, I.; Häffner, H.

    2014-06-01

    We use a single-ion electric-field noise sensor in combination with in situ surface treatment and analysis tools, to investigate the relationship between electric-field noise from metal surfaces in vacuum and the composition of the surface. These experiments are performed in a setup that integrates ion trapping capabilities with surface analysis tools. We find that treatment of an aluminum-copper surface with energetic argon ions significantly reduces the level of room-temperature electric-field noise, but the surface does not need to be atomically clean to show noise levels comparable to those of the best cryogenic traps. The noise levels after treatment are low enough to allow fault-tolerant trapped-ion quantum information processing on a microfabricated surface trap at room temperature.

  7. Generation of H-, D- ions on composite surfaces with application to surface/plasma ion source systems

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.; Wimmer, E.; Freeman, A.J.; Chubb, S.R.

    1983-01-01

    We review some salient features of the experimental and theoretical data pertaining to hydrogen negative ion generation on minimum-work-function composite surfaces consisting of Cs/transition metal substrates. Cesium or hydrogen ion bombardment of a cesium-activated negatively-biased electrode exposed to a cesium-hydrogen discharge results in the release of hydrogen negative ions. These ions originate through desorbtion of hydrogen particles by incident cesium ions, desorbtion by incident hydrogen ions, and by backscattering of incident hydrogen. Each process is characterized by a specific energy and angular distribution. The calculation of ion formation in the crystal selvage region is discussed for different approximations to the surface potential. An ab initio, all-electron, local density functional model for the composite surface electronics is discussed

  8. Chemical obtaining of LiMO2 and LiM2O4 (M=Co, Mn) oxides, for cathodic applications in Li-ion batteries

    Science.gov (United States)

    Y Neira-Guio, A.; Gómez Cuaspud, J. A.; López, E. Vera; Pineda Triana, Y.

    2017-12-01

    This paper describes the synthesis and characterization of two spinel and olivine-type multicomponent oxides based on LiMO2 and LiM2O4 systems (M=Co and Mn), which represent the current state of the art in the development of cathodes for Li-ion batteries. A simple combustion synthesis process was employed to obtain the nanometric oxides in powder form (crystal sizes around 5-8nm), with a number of improved surface characteristics. The characterization by X-Ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (SEM, TEM) and X-Ray Fluorescence (XRF), allowed to evaluate the morphology and the stoichiometric compositions of solids, obtaining a concordant pure crystalline phase of LiCoO2 and LiMn2O4 oxides identified in a rhombohedral and cubic phase with punctual group R-3m (1 6 6) and Fm-3m (2 2 5) respectively. The electrical characterization of materials developed by impedance spectroscopy solid state, allowed to determine a p-type semiconducting behaviour with conductivity values of 6.2×10-3 and 2.7×10-7 S for LiCoO2 and LiMn2O4 systems, consistent with the state of the art for such materials.

  9. Influence of Mn2+ ions on the corrosion mechanism of lead-based anodes and the generation of heavy metal anode slime in zinc sulfate electrolyte.

    Science.gov (United States)

    Zhang, Chenmu; Duan, Ning; Jiang, Linhua; Xu, Fuyuan; Luo, Jin

    2018-02-15

    The influence of Mn 2+ ions on the generation of heavy metal anode slime during zinc electrolysis industry was extensively investigated using several electrochemical methods, electron microscope technologies, and particle size analysis. Results showed that the Mn 2+ could obviously promote oxygen evolution reaction (OER) and thereby weaken oxidation efficiency of Mn 2+ (η MnO2 ) and dissolution of Pb 2+ . The significant improvement in kinetic parameters for OER was found in electrolytes of 1 and 3 g/L Mn 2+ , but became unstable as the Mn 2+ concentration increased to 10 g/L. This result was correlated with much different properties of oxide layers that its changes of microstructure are involved in, since it confirmed that the positive role of compact oxide layers in contributing to high corrosion resistance and activity for OER, but excessive Mn 2+ , resulted in its micromorphology of overthickness and instability. Such differences resulted from the effect of the Mn 2+ concentration fluctuation on kinetic rates of the nucleation growth process. The formation and adsorption of intermediate MnO 2 -OH ads identified as the controlled step for Mn 2+ catalyzing OER was also recommended. The generation mechanism of anode slime was found to be changed in essence due to varying Mn 2+ concentrations. In electrolyte of 1 g/L Mn 2+ , results revealed that the root cause of excessive small suspended anode slime (around 20 μm) was the change of the initial pathway of Mn 2+ electro-oxidation, whereas, it showed great improvement in the settling performance as the Mn 2+ concentration was increased to 10 g/L. Considering the potential of optimizing Mn 2+ concentrations as a cleaner approach to control anode slime, deepening the understanding of the impact mechanism of Mn 2+ can provide new insights into intervention in the generation of anode slime.

  10. Surface activation of MnNb{sub 2}O{sub 6} nanosheets by oxalic acid for enhanced photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Junshu; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Li, Hongyi; Li, Yongli; Du, Yucheng; Yang, Yilong; Jia, Xinjian

    2017-05-01

    Graphical abstract: Visible light driven photoreduction of Cr(VI) over MnNb{sub 2}O{sub 6} nanosheets is enhanced via oxalic acid surface complex to generate activation layer. - Highlights: • MnNb{sub 2}O{sub 6} nanosheets are crystallized by a surface capping route of sulfonate groups. • Oxalic acid on MnNb{sub 2}O{sub 6} nanosheets forms an excited surface complex hybrid layer. • Surface activation enhances visible-light induced reduction of Cr(VI) into Cr(III). - Abstract: MnNb{sub 2}O{sub 6} nanosheets (P-MNOs) is selectively crystallized by using surface capping ligand with functional sulfonate group (sodium dodecyl benzene sulphonate), which binds to the (131) surface of MnNb{sub 2}O{sub 6} inducing the morphology-controlled crystallization of MnNb{sub 2}O{sub 6} materials. Surface modification of photoactive P-MNOs with electron-rich oxalic acid ligands establishes an excited surface complex layer on phase-pure P-MNO as evidenced by spectroscopic analyses (FT-IR, UV–vis, Raman, PL, etc.), and thus more efficiently photocatalyzes the reduction of Cr(VI) into Cr(III) than solely P-MNOs or oxalic acid under visible light (λ > 420 nm) via a ligand-to-metal interfacial electron transfer pathway. However, the interaction between oxalic acid and MnNb{sub 2}O{sub 6} is highly dependent upon the morphology of solid MnNb{sub 2}O{sub 6} substrate due to the higher surface-area-to-volume ratio and higher surface activity of (131) planes in the sheet-like morphology. This study could assist the construction of stable niobate material systems to allow a versatile solid surface activation for establishing more energy efficient and robust catalysis process under visible light.

  11. Synthesis and properties of Li2MnO3-based cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Xue, Leigang; Zhang, Shu; Li, Shuli; Lu, Yao; Toprakci, Ozan; Xia, Xin; Chen, Chen; Hu, Yi; Zhang, Xiangwu

    2013-01-01

    Highlights: •0.3Li 2 MnO 3 ·0.5LiMn 0.5 Ni 0.5 O 2 ·0.2LiCoO 2 was synthesized by a co-precipitation method. •The preparation method is simple and this material is inexpensive due to the high contents of Mn and Ni. •The material could be charged to a high potential to extract more lithium without structural damage. •A relatively high capacity of 178 mAh g −1 is delivered between 2.0 and 4.6 V with excellent cycling performance. -- Abstract: Lithium-ion batteries have been wildly used in various portable electronic devices and the application targets are currently moving from small-sized mobile devices to large-scale electric vehicles and grid energy storage. Therefore, lithium-ion batteries with higher energy densities are in urgent need. For high-energy cathodes, Li 2 MnO 3 –LiMO 2 layered–layered (M = Mn, Co, Ni) materials are of significant interest due to their high specific capacities over wide operating potential windows. Here, three Li 2 MnO 3 -based cathode materials with α-NaFeO 2 structure were prepared by a facile co-precipitation method and subsequent heat treatment. Among these three materials, 0.3Li 2 MnO 3 ·0.5LiMn 0.5 Ni 0.5 O 2 ·0.2LiCoO 2 shows the best lithium storage capability. This cathode material is composed of uniform nanosized particles with diameters ranging from 100 to 200 nm, and it could be charged to a high cutoff potential to extract more lithium, resulting in a high capacity of 178 mAh g −1 between 2.0 and 4.6 V with almost no capacity loss over 100 cycles

  12. Enhanced sputtering of Ge nanowires under synergetic effect of Mn ion and electron beams

    Directory of Open Access Journals (Sweden)

    L. Vincent

    Full Text Available To monitor the damage evolution in Ge nanowires during Mn implantation, in situ transmission electron microscopy observations were carried-out as a function of the Mn fluence. Special interest lies in the sputtering of nanowires. We evidence an enhanced sputtering under the synergetic effects of Mn implantation and electron beam which may alert experimenters to some possible artefacts related to in situ observations in the case of nanostructures.

  13. AFM surface morphology investigation of ion beam modified polyimide

    Science.gov (United States)

    Švorčík, V.; Arenholz, E.; Rybka, V.; Hnatowicz, V.

    1997-03-01

    Polyimide Upilex R was irradiated with 90 keV N + ions to the fluences of 1 × 10 14-2 × 10 17 cm -2. The surface morphology and the structure of the ion beam modified PI were examined using atomic force microscopy and X-ray difraction. Sheet resistance as a function of the ion fluence and the sample temperature was measured by standard two point technique. Significant changes of the surface morphology and production of graphitic phase in the sample surface layer modified by the ion irradiation were observed. Strong decrease of the sheet resistance (by 11 orders of magnitude) in the ion beam modified samples is connected with progressive carbonization and graphitization of the degraded polymer. Electrical charge transport is mediated by variable-range hopping mechanism. Drastic structural changes initiated by the ion irradiation to high fluences are similar to those observed in polymer pyrolysis.

  14. Application of Co and Mn for a Co-Mn-Br or Co-Mn-C2H3O2 Petroleum Liquid Catalyst from the Cathode Material of Spent Lithium Ion Batteries by a Hydrometallurgical Route

    Directory of Open Access Journals (Sweden)

    Sung-Ho Joo

    2017-10-01

    Full Text Available We investigated the preparation of CMB (cobalt-manganese-bromide and CMA (cobalt-manganese-acetate liquid catalysts as petroleum liquid catalysts by simultaneously recovering Co and Mn from spent Li-ion battery cathode material. To prepare the liquid catalysts, the total preparation process for the liquid catalysts consisted of physical pre-treatments, such as grinding and sieving, and chemical processes, such as leaching, solvent extraction, and stripping. In the physical pre-treatment process, over 99% of Al was removed from material with a size of less than 0.42 mm. In the chemical process, the leaching solution as obtained under the following conditions: 2 mol/L sulfuric acid, 10 vol % H2O2, 0.1 of solid/liquid ratio, and 60 °C. In the solvent extraction process, the optimum concentration of bis (2,4,4-trimethylpentyl phosphinic acid (Cyanex 272, the equilibrium pH, the degree of saponification, the organic phase/aqueous phase ratio isotherm, and the stripping study for the extraction of Co and Mn were investigated. As a result, Co and Mn were recovered by 0.85 M Cyanex 272 with 50% saponification in counter current two extraction stages. Finally, a CMB and CMA liquid catalyst containing 33.1 g/L Co, 29.8 g/L Mn, and 168 g/L Br and 12.67 g/L Co, 12.0 g/L Mn, and 511 g/L C2H3O2, respectively, was produced by 2 M hydrogen bromide and 50 vol % acetic acid; it was also found that a shortage in the concentration can be compensated with cobalt and manganese salts.

  15. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II).

    Science.gov (United States)

    Lan, Shuai; Ying, Hong; Wang, Xiaoming; Liu, Fan; Tan, Wenfeng; Huang, Qiaoyun; Zhang, Jing; Feng, Xionghan

    2018-01-01

    Arsenic is a carcinogenic element that exists primarily as arsenate [As(V)] and arsenite [As(III)] in the nature environment, with As(III) being more toxic and mobile of the two species. In addition, ferrihydrite, which is widely distributed in soils and aquatic environments, can catalyze the oxidation of Mn(II) and accelerate the formation of high-valence Mn, which can significantly influence the speciation, toxicity, and mobility of As when these species co-exist. In this context, we herein explored the mechanism of As(III) oxidation in the presence of ferrihydrite and Mn(II) using a kinetic approach combined with multiple spectroscopic techniques, including X-ray absorption near edge spectroscopy, in situ horizontal attenuated total-reflectance Fourier transform infrared spectroscopy, and in situ quick scanning X-ray absorption spectroscopy. Our results indicate that efficient As(III) oxidation by dissolved O 2 occurs on the surface of ferrihydrite in the presence of aqueous Mn(II). Compared with As(III) oxidation in the presence of ferrihydrite and Mn oxides (i.e., Mn oxides/hydroxides), the degree of As(III) oxidation in the ferrihydrite-Mn(II) system was significantly higher, and the majority of generated As(V) was adsorbed on the mineral (i.e., ferrihydrite) surface. Furthermore, As(III) oxidation was enhanced upon increasing both the molar ratio of Mn(II)/As(III) and the solution pH. The greater As(III) oxidation by O 2 in the ferrihydrite-Mn(II) system was mainly attributed to the formation of a strong oxidant of the instantaneous intermediate Mn(III) species via Mn(II) oxidation under catalysis by the ferrihydrite surface. Moreover, As(III) oxidation occurred mainly on the ferrihydrite surface and was accompanied by the regeneration of Mn(II), thereby rendering it recyclable. These results therefore provide new insights into the mechanism of As(III) oxidation on the surfaces of Fe oxides (i.e., Fe oxides/hydroxides) in the presence of aqueous Mn(II) as

  16. Ultralow energy ion beam surface modification of low density polyethylene.

    Science.gov (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C

    2005-12-01

    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  17. Synthesis of hollandite-type LixMnO2 by Li+ ion-exchange in molten salt and lithium insertion characteristics

    International Nuclear Information System (INIS)

    Kadoma, Yoshihiro; Oshitari, Satoru; Ui, Koichi; Kumagai, Naoaki

    2007-01-01

    The Li + ion-exchange reaction of K + -type α-K 0.14 MnO 1.93 .nH 2 O containing different amounts of water molecules (n = 0-0.15) with a large (2 x 2) tunnel structure has been investigated in a LiNO 3 -LiCl molten salt at 300 deg. C. The Li + ion-exchanged products were examined by chemical analysis, X-ray diffraction, and transmission electron microscopy measurements. The K + ions and the hydrogens of the water molecules in the (2 x 2) tunnels of α-MnO 2 were exchanged by Li + ions in the molten salt, resulting in the Li + -type α-MnO 2 containing different amounts of Li + ions and lithium oxide (Li 2 O) in the (2 x 2) tunnels with maintaining the original hollandite structure. The electrochemical properties and structural variation with initial discharge and charge-discharge cycling of the Li + ion-exchanged α-MnO 2 samples have been investigated as insertion compounds in the search for new cathode materials for rechargeable lithium batteries. The Li + ion-exchanged α-MnO 2 samples provided higher capacities and higher Li + ion diffusivity than the parent K + -type materials on initial discharge and charge-discharge cyclings, probably due to the structural stabilization with the existence of Li 2 O in the (2 x 2) tunnels

  18. Ion and electron beam interaction on surfaces - a detection mechanism for obtaining visual ion beam images

    International Nuclear Information System (INIS)

    Fine, J.; Gorden, R. Jr.

    1978-01-01

    Two-dimensional images have been obtained of ion beam impact cross sections on solid surfaces by the coincident interaction of a rastered electron beam. This detection method is effective in producing images in real time on various insulator surfaces. The size of these images correlates well with ion beam current density profile measurements (at full width) and, therefore, can be very useful for ion beam diagnostics and alignment. (Auth.)

  19. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    Science.gov (United States)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-05-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased.

  20. Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Xiao, Liang; Zheng, Jianming; Zhou, Yungang; He, Yang; Zu, Xiaotao; Mao, Scott X.; Xiao, Jie; Gao, Fei; Zhang, Jiguang; Wang, Chong M.

    2015-02-10

    Capacity and voltage fading of Li2MnO3 is a major challenge for the application of this category of material, which is believed to be associated with the structural and chemical evolution of the materials. This paper reports the detailed structural and chemical evolutions of Li2MnO3 cathode captured by using aberration corrected scanning/transmission electron microscope (S/TEM) after certain numbers of charge-discharge cycling of the batteries. It is found that structural degradation occurs from the very first cycle and is spatially initiated from the surface of the particle and propagates towards the inner bulk as cyclic number increase, featuring the formation of the surface phase transformation layer and gradual thickening of this layer. The structure degradation is found to follow a sequential phase transformation: monoclinic C2/m → tetragonal I41 → cubic spinel, which is consistently supported by the decreasing lattice formation energy based on DFT calculations. For the first time, high spatial resolution quantitative chemical analysis reveals that 20% oxygen in the surface phase transformation layer is removed and such newly developed surface layer is a Li-depleted layer with reduced Mn cations. This work demonstrates a direct correlation between structural degradation and cell’s electrochemical degradation, which enhances our understanding of Li-Mn-rich (LMR) cathode materials.

  1. Structure, morphology and optical-luminescence investigations of spinel ZnGa2O4 ceramics co-doped with Mn2+ and Eu3+ ions

    Science.gov (United States)

    Kravets, O.; Zaremba, O.; Shpotyuk, Ya.; Luchechko, A.; Szmuc, K.; Cebulski, J.; Ingram, A.; Shpotyuk, O.

    2018-02-01

    The polycrystalline zinc gallate ZnGa2O4: Mn2+ and ZnGa2O4: Mn2+, Eu3+ samples have been synthesized via high-temperature solid-state reaction ceramic technique. The obtained ceramics have been characterized employing the methods of X-ray diffraction analysis, transmission electron microscopy, energy-dispersive X-ray spectroscopy, positron annihilation lifetime spectroscopy and optical-luminescent spectroscopy. The XRD analysis testified in favor of successful formation of spinel structure in the prepared samples with small amount of additional phase observed in the ZnGa2O4: Mn2+, Eu3+ ceramics. The grains of irregular shape with a homogeneous distribution of Eu3+ ions in a volume were identified with TEM technique. The band gap of ZnGa2O4: Mn2+ spinel was estimated from optical absorption spectra in UV-Vis range. The characteristic bands related to electronic transitions of Mn2+ and Eu3+ ions were found in optical absorption and excitation spectra. The photoluminescence emission spectra exhibited matrix luminescence along with emission band of Mn2+ ions and narrow lines of Eu3+ ions in blue, green and red spectral region, respectively. The intensity ratio of Eu3+ emission lines confirms the high asymmetry around Eu3+ ions. These findings correlate well with results of positron annihilation lifetime spectroscopy showing intense reduction of positron trapping rate deeply in ceramics grains due to Eu3+ ions penetration.

  2. The interaction of low energy ion beams with surfaces

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1981-01-01

    Four of the most important physical processes which occur during ion plating and allied techniques (1) ion-induced (and energetic-atom-induced) desorption of adsorbed impurities from the substrate surface, (2) ion penetration and entrapment in the substrate and coating, (3) ion-induced sputtering of substrate and coating atoms and (4) recoil displacement of substrate and coating atoms leading to their intermixing. The ion and energetic atom energy range of importance is from thermal energies to the order of 1keV. Current understanding of these processes, supported by discussion of available experimental data, is reviewed. (Auth.)

  3. Mechanisms of optical orientation of an individual Mn2+ ion spin in a II–VI quantum dot

    Science.gov (United States)

    Smoleński, T.; Cywiński, Ł.; Kossacki, P.

    2018-02-01

    We provide a theoretical description of the optical orientation of a single Mn2+ ion spin under quasi-resonant excitation demonstrated experimentally by Goryca et al (2009 Phys. Rev. Lett. 103 087401). We build and analyze a hierarchy of models by starting with the simplest assumptions (transfer of perfectly spin-polarized excitons from Mn-free dot to the other dot containing a single Mn2+ spin, followed by radiative recombination) and subsequently adding more features, such as spin relaxation of electrons and holes. Particular attention is paid to the role of the influx of the dark excitons and the process of biexciton formation, which are shown to contribute significantly to the orientation process in the quasi-resonant excitation case. Analyzed scenarios show how multiple features of the excitonic complexes in magnetically-doped quantum dots, such as the values of exchange integrals, spin relaxation times, etc, lead to a plethora of optical orientation processes, characterized by distinct dependencies on light polarization and laser intensity, and occurring on distinct timescales. Comparison with experimental data shows that the correct description of the optical orientation mechanism requires taking into account Mn2+ spin-flip processes occurring not only when the exciton is already in the orbital ground state of the light-emitting dot, but also those that happen during the exciton transfer from high-energy states to the ground state. Inspired by the experimental results on energy relaxation of electrons and holes in nonmagnetic dots, we focus on the process of biexciton creation allowed by mutual spin-flip of an electron and the Mn2+ spin, and we show that by including it in the model, we obtain good qualitative and quantitative agreement with the experimental data on quasi-resonantly driven Mn2+ spin orientation.

  4. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Denlinger, J.; Chen, X. [Univ. of Wisconsin, Milwaukee, WI (United States)] [and others

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  5. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. © 2011 IOP Publishing Ltd

  6. Surfaces and their effect on the magnetic properties of polycrystalline hollow γ-Mn{sub 2}O{sub 3} and MnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bah, Mohamed A. [Department of Materials Science and Engineering, Newark, DE (United States); Jaffari, G. Hassnain [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Khan, F.A. [Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Shah, S. Ismat, E-mail: ismat@udel.edu [Department of Materials Science and Engineering, Newark, DE (United States); Department of Physics and Astronomy, Newark, DE (United States)

    2016-07-01

    Graphical abstract: Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} and MnO were grown in an inert gas condensation system. Particles where found to range from 15 nm to 30 nm in diameter with different void sizes. Both γ-Mn{sub 2}O{sub 3} and MnO phases were found to exist in a single nanoparticle, and in close proximity. The oxides had different size and random lattice orientations. The morphology of the nanoparticles with the specific oxide is believed to be the leading cause for the observed high coercivity and exchange bias. - Highlights: • Polycrystalline hollow nanoparticles composed of γ-Mn{sub 2}O{sub 3} (ferrimagnetic(FiM)) and MnO (antiferromagnetic(AFM)) crystallites. • γ-Mn{sub 2}O{sub 3} and MnO co-exist in a single nanoparticles. • FC loops exhibited noticeably larger coercivity compared to the ZFC loops. • Compared to the core/shell counter parts, large coercivity and exchange bias, up to 11 kOe and 7 kOe, respectively, were observed at low temperature. • Strong coupling between the FiM and AFM phases. • Large horizontal and vertical shifts. - Abstract: Manganese oxide nanoparticles were prepared in an inert gas condensation system. X-ray Diffraction (XRD) studies revealed presence of multiple manganese oxide phases while high resolution transmission electron microscopy (HRTEM) showed polycrystalline hollow nanoparticle morphology. The additional inner surface of the hollow nanoparticle directly affect the magnetic properties of these particles. Combined physical structure, electronic structure and magnetic susceptibility analyses led to the conclusion that the prepared nanoparticles are polycrystalline and composed of γ-Mn{sub 2}O{sub 3} and MnO crystallites. Magnetic study found a sharp peak around 38 K with no frequency dependence in the AC susceptibility measurement. Large coercivity (H{sub C}) and exchange bias (H{sub EB}) fields, up to 11 kOe and 7 kOe, respectively, were observed below the order

  7. Synthesis and characterization of carbon coated LiCo1/3Ni1/3Mn1/3O2 and bio-mass derived graphene like porous carbon electrodes for aqueous Li-ion hybrid supercapacitor

    Science.gov (United States)

    Ramkumar, B.; Yuvaraj, S.; Surendran, S.; Pandi, K.; Ramasamy, Hari Vignesh; Lee, Y. S.; Kalai Selvan, R.

    2018-01-01

    For the fabrication of aqueous Li-ion hybrid supercapacitor, carbon coated LiCo1/3Ni1/3Mn1/3O2 (or LiCo1/3Ni1/3Mn1/3O2@C composite) is synthesized by polymeric precursor method with subsequent thermal decomposition procedures for carbon coating. Graphene like porous carbon is obtained by chemical activation from the biomass of Agave Americana. The XRD analysis reveals that LiCo1/3Ni1/3Mn1/3O2 is having a hexagonal layered structure and activated carbon exists in both amorphous and graphitic nature. The TEM image infers that LiCo1/3Ni1/3Mn1/3O2 particles having the non-uniform shape with sub-micron size and the LiCo1/3Ni1/3Mn1/3O2 particles are embedded into amorphous carbon cloud in the composite. The activated carbon shows the specific surface area of 1219 m2 g-1. Finally, the fabricated aqueous LiCo1/3Ni1/3Mn1/3O2@C‖AC hybrid supercapacitor delivers the specific capacitance of 56 F g-1 with good capacity retention even after 5000 cycles.

  8. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California).

    Science.gov (United States)

    Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia

    2015-07-01

    The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

  9. Field-ion microscope with plasma preparation of specimen surface

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Bobkov, A.F.; Kasatkin, V.A.; Zaitsev, S.V.

    1986-01-01

    This paper presents a method for preparing specimen surfaces for field-ion microscope analysis, in which a brief gas discharge is initiated near the surface under study with simultaneous pulse evaporation by the field of the material of the specimen itself or desorption of foreign atoms and molecular complexes from its surface. The method considerably increases the efficiency of structure analysis of conducting materials in a field-ion microscope. An all-metal field-ion microscope is developed for implementation of the method

  10. Nano-MnO2@TiO2 microspheres: A novel structure and excellent performance as anode of lithium-ion batteries

    Science.gov (United States)

    Cao, Zhiguang; Chen, Xiaoqiao; Xing, Lidang; Liao, Youhao; Xu, Mengqing; Li, Xiaoping; Liu, Xiang; Li, Weishan

    2018-03-01

    A structurally hierarchical MnO2/TiO2 composite (Nano-MnO2@TiO2) is fabricated by calcining MnCO3 microspheres and coating a thin layer of TiO2 through the heat decomposition of tetrabutyl titanate, and evaluated as anode of gravimetrically and volumetrically high energy density lithium ion battery. The characterizations from FESEM, TEM, HRTEM and XRD, indicate that the resulting Nano-MnO2@TiO2 takes a spherical morphology with a core of about 2 μm in diameter, consisting of compact MnO2 nanoparticles, and a shell of 60 nm thick, consisting of smaller TiO2 nanoparticles. The charge/discharge tests demonstrate that Nano-MnO2@TiO2 exhibits excellent performance as anode of lithium ion battery, delivering a capacity of 938 mAh g-1 at 300 mA g-1 after 200 cycles, compared to the 103 mAh g-1 of the uncoated sample. The microsphere consisting of compact nanoparticles provides Nano-MnO2@TiO2 with high specific gravity. The dimensionally and structurally stable TiO2 maintains the integrity of MnO2 microspheres and facilitates lithium insertion/extraction. This unique structure yields the excellent cyclic stability and rate capability of Nano-MnO2@TiO2.

  11. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  12. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  13. Negative ion formation from SF6 on hot surfaces

    International Nuclear Information System (INIS)

    Delmore, J.E.

    1981-01-01

    Positive surface ionization is a widely used technique for the isotopic analysis of a number of elements. The corresponding negative ion technique has found much less use. One of the main reasons is that hot filaments emit electrons, which are accelerated by the potentials on the negative ion lens, and repulsed by the potentials on the positive ion lens. Negative surface ionization (NSI) must then be limited to conditions under which the resulting electron current does not become large enough to disrupt the operation of the lens due to arcing, charge density defocusing or heating of the focus plates. Hot filaments operated in the negative ion mode have the potential of ionizing not only by NSI, but also by electron attachment. Many molecules attach thermal electrons ( 6 (ea 6 has a high thermal electron attachment rate. Thus SF 6 will form negative ions from an electron attachment process, while the others will form negative ions from an NSI process

  14. Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Zhang, Wei; Li, Jiannian; Zhang, Jie; Sheng, Jinzhi; He, Ting; Tian, Meiyue; Zhao, Yufeng; Xie, Changjun; Mai, Liqiang; Mu, Shichun

    2017-04-12

    To overcome inferior rate capability and cycle stability of MnO-based materials as a lithium-ion battery anode associated with the pulverization and gradual aggregation during the conversion process, we constructed robust mesoporous N-doped carbon (N-C) protected MnO nanoparticles on reduced graphene oxide (rGO) (MnO@N-C/rGO) by a simple top-down incorporation strategy. Such dual carbon protection endows MnO@N-C/rGO with excellent structural stability and enhanced charge transfer kinetics. At 100 mA g -1 , it exhibits superior rate capability as high as 864.7 mAh g -1 , undergoing the deep charge/discharge for 70 cycles and outstanding cyclic stability (after 1300 cyclic tests at 2000 mA g -1 ; 425.0 mAh g -1 remains, accompanying merely 0.004% capacity decay per cycle). This facile method provides a novel strategy for synthesis of porous electrodes by making use of highly insulating materials.

  15. Ions ejected from the surface: sputtering induced by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Alzaher, I.

    2011-01-01

    Ion irradiation of solids leads to a deposition of its energy along the ion path. The energy deposited creates damage in the target as well as leads to the sputtering of neutral and charged particles. In this work we studied the damage induced by slow and swift ions in matter. We studied also the sputtering of secondary ions induced by swift heavy ion irradiation. We have measured the damage cross section of the surface of the Titanium (Insulator surface) and of the graphite (Conductor surface) by slow highly charged ions. The potential energy stored in the projectile has an important role for creating damage at surfaces. We studied the damage creation at the surface of crystalline silicon by swift heavy ions. We revealed that the c-Si is not sensitive to the irradiation by Xe ion at E c = 0,9 MeV/u, where the electronic stopping power is 12 keV/nm. The maximum efficiency to create a track is 0,3 %. Under swift heavy ion irradiation, the emission of the CaF + compared to the Ca + is higher for solid crystals than for thin films of Calcium Fluoride CaF 2 on Si. (author)

  16. Enhanced electrochemical performances of LiNi0.5Mn1.5O4 by surface modification with Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhao G.

    2017-01-01

    Full Text Available 5V spinel LiNi0.5Mn1.5O4 cathode is prepared by traditional solid-state method and nano-Cu particles were derived from a chemical reduction process. The effect of Cu-coating on the electrochemical performances of LiNi0.5Mn1.5O4 cells, in a wide operation temperature range (-10°C, 25°C, 60°C, is investigated systematically by the charge/discharge testing, cyclic voltammograms and impedance spectroscopy, respectively. The results demonstrate that the modified material exhibits remarkably enhanced electrochemical reversibility and stability. Cu-coated material has much lower surface and charge transfer resistances and shows a higher lithium diffusion rate. The Cu coating layer as a highly efficient lithium ion conductor, acted as a highly efficient protector to restrain the contact loss.

  17. Anomalous surface behavior of hydrated guanidinium ions due to ion pairing

    Science.gov (United States)

    Ekholm, Victor; Vazdar, Mario; Mason, Philip E.; Bialik, Erik; Walz, Marie-Madeleine; Öhrwall, Gunnar; Werner, Josephina; Rubensson, Jan-Erik; Jungwirth, Pavel; Björneholm, Olle

    2018-04-01

    Surface affinity of aqueous guanidinium chloride (GdmCl) is compared to that of aqueous tetrapropylammonium chloride (TPACl) upon addition of sodium chloride (NaCl) or disodium sulfate (Na2SO4). The experimental results have been acquired using the surface sensitive technique X-ray photoelectron spectroscopy on a liquid jet. Molecular dynamics simulations have been used to produce radial distribution functions and surface density plots. The surface affinities of both TPA+ and Gdm+ increase upon adding NaCl to the solution. With the addition of Na2SO4, the surface affinity of TPA+ increases, while that of Gdm+ decreases. From the results of MD simulations it is seen that Gdm+ and SO4 2 - ions form pairs. This finding can be used to explain the decreased surface affinity of Gdm+ when co-dissolved with SO4 2 - ions. Since SO4 2 - ions avoid the surface due to the double charge and strong water interaction, the Gdm+-SO4 2 - ion pair resides deeper in the solutions' bulk than the Gdm+ ions. Since TPA+ does not form ion pairs with SO4 2 -, the TPA+ ions are instead enriched at the surface.

  18. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  19. Application of annealed red mud to Mn(2+) ion adsorption from aqueous solution.

    Science.gov (United States)

    Chen, Hongliang; Zheng, Juan; Zhang, Zhongqiong; Long, Qian; Zhang, Qiuyun

    2016-01-01

    Physicochemical characteristics and Mn(2+) adsorption of annealed red mud were investigated in this study. The annealing temperature (105-900 °C) changed the mineralogical components and the point of zero charge of red mud. By comparison, annealed red mud at 700 °C (ARM700) had a better adsorption effect than other annealed samples, associated with the activated components of available Fe2O3, Al2O3, SiO2 and Na5Al3(SiO4)3CO3 (natrodavyne). The removal efficiency of Mn(2+) by ARM700 was dependent on initial pH, contact time, and initial Mn(2+) concentration of aqueous solution and was ∼56.5% with initial Mn(2+) concentration 385 mg/L at initial pH > 5. The kinetics process was predicted better by the pseudo-second-order model. The Langmuir isotherm displayed a better fitting model than the Freundlich isotherm and the Mn(2+) maximum adsorption capacity of ARM700 was 88.3 mg/g. The competing effects of Cu(2+) and Zn(2+) on Mn(2+) removal were most obvious. There was efficient Mn(2+) removal at the application of ARM700 to the leachate of electrolytic manganese residue.

  20. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  1. The effect of Ca2+ ions and ionic strength on Mn(II) oxidation by spores of the marine Bacillus sp. SG-1

    Science.gov (United States)

    Toyoda, Kazuhiro; Tebo, Bradley M.

    2013-01-01

    Manganese(IV) oxides, believed to form primarily through microbial activities, are extremely important mineral phases in marine environments where they scavenge a variety of trace elements and thereby control their distributions. The presence of various ions common in seawater are known to influence Mn oxide mineralogy yet little is known about the effect of these ions on the kinetics of bacterial Mn(II) oxidation and Mn oxide formation. We examined factors affecting bacterial Mn(II) oxidation by spores of the marine Bacillus sp. strain SG-1 in natural and artificial seawater of varying ionic conditions. Ca2+ concentration dramatically affected Mn(II) oxidation, while Mg2+, Sr2+, K+, Na+ and NO3- ions had no effect. The rate of Mn(II) oxidation at 10 mM Ca2+ (seawater composition) was four or five times that without Ca2+. The relationship between Ca2+ content and oxidation rate demonstrates that the equilibrium constant is small (on the order of 0.1) and the binding coefficient is 0.5. The pH optimum for Mn(II) oxidation changed depending on the amount of Ca2+ present, suggesting that Ca2+ exerts a direct effect on the enzyme perhaps as a stabilizing bridge between polypeptide components. We also examined the effect of varying concentrations of NaCl or KNO3 (0-2000 mM) on the kinetics of Mn(II) oxidation in solutions containing 10 mM Ca2+. Mn(II) oxidation was unaffected by changes in ionic strength (I) below 0.2, but it was inhibited by increasing salt concentrations above this value. Our results suggest that the critical coagulation concentration is around 200 mM of salt (I = ca. 0.2), and that the ionic strength of seawater (I > 0.2) accelerates the precipitation of Mn oxides around the spores. Under these conditions, the aggregation of Mn oxides reduces the supply of dissolved O2 and/or Mn2+ and inhibits the Mn(II) → Mn(III) step controlling the enzymatic oxidation of Mn(II). Our results suggest that the hardness and ionic strength of the aquatic environment

  2. Nanostructured LiMPO4 (M = Fe, Mn, Co, Ni – carbon composites as cathode materials for Li-ion battery

    Directory of Open Access Journals (Sweden)

    Jaegermann W.

    2012-10-01

    Full Text Available Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni coated on nanostructured carbon supports (unordered nanofibers, foams. The composites have been prepared by coating the carbon structures in aqueous (or polyols solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.

  3. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  4. Attractive interaction between Mn atoms on the GaAs(110) surface observed by scanning tunneling microscopy.

    Science.gov (United States)

    Taninaka, Atsushi; Yoshida, Shoji; Kanazawa, Ken; Hayaki, Eiko; Takeuchi, Osamu; Shigekawa, Hidemi

    2016-06-16

    Scanning tunneling microscopy/spectroscopy (STM/STS) was carried out to investigate the structures of Mn atoms deposited on a GaAs(110) surface at room temperature to directly observe the characteristics of interactions between Mn atoms in GaAs. Mn atoms were paired with a probability higher than the random distribution, indicating an attractive interaction between them. In fact, re-pairing of unpaired Mn atoms was observed during STS measurement. The pair initially had a new structure, which was transformed during STS measurement into one of those formed by atom manipulation at 4 K. Mn atoms in pairs and trimers were aligned in the direction, which is theoretically predicted to produce a high Curie temperature.

  5. Alpha spetrometric determination of 226Ra in water samples by using ion exchanger MnO2-PAN

    International Nuclear Information System (INIS)

    Gardonova, V.; Dulanska, S.; Matel, L.; Bilohuscin, J.; Horvathova, B.; Sebesta, F.

    2014-01-01

    A method for 226 Ra preconcentration and separation from water samples using MnO 2 -PAN (polyacrylonitrile) ion absorber composite was proposed, optimized and verified. The optimization was focused on prevention of the destruction of MnO 2 -PAN composite absorber during radium elution from the column, testing of multiple use of the resin, influence of calcium concentration on radiochemical yields and application of the method for various types of water samples. Absorber was produced at Czech Technical University in Prague and now is also commercially available from Triskem International, France as MnO 2 -PAN Resin.This absorber with grain size (0.1-0.3) mm was used for 226 Ra preconcentration from various types of water samples at pH = (6.5-7.0). Radium was eluted from the ion exchanger MnO 2 -PAN with 20 mL of 6.5 mol/L HCl at flow rate of 1.5 mL/min. Samples were precipitated with Ba 2+ to form Ba(Ra)SO 4 microprecipitate for alpha spectrometry counting..The proposed method was applied to samples of natural mineral, mountain spring, drinking and natural healing waters from Slovakia, Slovenia and Czech Republic. Radium radiochemical recoveries were monitored by non-isotopic tracer 133 Ba and they were in the range of (92 - 100) %. The obtained 226 Ra activities in the analyzed samples were compared with the limit values set in Edict 528 of the Ministry of Health of the Slovak Republic in 2007 and no limit was exceeded. (authors)

  6. Effects of calcium ions on titanium surfaces for bone regeneration.

    Science.gov (United States)

    Anitua, Eduardo; Piñas, Laura; Murias, Alia; Prado, Roberto; Tejero, Ricardo

    2015-06-01

    The chemistry and topography of implant surfaces are of paramount importance for the successful tissue integration of load-bearing dental and orthopedic implants. Here we evaluate in vitro and in vivo titanium implant surfaces modified with calcium ions (Ca(2+) surfaces). Calcium ions produce a durable chemical and nano-topographical modification of the titanium oxide interface. Time of flight secondary ion mass spectrometry examination of the outermost surface composition, shows that calcium ions in Ca(2+) surfaces effectively prevent adventitious hydrocarbon passivation of the oxide layer. In aqueous solutions Ca(2+) surfaces release within the first minute, 2/3 of the total measured Ca(2+), the rest is released over the following 85 days. Additionally, Ca(2+) surfaces significantly increase human fetal osteoblasts-like cell adhesion, proliferation and differentiation, as measured by the autocrine synthesis of osteopontin. Relevant for clinical application, after 12 weeks of healing in sheep tibia, microcomputer tomography and histomorphometric analysis show that Ca(2+) surfaces develop significantly more bone contacts and higher bone density in the 1mm region around the implant. Consequently, titanium implants modified with calcium ions represent a valuable tool to improve endosseous integration in the clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. K2 Mn4 O8 /Reduced Graphene Oxide Nanocomposites for Excellent Lithium Storage and Adsorption of Lead Ions.

    Science.gov (United States)

    Hao, Shu-Meng; Qu, Jin; Yang, Jing; Gui, Chen-Xi; Wang, Qian-Qian; Li, Qian-Jie; Li, Xiaofeng; Yu, Zhong-Zhen

    2016-03-01

    Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K 2 Mn 4 O 8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g -1 , which is much higher than that of KMO (326 mA h g -1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g -1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g -1 , which is higher than those of KMO (305 mg g -1 ) and RGO (63 mg g -1 ) alone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  9. Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boli; Li, Dan; Liu, Zhengjiao; Gu, Lili; Xie, Wenhe; Li, Qun; Guo, Pengqian; Liu, Dequan; He, Deyan, E-mail: hedy@lzu.edu.cn

    2017-02-01

    Highlights: • The C-MnO/rGO composites were anchored on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. • The novel architecture of anodes effectively improved the electrochemical performance of lithium ion battery. • The active MnO nanodendrites became smaller nanoparticles still wrapped in graphene sheets after cycles. - Abstract: Carbon-wrapped MnO nanodendrites interspersed on reduced graphene oxide sheets (C-MnO/rGO) were prepared on nickel foam by a facile vacuum filtration and a subsequent thermal treatment. As a binder-free anode of lithium-ion battery, the nanodendritic structure of C-MnO accommodates the huge volume expansion and shortens the diffusion length for lithium ion and electron, rGO sheets prevent C-MnO nanodendites from aggregation and offer a good electronic conduction. As a result, the electrode with such a novel architecture delivers superior electrochemical properties including high reversible capacity, excellent rate capability and cycle stability. Moreover, MnO nanodendrites change to nanoparticles wrapped in graphene sheets during the lithiation/delithiation process, which is a more beneficial microstructure to further increase the specific capacity and cycle life of the electrode.

  10. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  11. Restoring the magnetism of ultrathin LaMn O3 films by surface symmetry engineering

    Science.gov (United States)

    Peng, J. J.; Song, C.; Li, F.; Gu, Y. D.; Wang, G. Y.; Pan, F.

    2016-12-01

    The frustration of magnetization and conductivity properties of ultrathin manganite is detrimental to their device performance, preventing their scaling down process. Here we demonstrate that the magnetism of ultrathin LaMn O3 films can be restored by a SrTi O3 capping layer, which engineers the surface from a symmetry breaking induced out-of-plane orbital occupancy to the recovered in-plane orbital occupancy. The stabilized in-plane orbital occupancy would strengthen the intralayer double exchange and thus recovers the robust magnetism. This method is proved to be effective for films as thin as 2 unit cells, greatly shrinking the critical thickness of 6 unit cells for ferromagnetic LaMn O3 as demonstrated previously [Wang et al., Science 349, 716 (2015), 10.1126/science.aaa5198]. The achievement made in this work opens up new perspectives to an active control of surface states and thereby tailors the surface functional properties of transition metal oxides.

  12. BION web server: predicting non-specifically bound surface ions.

    Science.gov (United States)

    Petukh, Marharyta; Kimmet, Taylor; Alexov, Emil

    2013-03-15

    Ions are essential component of the cell and frequently are found bound to various macromolecules, in particular to proteins. A binding of an ion to a protein greatly affects protein's biophysical characteristics and needs to be taken into account in any modeling approach. However, ion's bounded positions cannot be easily revealed experimentally, especially if they are loosely bound to macromolecular surface. Here, we report a web server, the BION web server, which addresses the demand for tools of predicting surface bound ions, for which specific interactions are not crucial; thus, they are difficult to predict. The BION is easy to use web server that requires only coordinate file to be inputted, and the user is provided with various, but easy to navigate, options. The coordinate file with predicted bound ions is displayed on the output and is available for download.

  13. Ionization efficiency estimations for the SPES surface ion source

    Science.gov (United States)

    Manzolaro, M.; Andrighetto, A.; Meneghetti, G.; Rossignoli, M.; Corradetti, S.; Biasetto, L.; Scarpa, D.; Monetti, A.; Carturan, S.; Maggioni, G.

    2013-12-01

    Ion sources play a crucial role in ISOL (Isotope Separation On Line) facilities determining, with the target production system, the ion beam types available for experiments. In the framework of the SPES (Selective Production of Exotic Species) INFN (Istituto Nazionale di Fisica Nucleare) project, a preliminary study of the alkali metal isotopes ionization process was performed, by means of a surface ion source prototype. In particular, taking into consideration the specific SPES in-target isotope production, Cs and Rb ion beams were produced, using a dedicated test bench at LNL (Laboratori Nazionali di Legnaro). In this work the ionization efficiency test results for the SPES Ta surface ion source prototype are presented and discussed.

  14. N + surface doping on nanoscale polymer fabrics via ion implantation

    Science.gov (United States)

    Ho Wong, Kenneth Kar; Zinke-Allmang, Martin; Wan, Wankei

    2006-08-01

    Non-woven poly(vinyl alcohol) (PVA) fabrics composed of small diameter (∼110 nm) fibers have been spun by an electrospinning technique and then have been modified by ion implantation. 1.7 MeV N+ ion implantation with a dose of 1.2 × 1016 ions/cm2 was applied on the fabrics through a metal foil at room temperature. By using scanning electron microscopy (SEM), no surface morphology degradation has been observed on the fabric after the ion beam treatment. The diameter of the fibers has shrunk by 30% to about 74 nm. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) show that nitrogen surface doping was achieved and the formation of two new functional chemical groups (N-Cdbnd O and C-N) in the PVA is observed.

  15. Surface characteristics changes in polymeric material by swift ion beam

    Science.gov (United States)

    Abdul-Kader, A. M.; El-Gendy, Y. A.

    2018-03-01

    In this work, polyethylene (PE) samples were subjected to 9 MeV Cl+2 ions with fluences ranging from 1 × 1013 to 5 × 1014 ion/cm2. Rutherford back scattering spectrometry (RBS), X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectroscopy and Vicker's micro-hardness (Hv) techniques were used to investigate the compositional transformation, changes in the structure, optical and surface hardness of bombarded samples. The adhesion parameters were analyzed using the contact angle measurements. The obtained results showed that the ion irradiation caused a decrease in the crystallinity of polyethylene and increase in absorption of oxygen on the polymer surface as well. The absorption edge shifted towards the red shift as Cl-ion fluence increases. It was found that the hardness and adhesion parameters increase with increasing the ion beam fluence.

  16. Reneutralization time of surface silicon ions on a field emitter

    International Nuclear Information System (INIS)

    Mazumder, B; Vella, A; Deconihout, B; Gilbert, M; Schmitz, G

    2010-01-01

    In this work, the lifetime of silicon (Si) ions generated through photoionization of Si surface atoms from a field emitter was measured. Under low-intensity fs laser pulse illumination, a linear dependence of the number of evaporated ions per pulse on the laser intensity was observed. A simple model was developed to explain this linear dependence and to estimate the rate of success of the field evaporation process. It is shown that the number of evaporated ions per pulse depends on the standing field applied to the Si surface, demonstrating the existence of an ionic energy barrier for Si ions. The lifetime of these ions was estimated to be 0.5 ps.

  17. MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis

    Directory of Open Access Journals (Sweden)

    Cheng-Gong Han

    2017-10-01

    Full Text Available We herein report a facile one-pot synthesis of MnO/N-doped carbon (N–C composites via a sustainable cotton-template glycine–nitrate combustion synthesis to yield superior anode materials for Li ion batteries. MnO nanoparticles with several nanometers were well-embedded in a porous N-doped carbon matrix. It displays the unique characteristics, including the shortened Li+-ion transport path, increased contact areas with the electrolyte solution, inhibited volume changes and agglomeration of nanoparticles, as well as good conductivity and structural stability during the cycling process, thereby benefiting the superior cycling performance and rate capability. This favorable electrochemical performance of obtained MnO/N–C composites via a one-pot biomass-templated glycine/nitrate combustion synthesis renders the suitability as anode materials for Li-ion batteries. Keywords: Biomass, Cotton, Manganese oxide, Lithium ion battery, Porous carbon

  18. Surface segregation of dissolved salt ions

    Czech Academy of Sciences Publication Activity Database

    Höfft, O.; Borodin, A.; Kahnert, U.; Kempter, V.; Dang, L. X.; Jungwirth, Pavel

    2006-01-01

    Roč. 110, č. 24, (2006), s. 11971-11976 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LC512; GA MŠk(CZ) ME 644 Grant - others:NSF(US) CHE0431312; NSF(US) CHE0209719 Institutional research plan: CEZ:AV0Z40550506 Keywords : MIES spectroscopy * molecular dynamics * ion solvation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.115, year: 2006

  19. Electron capture by highly charged ions from surfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Allen, F.

    2008-01-11

    In this study highly charged ions produced in Electron Beam Ion Traps are used to investigate electron capture from surfaces and gases. The experiments with gas targets focus on spectroscopic measurements of the K-shell x-rays emitted at the end of radiative cascades following electron capture into Rydberg states of Ar{sup 17+} and Ar{sup 18+} ions as a function of collision energy. The ions are extracted from an Electron Beam Ion Trap at an energy of 2 keVu{sup -1}, charge-selected and then decelerated down to 5 eVu{sup -1} for interaction with an argon gas target. For decreasing collision energies a shift to electron capture into low orbital angular momentum capture states is observed. Comparative measurements of the K-shell x-ray emission following electron capture by Ar{sup 17+} and Ar{sup 18+} ions from background gas in the trap are made and a discrepancy in the results compared with those from the extraction experiments is found. Possible explanations are discussed. For the investigation of electron capture from surfaces, highly charged ions are extracted from an Electron Beam Ion Trap at energies of 2 to 3 keVu{sup -1}, charge-selected and directed onto targets comprising arrays of nanoscale apertures in silicon nitride membranes. The highly charged ions implemented are Ar{sup 16+} and Xe{sup 44+} and the aperture targets are formed by focused ion beam drilling in combination with ion beam assisted thin film deposition, achieving hole diameters of 50 to 300 nm and aspect ratios of 1:5 to 3:2. After transport through the nanoscale apertures the ions pass through an electrostatic charge state analyzer and are detected. The percentage of electron capture from the aperture walls is found to be much lower than model predictions and the results are discussed in terms of a capillary guiding mechanism. (orig.)

  20. The oxidation capacity of Mn3O4 nanoparticles is significantly enhanced by anchoring them onto reduced graphene oxide to facilitate regeneration of surface-associated Mn(III).

    Science.gov (United States)

    Duan, Lin; Wang, Zhongyuan; Hou, Yan; Wang, Zepeng; Gao, Guandao; Chen, Wei; Alvarez, Pedro J J

    2016-10-15

    Metal oxides are often anchored to graphene materials to achieve greater contaminant removal efficiency. To date, the enhanced performance has mainly been attributed to the role of graphene materials as a conductor for electron transfer. Herein, we report a new mechanism via which graphene materials enhance oxidation of organic contaminants by metal oxides. Specifically, Mn3O4-rGO nanocomposites (Mn3O4 nanoparticles anchored to reduced graphene oxide (rGO) nanosheets) enhanced oxidation of 1-naphthylamine (used here as a reaction probe) compared to bare Mn3O4. Spectroscopic analyses (X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy) show that the rGO component of Mn3O4-rGO was further reduced during the oxidation of 1-naphthylamine, although rGO reduction was not the result of direct interaction with 1-naphthylamine. We postulate that rGO improved the oxidation efficiency of anchored Mn3O4 by re-oxidizing Mn(II) formed from the reaction between Mn3O4 and 1-naphthylamine, thereby regenerating the surface-associated oxidant Mn(III). The proposed role of rGO was verified by separate experiments demonstrating its ability to oxidize dissolved Mn(II) to Mn(III), which subsequently can oxidize 1-naphthylamine. The role of dissolved oxygen in re-oxidizing Mn(II) was ruled out by anoxic (N2-purged) control experiments showing similar results as O2-sparged tests. Opposite pH effects on the oxidation efficiency of Mn3O4-rGO versus bare Mn3O4 were also observed, corroborating the proposed mechanism because higher pH facilitates oxidation of surface-associated Mn(II) even though it lowers the oxidation potential of Mn3O4. Overall, these findings may guide the development of novel metal oxide-graphene nanocomposites for contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Preparation, characteristics and electrochemical properties of surface-modified LiMn2O4 by doped LiNi0.05Mn1.95O4

    International Nuclear Information System (INIS)

    Yuan, Y.F.; Wu, H.M.; Guo, S.Y.; Wu, J.B.; Yang, J.L.; Wang, X.L.; Tu, J.P.

    2008-01-01

    The surface-modified spinel LiMn 2 O 4 by doped LiNi 0.05 Mn 1.95 O 4 was prepared by a tartaric acid gel method. Transmission electron microscope (TEM) images indicated that some small particles with 100-200 nm in diameter modified the surface of large particle LiMn 2 O 4 . Energy dispersive spectrometry (EDS) showed that the particles were LiNi 0.05 Mn 1.95 O 4 . Electrochemical properties of LiNi 0.05 Mn 1.95 O 4 -modified spinel LiMn 2 O 4 were intensively investigated by the galvanostatic charge-discharge tests, cyclic voltammetry (CV) and AC impedance measurements. The doped LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 cathode delivered the same initial discharge capacity as the unmodified LiMn 2 O 4 , but its cyclic stability was evidently improved, the capacity retention ratio reached 96% after 20 cycles, being higher than 89% of the unmodified LiMn 2 O 4 . Cyclic voltammograms of the LiNi 0.05 Mn 1.95 O 4 -modified LiMn 2 O 4 did not markedly change while the semicircle diameter of AC impedance spectra evidently decreased after 20 cycles, which showed that the surface modification with LiNi 0.05 Mn 1.95 O 4 improved the electrochemical activity and cycling stability of LiMn 2 O 4 .

  2. Phosphorescent Differential Sensing of Physiological Phosphates with Lanthanide Ions-Modified Mn-Doped ZnCdS Quantum Dots.

    Science.gov (United States)

    He, Hengwei; Li, Chenghui; Tian, Yunfei; Wu, Peng; Hou, Xiandeng

    2016-06-07

    Phosphates, both inorganic and organic, play fundamental roles in numerous biological and chemical processes. The biological functions of phosphates connect with each other, analysis of single phosphate-containing biomolecule therefore cannot reveal the exact biological significance of phosphates. Sensor array is therefore the best choice for differentiation analysis of physiological phosphates. Lanthanide ions possess high affinity toward physiological phosphates, while lanthanide ions can also efficiently quench the luminescence of quantum dots (QDs). Taking lanthanide ions as cartridges, here we proposed a sensor array for sensing of physiological phosphates based on lanthanide ions-modified Mn-doped ZnCdS phosphorescent QDs in the manner of indicator-displacement assay. A series of lanthanide ions were selected as quencher for phosphorescent QDs. Physiological phosphates could subsequently displace the quencher and recover the phosphorescence. Depending on their varied phosphorescence restoration, a sensor array was thus developed. The photophysics of phosphorescence quenching and restoration were studied in detail for better understanding the mechanism of the sensor array. The exact contribution of each sensor element to the sensor array was evaluated. Those sensor elements with little contribution to the differentiation analysis were removed for narrowing the size of the array. The proposed sensor array was successfully explored for probing nucleotide phosphates-involved enzymatic processes and their metabolites, simulated energy charge changes, and analysis of physiological phosphates in biological samples.

  3. Ion-beam modifications of the surface morphology and conductivity ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic.

  4. Oxygen surface exchange and oxidative dehydrogenation on oxide ion conductors

    NARCIS (Netherlands)

    Song, C.

    2012-01-01

    The research described in this thesis mainly aims at investigation of the rate of oxygen exchange at the surface of oxide ion conductors. The introduction is given in Chapter 1. A fast and simple method, referred to as pulse 18O-16O isotopic exchange (PIE), for measurement of the rate of surface

  5. Ion-beam modifications of the surface morphology and conductivity ...

    Indian Academy of Sciences (India)

    Studies on the surface micromorphology and surface conductivity in thin polymer films of poly vinyl alcohol (PVA) and poly ethylene oxide (PEO) in both as-grown and ion-implanted polymer films have been carried out to reveal certain specific features of the ordered state in these materials. Optical microscopic ...

  6. Roughness evolution of Si surfaces upon Ar ion erosion

    NARCIS (Netherlands)

    de Rooij-Lohmann, Vita; Kozhevnikov, I. V.; Peverini, L.; Ziegler, E.; Cuerno, R.; F. Bijkerk,; Yakshin, A. E.

    2010-01-01

    We studied the roughness evolution of Si surfaces upon Ar ion erosion in real time. Following the theory of surface kinetic roughening, a model proposed by Majaniemi was used to obtain the value of the dynamic scaling exponent beta from our data. The model was found to explain both the observed

  7. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  8. Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO2 Ion Cages.

    Science.gov (United States)

    Luo, Xubiao; Zhang, Kai; Luo, Jinming; Luo, Shenglian; Crittenden, John

    2016-12-06

    3-D MnO 2 ion cages (CMO) were fabricated and shown to have a high capacity for lithium removal from wastewater. CMO had a maximum Li(I) adsorption capacity of 56.87 mg/g, which is 1.38 times greater than the highest reported value (41.36 mg/g). X-ray photoelectron spectroscopy indicated that the stability of the -Mn-O-Mn-O- skeleton played an essential role in Li adsorption. The lattice clearance had a high charge density, forming a strong electrostatic field. The Dubinin-Ashtakhov (DA) site energy distribution model based on Polanyi theory described the linear increase of Li adsorption capacity (Q 0 ) with increasing temperature (Q 0 = k 3 × E m + d 3 = k 3 × (a × T) + d 3 ). Furthermore, the pore diffusion model (PDM) accurately predicted the lithium breakthrough (R 2 ≈ 0.99). The maximum number of bed volumes (BVs) treated was 1374, 1972, and 2493 for 200 μg/L at 20, 30, and 40 °C, respectively. Higher temperatures increased the number of BVs that may be treated, which implies that CMO will be useful in treating industrial Li(I) wastewater in regions with different climates (e.g., Northern or Southern China).

  9. In situ analysis of ion-induced polymer surface modification using secondary ion mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okuji, Shigeto, E-mail: s-okuji@post.lintec.co.jp [Lintec Corporation, 5-14-42 Nishiki-cho, Warabi, Saitama 335-0005 (Japan); Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kitazawa, Hideaki [Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); Takeda, Yoshihiko, E-mail: TAKEDA.Yoshihiko@nims.go.jp [Quantum Beam Unit, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003 (Japan); University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan)

    2016-06-15

    We have investigated the surface modification process consisting of ion irradiation immediately followed by exposure to ambient gas for three types of polymers having the same main chain, −C−C−, but different atoms bound to the main chain, using in situ secondary ion mass spectroscopy. The polymers’ surface was irradiated with 30 keV Au ions at a total fluence for up to 1 × 10{sup 17} cm{sup −2} and exposed to ambient gas in a ultra-high-vacuum chamber (1 × 10{sup −6} Pa) for 30 min after the ion irradiation. Low density polyethylene mainly exhibited a hydrogen dissociation during the ion irradiation and a recombination with hydrogen atoms by the exposure, polytetrafluoroethylene mainly showed a main chain scission and no recombination during the exposure, and polyvinylidene difluoride lost hydrogen and fluorine atoms by the ion irradiation and partially recombined with hydrogen and fluorine atoms upon the exposure. The deposited energy density on the polymer surfaces reflects the dependence of the modification on the incident ion species, Au or Ga ions.

  10. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  11. High surface area LaMnO3 nanoparticles enhancing electrochemical catalytic activity for rechargeable lithium-air batteries

    Science.gov (United States)

    Li, Chuanhua; Yu, Zhiyong; Liu, Hanxing; Chen, Kang

    2018-02-01

    To improve sluggish kinetics of ORR and OER (oxygen reduction and evolution reaction) on the air electrode, the high surface area LaMnO3 nanoparticle catalysts were synthesized by sol-gel method. The specific surface area of as-synthesized pure phase LaMnO3 nanoparticles is 21.21 m2 g-1. The onset potential of high surface area LaMnO3 in alkaline solution is -0.0202 V which is comparable to commercial Pt/C. When the assembled high surface area LaMnO3-based lithium-air batteries were measured at 100 mA g-1, the initial discharge specific capacity could reach 6851.9 mA h g-1(carbon). In addition, lithium-oxygen batteries including high surface area LaMnO3 catalysts could be cycled for 52 cycles at 200 mA g-1 under a limited discharge-charge depth of 500 mA h gcarbon-1.

  12. Layered double hydroxides for preparing CoMn{sub 2}O{sub 4} nanoparticles as anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn; Yang, Xia, E-mail: xiayang2@swu.edu.cn

    2017-06-15

    In the field of lithium-ion batteries, CoMn{sub 2}O{sub 4} as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn{sub 2}O{sub 4} nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn{sub 2}O{sub 4} nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g{sup -1} and 721 mAh g{sup -1} at current density of 200 mA g{sup -1} after 100 cycles. This method for preparing CoMn{sub 2}O{sub 4} nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn{sub 2}O{sub 4}. • The CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  13. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  14. Mn doped FeCO3/reduced graphene composite as anode material for high performance lithium-ion batteries

    Science.gov (United States)

    Zhang, Congcong; Cai, Xin; Xu, Donghui; Chen, Wenyan; Fang, Yueping; Yu, Xiaoyuan

    2018-01-01

    FeCO3 (FCO), FeCO3/rGO (FCOG) and Fe0.8Mn0.2CO3/rGO (MFCOG) nanocomposites are synthesized via a facile and controllable one-step hydrothermal process. XRD, SEM and TEM characterizations show that Mn ions can successfully substitute for partial iron atoms in FeCO3 nanocrystals without any crystal structure changes. Applied as anodes for lithium-ion batteries (LIBs), MFCOG delivers optimal electrochemical performance with a reversible capacity of 1223 mAh g-1 at a current density of 0.2 A g-1 after 120 cycles. Furthermore, MFCOG maintains a specific capacity of 613 mAh g-1 at a high current density of 1.6 A g-1, showing the enhanced rate capabilities and stable cycling performance. It indicates that the excellent lithium storage performance of MFCOG is mainly related to its well-designed nanostructure of doped metal carbonates and rGO nanosheets with high electrical conductivity which can work as effective conductive matrix and restrain the agglomeration of FeCO3, leading to synergistic effects on improving the structural integrity and accommodating the volume changes of MFCOG during the process of lithium intercalation/deintercalation.

  15. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S. [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2007-04-15

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  16. Induction of surface modification of polytetrafluoroethylene with proton ion beams

    International Nuclear Information System (INIS)

    Noh, I. S.; Kim, H. R.; Choi, Y. J.; Park, H. S.

    2007-04-01

    Cardiovascular disease is one of the leading causes of the death in the USA and developed countries. More than 570,000 artery bypass graft surgeries per USA are performed each year, though percutaneous devices have abounded in extreme cases. Based on the surgery follow-ups, large diameter expanded polytetrafluoroethylene (ePTFE) (>5 mm) are clinically employed with good results but its clinical applications in smaller vessels is still problematic due to thrombosis and neointima formation. Achievement of high patency grafts has been to some extent achieved by numerous methods of surface modification techniques, but its results are less than its initial hopes. As examples, endothelial cells coated on the luminal surface of ePTFE has demonstrated limited success after recirculation. Surface modifications of PTFE film with either argon ion beam or UV light from Xe-excimer lamp were reported to increase its interaction with vascular endothelial cell. Surface modification of poly(lactide-co-glycolide)[PLGA] is also very important in tissue engineering, in where induction of its initial high cellular adhesion and spreading is a critical step for development of tissue engineering medical products. We previously reported tissue engineering of the hybrid ePTFE scaffold by seeding smooth muscle cells and subsequently evaluation of its tissue regeneration behaviors and stabilities with circulation of pulsatile flow. To improve its tissue engineering more quickly, we here performed surface modification of ePTFE and porous PLGA scaffold and evaluated its subsequent chemical and biological properties after treating its surface with low energy ion beams. The porous ePTFE was prepared in a round shape (diameter = 1 cm) and dried after organic solvent extraction for ion beam treatment. Another porous PLGA layers (d = 1 cm, t = 1 cm with approximately 92% porosity) were fabricated and treated its surface by irradiating low energy either nitrogen or argon ion beams (1 keV, 1x1015 ions

  17. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  18. Surface and Interface Studies with Radioactive Ions

    CERN Multimedia

    Weber, A

    2002-01-01

    Investigations on the atomic scale of magnetic surfaces and magnetic multilayers were performed by Perturbed Angular Correlation (PAC) spectroscopy. The unique combination of the Booster ISOLDE facility equipped with a UHV beamline and the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) is ideally suited for such microscopic studies. Main advantages are the choice of problem-oriented radioactive probes and the purity of mass-separated beams. The following results were obtained: $\\,$i) Magnetic hyperfine fields (B$_{hf}$) of Se on Fe, Co, Ni surfaces were determined. The results prompted a theoretical study on the B$_{hf}$ values of the 4sp-elements in adatom position on Ni and Fe, confirming our results and predicting unexpected behaviour for the other elements. $\\,$ii) Exemplarily we have determined B$_{hf}$ values of $^{111}$Cd at many different adsorption sites on Ni surfaces. We found a strong dependence on the coordination number of the probes. With decreasing coordination nu...

  19. In-situ IR reflexion spectroscopy characterization of the passivation layer developed on the surface of lithium electrodes in organic medium; Passivation de surface: une nouvelle voie pour reduire l`autodecharge dans les batteries rechargeables a ions lithium LiMn{sub 2}O{sub 4}/Li

    Energy Technology Data Exchange (ETDEWEB)

    Barusseau, S. [Alcatel Alsthom Recherche, 91 - Marcoussis (France); Perton, F. [SAFT, Advanced and Industrial Battery Group, 86 - Poitiers (France); Rakotondrainibe, A.; Lamy, C. [Poitiers Univ., 86 (France). Laboratoire de Chimie 1, ``Electrochimie et Interactions``

    1996-12-31

    the development of lithium metal batteries is hindered by the bad reversibility of the Li{sup +}/Li pair, due to dendrites formation which limits the amount of active matter and can generate short-circuits. The chemical and electrochemical phenomena which take place at the electrode/organic electrolyte interface lead to the formation of a complex passivation film which is of prime importance for the functioning of this type of batteries. The in-situ infrared reflection spectroscopy is well adapted to the chemical study of the passivation layer. Two different techniques were used: the substraction normalized interfacial transform infrared spectroscopy (SNIFTIRS) and the electro-chemically modulated infrared reflectance spectroscopy. These methods have shown that the passivation layer that develops on the surface of the lithium electrode in contact with organic solutions (propylene carbonate, ethylene carbonate and dimethoxyethane) is mainly made of lithium alkyl carbonates (ROCO{sub 2}Li) and lithium carbonates (Li{sub 2}CO{sub 3}). (J.S.) 14 refs.

  20. In situ cosmogenic {sup 53}Mn production rate from ancient low-denudation surface in tropic Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fujioka, T., E-mail: toshiyuki.fujioka@anu.edu.a [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Fifield, L.K. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Stone, J.O. [Quaternary Research Center and Department of Geological Sciences, University of Washington, Seattle, WA 98195-1310 (United States); Vasconcelos, P.M. [Department of Earth Sciences, University of Queensland, Qld 4072 (Australia); Tims, S.G. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Chappell, J. [Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 (Australia)

    2010-04-15

    Preliminary results of {sup 53}Mn measurements for seven Brazilian haematites are presented. The production rate of {sup 53}Mn due to cosmic-ray induced disintegration of iron is estimated to be 103 +- 19 atoms g(Fe){sup -1} yr{sup -1} at sea level and high latitude. This is consistent with the only previously published measurement. The muon contribution to the total {sup 53}Mn production at the surface is estimated to be approx7%. Cosmogenic-isotope dating employing {sup 53}Mn is applicable to any rock/mineral type that contains iron as a major constituent, such as haematite, goethite, pyroxene and olivine. The method has the potential to extend the time scale of cosmogenic exposure dating to >10 Ma.

  1. Control of magnetism in dilute magnetic semiconductor (Ga,MnAs films by surface decoration of molecules

    Directory of Open Access Journals (Sweden)

    Hailong eWang

    2016-03-01

    Full Text Available The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,MnAs thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,MnAs thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,MnAs and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  2. Effective Red Compensation of Sr2SiO4 : Dy3+ Phosphor by Codoping Mn2+ Ions and Its Energy Transfer

    Directory of Open Access Journals (Sweden)

    Le Zhang

    2012-01-01

    Full Text Available Mn2+ ions codoped Sr2SiO4 : Dy3+ phosphors were prepared by the solid-state reaction method using NH4Cl as the flux. Their phase compositions, photoluminescence properties, and the energy transfer process were systematically investigated. All Mn/Dy codoped powders were α′-Sr2SiO4. The codoping concentration range of Mn2+ was ≤4.0 mol% to keep the structure undamaged. The broad red emission of Mn2+ centered at 647 nm in Sr2SiO4 : Mn, Dy powders, which effectively compensated the red emission of Sr2SiO4 : Dy3+ phosphor. The CIE chromaticity coordinates dramatically changed from (0.310, 0.340 to (0.332, 0.326 due to the red enhancement via the energy transfer from Dy3+ to Mn2+. This energy transfer is realized by the exchange interaction. But the luminescence quenching of Sr2SiO4 : Dy, Mn phosphor was mainly caused by the electric multipoles interaction. The concentration optimized (Sr0.96, Mn0.02, Dy0.022SiO4 phosphor with high and almost pure white emission has great potential to act as a single-matrix white phosphor for white LEDs.

  3. Al/C/MnO2 sandwich nanowalls with highly porous surface for electrochemical energy storage

    Science.gov (United States)

    He, Shuijian; Zhang, Ruizhong; Zhang, Chunmei; Liu, Minmin; Gao, Xiaohui; Ju, Jian; Li, Lei; Chen, Wei

    2015-12-01

    Hierarchical materials supported on metal substrates present promising applications in flexible energy storage and conversion devices. Compared to Au, Ag, Cu, Ni, Ti, W and their alloys, Al, the most abundant metal in the crust has been less used in supercapacitors due to its high activity which makes it unstable in acid and base electrolytes. In this paper, we explore a novel Al/C/MnO2 sandwich structured material for the first time for supercapacitor. Owing to the highly porous and open surface structure and the highly conductive Al/C double core current collector on nanoscale, the Al/C/MnO2 sandwich nanowall arrays supported on Al foil show excellent capacitance performance with a maximum area specific capacitance of 1008.3 mF cm-2 and a high energy density of 35.2 μWh cm-2 at 2 mA cm-2. Moreover, a supercapacitor device with 4 supercapacitors connected in series can power a LED lamp. The present study demonstrates a novel electrode architecture based on Al foil with remarkably high area specific capacitance and stability for promising supercapacitor applications. Our strategy provides a new approach to the fabrication of hierarchical electrode materials from Al metal (could also be extend to other metal substrates) for supercapacitors and other energy storage and conversion devices.

  4. Improved ion acceleration via laser surface plasma waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Université Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilée, 94200 Ivry-sur-Seine (France); Héron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-05-15

    The possibility of enhancing the emission of the ions accelerated in the interaction of a high intensity ultra-short (<100 fs) laser pulse with a thin target (<10λ{sub 0}), via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed for laser intensities ranging from 10{sup 19} to 10{sup 20} Wcm{sup −2}μm{sup 2}. The surface wave is resonantly excited by the laser via the coupling with a modulation at the target surface. In the cases where the surface wave is excited, we find an enhancement of the maximum ion energy of a factor ∼2 compared to the cases where the target surface is flat.

  5. Design, synthesis, and performances of double-shelled LiNi0.5Co0.2Mn0.3O2 as cathode for long-life and safe Li-ion battery

    Science.gov (United States)

    Hou, Peiyu; Wang, Xiaoqing; Song, Dawei; Shi, Xixi; Zhang, Lianqi; Guo, Jian; Zhang, Jun

    2014-11-01

    LiNi0.5Co0.2Mn0.3O2 is redesigned into a new core-shelled Li[(Ni0.8Co0.1Mn0.1)2/7]core[(Ni1/3Co1/3Mn1/3)3/14]inner-shell[(Ni0.4Co0.2Mn0.4)1/2]outer-shellO2, in which LiNi0.8Co0.1Mn0.1O2 may deliver high capacity and LiNi0.4Co0.2Mn0.4O2 provides structural and thermal stability. To achieve such designed structure, double-shelled hydroxide precursors are firstly prepared via a co-precipitation route. Scanning electron microscope (SEM) shows that all precursors are of 6-10 μm spherical secondary particles developed from nanosheet-shaped primary particles. Energy disperse X-ray spectrum (EDS) on the surface of precursors, in combination with increase of particles size from core to shell during co-precipitation process, confirms the formation of core-shell structure as designed. The spherical morphology is preserved after lithiation at different temperatures from 800 °C to 900 °C while the morphology of primary particles changes from nano-sized plate to micron-sized rectangular-like shapes. EDS surface composition analysis of lithiated compounds also strongly suggests the formation of core-shell structure; nevertheless, diffusion of transition metal ions between the core and shell occurs and becomes severe with increase of sintering temperature. Consequently, the double-shelled materials especially prepared at 850 °C display the remarkably improved cycleability, rate capability, and thermal stability in contrast to normal one. The enhancement of those properties may be ascribed to structurally stable double shell components, especially outer shell.

  6. Ionization by ion impact at grazing incidence on insulator surface

    CERN Document Server

    Martiarena, M L

    2003-01-01

    We have calculated the energy distribution of electrons produced by ionization of the ionic crystal electrons in grazing fast ion-insulator surface collision. The ionized electrons originate in the 2p F sup - orbital. We observe that the binary peak appears as a double change in the slope of the spectra, in the high energy region. The form of the peak is determined by the initial electron distribution and its position will be affected by the binding energy of the 2p F sup - electron in the crystal. This BEP in insulator surfaces will appear slightly shifted to the low energy side with respect the ion-atom one.

  7. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  8. Negative ion adsorption by the ion source surface as a factor influencing ion lifetime measurements

    Science.gov (United States)

    Lukin, V. G.; Khvostenko, O. G.

    2017-12-01

    It is well known that negative ions formed in the gas phase through low-energy electron capture by molecules show a scatter in the measured lifetimes of their autodetachment states. In considering this question, it was found that, when using a static sector magnetic mass spectrometer, some of the ions formed on the ionization chamber walls are adsorbed and stabilized there, then joining the registered ion flux and thereby distorting their measured lifetime. Because the number of the adsorbed ions depends on the experimental conditions, their contribution to the total flux is to some extent uncontrollable—hence, the scatter.

  9. Effect of surface morphology on the sputtering yields. I. Ion sputtering from self-affine surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A. E-mail: makeev@usc.edu; Barabasi, Albert-Laszlo E-mail: alb@nd.edu

    2004-08-01

    As extensive experimental studies have shown, under certain conditions, ion bombardment of solid targets induces a random (self-affine) morphology on the ion-eroded surfaces. The rough morphology development is known to cause substantial variations in the sputtering yields. In this article, we present a theoretical model describing the sputter yields from random, self-affine surfaces subject to energetic ion bombardment. We employ the Sigmund's theory of ion sputtering, modified for the case of self-affine surfaces, to compute the sputter yields. We find that the changes in the sputtering yield, associated with the non-planar surface morphology, are strongly dependent on the parameters characterizing the surface roughness (such as the saturation width and the correlation length) and the incident ion beam (such as the incident ion energy and the deposited energy widths). It is shown that, for certain ranges of the parameters variations, surface roughness leads to substantial enhancements in the yield, with magnitude of the effect being more than 100%, as compared to the flat surface value. Furthermore, we find that, depending on the interplay between these parameters, the surface roughness can both enhance and suppress the sputter yields.

  10. Surface Properties and Photocatalytic Activities of the Colloidal ZnS:Mn Nanocrystals Prepared at Various pH Conditions

    Science.gov (United States)

    Heo, Jungho; Hwang, Cheong-Soo

    2015-01-01

    Water-dispersible ZnS:Mn nanocrystals (NC) were synthesized by capping the surface with mercaptoacetic acid (MAA) molecules at three different pH conditions. The obtained ZnS:Mn-MAA NC products were physically and optically characterized by corresponding spectroscopic methods. The UV-Visible absorption spectra and PL emission spectra showed broad peaks at 310 and 590 nm, respectively. The average particle sizes measured from the HR-TEM images were 5 nm, which were also supported by the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the surface charges and the degrees of aggregation of the ZnS:Mn-MAA NCs were determined by electrophoretic and hydrodynamic light scattering methods, indicating formation of agglomerates in water with various sizes (50–440 nm) and different surface charge values accordingly the preparation conditions of the NCs (−7.59 to −24.98 mV). Finally, the relative photocatalytic activities of the ZnS:Mn-MAA NCs were evaluated by measuring the degradation rate of methylene blue (MB) molecule in a pseudo first-order reaction condition under the UV-visible light irradiation. As a result, the ZnS:Mn-MAA NC prepared at the pH 7 showed the best photo-degradation efficiency of the MB molecule with the first-order rate constant (kobs) of 2.0 × 10−3·min−1. PMID:28347105

  11. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  12. Reducing Motional Decoherence in Ion Traps with Surface Science Methods

    Science.gov (United States)

    Haeffner, Hartmut

    2014-03-01

    Many trapped ions experiments ask for low motional heating rates while trapping the ions close to trapping electrodes. However, in practice small ion-electrode distances lead to unexpected high heating rates. While the mechanisms for the heating is still unclear, it is now evident that surface contamination of the metallic electrodes is at least partially responsible for the elevated heating rates. I will discuss heating rate measurements in a microfabricated surface trap complemented with basic surface science studies. We monitor the elemental surface composition of the Cu-Al alloy trap with an Auger spectrometer. After bake-out, we find a strong Carbon and Oxygen contamination and heating rates of 200 quanta/s at 1 MHz trap frequency. After removing most of the Carbon and Oxygen with Ar-Ion sputtering, the heating rates drop to 4 quanta/s. Interestingly, we still measure the decreased heating rate even after the surface oxidized from the background gas throughout a 40-day waiting time in UHV.

  13. Solubility limit of Mn{sup 2+} ions in Zn{sub 1−x}Mn{sub x}Te nanocrystals grown within an ultraviolet-transparent glass template

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alessandra dos Santos, E-mail: alemestrado@gmail.com [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil); Silva, Sebastião William da; Morais, Paulo Cesar de [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Dantas, Noelio Oliveira [Universidade Federal de Uberlândia, Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física (Brazil)

    2016-05-15

    This paper reports on the synthesis of Zn{sub 1−x}Mn{sub x}Te nanocrystals (NCs) (with 0 ≤ x ≤ 0.800) within a PZABP glass system (P{sub 2}O{sub 5}–ZnO–Al{sub 2}O{sub 3}–BaO–PbO) using the fusion method. The as-grown samples were investigated by optical absorption measurements, atomic force microscopy, X-ray diffraction, and Raman spectroscopy. The mean radius of the as-produced NCs (around R ≈ 2.2 nm) was well below the exciton Bohr radius of the bulk ZnTe (5.2 nm). All the characterization techniques employed in this report confirmed the successful inclusion of Mn{sup 2+} ions in the ZnTe-based NCs (Zn{sub 1−x}Mn{sub x}Te NCs) up to the nominal solubility limit of x = 0.100. Above this solubility limit (around x = 0.100), one can observe the formation of MnO and α-MnO{sub 2} NCs, since the nucleation rate for the formation of these NCs is greater than that of Zn{sub 1−x}Mn{sub x}Te NCs, at high x concentrations.Graphical abstract.

  14. THE INFLUENCE OF pH TOWARDS MULTIPLE METAL ION ADSORPTION OF Cu(II, Zn(II, Mn(II, AND Fe(II ON HUMIC ACID

    Directory of Open Access Journals (Sweden)

    Buhani Buhani

    2010-06-01

    Full Text Available Multiple metal ions adsorption of Cu(II, Zn(II, Mn(II and Fe(II on humic acid with a batch method has been carried out at pH interaction of 3, 5, and 6. Concentration of metal ions in solution before and after interaction was analyzed with Atomic Absorption Spectrophotometer (AAS. Result showed that adsorption multiple metal ions of Cu(II, Zn(II, Mn(II, and Fe(II on humic acid is optimum at pH 5. Adsorption energies of the multiple metal ions Cu(II, Zn(II, Mn(II, and Fe(II on humic acid at pH 3, 5, and 6 are around 35.0 - 37.6 kJ/mole. In general, capacity of competition adsorption of the multiple metal ions has an order as follows; Cu(II < Fe(II < Zn(II < Mn(II.   Keywords: Humic acid, adsorption, multiple metal

  15. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625 015 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad – 500 058 (India); Pandi, R. Senthur [School of Advanced Sciences, VIT University, Vellore – 632 014 (India)

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  16. Surface tension alteration on calcite, induced by ion substitution

    DEFF Research Database (Denmark)

    Sakuma, Hiroshi; Andersson, Martin Peter; Bechgaard, Klaus

    2014-01-01

    The interaction of water and organic molecules with mineral surfaces controls many processes in nature and industry. The thermodynamic property, surface tension, is usually determined from the contact angle between phases, but how does one understand the concept of surface tension at the nanoscale...... preferentially as ion pairs at solution-calcite interfaces. Mg2+ incorporation weakens organic molecule adhesion while strengthening water adsorption so Mg2+ substitution renders calcite more water wet. When Mg2+ replaces 10% of surface Ca2+, the contact angle changes dramatically, by 40 to 70, converting...

  17. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  18. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A.; Somerville, James W.; Tapia-Ruiz, Nuria; Lozano, Juan G.; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A.; Massel, Felix; Pickup, David M.; Ramos, Silvia; Lu, Xingye; McNally, Daniel E.; Chadwick, Alan V.; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C.; Roberts, Matthew R.; Bruce, Peter G.

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li+-O(2p)-Li+ interactions). Na2/3[Mg0.28Mn0.72]O2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na2/3[Mg0.28Mn0.72]O2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg2+ remains in Na2/3[Mg0.28Mn0.72]O2, which stabilizes oxygen.

  19. Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces

    International Nuclear Information System (INIS)

    Frost, F.; Ziberi, B.; Schindler, A.; Rauschenbach, B.

    2008-01-01

    Low-energy ion-beam sputtering, i.e. the removal of atoms from a surface due to the impact of energetic ions or atoms, is an inherent part of numerous surface processing techniques. Besides the actual removal of material, this surface erosion process often results in a pronounced alteration of the surface topography. Under certain conditions, sputtering results in the formation of well-ordered patterns. This self-organized pattern formation is related to a surface instability between curvature-dependent sputtering that roughens the surface and smoothing by different surface relaxation mechanisms. If the evolution of surface topography is dominated by relaxation mechanisms, surface smoothing can occur. In this presentation the current status of self-organized pattern formation and surface smoothing by low-energy ion-beam erosion of Si and Ge is summarized. In detail it will be shown that a multitude of patterns as well as ultra-smooth surfaces can develop, particularly on Si surfaces. Additionally, the most important experimental parameters that control these processes are discussed. Finally, examples are given for the application of low-energy ion beams as a novel approach for passive optical device engineering for many advanced optical applications. (orig.)

  20. Industrial applications of ion implantation into metal surfaces

    International Nuclear Information System (INIS)

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry

  1. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  2. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  3. Impact of morphological changes of LiNi1/3Mn1/3Co1/3O2 on lithium-ion cathode performances

    Science.gov (United States)

    Pierre-Etienne, Cabelguen; David, Peralta; Mikael, Cugnet; Pascal, Maillet

    2017-04-01

    Major advances in Li-ion battery technology rely on the nanostructuration of active materials to overcome the severe kinetics limitations of new - cheaper and safer - chemistries. However, opening porosities results in the decrease of volumetric performances, closing the door to significant applications such as portable electronics, electromobility, and grid storage. In this study, we analyze the link between morphologies and performances of model LiNi1/3Mn1/3Co1/3O2 materials. By quantifying exhaustively their microstructures using nitrogen adsorption, mercury intrusion porosimetry, and helium pycnometry, we can discuss how porosities and surface areas are linked to the electrochemical behavior. There is no geometrical parameters that can predict the performances of all our materials. The shape of agglomeration dictates the electrochemical behavior. A huge drop in volumetric performances is measured when microstructure is considered. We show that gravimetric and volumetric power performances are contrary to each other. Highly dense materials exhibit, by far, the best power performances in terms of volumetric figures, so that opening porosities might not be the best strategy, even in non-nanosized materials, for Li-ion battery technology.

  4. Effect of surface morphology on the sputtering yields. II. Ion sputtering from rippled surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Makeev, Maxim A. E-mail: makeev@usc.edu; Barabasi, Albert-Laszlo E-mail: alb@nd.edu

    2004-08-01

    Off-normal ion bombardment of solid targets with energetic particles often leads to development of periodically modulated structures on the surfaces of eroded materials. Ion-induced surface roughening, in its turn, causes sputtering yield changes. We report on a comprehensive theoretical study of the effect of rippled surface morphology on the sputtering yields. The yield is computed as a function of the parameters characterizing the surface morphology and the incident ion beam, using the Sigmund's theory of ion sputtering. We find that the surface morphology development may cause substantial variations in the sputter yields, depending on a complex interplay between the parameters characterizing the ripple structure and the incident ion beam. For certain realizations of the ripple structure, the surface morphology is found to induce enhanced, relative to the flat surface value, sputtering yields. On the other hand, there exist regimes in which the sputtering yield is suppressed by the surface roughness below the flat surface result. We confront the obtained theoretical results with available experimental data and find that our model provides an excellent qualitative and, in some cases, quantitative agreement with the results of experimental studies.

  5. Ion beam modification of surfaces for biomedical applications

    International Nuclear Information System (INIS)

    Sommerfeld, Jana

    2014-01-01

    Human life expectancy increased significantly within the last century. Hence, medical care must ever be improved. Optimizing artificial replacements such as hip joints or stents etc. is of special interest. For this purpose, new materials are constantly developed or known ones modified. This work focused on the possibility to change the chemistry and topography of biomedically relevant materials such as diamond-like carbon (DLC) and titanium dioxide (TiO 2 ) by means of ion beam irradiation. Mass-separated ion beam deposition was used in order to synthesize DLC layers with a high sp 3 content (> 70%), a sufficiently smooth surface (RMS<1 nm) and a manageable film thickness (50 nm). The chemistry of the DLC layers was changed by ion beam doping with different ion species (Ag,Ti) and concentrations. Additionally, the surface topography of silicon and titanium dioxide was altered by ion beam irradiation under non-perpendicular angle of incidence. The created periodic wave structures (so-called ripples) were characterized and their dependency on the ion energy was investigated. Moreover, ripples on silicon were covered with a thin DLC layer in order to create DLC ripples. The biocompatibility of all samples was investigated by adsorption experiments. For this purpose, human plasma fibrinogen (HPF) was used due to its ambiphilic character, which allows the protein to assume different conformations on materials with different hydrophilicities. Moreover, HPF is a crucial factor in the blood coagulation process. This work comes to the conclusion that the interaction of both, the surface chemistry and topography, has a strong influence on the adsorption behavior of HPF and thus the biocompatibility of a material. Both factors can be specifically tuned by means of ion beam irradiation.

  6. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes

    Science.gov (United States)

    Huang, Jiarui; Wang, Wei; Lin, Xirong; Gu, Cuiping; Liu, Jinyun

    2018-02-01

    A sandwich-structured NiMn2O4@reduced graphene oxide (NiMn2O4@rGO) nanocomposite consisting of ultrathin NiMn2O4 sheets uniformly anchored on both sides of a three-dimensional (3D) porous rGO is presented. The NiMn2O4@rGO nanocomposites prepared through a dipping process combining with a hydrothermal method show a good electrochemical performance including a high reversible capability of 1384 mAh g-1 at 1000 mA g-1 over 1620 cycles, and an superior rate performance. Thus, a full cell consisting of a commercial LiCoO2 cathode and the NiMn2O4@rGO anode delivers a stable capacity of about 1046 mAh g-1 (anode basis) after cycling at 50 mA g-1 for 60 times. It is demonstrated that the 3D porous composite structure accommodates the volume change during the Li+ insertion/extraction process and facilitates the rapid transport of ions and electrons. The high performance would enable the presented NiMn2O4@rGO nanocomposite a promising anode candidate for practical applications in Li-ion batteries.

  7. Ion Production by Laser Impact on a Silver Surface

    DEFF Research Database (Denmark)

    Christensen, Bo Toftmann; Schou, Jørgen

    Even at moderate fluence (0.6 -2.4 J/cm2) laser impact on metals in the UV regime results in a significant number of ions emitted from the surface. Even at this low fluence the particles ejected from a surface interact with each other in a so-called laser ablation plume. The ablated particles...... are largely neutrals at low fluence, but the fraction of ions increases strongly with fluence. We have irradiated silver in a vacuum chamber (~ 10-7 mbar) with a Nd:YAG laser at a wavelength of 355 nm. The ion flow in different directions has been measured with a hemispherical array of Langmuir probes...... range considered is also a typical range for pulsed laser deposition (PLD), by which the material is collected on a suitable substrate for thin film growth. PLD has the advantage compared with other film deposition methods, that even a complicated stoichiometry, e.g. metal oxides or alloys, can...

  8. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  9. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  10. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  11. The impact of the competitive adsorption of ions at surface sites on surface free energies and surface forces

    Science.gov (United States)

    Parsons, Drew F.; Salis, Andrea

    2015-04-01

    The relationship between surface charge and surface potential at the solid-liquid interface is often determined by a charge regulation process, the chemisorption of a potential determining ion such as H+. A subtle ion-specific effect can be observed when other ions compete with the primary potential determining ion to bind to a surface site. Site competition may involve alternative ions competing for a first binding site, e.g., metals ions competing with H+ to bind to a negatively charged oxide or carboxyl site. Second-binding sites with site competition may also be found, including amphoteric OH2+ sites, or anion binding to amine groups. In this work, a general theoretical model is developed to describe the competitive adsorption of ions at surface sites. Applied to the calculation of forces, the theory predicts a 20% increase in repulsion between titania surfaces in 1 mM NaCl, and a 25% reduction in repulsion between silica surfaces in 0.1M NaCl compared to calculations neglecting ion site competition.

  12. Mechanism of negative ion emission from surfaces of ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk

    2012-01-01

    Roč. 606, 15-16 (2012), s. 1327-1330 ISSN 0039-6028 Institutional support: RVO:67985882 Keywords : Surface of ferroelectrics * Ion emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012 http://www.sciencedirect.com/science/article/pii/S0039602812001525#gts0005

  13. EVOLUTION OF IONS AFTER MULTIPLE ELECTRON-CAPTURE FROM SURFACES

    NARCIS (Netherlands)

    MORGENSTERN, R; DAS, J

    1993-01-01

    A comparison is made of the electronic processes which occur when a multiply charged ion is approaching an atomic target on the one hand or a metal surface on the other hand. In both caws three collision phases can be identified: those of attraction, of electron capture and of decay in the vacuum;

  14. major ions composition of the groundwater and surface water ...

    African Journals Online (AJOL)

    ADMIN

    ABSTRACT: Broad hydrochemical survey has been carried out to study the spatial variation of the major ions composition of the surface and groundwater systems in the Ethiopian volcanic terrain and associated Plio-Quaternary sediments. The result revealed wide hydrochemical variations controlled by geological ...

  15. Role of ion beam excitations on quasi one-dimensional magnetic system of Mn-doped LiCuVO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Dwivedi, G.D.; Kumar, Shiv [Departments of Physics, Banaras Hindu University, Varanasi 221005 (India); Shahi, P.; Shukla, K.K. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Ghosh, A.K. [Departments of Physics, Banaras Hindu University, Varanasi 221005 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Center, ArunaAsaf Ali Marg, New Delhi 110067 (India); Singh, R.K. [Departments of Physics, Banaras Hindu University, Varanasi 221005 (India); Nigam, A.K. [Department of CMP & MS, Tata Institute of Fundamental Research, Mumbai 400 005 (India); Chatterjee, Sandip, E-mail: schatterji.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-07-01

    Induction of short range ferromagnetic ordering has been observed in the quasi one dimensional antiferromagnetic LiCuVO{sub 4} system with doping of Mn in the octahedral (Cu) site. Though, magnetic ordering is not stable enough as further increase of Mn-concentration, magnetic ordering gets deteriorated. This might be the case that Mn{sup 2+} ions, with strong magnetic moment as compared to Cu{sup 2+} ions, enhance the ferromagnetic coupling between the nearest neighbor atoms of quasi-one-dimensional magnetic LiCuVO{sub 4} system. Ferromagnetic ordering in LiCu{sub 0.95}Mn{sub 0.05}VO{sub 4} system also degraded after high energy ion beam excitation which creates defects and may disturb the short range ferromagnetic ordering in its near locality but it does not have much effect on the long range antiferromagnetic ordering. Irradiation causes no change in Raman modes of LiCu{sub 0.95}Mn{sub 0.05}VO{sub 4} system, while it produces some new vibrational modes in intermediate and high frequency region of LiCu{sub 0.9}Mn{sub 0.1}VO{sub 4} system. Above results have been understood based on competitions between ferromagnetic nearest neighbor (NN) coupling and antiferromagnetic next nearest neighbor (NNN) coupling in CuO{sub 2} chain. - Highlights: • Quasi 1-D magnetic systems LiCu{sub 1-x}Mn{sub x}VO{sub 4} (x = 0.00, 0.05 & 0.10) have been prepared. • Doping of Mn induces short range ferromagnetic ordering in the system. • High-energy ion beam excitations degrade ferromagnetic ordering in Mn doped LiCuVO{sub 4}. • Irradiations decay short range FM order but has no effect on long range AFM order. • Irradiation leads to few new vibrational modes in LiCu{sub 0.9}Mn{sub 0.1}VO{sub 4} system.

  16. First principles study of elemental mercury (Hg{sup 0}) adsorption on low index CoMnO{sub 3} surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Wenchao; Su, Pingru; Tang, Qingli; Cheng, Zhiwen [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Shen, Zhemin, E-mail: zmshen@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fan, Maohong [Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming, 82071 (United States); School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332 (United States)

    2017-06-30

    Highlights: • Hg{sup 0} adsorption on low index CoMnO{sub 3} surface was predicted by DFT method. • Hg{sup 0} is adsorbed on the CoMnO{sub 3} surface with chemisorption interaction. • Hg{sup 0} has highest adsorption energy on CoMnO{sub 3} (1 0 0) surface with Hg-Mn mechanism. • The electron transfer of Hg{sup 0} has positive relationship with adsorption energy. - Abstract: The density functional theory (DFT) is applied to predict elemental mercury (Hg{sup 0}) adsorption on CoMnO{sub 3} surface for the first time. GGA/PBE functional were selected to determine the potential Hg{sup 0} capture mechanisms. The results show that Hg{sup 0} has good affinity with CoMnO{sub 3} surfaces with chemical adsorption. The adsorption energy of Hg{sup 0}-CoMnO{sub 3} (1 0 0), Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) are −85.225, −72.305 and −70.729 kJ/mol, respectively. The Hg-Mn and Hg-Co mechanisms were revealed on low index surfaces. Hg{sup 0} was oxidized to its valence state of 0.236 on Mn site in CoMnO{sub 3} (1 0 0) surface. The Hg-Co interaction mechanism occurred on Hg{sup 0}-CoMnO{sub 3} (1 0 1) and Hg{sup 0}-CoMnO{sub 3} (1 1 0) with 0.209e{sup −} and 0.189e{sup −} transformation, respectively. The PDOS analysis shows that Hg-Mn interaction depends on the hybridization of Hg(s- and d-orbitals) and Mn (s-, p- and d- orbitals). However, Hg-Co interaction stems from s- and d- orbitals of Hg, which only overlapping with d- and p- orbital of Co. Both the adsorption energy and electronic structure analysis indicated that CoMnO{sub 3} catalyst performed excellent in Hg{sup 0} oxidation. Exposing CoMnO{sub 3} (1 0 0) is most favorable in Hg{sup 0} control, which provides theoretical instruction on certain crystal plane synthesis in experiment.

  17. Magnetoresistance effect in perovskite-like RCu3Mn4O12 (R - rare earth ion, Th)

    International Nuclear Information System (INIS)

    Lobanovskij, L.S.; Troyanchuk, I.O.; Trukhanov, S.V.; Pastushonok, S.N.; Pavlov, V.I.

    2003-01-01

    The study on the electric properties and magnetoresistance effect in the RCu 3 Mn 4 O 12 (where R is the rare-earth ion, Th) is carried out. It is established that all the compositions of the given series demonstrate the magnetoresistive effect, the value whereof at the liquid nitrogen temperature reaches 20% in the field 0.9 T. The increase in the magnetoresistance with the temperature decrease and high sensitivity to the weak magnetic fields at low temperatures indicate that this effect is intergranular. The peak of the magnetoresistance is identified near the Curie temperature (T C ). It is supposed that the degree of the magnetoresistance near the temperature of the magnetic ordering depends on the conditions of the samples synthesis and the effect of the intergranular interlayer on the transport properties of these compositions [ru

  18. Hierarchical porous ZnMn{sub 2}O{sub 4} microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Haibo; Xie, Guiting; Cheng, Si; Zhen, Zihao [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhongqing [Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang (China); Huang, Jianlin; Jiang, Yu; Chen, Bohong [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhong-Jie, E-mail: zhongjiejiang1978@hotmail.com [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China)

    2016-09-15

    A simple two-step procedure, which involves the synthesis of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres through a hydrothermal process and the subsequent calcination, has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles. When evaluated as anode materials for lithium ion batteries (LIBs), these hierarchical porous ZnMn{sub 2}O{sub 4} microspheres could exhibit a stable reversible capability of ∼723.7 mAh g{sup −1} at the current density of 400 mA g{sup −1}, which is much higher than those of the ZnMn{sub 2}O{sub 4} based materials reported previously, indicating the great potential of using them as the anode for the LIBs. This is further supported by their better rate capability and higher cycling stability. Careful analysis has shown that the unique porous structure of the hierarchical porous ZnMn{sub 2}O{sub 4} microspheres which consists of the ZnMn{sub 2}O{sub 4} sub-nanoparticles plays an important role in their higher electrochemical performance, since it allows the accommodation of the volume expansion during the repeated discharge–charge cycles, preventing them from the structural destruction, and increase the accessibility of the electrode material to the Li{sup +} storage, making a better utilization of active materials and an easy diffusion of electrolytes in and out of the electrode material. - Graphical abstract: The ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles have been synthesized by the calcination of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres and could exhibit superior electrochemical performance when used as anode materials for lithium ion batteries. - Highlights: • A simple procedure has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres. • The ZnMn{sub 2}O{sub 4} microspheres exhibit excellent performance when used in LIBs

  19. Capacity Enhancement of the Quenched Li-Ni-Mn-Co Oxide High-voltage Li-ion Battery Positive Electrode

    International Nuclear Information System (INIS)

    Jena, Anirudha; Lee, Cho-Hsueh; Pang, Wei Kong; Peterson, Vanessa K.; Sharma, Neeraj; Wang, Chun-Chieh; Song, Yen-Fang; Lin, Chun-Che; Chang, Ho; Liu, Ru-Shi

    2017-01-01

    Highlights: • Co-precipitation method has been used to obtain Li 1.207 Ni 0.127 Mn 0.54 Co 0.127 O 2 . • Slow cooled and air quenched samples are obtained and characterized. • Unique spheres are obtained quenching than fragments in slow cooling. • Quenched sample show higher specific capacity due to easier Li-ion passage in bulk. - Abstract: Li-rich metal oxides, regarded as a high-voltage composite cathode, is currently one of the hottest positive electrode material for lithium-ion batteries, due to its high-capacity and high-energy performance. The crystallography, phase composition and morphology can be altered by synthesis parameters, which can influence drastically the capacity and cycling performance. In this work, we demonstrate Li 1.207 Ni 0.127 Mn 0.54 Co 0.127 O 2 , obtained by a co-precipitation method, exhibits super-high specific capacity up to 298 mAh g −1 and excellent capacity retention of ∼100% up to 50 cycles. Using neutron powder diffraction and transmission X-ray microscopy, we have found that the cooling-treatments applied after sintering during synthesis are crucially important in controlling the phase composition and morphology of the cathodes, thereby influencing the electrochemical performance. Unique spherical microstructure, larger lattice, and higher content of Li-rich monoclinic component can be achieved in the rapid quenching process, whereas severe particle cracking along with the smaller lattice and lower monoclinic component content is obtained when natural cooling of the furnace is applied. Combined with electrochemical impedance spectra, a plausible mechanism is described for the poorer specific capacity and cycling stability of the composite cathodes.

  20. Stability and symmetry of ion-induced surface patterning

    Science.gov (United States)

    Matthes, Christopher S. R.; Ghoniem, Nasr M.; Walgraef, Daniel

    2017-12-01

    We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

  1. Advanced Surface Polishing For Accelerator Technology Using Ion Beams

    Science.gov (United States)

    Insepov, Z.; Norem, J.; Hassanein, A.; Wu, A. T.

    2009-03-01

    A gas cluster ion beam (GCIB) technology was successfully applied to surface treatment of Cu, stainless steel, Ti, and Nb samples and to Nb rf-cavities by using accelerated cluster ion beams of Ar, O2 and combinations of them, with accelerating voltages up to 35 kV. DC field emission (dark current) measurements and electron microscopy were used to investigate metal surfaces treated by GCIB. The experimental results showed that GCIB technique can significantly reduce the number of field emitters and can change the structure of the Nb oxide layer on the surface. The RF tests of the GCIB-treated Nb rf-cavities showed improvement of the quality factor Q at 4.5 K. The superconducting gap was also enhanced by using the oxygen GCIB irradiation exposure.

  2. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  3. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  4. Synthesis, structure and electrochemistry of Ag-modified LiMn2O4 cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhou Wenjia; He Benlin; Li Hulin

    2008-01-01

    Spinel lithium manganese oxide was prepared by sol-gel method and a series of Ag/LiMn 2 O 4 composites with different Ag additive contents were prepared by thermal decomposition of AgNO 3 added to the pure LiMn 2 O 4 powders. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX) and various electrochemical measurement methods were used to examine the structural and electrochemical characteristics of the Ag/LiMn 2 O 4 composite powders. Phase analysis showed that Ag particles were dispersed on the surface of LiMn 2 O 4 instead of entering the spinel structure. According to the electrochemical tests results, it is clearly to see that Ag additives efficiently improved the cycling stability, reversibility and high-rate discharge capacity of pristine LiMn 2 O 4 by increasing the electrical conductivity between LiMn 2 O 4 particles, decreasing the polarization of cathode and reducing the dissolution of Mn. Meanwhile the influence of the Ag additive contents on the electrochemical properties of the Ag/LiMn 2 O 4 composites is also investigated in detail

  5. Synthesis, Hirshfeld surface analyses and magnetism of a 1D Mn(II ...

    African Journals Online (AJOL)

    A new Mn-based complex of {[Mn(L)2(mi)]·H2O}n (1) (HL = p-hydroxy phenylacetic acid; mi = 1,1'-(1,4-butanediyl)bis(imidazole)), has been synthesized and structurally characterized. Single-crystal X-ray analyses reveal that compound 1 has a dinuclear Mn(II) unit linking by four carboxylate groups. The bridging N-donor ...

  6. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  7. Preparation and characterization of the non-stoichiometric La–Mn perovskites

    International Nuclear Information System (INIS)

    Gao, Zhiming; Wang, Huishu; Ma, Hongwei; Li, Zhanping

    2015-01-01

    Six La–Mn oxide samples with La/Mn atomic ratio x = 1.03–0.56 (denoted as sample LaxMn) were prepared by the citrate method with calcination at 700 °C for 5 h, and characterized by X-ray diffraction (XRD), N 2 adsorption–desorption, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the four samples with La/Mn atomic ratio at 1.03–0.72 are all single phase perovskites by XRD patterns. Lattice parameters of the perovskites are varying with the La/Mn atomic ratio. As the La/Mn atomic ratio further lowers to 0.63 and 0.56, Mn 3 O 4 phase is formed besides the main phase of perovskite. Lattice vacancy at the A-sites of the perovskites is present for all the six samples, and there are an appreciable number of Mn 4+ ions in the perovskite crystal according to the refinement results of the Rietveld method. XPS analyses indicate that Mn ions are enriched on the surfaces of all the samples. In addition, catalytic activity for methane oxidation is in an order of sample La 0.89 Mn > La 1.03 Mn > La 0.81 Mn > La 0.72 Mn > La 0.63 Mn > La 0.56 Mn. - Highlights: • The samples with La/Mn atomic ratio at 1.03–0.72 are single phase perovskites. • Cationic lattice vacancies are present in the perovskite crystal of the samples. • Surface of the samples is enriched by Mn ions. • The sample La 0.89 Mn is most catalytically active for methane oxidation

  8. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    Science.gov (United States)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  9. Tuning Li2MO3 phase abundance and suppressing migration of transition metal ions to improve the overall performance of Li- and Mn-rich layered oxide cathode

    Science.gov (United States)

    Zhang, Shiming; Tang, Tian; Ma, Zhihua; Gu, Haitao; Du, Wubing; Gao, Mingxia; Liu, Yongfeng; Jian, Dechao; Pan, Hongge

    2018-03-01

    The poor cycling stability of Li- and Mn-rich layered oxide cathodes used in lithium-ion batteries (LIBs) has severely limited their practical application. Unfortunately, current strategies to improve their lifecycle sacrifice initial capacity. In this paper, we firstly report the synergistic improvement of the electrochemical performance of a Li1.2Ni0.13Co0.13Mn0.54O2 (LNCMO) cathode material, including gains for capacity, cycling stability, and rate capability, by the partial substitution of Li+ ions by Mg2+ ions. Electrochemical performance is evaluated by a galvanostatic charge and discharge test and electrochemical impedance spectroscopy (EIS). Structure and morphology are characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Compared with the substitution of transition metal (TM) ions with Mg2+ ions reported previously, the substitution of Li+ ions by Mg2+ ions not only drastically ameliorates the capacity retention and rate performance challenges of LNCMO cathodes but also markedly suppresses their voltage fading, due to the inhibition of the migration of TM ions during cycling, while also increasing the capacity of the cathode due to an increased abundance of the Li2MO3 phase.

  10. Surface sputtering in high-dose Fe ion implanted Si

    International Nuclear Information System (INIS)

    Ishimaru, Manabu

    2007-01-01

    Microstructures and elemental distributions in high-dose Fe ion implanted Si were characterized by means of transmission electron microscopy and Rutherford backscattering spectroscopy. Single crystalline Si(0 0 1) substrates were implanted at 350 deg. C with 120 keV Fe ions to fluences ranging from 0.1 x 10 17 to 4.0 x 10 17 /cm 2 . Extensive damage induced by ion implantation was observed inside the substrate below 1.0 x 10 17 /cm 2 , while a continuous iron silicide layer was formed at 4.0 x 10 17 /cm 2 . It was found that the spatial distribution of Fe projectiles drastically changes at the fluence between 1.0 x 10 17 and 4.0 x 10 17 /cm 2 due to surface sputtering during implantation

  11. Surface Plastic Deformation and Nanocrystallization Mechanism of Welded Joint of 16MnR Steel Treated by Ultrasonic Impact

    Directory of Open Access Journals (Sweden)

    Yingxia YU

    2015-11-01

    Full Text Available The welded joint surfaces of 16MnR steel were treated using an ultrasonic impact machine. The effects of ultrasonic impact treating (UIT on the plastic deformation and nanocrystallization mechanism of the welded joints of 16MnR steel were studied. The micro-structural features of the surface layer produced by UIT were observed by scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM, and micro-hardness measurements were performed. Experimental results showed that the thickness of the plastic deformation layer was approximately 80 μm. It was found that grains in the surfaces of the welded joints of 16MnR were greatly refined by UIT. Obvious grain refinement was observed, with resultant gain sizes less than 100nm. The micro-hardness of the treated surface layer of the welded joint was enhanced significantly compared to that of the un-treated sample. The micro-hardness on the treated surface of the welded joint was 62.3% higher than that of the un-treated surface.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9563

  12. Removal of Mn, Fe, Ni and Cu Ions from Wastewater Using Cow Bone Charcoal

    Directory of Open Access Journals (Sweden)

    Liliana Giraldo

    2010-01-01

    Full Text Available Cow bone charcoal (CBC was synthesized and used for the removal of metals ions (manganese, iron, nickel and copper from aqueous solutions. Two different adsorption models were used for analyzing the data. Adsorption capacities were determined: copper ions exhibit the greatest adsorption on cow bone charcoal because of their size and pH conditions. Adsorption capacity varies as a function of pH. Adsorption isotherms from aqueous solution of heavy metals on CBC were determined. Adsorption isotherms are consistent with Langmuir´s adsorption model. Adsorbent quantity and immersion enthalpy were studied.

  13. Surface depression of glass and surface swelling of ceramics induced by ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Saitoh, Kazuo; Nakao, Setsuo; Niwa, Hiroaki; Tanemura, Seita; Miyagawa, Yoshiko; Miyagawa, Souji

    1994-01-01

    By the measurement of the change of the surface shapes of the glass and ceramics in which ion implantation was performed, it was clarified that glass surface was depressed, and ceramic surface swelled. These depression and swelling changed according to the kinds of ions, energy and the amount to be implanted and the temperature of samples. It became clear that the depression of glass surface was nearly proportional to the range of flight of the implanted ions, and the swelling of ceramic surface showed different state in the silicon nitride with strong covalent bond and the alumina and sapphire with strong ionic bond. For the improvement of the mechanical characteristics of solid materials such as hardness, strength, toughness, wear resistance, oxidation resistance and so on, attention has been paid to the surface reforming by high energy ion implantation at MeV level. The change of shapes of base materials due to ion implantation is not always negligible. The experiment was carried out on sintered silicon nitride and alumina, polished sapphire single crystals and quartz glass. The experimental method and the results are reported. (K.I.)

  14. Electronic and magnetic properties of Mn{sub 12} single-molecule magnets on the Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Soenke; Burgert, Michael; Fonin, Mikhail; Groth, Ulrich; Ruediger, Ulrich [Universitaet Konstanz (Germany); Michaelis, Christian; Brihuega, Ivan; Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Dedkov, Yury S. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany)

    2008-07-01

    The paramount interest in single-molecule magnets (SMMs) like Mn{sub 12}-acetate and its derivatives was inspired by numerous experimental and theoretical insights indicating the feasibility of addressing quantum effects of magnetism on a molecular scale. Due to its relatively high blocking temperature ({proportional_to}3 K) combined with the ability to identify well-defined spin states, Mn{sub 12} still remains the most favoured SMM possibly allowing the detection of magnetic fingerprints in transport properties of a single molecule. In this work, the electronic properties of Mn{sub 12} molecules chemically grafted on Au(111) surfaces have been studied by means of low temperature as well as room temperature scanning tunneling microscopy and spectroscopy (STS), X-ray absorption spectroscopy and photoelectron spectroscopy. The results revealed signatures from most probably intact Mn{sub 12} molecules while STS measurements in magnetic fields indicate the possibility to identify magnetic fingerprints in scanning tunneling spectra. The results will be discussed with respect to previous attempts to perform transport measurements on Mn{sub 12} SMMs.

  15. Nanocrystalline MgMnSiO4 and MgCoSiO4 particles for rechargeable Mg-ion batteries

    Science.gov (United States)

    Truong, Quang Duc; Devaraju, Murukanahally Kempaiah; Honma, Itaru

    2017-09-01

    Magnesium-ion batteries hold promise as next-generation secondary battery systems owing to its low cost, safety and high volumetric capacity. Magnesium metal silicates exhibit potential electrode materials with high specific capacities. However, the strong electrostatic interaction between Mg2+ and host lattice due to its divalency as well as antisite cation exchange, induces slow intercalation kinetics of Mg ions within the crystal lattices. Thus, nanocrystalline particles with shortened Mg ion diffusion distance enable the insertion/extraction of Mg ions and improve specific capacities of the batteries. Herein, we report the low-temperature production of crystalline MgMnSiO4 and MgCoSiO4 nanoparticles by a rapid supercritical fluid processing. The extraction of magnesium ions from the olivine framework has been confirmed by X-ray photoelectron spectroscopy, revealing its ability as active materials for magnesium-ion battery.

  16. Structure, morphology and stability of layered Li(Ni1/3Mn1/3Co1/3) O2 surfaces

    Science.gov (United States)

    Garcia, Juan; Bareno, Javier; Chen, Guoying; Croy, Jason; Iddir, Hakim

    Energy storage devices with high energy densities are needed in order to meet the increasing demands of portable electronics and electric vehicles. Layered Li(Ni1-x-yMnxCoy) O2 (NMC) oxides are promising cathode materials that are capable of meeting many of these demands. However, in order to take advantage of these high intrinsic energies, charging voltages of >4.2V (vs. graphite) are necessary. At such high voltages, surface degradation phenomena take place at untenable rates, thereby reducing the lifetime of cells. In order to take advantage of NMC-based Li-ion cells, the mechanisms of these surface degradation processes must be fully understood. This presentation will explore recent Density Functional Theory (DFT) efforts at Argonne National Laboratory aimed at predicting the stability of several low-index surfaces of Li(Ni2/3Mn1/3Co1/3) O2 (NMC-111) as a function of Li and O chemical potentials. Comparison will be made of predicted particle shapes with those of single-crystal NMCs synthesized under different conditions. The most stable surfaces for stoichiometric NMC-111 will be discussed in terms of polar and non-polar surfaces as well as metal-oxygen bond breaking. The reactivity of these surfaces toward electrolyte oxidation will also be presented.

  17. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes.

    Science.gov (United States)

    Dogan, Fulya; Long, Brandon R; Croy, Jason R; Gallagher, Kevin G; Iddir, Hakim; Russell, John T; Balasubramanian, Mahalingam; Key, Baris

    2015-02-18

    Direct observations of structure-electrochemical activity relationships continue to be a key challenge in secondary battery research. (6)Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can quantitatively characterize local lithium environments on the subnanometer scale that dominates the free energy for site occupation in lithium-ion (Li-ion) intercalation materials. In the present study, we use this local probe to gain new insights into the complex electrochemical behavior of activated 0.5(6)Li2MnO3·0.5(6)LiMn(0.5)Ni(0.5)O2, lithium- and manganese-rich transition-metal (TM) oxide intercalation electrodes. We show direct evidence of path-dependent lithium site occupation, correlated to structural reorganization of the metal oxide and the electrochemical hysteresis, during lithium insertion and extraction. We report new (6)Li resonances centered at ∼1600 ppm that are assigned to LiMn6-TM(tet) sites, specifically, a hyperfine shift related to a small fraction of re-entrant tetrahedral TMs (Mn(tet)), located above or below lithium layers, coordinated to LiMn6 units. The intensity of the TM layer lithium sites correlated with tetrahedral TMs loses intensity after cycling, indicating limited reversibility of TM migrations upon cycling. These findings reveal that defect sites, even in dilute concentrations, can have a profound effect on the overall electrochemical behavior.

  18. Conduction Mechanism by Using CBH Model in Fe3+ and Mn3+ Ion Modified Pb(Zr0.65−xAxTi0.35O3 (A = Mn3+/Fe3+ Ceramics

    Directory of Open Access Journals (Sweden)

    Niranjan Sahu

    2013-01-01

    Full Text Available Polycrystalline samples of manganese and iron substituted lead zirconium titanate (PZT with general formula Pb(Zr0.65−xAxTi0.35O3 (A = Mn3+ and Fe3+ ceramics have been synthesized by high temperature solid state reaction technique. X-ray diffraction (XRD patterns were recorded at room temperature to study the crystal structure. All the patterns could be refined by employing the Rietveld method to R3c space group with rhombohedral symmetry. Microstructural properties of the materials were analyzed by scanning electron microscope (SEM, and compositional analysis was carried out by energy dispersive spectrum (EDS measurements. All the materials exhibit ferroelectric to paraelectric transition. The variation of dielectric constant and loss tangent with temperature and frequency is investigated. The decrease of activation energy and increases of AC conductivity with the Fe3+ or Mn3+ ion concentration have been observed. The AC conductivity has been analyzed by the power law. The frequency exponent with the function of temperature has been analyzed by assuming that the AC conduction mechanism is the correlated barrier hopping (CBH model. The conduction in the present sample is found to be of bipolaron type for Mn3+ ion-doped sample. However, the conduction mechanism could not be explained by CBH model for Fe3+ ion-doped sample.

  19. Understanding the stability of Fe incorporation within Mn3N2(0 0 1) surfaces: An ab-initio study

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Mandru, Andrada-Oana; Takeuchi, Noboru; Cocoletzi, Gregorio H.; Smith, Arthur R.

    2016-01-01

    Graphical abstract: - Highlights: • The Fe incorporation into inner layers of the Mn 3 N 2 surfaces is stable in all range of chemical potential. • Displaced Mn atoms forming cluster-like structures induce the stability of incorporated Fe atoms. • Antiferromagnetic alignment in the [0 0 1] direction and in-plane Ferromagnetic Fe–Fe and Fe–Mn alignments are the same as in Mn 3 N 2 bulk structure. • Incorporated Fe layers contribute to the metallic character of these surfaces. - Abstract: We present first principles spin-polarized calculations of the adsorption and incorporation of iron in the Mn 3 N 2 (0 0 1) surfaces. By means of a surface formation energy criterion, it is demonstrated that Fe incorporation is energetically stable for all studied surfaces. An Fe bilayer formation is achieved after Fe atoms displace Mn atoms in the sub-surface N-vacancy layers. An analysis of the magnetic coupling shows an antiferromagnetic alignment along the [0 0 1] direction as in the clean, ideal surfaces. Also, the in-plane magnetic coupling between Fe–Fe and Fe–Mn shows a ferromagnetic tendency, similar to the clean, ideally terminated surfaces. These results clearly indicate that Fe behaves like Mn when adsorbed into the Mn 3 N 2 surface. Density of states calculations of the stable structures show a slight deviation from the antiferromagnetic-like behavior, with the most important contribution around the Fermi level coming from the Fe-d and Mn-d orbitals.

  20. Understanding the stability of Fe incorporation within Mn{sub 3}N{sub 2}(0 0 1) surfaces: An ab-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Mandru, Andrada-Oana [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, México (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570, México (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2016-02-15

    Graphical abstract: - Highlights: • The Fe incorporation into inner layers of the Mn{sub 3}N{sub 2} surfaces is stable in all range of chemical potential. • Displaced Mn atoms forming cluster-like structures induce the stability of incorporated Fe atoms. • Antiferromagnetic alignment in the [0 0 1] direction and in-plane Ferromagnetic Fe–Fe and Fe–Mn alignments are the same as in Mn{sub 3}N{sub 2} bulk structure. • Incorporated Fe layers contribute to the metallic character of these surfaces. - Abstract: We present first principles spin-polarized calculations of the adsorption and incorporation of iron in the Mn{sub 3}N{sub 2}(0 0 1) surfaces. By means of a surface formation energy criterion, it is demonstrated that Fe incorporation is energetically stable for all studied surfaces. An Fe bilayer formation is achieved after Fe atoms displace Mn atoms in the sub-surface N-vacancy layers. An analysis of the magnetic coupling shows an antiferromagnetic alignment along the [0 0 1] direction as in the clean, ideal surfaces. Also, the in-plane magnetic coupling between Fe–Fe and Fe–Mn shows a ferromagnetic tendency, similar to the clean, ideally terminated surfaces. These results clearly indicate that Fe behaves like Mn when adsorbed into the Mn{sub 3}N{sub 2} surface. Density of states calculations of the stable structures show a slight deviation from the antiferromagnetic-like behavior, with the most important contribution around the Fermi level coming from the Fe-d and Mn-d orbitals.

  1. Surface energy absorbing layers produced by ion implantation

    International Nuclear Information System (INIS)

    Gurarie, V.N.

    1997-01-01

    Single crystals of magnesia have been ion implanted with 80 keV Si and Cr ions at variable doses and then subjected to testing in a shock plasma. The peak surface temperature has been calibrated by measuring the size and temperature deformation of the fragments formed by multiple microcracking during thermal shock. the crack density curves for MgO crystals demonstrate that in a wide range of thermal shock intensity the ion implanted crystals develop a system of microcracks of a considerably higher density than the unimplanted ones. The high density of cracks nucleated in the ion implanted samples results in the formation of a surface energy absorbing layer which effectively absorbs elastic strain energy induced by thermal shock. As a consequence the depth of crack penetration in the layer and hence the degree of fracture damage are decreased. the results indicate that a Si implant decreases the temperature threshold of cracking and simultaneously increases the crack density in MgO crystals. However, in MgO crystals implanted with Cr a substantial increase in the crack density is achieved without a noticeable decrease in the temperature threshold of fracture. This effect is interpreted in terms of different Cr and Si implantation conditions and damage. The mechanical properties of the energy-absorbing layer and the relation to implantation-induced lattice damage are discussed. 11 refs., 4 figs

  2. Neon ion beam induced pattern formation on amorphous carbon surfaces

    Directory of Open Access Journals (Sweden)

    Omar Bobes

    2018-02-01

    Full Text Available We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.

  3. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  4. Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu(2+) ions.

    Science.gov (United States)

    Dong, Bohua; Cao, Lixin; Su, Ge; Liu, Wei; Qu, Hua; Jiang, Daixun

    2009-11-01

    Silica-coated ZnS:Mn nanoparticles were synthesized by coating hydrophobic ZnS:Mn nanoparticles with silica shell through microemulsion. The core-shell structural nanoparticles were confirmed by X-ray diffraction (XRD) patterns, high-resolution transmission electron microscope (HRTEM) images and energy dispersive spectroscopy (EDS) measurements. Results show that each core-shell nanoparticle contains single ZnS:Mn nanoparticle within monodisperse silica nanospheres (40nm). Photoluminescence (PL) spectroscopy and UV-vis spectrum were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnS:Mn nanoparticles, the silica-coated ZnS:Mn nanoparticles have the improved PL intensity as well as good photostability. The obtained silica-coated ZnS:Mn nanoparticles are water-soluble and have fluorescence sensitivity to Cu(2+) ions. Quenching of fluorescence intensity of the silica-coated nanoparticles allows the detection of Cu(2+) concentrations as low as 7.3x10(-9)molL(-1), thus affording a very sensitive detection system for this chemical species. The possible quenching mechanism is discussed.

  5. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  6. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  7. Multiscale simulation of ion beam impacts on a graphene surface

    International Nuclear Information System (INIS)

    Dybyspayeva, K B; Zhuldassov, A; Ainabayev, A; Insepov, Z; Vyatkin, A F; Alekseev, K

    2016-01-01

    Multiscale study of single and multilayer graphene irradiation is presented in this paper. Ab-initio density-functional theory (DFT) was used to study point defects, and a large scale parallel molecular-dynamics (MD) simulations were used for studying formation of gas cluster ion impacts. Moreover, Raman spectra of pure and defect graphene samples were studied from DFT calculations. Threshold energies for creating craters on the surface of graphene were obtained from MD and compared with published papers. The results of simulations were also compared with experimental craters and surface shape. (paper)

  8. Single qubit manipulation in a microfabricated surface electrode ion trap

    Science.gov (United States)

    Mount, Emily; Baek, So-Young; Blain, Matthew; Stick, Daniel; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang

    2013-09-01

    We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms-1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

  9. Single qubit manipulation in a microfabricated surface electrode ion trap

    International Nuclear Information System (INIS)

    Mount, Emily; Baek, So-Young; Gaultney, Daniel; Crain, Stephen; Noek, Rachel; Kim, Taehyun; Maunz, Peter; Kim, Jungsang; Blain, Matthew; Stick, Daniel

    2013-01-01

    We trap individual 171 Yb + ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms −1 , indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps. (paper)

  10. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  11. Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2cathode of lithium-ion batteries.

    Science.gov (United States)

    He, Li-Po; Sun, Shu-Ying; Song, Xing-Fu; Yu, Jian-Guo

    2017-06-01

    In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions. Operating variables affecting the leaching efficiencies for Li, Ni, Co, and Mn from LiNi 1/3 Co 1/3 Mn 1/3 O 2 , such as the H 2 SO 4 concentration, temperature, H 2 O 2 concentration, stirring speed, and pulp density, were investigated to determine the most efficient conditions for leaching. The leaching efficiencies for Li, Ni, Co, and Mn reached 99.7% under the optimized conditions of 1M H 2 SO 4 , 1vol% H 2 O 2 , 400rpm stirring speed, 40g/L pulp density, and 60min leaching time at 40°C. The leaching kinetics of LiNi 1/3 Co 1/3 Mn 1/3 O 2 were found to be significantly faster than those of LiCoO 2 . Based on the variation in the weight fraction of the metal in the residue, the "cubic rate law" was revised as follows: θ(1-f) 1/3 =(1-kt/r 0 ρ), which could characterize the leaching kinetics optimally. The activation energies were determined to be 64.98, 65.16, 66.12, and 66.04kJ/mol for Li, Ni, Co, and Mn, respectively, indicating that the leaching process was controlled by the rate of surface chemical reactions. Finally, a simple process was proposed for the recovery of valuable metals from spent LiNi 1/3 Co 1/3 Mn 1/3 O 2 -based LIBs and cathode scraps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural and electrochemical characterization and surface modification of layered solid solution oxide cathodes of lithium ion batteries

    Science.gov (United States)

    Wu, Yan

    Lithium ion batteries are widely used to power portable electronic devices such as cell phones and laptop computers due to their high energy density. However, the currently used layered LiCoO2 cathode could deliver only 50 % of its theoretical capacity in practical lithium ion cells (140 mAh/g) due to the chemical and structural instabilities at deep charge with (1-x) first charge and discharge capacity) values (up to 100 mAh/g), which have been reduced significantly by modifying the cathode surface with other materials like Al2O3, AlPO 4, and F-. For example, compared to an IRC of 75 mAh/g and a first discharge capacity of 253 mAh/g for the pristine Li[Li0.2 Mn0.54Ni0.13Co0.13]O2 (y = 1/6 and z = 0.4), the 3 wt. % Al2O3 modified sample exhibits a lower IRC of 41 mAh/g and a higher first discharge capacity of 285 mAh/g, which is two times higher than that achieved with the LiCoO 2 cathode. A careful and systematic analysis of the experimentally observed capacity and IRC values suggest that part of the oxide ion vacancies created during first charge is retained in the layered lattice in contrast to the idealized model (elimination of all oxide ion vacancies) proposed in the literature. The surface modification helps to retain even more number of oxide ion vacancies in the lattice, which leads to a lower IRC and higher discharge capacity values. Additionally, bulk cationic and anionic substitutions of Al3+ and F- in Li[Li0.17Mn0.58Ni0.25 ]O2 (y = 0 and z = 0.5) are found to sensitively decrease the amount of oxygen loss from the lattice.

  13. Surface composition of biomedical components by ion beam analysis

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R.

    1991-01-01

    Materials used for replacement body parts must satisfy a number of requirements such as biocompatibility and mechanical ability to handle the task with regard to strength, wear and durability. When using a CVD coated carbon fibre reinforced carbon ball, the surface must be ion implanted with uniform dose of nitrogen ions in order to make it wear resistant. The mechanism by which the wear resistance is improved is one of radiation damage and the required dose of about 10 16 cm -2 can have a tolerance of about 20%. To implant a spherical surface requires manipulation of the sample within the beam and control system (either computer or manually operated) to enable uniform dose all the way from polar to equatorial regions on the surface. A manipulator has been designed and built for this purpose. In order to establish whether the dose is uniform, nuclear reaction analysis using the reaction 14 N(d,α) 12 C is an ideal method of profiling. By taking measurements at a number of points on the surface, the uniformity of nitrogen dose can be ascertained. It is concluded that both Rutherford Backscattering and Nuclear Reaction Analysis can be used for rapid analysis of surface composition of carbon based materials used for replacement body components. 2 refs., 2 figs

  14. Critical Surface Parameters for the Oxidative Coupling of Methane over the Mn-Na-W/SiO2 Catalyst.

    Science.gov (United States)

    Hayek, Naseem S; Lucas, Nishita S; Warwar Damouny, Christine; Gazit, Oz M

    2017-11-22

    The work here presents a thorough evaluation of the effect of Mn-Na-W/SiO 2 catalyst surface parameters on its performance in the oxidative coupling of methane (OCM). To do so, we used microporous dealuminated β-zeolite (Zeo), or mesoporous SBA-15 (SBA), or macroporous fumed silica (Fum) as precursors for catalyst preparation, together with Mn nitrate, Mn acetate and Na 2 WO 4 . Characterizing the catalysts by inductively coupled plasma-optical emission spectroscopy, N 2 physisorption, X-ray diffraction, high-resolution scanning electron microscopy-energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and catalytic testing enabled us to identify critical surface parameters that govern the activity and C 2 selectivity of the Mn-Na-W/SiO 2 catalyst. Although the current paradigm views the phase transition of silica to α-cristobalite as the critical step in obtaining dispersed and stable metal sites, we show that the choice of precursors is equally or even more important with respect to tailoring the right surface properties. Specifically, the SBA-based catalyst, characterized by relatively closed surface porosity, demonstrated low activity and low C 2 selectivity. By contrast, for the same composition, the Zeo-based catalyst showed an open surface pore structure, which translated up to fourfold higher activity and enhanced selectivity. By varying the overall composition of the Zeo catalysts, we show that reducing the overall W concentration reduces the size of the Na 2 WO 4 species and increases the catalytic activity linearly as much as fivefold higher than the SBA catalyst. This linear dependence correlates well to the number of interfaces between the Na 2 WO 4 and Mn 2 O 3 species. Our results combined with prior studies lead us to single out the interface between Na 2 WO 4 and Mn 2 O 3 as the most probable active site for OCM using this catalyst. Synergistic interactions between the various precursors used and the phase transition are discussed in

  15. Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery.

    Science.gov (United States)

    Komaba, Shinichi; Yabuuchi, Naoaki; Nakayama, Tetsuri; Ogata, Atsushi; Ishikawa, Toru; Nakai, Izumi

    2012-06-04

    Layered NaNi(0.5)Mn(0.5)O(2) (space group: R ̅3m), having an O3-type (α-NaFeO(2) type) structure according to the Delmas' notation, is prepared by a solid-state method. The electrochemical reactivity of NaNi(0.5)Mn(0.5)O(2) is examined in an aprotic sodium cell at room temperature. The NaNi(0.5)Mn(0.5)O(2) electrodes can deliver ca. 105-125 mAh g(-1) at rates of 240-4.8 mA g(-1) in the voltage range of 2.2-3.8 V and show 75% of the initial reversible capacity after 50 charge/discharge cycling tests. In the voltage range of 2.2-4.5 V, a higher reversible capacity of 185 mAh g(-1) is achieved; however, its reversibility is insufficient because of the significant expansion of interslab space by charging to 4.5 V versus sodium. The reversbility is improved by adding fluoroethylene carbonate into the electrolyte solution. The structural transition mechanism of Na(1-x)Ni(0.5)Mn(0.5)O(2) is also examined by an ex situ X-ray diffraction method combined with X-ray absorption spectroscopy (XAS). The staking sequence of the [Ni(0.5)Mn(0.5)]O(2) slabs changes progressively as sodium ions are extracted from the crystal lattice. It is observed that the original O3 phase transforms into the O'3, P3, P'3, and P3" phases during sodium extraction. XAS measurement proves that NaNi(0.5)Mn(0.5)O(2) consists of divalent nickel and tetravalent manganese ions. As sodium ions are extracted from the oxide to form Na(1-x)Ni(0.5)Mn(0.5)O(2), nickel ions are oxidized to the trivalent state, while the manganese ions are electrochemically inactive as the tetravalent state.

  16. X-Ray photoelectron spectroscopy and diffractometry of MnOx catalysts: surface to bulk composition relationships

    International Nuclear Information System (INIS)

    Zaki, M.I.; Kappenstein, C.

    1992-01-01

    Surface and bulk analyses of variously-composed, synthetic MnO x catalysts were carried out by means of X-ray photoelectron spectroscopy (XPS) and diffractometry (XRD), respectively. The data obtained were processed for a comprehensive assessment of bulk and surface compositions, surface oxidation state, and crystalline size. The XPS data processing revealed that a credible assessment of the surface composition (MnO x (OH) y (OH 2 ) z necessitates: (i) the implementation of experimental sensitivity factors determined on a local reference surface maintaining a close chemical similarity to the test materials, and (ii) the fine evaluation of contributions of various oxygen-containing surface species to the O 1s electron emission. The most prominent result of the present investigation is that the exposure of the bulk composition at the surface is quite proportioned. Such a surface to bulk intimacy is thought to enable genesizing the surface composition appropriate for certain catalytic and selectivity, via a possible control over the bulk formation events. (orig.)

  17. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Science.gov (United States)

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  18. Solution-combustion synthesized nickel-substituted spinel cathode materials (LiNixMn2-xO4; 0≤x≤0.2) for lithium ion battery: enhancing energy storage, capacity retention, and lithium ion transport

    CSIR Research Space (South Africa)

    Kebede, MA

    2014-01-01

    Full Text Available Spherically shaped Ni-substituted LiNi(subx)Mn(sub2-x)O(sub4) (x=0, 0.1, 0.2) spinel cathode materials for lithium ion battery with high first cycle discharge capacity and remarkable cycling performance were synthesized using the solution-combustion...

  19. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  20. The application of alumino silicate alkali ion sources to the study of ion desorption of surface gas

    CERN Document Server

    Jones, A W; Williams, E M

    1974-01-01

    Investigations are described which illustrate the compatibility of alumino silicate alkali ion sources with an UHV ( approximately 10/sup -11/) vacuum environment. The application of the sources to the determination of ion desorption efficiency of surface gas is demonstrated, as well as their use as a basis of a technique of ion stimulated gas analysis. (12 refs).

  1. Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions.

    Science.gov (United States)

    Kim, Minsoo P; Kim, Hyeong Jun; Kim, Bumjoon J; Yi, Gi-Ra

    2015-03-06

    We present a novel method for producing structured nanoporous thin films using block copolymer (BCP) micelles loaded with metallic ions. The BCP micellar thin films containing gold (Au) ions were prepared by spin-coating poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle solutions in which Au precursors (AuCl4(-)) were selectively loaded onto the P4VP core. When the micellar films were exposed to cetyltrimethylammonium bromide (CTAB) solutions, the Au precursors were selectively extracted from the P4VP domains due to their strong electrostatic interaction with CTAB, leading to the formation of pores in the micelles. Consequently, regularly patterned nanoporous surfaces were formed. By controlling the molecular weight (Mn) of PS-b-P4VP and the amount of Au precursors (λ) that were loaded in the P4VP domains, the pore size and depth could be tuned precisely. In particular, when a sufficient amount of Au precursors was loaded (λ  ≥ 0.3), the porous surface nanostructure was well developed. In addition, the pore size and depth of the nanostructure increased as the λ value increased. For instance, when the λ value increased from 0.3 to 1.0, the pore size increased from 22.8 nm to 28.8 nm, and the pore depth increased from 2.1 nm to 3.2 nm. Interestingly, the transition from the nonporous structures to the porous structures in the micellar film could be reversibly controlled by adding and removing the Au precursors in the film. Moreover, our method for the preparation of nanoporous films can be extended to micellar film by incorporating other metal ions such as silver (Ag) and iron (Fe).

  2. Surface Charge and Ion Sorption Properties of Titanium Dioxide

    Science.gov (United States)

    Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Finnegan, M. P.; Palmer, D. A.

    2001-12-01

    The interaction of submicron metal oxide particles with natural aqueous solutions results in the hydroxylation of surface sites, which impart a pH-dependent surface charge. The charged submicron particles influence processes such as nanoparticle assembly and alteration, crystal growth rates and morphologies, colloid flocculation, and contaminant transport. The surface charge and ion sorption properties of metal-oxide particles may be studied by potentiometric titrations, using hydrogen-electrode concentration-cells or traditional glass electrodes and an autotitrator. These techniques have been used to quantify the adsorption of various ions (Na+, Rb+, Ca2+, Sr2+, Cl-) on rutile, at ionic strengths up to 1.0 molality and temperatures to 250° C. The crystalline rutile used in these studies is less than 400 nm in diameter, has a BET surface area of 17 m2/g, and the 110 and 100 faces predominate. The negative surface charge of the rutile was enhanced by increasing temperature, increasing ionic strength, and decreasing the ionic radii of the electrolyte cation. Moreover, the addition of a divalent cation significantly enhances the negative charge of the rutile surface. These data have been rationalized with the MUSIC model of Hiemestra and van Riemsdijk, and a Basic Stern layer description of the electric double layer (EDL). Model fitting of the experimental data provides binding constants for the adsorbed counterions and divalent cations, and capacitance values as well as corresponding electrical potential values of the binding planes. Recently, new studies have been initiated to determine particle size affects on the proton induced surface charge and ion sorption properties of titanium dioxide. In these studies, anatase with a BET surface area of 40 and 100 m2/g (primary particle sizes of 40 and 10 nm, respectively) is being investigated. The complexity of both the experimental and modeling procedures increases with decreasing particle size. For example, the fine

  3. Industrial ion source technology. [for ion beam etching, surface texturing, and deposition

    Science.gov (United States)

    Kaufman, H. R.

    1977-01-01

    Plasma probe surveys were conducted in a 30-cm source to verify that the uniformity in the ion beam is the result of a corresponding uniformity in the discharge-chamber plasma. A 15 cm permanent magnet multipole ion source was designed, fabricated, and demonstrated. Procedures were investigated for texturing a variety of seed and surface materials for controlling secondary electron emission, increasing electron absorption of light, and improved attachment of biological tissue for medical implants using argon and tetrafluoromethane as the working gases. The cross section for argon-argon elastic collisions in the ion-beam energy range was calculated from interaction potentials and permits calculation of beam interaction effects that can determine system pumping requirements. The data also indicate that different optimizations of ion-beam machines will be advantageous for long and short runs, with 1 mA-hr/cm being the rough dividing line for run length. The capacity to simultaneously optimize components in an ion-beam machine for a single application, a capacity that is not evident in competitive approaches such as diode sputtering is emphasized.

  4. Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi(0.5)Mn(0.5)O₂.

    Science.gov (United States)

    Gwon, Hyeokjo; Kim, Sung-Wook; Park, Young-Uk; Hong, Jihyun; Ceder, Gerbrand; Jeon, Seokwoo; Kang, Kisuk

    2014-08-04

    An ion-exchange process can be an effective route to synthesize new quasi-equilibrium phases with a desired crystal structure. Important layered-type battery materials, such as LiMnO2 and LiNi(0.5)Mn(0.5)O2, can be obtained through this method from a sodium-containing parent structure, and they often show electrochemical properties remarkably distinct from those of their solid-state synthesized equivalents. However, while ion exchange is generally believed to occur via a simple topotactic reaction, the detailed phase transformation mechanism during the process is not yet fully understood. For the case of layered LiNi(0.5)Mn(0.5)O2, we show through ex situ X-ray diffraction (XRD) that the ion-exchange process consists of several sequential phase transformations. By a study of the intermediate phase, it is shown that the residual sodium ions in the final structure may greatly affect the electrochemical (de)lithiation mechanism.

  5. Effect of Mn/Ti surface treatment on voltage-holdoff performance of alumina insulators in vaccum

    International Nuclear Information System (INIS)

    Miller, H.C.; Furno, E.J.

    1978-01-01

    The treatment of the surface of an alumina insulator with a Mn/Ti coating significantly increases its voltage-holdoff capability. Insulators treated with this coating had vacuum-holdoff voltages about 25% higher than did untreated insulators. During processing (quasimetallizing) the coating penetrates into the alumina, so it is fairly insensitive to damage by abrasion or electrical breakdown. The quasimetallized coatings is also comparable with subsequent metallizing and brazing of the alumina insulator. We conclude that the coating (1) decreases the surface resistivity of the insulator, (2) decreases the insulator's secondary-electron-emission yield, and (3) makes the surface of the insulator dielectrically more uniform

  6. Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Romero da Silva, Murillo, E-mail: murilloromero_@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gargarella, Piter [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gustmann, Tobias [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Botta Filho, Walter José; Kiminami, Claudio S. [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria); Pauly, Simon [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Bolfarini, Claudemiro [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil)

    2016-04-20

    Cu-based shape memory alloys (SMAs) show better thermal and electrical conductivity, lower cost and are easier to process than traditional Ti-based SMAs, but they exhibit a lower ductility and lower fatigue life. These properties can be improved by decreasing the grain size and reducing microstructural segregations, which may be obtained using laser surface remelting treatments. The aim of the present work was to produce and characterize laser remelted Cu-11.85Al-3.2Ni-3Mn SMA plates. Twelve plates with the dimensions of 50×10×1.5 mm were produced by suction casting in a first step. The surface of the plates was remelted afterwards with a laser beam power of 300 W, hatching of 50% and using three different scanning speeds: 100, 300 and 500 mm/s. The plates were characterized by optical and scanning electron microscopy, X-ray diffraction, differential scanning calorimetry as well as by tensile and microhardness tests. The remelted region showed a T morphology, with average thickness of 52, 29 and 23 µm for the plates remelted with scanning speeds of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s, some pores were found around the center of the track, due to the keyhole instability. The same phase formed in the as-cast sample was obtained in the laser remelted coatings: the monoclinic β′{sub 1} martensitic phase with zig-zag morphology. However, the laser treated samples exhibit lower transformation temperatures than the as-cast sample, due to grain refinement at the surface. They also show an improvement in the mechanical properties, with an increase of up to 162 MPa in fracture stress, up to 2.2% in ductility and up to 20.9 HV in microhardness when compared with the as-cast sample, which makes the laser surface remelting a promising method for improving the mechanical properties of Cu-based SMAs.

  7. Ion-driven instabilities of surface dust ion-acoustic waves in bounded plasma devices

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-02-01

    The growth rates of the dust ion-acoustic surface wave in the plasma slab device containing ion streaming passing through the stationary electrons and dusty grains at the speed of wave phase velocity are derived and numerically analyzed. We have found that the growth rates for the resonant symmetric and antisymmetric waves are similar to the case of semi-bounded plasma when we have a thick slab. However, in the case of the symmetric wave, the growth rate moves towards the bulk wave as the slab thickness reduces. In the case of the antisymmetric wave, the growth rate increases fast as the slab thickness decreases. The growth rates of surface waves in a plasma slab are compared with those of semi-bounded and bulk waves.

  8. Phase transformations in Ln<mn>2mn>O<mn>3mn> materials irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Lang, Maik; Zhang, Fuxiang; Trautmann, Christina; Ewing, Rodney C.

    2015-11-01

    Phase transformations induced in the cubic C-type lanthanide sesquioxides, Ln 2 O 3 (Ln = Sm, Gd, Ho, Tm, and Lu), by dense electronic excitation are investigated. The structural modifications resulting from exposure to beams of 185 MeV Xe and 2246 MeV Au ions are characterized using synchrotron x-ray diffraction and Raman spectroscopy. The formation of a B-type polymorph, an X-type nonequilibrium phase, and an amorphous phase are observed. The specific phase formed and the transformation rate show dependence on the material composition, as well as the ion beam mass and energy. Atomistic mechanisms for these transformations are determined, indicating that formation of the B-type phase results from the production of anti-Frenkel defects and the aggregation of anion vacancies into planar clusters, whereas formation of the X-type and amorphous phases requires extensive displacement of both anions and cations. The observed variations in phase behavior with changing lanthanide ionic radius and deposited electronic energy density are related to the energetics of these transformation mechanisms.

  9. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  10. Surface Modification of LiMn2O4 for Lithium Batteries by Nanostructured LiFePO4 Phosphate

    Directory of Open Access Journals (Sweden)

    B. Sadeghi

    2012-01-01

    Full Text Available LiMn2O4 spinel cathode materials have been successfully synthesized by solid-state reaction. Surface of these particles was modified by nanostructured LiFePO4 via sol gel dip coating method. Synthesized products were characterized by thermally analyzed thermogravimetric and differential thermal analysis (TG/DTA, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and energy dispersive X-ray spectroscopy (EDX. The results of electrochemical tests showed that the charge/discharge capacities improved and charge retention of battery enhanced. This improved electrochemical performance is caused by LiFePO4 phosphate layer on surfaces of LiMn2O4 cathode particles.

  11. Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in Pecten maximus and Mytilus edulis (bivalvia shell calcite precipitated at constant temperature

    Directory of Open Access Journals (Sweden)

    P. S. Freitas

    2009-07-01

    Full Text Available Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves Pecten maximus and Mytilus edulis that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in P. maximus and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the P. maximus shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells.

  12. Ion fractions in the scattering of hydrogen on silicon surfaces

    International Nuclear Information System (INIS)

    Garcia, Evelina A.; Gonzalez Pascual, C.; Bolcatto, P.G.; Passeggi, M.C.G.; Goldberg, E.C.

    2005-01-01

    We present a theoretical calculation of the resonant charge-exchange process occurring in H 0 scattering by Si(100)2 x 1 surfaces. In the atom-surface interacting system the core states of the surface atoms are included and the parameters of the Hamiltonian are calculated in an ab initio basis taking into account the extended features of the surface and the localized atom-atom interactions within a mean-field approximation. The density of states of the surface and sub-surface atoms are obtained from a molecular dynamic-density functional theory in the local density approximation. An elastic binary collision is assumed to fix the projectile trajectory, while the inelastic processes are determined by the interaction of the projectile atom with all the surface atoms 'seen' along its trajectory. The ion fractions are calculated by using the Green-Keldysh formalism to solve the time dependent process. The results, obtained as an average over different possibilities for the scattering center, reproduce the general trends of the experiment. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. FTIR Spectroscopic Study of Mn(II) Oxidizing Pseudomonas putida GB1 Biofilms on ZnSe, Ge, and CdTe Crystal Surfaces

    Science.gov (United States)

    Parikh, S. J.; Gilbert, H. L.; Conklin, M. H.; Chorover, J.

    2003-12-01

    Pseudomonas putida strain GB1 is an aerobic, gram-negative bacterium capable of gaining energy from the biological oxidation of Mn(II). The increased kinetics of Mn(II) oxidation resulting from this microbial catalysis is known to contribute to the formation of Mn(IV) oxides in natural waters. Environmental conditions, including aqueous and surface chemistry, greatly affect the macromolecular composition and surface adhesion behavior of bacteria. For example, the chemistry of GB1 biofilms forming on crystal surfaces is expected to vary with Mn(II) concentration in solution. We used Fourier transform infrared (FTIR) spectroscopy to probe the formation of GB1 biofilms on the surfaces of negatively-charged IR transparent ZnSe, Ge, and CdTe crystal windows. Bacterial adhesion experiments were carried out both in the presence and absence of Mn(II)(aq) with FTIR windows suspended in a bioreactor comprising GB1 cells in a mineral growth medium at pH 7.6 and 30° C. After 85 h, windows were removed from the reactor and IR spectra were collected. Oxidation of Mn(II) was confirmed via leucoberbelin blue (LBB) indicator and the appearance of Mn-O stretches in biofilm IR spectra. Transmission FTIR spectra do not reveal detectable effects of crystal type on biofilm composition, but do indicate changes in chemistry resulting from introduction of Mn(II). In the presence of Mn(II), spectra of biofilms show higher relative intensity in the carbohydrate region (specifically 1160, 1052 cm-1). A down frequency shift in the P=O absorbance was also observed (1240 to 1222 cm-1). These results indicate a modification of bacterial cell/biofilm composition resulting during biological oxidation of Mn(II). The CdTe transmission window permits measurements to low wavenumbers (treatment. Transmission electron microscopy (TEM) of the bioreactor suspension revealed needle-like clusters of Mn oxide crystals in association with GB1 biomass and extracellular materials.

  14. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  15. Layered oxides-LiNi1/3Co1/3Mn1/3O2 as anode electrode for symmetric rechargeable lithium-ion batteries

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Yang, Shi-Ze; Gagnon, Catherine; Gariépy, Vincent; Laul, Dharminder; Zhu, Wen; Veillette, René; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-01

    High-performance and long-cycling rechargeable lithium-ion batteries have been in steadily increasing demand for the past decades. Nevertheless, the two dominant anodes at the moment, graphite and L4T5O12, suffer from a safety issue of lithium plating (operating voltage at ∼ 0.1 V vs. Li+/Li) and low capacity (175 mAh/g), respectively. Here, we report LiNi1/3Co1/3Mn1/3O2 as an alternative anode material which has a working voltage of ∼1.1 V and a capacity as high as 330 mAh/g at the current rate of C/15. Symmetric cells with both electrodes containing LiNi1/3Co1/3Mn1/3O2 can deliver average discharge voltage of 2.2 V. In-situ XRD, HRTEM and first principles calculations indicate that the reaction mechanism of a LiNi1/3Co1/3Mn1/3O2 anode is comprised mainly of conversion. Both the fundamental understanding and practical demonstrations suggest that LiNi1/3Co1/3Mn1/3O2 is a promising negative electrode material for lithium-ion batteries.

  16. In operando neutron diffraction study of a commercial graphite/(Ni, Mn, Co) oxide-based multi-component lithium ion battery

    Science.gov (United States)

    Nazer, N. S.; Yartys, V. A.; Azib, T.; Latroche, M.; Cuevas, F.; Forseth, S.; Vie, P. J. S.; Denys, R. V.; Sørby, M. H.; Hauback, B. C.; Arnberg, L.; Henry, P. F.

    2016-09-01

    In situ neutron diffraction was employed to investigate the structural evolution of the electrode materials in an ICR 10440 commercial cylindrical lithium-ion battery, which has a discharge capacity of 360 mAh and a nominal voltage of 3.7 V. A three-phase mixture of Li(Ni,Mn,Co)O2, LiCoO2 and LiMn2O4 was identified as the active material of the cathode, with graphite acting as the anode material. The study revealed that the graphite anode underwent structural changes to form a series of insertion-type lithiated derivatives, with up to 12.7% volume expansion for the Li-saturated compound LiC6. The charge-discharge behavior was more complex for the cathode. Here, the charge process was associated with partial lithium depletion from the initially Li-saturated compounds, leading to volume shrinkage for Li(Ni,Mn,Co)O2, in contrast to (Ni,Mn)-free LiCoO2. Electrochemical discharge experiments performed under a fast regime (2 C) at 5, 25 and 45 °C revealed that the discharge capacity followed the trend of an increased diffusion rate of Li+ ions in the electrolyte and Li atoms in both electrodes, being highest for 45 °C. At the lowest tested temperature (5 °C), a rapid drop in the discharge capacity took place using the same kinetic regime.

  17. Research of the Ion Current Density Influence on the Glass-Ceramics Surface Defects Forming under Ion-Beam Processing

    Directory of Open Access Journals (Sweden)

    V. G. Pozdnyakov

    2015-01-01

    Full Text Available Development of modern optics is primarily determined by manufacturing accuracy of the working surfaces of optical parts. Therefore, at the last stage of manufacturing optical parts the ion-beam treatment is applied. This method uses spraying the high-energy ions of heavy gases on the surface of a solid body. After an intense ion treatment there are microscopic defects, resembling chips, on the surface of polycrystalline glass. The aim of this work is to study distribution of the surface density of defects by sizes, depending on the density of ion current.Accelerator with an anode layer and a focused ion beam was used as an ion source. The accelerator worked on argon and created ion beam with Gaussian distribution of current density along the radius. The excess positive charge of the ion beam was compensated owing to ionization of residual gas. To eliminate the influence of slow ions with peripheral regions of the ion beam, the etching was performed through a circular aperture with a diameter of 40 mm.Surface treatment of the sample was carried out at the discharge voltage of 3800 V and current of 50 mA for 30 min. The maximum ion current density on the sample surface was 20.2 A/m2 and a power density was of 5.4·104 W/m2 .Distribution of defects by size was measured in three areas of the treated surface corresponding to different densities of ion current, namely: 20.2 A/m2 , 11.3A/m2 , and 3.4 A/m2 . Their number per area unit defines a density of defects.The results show that with increasing ion current density the density of defects on the surface of polycrystalline glass decreases. Thus a view of distribution function of defect density according to size is changed: density of small defects is reduced, and density of large ones increases. Also with increasing ion current density is observed an increase in the size of defects: a 6 times increase of the average size of defects results in 1.6 times increasing ion current density.These data will

  18. The transition from dynamics to statics in the electron-spin-resonance spectra of impurity Mn.sup.2+./sup. ions in strontium titanate

    Czech Academy of Sciences Publication Activity Database

    Zverev, D.G.; Yusupov, R.V.; Rodionov, A.A.; Kvyatkovskii, O.E.; Jastrabík, Lubomír; Dejneka, Alexandr; Trepakov, Vladimír

    2014-01-01

    Roč. 116, č. 6 (2014), s. 818-822 ISSN 0030-400X R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : electron-spin-resonance * impurity Mn 2+ ions * strontium titanate Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.723, year: 2014

  19. Luminescent ZnS:Mn/thioglycerol and ZnS:Mn/ZnS core/shell nanocrystals: Synthesis and characterization

    Science.gov (United States)

    Hoa, Tran Thi Quynh; Binh, Le Thi Thanh; Vu, Le Van; Long, Nguyen Ngoc; Hanh, Vu Thi Hong; Chinh, Vu Duc; Nga, Pham Thu

    2012-12-01

    The synthesis and photoluminescent properties of Mn2+-doped ZnS nanocrystals coated with an organic shell of thioglycerol and an inorganic shell of ZnS are reported in this paper. The photoluminescence spectra of bare ZnS:Mn nanocrystals exhibited a dominant ultraviolet-violet emission peaked at the wavelength range of 395-450 nm and an weak orange emission peaked at the wavelength range of 580-600 nm. The ultraviolet-violet emission was attributed to the surface defect states. The orange emission was assigned to the 4T1-6A1 transition of Mn2+ ions. These two channels of radiative recombination compete with each other. The coating ZnS:Mn nanocrystals with the thioglycerol shells or the ZnS shells reduced the surface defects and led to the enhancement of the emission of Mn2+ ions. On the other hand, the overcoating ZnS:Mn nanocrystals by thioglycerol shell restricted the growth of the nanocrystals, while the overcoating ZnS:Mn nanocrystals by ZnS shells made the band edge of the ZnS:Mn/ZnS core/shell nanocrystals shift to the lower energy side (the red shift) compared with the bare ZnS:Mn nanocrystals as observed in both the absorption and the photoluminescence excitation spectra.

  20. A novel polyaspartate precursor method for the synthesis of LiCayMn2-yO4 nanoparticles for Li-ion batteries

    Science.gov (United States)

    Subramania, A.; Angayarkanni, N.; Niruba, N.; Vasudevan, T.

    2007-02-01

    Cubic spinel LiCayMn2-yO4 nanoparticles were synthesized using nitrates of Li+, Ca2+ and acetate of Mn2+ with aspartic acid as a polymerizable combustion fuel. They were dissolved in distilled water and then concentrated by heating to form a viscous resin which was transformed into a foam-like mass by drying at 120 °C. Phase pure LiCayMn2-yO4 powders were obtained by combustion of these foams. The decomposition temperature of the polyaspartate precursor was investigated by TG/DTA analysis. The structural property of the synthesized LiCayMn2-yO4 powders was confirmed by x-ray diffraction studies. The average particle size of the synthesized powders was calculated from the x-ray data using the Scherrer equation. TEM analysis was also carried out to confirm the particle size and surface morphology of the synthesized LiCayMn2-yO4 powder. Finally, electrochemical charge-discharge studies were carried out by assembling 2016 type electrochemical button cells using carbon as the anode and the synthesized LiCayMn2-yO4 as the cathode with microporous polymer electrolyte.

  1. Synthesis and Electrochemical Properties of Ni Doped Spinel LiNixMn2-xO4 (0 ≤ x ≤ 0.5) Cathode Materials for Li-Ion Battery

    CSIR Research Space (South Africa)

    Kebede, M

    2013-11-01

    Full Text Available Spherical pristine LiMn2O4 and Ni doped LiNixMn2-xO4 (x=0.1, 0.2, 0.3, 0.4, 0.5) cathode materials for lithium ion battery with high first cycle discharge capacity and excellent cycle performance were synthesized using the solution...

  2. Synthesis and electrochemical properties of Ni doped spinel LiNi (subx)Mn (sub2-x)O(sub)4 (0 ≤ x ≤ 0.5) cathode materials for Li-Ion battery

    CSIR Research Space (South Africa)

    Kebede, MA

    2012-10-01

    Full Text Available Spherical pristine LiMn(sub2)O(sub4) and Ni doped LiNixMn(sub2-x)O(sub)4 (x=0.1, 0.2, 0.3, 0.4, 0.5) cathode materials for lithium ion battery with high first cycle discharge capacity and excellent cycle performance were synthesized using...

  3. In vitro effects of metal ions (Fe2+, Mn2+, Pb2+) on sperm motility and lipid peroxidation in human semen.

    Science.gov (United States)

    Huang, Y L; Tseng, W C; Lin, T H

    2001-02-23

    The effects of divalent manganese ion (Mn2+), ferrous iron (Fe2+), and lead ion (Pb2+) on human sperm motility and lipid peroxidation were examined. Human semen from healthy male volunteers was incubated with 0, 5, 50, or 500 ppm divalent metal ions, and the sperm motility was determined at 0, 2, 4, 6, or 8 h by microscopy. Malondialdehyde (MDA) levels in seminal plasma was measured by high-performance liquid chromatography after 8 h of exposure. The results showed that 500 ppm Mn2+ or Pb2+ significantly inhibited sperm motility without an accompanying change in seminal MDA levels. Incubation with Fe2+ significantly inhibited sperm motility at 5 ppm, associated with a marked rise in MDA levels. Our results suggested that Fe2+ may induce lipid peroxidation to inhibit sperm motility. In the case of Mn2+ and Pb2+ there is an absence of seminal lipid peroxidation and the observed inhibition of sperm motility at high concentrations is not biologically or environmentally relevant.

  4. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Lattice sites, charge states and spin–lattice relaxation of Fe ions in {sup 57}Mn{sup +} implanted GaN and AlN

    Energy Technology Data Exchange (ETDEWEB)

    Masenda, H., E-mail: hilary.masenda@wits.ac.za [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Naidoo, D. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4000 (South Africa); iThemba LABS, PO Box 725, Somerset West 7129 (South Africa); Gunnlaugsson, H.P. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Johnston, K. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); Mantovan, R. [Laboratorio MDM, IMM-CNR, Via Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mølholt, T.E. [PH Department, ISOLDE/CERN, 1211 Geneva 23 (Switzerland); Ncube, M. [School of Physics, University of the Witwatersrand, Johannesburg 2050 (South Africa); Shayestehaminzadeh, S. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 5274 Aachen (Germany); Gíslason, H.P. [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Langouche, G. [KU Leuven, Instituut voor Kern-en Stralingsfysica, 3001 Leuven (Belgium); Ólafsson, S. [Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavík (Iceland); Weyer, G. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus (Denmark)

    2016-03-01

    The lattice sites, valence states, resulting magnetic behaviour and spin–lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive {sup 57}Mn{sup +} ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV γ-rays from the {sup 57}Fe Mössbauer state (populated from the {sup 57}Mn β{sup −} decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100–800 K show the presence of magnetically split sextets in the “wings” of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe{sup 3+} with rather slow spin–lattice relaxation rates which follow a T{sup 2} temperature dependence characteristic of a two-phonon Raman process. - Highlights: • The majority of the Fe ions are in the 2+ state, located on near substitutional sites associated with vacancy type defects. • A significant fraction of the Fe ions are in the paramagnetic Fe{sup 3+} state. • Spin–lattice relaxation of Fe{sup 3+} in both GaN and AlN follows a two-phonon Raman process.

  6. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  7. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie; Lu, Wei

    2015-06-01

    The deposition of manganese ions dissolved from the cathode onto the interface between the solid electrolyte interphase (SEI) and graphite causes severe capacity fading in manganese oxide-based cells. The evolution of the SEI layer containing these Mn compounds and the corresponding instability of the layer are thoroughly investigated by artificially introducing soluble Mn ions into a 1 mol L-1 LiPF6 electrolyte solution. Deposition of dissolved Mn ions induces an oxygen-rich SEI layer that results from increased electrolyte decomposition, accelerating SEI growth. The spatial distribution of Mn shows that dissolved Mn ions diffuse through the porous layer and are deposited mostly at the inorganic layer/graphite interface. The Mn compound deposited on the anode, identified as MnF2, originates from a metathesis reaction between LiF and dissolved Mn ion. It is confirmed that ion-exchange reaction occurs in the inorganic layer, converting SEI species to Mn compounds. Some of the Mn is observed inside the graphite; this may cause surface structural disordering in the graphite, limiting lithium-ion intercalation. The continuous reaction that occurs at the inorganic layer/graphite interfacial regions and the modification of the original SEI layer in the presence of Mn ions are critically related to capacity fade and impedance rise currently plaguing Li-ion cells.

  8. Recent advances in ion and electron spectroscopy of polymer surfaces

    Science.gov (United States)

    Gardella, Joseph A.

    1988-01-01

    The structure of microdomains and bonding at multicomponent polymer material interfaces has been studied using a variety of surface sensitive spectroscopic techniques. In our laboratory, low energy ion scattering spectroscopy (ISS) and static secondary ion mass spectrometry (SIMS) serve to complement results from angular dependent X-ray photoelectron spectroscopy (XPS or ESCA), Fourier transform infrared (FTIR) with attenuated total reflectance (ATR) sampling and SEM techniques to provide a quantitative picture of the relationships between structure, bonding, morphology and microdomain formation in near surface regions of polymeric systems. The added surface sensitivity of ISS can yield quantitative information at a sampling depth of 3-5 Å, which, with ESCA and FTIR analysis yields a "non-destructive" depth profile of domain formation in copolymer and blend systems. These studies will be illustrated with results from siloxane and siloxane/polycarbonate copolymer systems, where a complete picture of surface domain formation and morphology as a function of composition and polymer crystallinity has been developed. ISS can also yield information regarding the orientation of surface functional groups which ESCA and FTIR do not have either sensitivity and/or sufficient detection limits to analyze. These studies will be illustrated by the analysis of plasma hydrolysis/oxidation of stereoregular poly(methyl-methacrylate). The effects of functional group orientation on reactivity will be explored using results from ISS, ESCA and FTIR for stereoregular (isotatic, syndiotactic) and random (atactic) PMMA. Electron energy loss spectroscopy at high resolution (HREELS) has recently been extended to the examination of polymer and organic surfaces. Vibrational information from this experiment can yield very precise results about surface functional groups (1-20 Å) but at much lower resolution than is typical from IR and Raman techniques. However, the promise of evaluating surface

  9. Solid state cesium ion guns for surface studies

    International Nuclear Information System (INIS)

    Souzis, A.E.; Carr, W.E.; Kim, S.I.; Seidl, M.

    1990-01-01

    Three cesium ion guns covering the energy range of 5--5000 V are described. These guns use a novel source of cesium ions that combine the advantages of porous metal ionizers with those of aluminosilicate emitters. Cesium ions are chemically stored in a solid electrolyte pellet and are thermionically emitted from a porous thin film of tungsten at the surface. Cesium supply to the emitting surface is controlled by applying a bias across the pellet. A total charge of 10.0 C can be extracted, corresponding to greater than 2000 h of lifetime with an extraction current of 1.0 μA. This source is compact, stable, and easy to use, and produces a beam with >99.5% purity. It requires none of the differential pumping or associated hardware necessary in designs using cesium vapor and porous tungsten ionizers. It has been used in ultrahigh-vacuum (UHV) experiments at pressures of -10 Torr with no significant gas load. Three different types of extraction optics are used depending on the energy range desired. For low-energy deposition, a simple space-charge-limited planar diode with a perveance of 1x10 -7 A/V 3/2 is used. Current densities of 10.0 μA/cm 2 at the exit aperture for energies ≤20 V are typical. This type of source provides an alternative to vapor deposition with the advantage of precise flux calibration by integration of the ion current. For energies from 50 to 500 V and typical beam radii of 0.5 to 0.2 mm, a high perveance Pierce-type ion gun is used. This gun was designed with a perveance of 1x10 -9 A/V 3/2 and produces a beam with an effective temperature of 0.35 eV. For the energy range of 0.5 to 5 keV, the Pierce gun is used in conjunction with two Einzel lenses, enabling a large range of imaging ratios to be obtained. Beam radii of 60 to 300 μm are typical for beam currents of 50 nA to 1.0 μA

  10. Synthesis and electrochemical characterization of nanosized Li2MnO3 cathode material for lithium ion batteries

    Science.gov (United States)

    Li, Shiyou; Lei, Dan

    2017-10-01

    A simple one-step solid state reaction way of preparing Nano sized Li2MnO3 powders is investigated. Synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, we have observed that the inferior electrochemical performance of Li2MnO3 upon cycling was attributed to the structural degradation caused by migration of the transition metal (Mn) into the Li layer and repetitive shearing of oxygen layers.

  11. Ion induced millimetre-scale structures growth on metal surfaces

    Science.gov (United States)

    Girka, O.; Bizyukov, O.; Balkova, Y.; Myroshnyk, M.; Bizyukov, I.; Bogatyrenko, S.

    2018-04-01

    Polished polycrystalline Plansee tungsten (W) sample with purity 99.99 wt% and 0.75 mm thickness has been exposed to intense argon (Ar) ion beam with average energy of 2 keV and etched through in the centre. As a result, castle-like structures with strong asymmetry and with the height of >200 μm have been formed. Structures can be observed by naked eyes and with scanning-electron microscopy (SEM). It has been revealed, that the structures have been formed not immediately, but at the later stages of irradiation. Primary factors favouring the formation for the structures are relaxation of the surface stresses and activated surface mobility of atoms.

  12. Collective acceleration of ions on the basis of resonance surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1994-01-01

    The effects of ion beam shaping and collective acceleration on the basis of resonance surface ionization are discussed. The principle diagram of the device for collective acceleration of positive ions is given. The method suggested for positive ion acceleration provides the efficiency increase, the design simplification, the size decrease and the increase in the frequency of the collective laser ion accelerator pulses

  13. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2018-01-09

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  14. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    Zukowski, P.; Karwat, Cz.; Kozak, Cz. M.; Kolasik, M.; Kiszczak, K.

    2009-01-01

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  15. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  16. Glass carbon surface modified by the fluorine ion irradiation

    International Nuclear Information System (INIS)

    Teranishi, Yoshikazu; Ishizuka, Masanori; Kobayashi, Tomohiro; Nakamura, Isao; Uematu, Takahiko; Yasuda, Takeshi; Mitsuo, Atsushi; Morikawa, Kazuo

    2012-01-01

    Application of nano and micro fabrication techniques in industry requires solution to some crucial problems. One of the significant problems is the sticking interface between mold surface and imprinted polymer. In this study, we report a solution to the sticking interface problem by modification of nano imprinting mold using fluorine ion implantation. After the fluorine implantation, anti sticking layer appeared on the nano imprinting mold surface. After the implantation, a mold made from glass like carbon was patterned by focused ion beam lithography. The pattern was made up of word “TIRI”. The line width was varied with 300 nm, 500 nm, and 1 μm. The line depth was about 200 ∼ 300 nm. The average depth of implanted fluorine was approximately 90 nm. After imprinting, the resin was removed from the mold by mechanical lift-off process. Transferred pattern was observed and confirmed by a scanning electron microscope (SEM) and an atomic force microscope (AFM). The pattern transferred from mold to resin was found to be successful.

  17. Ion microanalysis and implantation applied to fusion surface research

    International Nuclear Information System (INIS)

    Vook, F.L.; Doyle, B.L.; Picraux, S.T.

    1978-01-01

    Ion microanalysis and implantation have been used to investigate and analyze plasma-surface interactions relevant to fusion plasma materials. Previous results for pure metals are reviewed and new results are presented for TiB 2 coatings for Tokamak surfaces. Enhanced trapping of implanted, low-energy hydrogen has been shown to occur at room temperature in W, Au, Pd, Mo, Nb, and TiB 2 for He or other ion predamage. Hydrogen depth profiles obtained using 1 H( 19 F,αγ) 16 O resonant nuclear reaction show that the H decorates the He damage profiles at traps whose concentration is proportional to the He-induced damage. For room temperature implantation in TiB 2 , H is trapped at the end of range, and isochronal annealing indicates that the H is lost by release from traps followed by rapid diffusion. For He predamaged samples, annealing at 400 0 C causes the H to be retrapped in the region of the He-induced damage at traps whose cross section is approx. = 1.8 x 10 -18 cm 2 /trap

  18. Ion beam sputter modification of the surface morphology of biological implants

    Science.gov (United States)

    Weigand, A. J.; Banks, B. A.

    1976-01-01

    The surface chemistry and texture of materials used for biological implants may significantly influence their performance and biocompatibility. Recent interest in the microscopic control of implant surface texture has led to the evaluation of ion beam sputtering as a potentially useful surface roughening technique. Ion sources, similar to electron bombardment ion thrusters designed for propulsive applications, are used to roughen the surfaces of various biocompatible alloys or polymer materials. These materials are typically used for dental implants, orthopedic prostheses, vascular prostheses, and artificial heart components. Masking techniques and resulting surface textures are described along with progress concerning evaluation of the biological response to the ion beam sputtered surfaces.

  19. Visible light absorbance enhanced by nitrogen embedded in the surface layer of Mn-doped sodium niobate crystals, detected by ultra violet - visible spectroscopy, x-ray photoelectron spectroscopy, and electric conductivity tests

    Energy Technology Data Exchange (ETDEWEB)

    Molak, A., E-mail: andrzej.molak@us.edu.pl; Pilch, M. [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland)

    2016-05-28

    Sodium niobate crystals doped with manganese ions, Na(NbMn)O{sub 3}, were annealed in a nitrogen N{sub 2} flow at 600, 670, and 930 K. It was verified that simultaneous doping with Mn ions and annealing in nitrogen enhanced the photocatalytic features of sodium niobate. The transmission in the ultraviolet-visible range was measured at room temperature. The absorbance edge is in the range from 3.4 to 2.3 eV. The optical band gap E{sub gap} = 1.2–1.3 eV was evaluated using the Tauc relation. Crystals annealed at 670 K and 930 K exhibited an additional shift of the absorption edge of ∼20–40 nm toward longer wavelengths. The optical energy gap narrowed as a result of the superimposed effect of Mn and N co-doping. The x-ray photoelectron spectroscopy test showed that N ions incorporated into the surface layer. The valence band consisted of O 2p states hybridized with Nb 4d, Mn 3d, and N 2s states. The disorder detected in the surroundings of Nb and O ions decreased due to annealing. The binding energy of oxygen ions situated within the surface layer was E{sub B} ≈ 531 eV. The other contributions were assigned to molecular contamination. The contribution centered at 535.5 eV vanished after annealing at 600 K and 670 K. The contribution centered at 534 eV vanished after annealing at 930 K. The N{sub 2} annealing partly removed carbonates from the surfaces of the samples. In the 480–950 K range, the electric conductivity activation energy, E{sub a} = 0.7–1.2 eV, was comparable with the optical E{sub gap}. The electric permittivity showed dispersion in the 0.1–800 kHz range that corresponds to the occurrence of defects.

  20. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    pumps can be taken into account. This method can be extended to any desorption experiment employing the single shot method for measurement. Of special interest for the operation of the SIS100 at high intensities is the minimization of desorption from cryogenic surfaces. A previous examination of this topic found a breakdown of the familiar scaling of the desorption yield with the beam's energy loss for cryogenic targets. Further examination of this effect with the techniques described above is another goal of this thesis. Simultaneously, desorption measurements at room temperature for several other targets have been conducted. An unexpected result of these experiments is the influence of target surface properties, which was found to be very weak in comparison to previous results. The methods developed during this thesis, along with the results gained by their application, represent another step towards the comprehension of (heavy) ion beam induced desorption.

  1. Interaction of slow highly charged ions with surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aumayr, F. [Technische Universitaet Wien (Austria)

    1994-12-31

    A review will be presented on recent investigations concerning the interaction of slow ({le} 10{sup 6} m/s) ions in high charge states approaching a clean metal surface. Detailed information on the generation and decay of transiently formed multiply excited {open_quotes}hollow atoms{close_quotes} can be gained from the measurement of total yields and energy distributions of emitted electrons and, in particular, from the electron emission statistics. By comparing measured results with model calculations based on a recently extended classical over-barrier approach, different sources for the observed electron emission can be identified: autoionisation of the multiply excited hollow atoms on their way toward the surface; promotion above the vacuum barrier of electrons previously captured by the projectile, due to their self- and image-charge screening near the surface; `peeling-off` of electrons still bound in highly excited projectile states at the moment of surface impact, and finally; electron emission due to final subsurface de-excitation.

  2. Magnetic soft mode behaviour investigated via multi-spin flip Raman spectroscopy on near surface Cd{sub 1-x}Mn{sub x}Te/Cd{sub 1-y}Mg{sub y}Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kehl, Christian

    2011-03-28

    The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6%, 1.0%) positioned close to the sample surface (13-19 nm) were investigated in an in-plane applied external magnetic field (up to 4.5 T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41 eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination, while the below-barrier excitation was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn

  3. Facies of ion bombarded surfaces of brittle materials

    International Nuclear Information System (INIS)

    Primak, W.

    1975-12-01

    Materials were bombarded by protons, deuterons, and helium ions. The materials investigated were quartz; glasses; carbides and borides (SiC, B 4 C, TiB 2 ); oxides and nitrides (magnorite, sapphire, spinel, Al 2 O 3 , Si 3 N 4 , ZrO 2 , BaTiO 3 ); and miscellaneous (graphite, LiNbO 3 , copper). Oberservations were of growth, reflectivity, blistering, surface ablation, and swelling. Calculations were made of the effects of a layer, of its gradual transformation, and of the introduction of a gas. It is concluded that: Radiation blistering is not a primary process. Observations of blister formation and exfoliation cannot be used to calculate the surface ablation rate. The primary process is the development of a microporous layer which causes swelling. Visible blisters are caused by fracturing by transverse stresses in this layer and may occur during the bombardment, or in some cases, much later, in storage. There is no evidence of extreme gas pressures in the blisters. When blisters develop, they may be stable under continued bombardment for a dose many times that at which they formed. The swelling is a better index of the effects than is the blistering, and must be associated in most cases with permeability to the gas. Behavior with protons and deuterons is similar, with helium different. All but quartz, vitreous silica, and Pyrex are impervious to hydrogen and deuterium; only dense barium crown glass, carbides, borides, oxides, and nitrides are impervious to helium. Quartz shows swelling caused by conversion to a vitreous product of much lower density but no porosity, while for the others, most of the swelling and surface growth is caused by porosity. Surface ablation by the blistering process may be reduced by initial porosity or by initial or subsequent surface fissuring. However, for impervious materials, surface damage by the introduction of porosity would continue

  4. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  5. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  6. Fe-ion implantation in pulse laser deposited La0⋅75Ca0⋅25MnO3 ...

    Indian Academy of Sciences (India)

    Unknown

    effect of Al substitution (Martin et al 1996) on Pr based compounds have been reported. Fe doping (Ahn et al. 1996) have consistently suppressed conduction and ferro- magnetism. The physics governing the observed proper- ties has still not been fully understood and Mn3+–O–Mn4+ chains are believed to be responsible ...

  7. N and Cr ion implantation of natural ruby surfaces and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India); Magudapathy, P.; Panigrahi, B.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Nayak, B.B.; Mishra, B.K. [CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013 (India)

    2016-04-15

    Highlights: • Cr and N ion implantation on natural rubies of low aesthetic quality. • Cr-ion implantation improves colour tone from red to deep red (pigeon eye red). • N-ion implantation at fluence of 3 × 10{sup 17} causes blue coloration on surface. • Certain extent of amorphization is observed in the case of N-ion implantation. - Abstract: Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV–Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 10{sup 17} N-ions/cm{sup 2} fluence, formation of colour centres (F{sup +}, F{sub 2}, F{sub 2}{sup +} and F{sub 2}{sup 2+}) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  8. Injection and laser acceleration of ions based on the resonant surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1993-01-01

    The collective effects have been investigated of the injection and acceleration of the ion beams due to the resonant surface photoionization. The considered scheme of the laser accelerator allows to obtain positive ions with relativistic velocities. 11 refs., 2 figs

  9. Chloride ion-dependent surface-enhanced Raman scattering study of biotin on the silver surface

    International Nuclear Information System (INIS)

    Liu Fangfang; Gu Huaimin; Yuan Xiaojuan; Dong Xiao; Lin Yue

    2011-01-01

    In the present paper, the surface enhanced Raman scattering (SERS) technique was employed to study the SERS spectra of biotin molecules formed on the silver surface. The adsorption geometries of biotin molecules on the silver surface were analyzed based on the SERS data. It can be found that most vibration modes show a Raman shift in silver sol after the addition of sodium chloride solution. In addition, The Raman signals of biotin become weaker and weaker with the increase of the concentration of sodium chloride. This may be due to that the interaction between chloride ions and silver particles is stronger than the interaction between biotin molecules and silver particles. When the concentration of sodium chloride in silver colloid is higher than 0.05mol/L, superfluous chloride ions may form an absorption layer so that biotin can not be adsorbed on silver surface directly. The changes in intensity and profile shape in the SERS spectra suggest different adsorption behavior and surface-coverage of biotin on silver surface. The SERS spectra of biotin suggest that the contribution of the charge transfer mechanism to SERS may be dominant.

  10. EG-Assisted Synthesis and Electrochemical Performance of Ultrathin Carbon-Coated LiMnPO4 Nanoplates as Cathodes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Liwei Su

    2015-01-01

    Full Text Available Ultrathin carbon-coated LiMnPO4 (ULMP/C nanoplates were prepared through an ethylene glycol- (EG- assisted pyrolysis method. Different from most of LiMnPO4/C works, the obtained ULMP/C possessed relatively small particle size (less than 50 nm in thickness and preferable carbon coating (~1 nm in thickness, 2 wt.%. As a reference, LiMnPO4/C (LMP/C composites were also fabricated via the traditional hydrothermal method. X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, energy dispersive X-ray spectroscopy (EDS, thermogravimetric analysis (TG, galvanostatic charge-discharge, and cyclic voltammetry (CV were performed to characterize the crystalline phase, morphology, structure, carbon content, and electrochemical behaviors of samples. The electrochemical performance of bare and carbon-coated LiMnPO4 was evaluated as cathodes in lithium ion batteries. As a result, the obtained ULMP/C nanoplates demonstrated much higher reversible capacities (110.9 mAh g−1 after 50 cycles at 0.1 C and rate performances than pure LMP and LMP/C composites. This facile and efficient EG-assisted pyrolysis method can enlighten us on exploiting advanced routes to modify active materials with ultrathin and homogeneous carbon layers.

  11. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries

    Science.gov (United States)

    Bie, Xiaofei; Kubota, Kei; Hosaka, Tomooki; Chihara, Kuniko; Komaba, Shinichi

    2018-02-01

    Electrochemical performance of Prussian blue analogues (PBAs) as positive electrode materials for non-aqueous Na-ion batteries is known to be highly dependent on their synthesis conditions according to the previous researches. Na-rich PBAs, NaxM[Fe(CN)6]·nH2O where M = Mn, Fe, Co, and Ni, are prepared via precipitation method under the same condition. The structure, chemical composition, morphology, valence of the transition metals, and electrochemical property of these samples are comparatively researched. The PBA with Mn shows large reversible capacity of 126 mAh g-1 in 2.0-4.2 V at a current density of 30 mA g-1 and the highest working voltage owning to high redox potential of Mn2+/3+ in MnN6 and Fe2+/3+ in FeC6. While, the PBA with Ni exhibits the best cyclability and rate performance though only 66 mAh g-1 is delivered. The significant differences in electrochemical behaviors of the PBAs originate from the various properties depending on different transition metals.

  12. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    International Nuclear Information System (INIS)

    Souda, Ryutaro

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H + ion is scattered from physisorbed Ar at any coverage whereas the H + yield from solid H 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes

  13. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  14. Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces

    CERN Document Server

    Kireeff-Covo, Michel; Barnard, John J; Bieniosek, Frank; Celata, C M; Cohen, Ronald; Friedman, Alex; Grote, D P; Kwan, Joe W; Lund, Steven M; Molvik, Arthur; Seidl, Peter; Vay, Jean-Luc; Vujic, Jasmina L; Westenskow, Glen

    2005-01-01

    The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

  15. Adsorption and magnetism of bilayer graphene on the MnO polar surface with oxygen vacancies in the interface: First principles study

    Science.gov (United States)

    Ilyasov, Victor V.; Ershov, Igor V.; Popova, Inna G.; Pham, Khang D.; Nguyen, Chuong V.

    2018-05-01

    In this paper, we investigate systematically the structural, electronic, magnetic and adsorption properties of Bernal-stacked bilayer graphene on MnO(111) surface terminated by an oxygen atom, as a function of nonstoichiometric composition of the BLG/MnOx(111) interface. For additional functionalization of the BLG/MnOx(111) system, we also studied the adsorption properties of oxygen adsorbed on the BLG/MnOx(111) interface. Our results showed that the BLG is bound to the MnOx(111) substrate by the weak interaction for both spin-up and spin-down. Furthermore, we found that BLG adsorbed on the MnOx(111) substrate with a reduced oxygen symmetry in the interface is accompanied with a downshift of the Fermi level, which identifies the band structure of BLG as a p-type semiconductor. Upon interaction between BLG and MnOx(111) substrate, a forbidden gap of about 350 meV was opened between its bonding and antibonding π bands. A forbidden gap and the local magnetic moments in bilayer graphene can be controlled by changing the oxygen nonstoichometry or by oxygen adsorption. Additionally, magnetism has been predicted in the bilayer graphene adsorbed on the polar MnOx(111) surface with oxygen vacancies in the BLG/MnOx(111) interface, and its nature has also been discussed in this work. These results showed that the adsorption of bilayer graphene on the MnO(111) substrate can be used for developing novel generation of electronic and spintronic devices.

  16. Combinatorial Study of the Li-Ni-Mn-Co Oxide Pseudoquaternary System for Use in Li-Ion Battery Materials Research.

    Science.gov (United States)

    Brown, Colby R; McCalla, Eric; Watson, Cody; Dahn, J R

    2015-06-08

    Combinatorial synthesis has proven extremely effective in screening for new battery materials for Li-ion battery electrodes. Here, a study in the Li-Ni-Mn-Co-O system is presented, wherein samples with nearly 800 distinct compositions were prepared using a combinatorial and high-throughput method to screen for single-phase materials of high interest as next generation positive electrode materials. X-ray diffraction is used to determine the crystal structure of each sample. The Gibbs' pyramid representing the pseudoquaternary system was studied by making samples within three distinct pseudoternary planes defined at fractional cobalt metal contents of 10%, 20%, and 30% within the Li-Ni-Mn-Co-O system. Two large single-phase regions were observed in the system: the layered region (ordered rocksalt) and cubic spinel region; both of which are of interest for next-generation positive electrodes in lithium-ion batteries. These regions were each found to stretch over a wide range of compositions within the Li-Ni-Mn-Co-O pseudoquaternary system and had complex coexistence regions existing between them. The sample cooling rate was found to have a significant effect on the position of the phase boundaries of the single-phase regions. The results of this work are intended to guide further research by narrowing the composition ranges worthy of study and to illustrate the broad range of applications where solution-based combinatorial synthesis can have significant impact.

  17. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries.

    Science.gov (United States)

    Wei, Huaixin; Yang, Jun; Zhang, Yufei; Qian, Yong; Geng, Hongbo

    2018-03-29

    In this manuscript, the graphene-encapsulated MnMoO 4 hollow spheres (MnMoO 4 @G) synthesized by an effective strategy were reported. Benefiting from the intriguing hybrid architecture of hollow structure and conductive graphene network, the MnMoO 4 @G composite displays superior electrochemical performance with high specific capacity of 1142 mA h g -1 , high reversible cycling stability of 921 mA h g -1 at a current density of 100 mA g -1 after 70 cycles, and stable rate performance (around 513 mA h g -1 at a current density of 4.0 A g -1 ). The remarkable battery performance can be attributed to the rational design of the architecture, which not only ensures the fast transport of electrons and lithium ions within the electrode material, but also effectively relax the stress induced by the insertion/extraction of lithium ions. This facile synthetic method can extend to other transition metal oxides with large volume excursions and poor electric conductivity and promotes the development of transition metal oxides as high-performance LIB anode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Effects of synthesis conditions on structure and surface properties of SmMn{sub 2}O{sub 5} mullite-type oxide

    Energy Technology Data Exchange (ETDEWEB)

    Thampy, Sampreetha; Ibarra, Venessa; Lee, Yun-Ju [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); McCool, Geoffrey [Nanostellar Inc., 3696 Haven Avenue, Redwood City, CA 94063 (United States); Cho, Kyeongjae [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States); Hsu, Julia W.P., E-mail: jwhsu@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX 75080 (United States)

    2016-11-01

    Highlights: • Investigate the effects of calcination temperature and precipitation pH on crystallinity, phase purity, particle size, surface composition, and NO adsorption capacity of SmMn{sub 2}O{sub 5}. • High calcination temperature increases mullite phase purity but decreases specific surface area (SSA). • Mullite phase purity is independent of pH while SSA monotonically increases. • SSA and surface Mn/Sm ratio determine NO uptake. - Abstract: A mixed-phase compound that contains SmMn{sub 2}O{sub 5} mullite-type oxides has been reported to display excellent catalytic activity for nitric oxide (NO) oxidation. Here we investigate the effects of calcination temperature and precipitation pH on structural, physical, chemical, and surface properties of SmMn{sub 2}O{sub 5}. As the calcination temperature increases from 750 °C to 1000 °C, mullite phase purity increases from 74% to 100%, while specific surface area (SSA) decreases from 23.6 m{sup 2}/g to 5.1 m{sup 2}/g with particle size increases correspondingly. Mullite phase purity (87%) is independent of pH between 8.5–10.4, whereas SSA monotonically increases from 12.5 m{sup 2}/g at pH 8.1 to 27.4 m{sup 2}/g at pH 13. X-ray photoelectron spectroscopy (XPS) studies reveal that the surface Mn/Sm ratio is similar to the bulk value and is unaffected by calcination temperature and pH values up to 10.4, whereas sample precipitated at pH 13 is surface-rich in Sm. NO chemisorption studies show that the SSA and surface Mn/Sm ratio determine NO uptake by SmMn{sub 2}O{sub 5} mullite oxides.

  19. Tuning Li-Ion Diffusion in α-LiMn1-xFexPO4Nanocrystals by Antisite Defects and Embedded β-Phase for Advanced Li-Ion Batteries.

    Science.gov (United States)

    Hu, Jiangtao; Xiao, Yinguo; Tang, Hanting; Wang, Hongbin; Wang, Ziqi; Liu, Chaokun; Zeng, Hua; Huang, Qingzhen; Ren, Yang; Wang, Chongmin; Zhang, Wei; Pan, Feng

    2017-08-09

    Olivine-structured LiMn 1-x Fe x PO 4 has become a promising candidate for cathode materials owing to its higher working voltage of 4.1 V and thus larger energy density than that of LiFePO 4 , which has been used for electric vehicles batteries with the advantage of high safety but disadvantage of low energy density due to its lower working voltage of 3.4 V. One drawback of LiMn 1-x Fe x PO 4 electrode is its relatively low electronic and Li-ionic conductivity with Li-ion one-dimensional diffusion. Herein, olivine-structured α-LiMn 0.5 Fe 0.5 PO 4 nanocrystals were synthesized with optimized Li-ion diffusion channels in LiMn 1-x Fe x PO 4 nanocrystals by inducing high concentrations of Fe 2+ -Li + antisite defects, which showed impressive capacity improvements of approaching 162, 127, 73, and 55 mAh g -1 at 0.1, 10, 50, and 100 C, respectively, and a long-term cycling stability of maintaining about 74% capacity after 1000 cycles at 10 C. By using high-resolution transmission electron microscopy imaging and joint refinement of hard X-ray and neutron powder diffraction patterns, we revealed that the extraordinary high-rate performance could be achieved by suppressing the formation of electrochemically inactive phase (β-LiMn 1-x Fe x PO 4 , which is first reported in this work) embedded in α-LiMn 0.5 Fe 0.5 PO 4 . Because of the coherent orientation relationship between β- and α-phases, the β-phase embedded would impede the Li + diffusion along the [100] and/or [001] directions that was activated by the high density of Fe 2+ -Li + antisite (4.24%) in α-phase. Thus, by optimizing concentrations of Fe 2+ -Li + antisite defects and suppressing β-phase-embedded olivine structure, Li-ion diffusion properties in LiMn 1-x Fe x PO 4 nanocrystals can be tuned by generating new Li + tunneling. These findings may provide insights into the design and generation of other advanced electrode materials with improved rate performance.

  20. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B[sup +] and 550-keV N[sup +] (total dose 2.3[times]10[sup 16] ions/cm[sup 2]) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B[sup +] to 3 different doses. PS was also implanted with both B[sup +] and Ar[sup +]. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  1. Ion implantation effects on surface-mechanical properties of metals and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rao, G.R.

    1993-04-01

    Fatigue of 8 complex alloys based on Fe-13Cr-15Ni-2Mo-2Mn-0.2Ti-0.8Si- 0.06C, and single-crystal Fe-15Cr-15Ni, implanted with 400-keV B{sup +} and 550-keV N{sup +} (total dose 2.3{times}10{sup 16} ions/cm{sup 2}) was examined. 600 C creep was also examined. The dual implantation increased hardness but decreased fatigue life of the 8 complex alloys. An optimum strengthening level and a shift to grain boundary cracking were determined. The single crystals also showed reduced fatigue life after implantation. High temperature creep of E1 and B1 alloys were improved by the dual implantation. Four polymers (PE, polypropylene, polystyrene, polyethersulfone) were implanted with 200keV B{sup +} to 3 different doses. PS was also implanted with both B{sup +} and Ar{sup +}. Near-surface hardness and tribological properties were measured. The hardness increased with dose and energy; wear also improved, with an optimum dose. (DLC)

  2. Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment

    Directory of Open Access Journals (Sweden)

    A.K.M. Atique Ullah

    2017-11-01

    Full Text Available Mn3O4 nanoparticles (NPs were synthesized from the reduction of KMnO4 with glycerol at 80 °C in aqueous media via a gel formation route. In order to investigate the thermal stability and phase transformation, Mn3O4 NPs were subjected to heat treatment from 200 °C to 700 °C. The formation of different MnOx species observed by X-ray diffraction (XRD measurements showed temperature dependent phase transformation occurring during the heat treatment process. XRD patterns showed that Mn3O4 NPs were formed at a temperature of 80 °C and two new phases Mn5O8 and Mn2O3 were appeared at 350 °C and 700 °C respectively. The three different oxides having their distinct surface morphologies viz., spherical, rod and cube shape respectively, were observed. Detailed morphological and structural investigations using Field Emission Scanning Electron Microscopy (FESEM, XRD, Thermo Gravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC revealed the temperature dependent phases, crystal structures, lattice constants, particle sizes and surface morphologies of the MnOx species.

  3. Synthesis and Electrochemical Property of LiMn2O4Porous Hollow Nanofiber as Cathode for Lithium-Ion Batteries.

    Science.gov (United States)

    Duan, Lianfeng; Zhang, Xueyu; Yue, Kaiqiang; Wu, Yue; Zhuang, Jian; Lü, Wei

    2017-12-01

    The LiMn 2 O 4 hollow nanofibers with a porous structure have been synthesized by modified electrospinning techniques and subsequent thermal treatment. The precursors were electrospun directly onto the fluorine-doped tin oxide (FTO) glass. The heating rate and FTO as substrate play key roles on preparing porous hollow nanofiber. As cathode materials for lithium-ion batteries (LIBs), LiMn 2 O 4 hollow nanofibers showed the high specific capacity of 125.9 mAh/g at 0.1 C and a stable cycling performance, 105.2 mAh/g after 400 cycles. This unique structure could relieve the structure expansion effectively and provide more reaction sites as well as shorten the diffusion path for Li + for improving electrochemical performance for LIBs.

  4. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    Science.gov (United States)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  5. Convenient and high-yielding strategy for preparing nano-ZnMn2O4 as anode material in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tong; Gao, Yu; Yue, Huijuan; Qiu, Hailong; Guo, Zhendong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2016-01-01

    Graphical abstract: A convenient combustion assist coprecipitation approach to synthesis nano-ZnMn2O4 anode material with excellent electrochemical performance. - Highlights: • ZnMn 2 O 4 material has been gained from a novel combustion approach. • The ZnMn 2 O 4 generated at 800 °C exhibits the best electrochemical performance. • This convenient method enables scale-up production of transition metal oxides. - Abstract: Time and energy saving synthesis method is crucial to the scale up applications of energy conversion and storage materials. In this report, we demonstrate a convenient and novel approach to fabricate the highly crystalline ZnMn 2 O 4 nanoparticles as anode materials for Li rechargeable batteries. Pure phase ZnMn 2 O 4 samples can be feasibly obtained under different calcination temperature from the precursor via combustion assisted coprecipitation method. Various techniques are used to characterize the structure and morphology of the products. Sample gained at 800 °C exhibits the best electrochemical property for lithium ion batteries. A reversible specific capacity of 716 mAh g −1 can be retained under a current density of 100 mA g −1 after 90 circles. Even the current density elevated up to 1000 mA g −1 , the reversible capacity of the material still can be kept as high as 500 mAh g −1 after 1200 cycles. The outstanding performance compared to the other samples benefits from its good crystallinity and uniform dispersion with appropriate particle size.

  6. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  7. Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles.

    Science.gov (United States)

    Vestal, Christy R; Zhang, Z John

    2003-08-13

    To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.

  8. Surface Processing and Modification of Polymers by Water Cluster Ion Beam

    Science.gov (United States)

    Ryuto, H.; Takeuchi, M.; Ichihashi, G.; Sommani, P.; Takaoka, G. H.

    2011-01-01

    A water cluster ion beam was irradiated on a poly(methyl methacrylate) (PMMA) surface to examine the possibility of applying the water cluster ion beam technique to the surface processing and modification of polymers. The sputtering yields of PMMA substrates irradiated with water cluster ion beams increased with acceleration voltage and dose of the water cluster ion beam. The threshold acceleration voltage of sputtering was approximately 3 kV. The X-ray photoelectron spectroscopy (XPS) analysis of the PMMA surface irradiated with the water cluster ion beam suggested the degradation of the PMMA side chains. The XPS spectrum of the surface of the sputtered particle catcher at 45° backward direction showed approximately the same shape as the XPS spectrum of the PMMA surface irradiated with the water cluster ion beam.

  9. Implications of surface noise for the motional coherence of trapped ions

    Science.gov (United States)

    Talukdar, I.; Gorman, D. J.; Daniilidis, N.; Schindler, P.; Ebadi, S.; Kaufmann, H.; Zhang, T.; Häffner, H.

    2016-04-01

    Electric noise from metallic surfaces is a major obstacle towards quantum applications with trapped ions due to motional heating of the ions. Here, we discuss how the same noise source can also lead to pure dephasing of motional quantum states. The mechanism is particularly relevant at small ion-surface distances, thus imposing a constraint on trap miniaturization. By means of a free induction decay experiment, we measure the dephasing time of the motion of a single ion trapped 50 μ m above a Cu-Al surface. From the dephasing times we extract the integrated noise below the secular frequency of the ion. We find that none of the most commonly discussed surface noise models for ion traps describes both the observed heating as well as the measured dephasing satisfactorily. Thus, our measurements provide a benchmark for future models for the electric noise emitted by metallic surfaces.

  10. EPR and 55Mn cw-ENDOR study of an antiferrogmagnetically coupled dinuclear manganese (Mn III Mn IV) complex

    Science.gov (United States)

    Zweygart, W.; Bittl, R.; Wieghardt, K.; Lubitz, W.

    1996-10-01

    X- and Q-band EPR and 55Mn cw-ENDOR experiments are reported on a binuclear oxo-bridged dimanganese Mn III Mn IV complex. Consistent simulations of spectra from both frequency bands using one parameter set for the orthorhombic g tensor and Mn III and Mn IV hyperfine tensors are achieved. Information on the manganese hyperfine couplings is independently obtained from 55Mn cw-ENDOR spectroscopy performed on both ions.

  11. Interactions in Ternary Mixtures of MnO2, Al2O3, and Natural Organic Matter (NOM) and the Impact on MnO2 Oxidative Reactivity.

    Science.gov (United States)

    Taujale, Saru; Baratta, Laura R; Huang, Jianzhi; Zhang, Huichun

    2016-03-01

    Our previous work reported that Al2O3 inhibited the oxidative reactivity of MnO2 through heteroaggregation between oxide particles and surface complexation of the dissolved Al ions with MnO2 (S. Taujale and H. Zhang, "Impact of interactions between metal oxides to oxidative reactivity of manganese dioxide" Environ. Sci. Technol. 2012, 46, 2764-2771). The aim of the current work was to investigate interactions in ternary mixtures of MnO2, Al2O3, and NOM and how the interactions affect MnO2 oxidative reactivity. For the effect of Al ions, we examined ternary mixtures of MnO2, Al ions, and NOM. Our results indicated that an increase in the amount of humic acids (HAs) increasingly inhibited Al adsorption by forming soluble Al-HA complexes. As a consequence, there was less inhibition on MnO2 reactivity than by the sum of two binary mixtures (MnO2+Al ions and MnO2+HA). Alginate or pyromellitic acid (PA)-two model NOM compounds-did not affect Al adsorption, but Al ions increased alginate/PA adsorption by MnO2. The latter effect led to more inhibition on MnO2 reactivity than the sum of the two binary mixtures. In ternary mixtures of MnO2, Al2O3, and NOM, NOM inhibited dissolution of Al2O3. Zeta potential measurements, sedimentation experiments, TEM images, and modified DLVO calculations all indicated that HAs of up to 4 mg-C/L increased heteroaggregation between Al2O3 and MnO2, whereas higher amounts of HAs completely inhibited heteroaggregation. The effect of alginate is similar to that of HAs, although not as significant, while PA had negligible effects on heteroaggregation. Different from the effects of Al ions and NOMs on MnO2 reactivity, the MnO2 reactivity in ternary mixtures of Al2O3, MnO2, and NOM was mostly enhanced. This suggests MnO2 reactivity was mainly affected through heteroaggregation in the ternary mixtures because of the limited availability of Al ions.

  12. Electron magnetic resonance data on high-spin Mn(III; S=2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach.

    Science.gov (United States)

    Tadyszak, Krzysztof; Rudowicz, Czesław; Ohta, Hitoshi; Sakurai, Takahiro

    2017-10-01

    The spin Hamiltonian (SH) parameters experimentally determined by EMR (EPR) may be corroborated or otherwise using various theoretical modeling approaches. To this end semiempirical modeling is carried out for high-spin (S=2) manganese (III) 3d 4 ions in complex of tetraphenylporphyrinato manganese (III) chloride (MnTPPCl). This modeling utilizes the microscopic spin Hamiltonians (MSH) approach developed for the 3d 4 and 3d 6 ions with spin S=2 at orthorhombic and tetragonal symmetry sites in crystals, which exhibit an orbital singlet ground state. Calculations of the zero-field splitting (ZFS) parameters and the Zeeman electronic (Ze) factors (g || =g z , g ⊥ =g x =g y ) are carried out for wide ranges of values of the microscopic parameters using the MSH/VBA package. This enables to examine the dependence of the theoretically determined ZFS parameters b k q (in the Stevens notation) and the Zeeman factors g i on the spin-orbit (λ), spin-spin (ρ) coupling constant, and the ligand-field energy levels (Δ i ) within the 5 D multiplet. The results are presented in suitable tables and graphs. The values of λ, ρ, and Δ i best describing Mn(III) ions in MnTPPCl are determined by matching the theoretical second-rank ZFSP b 2 0 (D) parameter and the experimental one. The fourth-rank ZFS parameters (b 4 0 , b 4 4 ) and the ρ (spin-spin)-related contributions, which have been omitted in previous studies, are considered for the first time here and are found important. Semiempirical modeling results are compared with those obtained recently by the density functional theory (DFT) and/or ab initio methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Secondary ion emission from surface and volume with high and low energy ions

    International Nuclear Information System (INIS)

    Deprun, C.; Della-Negra, S.; Le Beyec, Y.

    1987-01-01

    Secondary ion emission from fast ion impact (Cf252 fission fragments) of Langmuir-Blodgett films consisting of superposed two molecule layers with similar structure and mass (Cd stereate and Cd arachidate) was analyzed. Emission of deproton secondary ions of stereate and arachidate acids was studied for various target configurations. Results show that under the influence of high energy ions, secondary ion ejection comes from a conical volume of 200A depth [fr

  14. Influence of Fe and mn ions on the incorporation of radioactive35SO2by sulfate aerosols

    OpenAIRE

    Kleinman, MT; Phalen, RF; Mannix, R; Azizian, M; Walters, R

    1985-01-01

    The rate of incorporation of radiolabeled sulfur dioxide has been determined in submicron sized ammonium sulfate droplet aerosols with and without catalytic metal ions (Fe 3+ , Mn 2+ ). The sulfate droplets were generated by nebulizing solutions with a multiple jet Collison nebulizer and aged up to 30 min in a 10 m 3 plug-flow reaction duct. Radiolabeled 35 SO 2 was metered into purified air to provide a concentration of 5 ppm. Three different atmospheres were studied: SO 2 in purified air, S...

  15. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    Science.gov (United States)

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  16. The use of low energy alkali ion scattering as a probe of surface structure

    International Nuclear Information System (INIS)

    Overbury, S.H.

    1987-01-01

    An overview is given of the use of low energy ion scattering as a probe of surface structure with emphasis on work done using alkali ions. Various schemes for extracting structural information from the ion energy and angle distribution are discussed in therms of advantages and disadvantages of each. The scattering potential, which is the primary nonstructural parameter needed for analysis, is discussed in terms of recent experimental results. The structures of clean and reconstructed surfaces are discussed, with examples of measurements of layer relaxations on the Mo (111) surface and missing row reconstructions on the Au (110) and Pt (110) surfaces. Studies of adsorbate covered surfaces are presented with respect to location of the adsorbate and its effect on the structure of the underlying substrate. Finally, examples are given which demonstrate the sensitivity of ion scattering to surface defects and disordering on reconstructed Au (110) and Pt (110) surfaces and reconstructed Mo (111) surfaces, and to ordering of adsorbates on Mo

  17. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing

    Directory of Open Access Journals (Sweden)

    Manoj Sharma

    2012-03-01

    Full Text Available The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l’Eclairage (CIE chromaticity coordinates shifts from (0.273, 0.20 and (0.344, 0.275 for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.

  18. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries

    Science.gov (United States)

    Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui

    2018-01-01

    Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.

  19. Nanoscale patterns produced by self-sputtering of solid surfaces: The effect of ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R. Mark [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Hofsäss, Hans [II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-08-21

    A theory of the effect that ion implantation has on the patterns produced by ion bombardment of solid surfaces is introduced. For simplicity, the case of self-sputtering of an elemental material is studied. We find that implantation of self-ions has a destabilizing effect along the projected beam direction for angles of incidence θ that exceed a critical value. In the transverse direction, ion implantation has a stabilizing influence for all θ.

  20. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  1. Symmetric Sodium-Ion Capacitor Based on Na0.44MnO2 Nanorods for Low-Cost and High-Performance Energy Storage.

    Science.gov (United States)

    Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang

    2018-04-11

    Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.

  2. P2-NaCo(0.5)Mn(0.5)O2 as a Positive Electrode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Yang, Peilei; Zhang, Chaoyang; Li, Malin; Yang, Xu; Wang, Chunzhong; Bie, Xiaofei; Wei, Yingjin; Chen, Gang; Du, Fei

    2015-11-16

    As a promising positive electrode material for sodium-ion batteries (SIBs), layered sodium oxides have attracted considerable attention in recent years. In this work, stoichiometric P2-phase NaCo(0.5)Mn(0.5)O2 was prepared through the conventional solid-state reaction, and its structural and physical properties were studied in terms of XRD, XPS, and magnetic susceptibility. Furthermore, the P2-NaCo(0.5)Mn(0.5)O2 electrode delivered a discharge capacity of 124.3 mA h g(-1) and almost 100% initial coulombic efficiency over the potential window of 1.5-4.15 V. It also showed good cycle stability, with a reversible capacity and capacity retention reaching approximately 85 mA h g(-1) and 99%, respectively, at the 5 C rate after 100 cycles. Additionally, cyclic voltammetry and ex situ XRD were employed to explain the electrochemical behavior at the different electrochemical stages. Owing to the applicable performances, P2-NaCo(0.5)Mn(0.5)O2 can be considered as a potential positive electrode material for SIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Freeze drying synthesis of Li3MnO4 cathode material for Li-ion batteries: A physico-electrochemical study

    International Nuclear Information System (INIS)

    Surace, Yuri; Simões, Mário; Karvonen, Lassi; Yoon, Songhak; Pokrant, Simone; Weidenkaff, Anke

    2015-01-01

    Highlights: • Facilitated synthesis of Li 3 MnO 4 with a smaller thermal budget via freeze drying. • Electrochemical activity enhanced by micro- and nanostructure modifications. • Capacity increase of 30% at 1st discharge versus standard synthesis process. - Abstract: Li 3 MnO 4 , a lithium rich phase containing manganese (V), is a promising cathode material for Li-ion batteries due to its very high theoretical capacity (698 A h kg −1 ). Li 3 MnO 4 was synthesized from freeze dried precursors at 398 K. Combined structural, morphological and chemical characterization by XRD, TGA, SEM, TEM and XPS revealed improvements in the micro- and nanostructure in comparison to the material synthesized by a standard solid state chemistry route. The average particle size decreased from 10 μm to 3.5 μm and the average crystallite size from close to 100 nm to around 30 nm. These modifications enhanced the capacity (23% at 10 A kg −1 and up to 31% at 50 A kg −1 with a maximum discharge capacity of 290 A h kg −1 ) and the rate capability

  4. One-Step Pyro-Synthesis of a Nanostructured Mn3O4/C Electrode with Long Cycle Stability for Rechargeable Lithium-Ion Batteries.

    Science.gov (United States)

    Alfaruqi, Muhammad Hilmy; Gim, Jihyeon; Kim, Sungjin; Song, Jinju; Duong, Pham Tung; Jo, Jeonggeun; Baboo, Joseph Paul; Xiu, Zhiliang; Mathew, Vinod; Kim, Jaekook

    2016-02-01

    A nanostructured Mn 3 O 4 /C electrode was prepared by a one-step polyol-assisted pyro-synthesis without any post-heat treatments. The as-prepared Mn 3 O 4 /C revealed nanostructured morphology comprised of secondary aggregates formed from carbon-coated primary particles of average diameters ranging between 20 and 40 nm, as evidenced from the electron microscopy studies. The N 2 adsorption studies reveal a hierarchical porous feature in the nanostructured electrode. The nanostructured morphology appears to be related to the present rapid combustion strategy. The nanostructured porous Mn 3 O 4 /C electrode demonstrated impressive electrode properties with reversible capacities of 666 mAh g -1 at a current density of 33 mA g -1 , good capacity retentions (1141 mAh g -1 with 100 % Coulombic efficiencies at the 100 th cycle), and rate capabilities (307 and 202 mAh g -1 at 528 and 1056 mA g -1 , respectively) when tested as an anode for lithium-ion battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Freeze drying synthesis of Li{sub 3}MnO{sub 4} cathode material for Li-ion batteries: A physico-electrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Surace, Yuri; Simões, Mário; Karvonen, Lassi; Yoon, Songhak; Pokrant, Simone [Laboratory Materials for Energy Conversion, EMPA – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Weidenkaff, Anke, E-mail: weidenkaff@imw.uni-stuttgart.de [Materials Chemistry, Institute for Materials Science, University of Stuttgart, Heisenbergstrasse 3, DE-70569 Stuttgart (Germany)

    2015-09-25

    Highlights: • Facilitated synthesis of Li{sub 3}MnO{sub 4} with a smaller thermal budget via freeze drying. • Electrochemical activity enhanced by micro- and nanostructure modifications. • Capacity increase of 30% at 1st discharge versus standard synthesis process. - Abstract: Li{sub 3}MnO{sub 4}, a lithium rich phase containing manganese (V), is a promising cathode material for Li-ion batteries due to its very high theoretical capacity (698 A h kg{sup −1}). Li{sub 3}MnO{sub 4} was synthesized from freeze dried precursors at 398 K. Combined structural, morphological and chemical characterization by XRD, TGA, SEM, TEM and XPS revealed improvements in the micro- and nanostructure in comparison to the material synthesized by a standard solid state chemistry route. The average particle size decreased from 10 μm to 3.5 μm and the average crystallite size from close to 100 nm to around 30 nm. These modifications enhanced the capacity (23% at 10 A kg{sup −1} and up to 31% at 50 A kg{sup −1} with a maximum discharge capacity of 290 A h kg{sup −1}) and the rate capability.

  6. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  7. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  8. Survival probability of slow ions colliding with room-temperature and heated surfaces of beryllium

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk; Žabka, Ján; Pysanenko, Andriy

    2012-01-01

    Roč. 110, 15-16 (2012), s. 1669-1673 ISSN 0026-8976 Institutional research plan: CEZ:AV0Z40400503 Keywords : surface collisions of ions * ion survival probability * beryllium surfaces Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.670, year: 2012

  9. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  10. Interaction of small hydrocarbon ions and Ar(+) with carbon-fibre-composite surfaces at room temperature

    Czech Academy of Sciences Publication Activity Database

    Keim, A.; Rasul, B.; Endstrasser, N.; Scheier, P.; Märk, T. D.; Herman, Zdeněk

    2011-01-01

    Roč. 306, 2-3 (2011), s. 204-209 ISSN 1387-3806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ion-surface collisions * Ar+ and hydrocarbon ions * carbon-fibre-composite surface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.549, year: 2011

  11. Scattering of low energy noble gas ions from a metal surface

    International Nuclear Information System (INIS)

    Luitjens, S.B.

    1980-01-01

    Reflection of low energy (0.1-10 keV) noble gas ions can be used to analyse a solid surface. To study charge exchange processes, the ion fractions of neon and of argon, scattered from a Cu(100) surface, have been determined. (Auth.)

  12. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhu, Wenjun; Huang, Hui; Zhang, Wenkui; Tao, Xinyong; Gan, Yongping; Xia, Yang; Yang, Hui; Guo, Xingzhong

    2015-01-01

    MnO/C composites with hollow porous structure have been successfully synthesized by a facile biotemplating method combine with chemical bath deposition (CBD) method followed by calcination treatment. The natural porous lotus pollen grains are used as the biotemplate as well as the carbon source. The biological carbon could effectively enhance the electrical conductivity of MnO and cushion the strain arising from the charge/discharge cycles. Due to the unique structure, MnO/C composites exhibit a high reversible specific capacity of 730 mAh g −1 at a current density of 0.1 A g −1 with excellent cycling stability. Even at a high current density of 3 A g −1 , a remarkable reversible capacity of 430 mAh g −1 could still be delivered

  13. Complementary Strategies Toward the Aqueous Processing of High-Voltage LiNi0.5Mn1.5O4Lithium-Ion Cathodes.

    Science.gov (United States)

    Kuenzel, Matthias; Bresser, Dominic; Diemant, Thomas; Carvalho, Diogo Vieira; Kim, Guk-Tae; Behm, R Jürgen; Passerini, Stefano

    2018-02-09

    Increasing the environmental benignity of lithium-ion batteries is one of the greatest challenges for their large-scale deployment. Toward this end, we present herein a strategy to enable the aqueous processing of high-voltage LiNi 0.5 Mn 1.5 O 4 (LNMO) cathodes, which are considered highly, if not the most, promising for the realization of cobalt-free next-generation lithium-ion cathodes. Combining the addition of phosphoric acid with the cross-linking of sodium carboxymethyl cellulose by means of citric acid, aqueously processed electrodes with excellent performance are produced. The combined approach offers synergistic benefits, resulting in stable cycling performance and excellent coulombic efficiency (98.96 %) in lithium-metal cells. Remarkably, this approach can be easily incorporated into standard electrode preparation processes with no additional processing step. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis of hollandite-type Li yMn 1- xCo xO 2 (x = 0-0.15) by Li + ion-exchange in molten salt and the electrochemical property for rechargeable lithium battery electrodes

    Science.gov (United States)

    Kumagai, Naoaki; Oshitari, Satoru; Komaba, Shinichi; Kadoma, Yoshihiro

    The Li + ion-exchange reaction of K +-type α-K 0.14MnO 1.93·0.18H 2O and its Co-doped α-K 0.14(Mn 0.85Co 0.15)O 1.96·0.21H 2O with a large (2 × 2) tunnel structure has been investigated in a LiNO 3/LiCl molten salt at 300 °C. The Li + ion-exchanged products were examined by chemical analysis, X-ray diffraction, and scanning and transmission electron microscopic measurements. Almost all the K + ions and the hydrogens of water molecules in the (2 × 2) tunnel of α-MnO 2 and its Co-doped one were exchanged by Li + ions in the molten salt, resulting in Li +-type α-MnO 2 and its Co-doped one containing Li + ions as well as Li 2O (lithium oxide) in the (2 × 2) tunnel with maintaining the original hollandite structure. The electrochemical properties including charge-discharge cycling of the Li + ion-exchanged α-MnO 2 and its Co-doped samples have been investigated as insertion compounds in the search for new cathode materials for rechargeable lithium batteries. The Li + ion-exchanged α-MnO 2 and its Co-doped samples provided higher capacities than the K +-type parent materials on initial discharge and charge-discharge cyclings, probably due to the structural stabilization with the existence of Li 2O in the (2 × 2) tunnels.

  15. Lithium-Excess Research of Cathode Material Li2MnTiO4 for Lithium-Ion Batteries

    OpenAIRE

    Zhang, Xinyi; Yang, Le; Hao, Feng; Chen, Haosen; Yang, Meng; Fang, Daining

    2015-01-01

    Lithium-excess and nano-sized Li2+xMn1−x/2TiO4 (x = 0, 0.2, 0.4) cathode materials were synthesized via a sol-gel method. The X-ray diffraction (XRD) experiments indicate that the obtained main phases of Li2.0MnTiO4 and the lithium-excess materials are monoclinic and cubic, respectively. The scanning electron microscope (SEM) images show that the as-prepared particles are well distributed and the primary particles have an average size of about 20–30 nm. The further electrochemical tests revea...

  16. Rapid Growth of Crystalline Mn5O8 by Self-Limited Multilayer Deposition using Mn(EtCp)2 and O3.

    Science.gov (United States)

    Young, Matthias J; Hare, Christopher D; Cavanagh, Andrew S; Musgrave, Charles B; George, Steven M

    2016-07-20

    This work investigates the use of ozone as a post-treatment of ALD-grown MnO and as a coreactant with bis(ethylcyclopentadienyl)manganese (Mn(EtCp)2) in ALD-like film growth. In situ quartz crystal microbalance measurements are used to monitor the mass changes during growth, which are coupled with ex situ materials characterization following deposition to evaluate the resulting film composition and structure. We determined that during O3 post-treatment of ALD-grown MnO, O3 oxidizes the near-surface region corresponding to a conversion of 22 Å of the MnO film to MnO2. Following oxidation by O3, exposure of Mn(EtCp)2 results in mass gains of over 300 ng/cm(2), which exceeds the expected mass gain for reaction of the Mn(EtCp)2 precursor with surface hydroxyls by over four times. We attribute this high mass gain to adsorbed Mn(EtCp)2 shedding its EtCp ligands at the surface and releasing Mn(II) ions which subsequently diffuse into the bulk film and partially reduce the oxidized film back to MnO. These Mn(EtCp)2 and O3 reactions are combined in sequential steps with (a) Mn(EtCp)2 reacting at the surface of an O-rich layer, shedding its two EtCp ligands and freeing Mn(II) to diffuse into the film followed by (b) O3 oxidizing the film surface and withdrawing Mn from the subsurface to create an O-rich layer. This deposition process results in self-limiting multilayer deposition of crystalline Mn5O8 films with a density of 4.7 g/cm(3) and an anomalously high growth rate of 5.7 Å/cycle. Mn5O8 is a metastable phase of manganese oxide which possesses an intermediate composition between the alternating MnO and MnO2 compositions of the near-surface during the Mn(EtCp)2 and O3 exposures.

  17. Facile Fabrication of Ethoxy-Functional Polysiloxane Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode with Improved Cycling Performance for Rechargeable Li-Ion Battery.

    Science.gov (United States)

    Wang, Hao; Ge, Wujie; Li, Wen; Wang, Feng; Liu, Wenjing; Qu, Mei-Zhen; Peng, Gongchang

    2016-07-20

    Dealing with the water molecule on the surface of LiNi0.6Co0.2Mn0.2O2 (NCM) cathode and hydrogen fluoride in the electrolyte is one of the most difficult challenges in Li-ion battery research. In this paper, the surface polymerization of tetraethyl orthosilicate (TEOS) on NCM to generate ethoxy-functional polysiloxane (EPS) wrapped NCM (E-NCM) cathode under mild conditions and without any additions is utilized to solve this intractable problem. The differential scanning calorimetry, transmission electron microscopy, and X-ray photoelectron spectroscopy results show that the formed amorphous coating can provide a protective shell to improve the NCM thermal stability, suppress the thickening of the solid electrolyte interphase (SEI) layer, and scavenge HF in the electrolyte. The E-NCM composite with 2 mol % EPS delivers a high discharge capacity retention of 84.9% after 100 cycles at a 1 C discharge rate in the 2.8-4.3 V potential range at 55 °C. Moreover, electrochemical impedance spectroscopy measurements reveal that the EPS coating could alleviate the impedance rise during cycling especially at an elevated temperature. Therefore, the fabricated E-NCM cathode with long-term cycling and thermal stability is a promising candidate for use in a high-energy Li-ion battery.

  18. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Directory of Open Access Journals (Sweden)

    Nassisi Vincenzo

    2018-01-01

    Full Text Available In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  19. Surface modifications of AISI 420 stainless steel by low energy Yttrium ions

    Science.gov (United States)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito; Martina, Luigi

    2018-01-01

    In this work, we study surface modifications of AISI 420 stainless steel specimens in order to improve their surface properties. Oxidation resistance and surface micro-hardness were analyzed. Using an ion beam delivered by a Laser Ion Source (LIS) coupled to an electrostatic accelerator, we performed implantation of low energy yttrium ions on the samples. The ions experienced an acceleration passing through a gap whose ends had a potential difference of 60 kV. The gap was placed immediately before the samples surface. The LIS produced high ions fluxes per laser pulse, up to 3x1011 ions/cm2, resulting in a total implanted flux of 7x1015 ions/cm2. The samples were characterized before and after ion implantation using two analytical techniques. They were also thermally treated to investigate the oxide scale. The crystal phases were identified by an X-ray diffractometer, while the micro-hardness was assayed using the scratch test and a profilometer. The first analysis was applied to blank, implanted and thermally treated sample surface, while the latter was applied only to blank and implanted sample surfaces. We found a slight increase in the hardness values and an increase to oxygen resistance. The implantation technique we used has the advantages, with respect to conventional methods, to modify the samples at low temperature avoiding stray diffusion of ions inside the substrate bulk.

  20. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Z. Z. Chowdhury

    2013-01-01

    Full Text Available The potential of granular-activated carbon (GAC derived from agrowaste of Mangostene (Mangostana garcinia fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L, feed flow rate (1 mL/min and 3 mL/min, and activated carbon bed height (4.5 cm and 3 cm on the breakthrough characteristics of the fixed bed sorption system were determined. The adsorption data were fitted with well-established column models, namely, Thomas, Yoon-Nelson, and Adams-Bohart. The results were best-fitted with Thomas and Yoon-Nelson models rather than Adams-Bohart model for all conditions. The column had been regenerated and reused consecutively for five cycles. The results demonstrated that the prepared activated carbon was suitable for removal of Mn(II ions from wastewater using batch as well as fixed bed sorption system.

  1. Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II ions

    Directory of Open Access Journals (Sweden)

    R. Sithara

    2017-11-01

    Full Text Available This study was focused on the synthesis of silver nanoparticles using Acalypha hispida leaf extract and the characterization of the particles using UV–Vis spectroscopy, XRD, FT-IR, and TEM. The results showed the formation of silver nanoparticles, crystalline in nature, with an average size of 20–50 nm. The leaf extract components were analyzed with GC–MS and exhibited a high content of Phytol (40.52%, n-Hexadecanoic acid (9.67%, 1,2,3-Benzenetriol (7.04%, α-d-Mannofuranoside methyl (6.22%, and d-Allose (4.45%. The optimization and statistical investigation of reaction parameters were studied and maximum yield with suitable properties of silver nanoparticles was obtained at leaf extract volume (0.5 mL, the concentration of silver nitrate (1.75 mM, and reaction temperature (50 °C. The method of detecting Mn2+ ions using the colloidal silver nanoparticles was discussed. The minimum and maximum detection limit were found to be 50 and 200 µM of Mn(II ions, respectively. Thus, the obtained results encourage the use of economical synthesis of silver nanoparticles in the development of nanosensors to detect the pollutants present in industrial effluents.

  2. A facile method of preparing LiMnPO4/reduced graphene oxide aerogel as cathodic material for aqueous lithium-ion hybrid supercapacitors

    Science.gov (United States)

    Xu, Lin; Wang, Senlin; Zhang, Xiao; He, Taobin; Lu, Fengxia; Li, Huichang; Ye, Junhui

    2018-01-01

    A facile method of preparing LiMnPO4/reduced graphene oxide aerogel (LMP/rGO) as cathodic material was reported here. LiMnPO4 nano-particles were prepared using a facile polyvinyl pyrrolidone-assisted solvothermal route. Then LMP/rGO aerogel was prepared using the accessible restacking method. The influence of the cathodic electrode composition (ratio of rGO to LiMnPO4) on the performance of the LMP/rGO was evaluated by constant-current discharge tests. When compared with 217C g-1 for the pristine LMP, the best LMP/rGO (the content of rGO is 27.3 wt%) exhibits a higher capacity of 464.5C g-1 (at 0.5 A g-1), which presenting the capacity enhance of 114%. Moreover, a lithium-ion hybrid supercapacitor (LIHS) was successfully assembled by using LMP/rGO aerogel as the cathodic electrode and rGO aerogel as the anodic electrode. The LMP/rGO//rGO device achieves excellent specific energy of 16.46 W h kg-1 at a power density of 0.38 kW kg-1, even under the higher specific power of 4.52 kW kg-1, there still holds the specific energy of 11.79 W h kg-1. The LMP/rGO//rGO device maintains 91.2% of the initial capacity after 10,000 cycles (at 2 A g-1), which displays high rate performance and long cycle life. The 3D LMP/rGO aerogel could be a promising candidate material for the lithium-ion hybrid supercapacitors.

  3. Electron capture from a metal surface by slow, multicharged aluminum and carbon ions

    International Nuclear Information System (INIS)

    Hughes, R.H.; Miller, R.D.; Wattuhewa, G.; Ye, X.M.; Pederson, D.O.

    1989-01-01

    A time-of-flight technique has been used to measure residual charge in the scattering of laser-produced pulses of C/sup k+/ (k=1 to 4) and Al/sup m+/ (m=2 to 5) ions from a well-outgassed amorphous gold-iridium surface under UHV conditions (2 x 10/sup -9/ Torr). Ions incident at 7 degree to the surface were specularly reflected. The analysis showed the survival of singly charged ions in the case of scattering 300-, 400-, and 500-eV/charge Al ions with neutrals representing the majority species. This is equivalent to a kinetic energy in a direction transverse to the surface of 4.5, 5.9, and 7.4 eV/charge, respectively, which ensures only minimal surface penetration. In the case of 280-eV/charge carbon ions, only neutrals were detected. No residual ions were detected in either Al or C ions scattered through an angle of deviation equal to or greater than 45 degree within experimental error. In a separate experiment no residual ions were detected in the case of 400-eV/charge Al ions incident at 22.5 degree to a gold surface and specularly reflected. The results are explained in terms of Auger neutralization of the multicharged ions on the incoming pass and resonance ionization and neutralization of low-charge-state ions that emerge from the surface and change their charge on the outgoing pass. Under near adiabatic conditions, no residual charge is expected for either the aluminum or carbon projectiles. The presence of Al + undergrazing-incidence and specular reflection is analyzed and discussed in terms of the nonadiabatic behavior of Al + ions emerging from the surface

  4. Potential sputtering from a Si surface by very highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed radiation effect in collision of slow highly charged ions with the following target materials; a SiO 2 thin film, a Si(1 1 1)-(7 x 7) surface and a hydrogen terminated Si(1 1 1)-(1 x 1) surface. Secondary ion mass spectrometry and scanning tunneling microscopy revealed some features due to 'potential sputtering'; (a) strong dependence of secondary particle emission on the surface condition, (b) high yield of positive ion emission including cluster fragments and (c) creation of nanometer sized surface structure. The mechanism for the potential sputtering is briefly discussed, based on the 'Coulomb explosion' model

  5. Selective Binding, Self-Assembly and Nanopatterning of the Creutz-Taube Ion on Surfaces

    OpenAIRE

    Wang, Yuliang; Lieberman, Marya; Hang, Qingling; Bernstein, Gary

    2009-01-01

    The surface attachment properties of the Creutz-Taube ion, i.e., [(NH3)5Ru(pyrazine)Ru(NH3)5]5+, on both hydrophilic and hydrophobic types of surfaces were investigated using X-ray photoelectron spectroscopy (XPS). The results indicated that the Creutz-Taube ions only bound to hydrophilic surfaces, such as SiO2 and –OH terminated organic SAMs on gold substrates. No attachment of the ions on hydrophobic surfaces such as –CH3 terminated organic SAMs and poly(methylmethacrylate) (PMMA) thin film...

  6. Distributions of the ion temperature, ion pressure, and electron density over the current sheet surface

    Energy Technology Data Exchange (ETDEWEB)

    Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2016-06-15

    The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.

  7. Soft landing of polyatomic ions for selective modification of fluorinated self-assembled monolayer surfaces

    Science.gov (United States)

    Luo, Hai; Miller, Scott A.; Cooks, R. Graham; Pachuta, Steven J.

    1998-03-01

    Fluorinated self-assembled monolayer (F-SAM) surfaces comprised of CF3(CF2)7(CH2)2S- groups bound to a gold substrate were modified by deposition of mass-selected polyatomic ions at collision energies of ~10 eV. The modified material was characterized in situ by low-energy ion bombardment and by independent high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. Modification of F-SAM surfaces using hyperthermal (CH3)2SiNCS+ (m/z 116) and (CH3)3SiOSi(CH3)2 (m/z 147) projectile ion beams incorporated the intact projectile ions m/z 116 and mlz 147, respectively, which were released upon subsequent 60 eV [multiset union] sputtering. In addition to simple cases of soft landing of intact ions into a surface, two related soft landing channels, dissociative soft landing and reactive soft landing, are also identified. Surfaces modified by prolonged exposure to 35CICH2(CH3)2SiOSi(CH3)2+ (m/z 181) and its isotopic variant 37CICH2(CH3)2SiOSi(CH3)2+ (m/z 183), yielded only fragment ions derived from the projectile ions, primarily C3H10OSi235Cl+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) upon [multiset union] sputtering as well as in the 15 keV Ga+TOF-SIMS spectra. In these cases, facile fragmentation occurs upon initial ion impact with the surface, the fragment ion being trapped at the interface in an overall process which is described as dissociative soft landing. Consistent with this, the fragment ions C3H10OSi235CI+ (m/z 153) and C3H10OSi237Cl+ (m/z 155) generated as such in the ion source were deposited without fragmentation and subsequently released intact by 60 eV [multiset union] sputtering. In the cases of some projectiles, such as protonated 2,4,6-trimethylpyridine, the sputtered ions released from the modified surface included chemically transformed products due to reaction of the projectile ion at the surface. Such reactive soft landing processes occur by ion/molecule reactions at the interface, although details of their mechanism and its

  8. Advances in surface ion suppression from RILIS: Towards the Time-of-Flight Laser Ion Source (ToF-LIS)

    CERN Document Server

    Rothe, S; Crepieux, B; Day Goodacre, T; Fedosseev, V N; Giles, T; Marsh, B A; Ramos, J P; Rossel, R E

    2016-01-01

    We present results from the development towards the Time-of-Flight Laser Ion Source (ToF-LIS) aiming for the suppression of isobaric contaminants through fast beam gating. The capability to characterize high resistance ion sources has been successfully demonstrated. A ninefold selectivity gain has been achieved through suppression of surface ionized potassium, while maintaining >90% transmission for laser-ionized gallium using a thin wall graphite ionizer cavity combined with a fast beam gate. Initial results from the investigation of glassy carbon as a potential hot cavity ion source are presented. Power-cycle tests of a newly designed mount for fragile ion source cavities indicates its capability to survive the thermal stress expected during operation in an ISOLDE target unit. Finally, we introduce fast ion beam switching at a rate of 10 kHz using the ISOLDE ion beam switchyard as a new concept for ion beam distribution and conclude by highlighting the potential applications of this ion beam multiplexing te...

  9. Advances in surface ion suppression from RILIS: Towards the Time-of-Flight Laser Ion Source (ToF-LIS)

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, S., E-mail: sebastian.rothe@cern.ch [CERN, Geneva (Switzerland); Catherall, R.; Crepieux, B. [CERN, Geneva (Switzerland); Day Goodacre, T. [CERN, Geneva (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester (United Kingdom); Fedosseev, V.N.; Giles, T.; Marsh, B.A. [CERN, Geneva (Switzerland); Ramos, J.P. [CERN, Geneva (Switzerland); Laboratory of Powder Technology, EPFL, Lausanne (Switzerland); Rossel, R.E. [CERN, Geneva (Switzerland); Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany)

    2016-06-01

    We present results from the development towards the Time-of-Flight Laser Ion Source (ToF-LIS) aiming for the suppression of isobaric contaminants through fast beam gating. The capability to characterize high resistance ion sources has been successfully demonstrated. A ninefold selectivity gain has been achieved through suppression of surface ionized potassium, while maintaining >90% transmission for laser-ionized gallium using a thin wall graphite ionizer cavity combined with a fast beam gate. Initial results from the investigation of glassy carbon as a potential hot cavity ion source are presented. Power-cycle tests of a newly designed mount for fragile ion source cavities indicates its capability to survive the thermal stress expected during operation in an ISOLDE target unit. Finally, we introduce fast ion beam switching at a rate of 10 kHz using the ISOLDE ion beam switchyard as a new concept for ion beam distribution and conclude by highlighting the potential applications of this ion beam multiplexing technique.

  10. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li2MnO3 Nanobelts as Lithium-Ion Battery Cathodes.

    Science.gov (United States)

    Sun, Ya; Cong, Hengjiang; Zan, Ling; Zhang, Youxiang

    2017-11-08

    Among the Li-rich layered oxides Li 2 MnO 3 has significant theoretical capacity as a cathode material for Li-ion batteries. Pristine Li 2 MnO 3 generally has to be electrochemically activated in the first charge-discharge cycle which causes very low Coulombic efficiency and thus deteriorates its electrochemical properties. In this work, we show that low-temperature reduction can produce a large amount of structural defects such as oxygen vacancies, stacking faults, and orthorhombic LiMnO 2 in Li 2 MnO 3 . The Rietveld refinement analysis shows that, after a reduction reaction with stearic acid at 340 °C for 8 h, pristine Li 2 MnO 3 changes into a Li 2 MnO 3 -LiMnO 2 (0.71/0.29) composite, and the monoclinic Li 2 MnO 3 changes from Li 2.04 Mn 0.96 O 3 in the pristine Li 2 MnO 3 (P-Li 2 MnO 3 ) to Li 2.1 Mn 0.9 O 2.79 in the reduced Li 2 MnO 3 (R-Li 2 MnO 3 ), indicating the production of a large amount of oxygen vacancies in the R-Li 2 MnO 3 . High-resolution transmission electron microscope images show that a high density of stacking faults is also introduced by the low-temperature reduction. When measured as a cathode material for Li-ion batteries, R-Li 2 MnO 3 shows much better electrochemical properties than P-Li 2 MnO 3 . For example, when charged-discharged galvanostatically at 20 mA·g -1 in a voltage window of 2.0-4.8 V, R-Li 2 MnO 3 has Coulombic efficiency of 77.1% in the first charge-discharge cycle, with discharge capacities of 213.8 and 200.5 mA·h·g -1 in the 20th and 30th cycles, respectively. In contrast, under the same charge-discharge conditions, P-Li 2 MnO 3 has Coulombic efficiency of 33.6% in the first charge-discharge cycle, with small discharge capacities of 80.5 and 69.8 mA·h·g -1 in the 20th and 30th cycles, respectively. These materials characterizations, and electrochemical measurements show that low-temperature reduction is one of the effective ways to enhance the performances of Li 2 MnO 3 as a cathode material for Li-ion batteries.

  11. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  12. Mn valence state and electrode performance of perovskite-type ...

    Indian Academy of Sciences (India)

    increase in the oxidation state of Mn ions was due to the formation of Mn4+ ions and oxygen vacancies. The addition of Cu ions to LSM systems could lead to enhanced electrode performance for oxygen reduction reactions originating from the change in valence of Mn ions. Keywords. Cu-doped LSM; electrical conductivity; ...

  13. Studies on rheological, structural, optical, electrical and surface properties of LiMn2O4 thin films by varied spin rates

    Directory of Open Access Journals (Sweden)

    Balakrishnan T.

    2017-10-01

    Full Text Available LiMn2O4 thin films prepared by cost-effective spin coating method using optimized coating conditions are reported. Spin rate was varied and spin rate dependent properties were studied. Prepared films were characterized for their structural, morphological and optical properties. X-ray diffraction study of LiMn2O4 thin films confirmed the cubic spinel structure with the preferred orientation along (1 1 1 plane. Optical absorption studies showed band gap energy of 3.02 eV for the grown LiMn2O4 films. FT-IR bands assigned to asymmetric stretching modes of MnO6 group were located around 623 cm-1 and 514 cm-1 for the LiMn2O4 thin films. The weak band observed at 437 cm-1 was attributed to the LiO4 tetrahedra. The films showed high conductivity value 0.79 S/cm indicating the generation of effective network of the film for enhanced charge transport. AFM micrographs of the LiMn2O4 films deposited at 3000 rpm and 3500 rpm showed uniform distribution of fine grains throughout the surface without any dark pits, pinholes and cracks.

  14. Surface damage through grazing incidence ions investigated by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex

    2009-07-10

    Surface damage, caused by grazing incidence ions, is investigated with variable temperature scanning tunneling microscopy. The experiments are carried out on a Pt(111) crystal. The kinetic energy of noble gas ions is varied between 1-15 keV and the angle of incidence can be adjusted between {theta} = 78.5 and {theta} = 90 measured with respect to the surface normal. The damage patterns of single ion impacts, on flat terraces and at step edges of monoatomic height, are investigated at low surface temperatures. Ions hitting a flat terrace are usually specular reflected. The energy transfer from the ion to the crystal atoms is small and only little damage is produced. In contrast, at ascending step edges, which are illuminated by the ion beam, large angle scattering events occur. Sputtering, adatom and vacancy production is induced. However, a significant fraction of the ions, which hit step edges, enter the crystal and are guided in between two atomic layers parallel to the surface via small angle binary collisions. This steering process is denoted as subsurface channeling. The energy loss per length scale of the channeled particles is low, which results in long ion trajectories (up to 1000A). During the steering process, the ions produce surface damage. Depending on the ion species and the ion energy, adatom and vacancies or surface vacancy trenches of monoatomic width are observed. The surface damage can be used to track the path of the ion. This makes the whole trajectory of single ions with keV energy visible. The number of sputtered atoms per incident ion at ascending step edges, i.e. the step edge sputtering yield, is measured experimentally for different irradiation conditions. For {theta} = 86 , the sputtering yield is determined from the fluence dependent retraction of pre-existing illuminated step edges. An alternative method for the step edge sputtering yield determination, is the analysis of the concentration of ascending steps and of the removed amount

  15. Surface damage through grazing incidence ions investigated by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Redinger, Alex

    2009-01-01

    Surface damage, caused by grazing incidence ions, is investigated with variable temperature scanning tunneling microscopy. The experiments are carried out on a Pt(111) crystal. The kinetic energy of noble gas ions is varied between 1-15 keV and the angle of incidence can be adjusted between θ = 78.5 and θ = 90 measured with respect to the surface normal. The damage patterns of single ion impacts, on flat terraces and at step edges of monoatomic height, are investigated at low surface temperatures. Ions hitting a flat terrace are usually specular reflected. The energy transfer from the ion to the crystal atoms is small and only little damage is produced. In contrast, at ascending step edges, which are illuminated by the ion beam, large angle scattering events occur. Sputtering, adatom and vacancy production is induced. However, a significant fraction of the ions, which hit step edges, enter the crystal and are guided in between two atomic layers parallel to the surface via small angle binary collisions. This steering process is denoted as subsurface channeling. The energy loss per length scale of the channeled particles is low, which results in long ion trajectories (up to 1000A). During the steering process, the ions produce surface damage. Depending on the ion species and the ion energy, adatom and vacancies or surface vacancy trenches of monoatomic width are observed. The surface damage can be used to track the path of the ion. This makes the whole trajectory of single ions with keV energy visible. The number of sputtered atoms per incident ion at ascending step edges, i.e. the step edge sputtering yield, is measured experimentally for different irradiation conditions. For θ = 86 , the sputtering yield is determined from the fluence dependent retraction of pre-existing illuminated step edges. An alternative method for the step edge sputtering yield determination, is the analysis of the concentration of ascending steps and of the removed amount of material as a

  16. N and Cr ion implantation of natural ruby surfaces and their characterization

    Science.gov (United States)

    Rao, K. Sudheendra; Sahoo, Rakesh K.; Dash, Tapan; Magudapathy, P.; Panigrahi, B. K.; Nayak, B. B.; Mishra, B. K.

    2016-04-01

    Energetic ions of N and Cr were used to implant the surfaces of natural rubies (low aesthetic quality). Surface colours of the specimens were found to change after ion implantation. The samples without and with ion implantation were characterized by diffuse reflectance spectra in ultra violet and visible region (DRS-UV-Vis), field emission scanning electron microscopy (FESEM), selected area electron diffraction (SAED) and nano-indentation. While the Cr-ion implantation produced deep red surface colour (pigeon eye red) in polished raw sample (without heat treatment), the N-ion implantation produced a mixed tone of dark blue, greenish blue and violet surface colour in the heat treated sample. In the case of heat treated sample at 3 × 1017 N-ions/cm2 fluence, formation of colour centres (F+, F2, F2+ and F22+) by ion implantation process is attributed to explain the development of the modified surface colours. Certain degree of surface amorphization was observed to be associated with the above N-ion implantation.

  17. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  18. Luminescence in Mn-doped CdS nanocrystals

    Indian Academy of Sciences (India)

    Wintec

    rather deep states that give rise to red-shifted emission. Counio et al (1998) used stoichiometric amounts of cad- mium and sulfur ions. They also observed an emission band at an energy lower than that of Mn emission. They attribute it to deep surface trap recombinations which are most likely from defect related states. Thus ...

  19. Heteroepitaxial growth and surface structure of L1{sub 0}-MnGa(111) ultra-thin films on GaN(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Mandru, Andrada-Oana; Wang, Kangkang; Cooper, Kevin; Ingram, David C.; Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Garcia Diaz, Reyes; Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada Baja California, Codigo Postal 22800 (Mexico); Haider, Muhammad [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States); Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran, 31261 (Saudi Arabia)

    2013-10-14

    L1{sub 0}-structured MnGa(111) ultra-thin films were heteroepitaxially grown on GaN(0001) under lightly Mn-rich conditions using molecular beam epitaxy. Room-temperature scanning tunneling microscopy (STM) investigations reveal smooth terraces and angular step edges, with the surface structure consisting primarily of a 2 × 2 reconstruction along with small patches of 1 × 2. Theoretical calculations were carried out using density functional theory, and the simulated STM images were calculated using the Tersoff-Hamman approximation, revealing that a stoichiometric 1 × 2 and a Mn-rich 2 × 2 surface structure give the best agreement with the observed experimental images.

  20. Installation of the Ion Accelerator for the Surface Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyeok-Jung; Kim, Han-Sung; Chung, Bo-Hyun; Ahn, Tae-Sung; Kim, Dae-Il; Kim, Cho-Rong; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, an introduction to the accelerator, an installation status at KOMAC and the operation plan of the accelerator are discussed. A pelletron, which has been used over 25 years at KIGAM, is moved and installed at KOMAC in order to supply a qualified service to ion beam users. The system will be installed in September and component tests will be carried. The operation of the system starts in 2016 after it gets operation license from Nuclear Safety and Security Commission. Korea Multi-purpose Accelerator Complex (KOMAC) is operating several ion beam accelerators to provide various ion beams to users. Those are a 100 MeV proton linear accelerator, a 220 keV ion implanter for gaseous ion beams, a 150 keV metal ion implanter and a 20 keV high-current ion implanter. All of those are the machine for user service and it is important to qualify the results of the irradiation conditions for user service. For this reason, an electrostatic tandem accelerator, which has been operating over 25 years at Korea Institute of Geoscience and Mineral Resources (KIGAM), is moved to KOMAC in order to supply the qualified and quantified data on the irradiation species.

  1. Capping of Mn-Doped ZnS Quantum Dots with DHLA for Their Stabilization in Aqueous Media: Determination of the Nanoparticle Number Concentration and Surface Ligand Density.

    Science.gov (United States)

    Garcia-Cortes, Marta; Sotelo González, Emma; Fernández-Argüelles, María T; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2017-06-27

    Colloidal Mn 2+ -doped ZnS quantum dots (QDs) were synthesized, surface modified, and thoroughly characterized using a pool of complementary techniques. Cap exchange of the native l-cysteine coating of the QDs with dihydrolipoic acid (DHLA) ligands is proposed as a strategy to produce nanocrystals with a strong phosphorescent-type emission and improved aqueous stability. Moreover, such a stable DHLA coating can facilitate further bioconjugation of these QDs to biomolecules using established reagents such as cross-linker molecules. First, a structural and morphological characterization of the l-cysteine QD core was performed by resorting to complementary techniques, including X-ray powder diffraction (XRD) and microscopy tools. XRD patterns provided information about the local structure of ions within the nanocrystal structure and the number of metal atoms constituting the core of a QD. The judicious combination of the data obtained from these complementary characterization tools with the analysis of the QDs using inductively coupled plasma-mass spectrometry (ICP-MS) allowed us to assess the number concentration of nanoparticles in an aqueous sample, a key parameter when such materials are going to be used in bioanalytical or toxicological studies. Asymmetric flow field-flow fractionation (AF4) coupled online to ICP-MS detection proved to be an invaluable tool to compute the number of DHLA molecules attached to the surface of a single QD, a key feature that is difficult to estimate in nanoparticles and that critically affects the behavior of nanoparticles when entering the biological media (e.g., cellular uptake, biodistribution, or protein corona formation). This hybrid technique also allowed us to demonstrate that the elemental composition of the nanoparticle core remains unaffected after the ligand exchange process. Finally, the photostability and robustness of the DHLA-capped QDs, critical parameters for bioanalytical applications, were assessed by molecular

  2. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces.

    Science.gov (United States)

    Siretanu, Igor; Chapel, Jean-Paul; Bastos-González, Delfi; Drummond, Carlos

    2013-06-06

    The effect of surface charges on the ionic distribution in close proximity to an interface has been extensively studied. On the contrary, the influence of ions (from dissolved salts) on deformable interfaces has been barely investigated. Ions can adsorb from aqueous solutions on hydrophobic surfaces, generating forces that can induce long-lasting deformation of glassy polymer films, a process called ion-induced polymer nanostructuration, IPN. We have found that this process is ion-specific; larger surface modifications are observed in the presence of water ions and hydrophobic and amphiphilic ions. Surface structuration is also observed in the presence of certain salts of lithium. We have used streaming potential and atomic force microscopy to study the effect of dissolved ions on the surface properties of polystyrene films, finding a good correlation between ionic adsorption and IPN. Our results also suggest that the presence of strongly hydrated lithium promotes the interaction of anions with polystyrene surfaces and more generally with hydrophobic polymer surfaces, triggering then the IPN process.

  3. Investigation of reordered (001) Au surfaces by positive ion channeling spectroscopy, LEED and AES

    International Nuclear Information System (INIS)

    Appleton, B.R.; Noggle, T.S.; Miller, J.W.; Schow, O.E. III; Zehner, D.M.; Jenkins, L.H.; Barrett, J.H.

    1974-01-01

    As a consequence of the channeling phenomenon of positive ions in single crystals, the yield of ions Rutherford scattered from an oriented single crystal surface is dependent on the density of surface atoms exposed to the incident ion beam. Thus, the positive ion channeling spectroscopy (PICS) technique should provide a useful tool for studying reordered surfaces. This possibility was explored by examining the surfaces of epitaxially grown thin Au single crystals with the combined techniques of LEED-AES and PICS. The LEED and AES investigations showed that when the (001) surface was sputter cleaned in ultra-high vacuum, the normal (1 x 1) symmetry of the (001) surfaces reordered into a structure which gave a complex (5 x 20) LEED pattern. The yield and energy distributions of 1 MeV He ions scattered from the Au surfaces were used to determine the number of effective monolayers contributing to the normal and reordered surfaces. These combined measurements were used to characterize the nature of the reordered surface. The general applicability of the PICS technique for investigations of surface and near surface regions is discussed

  4. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  5. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  6. Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Agarwal, Shilpi; Sadeghi, Nima

    2017-09-01

    The MnO 2 /Cellulose fiber Nanocomposites have been prepared via the microwave-assisted hydrothermal method. The characteristic structure of MnO 2 /Cellulose fiber Nanocomposites was analyzed using X-ray diffraction, photoluminescence and UV-vis spectra, Transmission electron Microscopy, N 2 adsorption-desorption and Scanning electron microscopy instrumental techniques. BET surface area and crystallite size values of MnO 2 /cellulose fiber nanocomposites have been found as 87.064m 2 /g and 70.0nm, respectively. Response Surface Methodology (RSM) has been used for adsorption of Insecticide compound such as Toxaphene by prepared adsorbent. MnO 2 /Cellulose fiber Nanocomposites shows maximum removal of 96.5% at initial Toxaphene concentration of 5.0mg/L, pH 3 and adsorbent dose of 5.0g/L. Kinetic and equilibrium data follow pseudo-second order and Langmuir isotherm model, respectively. Adsorption capacity of MnO 2 /Cellulose fiber Nanocomposites has been found to be 5.465mg/g. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. THE EFFECT OF Fe2+ DAN Mn2+ IONS TOWARD -CAROTENE PRODUCTIVITY BY PHYTOPLANKTON Isochrysis aff galbana (T-iso)

    OpenAIRE

    Natsir, Hasnah

    2012-01-01

    The research aimed to find out the effect of Fe2+ and Mn2+ towards -carotene productivity as result of oxidative stress from photosystem (PS II). The phytoplanton Isocrysis aff galbana (T-iso) were the microalgae species which had the high lipid content primarily and had potentiality to produce -carotene as the -carotene supplement. Analysis method was carried out by the sonication extraction for short and cheap in the lysis cell of phytoplankton biomassa, infra red (IR) to find out the...

  8. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    Science.gov (United States)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-07-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 1017 ions/cm2. The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, CrxCy phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties.

  9. Tribological properties and surface structures of ion implanted 9Cr18Mo stainless steels

    International Nuclear Information System (INIS)

    Fengbin, Liu; Guohao, Fu; Yan, Cui; Qiguo, Sun; Min, Qu; Yi, Sun

    2013-01-01

    The polished quenched-and-tempered 9Cr18Mo steels were implanted with N ions and Ti ions respectively at a fluence of 2 × 10 17 ions/cm 2 . The mechanical properties of the samples were investigated by using nanoindenter and tribometer. The results showed that the ion implantations would improve the nanohardness and tribological property, especially N ion implantation. The surface analysis of the implanted samples was carried out by using XRD, XPS and AES. It indicated that the surface exhibits graded layers after ion implantation. For N ion implantation, the surface about 20 nm thickness is mainly composed of supersaturated interstitial N solid solution, oxynitrides, Cr x C y phase and metal nitrides. In the subsurface region, the metal nitrides dominate and the other phases disappear. For Ti ion implantation, the surface of about 20 nm thickness is mainly composed of titanium oxides and carbon amorphous phase, the interstitial solid solution of Ti in Fe is abundant in the subsurface region. The surface components and structures have significant contributions to the improved mechanical properties

  10. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  11. Surface ion-imprinted amino-functionalized cellulosic cotton fibers for selective extraction of Cu(II) ions.

    Science.gov (United States)

    Monier, M; Ibrahim, Amr A; Metwally, M M; Badawy, D S

    2015-11-01

    Surface ion-imprinted amino-functionalized cellulosic fibers (Cu-ABZ) were manufactured for efficient selective adsorption of Cu(2+) ions. The chemical modification steps had been characterized utilizing elemental analysis; Fourier transforms infrared (FTIR) along with wide angle X-ray diffraction (XRD) spectroscopy. Also, the morphological structure of the ion-imprinted and the non-imprinted (NI-ABZ) fibers were visualized and compared with that of the native cotton fibers using scanning electron microscope (SEM). In addition, the coordination mode by which the Cu(2+) ions bonded to the active sites were examined by both FTIR and X-ray photo electron spectra (XPS). Both Cu-ABZ and NI-ABZ were implemented in batch experiments for optimizing the conditions by which the Cu(2+) ions can be selectively removal from aqueous medium and pH 5 was the optimum for the metal ion extraction. Moreover, the kinetics and isotherm studies revealed that the adsorption data fitted with pseudo-second-order kinetic and Langmuir models with estimated maximum adsorption capacity 93.6mg/g. Also, the reusability studies indicated that the prepared ion-imprinted adsorbent maintains more than 95% of its original activity after fifth generation cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions

    Energy Technology Data Exchange (ETDEWEB)

    Burgdoerfer, J. (Tennessee Univ., Knoxville, TN (United States). Dept. of Physics Oak Ridge National Lab., TN (United States))

    1991-01-01

    The collective electronic response in a solid effectively alters ionic and atomic potentials giving rise to dynamic screening and to a wake'' of density fluctuations trailing ions as they propagate through the solid. The presence of dynamic screening modifies electronic excitation processes of projectiles in ion-solid collisions as compared to binary ion-atom collisions. We review recent theoretical and experimental studies directed at the search for and identification of signatures of dynamic screening and wake effects. Examples include the formation of excited projectile bound states under channeling conditions, radiative electron capture, the search for wake riding'' electrons in antiproton-solid collisions, and the neutralization of highly charged ions near surfaces. 42 refs., 7 figs.

  13. Roughening instability and ion-induced viscous relaxation of SiO2 surfaces

    International Nuclear Information System (INIS)

    Mayer, T.M.; Chason, E.; Howard, A.J.

    1994-01-01

    We characterize the development of nanometer scale topography (roughness) on SiO 2 surfaces as a result of low energy, off-normal ion bombardment, using in situ energy dispersive x-ray reflectivity and atomic force microscopy. Surfaces roughen during sputtering by heavy ions (Xe), with roughness increasing approximately linearly with ion fluence up to 10 17 cm -2 . A highly coherent ripple structure with wavelength of 30 nm and oriented with the wave vector parallel to the direction of incidence is observed after Xe sputtering at 1 keV. Lower frequency, random texture is also observed. Subsequent light ion (H, He) bombardment smoothens preroughened surfaces. The smoothing kinetics are first order with ion fluence and strongly dependent on ion energy in the range 0.2--1 eV. We present a linear model to account for the experimental observations which includes roughening both by random stochastic processes and by development of a periodic surface instability due to sputter yield variations with surface curvature which leads to ripple development. Smoothing occurs via ion bombardment induced viscous flow and surface diffusion. From the smoothing kinetics with H and He irradiation we measure the radiation enhanced viscosity of SiO 2 and find values on the order of 1--20x10 12 N s m -2 . The viscous relaxation per ion scales as the square root of the ion induced displacements in the film over the range of the ion penetration, suggesting short-lived defects with a bimolecular annihilation mechanism. The surface instability mechanism accounts for the ripple formation, while inclusion of stochastic roughening produces the random texture and reproduces the observed linear roughening kinetics and the magnitude of the overall roughness

  14. Effect of ion irradiation on the surface energy of deposited coatings

    Science.gov (United States)

    Eremin, E. N.; Guchenko, S. A.; Kasymov, S. S.; Yurov, V. M.; Vedyashkin, M. V.

    2017-01-01

    We investigated multi-element coatings exposed to argon ion bombardment. The coatings were irradiated using a multi-ampere hollow-cathode ion source. The arc current was 1 A, and the potential of the substrate was maintained equal to 300 V. The surface tension (surface energy) of the coatings was measured before and after irradiation through the size-dependence of the microhardness and electrical resistivity of coatings on their thickness. Ion irradiation was found to affect the surface energy of the coatings in different ways. This is due to both the structure of the coating and its elemental composition.

  15. Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+, on wood pulp

    Science.gov (United States)

    Alan W. Rudie; Alan Ball; Narendra Patel

    2006-01-01

    Ion exchange selectivity coefficients were measured for the partition of metals between solution and pulp fibers. The method accurately models the ion exchange isotherms for all cation pairs evaluated and is accurate up to approximately 0.05 molar concentrations. Selectivity coefficients were determined for calcium and magnesium with each other and with hydrogen....

  16. Transfer zone behaviour of As(III), Co(II) and Mn(II) ions on sulphur ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... increased attention as sources for metal ion removal from aqueous solution. This is because the ... hydrogen bonds in the cellulosic material, hence it is expected that the treatment should significantly increase ... metal ions form aquo complexes when dissolved in water. Abia et al. (2002). The aquo complex ...

  17. Characterization of Nitride Layers Formed by Nitrogen Ion Implantation into Surface Region of Iron

    International Nuclear Information System (INIS)

    Sudjatmoko; Subki, M. Iyos R.

    2000-01-01

    Ion implantation is a convenient means of modifying the physical and chemical properties of the near-surface region of materials. The nitrogen implantation into pure iron has been performed at room temperature with ion dose of 1.310 17 to 1.310 18 ions/cm 2 and ion energy of 20 to 100 keV. The optimum dose of nitrogen ions implanted into pure iron was around 2.2310 17 ions/cm 2 in order to get the maximum wear resistant. SEM micrographs and EDX show that the nitride layers were found on the surface of substrate. The nitrogen concentration profile was measured using EDX in combination with spot technique, and it can be shown that the depth profile of nitrogen implanted into substrate was nearly Gaussian. (author)

  18. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  19. Microsphere LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite as high rate and long-life cathode material for lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Chen, E-mail: ccyang@mail.mcut.edu.tw [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China); Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China); Chen, Wei-Houng [Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan, ROC (China)

    2016-04-15

    LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite material (denoted as SP-LFMP/C) with macro/nano hierarchical porous structure by adding the composite carbon source (i.e., 100 nm polystyrene sphere and 300 nm carbon sphere) is fabricated via a spray dry process. The SP-LFMP/C composite exhibits a 3D hierarchical structure with a high surface area (34.63 m{sup 2} g{sup −1}) and a wide pore size distribution (2–100 nm). The characteristic properties of the samples are examined using X-ray diffraction, micro-Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The SP-LFMP/C composite achieves discharge capacities of 161, 160, 157, 146, 137, and 115 mAh g{sup −1} at 0.2, 0.5, 1, 3, 5, and 10 C, respectively. Moreover, the SP-LFMP/C material also exhibits excellent cycling performance and stability at 55 °C during the 300 cycle test. These results indicate that the SP-LFMP/C cathode material is an excellent candidate for application in high-energy Li-ion batteries. - Highlights: • A microsphere LiFe{sub 0.5}Mn{sub 0.5}PO{sub 4}/C composite is prepared by a spray drying process. • The composite material shows a mesoporous 3D structure with a high surface area. • The SP-LFMP composite exhibits excellent high rate capability. • The SP-LFMP/C composite shows much higher tap density of 1.33 g cm{sup −3}.

  20. Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnO x ) and its application for removing of Cu2+ ions from aqueous solution

    Science.gov (United States)

    Zhang, Huining; Chang, Qing; Jiang, Yu; Li, Huili; Yang, Yahong

    2018-04-01

    A magnetic KMnO4-treated graphene-oxide-based nanocomposite, Fe3O4@GO/MnO x , was synthesized through a facile hydrothermal technique. The properties of the Fe3O4@GO/MnO x nanocomposite were characterized by SEM, XRD and FTIR. Batch experiments showed that the maximum adsorption capacity calculated by the Langmuir model for Cu2+ was 62.65 mg g-1 at T = 303.15 K. Kinetics and XPS analysis also revealed that the mechanism of Cu2+ removal was mainly a chemical adsorption process involving both the MnO x particles and oxygen functional groups. The prepared Fe3O4@GO/MnO x was found to be an ideal adsorbent for the removal of Cu2+ ions due to the MnO x particle coating, and was easily separated using a magnetic field after utilization. Reusability studies imply that Fe3O4@GO/MnO x is a suitable material for heavy metal ion removal from aqueous solutions in real applications.

  1. The influence of ion implantation on the surface properties of metals and alloys

    International Nuclear Information System (INIS)

    Grant, W.A.; Carter, G.

    1975-10-01

    The report falls into three sections: (1) annealing behaviour of high dose rare gas (Ne, Ar, Kr, Xe) implantations into silicon; (2) measurement of projected and lateral range parameters for low energy heavy ions (Ar, Cu, Kr, Cd, Xe, Cs, Dy, W, Au, Pb, Bi) in silicon by Rutherford backscattering; (3) surface chemistry of ion implanted solids (e.g. corrosion, catalysis, oxidation, synthesis of compounds in ion implanted layers). (U.K.)

  2. Tunable ion-swelling for nanopatterning of macroscopic surfaces: The role of proximity effects

    International Nuclear Information System (INIS)

    Highlights: ► Utilizing ion irradiation and nanosphere lithography to induce local swelling on Si. ► Pattern height and curvature were tailored by the mask and irradiation parameters. ► Proximity exposure effect calculations to predict the radial ion fluence distribution. ► Good agreement between AFM profiles and ion fluence distributions. ► Surface profiles were predicted for several particle shapes, sizes, and ion energies. - Abstract: Ordered surface nanopatterns with different spatial periods and various characters were prepared on silicon surfaces by masked ion irradiation utilizing the local ion-swelling effect. Langmuir–Blodgett (LB) monolayers of hexagonally arranged Stöber silica particles as nanomasks were applied on large area Si substrates during Ar + or Xe 2+ exposure with different fluences. We show that the height and curvature of surface swelling patterns can be tuned by appropriate selection of the particle diameter, ion energy, and ion fluence. It is also revealed that the ion beam-induced anisotropic deformation of the silica mask can be exploited to tailor the surface geometry. We point that, having knowledge on the diameters and average spacing between the silica particles as extrinsic beam spreading factors, and considering the lateral straggling of the bombarding ions in the mask and in the substrate material as intrinsic beam spreading factors, a simple model of the radial fluence distribution can be applied to predict the main features of irradiation-induced surface patterns. The role of proximity effects in the potential use of this easy, fast, wafer-scale nanofabrication method is discussed.

  3. Platelet adhesion and plasma protein adsorption control of collagen surfaces by He+ ion implantation

    International Nuclear Information System (INIS)

    Kurotobi, K.; Suzuki, Y.; Nakajima, H.; Suzuki, H.; Iwaki, M.

    2003-01-01

    He + ion implanted collagen-coated tubes with a fluence of 1 x 10 14 ions/cm 2 were exhibited antithrombogenicity. To investigate the mechanisms of antithrombogenicity of these samples, plasma protein adsorption assay and platelet adhesion experiments were performed. The adsorption of fibrinogen (Fg) and von Willebrand factor (vWf) was minimum on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 . Platelet adhesion (using platelet rich plasma) was inhibited on the He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was accelerated on the untreated collagen and ion implanted collagen with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Platelet activation with washed platelets was observed on untreated collagen and He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and was inhibited with fluences of 1 x 10 13 , 1 x 10 15 and 1 x 10 16 ions/cm 2 . Generally, platelets can react with a specific ligand inside the collagen (GFOGER sequence). The results of platelets adhesion experiments using washed platelets indicated that there were no ligands such as GFOGER on the He + ion implanted collagen over a fluence of 1 x 10 13 ions/cm 2 . On the 1 x 10 14 ions/cm 2 implanted collagen, no platelet activation was observed due to the influence of plasma proteins. >From the above, it is concluded that the decrease of adsorbed Fg and vWf caused the antithrombogenicity of He + ion implanted collagen with a fluence of 1 x 10 14 ions/cm 2 and that plasma protein adsorption took an important role repairing the graft surface

  4. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  5. Improvement of the overall performances of LiMn{sub 2}O{sub 4} via surface-modification by polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Wang, Wan [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Zhu, Ding [Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu, 610065 (China); Huang, Liwu, E-mail: liwuhuang@scu.edu.cn [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China); Chen, Yungui, E-mail: ygchen60@aliyun.com [Department of Advanced Materials, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065 (China)

    2015-11-15

    Graphical abstract: Polypyrrole(PPy) film has improved the rate performance of LiMn{sub 2}O{sub 4} efficiently due to its excellent conductivity. PPy@LiMn{sub 2}O{sub 4} could provide more energy under the higher power than pristine LMO. - Highlights: • The PPy layer on the surface of LMO particles hasn’t been studied in LiMn{sub 2}O{sub 4} so far. • The solvent in the synthesis process of PPy@LMO is absolute ethyl alcohol. • The differences of surface-modification between the PPy and PI for LMO. • The analyses of rate performances are through specific power. - Abstract: Polypyrrole (PPy) is an excellent conductive polymer and the study on its utilization in the surface modification of the LiMn{sub 2}O{sub 4} (LMO) is few. In this work, the structure, morphology and electrochemical performance of surface-modified LiMn{sub 2}O{sub 4} composites with PPy and polyimides (PI) were discussed. The crystal structure, chemical bonds and morphology were characterized through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. Moreover, the specific power and cycling performance were tested at room and high (55 °C) temperature. The PPy@LMO (surface-modified LMO composites with PPy) shows better performances than the pristine LMO. The addition of PPy not only weakens the corrosion caused by electrolyte, but also improves the discharge capacity at higher rates. The charge transfer resistance of the PPy@LMO is much lower than that of the pristine LMO after cycling.

  6. Energy Partitioning in Collisions of Slow Polyatomic Ions with Carbon Surfaces

    Czech Academy of Sciences Publication Activity Database

    Žabka, Ján; Dolejšek, Zdeněk; Roithová, Jana; Grill, V.; Märk, T. D.; Herman, Zdeněk

    2002-01-01

    Roč. 213, 2/3 (2002), s. 145-156 ISSN 1387-3806 R&D Projects: GA ČR GA203/00/0632 Institutional research plan: CEZ:AV0Z4040901 Keywords : ion-surface collisions * polyatomic ions * energy partitioning Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.134, year: 2002

  7. Plasma membrane surface potential: dual effects upon ion uptake and toxicity

    Science.gov (United States)

    Electrical properties of plasma membranes (PMs), partially controlled by the ionic composition of the bathing medium, play significant roles in the distribution of ions at the exterior surface of PMs and in the transport of ions across PMs. The effects of coexistent cations (commonly Al3+, Ca2+, Mg...

  8. Surface modification of TiO2 coatings by Zn ion implantation for ...

    Indian Academy of Sciences (India)

    bone and plays an important role in improving the adhe- sion, proliferation and differentiation of bone cells [8]. Zn .... inoculated into a standard agar culture medium. After incu- bation at 37◦C for 24 h, the active .... sive process including physical adsorption or ion exchange at cell surfaces; (2) slower transport of metal ions ...

  9. Growth of phenylene vinylene thin films via surface polymerization by ion-assisted deposition

    NARCIS (Netherlands)

    Wroble, Amanda T.; Wildeman, Jurjen; Anunskis, Daniel J.; Hanley, Luke

    2008-01-01

    Surface polymerization by ion-assisted deposition was used to grow phenylene vinylene films (SPIAD-PPV) using the evaporation of 2methoxy-5-(2'-ethylhexyloxy)-1,4-bis((4',4 ''-bisstyryl) benzene) (MEH-OPV5) and the simultaneous deposition of non-mass-selected 10-200 eV thiophene or acetylene ions.

  10. Low energy ion beam modification of Cu/Ni/Si(100) surface

    Indian Academy of Sciences (India)

    Abstract. Cu/Ni bilayer has been prepared by thermal evaporation of pure Cu and Ni metals onto Si(100) sur- face in high vacuum; it was sputtered using argon ion beam in ultra-high vacuum. The ion beam-induced surface and interface modification was investigated using X-ray photoelectron spectroscopy and atomic force ...

  11. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  13. Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries.

    Science.gov (United States)

    Li, Lingjun; Xu, Ming; Yao, Qi; Chen, Zhaoyong; Song, Liubin; Zhang, Zhian; Gao, Chunhui; Wang, Peng; Yu, Ziyang; Lai, Yanqing

    2016-11-16

    Nickel-rich layered oxide cathode materials for advanced lithium-ion batteries have received much attention recently because of their high specific capacities and significant reduction of cost. However, these cathodes are facing a fundamental challenge of loss in performance as a result of surface lithium residue, side reactions with the electrolyte and structure rearrangement upon long-term cycling. Herein, by capturing the lithium residue on the surface of LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM) cathode material as Li source, we propose a hybrid coating strategy incorporating lithium ions conductor Li x AlO 2 with superconductor Li x Ti 2 O 4 to overcome those obstinate issues. By taking full advantage of this unique hybrid nanomembrane coating architecture, both the lithium ion diffusion ability and electronic conductivity of LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material are improved, resulting in remarkably enhanced electrochemical performances during high voltage operation, including good cycle performance, high reversible capacity, and excellent rate capability. A high initial discharge capacity of 227 mAh g -1 at 4.4 V cutoff voltage with Coulombic efficiency of 87.3%, and reversible capacity of 200 mAh g -1 with 98% capacity retention after 100 cycles at a current density of 0.5 C can be attained. The improved electrochemical performance can be attributed to the synergetic contribution from the removal of lithium residues and the unique hybrid nanomembrane coating architecture. Most importantly, this surface modification technique could save some cost, simplify the technical procedure, and show great potential to optimize battery performance, apply in a large scale and extend to all nickel-rich cathode material.

  14. Assembly of LiMnPO4Nanoplates into Microclusters as a High-Performance Cathode in Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Chao; Li, Shiheng; Han, Yuyao; Lu, Zhenda

    2017-08-23

    A novel structure of a carbon-coated LiMnPO 4 microcluster through emulsion-based self-assembly has been fabricated to yield a high-performance battery cathode. In this rational design, nanosized LiMnPO 4 plates are assembled into microclusters to achieve a dense packing and robust interparticle contact. In addition, the conductive carbon framework wrapping around these clusters functions as a fast electron highway, ensuring the high utilization of the active materials. The designed structure demonstrates enhanced specific capacity and cycling stability in lithium-ion batteries, delivering a discharge capacity of 120 mAh g -1 after 200 cycles at 0.2 C. It also shows a superior rate capability with discharge capacities of 139.7 mAh g -1 at 0.05 C, 131.7 mAh g -1 at 0.1 C, and 99.2 mAh g -1 at 1 C at room temperature.

  15. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Chen, Huan; Wu, Rongrong; Xu, Guangzhi; Fang, Xu; Qiu, Xiaoli; Guo, Hongyin; Tian, Bing; Hua, Yuejin

    2010-01-01

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  16. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging

    Science.gov (United States)

    Stiaszny, Barbara; Ziegler, Jörg C.; Krauß, Elke E.; Zhang, Mengjia; Schmidt, Jan P.; Ivers-Tiffée, Ellen

    2014-07-01

    A detailed post-mortem analysis was carried out for commercial lithium ion batteries stored at 4.2 V and 4.0 V at 60 °C. Complementary electrochemical and physical-analytical investigations revealed that the most significant aging processes for the cells aged at 4.2 V were loss of cycleable lithium, decomposition of the electrolyte and loss of active cathode material (LiMn2O4/Li(Ni0.5Mn0.3Co0.2)O2). The cells aged at 4.0 V also exhibited loss of cycleable lithium, but at a smaller extent. In fact, the aged anodes did not show significant changes compared to the new anode. Electrochemical impedance measurements including symmetric laboratory test cells gained from new and aged cells revealed valuable information about changing charge-transfer processes. The 4.2 V-cathode and both aged anodes surprisingly exhibited a decreased charge-transfer resistance, while the 4.0 V-cathode's charge-transfer resistance increased.

  17. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huan [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Wu, Rongrong [Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China); Xu, Guangzhi [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Fang, Xu; Qiu, Xiaoli; Guo, Hongyin [Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Tian, Bing, E-mail: tianbing@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Hua, Yuejin, E-mail: yjhua@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-05-28

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  18. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Kenta, E-mail: murakami@tokai.t.u-tokyo.ac.jp [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Iwai, Takeo, E-mail: iwai@med.id.yamagata-u.ac.jp [Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata-shi, 990-9585 (Japan); Abe, Hiroaki [Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1188 (Japan); Sekimura, Naoto, E-mail: sekimura@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Tokyo, Hongo, Bunkyo, 113-8656 (Japan)

    2016-12-15

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe–0.6Ni and Fe–1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282–372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122–142 K. Silicon addition mitigated the manganese effect in Fe–Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  19. Surface thermography using dual channel imaging based on the blue and red emission of Ba3MgSi2O8:Eu2+, Mn2+

    Science.gov (United States)

    Hashemi, A.; Gast, J.; Ali, A.; Osvet, A.; Vetter, A.; Stern, E.; Batentschuk, M.; Brabec, C. J.

    2017-12-01

    In this investigation, we present a surface temperature determination method based on the luminescence characteristics of Ba3MgSi2O8:Eu2+, Mn2+. Simple optics utilizing only one RGB scientific CMOS camera makes this measurement technique easily applicable. Four different imaging methods were developed and are presented together with the corresponding calibration curves. We successfully utilized the methods to take a surface temperature distribution image on glass plates with a point heat source between them.

  20. Jahn-Teller glass formation in beta-lithium ammonium sulfate monocrystals studied by means of the electron paramagnetic resonance of Mn sup 2 sup + and Cu sup 2 sup + ions

    CERN Document Server

    Waplak, S

    2002-01-01

    The EPR (electron paramagnetic resonance) spectra of non-Jahn-Teller (JT) Mn sup 2 sup + and JT Cu sup 2 sup + ions have been studied for alpha- or beta-LAS structure modification in the temperature range of 4.2-480 K. The experimental evidence for JT glass with frozen-in random strain fields due to the presence of the JT Cu sup 2 sup + ions is presented.

  1. A green hydrothermal approach for the preparation of graphene/α-MnO2 3D network as anode for lithium ion battery

    International Nuclear Information System (INIS)

    Zhang, Yi; Liu, Hao; Zhu, Zehua; Wong, Ka-wai; Mi, Rui; Mei, Jun; Lau, Woon-ming

    2013-01-01

    Graphene/α-MnO 2 nanocomposites (GMC) with high performance as anode material were synthesized by a facile green procedure, in which we reduced graphene from graphene oxide and prepared the GMC simultaneously through a conventional hydrothermal route. The samples are systematically investigated by X-ray diffraction analysis, Raman spectroscopy, FT-IR spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The GMC presents a good reversible specific capacity of 998 mAh g −1 at a current density of 60 mA g −1 after 30 cycles and excellent rate capabilities of 590 mAh g −1 at a current density of 12 A g −1 . The present results indicate that GMC nanocomposites have enormous potential for application in lithium-ion batteries

  2. Characterization of surface enhancement of carbon ion-implanted TiN coatings by metal vapor vacuum arc ion implantation

    CERN Document Server

    Chang, C L

    2002-01-01

    The modification of the surfaces of energetic carbon-implanted TiN films using metal vapor vacuum arc (MEVVA) ion implantation was investigated, by varying ion energy and dose. The microhardness, microstructure and chemical states of carbon, implanted on the surface layer of TiN films, were examined, as functions of ion energy and dose, by nanoindenter, transmission electron microscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Results revealed that the microhardness increased from 16.8 up to 25.3 GPa and the friction coefficient decreased to approximately 0.2, depending on the implanted ion energy and dose. The result is attributed to the new microcrystalline phases of TiCN and TiC formed, and carbon concentration saturation of the implanted matrix can enhance the partial mechanical property of TiN films after MEVVA treatment. The concentration distribution, implantation depth and chemical states of carbon-implanted TiN coatings depended strongly on the ion dose and...

  3. Surface disorder production during plasma immersion implantation and high energy ion implantation

    NARCIS (Netherlands)

    El-sherbiny, M.A.; Khanh, N.Q.; Wormeester, Herbert; Fried, M.; Fried, M.; Lohner, T.; Lohner, T.; Pinter, I.; Gyulai, J.

    1996-01-01

    High-depth-resolution Rutherford Backscattering Spectrometry (RBS) combined with channeling technique was used to analyze the surface layer formed during plasma immersion ion implantation (PIII) of single crystal silicon substrates. Single wavelength multiple angle of incidence ellipsometry (MAIE)

  4. Physical principles of the surface plasma method for producing beams of negative ions

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.

    1977-01-01

    The processes which are important for the production of intense beams of negative ions from surface plasma sources (SPS) are examined. The formation of negative ions when atomic particles interact with a surface is analyzed on the basis of both experimental results obtained when a surface was bombarded with beams and recently developed theoretical considerations of reflection, scattering, and electron exchange. The characteristic features of these processes in SPS, when a surface is bombarded with intense fluxes of plasma particles, are revealed in special experiments. The characteristics of generation and acceleration of the bombarding particles in a gas discharge SPS plasma, the characteristics of transportation of negative ions through the plasma toward the beam forming system, the role of cesium in SPS, and the characteristics of formation of the intense negative ion beams as well as the removal of parasite electrons from the beam

  5. Negative ion surface plasma source development for plasma trap injectors in Novosibirsk

    International Nuclear Information System (INIS)

    Bel'chenko, Yu.I.; Dimov, G.I.; Dudnikov, V.G.; Kupriyanov, A.S.

    1989-01-01

    Work on high-current ion sources carried out at the Novosibirsk Institute of Nuclear Physics (INP) is presented. The INP investigations on ''pure plasma'' planotron and ''pure surface'' secondary emission systems of H - generation, which preceded the surface-plasma concept developed in Novosibirsk, are described. The physical basis of the surface-plasma method of negative-ion production is considered. The versions and operating characteristics of different surface-plasma sources including the multi-ampere (approx-gt 10A) source are discussed. Research on efficient large-area (∼10 2 cm 2 ) negative ion surface-plasma emitters is described. The INP long-pulse multiaperture surface- plasma generators, with a current of about 1A, are described. 38 refs., 17 figs

  6. Morphology Effect on Enhanced Li+-Ion Storage Performance for Ni2+/3+ and/or Co2+/3+ Doped LiMnPO4 Cathode Nanoparticles

    Directory of Open Access Journals (Sweden)

    Young Jun Yun

    2015-01-01

    Full Text Available The electrochemical performance of Li(Mn, MPO4 (M = Co2+/3+, Ni2+/3+ was investigated with regard to the particle morphology. Within a controlled chemical composition, Li(Mn0.92Co0.04Ni0.04PO4, the resultant cathode exhibited somewhat spherical-shaped nanocrystalline particles and enhanced Li+-ion storage, which was even better than the undoped LiMnPO4, up to 16% in discharge capacity at 0.05 C. The outstanding electrochemical performance is attributed to the well-dispersed spherical-shaped particle morphology, which allows the fast Li+-ion migration during the electrochemical lithiation/delithiation process, especially at high current density.

  7. Effect of Cu substitution on structures and electrochemical properties of Li[NiCo1-xCuxMn]1/3O2 as cathode materials for lithium ion batteries.

    Science.gov (United States)

    Wu, Zhao-Jin; Wang, Dong; Gao, Zhi-Fang; Yue, Hai-Feng; Liu, Wei-Ming

    2015-11-14

    Copper ions are one of the major associated metal ions present in the precursors of the synthesis of Li[NiCoMn]1/3O2 from the recovery of spent Li-ion batteries by wet chemical processes. To evaluate the feasibility of reusing Cu(2+) as a favourable dopant in Li[NiCoMn]1/3O2 instead of as usual removing it as an undesirable impurity, the effect of Cu-doping on the electrochemical behaviour of Li[NiCoMn]1/3O2 is investigated in this work. Li[NiCo1-xCuxMn]1/3O2 (x = 0, 0.02, 0.04, 0.06 and 0.08) is synthesized through two steps, roasting the precursors obtained from carbonate co-precipitation, and their structures and electrochemical performances are systemically investigated. The results indicate that substitution of Co with Cu was successfully achieved without any detectable second phases. The initial discharge capacity of Li[NiCo1-xCuxMn]1/3O2 gradually dropped with an increase of x but the rate property and capacity retention were remarkably enhanced. In particular, the capacity retention of the Li[NiCo0.94Cu0.06Mn]1/3O2 sample reached 95.87% within 50 cycles at a current density of 160 mA g(-1). CV and EIS revealed that such improvements are ascribed to a higher Li(+) diffusion coefficient and lower charge-transfer resistance derived from Cu(2+) doping. The results suggest that Cu can be used as a beneficial dopant to partially substitute Co in synthesizing Li[NiCoMn]1/3O2 from spent LIBs instead of having to remove it as an impurity.

  8. Ejection of fast recoil atoms from solids under ion bombardment (medium-energy ion scattering by solid surfaces: Pt. 3)

    International Nuclear Information System (INIS)

    Dodonoy, A.I.; Mashkova, E.S.; Molchanov, V.A.

    1989-01-01

    This paper is the third part of our review surface scattering. Part I, which was devoted to the scattering of ions by the surfaces of disordered solids, was published in 1972; Part II, concerning scattering by crystal surfaces, was published in 1974. Since the publication of these reviews the material contained in them has become obsolete in many respects. A more recent account of the status of the problem has been given in a number of studies, including the book by E.S. Mashkova and V.A. Molchanov, Medium-Energy Ion Scattering by Solid Surfaces (Atomizdat, Moscow, 1980), than extended version of which was published by North-Holland in 1985. We note, however, that at the time these reviews were written the study of fast recoil atoms had not been carried out systematically; the problem was studied only as a by-product of surface scattering and sputtering. For this reason, in the above-mentioned works and in other reviews the data relating to recoil atoms were considered only occasionally. In recent years there have appeared a number of works - theoretical, experimental and computer -specially devoted to the study of the ejection of recoil atoms under ion bombardment. A number of interesting effects, which are due to the crystal structure of the target, have been discovered. It therefore, appeared desirable to us to systematize the available material and to present it as Part III of our continuing review. (author)

  9. Interaction of the wood surface with metal ions. Part 3: The effects of light on chromium impregnated wood surface

    International Nuclear Information System (INIS)

    Stipta, J.; Németh, K.; Molnárné Hamvas, L.

    2004-01-01

    UV-light changes of untreated and chromium impregnated wood surface were investigated by absorption spectrophotometric methods. The properties of indifferent silicagel and celulose layers were to the behaviour of poplar and black locust surface. Chromic-ion-impregnation had no significant effect on the absorption spectra of these layers. On the other hand, hexavalent chromium was reduced and UV-light caused irreversible wood degradation. Surface treatment caused considerable modification in black locust

  10. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  11. Luminescence effects of ion-beam bombardment of CdTe surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, J., E-mail: javier.olvera@uam.e [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L.; Dieguez, E. [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-09-15

    In the present work, we report the effect of low-energy ion bombardment on CdTe surfaces. The effect is revealed by FESEM images and photoluminescence (PL) measurements carried out before and after irradiation of CdTe polycrystals by means of an ion-beam sputtering (IBS) system. An important improvement in the luminescence of CdTe was observed in the irradiated areas, related to defect-free surfaces.

  12. Changes in gallium arsenide composition near surface under bombardment by Ar+ ions

    International Nuclear Information System (INIS)

    Bert, N.A.; Konnikov, S.G.; Korol'kov, A.V.; Pogrebitskij, K.Yu.

    1988-01-01

    Experimental data on changes in gallium arsenide chemical composition near surface under bombardment by Ar + ions with 5 keV energy are presented. It is shown that in the process described changes are observed in the chemical composition near surface, which result in formation of neighbouring regions with the ratios X Ga /X As >1 and X Ga /X As <1. This phenomenon may have important consequences when using ion beam processing in different technological methods and diagnostics

  13. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  14. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Baris [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of

  15. Magnetic order and electronic properties of Li{sub 2}Mn{sub 2}(MoO{sub 4}){sub 3} material for lithium-ion batteries: ESR and magnetic susceptibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Suleimanov, N.M. [E. K. Zavoisky Physical-Technical Institute of Russian Academy of Sciences, Kazan (Russian Federation); Kazan State Power Engineering University, Kazan (Russian Federation); Prabaharan, S.R.S. [VIT University, School of Electronics Engineering, Chennai (India); Khantimerov, S.M.; Nizamov, F.A. [E. K. Zavoisky Physical-Technical Institute of Russian Academy of Sciences, Kazan (Russian Federation); Michael, M.S. [SSN College of Engineering, Department of Chemistry, Chennai (India); Drulis, H.; Wisniewski, P. [Institute of Low Temperature and Structure Research of Polish Academy of Sciences, Wroclaw (Poland)

    2016-08-15

    We describe the application of electron spin resonance (ESR) and magnetic susceptibility methods to study the magnetic properties and valence state of transition metal ions in Li{sub 2}Mn{sub 2}(MoO4){sub 3} polyanion compound previously studied for its cathode-active properties in lithium containing batteries. ESR measurements of Li{sub 2}Mn{sub 2}(MoO{sub 4}){sub 3} have shown the presence of Mn{sup 2+} ions in the octahedral environment of oxygen ions. It is found that the part of manganese ions occupy the anti-site positions in lithium sublattice. The absence of the ESR signal from molybdenum ions indicates that they are non-magnetic and adopt the 6{sup +} valence state. Considerable overlapping between 3d orbitals of transition metal and 2p oxygen orbitals has been experimentally established. This leads to the indirect exchange interaction and antiferromagnetic ordering of manganese ions at 1.4 K. (orig.)

  16. XPS study of vanadium surface oxidation by oxygen ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Alov, N.; Kutsko, D.; Spirovová, Ilona; Bastl, Zdeněk

    2006-01-01

    Roč. 600, č. 8 (2006), s. 1628-1631 ISSN 0039-6028 R&D Projects: GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium oxide * oxide film * ion-beam oxidation * X-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.880, year: 2006

  17. Surface ion implantation induced by laser-generated plasmas

    Czech Academy of Sciences Publication Activity Database

    Giuffrida, L.; Torrisi, L.; Gammino, S.; Wolowski, J.; Ullschmied, Jiří

    2010-01-01

    Roč. 165, 6-10 (2010), s. 534-542 ISSN 1042-0150. [International Workshop on Pulsed Plasma Laser Ablation (PPLA)/4./. Monte Pieta, Messina, 18.06.2009-20.06.2009] Institutional support: RVO:61389021 Keywords : laser ablation * laser plasma * ion implantation * RBS analysis Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  18. Solution-combustion synthesized aluminium-doped spinel (LiAl(subx)Mn(sub2-x)O(sub4) as a high-performance lithium-ion battery cathode material

    CSIR Research Space (South Africa)

    Kebede, MA

    2015-06-01

    Full Text Available High-performing (LiAl(subx)Mn(sub2-x)O(sub4) (x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure...

  19. Magnetic order of FeMn alloy on the W(001) surface

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; Kudrnovský, Josef; Máca, František

    2007-01-01

    Roč. 601, - (2007), s. 4261-4264 ISSN 0039-6028 R&D Projects: GA ČR GA202/04/0583; GA MŠk OC 150 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : manganese * iron * alloy * surface magnetism * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.855, year: 2007

  20. Anomalous carrier life-time relaxation mediated by head group interaction in surface anchored MnSe quantum dots conjugated with albumin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, Runjun; Mohanta, Dambarudhar, E-mail: best@tezu.ernet.in

    2017-02-01

    We report on the radiative emission decay dynamics of a less known, γ-phase manganese selenide quantum dot system (MnSe QDs) subjected to bio-functionalization. A short-ligand thioglycolic acid (TGA), and a long-chain sodium dodecyl sulfate (SDS) surfactants were used as surface anchors prior bioconjugation with albumin proteins (BSA). Time resolved photoluminescence (TR-PL) spectra of the QDs have revealed bi-exponential decay trends with the fast (τ{sub 1}) and slow (τ{sub 2}) decay parameters assigned to the core state recombination and surface trapped excitons; respectively. The average lifetime (τ{sub avg}) was found to get shortened from a value of ∼0.87 ns–0.72 ns in unconjugated and BSA conjugated MnSe-TGA QDs; respectively. Conversely, MnSe-SDS QDs with BSA conjugation exhibited nearly four-fold enhancement of τ{sub avg} with respect to its unconjugated counterpart. Moreover, a considerable amount of Förster resonance energy transfer (FRET) was found to occur from the TGA coated MnSe QDs to BSA and with an ensuing efficiency of ∼61%. The origin of anomalous carrier life-time relaxation features has also been encountered through a simplified model as regards head group interaction experienced by the MnSe QDs with different surfactant types. Exploiting luminescence decay characteristics of a magneto-fluorescent candidate could find immense scope in diverse biological applications including assays, labeling and imaging. - Highlights: • Surface anchored manganese selenide quantum dots (MnSe QDs) have been synthesized via a physico-chemical reduction route. • Time resolved luminescence spectra of the QDs have displayed bi-exponential decay trend. • Thioglycolic acid (TGA) coated QDs exhibited shorter lifetime as compared to sodium dodecyl sulfo-succinate (SDS) coated ones. • Upon BSA conjugation, the average life time is four-fold enhanced in MnSe-SDS QDs. • An efficient FRET process has been revealed in BSA conjugated TGA coated MnSe QDs.

  1. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1993-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions.cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  2. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1994-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  3. Low energy ion beam systems for surface analytical and structural studies

    International Nuclear Information System (INIS)

    Nelson, G.C.

    1980-01-01

    This paper reviews the use of low energy ion beam systems for surface analytical and structural studies. Areas where analytical methods which utilize ion beams can provide a unique insight into materials problems are discussed. The design criteria of ion beam systems for performing materials studies are described and the systems now being used by a number of laboratories are reviewed. Finally, several specific problems are described where the solution was provided at least in part by information provided by low energy ion analysis techniques

  4. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Science.gov (United States)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  5. Meniscus and beam halo formation in a tandem-type negative ion source with surface production

    International Nuclear Information System (INIS)

    Miyamoto, K.; Okuda, S.; Hatayama, A.

    2012-01-01

    A meniscus of plasma-beam boundary in H - ion sources largely affects the extracted H - ion beam optics. Although it is hypothesized that the shape of the meniscus is one of the main reasons for the beam halo observed in experiments, a physical mechanism of the beam halo formation is not yet fully understood. In this letter, it is first shown by the 2D particle in cell simulation that the H - ions extracted from the periphery of the meniscus cause a beam halo since the surface produced H - ions penetrate into the bulk plasma, and, thus, the resultant meniscus has a relatively large curvature.

  6. Study of highly functionalized metal surface treated by plasma ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Masuda, Haruho; Saito, Kazuo; Ono, Taizou; Hayashi, Eiji

    2004-01-01

    Technology for processing metal surfaces with hardness, low friction and free from foreign substances was developed with plasma ion implantation. Diamond-like carbon (DLC) coating is a most promising method for realization of hard and smooth metal surface. DLC coating was tested in a metal pipe with 10 mm diameter and 10 cm length by a newly developed plasma ion implantation instrument. The surface coated by DLC was proved to have characteristics equivalent to those prepared with other methods. A computer program simulating a formation process of DLC coating was developed. Experiments for fluorinating the DLC coating surface was performed. (Y. Kazumata)

  7. Construction and characterization of a spin polarized helium ion beam for surface electronic structure studies

    International Nuclear Information System (INIS)

    Harrison, A.R.

    1982-01-01

    Ion neutralization and metastable de-excitation spectroscopy, INS and MDS, allow detailed analysis of the surface electronic configuration of metals. The orthodox application of these spectroscopies may be enhanced by electronic spin polarization of the probe beams. For this reason, a spin polarized helium ion beam has been constructed. The electronic spin of helium metastables created within an rf discharge may be spacially aligned by optically pumping the atoms. Subsequent collisions between metastables produce helium ions which retain the orientation of the electronic spin. Extracted ion polarization, although not directly measurable, may be estimated from extracted electron polarization, metastable polarization, pumping radiation absorption and current modulation measurements. Ions extracted from the optically pumped discharge exhibit an estimated polarization of about ten per cent at a beam current of a few tenths of a microampere. Extraction of helium ions from the discharge requires that the ions have a high kinetic energy. However, to avoid undesirable kinetic electron ejection from the target surface, the ions must be decelerated. Examination of various deceleration configurations, in paticular exponential and linear deceleration fields, and experimental observation indicate that a linear decelerating field produces the best low energy beam to the target surface

  8. Energy and angle resolved ion scattering spectroscopy: new possibilities for surface analysis

    International Nuclear Information System (INIS)

    Hellings, G.J.A.

    1986-01-01

    In this thesis the design and development of a novel, very sensitive and high-resolving spectrometer for surface analysis is described. This spectrometer is designed for Energy and Angle Resolved Ion Scattering Spectroscopy (EARISS). There are only a few techniques that are sensitive enough to study the outermost atomic layer of surfaces. One of these techniques, Low-Energy Ion Scattering (LEIS), is discussed in chapter 2. Since LEIS is destructive, it is important to make a very efficient use of the scattered ions. This makes it attractive to simultaneously carry out energy and angle dependent measurements (EARISS). (Auth.)

  9. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  10. Modulation of structure, morphology and wettability of polytetrafluoroethylene surface by low energy ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Ali; Fawzy, Yasser H.A. [Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) (Egypt); Bek, Alpan, E-mail: bek@metu.edu.tr [Physics Department, Middle East Technical University (METU), Ankara (Turkey); Abdel-Hamid, Hassan M. [Diagnostic Radiology Department, Applied Medical Sciences Faculty, Jazan University (Saudi Arabia); El-Oker, Moh