WorldWideScience

Sample records for surface micromachined microengine

  1. First reliability test of a surface micromachined microengine using SHiMMeR

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, D.M.; Smith, N.F.; Bowman, D.J. [and others

    1997-08-01

    The first-ever reliability stress test on surface micromachined microengines developed at Sandia National Laboratories (SNL) has been completed. We stressed 41 microengines at 36,000 RPM and inspected the functionality at 60 RPM. We have observed an infant mortality region, a region of low failure rate (useful life), and no signs of wearout in the data. The reliability data are presented and interpreted using standard reliability methods. Failure analysis results on the stressed microengines are presented. In our effort to study the reliability of MEMS, we need to observe the failures of large numbers of parts to determine the failure modes. To facilitate testing of large numbers of micromachines. The Sandia High Volume Measurement of Micromachine Reliability (SHiMMeR) system has computer controlled positioning and the capability to inspect moving parts. The development of this parallel testing system is discussed in detail.

  2. Microfabricated microengine for use as a mechanical drive and power source in the microdomain and fabrication process

    Science.gov (United States)

    Garcia, E.J.; Sniegowski, J.J.

    1997-05-20

    A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque to a micromechanism. The microengine can be operated at varying speeds and its motion can be reversed. Linear actuators are synchronized in order to provide linear oscillatory motion to the linkage means in the X and Y directions according to a desired position, rotational direction and speed of said mechanical output means. The output gear has gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication. 30 figs.

  3. Surfaces in Precision Engineering, Microengineering and Nanotechnology

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Kunzmann, H.; Peggs, G. N.

    2003-01-01

    with precision engineering, microengineering and nanotechnology are presented, encompassing surfaces in computers, MEMS, biomedical systems, light and X-ray optics, as well as in chemical systems. Surface properties at micro and nanoscale are considered, including geometry as well as physical and chemical...

  4. Stiction in surface micromachining

    NARCIS (Netherlands)

    Tas, Niels Roelof; Sonnenberg, A.H.; Jansen, Henricus V.; Legtenberg, R.; Legtenberg, Rob; Elwenspoek, Michael Curt

    1996-01-01

    Due to the smoothness of the surfaces in surface micromachining, large adhesion forces between fabricated structures and the substrate are encountered. Four major adhesion mechanisms have been analysed: capillary forces, hydrogen bridging, electrostatic forces and van der Waals forces. Once contact

  5. X-ray microcalorimeter arrays fabricated by surface micromachining

    International Nuclear Information System (INIS)

    Hilton, G.C.; Beall, J.A.; Deiker, S.; Vale, L.R.; Doriese, W.B.; Beyer, Joern; Ullom, J.N.; Reintsema, C.D.; Xu, Y.; Irwin, K.D.

    2004-01-01

    We are developing arrays of Mo/Cu transition edge sensor-based detectors for use as X-ray microcalorimeters and sub-millimeter bolometers. We have fabricated 8x8 pixel X-ray microcalorimeter arrays using surface micromachining. Surface-micromachining techniques hold the promise of scalability to much larger arrays and may allow for the integration of in-plane multiplexer elements. In this paper we describe the surface micromachining process and recent improvements in the device geometry that provide for increased mechanical strength. We also present X-ray and heat pulse spectra collected using these detectors

  6. Development of micro-engineered textured tungsten surfaces for high heat flux applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharafat, Shahram, E-mail: shahrams@ucla.edu [University of California Los Angeles, CA (United States); Aoyama, Aaron [University of California Los Angeles, CA (United States); Williams, Brian, E-mail: brian.williams@ultramet.com [Ultramet Inc., Pacoima, CA (United States); Ghoniem, Nasr [University of California Los Angeles, CA (United States)

    2013-11-15

    Surface micro-engineering can enhance the thermo-mechanical performance of plasma facing components (PFCs). For example, castellation of a surface can reduce thermal stress due to high heat loads and thus provide higher thermo-mechanical resilience. Recently, fabrication of a variety of micro-sized refractory dendrites with reproducible geometric characteristics (e.g., density, length, height, and aspect ratio) has been demonstrated. In contrast to flat surfaces exposed to high heat loads, dendrites deform independently to minimize near-surface thermal stress, which results in improved thermo-mechanical performance. Thus, the use of dendrites offers a unique micro-engineering approach to enhance the performance of PFC structures. A brief overview of W, Re, and Mo dendritic structures is given along with micrographs that show dendrite-coated surfaces. The thermal responses of representative dendrite structures are analyzed as a function of aspect ratios and dendrite geometry. The heat-management capability of needle-like dendrites exposed to a surface energy of up to 1 MJ/m{sup 2} is analyzed and compared to a flat surface. It is concluded that dendrite structures can significantly reduce thermal stress in the substrate when compared to flat surfaces. Implications of dendritic surfaces on sputter erosion rates are also discussed briefly.

  7. Manufacturing microsystems-on-a-chip with 5-level surface micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.; Rodgers, M.S.

    1998-05-01

    An agile microsystem manufacturing technology has been developed that provides unprecedented 5 levels of independent polysilicon surface-micromachine films for the designer. Typical surface-micromachining processes offer a maximum of 3 levels, making this the most complex surface-micromachining process technology developed to date. Leveraged from the extensive infrastructure present in the microelectronics industry, the manufacturing method of polysilicon surface-micromachining offers similar advantages of high-volume, high-reliability, and batch-fabrication to microelectromechanical systems (MEMS) as has been accomplished with integrated circuits (ICs). These systems, comprised of microscopic-sized mechanical elements, are laying the foundation for a rapidly expanding, multi-billion dollar industry 2 which impacts the automotive, consumer product, and medical industries to name only a few.

  8. Multi-layer enhancement to polysilicon surface-micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.; Rodgers, M.S. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-10-01

    A multi-level polysilicon surface-micromachining technology consisting of 5 layers of polysilicon is presented. Surface topography and film mechanical stress are the major impediments encountered in the development of a multilayer surface-micromachining process. However, excellent mechanical film characteristics have been obtained through the use of chemical-mechanical polishing for planarization of topography and by proper sequencing of film deposition with thermal anneals. Examples of operating microactuators, geared power-transfer mechanisms, and optical elements demonstrate the mechanical advantages of construction with 5 polysilicon layers.

  9. Macrodesign for microdevices: Polysilicon surface-micromachining technology, applications and issues

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-05-01

    The intent of this tutorial is to overview the technology of multi-level polysilicon surface micromachining, to present examples of devices which fully utilize this level of complexity, and to discuss what they believe to be significant issues which are not fully resolved. Following this intent, the tutorial consists of four sections. The first is an introduction and description of multi-level polysilicon surface micromachining and its potential benefits. Specifically, the inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. The second section introduces wafer planarization by CMP as a process tool for surface micromachining. The third section presents examples of actuated geared micromechanisms which require the multi-level fabrication process. Demonstration of actuation mechanisms coupled to external devices are illustrated. Finally, polysilicon surface micromachining fabrication technology has reached a level where many device designs, for the most part, can be embodied in the technology to produce a mechanical construct which provides the desired function. When designed properly, the fabricated mechanical element, if free to operate, will produce the desired function. However, one set of issues which can hinder or prevent operation are related to the post-fabricated device surfaces. These surface issues; namely, stiction, friction, and wear, are emphasized in the final section as a major hindrance to realizing the full potential of surface micromachined devices.

  10. Design of Surface micromachined Compliant MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Joe Anthony [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  11. Design of Surface Micromachined Compliant MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Joe Anthony [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  12. Condensation of sodium on a micromachined surface for AMTEC

    International Nuclear Information System (INIS)

    Crowley, C.J.; Izenson, M.G.

    1993-01-01

    A novel condenser component is being developed to enable Alkali Metal Thermal to Electric Conversion (AMTEC) technology to achieve two critical goals: (1) optimization of conversion efficiency and (2) microgravity fluid management. The first goal is achieved by minimizing parasitic radiation heat transfer losses for condensers with a large view factor to the high-temperature β double-prime-alumina surface. The condenser geometry includes a specially designed, micromachined surface where large capillary forces are used to manage the fluid distribution to accomplish the second goal. We present and discuss the results of separate effects experiments investigating the wetting and condensation behavior of sodium on this capillary surface. Test results show that the micromachined surface maintains a smooth, high reflective film of liquid sodium on the surface, which implies reduced parasitic losses and increased conversion efficiencies in AMTEC cells. Accomplishing this in an adverse gravity gradient demonstrates the potential for management of the fluid even under spacecraft acceleration conditions

  13. A micromachined surface stress sensor with electronic readout

    NARCIS (Netherlands)

    Carlen, Edwin; Weinberg, M.S.; Zapata, A.M.; Borenstein, J.T.

    2008-01-01

    A micromachined surface stress sensor has been fabricated and integrated off chip with a low-noise, differential capacitance, electronic readout circuit. The differential capacitance signal is modulated with a high frequency carrier signal, and the output signal is synchronously demodulated and

  14. Effect of fluorocarbon self-assembled monolayer films on sidewall adhesion and friction of surface micromachines with impacting and sliding contact interfaces

    International Nuclear Information System (INIS)

    Xiang, H.; Komvopoulos, K.

    2013-01-01

    A self-assembled monolayer film consisting of fluoro-octyltrichlorosilane (FOTS) was vapor-phase deposited on Si(100) substrates and polycrystalline silicon (polysilicon) surface micromachines. The hydrophobic behavior and structural composition of the FOTS film deposited on Si(100) were investigated by goniometry and X-ray photoelectron spectroscopy, respectively. The effects of contact pressure, relative humidity, temperature, and impact/sliding cycles on the adhesive and friction behavior of uncoated and FOTS-coated polysilicon micromachines (referred to as the Si and FOTS/Si micromachines, respectively) were investigated under controlled loading and environmental conditions. FOTS/Si micromachines demonstrated much lower and stable adhesion than Si micromachines due to the highly hydrophobic and conformal FOTS film. Contrary to Si micromachines, sidewall adhesion of FOTS/Si micromachines demonstrated a weak dependence on relative humidity, temperature, and impact cycles. In addition, FOTS/Si micromachines showed low and stable adhesion and low static friction for significantly more sliding cycles than Si micromachines. The adhesive and static friction characteristics of Si and FOTS/Si micromachines are interpreted in the context of physicochemical surface changes, resulting in the increase of the real area of contact and a hydrophobic-to-hydrophilic transition of the surface chemical characteristics caused by nanoscale surface smoothening and the removal of the organic residue (Si micromachines) or the FOTS film (FOTS/Si micromachines) during repetitive impact and oscillatory sliding of the sidewall surfaces.

  15. Development of a Surface Micromachined On-Chip Flat Disk Micropump

    Directory of Open Access Journals (Sweden)

    M. I. KILANI

    2009-08-01

    Full Text Available The paper presents research progress in the development of a surface micromachined flat disk micropump which employs the viscous and centrifugal effects acting on a layer of fluid sandwiched between a rotating flat disk and a stationary plate. The pump is fabricated monolithically on-chip using Sandia’s Ultraplanar Multilevel MEMS Technology (SUMMiT™ where an electrostatic comb-drive Torsional Ratcheting Actuator (TRA drives the flat disk through a geared transmission. The paper reviews available analytical models for flow geometries similar to that of the described pump, and presents a set of experiments which depict its performance and possible failure modes. Those experiments highlight future research directions in the development of electrostatically-actuated, CMOS-compatible, surface micromachined pumps.

  16. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  17. Optical micro-metrology of structured surfaces micro-machined by jet-ECM

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Tosello, Guido; Islam, Aminul

    2015-01-01

    A procedure for statistical analysis and uncertainty evaluation is presented with regards to measurements of step height and surface texture. Measurements have been performed with a focus-variation microscope over jet electrochemical micro-machined surfaces. Traceability has been achieved using a...

  18. Surface-micromachined rotatable member having a low-contact-area hub

    Science.gov (United States)

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  19. Surface--micromachined rotatable member having a low-contact-area hub

    Science.gov (United States)

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  20. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu

    2017-03-15

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  1. A dislocation-based crystal viscoplasticity model with application to micro-engineered plasma-facing materials

    International Nuclear Information System (INIS)

    Rivera, David; Huang, Yue; Po, Giacomo; Ghoniem, Nasr M.

    2017-01-01

    Materials developed with special surface architecture are shown here to be more resilient to the transient thermomechanical environments imposed by intermittent exposures to high heat flux thermal loading typical of long-pulse plasma transients. In an accompanying article, we present experimental results that show the relaxation of residual thermal stresses in micro-engineered W surfaces. A dislocation-based model is extended here within the framework of large deformation crystal plasticity. The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces composed of a uniform density of micro-pillars. The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. Residual stresses generated by cyclic thermomechanical loading of these architectures show that the surface can be in a compressive stress state, following a short shakedown plasma exposure, thus mitigating surface fracture. - • Materials developed with special surface architecture are shown to be more resilient to the transient thermomechanical plasma transients. • A dislocation-based model is extended within the framework of large deformation crystal plasticity. • The model is applied to the deformation of single crystals, polycrystals, and micro-engineered surfaces. • The model is utilized to design tapered surface micro-pillar architecture, composed of a Re core and W coatings. • Residual stresses generated by cyclic thermomechanical loading show that the surface can be in a compressive stress state, thus mitigating surface fracture.

  2. A manufacturing method for multi-layer polysilicon surface-micromachining technology

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.; Rodgers, M.S.

    1998-01-01

    An advanced manufacturing technology which provides multi-layered polysilicon surface micromachining technology for advanced weapon systems is presented. Specifically, the addition of another design layer to a 4 levels process to create a 5 levels process allows consideration of fundamentally new architecture in designs for weapon advanced surety components.

  3. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  4. Method of drying passivated micromachines by dewetting from a liquid-based process

    Science.gov (United States)

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  5. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Directory of Open Access Journals (Sweden)

    Norihisa Miki

    2013-03-01

    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  6. Surface micromachined counter-meshing gears discrimination device

    International Nuclear Information System (INIS)

    Polosky, M.A.; Garcia, E.J.; Allen, J.J.

    1998-01-01

    This paper discusses the design, fabrication and testing of a surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock, A 24 bit code is input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect. The motivation for the development of this device is based on occurrences referred to as High Consequence Events, A High Consequence Event is an event where an inadvertent operation of a system could result in the catastrophic loss of life, property, or damage to the environment

  7. The influence of low-energy helium plasma on bubble formation in micro-engineered tungsten

    Science.gov (United States)

    Gao, Edward; Nadvornick, Warren; Doerner, Russ; Ghoniem, Nasr M.

    2018-04-01

    Four different types of micro-engineered tungsten surfaces were exposed to low energy helium plasma, with a planar surface as control. These samples include two surfaces covered with uniform W-coated rhenium micro-pillars; one with cylindrical pillars 1 μm in diameter and 25 μm in height, and one with dendritic conical pillars 4-10 μm in diameter and 20 μm in height. Additionally, two samples with reticulated open-cell foam geometry, one at 45 pores per inch (PPI), and the other at 80 PPI were fabricated with Chemical Vapor Deposition (CVD). The samples were exposed to helium plasma at 30-100 eV ion energy, 823-1123 K temperature, and 5 × 1025 - 2 × 1026 m-2 ion fluence. It is shown that the formation of nanometer-scale tendrils (fuzz) on micro-engineered W surfaces is greatly reduced as compared to planar surfaces. This is attributed to more significant ion backscattering and the increased effective surface area that intercept incident ions in micro-engineered W. A 20% decrease in the average ion incident angle on pillar type surfaces leads to ∼30% decrease in bubble size, down to 30 nm in diameter. W fuzz was found to be absent from pillar sides due to high ion backscattering rates from pillar sides. In foam samples, 28% higher PPI is observed to have 24.7%-36.7% taller fuzz, and 17.0%-25.0% larger subsurface bubbles. These are found to be an order of magnitude smaller than those found in planar surfaces of similar environment. The helium bubble density was found to increase with ion energy in pillars, roughly from 8.2% to 48.4%, and to increase with increasing PPI, from 36.4% to 116.2%, and with bubble concentrations up to 9.1 × 1021 m-3. Geometric shadowing effects in or near surface ligaments are observed in all foam samples, with near absence of helium bubbles or fuzz in deeper layers of the foam.

  8. Surface micromachined fabrication of piezoelectric ain unimorph suspension devices for rf resonator applications

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    We report a surface micromachining process for aluminum nitride (AlN) thin films to fabricate piezoelectric unimorph suspension devices for actuator applications. Polysilicon is used as a structural layer. Highly c-axis oriented AlN thin films 1 /spl mu/m thick are deposited by rf reactive

  9. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  10. High definition surface micromachining of LiNbO 3 by ion implantation

    Science.gov (United States)

    Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.

    2010-10-01

    High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).

  11. Fabrication of surface micromachined ain piezoelectric microstructures and its potential apllication to rf resonators

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2005-01-01

    We report on a novel microfabrication method to fabricate aluminum nitride (AlN) piezoelectric microstructures down to 2 microns size by a surface micromachining process. Highly c-axis oriented AlN thin films are deposited between thin Cr electrodes on polysilicon structural layers by rf reactive

  12. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    Directory of Open Access Journals (Sweden)

    Dunzhu Xia

    2014-01-01

    Full Text Available This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs, piezoelectric vibrating gyroscopes (PVGs, surface acoustic wave (SAW gyroscopes, bulk acoustic wave (BAW gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs, magnetically suspended gyroscopes (MSGs, micro fiber optic gyroscopes (MFOGs, micro fluid gyroscopes (MFGs, micro atom gyroscopes (MAGs, and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail.

  13. Surface micromachined counter-meshing gears discrimination device

    Science.gov (United States)

    Polosky, Marc A.; Garcia, Ernest J.; Allen, James J.

    2000-12-12

    A surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock. Each of two CMG has a first portion of its perimeter devoted to continuous driving teeth that mesh with respective pinion gears. Each EMG also has a second portion of its perimeter devoted to regularly spaced discrimination gear teeth that extend outwardly on at least one of three levels of the CMG. The discrimination gear teeth are designed so as to pass each other without interference only if the correct sequence of partial rotations of the CMG occurs in response to a coded series of rotations from the pinion gears. A 24 bit code is normally input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect.

  14. Omega-X micromachining system

    International Nuclear Information System (INIS)

    Miller, D.M.

    1978-01-01

    A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle roates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine

  15. Fabrication of piezoresistive microcantilever using surface micromachining technique for biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kwang-Ho [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kim, Yong-Sang [Department of Electrical Engineering and Nano-Bio Research Center, Myongji University, Yongin, Gyeonggido 449-728 (Korea, Republic of); Kang, C.J. [Department of Physics and Nano-Bio Research Center, Myongji University, San38-2 Namdong, Yongin, Gyeonggido 449-728 (Korea, Republic of)]. E-mail: cjkang@mju.ac.kr

    2005-11-15

    A microcantilever-based biosensor with piezoresistor has been fabricated using surface micromachining technique, which is cost effective and simplifies a fabrication procedure. In order to evaluate the characteristics of the cantilever, the cystamine terminated with thiol was covalently immobilized on the gold-coated side of the cantilever and glutaraldehyde that would be bonded with amine group in the cystamine was injected subsequently. This process was characterized by measuring the deflection of the cantilever in real time monitoring. Using a piezoresistive read-out and a well-known optical beam deflection method as well, the measurement of deflection was carried out. The sensitivity of piezoresistive method is good enough compared with that of optical beam deflection method.

  16. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Oliveira, V.; Vilar, R.; Conde, O.

    2001-01-01

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  17. A novel surface micromachining process to fabricate AlN unimorph suspensions and its application for RF resonators

    NARCIS (Netherlands)

    Saravanan, S.; Saravanan, S.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    2006-01-01

    A novel surface micromachining process is reported for aluminum nitride (AlN) thin films to fabricate piezoelectric unimorph suspension devices for micro actuator applications. Wet anisotropic etching of AlN thin film is used with a Cr metal mask layer in the microfabrication process. Tetra methyl

  18. Modeling and identification of induction micromachines in microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Lyshevski, S.E. [Purdue University at Indianapolis (United States). Dept. of Electrical and Computer Engineering

    2002-11-01

    Microelectromechanical systems (MEMS), which integrate motion microstructures, radiating energy microdevices, controlling and signal processing integrated circuits (ICs), are widely used. Rotational and translational electromagnetic based micromachines are used in MEMS as actuators and sensors. Brushless high performance micromachines are the preferable choice in different MEMS applications, and therefore, synchronous and induction micromachines are the best candidates. Affordability, good performance characteristics (efficiency, controllability, robustness, reliability, power and torque densities etc.) and expanded operating envelopes result in a strong interest in the application of induction micromachines. In addition, induction micromachines can be easily fabricated using surface micromachining and high aspect ratio fabrication technologies. Thus, it is anticipated that induction micromachines, controlled using different control algorithms implemented using ICs, will be widely used in MEMS. Controllers can be implemented using specifically designed ICs to attain superior performance, maximize efficiency and controllability, minimize losses and electromagnetic interference, reduce noise and vibration, etc. In order to design controllers, the induction micromachine must be modeled, and its mathematical model parameters must be identified. Using microelectromechanics, nonlinear mathematical models are derived. This paper illustrates the application of nonlinear identification methods as applied to identify the unknown parameters of three phase induction micromachines. Two identification methods are studied. In particular, nonlinear error mapping technique and least squares identification are researched. Analytical and numerical results, as well as practical capabilities and effectiveness, are illustrated, identifying the unknown parameters of a three phase brushless induction micromotor. Experimental results fully support the identification methods. (author)

  19. Micromachined silicon seismic accelerometer development

    Energy Technology Data Exchange (ETDEWEB)

    Barron, C.C.; Fleming, J.G.; Montague, S. [and others

    1996-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of seismic monitoring by providing inexpensive, easily deployable sensor arrays. Our ultimate goal is to fabricate seismic sensors with sensitivity and noise performance comparable to short-period seismometers in common use. We expect several phases of development will be required to accomplish that level of performance. Traditional silicon micromachining techniques are not ideally suited to the simultaneous fabrication of a large proof mass and soft suspension, such as one needs to achieve the extreme sensitivities required for seismic measurements. We have therefore developed a novel {open_quotes}mold{close_quotes} micromachining technology that promises to make larger proof masses (in the 1-10 mg range) possible. We have successfully integrated this micromolding capability with our surface-micromachining process, which enables the formation of soft suspension springs. Our calculations indicate that devices made in this new integrated technology will resolve down to at least sub-{mu}G signals, and may even approach the 10{sup -10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  20. A novel hybrid surface micromachined segmented mirror for large aperture laser applications

    Science.gov (United States)

    Li, Jie; Chen, Haiqing; Yu, Hongbin

    2006-07-01

    A novel hybrid surface micromachined segmented mirror array is described. This device is capable of scaling to large apertures for correcting time-varying aberrations in laser applications. Each mirror is composed of bottom electrode, support part, and mirror plate, in which a T-shaped beam structure is used to support the mirror plate. It can provide mirror with vertical movement and rotation around two horizontal axes. The test results show that the maximum deflection along the vertical direction of the mirror plate is 2 microns, while the rotation angles around x and y axes are +-2.3 deg. and +-1.45 deg., respectively.

  1. Minimizing stress in large-area surface micromachined perforated membranes with slits

    International Nuclear Information System (INIS)

    Ghaderi, M; Ayerden, N P; De Graaf, G; Wolffenbuttel, R F

    2015-01-01

    This paper presents the effectiveness of both design and fabrication techniques for avoiding the rupturing or excessive bending of perforated membranes after release in surface micromachining. Special lateral designs of arrays of slits in the membrane were investigated for a maximum yield at a given level of residual stress. Process parameters were investigated and optimized for minimum residual stress in multilayer thin-film membranes. A 2 µm thick sacrificial TEOS layer and a structural membrane that is composed of silicon nitride and polysilicon layers in the stack is the basis of this study. The effect of sharp corners on the local stress in membranes was investigated, and structures are proposed that reduce these effects, maximizing the yield at a given level of residual stress. The effects of perforation and slits were studied both theoretically and using finite element analysis. While the overall effect of perforation is negligible in typical MEMS structures, an optimum design for the slits reduces the von Mises stress considerably as compared to sharp corners. The fabrication process was also investigated and optimized for the minimum residual stress of both the layers within the stack and the complete layer stack. The main emphasis of this work is on placing a stress-compensating layer on the wafer backside and simultaneously removing it during the surface micromachining, as this has been found to be the most effective method to reduce the overall stress in a stack of layers after sacrificial etching. Implementation of a stress compensating layer reduced the total residual stress from 200 MPa compressive into almost 60 MPa, tensile. Even though a particular structure was studied here, the employed methods are expected to be applicable to similar MEMS design problems. (paper)

  2. FY 1998 report on the R and D of micromachine technology. R and D of micromachine technology; 1998 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    In the comprehensive investigational study of micromachine technology, the paper aims at clarifying the improvement of functional devices and the future development of micromachine technology for establishment of the technology needed to realize a micromachine system composing of small-functional elements for conducting diagnosis/cure/repair, movement and independent work in small portions in living organism, disaster site, etc. and a medical-use micromachine system to analyze/react on a trace of liquid. In this fiscal year, the following were carried out: 1) study of micromachine systems, 2) study of a medical-use micromachine system to analyze/react on a trace liquid, and 3) comprehensive investigational study. In 1), studies were made toward the minuteness and improvement of micro laser catheter and micro tactile sensor catheter as functional devices which become the main components of micro catheter for cerebrovascular diagnosis/therapy use and toward the minuteness and improvement of disaster relief use micromachine system. In 2), study was made of element technology of a micro-machine system having functions of sampling/analysis/reaction of a trace of liquid. (NEDO)

  3. Comparison of residual stress measurement in thin films using surface micromachining method

    International Nuclear Information System (INIS)

    He, Q.; Luo, Z.X.; Chen, X.Y.

    2008-01-01

    Conductive, dielectric, semiconducting, piezoelectric and ferroelectric thin films are extensively used for MEMS/NEMS applications. One of the important parameters of thin films is residual stress. The residual stress can seriously affect the properties, performance and long-term stability of the films. Excessive compressive or tensile stress results in buckling, cracking, splintering and sticking problems. Stress measurement techniques are therefore essential for both process development and process monitoring. Many suggestions for stress measurement in thin films have been made over the past several decades. This paper is concentrated on the in situ stress measurement using surface micromachining techniques to determine the residual stress. The authors review and compare several types of stress measurement methods including buckling technique, rotating technique, micro strain gauge and long-short beam strain sensor

  4. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  5. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    Science.gov (United States)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance; HAPL Team

    2005-12-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  6. Micro-engineered first wall tungsten armor for high average power laser fusion energy systems

    International Nuclear Information System (INIS)

    Sharafat, Shahram; Ghoniem, Nasr M.; Anderson, Michael; Williams, Brian; Blanchard, Jake; Snead, Lance

    2005-01-01

    The high average power laser program is developing an inertial fusion energy demonstration power reactor with a solid first wall chamber. The first wall (FW) will be subject to high energy density radiation and high doses of high energy helium implantation. Tungsten has been identified as the candidate material for a FW armor. The fundamental concern is long term thermo-mechanical survivability of the armor against the effects of high temperature pulsed operation and exfoliation due to the retention of implanted helium. Even if a solid tungsten armor coating would survive the high temperature cyclic operation with minimal failure, the high helium implantation and retention would result in unacceptable material loss rates. Micro-engineered materials, such as castellated structures, plasma sprayed nano-porous coatings and refractory foams are suggested as a first wall armor material to address these fundamental concerns. A micro-engineered FW armor would have to be designed with specific geometric features that tolerate high cyclic heating loads and recycle most of the implanted helium without any significant failure. Micro-engineered materials are briefly reviewed. In particular, plasma-sprayed nano-porous tungsten and tungsten foams are assessed for their potential to accommodate inertial fusion specific loads. Tests show that nano-porous plasma spray coatings can be manufactured with high permeability to helium gas, while retaining relatively high thermal conductivities. Tungsten foams where shown to be able to overcome thermo-mechanical loads by cell rotation and deformation. Helium implantation tests have shown, that pulsed implantation and heating releases significant levels of implanted helium. Helium implantation and release from tungsten was modeled using an expanded kinetic rate theory, to include the effects of pulsed implantations and thermal cycles. Although, significant challenges remain micro-engineered materials are shown to constitute potential

  7. Modelling of micromachining of human tooth enamel by erbium laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belikov, A V; Skrypnik, A V; Shatilova, K V [St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg (Russian Federation)

    2014-08-31

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  8. Modelling of micromachining of human tooth enamel by erbium laser radiation

    International Nuclear Information System (INIS)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    2014-01-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)

  9. Product Surfaces in Precision Engineering, Micorengineering and Nanotechnology

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Kunzmann, H.; Peggs, G. N.

    2005-01-01

    This paper is and excerpt from a recently published CIRP Key-Note paper on surfaces in Precision Engineering, Micorengineering and Nanotechnology [1]. It is focussed on the relevance of surface metrology at the micrometric and nanometric length scales. The applied measurement technologies...... are strongly dependent from the functional requirements on those surfaces. Examples of surfaces obtained with precision engineering, microengineering and nanotechnology are mentioned, encompassing surfaces in computers, MEMS, biomedical systems, ligth and X-ray optics, as well as in chemical systems. Surface...... in surface metrology at micro and nanoscale are strongly required for future progress of Precision Engineering, Microengineering, and Nanotechnology; and their fundamental importance can not be overestimated....

  10. Analysis and prediction of dimensions and cost of laser micro-machining internal channel fabrication process

    Directory of Open Access Journals (Sweden)

    Brabazon D.

    2010-06-01

    Full Text Available This paper presents the utilisation of Response Surface Methodology (RSM as the prediction tool for the laser micro-machining process. Laser internal microchannels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The experiments were carried out according to 33 factorial Design of Experiment (DoE. In this work the three input process set as control parameters were laser power, P; pulse repetition frequency, PRF; and sample translation speed, U. Measured responses were the channel width and the micro-machining operating cost per metre of produced microchannels. The responses were sufficiently predicted within the set micro-machining parameters limits. Two factorial interaction (2FI and quadratic polynomial regression equations for both responses were constructed. It is proposed that the developed prediction equations can be used to find locally optimal micro-machining process parameters under experimental and operational conditions.

  11. Advanced technology trend survey of micromachines in Europe; Oshu ni okeru micromachine sentan gijutsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    In this research survey, the development trend of micromachine technology in Europe was surveyed, development level of micromachine technology of European companies was grasped, and practical application fields of their target were investigated. Technology development level of private companies in Japan`s national projects and practical application fields of Japan`s target were arranged. Trends of micromachine technology development are compared between Japanese companies and European companies. Among micromachine technology development projects in Europe, ``8520 MUST`` is a part of the ESPRIT Project. About 40,000 companies among about 170,000 companies in whole Europe are relating to the MUST Project. The main fields include the manufacturing technology, process control of machines, technology of safety, sensor technology in environmental fields, and automotive technology. The marketing fields of application include the automobile, military technology, home automation, industrial process, medical technology, environmental technology, and games. The results can be compared with the direction of research and development in Japan. 22 figs., 8 tabs.

  12. Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Theppakuttaikomaraswamy, Senthil P. [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 μm and the spacing between holes (the distance between the centers) is 100 μm. Michelson interferometer is integrated with a laser machining system to control the depth of machining. An excimer laser of 308 nm wavelength is used for micromachining. A He-Ne laser of 632.8 nm wavelength is used as the light source for the interferometer. Interference patterns are created due to the change in the path length between the two interferometer arms. The machined depth information is obtained from the interference patterns on an oscilloscope detected by a photodiode. To compare the predicted depth by the interferometer with the true machining depth, a surface profilometer is used to measure the actual machining depth on the silicon. It is observed that the depths of machining obtained by the surface profile measurement are in accordance with the interferometer

  13. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Directory of Open Access Journals (Sweden)

    Ana Rubina Perestrelo

    2015-12-01

    Full Text Available Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field.

  14. Microfluidic Organ/Body-on-a-Chip Devices at the Convergence of Biology and Microengineering

    Science.gov (United States)

    Perestrelo, Ana Rubina; Águas, Ana C. P.; Rainer, Alberto; Forte, Giancarlo

    2015-01-01

    Recent advances in biomedical technologies are mostly related to the convergence of biology with microengineering. For instance, microfluidic devices are now commonly found in most research centers, clinics and hospitals, contributing to more accurate studies and therapies as powerful tools for drug delivery, monitoring of specific analytes, and medical diagnostics. Most remarkably, integration of cellularized constructs within microengineered platforms has enabled the recapitulation of the physiological and pathological conditions of complex tissues and organs. The so-called “organ-on-a-chip” technology, which represents a new avenue in the field of advanced in vitro models, with the potential to revolutionize current approaches to drug screening and toxicology studies. This review aims to highlight recent advances of microfluidic-based devices towards a body-on-a-chip concept, exploring their technology and broad applications in the biomedical field. PMID:26690442

  15. Micromachined tunable metamaterials: a review

    International Nuclear Information System (INIS)

    Liu, A Q; Zhu, W M; Tsai, D P; Zheludev, N I

    2012-01-01

    This paper reviews micromachined tunable metamaterials, whereby the tuning capabilities are based on the mechanical reconfiguration of the lattice and/or the metamaterial element geometry. The primary focus of this review is the feasibility of the realization of micromachined tunable metamaterials via structure reconfiguration and the current state of the art in the fabrication technologies of structurally reconfigurable metamaterial elements. The micromachined reconfigurable microstructures not only offer a new tuning method for metamaterials without being limited by the nonlinearity of constituent materials, but also enable a new paradigm of reconfigurable metamaterial-based devices with mechanical actuations. With recent development in nanomachining technology, it is possible to develop structurally reconfigurable metamaterials with faster tuning speed, higher density of integration and more flexible choice of the working frequencies. (review article)

  16. Physics-based signal processing algorithms for micromachined cantilever arrays

    Science.gov (United States)

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  17. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  18. Optical wireless communications for micromachines

    Science.gov (United States)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  19. Design and Performance of a Focus-Detection System for Use in Laser Micromachining

    Directory of Open Access Journals (Sweden)

    Binh Xuan Cao

    2016-01-01

    Full Text Available We describe a new approach for locating the focal position in laser micromachining. This approach is based on a feedback system that uses a charge-coupled device (CCD camera, a beam splitter, and a mirror to focus a laser beam on the surface of a work piece. We tested the proposed method for locating the focal position by using Zemax simulations, as well as physically carrying out drilling processes. Compared with conventional methods, this approach is advantageous because: the implementation is simple, the specimen can easily be positioned at the focal position, and the dynamically adjustable scan amplitude and the CCD camera can be used to monitor the laser beam’s profile. The proposed technique will be particularly useful for locating the focal position on any surface in laser micromachining.

  20. Microengineered physiological biomimicry: organs-on-chips.

    Science.gov (United States)

    Huh, Dongeun; Torisawa, Yu-suke; Hamilton, Geraldine A; Kim, Hyun Jung; Ingber, Donald E

    2012-06-21

    Microscale engineering technologies provide unprecedented opportunities to create cell culture microenvironments that go beyond current three-dimensional in vitro models by recapitulating the critical tissue-tissue interfaces, spatiotemporal chemical gradients, and dynamic mechanical microenvironments of living organs. Here we review recent advances in this field made over the past two years that are focused on the development of 'Organs-on-Chips' in which living cells are cultured within microfluidic devices that have been microengineered to reconstitute tissue arrangements observed in living organs in order to study physiology in an organ-specific context and to develop specialized in vitro disease models. We discuss the potential of organs-on-chips as alternatives to conventional cell culture models and animal testing for pharmaceutical and toxicology applications. We also explore challenges that lie ahead if this field is to fulfil its promise to transform the future of drug development and chemical safety testing.

  1. Micromachining process – current situation and challenges

    Directory of Open Access Journals (Sweden)

    Lalakiya Meet Rajeshkumar

    2015-01-01

    Full Text Available The rapid progress in the scientific innovations and the hunt for the renewable energy increases the urge for producing the bio electronic products, solar cells, bio batteries, nano robots, MEMS, blood less surgical tools which can be possible with the aid of the micromachining. This article helps us to understand the evolution and the challenges faced by the micromachining process. Micro machining is an enabling technology that facilitates component miniaturization and improved performance characteristics. Growing demand for less weight, high accuracy, high precision, meagre lead time, reduced batch size, less human interference are the key drivers for the micromachining than the conventional machining process.

  2. Excimer laser micromachining for 3D microstructure

    NARCIS (Netherlands)

    Choi, Kyung Hyun; Meijer, J.; Masuzawa, Takahisa; Kim, Dae-Hyun

    2004-01-01

    A new 3D micromachining method, called Hole Area Modulation (HAM), has been introduced to enhance the current micromachining technology. In this method, information on the machining depth is converted to the sizes of holes on the mask. The machining is carried out with a simple 2D movement of the

  3. Small-scale heat detection using catalytic microengines irradiated by laser

    Science.gov (United States)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  4. Micromachined Precision Inertial Instruments

    National Research Council Canada - National Science Library

    Najafi, Khalil

    2003-01-01

    This program focuses on developing inertial-grade micromachined accelerometers and gyroscopes and their associated electronics and packaging for use in a variety of military and commercial applications...

  5. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan; Durmus, Naside Gozde

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  6. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  7. Experimental and numerical investigation of hetero-/homogeneous combustion-based HCCI of methane–air mixtures in free-piston micro-engines

    International Nuclear Information System (INIS)

    Chen, Junjie; Liu, Baofang; Gao, Xuhui; Xu, Deguang

    2016-01-01

    Highlights: • Single-shot experiments and a transient model of micro-engine were presented. • Coupled combustion can significantly improve in-cylinder temperatures. • Coupled combustion can reduce mass losses and compression ratios. • Heterogeneous reactions cause earlier ignition. • Heat losses result in higher mass losses. - Abstract: The hetero-/homogenous combustion-based HCCI (homogeneous charge compression ignition) of fuel–lean methane–air mixtures over alumina-supported platinum catalysts was investigated experimentally and numerically in free-piston micro-engines without ignition sources. Single-shot experiments were carried out in the purely homogeneous and coupled hetero-/homogeneous combustion modes, involved temperature measurements, capturing the visible combustion image sequences, exhaust gas analysis, and the physicochemical characterization of catalysts. Simulations were performed with a two-dimensional transient model that includes detailed hetero-/homogeneous chemistry and transport, leakage, and free-piston motion to gain physical insight and to explore the hetero-/homogeneous combustion characteristics. The micro-engine performance concerning combustion efficiency, mass loss, energy density, and free-piston dynamics was investigated. The results reveal that both purely homogeneous and coupled hetero-/homogeneous combustion of methane–air mixtures in a narrow cylinder with a diameter of 3 mm and a height of approximately 0.3 mm are possible. The coupled hetero-/homogeneous mode can not only significantly improve the combustion efficiency, in-cylinder temperature and pressure, output power and energy density, but also reduce the mass loss because of its lower compression ratio and less time spent around TDC (top dead center) and during the expansion stroke, indicating that this coupled mode is a promising combustion scheme for micro-engine. Heat losses result in higher mass losses. Heterogeneous reactions cause earlier ignition

  8. Non-traditional micromachining processes fundamentals and applications

    CERN Document Server

    Bhattacharyya, B; Davim, J

    2017-01-01

    This book presents a complete coverage of micromachining processes from their basic material removal phenomena to past and recent research carried by a number of researchers worldwide. Chapters on effective utilization of material resources, improved efficiency, reliability, durability, and cost effectiveness of the products are presented. This book provides the reader with new and recent developments in the field of micromachining and microfabrication of engineering materials.

  9. Resist materials for proton micromachining

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sanchez, J.L.; Xu, B.; Osipowicz, T.; Watt, F.

    1999-01-01

    The production of high aspect ratio microstructures is a potential growth area. The combination of deep X-ray lithography with electroforming and micromolding (i.e. LIGA) is one of the main techniques used to produce 3D microstructures. The new technique of proton micromachining employs focused MeV protons in a direct write process which is complementary to LIGA, e.g. micromachining with 2 MeV protons results in microstructures with a height of 63 μm and lateral sub-micrometer resolution in PMMA resist. The aim of this paper is to investigate the capabilities of proton micromachining as a lithographic technique. This involves the study of different types of resists. The dose distribution of high molecular weight PMMA is compared with three other types of resist: First the positive photo resist AZ P4620 will be discussed and then PMGI SF 23, which can be used as a deep UV, e-beam or X-ray resist. Finally SU-8, a new deep UV negative type of chemically amplified resist will be discussed. All these polymers are applied using the spin coating technique at thicknesses of between 1 and 36 μm

  10. Micromachining Lithium Niobate for Rapid Prototyping of Resonant Biosensors

    International Nuclear Information System (INIS)

    Al-Shibaany, Zeyad Yousif Abdoon; Hedley, John; Huo, Dehong; Hu, Zhongxu

    2014-01-01

    Lithium niobate material is widely used in MEMS application due to its piezoelectric properties. This paper presents the micromachining process of lithium niobate to rapid prototype a resonant biosensor design. A high precision CNC machine was used to machine a sample of lithium niobate material at 5 different spindle speeds to find out the best conditions to machine this brittle material. A qualitative visual check of the surface was performed by using scanning electron microscopy, surface roughness was quantitatively investigated using an optical surface profiler and Raman spectroscopy to check the strain of the surface. Results show that the surface quality of the lithium niobate was significantly affected by the spindle speed with optimum conditions at 70k rpm giving a strained surface with 500 nm rms roughness

  11. Acceleration sensitivity of micromachined pressure sensors

    Science.gov (United States)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  12. Structure optimization and simulation analysis of the quartz micromachined gyroscope

    Directory of Open Access Journals (Sweden)

    Xuezhong Wu

    2014-02-01

    Full Text Available Structure optimization and simulation analysis of the quartz micromachined gyroscope are reported in this paper. The relationships between the structure parameters and the frequencies of work mode were analysed by finite element analysis. The structure parameters of the quartz micromachined gyroscope were optimized to reduce the difference between the frequencies of the drive mode and the sense mode. The simulation results were proved by testing the prototype gyroscope, which was fabricated by micro-electromechanical systems (MEMS technology. Therefore, the frequencies of the drive mode and the sense mode can match each other by the structure optimization and simulation analysis of the quartz micromachined gyroscope, which is helpful in the design of the high sensitivity quartz micromachined gyroscope.

  13. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis.

    Science.gov (United States)

    Peela, Nitish; Truong, Danh; Saini, Harpinder; Chu, Hunghao; Mashaghi, Samaneh; Ham, Stephanie L; Singh, Sunil; Tavana, Hossein; Mosadegh, Bobak; Nikkhah, Mehdi

    2017-07-01

    Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cryogenically assisted abrasive jet micromachining of polymers

    International Nuclear Information System (INIS)

    Getu, H; Papini, M; Spelt, J K

    2008-01-01

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN 2 ) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN 2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN 2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN 2 also was found to reduce particle embedding

  15. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  16. Fiscal 1996 report on technological results. R and D on micromachine technology; 1996 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Researches on basic element technology of micromachines are conducted that operate autonomously in a narrow small part in a complicated apparatus or in vivo. The areas of activity are (1) research on micromachine systems, (2) a subminiature liquid synthesizing system, and (3) comprehensive investigation and research. In (1), the researches were carried out on the miniaturization and functional combination of a micro laser catheter and a micro tactile sensor catheter, which are the primary components of a coeliac diagnostic and therapeutic system, a 'micro catheter for cerebral blood vessel/treatment', as a micromachine system in the medical field. In (2), R and D was conducted on a system element technology assuming it contributed to a subminiature liquid synthesizing system capable of preparing various liquids including pharmaceuticals accurately with a trace amount. In (3), examination was made on the application area of a micromachine system with priority given to a medical field and also on technological subjects to be tapped, as well as on the contents of (2), with a device installed for evaluating the operating characteristic of a distribution type fluid actuator as needed for the development. (NEDO)

  17. Real-time control of ultrafast laser micromachining by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Tong Tao; Li Jinggao; Longtin, Jon P.

    2004-01-01

    Ultrafast laser micromachining provides many advantages for precision micromachining. One challenging problem, however, particularly for multilayer and heterogeneous materials, is how to prevent a given material from being ablated, as ultrafast laser micromachining is generally material insensitive. We present a real-time feedback control system for an ultrafast laser micromachining system based on laser-induced breakdown spectroscopy (LIBS). The characteristics of ultrafast LIBS are reviewed and discussed so as to demonstrate the feasibility of the technique. Comparison methods to identify the material emission patterns are developed, and several of the resulting algorithms were implemented into a real-time computer control system. LIBS-controlled micromachining is demonstrated for the fabrication of microheater structures on thermal sprayed materials. Compared with a strictly passive machining process without any such feedback control, the LIBS-based system provides several advantages including less damage to the substrate layer, reduced machining time, and more-uniform machining features

  18. Direct writing of microtunnels using proton beam micromachining

    International Nuclear Information System (INIS)

    Marot, Laurent; Munnik, Frans; Mikhailov, Serguei

    2006-01-01

    The production of high aspect ratio microstructures is a potential growth area. The combination of deep X-ray lithography with electroforming and micromolding (i.e. LIGA) is one of the main techniques used to produce 3D microstructures. The new technique of proton micromachining employs focused MeV protons in a direct write process which is complementary to LIGA. During ion exposure of positive photoresist like PMMA, scission of molecular chains occurs. These degraded polymer chains are removed by the developer. The aim of this paper is to investigate the capabilities of proton micromachining as a lithographic technique. We show the realization of sub-surface channels, or microtunnels, which have been fabricated in only one exposure and without cutting or resurfacing the material. Using our Van-de-Graaff accelerator, the resist (PMMA) has been exposed with high-energy protons (2.5 MeV). The range of charged particles in matter is well-defined and depends on the energy. Therefore, it is possible to obtain a dose which is sufficient to develop the bottom part of the ion paths but not the top part. Thus, by selecting the energy and the exposure time, a big variety of microtunnels can be realized

  19. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  20. Micromachined thin-film sensors for SOI-CMOS co-integration

    CERN Document Server

    Laconte, Jean; Raskin, Jean-Pierre

    2006-01-01

    Co-integration of MEMS and MOS in SOI technology is promising and well demonstrated hereThe impact of Micromachining on SOI devices is deeply analyzed for the first timeInclude extensive TMAH etching, residual stress, microheaters, gas-flow sensors reviewResidual stresses in thin films need to be more and more monitored in MEMS designsTMAH micromachining is an attractive alternative to KOH.

  1. A silicon micromachined resonant pressure sensor

    International Nuclear Information System (INIS)

    Tang Zhangyang; Fan Shangchun; Cai Chenguang

    2009-01-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  2. Unveiling the wet chemical etching characteristics of polydimethylsiloxane film for soft micromachining applications

    International Nuclear Information System (INIS)

    Kakati, A; Maji, D; Das, S

    2017-01-01

    Micromachining of a polydimethylsiloxane (PDMS) microstructure by wet chemical etching is explored for microelectromechanical systems (MEMS) and microfluidic applications. A 100 µ m thick PDMS film was patterned with different microstructure designs by wet chemical etching using a N-methyl-2-pyrrolidone (C 16 H 36 FN) and tetra-n-butylammonium fluoride (C 5 H 9 NO) mixture solution with 3:1 volume ratio after lithography for studying etching characteristics. The patterning parameters, such as etch rate, surface roughness, pH of etchant solution with time, were thoroughly investigated. A detailed study of surface morphology with etching time revealed nonlinear behaviour of the PDMS surface roughness and etch rate. A maximum rate of 1.45 µ m min −1 for 10 min etching with surface roughness of 360 nm was achieved. A new approach of wet chemical etching with pH controlled doped etchant was introduced for lower surface roughness of etched microstructures, and a constant etch rate during etching. Variation of the etching rate and surface roughness by pH controlled etching was performed by doping 5–15 gm l −1 of silicic acid (SiO 2xH2 O) into the traditional etchant solution. PDMS etching by silicic acid doped etchant solution showed a reduction in surface roughness from 400 nm to 220 nm for the same 15 µ m etching. This study is beneficial for micromachining of various MEMS and microfluidic structures such as micropillars, microchannels, and other PDMS microstructures. (paper)

  3. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    International Nuclear Information System (INIS)

    Chang, Sung Pil

    2006-01-01

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies

  4. Demonstration of robust micromachined jet technology and its application to realistic flow control problems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Sung Pil [Inha University, Incheon (Korea, Republic of)

    2006-04-15

    This paper describes the demonstration of successful fabrication and initial characterization of micromachined pressure sensors and micromachined jets (microjets) fabricated for use in macro flow control and other applications. In this work, the microfabrication technology was investigated to create a micromachined fluidic control system with a goal of application in practical fluids problems, such as UAV (Unmanned Aerial Vehicle)-scale aerodynamic control. Approaches of this work include : (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow ; and (2) a non-silicon alternative micromachining fabrication technology based on metallic substrates and lamination (in addition to traditional MEMS technologies) which will allow the realization of larger scale, more robust structures and larger array active areas for fluidic systems. As an initial study, an array of MEMS pressure sensors and an array of MEMS modulators for orifice-based control of microjets have been fabricated, and characterized. Both pressure sensors and modulators have been built using stainless steel as a substrate and a combination of lamination and traditional micromachining processes as fabrication technologies.

  5. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  6. The micromachined logo of Atomki

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.

    2006-01-01

    Complete text of publication follows. Proton Beam Micromachining, also known as P-beam Writing, is a direct write 3- dimensional lithographic technique. Conventional resist types are PMMA (polymethylmethacrylate), and SU-8 (of MicroChem Corp.); they are positive and negative resists, respectively. In this work we used SU-8, the most common negative resist material. SU-8 was spun on a flat surface, typically Silicon or glass. A direct write proton beam was scanned over an arbitary structure (the Atomki logo can be replaced by any other structure), which produces chain scissioning in the polymer. Post exposure bake (PEB) is usually needed in case of conventional optical lithography, but using protons this bake is done in situ as the ions heat up the sample in vacuum. Subsequently chemical etching takes place, the solvent is available at MicroChem Corp. The schematic diagram of the above described micromachining process is shown on Fig. 1. The irradiation requires a scanning proton microbeam system equipped with suitable beam scanning and blanking facilities. This is available in the Institute, our setup has been upgraded from doublet to triplet focusing system (Oxford Microbeams Ltd.). For scanning we use a DIO card (PCI-6731 of National Instruments), and the IonScan software [1]. Sample preparation was carried out at our 'semi clean' room. This is also where chemical development of the samples and the optical microscopy have been done too. A Zeiss Axio Imager microscope is available (equipped with 5 objective lenses, 4 different contrast methods, transmitted or reflected light illumination). Fig. 2. shows a typical example of the Atomki logo. This is a bright field image, a number of different nice and colourful images can be produced with the other contrast techniques (for more images see the Institute website: http://www.atomki.hu/ ). (author)

  7. Experimental and Modeling Study of Liquid-Assisted—Laser Beam Micromachining of Smart Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Mayur Parmar

    2018-05-01

    Full Text Available Smart ceramic materials are next generation materials with the inherent intelligence to adapt to change in the external environment. These materials are destined to play an essential role in several critical engineering applications. Machining these materials using traditional machining processes is a challenge. The laser beam micromachining (LBMM process has the potential to machine such smart materials. However, laser machining when performed in air induces high thermal stress on the surface, often leading to crack formation, recast and re-deposition of ablated material, and large heat-affected zones (HAZ. Performing laser beam machining in the presence of a liquid medium could potentially resolve these issues. This research investigates the possibility of using a Liquid Assisted—Laser Beam Micromachining (LA-LBMM process for micromachining smart ceramic materials. Experimental studies are performed to compare the machining quality of laser beam machining process in air and in a liquid medium. The study reveals that the presence of liquid medium helps in controlling the heat-affected zone and the taper angle of the cavity drilled, thereby enhancing the machining quality. Analytical modeling is developed for the prediction of HAZ and cavity diameter both in air and underwater conditions, and the model is capable of predicting the experimental results to within 10% error.

  8. Studying the mechanism of micromachining by short pulsed laser

    Science.gov (United States)

    Gadag, Shiva

    The semiconductor materials like Si and the transparent dielectric materials like glass and quartz are extensively used in optoelectronics, microelectronics, and microelectromechanical systems (MEMS) industries. The combination of these materials often go hand in hand for applications in MEMS such as in chips for pressure sensors, charge coupled devices (CCD), and photovoltaic (PV) cells for solar energy generation. The transparent negative terminal of the solar cell is made of glass on one surface of the PV cell. The positive terminal (cathode) on the other surface of the solar cell is made of silicon with a glass negative terminal (anode). The digital watches and cell phones, LEDs, micro-lens, optical components, and laser optics are other examples for the application of silicon and or glass. The Si and quartz are materials extensively used in CCD and LED for digital cameras and CD players respectively. Hence, three materials: (1) a semiconductor silicon and transparent dielectrics,- (2) glass, and (3) quartz are chosen for laser micromachining as they have wide spread applications in microelectronics industry. The Q-switched, nanosecond pulsed lasers are most extensively used for micro-machining. The nanosecond type of short pulsed laser is less expensive for the end users than the second type, pico or femto, ultra-short pulsed lasers. The majority of the research work done on these materials (Si, SiO 2, and glass) is based on the ultra-short pulsed lasers. This is because of the cut quality, pin point precision of the drilled holes, formation of the nanometer size microstructures and fine features, and minimally invasive heat affected zone. However, there are many applications such as large surface area dicing, cutting, surface cleaning of Si wafers by ablation, and drilling of relatively large-sized holes where some associated heat affected zone due to melting can be tolerated. In such applications the nanosecond pulsed laser ablation of materials is very

  9. Micromachined capacitive ultrasonic immersion transducer array

    Science.gov (United States)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  10. Influence of micromachined targets on laser accelerated proton beam profiles

    Science.gov (United States)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  11. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce...... such transducer arrays, capacitive micromachined ultrasonic transducer (CMUT) technology is chosen for this project. Properties such as high bandwidth and high design flexibility makes this an attractive transducer technology, which is under continuous development in the research community. A theoretical...... treatment of CMUTs is presented, including investigations of the anisotropic plate behaviour and modal radiation patterns of such devices. Several new CMUT fabrication approaches are developed and investigated in terms of oxide quality and surface protrusions, culminating in a simple four-mask process...

  12. Laser micromachining of sputtered DLC films

    International Nuclear Information System (INIS)

    Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Ong, S.E.; Zhang, S.; Milne, W.I.

    2006-01-01

    DLC films with different thicknesses (from 100 nm to 1.9 μm) were deposited using sputtering of graphite target in pure argon atmosphere without substrate heating. Film microstructures (sp 2 /sp 3 ratio) and mechanical properties (modulus, hardness, stress) were characterized as a function of film thickness. A thin layer of aluminum about 60 nm was deposited on the DLC film surface. Laser micromachining of Al/DLC layer was performed to form microcantilever structures, which were released using a reactive ion etching system with SF 6 plasma. Due to the intrinsic stress in DLC films and bimorph Al/DLC structure, the microcantilevers bent up with different curvatures. For DLC film of 100 nm thick, the cantilever even formed microtubes. The relationship between the bimorph beam bending and DLC film properties (such as stress, modulus, etc.) were discussed in details

  13. A batch process micromachined thermoelectric energy harvester: fabrication and characterization

    International Nuclear Information System (INIS)

    Su, J; Goedbloed, M; Van Andel, Y; De Nooijer, M C; Elfrink, R; Wang, Z; Vullers, R J M; Leonov, V

    2010-01-01

    Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator

  14. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  15. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  16. Surface-micromachined magnetic undulator with period length between 10μm and 1 mm for advanced light sources

    Science.gov (United States)

    Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro

    2012-07-01

    A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  17. Demonstration of Robust Micromachined Jet Technology and its Application to Realistic Flow Control Problems

    National Research Council Canada - National Science Library

    Allen, Mark

    2000-01-01

    .... Our approaches include: (1) the development of suitable micromachined synthetic jets (microjets) as actuators, which obviate the need to physically extend micromachined structures into an external flow...

  18. Micro benchtop optics by bulk silicon micromachining

    Science.gov (United States)

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  19. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  20. Discretely tunable micromachined injection-locked lasers

    International Nuclear Information System (INIS)

    Cai, H; Yu, M B; Lo, G Q; Kwong, D L; Zhang, X M; Liu, A Q; Liu, B

    2010-01-01

    This paper reports a micromachined injection-locked laser (ILL) to provide tunable discrete wavelengths. It utilizes a non-continuously tunable laser as the master to lock a Fabry–Pérot semiconductor laser chip. Both lasers are integrated into a deep-etched silicon chip with dimensions of 3 mm × 3 mm × 0.8 mm. Based on the experimental results, significant improvements in the optical power and spectral purity have been achieved in the fully locked state, and optical hysteresis and bistability have also been observed in response to the changes of the output wavelength and optical power of the master laser. As a whole system, the micromachined ILL is able to provide single mode, discrete wavelength tuning, high power and direct modulation with small size and single-chip solution, making it promising for advanced optical communications such as wavelength division multiplexing optical access networks.

  1. Trends in laser micromachining

    Science.gov (United States)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  2. Polyimide as a versatile enabling material for microsystems fabrication: surface micromachining and electrodeposited nanowires integration

    Science.gov (United States)

    Walewyns, Thomas; Reckinger, Nicolas; Ryelandt, Sophie; Pardoen, Thomas; Raskin, Jean-Pierre; Francis, Laurent A.

    2013-09-01

    The interest of using polyimide as a sacrificial and anchoring layer is demonstrated for post-processing surface micromachining and for the incorporation of metallic nanowires into microsystems. In addition to properties like a high planarization factor, a good resistance to most non-oxidizing acids and bases, and CMOS compatibility, polyimide can also be used as a mold for nanostructures after ion track-etching. Moreover, specific polyimide grades, such as PI-2611 from HD Microsystems™, involve a thermal expansion coefficient similar to silicon and low internal stress. The process developed in this study permits higher gaps compared to the state-of-the-art, limits stiction problems with the substrate and is adapted to various top-layer materials. Most metals, semiconductors or ceramics will not be affected by the oxygen plasma required for polyimide etching. Released structures with vertical gaps from one to several tens of μm have been obtained, possibly using multiple layers of polyimide. Furthermore, patterned freestanding nanowires have been synthesized with diameters from 20 to 60 nm and up to 3 μm in length. These results have been applied to the fabrication of two specific devices: a generic nanomechanical testing lab-on-chip platform and a miniaturized ionization sensor.

  3. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining

    International Nuclear Information System (INIS)

    Burzynski, T; Papini, M

    2012-01-01

    A previous implementation of narrow-band level set methodology developed by the authors was extended to allow for the modelling of mask erosive wear in abrasive jet micro-machining (AJM). The model permits the prediction of the surface evolution of both the mask and the target simultaneously, by representing them as a hybrid and continuous mask–target surface. The model also accounts for the change in abrasive mass flux incident to both the target surface and, for the first time, the eroding mask edge, that is brought about by the presence of the mask edge itself. The predictions of the channel surface and eroded mask profiles were compared with measurements on channels machined in both glass and poly-methyl-methacrylate (PMMA) targets at both normal and oblique incidence, using tempered steel and elastomeric masks. A much better agreement between the predicted and measured profiles was found when mask wear was taken into account. Mask wear generally resulted in wider and deeper glass target profiles and wider PMMA target profiles, respectively, when compared to cases where no mask wear was present. This work has important implications for the AJM of complex MEMS and microfluidic devices that require longer machining times. (paper)

  4. MEMS Reliability: Infrastructure, Test Structures, Experiments, and Failure Modes

    Energy Technology Data Exchange (ETDEWEB)

    TANNER,DANELLE M.; SMITH,NORMAN F.; IRWIN,LLOYD W.; EATON,WILLIAM P.; HELGESEN,KAREN SUE; CLEMENT,J. JOSEPH; MILLER,WILLIAM M.; MILLER,SAMUEL L.; DUGGER,MICHAEL T.; WALRAVEN,JEREMY A.; PETERSON,KENNETH A.

    2000-01-01

    The burgeoning new technology of Micro-Electro-Mechanical Systems (MEMS) shows great promise in the weapons arena. We can now conceive of micro-gyros, micro-surety systems, and micro-navigators that are extremely small and inexpensive. Do we want to use this new technology in critical applications such as nuclear weapons? This question drove us to understand the reliability and failure mechanisms of silicon surface-micromachined MEMS. Development of a testing infrastructure was a crucial step to perform reliability experiments on MEMS devices and will be reported here. In addition, reliability test structures have been designed and characterized. Many experiments were performed to investigate failure modes and specifically those in different environments (humidity, temperature, shock, vibration, and storage). A predictive reliability model for wear of rubbing surfaces in microengines was developed. The root causes of failure for operating and non-operating MEMS are discussed. The major failure mechanism for operating MEMS was wear of the polysilicon rubbing surfaces. Reliability design rules for future MEMS devices are established.

  5. A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases.

    Science.gov (United States)

    Bartlett, Philip N; Guerin, Samuel

    2003-01-01

    Palladium films with regular nanoarchitectures were electrochemically deposited from the hexagonal (H1) lyotropic liquid crystalline phase of the nonionic surfactant octaethyleneglycol monohexadecyl ether (C16EO8) onto micromachined silicon hotplate structures. The H1-e Pd films were shown to have high surface areas (approximately 28 m2 g(-1)) and to act as effective and stable catalysts for the detection of methane in air on heating to 500 degrees C. The response of the H1-e Pd-coated planar pellistors was found to be linearly proportional to the concentration of methane between 0 and 2.5% in air with a detection limit below 0.125%. Our results show that the electrochemical deposition of nanostructured metal films offers a promising approach to the fabrication of micromachined calorimetric gas sensors for combustible gases.

  6. Mechanical characterization of biocompatible thin film materials by scanning along micro-machined cantilevers for micro-/nano-system

    International Nuclear Information System (INIS)

    He, J.H.; Luo, J.K.; Le, H.R.; Moore, D.F.

    2006-01-01

    Mechanical characterization is vital for the design of micro-/nano-electro-mechanical system (MEMS/NEMS). This paper describes a new characterization method to extract the mechanical properties of the thin film materials, which is simple, inexpensive and applicable to a wide range of materials including biocompatible ones described in this paper. The beams of the material under tests, are patterned by laser micro-machining and released by alkaline etch. A surface profilometer is used to scan along micro-machined cantilevers and produce a bending profile, from which the Young's modulus can be extracted. Biocompatible SiN x , SiC and nanocrystal diamond cantilevers have been fabricated and their Young's modulus has been evaluated as 154 ± 12, 360 ± 50 and 504 ± 50 GPa, respectively, which is consistent with those measured by nano-indentation. Residual stress gradient has also been extracted by surface profilometer, which is comparable with the results inferred from ZYGO interferometer measurements. This method can be extended to atomic force microscopy stylus or nanometer-stylus profilometer for Bio-NEMS mechanical characterization

  7. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  8. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    Science.gov (United States)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  9. Model Design of Piezoelectric Micromachined Modal Gyroscope

    Directory of Open Access Journals (Sweden)

    Xiaojun Hu

    2011-01-01

    Full Text Available This paper reports a novel kind of solid-state microgyroscope, which is called piezoelectric micromachined modal gyroscope (PMMG. PMMG has large stiffness and robust resistance to shake and strike because there is no evident mass-spring component in its structure. This work focused on quantitative optimization of the gyroscope, which is still blank for such gyroscope. The modal analysis by the finite element method (FEM was firstly conducted. A set of quantitative indicators were developed to optimize the operation mode. By FEM, the harmonic analysis was conducted to find the way to efficiently actuate the operational mode needed. The optimal configuration of driving electrodes was obtained. At last, the Coriolis analysis was conducted to show the relation between angular velocity and differential output voltage by the Coriolis force under working condition. The results obtained in this paper provide theoretical basis for realizing this novel kind of micromachined gyroscope.

  10. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  11. Fabrication of a Micromachined Capacitive Switch Using the CMOS-MEMS Technology

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2015-11-01

    Full Text Available The study investigates the design and fabrication of a micromachined radio frequency (RF capacitive switch using the complementary metal oxide semiconductor-microelectromechanical system (CMOS-MEMS technology. The structure of the micromachined switch is composed of a membrane, eight springs, four inductors, and coplanar waveguide (CPW lines. In order to reduce the actuation voltage of the switch, the springs are designed as low stiffness. The finite element method (FEM software CoventorWare is used to simulate the actuation voltage and displacement of the switch. The micromachined switch needs a post-CMOS process to release the springs and membrane. A wet etching is employed to etch the sacrificial silicon dioxide layer, and to release the membrane and springs of the switch. Experiments show that the pull-in voltage of the switch is 12 V. The switch has an insertion loss of 0.8 dB at 36 GHz and an isolation of 19 dB at 36 GHz.

  12. Resonant gravimetric immunosensing based on capacitive micromachined ultrasound transducers

    KAUST Repository

    Viržonis, Darius

    2014-04-08

    High-frequency (40 MHz) and low-frequency (7 MHz) capacitive micromachined ultrasound transducers (CMUT) were fabricated and tested for use in gravimetric detection of biomolecules. The low-frequency CMUT sensors have a gold-coated surface, while the high-frequency sensors have a silicon nitride surface. Both surfaces were functionalized with bovine leukemia virus antigen gp51 acting as the antigen. On addition of an a specific antibody labeled with horseradish peroxidase (HRP), the antigen/antibody complex is formed on the surface and quantified by HRP-catalyzed oxidation of tetramethylbenzidine. It has been found that a considerably smaller quantity of immuno complex is formed on the high frequency sensor surface. In parallel, the loading of the surface of the CMUT was determined via resonance frequency and electromechanical resistance readings. Following the formation of the immuno complexes, the resonance frequencies of the low-frequency and high-frequency sensors decrease by up to 420 and 440 kHz, respectively. Finite element analysis reveals that the loading of the (gold-coated) low frequency sensors is several times larger than that on high frequency sensors. The formation of the protein film with pronounced elasticity and stress on the gold surface case is discussed. We also discuss the adoption of this method for the detection of DNA using a hybridization assay following polymerase chain reaction.

  13. Micromachined Piezoelectric Actuators for Cryogenic Adaptive Optics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes micromachined single crystal piezoelectric actuator arrays to enable ultra-large stroke, high precision shape control for large aperture,...

  14. High lane density slab-gel electrophoresis using micromachined instrumentation.

    Science.gov (United States)

    Papautsky, I; Mohanty, S; Weiss, R; Frazier, A B

    2001-10-01

    In this paper, micromachined pipette arrays (MPAs) and microcombs were studied as a means of enabling high lane density gel electrophoresis. The MPA provide a miniaturized format to interface sub-microliter volumes of samples between macroscale sample preparation formats and microscale biochemical analysis systems. The microcombs provide a means of creating sample loading wells in the gel material on the same center-to-center spacing as the MPAs. Together, the two micromachined instruments provide an alternative to current combs and pipetting technologies used for creating sample loading wells and sample delivery in gel electrophoresis systems. Using three designs for the microcomb-MPA pair, center-to-center spacings of 1.0 mm, 500 microm, and 250 microm are studied. The results demonstrate an approximate 10-fold increase in lane density and a 10-fold reduction in sample size from 5 microL to 500 pL. As a result, the number of theoretical plates has increased 2.5-fold, while system resolution has increased 1.5-fold over the conventional agarose gel systems. An examination of changes in resolution across the width of individual separation lanes in both systems revealed dependence in the case of the conventional gels and no dependence for the gels loaded with the micromachined instrumentation.

  15. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate such that the de......A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  16. Fabrication of a novel quartz micromachined gyroscope

    Science.gov (United States)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  17. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius; Kodzius, Rimantas; Vanagas, Galius

    2013-01-01

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here

  18. Silicon Micromachines for Science and Technology

    International Nuclear Information System (INIS)

    Bishop, David J.

    2002-01-01

    The era of silicon micromechanics is upon us. In areas as diverse as telecommunications, automotive, aerospace, chemistry, entertainment and basic science, the ability to build microscopic machines from silicon is having a revolutionary impact. In my talk, I will discuss what micromachines are, how they are built and show examples of how they will have a revolutionary impact in many areas of science as well as technology.

  19. Micro-machined calorimetric biosensors

    Science.gov (United States)

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  20. Integration of Capacitive Micromachined Ultrasound Transducers to Microfluidic Devices

    KAUST Repository

    Viržonis, Darius

    2013-10-22

    The design and manufacturing flexibility of capacitive micromachined ultrasound transducers (CMUT) makes them attractive option for integration with microfluidic devices both for sensing and fluid manipulation. CMUT concept is introduced here by presentin

  1. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  2. Micromachined Polycrystalline Si Thermopiles in a T-shirt

    Directory of Open Access Journals (Sweden)

    Vladimir Leonov

    2011-04-01

    Full Text Available The technology for in-plane poly-Si thermopiles has been developed. The bulk-micromachined thermopiles are located between two Si bars and connected thermally with those bars through thin-film thermal shunts. The patterned strips of thermocouple material together with thermal shunts form bridges between Si bars. Two versions of a thermoelectric generator (TEG with micromachined thermopiles have been assembled and tested on a person’s wrist, and when integrated in a T-shirt. The TEG still produces less than 1 μW in the office, but at ambient temperatures below 11-13 °C it produces more than 1 μW at a voltage of more than 2 V on the matched load. The new way of integration of wearable TEG in clothing is shown. The TEG is located under the textile, and the fabric is used as a flexible radiator.

  3. Predicting the Deflections of Micromachined Electrostatic Actuators Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Hing Wah LEE

    2009-03-01

    Full Text Available In this study, a general purpose Artificial Neural Network (ANN model based on the feed-forward back-propagation (FFBP algorithm has been used to predict the deflections of a micromachined structures actuated electrostatically under different loadings and geometrical parameters. A limited range of simulation results obtained via CoventorWare™ numerical software will be used initially to train the neural network via back-propagation algorithm. The micromachined structures considered in the analyses are diaphragm, fixed-fixed beams and cantilevers. ANN simulation results are compared with results obtained via CoventorWare™ simulations and existing analytical work for validation purpose. The proposed ANN model accurately predicts the deflections of the micromachined structures with great reduction of simulation efforts, establishing the method superiority. This method can be extended for applications in other sensors particularly for modeling sensors applying electrostatic actuation which are difficult in nature due to the inherent non-linearity of the electro-mechanical coupling response.

  4. Dual-beam focused ion beam/electron microscopy processing and metrology of redeposition during ion-surface 3D interactions, from micromachining to self-organized picostructures.

    Science.gov (United States)

    Moberlychan, Warren J

    2009-06-03

    Focused ion beam (FIB) tools have become a mainstay for processing and metrology of small structures. In order to expand the understanding of an ion impinging a surface (Sigmund sputtering theory) to our processing of small structures, the significance of 3D boundary conditions must be realized. We consider ion erosion for patterning/lithography, and optimize yields using the angle of incidence and chemical enhancement, but we find that the critical 3D parameters are aspect ratio and redeposition. We consider focused ion beam sputtering for micromachining small holes through membranes, but we find that the critical 3D considerations are implantation and redeposition. We consider ion beam self-assembly of nanostructures, but we find that control of the redeposition by ion and/or electron beams enables the growth of nanostructures and picostructures.

  5. Novel in situ mechanical testers to enable integrated metal surface micro-machines.

    Energy Technology Data Exchange (ETDEWEB)

    Follstaedt, David Martin; de Boer, Maarten Pieter; Kotula, Paul Gabriel; Hearne, Sean Joseph; Foiles, Stephen Martin; Buchheit, Thomas Edward; Dyck, Christopher William

    2005-10-01

    The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science

  6. The Influence of Coating Structure on Micromachine Stiction

    Energy Technology Data Exchange (ETDEWEB)

    Kushmerick, J.G.; Hankins, M.G.; De Boer, M.P.; Clews, P.J.; Carpick, R.W.; Bunker, B.C.

    2000-10-03

    We have clearly shown that the film morphology dictates the anti-stiction properties of FDTS coatings. Release stiction is not observed when ideal monolayer films are present but can be extensive when thicker aggregate structures are present. This finding is significant because it indicates that agglomerate formation during processing is a major source of irreproducible behavior when FDTS coatings are used to release micromachined parts. The results could also help explain why coatings that are aged at high. humidity start to stick to each other. (AFM results show that humid environments promote the formation of aggregates from monolayer films.) The reason why aggregate structures promote stiction is currently unknown. However, it appears that aggregates interfere with the ability of FDTS to form dense, well-ordered coatings under microstructures, leading to surfaces that are sufficiently hydrophilic to allow for release stiction via an attractive Laplace force during drying.

  7. Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering.

    Science.gov (United States)

    Mellati, Amir; Fan, Chia-Ming; Tamayol, Ali; Annabi, Nasim; Dai, Sheng; Bi, Jingxiu; Jin, Bo; Xian, Cory; Khademhosseini, Ali; Zhang, Hu

    2017-01-01

    Mimicking the zonal organization of native articular cartilage, which is essential for proper tissue functions, has remained a challenge. In this study, a thermoresponsive copolymer of chitosan-g-poly(N-isopropylacrylamide) (CS-g-PNIPAAm) was synthesized as a carrier of mesenchymal stem cells (MSCs) to provide a support for their proliferation and differentiation. Microengineered three-dimensional (3D) cell-laden CS-g-PNIPAAm hydrogels with different microstripe widths were fabricated to control cellular alignment and elongation in order to mimic the superficial zone of natural cartilage. Biochemical assays showed six- and sevenfold increment in secretion of glycosaminoglycans (GAGs) and total collagen from MSCs encapsulated within the synthesized hydrogel after 28 days incubation in chondrogenic medium. Chondrogenic differentiation was also verified qualitatively by histological and immunohistochemical assessments. It was found that 75 ± 6% of cells encapsulated within 50 μm wide microstripes were aligned with an aspect ratio of 2.07 ± 0.16 at day 5, which was more organized than those observed in unpatterned constructs (12 ± 7% alignment and a shape index of 1.20 ± 0.07). The microengineered constructs mimicked the cell shape and organization in the superficial zone of cartilage whiles the unpatterned one resembled the middle zone. Our results suggest that microfabrication of 3D cell-laden thermosensitive hydrogels is a promising platform for creating biomimetic structures leading to more successful multi-zonal cartilage tissue engineering. Biotechnol. Bioeng. 2017;114: 217-231. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Apparatus for precision micromachining with lasers

    Science.gov (United States)

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  9. Modeling and Experimental Study on Characterization of Micromachined Thermal Gas Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Yan Su

    2010-09-01

    Full Text Available Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  10. A flexible ultrasound transducer array with micro-machined bulk PZT.

    Science.gov (United States)

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-23

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  11. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2015-01-01

    Full Text Available This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  12. Sub-band-gap laser micromachining of lithium niobate

    DEFF Research Database (Denmark)

    Christensen, F. K.; Müllenborn, Matthias

    1995-01-01

    method is reported which enables us to do laser processing of lithium niobate using sub-band-gap photons. Using high scan speeds, moderate power densities, and sub-band-gap photon energies results in volume removal rates in excess of 106µm3/s. This enables fast micromachining of small piezoelectric...

  13. The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining

    Science.gov (United States)

    Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.

    2007-02-01

    The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.

  14. Microelectromechanical high-density energy storage/rapid release system

    Science.gov (United States)

    Rodgers, M. Steven; Allen, James J.; Meeks, Kent D.; Jensen, Brian D.; Miller, Samuel L.

    1999-08-01

    One highly desirable characteristic of electrostatically driven microelectromechanical systems (MEMS) is that they consume very little power. The corresponding drawback is that the force they produce may be inadequate for many applications. It has previously been demonstrated that gear reduction units or microtransmissions can substantially increase the torque generated by microengines. Operating speed, however, is also reduced by the transmission gear ratio. Some applications require both high speed and high force. If this output is only required for a limited period of time, then energy could be stored in a mechanical system and rapidly released upon demand. We have designed, fabricated, and demonstrated a high-density energy storage/rapid release system that accomplishes this task. Built using a 5-level surface micromachining technology, the assembly closely resembles a medieval crossbow. Energy releases on the order of tens of nanojoules have already been demonstrated, and significantly higher energy systems are under development.

  15. Micromachined Parts Advance Medicine, Astrophysics, and More

    Science.gov (United States)

    2015-01-01

    In the mid-1990s, Marshall Space Flight Center awarded two SBIR contracts to Potomac Photonics, now based in Baltimore, for the development of computerized workstations capable of mass-producing tiny, intricate, diffractive optical elements. While the company has since discontinued the workstations, those contracts set the stage for Potomac Photonics to be a leader in the micromachining industry, where NASA remains one of its clients.

  16. Surface-micromachined magnetic undulator with period length between 10  μm and 1 mm for advanced light sources

    Directory of Open Access Journals (Sweden)

    Jere Harrison

    2012-07-01

    Full Text Available A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15  μm. Simulations indicate that magnetic fields as large as 1.5 T across 50  μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5  μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  17. Development of a focused ion beam micromachining system

    Energy Technology Data Exchange (ETDEWEB)

    Pellerin, J.G.; Griffis, D.; Russell, P.E.

    1988-12-01

    Focused ion beams are currently being investigated for many submicron fabrication and analytical purposes. An FIB micromachining system consisting of a UHV vacuum system, a liquid metal ion gun, and a control and data acquisition computer has been constructed. This system is being used to develop nanofabrication and nanomachining techniques involving focused ion beams and scanning tunneling microscopes.

  18. Effects of Laser Operating Parameters on Piezoelectric Substrates Micromachining with Picosecond Laser

    Directory of Open Access Journals (Sweden)

    Lamia EL Fissi

    2014-12-01

    Full Text Available Ten picoseconds (200 kHz ultrafast laser micro-structuring of piezoelectric substrates including AT-cut quartz, Lithium Niobate and Lithium Tantalate have been studied for the purpose of piezoelectric devices application ranging from surface acoustic wave devices, e.g., bandpass filters, to photonic devices such as optical waveguides and holograms. The study examines the impact of changing several laser parameters on the resulting microstructural shapes and morphology. The micromachining rate has been observed to be strongly dependent on the operating parameters, such as the pulse fluence, the scan speed and the scan number. The results specifically indicate that ablation at low fluence and low speed scan tends to form a U-shaped cross-section, while a V-shaped profile can be obtained by using a high fluence and a high scan speed. The evolution of surface morphology revealed that laser pulses overlap in a range around 93% for both Lithium Niobate (LiNbO3 and Lithium Tantalate (LiTaO3 and 98% for AT-cut quartz can help to achieve optimal residual surface roughness.

  19. Micromachined two dimensional resistor arrays for determination of gas parameters

    NARCIS (Netherlands)

    van Baar, J.J.J.; Verwey, Willem B.; Dijkstra, Mindert; Dijkstra, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt

    A resistive sensor array is presented for two dimensional temperature distribution measurements in a micromachined flow channel. This allows simultaneous measurement of flow velocity and fluid parameters, like thermal conductivity, diffusion coefficient and viscosity. More general advantages of

  20. Micromachined ultrasonic droplet generator based on a liquid horn structure

    Science.gov (United States)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  1. Femtosecond laser micro-machined polyimide films for cell scaffold applications

    DEFF Research Database (Denmark)

    Antanavičiute, Ieva; Šimatonis, Linas; Ulčinas, Orestas

    2018-01-01

    of commercially available 12.7 and 25.4μm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e. arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental...... micro-tensile testing results could be numerically simulated and explained by two-material model, assuming that 2-6μm width rings around the holes possessed up to five times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of 'dog-bone'-shaped specimens......Engineering of sophisticated synthetic 3D scaffolds that allow controlling behaviour and location of the cells requires advanced micro/nano-fabrication techniques. Ultrafast laser micro-machining employing a 1030-nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining...

  2. An in-pipe mobile micromachine using fluid power. A mechanism adaptable to pipe diameters

    International Nuclear Information System (INIS)

    Yoshida, Kazuhiro; Yokota, Shinichi; Takahashi, Ken

    2000-01-01

    To realize micro maintenance robots for small diameter pipes of nuclear reactors and so on, high power in-pipe mobile micromachines have been required. The authors have proposed the bellows microactuator using fluid power and have tried to apply the actuators to in-pipe mobile micromachines. In the previous papers, some inchworm mobile machine prototypes with 25 mm in diameter are fabricated and the traveling performances are experimentally investigated. In this paper, to miniaturize the in-pipe mobile machine and to make it adaptable to pipe diameters, firstly, a simple rubber-tube actuator constrained with a coil-spring is proposed and the static characteristics are investigated. Secondly, a supporting mechanism which utilizes a toggle mechanism and is adaptable to pipe diameters is proposed and the supporting forces are investigated. Finally, an in-pipe mobile micromachine for pipe with 4 - 5 mm in diameter is fabricated and the maximum traveling velocity of 7 mm/s in both ahead and astern movements is experimentally verified. (author)

  3. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    Science.gov (United States)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  4. Design and development of a surface micro-machined push–pull-type true-time-delay phase shifter on an alumina substrate for Ka-band T/R module application

    International Nuclear Information System (INIS)

    Dey, Sukomal; Koul, Shiban K

    2012-01-01

    A radio frequency micro-electro-mechanical system (RF-MEMS) phase shifter based on the distributed MEMS transmission line (DMTL) concept towards maximum achievable phase shift with low actuation voltage with good figure of merit (FOM) is presented in this paper. This surface micro-machined analog DMTL phase shifter demonstrates low power consumption for implementation in a Ka-band transmit/receive (T/R) module. The push–pull-type switch has been designed and optimized with an analytical method and validated with simulation, which is the fundamental building block of the design of a true-time-delay phase shifter. Change in phase has been designed and optimized in push and pull states with reference to the up-state performance of the phase shifter. The working principle of this push–pull-type DMTL phase shifter has been comprehensively worked out. A thorough detail of the design and performance analysis of the phase shifter has been carried out with various structural parameters using commercially available simulation tools with reference to a change in phase shift and has been verified using a system level simulation. The phase shifter is fabricated on the alumina substrate, using a suspended gold bridge membrane with a surface micromachining process. Asymmetric behaviour of push–pull bridge configuration has been noted and a corresponding effect on mechanical, electrical and RF performances has been extensively investigated. It is demonstrated 114° dB −1 FOM over 0–40 GHz band, which is the highest achievable FOM from a unit cell on an alumina substrate reported so far. A complete phase shifter contributes to a continuous differential phase shift of 0°–360° over 0–40 GHz band with a minimum actuation voltage of 8.1 V which is the highest achievable phase shift with the lowest actuation voltage as per till date on the alumina substrate with good repeatability and return loss better than 11.5 dB over 0–40 GHz band. (paper)

  5. Comparison of ion coupling strategies for a microengineered quadrupole mass filter.

    Science.gov (United States)

    Wright, Steven; Syms, Richard R A; O'Prey, Shane; Hong, Guodong; Holmes, Andrew S

    2009-01-01

    The limitations of conventional machining and assembly techniques require that designs for quadrupole mass analyzers with rod diameters less than a millimeter are not merely scale versions of larger instruments. We show how silicon planar processing techniques and microelectromechanical systems (MEMS) design concepts can be used to incorporate complex features into the construction of a miniature quadrupole mass filter chip that could not easily be achieved using other microengineering approaches. Three designs for the entrance and exit to the filter consistent with the chosen materials and techniques have been evaluated. The differences between these seemingly similar structures have a significant effect on the performance. Although one of the designs results in severe attenuation of transmission with increasing mass, the other two can be scanned to m/z = 400 without any corruption of the mass spectrum. At m/z = 219, the variation in the transmission of the three designs was found to be approximately four orders of magnitude. A maximum resolution of M/DeltaM = 87 at 10% peak height has been achieved at m/z = 219 with a filter operated at 6 MHz and constructed using rods measuring (508 +/- 5) microm in diameter.

  6. Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity

    International Nuclear Information System (INIS)

    Didar, Tohid Fatanat; Dolatabadi, Ali; Wüthrich, Rolf

    2008-01-01

    Spark-assisted chemical engraving (SACE) is an unconventional micro-machining technology based on electrochemical discharge used for micro-machining nonconductive materials. SACE 2D micro-machining with constant speed was used to machine micro-channels in glass. Parameters affecting the quality and geometry of the micro-channels machined by SACE technology with constant velocity were presented and the effect of each of the parameters was assessed. The effect of chemical etching on the geometry of micro-channels under different machining conditions has been studied, and a model is proposed for characterization of the micro-channels as a function of machining voltage and applied speed

  7. High-frequency micro-machined power inductors

    International Nuclear Information System (INIS)

    Wang, N.; O'Donnell, T.; Roy, S.; Brunet, M.; McCloskey, P.; O'Mathuna, S.C.

    2005-01-01

    Power inductors have been fabricated on silicon substrates using low-temperature IC compatible processes. The electrical properties of these micro-inductors have been measured and discussed. A maximum quality factor of 6 at 4 MHz has been achieved with an inductance value of about 160 nH. The DC saturation currents of the non-gapped and gapped inductors are ∼500 and 700 mA, respectively. The relatively high Q factor and the load current characteristics allow these micro-machined inductors to be used in integrated power converters

  8. Monitoring of yeast cell concentration using a micromachined impedance sensor

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.

    2005-01-01

    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  9. Laser micromachining of biofactory-on-a-chip devices

    Science.gov (United States)

    Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.

    2002-06-01

    Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.

  10. Micromachined millimeter-wave photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Sigalas, M.; Ho, K.

    1994-01-01

    We have developed a new technique for fabricating three-dimensional photonic band-gap crystals. Our method utilizes an orderly stacking of micromachined (110) silicon wafers to build the periodic structure. A structure with a full three-dimensional photonic band gap centered near 100 GHz was measured, with experimental results in good agreement with theoretical predictions. This basic approach described should be extendable to build structures with photonic band-gap frequencies ranging from 30 GHz to 3 THz

  11. Fiscal 1997 report on technological results. R and D on micromachine technology; 1997 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Researches on basic element technology of micromachines are conducted that operate autonomously in a narrow small part in a complicated apparatus or in vivo. The areas of activity are 1. research on micromachine systems and 2. comprehensive investigation and research. In 1, (1) a micro catheter and (2) a micro tactile sensor catheter were studied while, in 2, basic technology and technological problems, particularly those problems concerning sophistication in the medical field were examined and studied. Further, in (1), with the purpose of developing a micro laser catheter for diagnosis/treatment, researches were implemented on the technology of integrating micro laser and an optical fiber which were components of the catheter and on the fabrication of the fine diameter of a micro catheter as well as on the characteristical improvement of the base body on which minute elements were mounted. In (2), characteristical improvement and sophistication were carried out for a high sensitivity contact pressure sensor and a diagnostic tactile sensor, which are mounted on a catheter having a positive bulge control mechanism for insertion into body cavity, with a sensor probe manufactured experimentally. (NEDO)

  12. Development of a Novel Transparent Flexible Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Da-Chen Pang

    2017-06-01

    Full Text Available This paper presents the world’s first transparent flexible capacitive micromachined ultrasonic transducer (CMUT that was fabricated through a roll-lamination technique. This polymer-based CMUT has advantages of transparency, flexibility, and non-contacting detection which provide unique functions in display panel applications. Comprising an indium tin oxide-polyethylene terephthalate (ITO-PET substrate, SU-8 sidewall and vibrating membranes, and silver nanowire transparent electrode, the transducer has visible-light transmittance exceeding 80% and can operate on curved surfaces with a 40 mm radius of curvature. Unlike the traditional silicon-based high temperature process, the CMUT can be fabricated on a flexible substrate at a temperature below 100 °C to reduce residual stress introduced at high temperature. The CMUT on the curved surfaces can detect a flat target and finger at distances up to 50 mm and 40 mm, respectively. The transparent flexible CMUT provides a better human-machine interface than existing touch panels because it can be integrated with a display panel for non-contacting control in a health conscious environment and the flexible feature is critical for curved display and wearable electronics.

  13. Optofluidic Microlasers based on Femtosecond Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Simoni F.

    2017-08-01

    Full Text Available We present the different optofluidic lasers which have been realized using the Femtosecond Micromachining technique to fabricate the monolithic optofluidic structures in glass chips. We show how the great flexibility of this 3D technique allows getting different kind of optical cavities. The most recent devices fabricated by this technique as ring shaped and Fabry-Perot resonators show excellent emission performances.We also point out how the addition of the inkjet printing technique provides further opportunities in realizing optofluidic chips.

  14. Improving the Design of Capacitive Micromachined Ultrasonic Transducers Aided with Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    A Martowicz

    2016-09-01

    Full Text Available The paper presents the results of analysis performed to search for feasible design improvements for capacitive micromachined ultrasonic transducer. Carried out search has been aided with the sensitivity analysis and the application of Response Surface Method. The multiphysics approach has been taken into account in elaborated finite element model of one cell of described transducer in order to include significant physical phenomena present in modelled microdevice. The set of twelve input uncertain and design parameters consists of geometric, material and control properties. The amplitude of dynamic membrane deformation of the transducer has been chosen as studied parameter. The objective of performed study has been defined as the task of finding robust design configurations of the transducer, i.e. characterizing maximal value of deformation amplitude with its minimal variation.

  15. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications

    Science.gov (United States)

    Paula, Kelly T.; Gaál, Gabriel; Almeida, G. F. B.; Andrade, M. B.; Facure, Murilo H. M.; Correa, Daniel S.; Riul, Antonio; Rodrigues, Varlei; Mendonça, Cleber R.

    2018-05-01

    There is an increasing interest in the last years towards electronic applications of graphene-based materials and devices fabricated from patterning techniques, with the ultimate goal of high performance and temporal resolution. Laser micromachining using femtosecond pulses is an attractive methodology to integrate graphene-based materials into functional devices as it allows changes to the focal volume with a submicrometer spatial resolution due to the efficient nonlinear nature of the absorption, yielding rapid prototyping for innovative applications. We present here the patterning of PLA-graphene films spin-coated on a glass substrate using a fs-laser at moderate pulse energies to fabricate interdigitated electrodes having a minimum spatial resolution of 5 μm. Raman spectroscopy of the PLA-graphene films indicated the presence of multilayered graphene fibers. Subsequently, the PLA-graphene films were micromachined using a femtosecond laser oscillator delivering 50-fs pulses and 800 nm, where the pulse energy and scanning speed was varied in order to determine the optimum irradiation parameters (16 nJ and 100 μm/s) to the fabrication of microstructures. The micromachined patterns were characterized by optical microscopy and submitted to electrical measurements in liquid samples, clearly distinguishing all tastes tested. Our results confirm the femtosecond laser micromachining technique as an interesting approach to efficiently pattern PLA-graphene filaments with high precision and minimal mechanical defects, allowing the easy fabrication of interdigitated structures and an alternative method to those produced by conventional photolithography.

  16. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos

    2017-01-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluoresc...

  17. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  18. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  19. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de

    2017-01-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  20. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de, E-mail: alessandro.nogueira@usp.br, E-mail: resamad@ipen.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sorocaba, SP (Brazil); Faculdade de Engenharia de Sorocaba (FACENS), Ipero, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  1. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... importance of surface topography follows. In general the replication is not perfect and the topography of the plastic part differs from the inverse topography of the mould cavity. It is desirable to be able to control the degree of replication perfection or replication quality. This requires an understanding...... of the physical mechanisms of replication. Such understanding can lead to improved process design and facilitate in-line process quality control with respect to surface properties. The purpose of the project is to identify critical factors that affect topography replication quality and to obtain an understanding...

  2. Sub 100 nm proton beam micromachining: theoretical calculations on resolution limits

    International Nuclear Information System (INIS)

    Kan, J.A. van; Sum, T.C.; Osipowicz, T.; Watt, F.

    2000-01-01

    Proton beam micromachining is a novel direct-write process for the production of three-dimensional (3D) microstructures. A focused beam of MeV protons is scanned in a pre-determined pattern over a suitable resist material (e.g. PMMA or SU-8) and the latent image formed is subsequently developed chemically. In this paper calculations on theoretical resolution limits of proton beam micromachined three-dimensional microstructures are presented. Neglecting the finite beam size, a Monte Carlo ion transport code was used in combination with a theoretical model describing the delta-ray (δ-ray) energy deposition to determine the lateral energy deposition distribution in PMMA resist material. The energy deposition distribution of ion induced secondary electrons (δ-rays) has been parameterized using analytical models. It is assumed that the attainable resolution is limited by a convolution of the spread of the ion beam and energy deposition of the δ-rays

  3. Fabrication and Characterization of Capacitive Micromachined Ultrasonic Transducers with Low-Temperature Wafer Direct Bonding

    Directory of Open Access Journals (Sweden)

    Xiaoqing Wang

    2016-12-01

    Full Text Available This paper presents a fabrication method of capacitive micromachined ultrasonic transducers (CMUTs by wafer direct bonding, which utilizes both the wet chemical and O2plasma activation processes to decrease the bonding temperature to 400 °C. Two key surface properties, the contact angle and surface roughness, are studied in relation to the activation processes, respectively. By optimizing the surface activation parameters, a surface roughness of 0.274 nm and a contact angle of 0° are achieved. The infrared images and static deflection of devices are assessed to prove the good bonding effect. CMUTs having silicon membranes with a radius of 60 μm and a thickness of 2 μm are fabricated. Device properties have been characterized by electrical and acoustic measurements to verify their functionality and thus to validate this low-temperature process. A resonant frequency of 2.06 MHz is obtained by the frequency response measurements. The electrical insertion loss and acoustic signal have been evaluated. This study demonstrates that the CMUT devices can be fabricated by low-temperature wafer direct bonding, which makes it possible to integrate them directly on top of integrated circuit (IC substrates.

  4. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  5. A novel micromachined shadow mask system with self-alignment and gap control capability

    International Nuclear Information System (INIS)

    Hong, Jung Moo; Zou Jun

    2008-01-01

    We present a novel micromachined shadow mask system, which is capable of accurate self-alignment and mask-substrate gap control. The shadow mask system consists of a silicon shadow mask and a silicon carrier wafer with pyramidal cavities fabricated with bulk micromachining. Self-alignment and gap control of the shadow mask and the fabrication substrate can readily be achieved by using matching pairs of pyramidal cavities and steel spheres placed between. The layer-to-layer alignment accuracy of the new shadow mask system has been experimentally characterized and verified using both optical and atomic force microscopic measurements. As an application of this new shadow mask system, an organic thin-film transistor (OTFT) using pentacene as the semiconductor layer has been successfully fabricated and tested

  6. Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients

    KAUST Repository

    Demiral, Murat

    2014-11-01

    A micro-machining process becomes increasingly important with the continuous miniaturization of components used in various fields from military to civilian applications. To characterise underlying micromechanics, a 3D finite-element model of orthogonal micro-machining of f.c.c. single crystal copper was developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal-plasticity theories were used to demonstrate the influence of pre-existing and evolved strain gradients on the cutting process for different combinations of crystal orientations and cutting directions. Crown Copyright © 2014.

  7. Manufacture of Radio Frequency Micromachined Switches with Annealing

    OpenAIRE

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-01

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspe...

  8. Ultrafast disk technology enables next generation micromachining laser sources

    Science.gov (United States)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  9. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2016-07-01

    Full Text Available This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that the shutter thickness and its spacing from the underlying electrodes should be minimized as these parameters very strongly affect the MEFM signal. Exploration of the shutter perforation size and sense electrode width indicate that the best MEFM design is one where shutter perforation widths are a few times larger than the sense electrode widths. Keywords: MEFM, Finite element method, Electric field measurement, MEMS, Micromachining

  10. Micromachined single-level nonplanar polycrystalline SiGe thermal microemitters for infrared dynamic scene projection

    Science.gov (United States)

    Malyutenko, V. K.; Malyutenko, O. Yu.; Leonov, V.; Van Hoof, C.

    2009-05-01

    The technology for self-supported membraneless polycrystalline SiGe thermal microemitters, their design, and performance are presented. The 128-element arrays with a fill factor of 88% and a 2.5-μm-thick resonant cavity have been grown by low-pressure chemical vapor deposition and fabricated using surface micromachining technology. The 200-nm-thick 60×60 μm2 emitting pixels enforced with a U-shape profile pattern demonstrate a thermal time constant of 2-7 ms and an apparent temperature of 700 K in the 3-5 and 8-12 μm atmospheric transparency windows. The application of the devices to the infrared dynamic scene simulation and their benefit over conventional planar membrane-supported emitters are discussed.

  11. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    International Nuclear Information System (INIS)

    Belwanshi, Vinod; Topkar, Anita

    2016-01-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  12. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    Science.gov (United States)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  13. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong; Yao, Yingbang; Wang, Xianbin; Yue, Weisheng; Chen, Longqing; Zhang, Xixiang

    2013-01-01

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC

  14. Sensitivity of Micromachined Joule-Thomson Cooler to Clogging Due to Moisture

    NARCIS (Netherlands)

    Cao, Haishan; Vanapalli, Srinivas; Holland, Herman J.; Vermeer, Cristian Hendrik; ter Brake, Hermanus J.M.

    2015-01-01

    A major issue in long-term operation of micromachined Joule-Thomson coolers is the clogging of the microchannels and/or the restriction due to the deposition of water molecules present in the working fluid. In this study, we present the performance of a microcooler operated with nitrogen gas with

  15. Micromachined Microwave Cavity Resonator Filters for 5G: a Feasibility Study

    NARCIS (Netherlands)

    Kemenade, van R.; Smolders, A.B.; Hon, de B.P.

    2015-01-01

    Micromachined microwave cavity filters offer a light-weight, high-Q and highly integrated alternative in the frequency range of 20 GHz–100 GHz as compared to conventional filter types. The filter technology shows potential for use in 5G portable devices and as such, the design of a duplexer

  16. Arrayed architectures for multi-stage Si-micromachined high-flow Knudsen pumps

    International Nuclear Information System (INIS)

    Qin, Yutao; An, Seungdo; Gianchandani, Yogesh B

    2015-01-01

    This paper reports an evaluation and a comparison of two architectures for implementing Si-micromachined high-flow Knudsen pumps. Knudsen pumps, which operate on the principle of thermal transpiration, have been shown to have great promise for micro-scale gas phase fluidic systems such as micro gas chromatographs. Simultaneously achieving both a high flow rate and adequate blocking pressure has been a persistent challenge, which is addressed in this work by combining multiple pumps in series and addressing the resulting challenges in thermal management. The basic building block is a Si-micromachined pump with  ≈100 000 parallel channels in a 4 mm  ×  6 mm footprint. In the primary approach, multiple pump stages are stacked vertically with interleaved Si-micromachined spacers. A stacked 4-stage Knudsen pump has a form factor of 10 mm  ×  8 mm  ×  6 mm. In an alternate approach, multiple stages are arranged in a planar array. The experimental results demonstrate multiplication of the output pressure head with the number of stages, while the flow rate is maintained. For example, a stacked 4-stage Knudsen pump with 8 W power operated at atmospheric pressure provided a blocking pressure of 0.255 kPa, which was 3.6  ×  of that provided by a single-stage pump with 2 W power; while both provided a  ≈  30 sccm maximum flow rate. The performance can be customized for practical applications such as micro gas chromatography. (paper)

  17. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches presented.

  18. Nanofluidic bubble pump using surface tension directed gas injection

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2002-01-01

    A new concept for liquid manipulation has been developed and implemented in surface-micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micrometer-sized holes in the microchannel wall. The injected gas is directed to an exhaust by

  19. FY 1994 Report on the technical results. Research and development of micromachine technologies (Development of highly functional maintenance technologies for power plants); 1994 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This research and development project is aimed at development of the technologies for the micromachines provided with maintenance functions, e.g., for examination and maintenance of abnormal conditions in heat exchangers, piping systems or the like. The initial target is set at establishment of basic technologies for the micromachines, in consideration of the available technologies. The R and D activities are directed to (1) microcapsules for, e.g., micro power generators, (2) mother machines having controlling and instructing functions, (3) non-cabled examination modules, (4) cabled examination modules, and (5) total systems. The item (1) involves the micro power generators, and mechanisms of signal transmission, flaw finding and driving/suspension; the item (2) mechanisms of micro-optics and connection, group controlling, microbatteries, action type controlling, and artificial muscles; the item (3) expansion/contraction type transfer mechanisms, light energy supply, micro visual sensation, function connection, and concerted controlling; the item (4) tubular manipulators, and mechanisms of light-aided power generation and voltage elevation; and the item (5) maintenance and micromachine systems. (NEDO)

  20. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team.

    Science.gov (United States)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-07-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.

  1. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    International Nuclear Information System (INIS)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric; Shen, Guoyin

    2015-01-01

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphous boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here

  2. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    Directory of Open Access Journals (Sweden)

    Yogesh B. Gianchandani

    2008-04-01

    Full Text Available This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane roomtemperature- vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μmdiameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated.

  3. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    International Nuclear Information System (INIS)

    Kim, Sanha; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam; Kim, Bo Hyun

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown

  4. Achievement report on commissioned research of R and D in fiscal 1999 on micro-machine technologies. R and D of micro-machine technologies; 1999 nendo kenkyu seika hokokusho. Maikuro mashin gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to perform diagnoses and medical treatment in space limited portions in living organisms, research on micro-machine systems, research on a scanning type photographing unit in the medical micro-machine, and comprehensive surveys and researches have been conducted. This paper summarizes the achievements in fiscal 1999. In the research of a micro laser catheter, a prototype laser head having an outer diameter of 1 mm was fabricated, whereas composition was realized with a micro catheter having an outer diameter of 1.5 mm. With regard to the micro pressure sensor for catheterization, good active curving action was realized by a catheter in which a pressure sensor is mounted in the SMA curved catheter head. Research on the scanning type photographing unit has been carried out, for reducing further the diameter and size of an endoscope, on a photographing unit using laser beam whose cross section area of the tip optical section is about half of the conventional units. As a result, a high resolution scanning type photographing unit was realized based on the fiber optic system using a scanning mirror. In the comprehensive surveys and researches, items of information were collected in relation with the basic technologies for micro-machines. (NEDO)

  5. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  6. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  7. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (fibrotic response. © 2012 John Wiley & Sons A/S.

  8. Micromachined microphone array on a chip for turbulent boundary layer measurements

    Science.gov (United States)

    Krause, Joshua Steven

    A surface micromachined microphone array on a single chip has been successfully designed, fabricated, characterized, and tested for aeroacoustic purposes. The microphone was designed to have venting through the diaphragm, 64 elements (8x8) on the chip, and used a capacitive transduction scheme. The microphone was fabricated using the MEMSCAP PolyMUMPs process (a foundry polysilicon surface micromachining process) along with facilities at Tufts Micro and Nano Fabrication Facility (TMNF) where a Parylene-C passivation layer deposition and release of the microstructures were performed. The devices are packaged with low profile interconnects, presenting a maximum of 100 mum of surface topology. The design of an individual microphone was completed through the use of a lumped element model (LEM) to determine the theoretical performance of the microphone. Off-chip electronics were created to allow the microphone array outputs to be redirected to one of two channels, allowing dynamic reconfiguration of the effective transducer shape in software and provide 80 dB off isolation. The characterization was completed through the use of laser Doppler vibrometry (LDV), acoustic plane wave tube and free-field calibration, and electrical noise floor testing in a Faraday cage. Measured microphone sensitivity is 0.15 mV/Pa for an individual microphone and 8.7 mV/Pa for the entire array, in close agreement with model predictions. The microphones and electronics operate over the 200--40 000 Hz band. The dynamic range extends from 60 dB SPL in a 1 Hz band to greater than 150 dB SPL. Element variability was +/-0.05 mV/Pa in sensitivity with an array yield of 95%. Wind tunnel testing at flow rates of up to 205.8 m/s indicates that the devices continue to operate in flow without damage, and can be successfully reconfigured on the fly. Care has been taken to systematically remove contaminating signals (acoustic, vibration, and noise floor) from the wind tunnel data to determine actual

  9. Micromachined integrated quantum circuit containing a superconducting qubit

    Science.gov (United States)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  10. Design challenges for stepper motor actuated microvalve based on fine and micro-machining

    NARCIS (Netherlands)

    Fazal, I.; Elwenspoek, Michael Curt

    2007-01-01

    We present a normally open stepper motor actuated microvalve based on micro and fine-machining technique. In this paper, first we have described how the larger controllable flow range can be achieved with simple micromachining techniques and secondly we have presented the results which show how the

  11. MEMS cost analysis from laboratory to industry

    CERN Document Server

    Freng, Ron Lawes

    2016-01-01

    The World of MEMS; Chapter 2: Basic Fabrication Processes; Chapter 3: Surface Microengineering. High Aspect Ratio Microengineering; Chapter 5: MEMS Testing; Chapter 6: MEMS Packaging. Clean Rooms, Buildings and Plant; Chapter 8: The MEMSCOST Spreadsheet; Chapter 9: Product Costs - Accelerometers. Product Costs - Microphones. MEMS Foundries. Financial Reporting and Analysis. Conclusions.

  12. A LabVIEWTM-based scanning and control system for proton beam micromachining

    International Nuclear Information System (INIS)

    Bettiol, Andrew A.; Kan, J.A. van; Sum, T.C.; Watt, F.

    2001-01-01

    LabVIEW TM is steadily gaining in popularity as the programming language of choice for scientific data acquisition and control. This is due to the vast array of measurement instruments and data acquisition cards supported by the LabVIEW TM environment, and the relative ease with which advanced software can be programmed. Furthermore, virtual instruments that are designed for a given system can be easily ported to other LabVIEW TM platforms and hardware. This paper describes the new LabVIEW TM based scanning and control system developed specifically for proton beam micromachining (PBM) applications. The new system is capable of scanning figures at 16-bit resolution with improved sub-microsecond scan rates. Support for electrostatic beam blanking and external dose normalization using a TTL signal have been implemented. The new software incorporates a semi-automated dose calibration system, and a number of novel dose normalization methods. Limitations of the current beam scanning hardware are discussed in light of new results obtained from micromachining experiments performed in SU-8 photoresist

  13. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  14. Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors

    Science.gov (United States)

    Papapolymerou, Ioannis John

    2004-01-01

    A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.

  15. High-power ultrashort fiber laser for solar cells micromachining

    Science.gov (United States)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  16. Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients

    KAUST Repository

    Demiral, Murat; Roy, Anish; El Sayed, Tamer S.; Silberschmidt, Vadim V.

    2014-01-01

    of orthogonal micro-machining of f.c.c. single crystal copper was developed. The model was implemented in a commercial software ABAQUS/Explicit employing a user-defined subroutine VUMAT. Strain-gradient crystal-plasticity and conventional crystal

  17. Etching characteristics of Si{110} in 20 wt% KOH with addition of hydroxylamine for the fabrication of bulk micromachined MEMS

    Science.gov (United States)

    Rao, A. V. Narasimha; Swarnalatha, V.; Pal, P.

    2017-12-01

    Anisotropic wet etching is a most widely employed for the fabrication of MEMS/NEMS structures using silicon bulk micromachining. The use of Si{110} in MEMS is inevitable when a microstructure with vertical sidewall is to be fabricated using wet anisotropic etching. In most commonly employed etchants (i.e. TMAH and KOH), potassium hydroxide (KOH) exhibits higher etch rate and provides improved anisotropy between Si{111} and Si{110} planes. In the manufacturing company, high etch rate is demanded to increase the productivity that eventually reduces the cost of end product. In order to modify the etching characteristics of KOH for the micromachining of Si{110}, we have investigated the effect of hydroxylamine (NH2OH) in 20 wt% KOH solution. The concentration of NH2OH is varied from 0 to 20% and the etching is carried out at 75 °C. The etching characteristics which are studied in this work includes the etch rates of Si{110} and silicon dioxide, etched surface morphology, and undercutting at convex corners. The etch rate of Si{110} in 20 wt% KOH + 15% NH2OH solution is measured to be four times more than that of pure 20 wt% KOH. Moreover, the addition of NH2OH increases the undercutting at convex corners and enhances the etch selectivity between Si and SiO2.

  18. A Novel Piezo-Actuator-Sensor Micromachine for Mechanical Characterization of Micro-Specimens

    Directory of Open Access Journals (Sweden)

    Leila Ladani

    2010-12-01

    Full Text Available Difficulties associated with testing and characterization of materials at microscale demands for new technologies and devices that are capable of measuring forces and strains at microscale. To address this issue, a novel electroactive-based micro-electro-mechanical machine is designed. The micromachine is comprised of two electroactive (piezoelectric micro-elements mounted on a rigid frame. Electrical activation of one of the elements causes it to expand and induce a stress in the intervening micro-specimen. The response of the microspecimen to the stress is measured by the deformation and thereby voltage/resistance induced in the second electro-active element. The concept is theoretically proven using analytical modeling in conjunction with non-linear, three dimensional finite element analyses for the micromachine. Correlation of the output voltage to the specimen stiffness is shown. It is also demonstrated through finite element and analytical analysis that this technique is capable of detecting non-linear behavior of materials. A characteristic curve for an isotropic specimen exhibiting linear elastic behavior is developed. Application of the proposed device in measuring coefficient of thermal expansion is explored and analytical analysis is conducted.

  19. Micromachining. CERN Courier, Jul-Aug 1995, v. 35(5)

    International Nuclear Information System (INIS)

    Wilson, Martin

    1995-01-01

    Full text: As well as making microcircuit components, X-ray lithography can also be used to make very small mechanical parts, either by using directly the exposed and developed photoresist, or as a mould to produce the component in another material such as ceramic or metal. In this revolutionary technology, metal components are made via the LIGA (Lithographic Galvanoformung und Abformung) technique in which the exposed and developed photoresist is coated with a conducting material and then electroplated, after which the resist is stripped away. In addition to fine size and precision resolution, X-rays offer the advantage of deep penetration and small scattering through the resist, so that patterns may be up to a millimetre deep, with very accurate straightness in directions parallel to the beam. Micromachining via LIGA was developed at KfK Karlsruhe; commercialization and further development is being vigorously pursued by the Institut fur Mikrotechnik in Mainz and by Microparts GmbH in Karlsruhe. Significant developments have been made at the Synchrotron Radiation Centre in Madison, Wisconsin, with new programmes start-ing at SRRC (Taiwan), CAMD (Baton Rouge, Louisiana), and LURE (Paris). There is now an active European Special Interest Group for LIGA. Commercially manufactured micromachines are starting to be used in sensors and connectors. The ability to integrate microdevices with microelectronics raises many interesting possibilities for the future, notably in medicine and for intelligent sensors. In all cases, however, widespread adoption will be governed by the ability to mass-produce cheaply, requiring high volume production. The high intensities of synchrotron radiation will assist in achieving these large throughputs

  20. Synthesis and structure of large single crystalline silver hexagonal microplates suitable for micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Lyutov, Dimitar L.; Genkov, Kaloyan V.; Zyapkov, Anton D.; Tsutsumanova, Gichka G.; Tzonev, Atanas N. [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria); Lyutov, Lyudmil G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Sofia, 1, J. Bouchier Blvd, Sofia (Bulgaria); Russev, Stoyan C., E-mail: scr@phys.uni-sofia.bg [Department of Solid State Physics and Microelectronics, Faculty of Physics, University of Sofia, 5, J. Bouchier Blvd, Sofia (Bulgaria)

    2014-01-15

    We report a simple one-step synthesis method of large single crystalline Ag (111) hexagonal microplates with sharp edges and a size of up to tens of microns. Single silver crystals were produced by reduction silver nitrate aqueous solution with 4-(methylamino)phenol sulfate. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction and optical microscopy techniques were combined to characterize the crystals. It is shown that the microplates can be easily dispersed and transferred as single objects onto different substrates and subsequently used as a high quality plasmonic starting material for micromachining of future nanocomponents, using modern top-down techniques like focused-ion beam milling and gas injection deposition. - Highlights: • Synthesis of large Ag hexagonal microplates with high crystallinity. • It is shown and discussed the role of twinning for the anisotropic 2D growth. • The Ag plates are stable in water and can be dispersed onto different substrates. • Their positioning and subsequent micromachining with FIB/GIS is demonstrated. • Suitable starting material for future plasmonic nanocomponents.

  1. Silicon micromachining using a high-density plasma source

    International Nuclear Information System (INIS)

    McAuley, S.A.; Ashraf, H.; Atabo, L.; Chambers, A.; Hall, S.; Hopkins, J.; Nicholls, G.

    2001-01-01

    Dry etching of Si is critical in satisfying the demands of the micromachining industry. The micro-electro-mechanical systems (MEMS) community requires etches capable of high aspect ratios, vertical profiles, good feature size control and etch uniformity along with high throughput to satisfy production requirements. Surface technology systems' (STS's) high-density inductively coupled plasma (ICP) etch tool enables a wide range of applications to be realized whilst optimizing the above parameters. Components manufactured from Si using an STS ICP include accelerometers and gyroscopes for military, automotive and domestic applications. STS's advanced silicon etch (ASE TM ) has also allowed the first generation of MEMS-based optical switches and attenuators to reach the marketplace. In addition, a specialized application for fabricating the next generation photolithography exposure masks has been optimized for 200 mm diameter wafers, to depths of ∼750 μm. Where the profile is not critical, etch rates of greater than 8 μm min -1 have been realized to replace previous methods such as wet etching. This is also the case for printer applications. Specialized applications that require etching down to pyrex or oxide often result in the loss of feature size control at the interface; this is an industry wide problem. STS have developed a technique to address this. The rapid progression of the industry has led to development of the STS ICP etch tool, as well as the process. (author)

  2. EDITORIAL: 15th European Workshop on Micromechanics (MME)

    Science.gov (United States)

    Puers, Bob

    2005-07-01

    This special issue of Journal of Micromechanics and Microengineering is entirely devoted to the fifteenth European Workshop on Micromechanics (MME), which was held in Leuven, at the Faculty Club, 5-7 September 2004. In this issue you will find a selection of papers presented at this workshop. The MME Workshop is organized every year to gather mostly European scientists and people from industry to discuss topics related to micromachining and microengineering in an informal manner. The first workshop was held at Twente University, the Netherlands, in 1989. The success of that event inaugurated a series of workshops traveling all over Europe. Looking back on the fifteen years of micromachining it is evident that the field has become more mature. More application driven research is now replacing the basic pure technology driven research we once got so excited about. Yet, half of the contributions still cover problems related to fabrication, production and reliability. Traditionally, the workshop aims to bring together young scientists in the field, with emphasis on discussions and communications in a friendly and informal atmosphere. The goal is to stimulate and to improve knowledge in the field, as well as to promote friendships between researchers. This edition of the workshop was no different. More than 70 papers were contributed, and it was decided to widen the scope with contributions also covering non-silicon technologies. This trend had already been informally introduced some years ago. After the third edition, it was decided to open up a selection of the contributed papers to a broader public by publishing them in a special issue of Journal of Micromechanics and Microengineering, and this has continued to the present day. Since the purpose of the workshop clearly is to stimulate younger scientists to enter the field, even immature research is presented there. The selection in this issue, however, aims to bring to you the more advanced level research work. Even

  3. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2014-01-01

    Full Text Available Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V and currents (<1 mA with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  4. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki; Maeda, Ryutaro [Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8564 (Japan)

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  5. FY1995 development of micromachine technology based on insects; 1995 nendo konchu wo kihan to suru micromachine gijutsu no kakuritsu to jitsuyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    If we develop micromachines by reducing simply the size of conventional mechanical systems, we cannot get sufficient performances of them because of scale-effect. Small natural creatures, insects, have very good structures and functions reasonable for their small size. In this research, basic characteristics of sensors, actuators, information processing functions, etc. of insects are studied and artificial systems similar to them are developed for industrial application. (1) Compound eyes: Insect compound eyes is the visual sensor which is composed of microlenses which are distributed three-dimensionally, receptors which vibrate with small amplitude around an optical axis and neural networks. In this research, the large scale model (several centimeters sized) of insect compound eyes has been developed. (2) Pheromone sensor: Pheromone gas sensor has been made of real male silkworm moth antenae. This sensor has been proved to work well as the female pheromone detector. This sensor was installed at the nose part of a wheeled mobile robot and this robot was observed to act like a real silkworm moth subjected to female pheromone stream. (3) Electrostatic microactuator: Generally speaking, high voltage(higher than 100V) electric power is necessary to actuate the electrostatic actuator. It was considered to be impossible to actuate them directly from CMOS. In this research, a new electrostatic actuator which can be actuated with less than 10V voltage can cause a fairly large displacement. (4) Hydraulic actuator: For micromachines, hydraulic pressure will be applicable for actuation. Structures may be simple and scale effect may give an advantageous characteristics for microsize. A butterfly-type flying robot was developed and it flied up along a vertical bar. (NEDO)

  6. Biological effect of microengineered grooved stents on strut healing: a randomised OCT-based comparative study in humans

    Science.gov (United States)

    Vesga, Boris; Hernandez, Hector; Higuera, Sergio; Gasior, Pawel; Echeveri, Dario; Delgado, Juan A; Dager, Antonio; Arana, Camilo; Simonton, Charles; Maehara, Akiko; Palmaz, Julio; Granada, Juan F

    2017-01-01

    Objective To evaluate the biological effect of microengineered stent grooves (MSG) on early strut healing in humans by performing optical coherence tomography (OCT) analysis 3 weeks following the implantation. Background In the experimental setting, MSG accelerate endothelial cell migration and reduce neointimal proliferation compared with bare metal stent (BMS). Methods A total of 37 patients undergoing percutaneous coronary intervention with de novo coronary lesions were randomly assigned to either MSG (n=19) or an identical BMS controls (n=18). All patients underwent OCT imaging at 3 weeks. A total of 7959 struts were included in the final analysis. Results At 3 weeks following stent implantation, almost all struts analysed (~97%) had evidence of tissue coverage. The percentage of partially covered struts was comparable between both groups. However, the percentage of fully embedded struts was higher in the BMS group (81.22%, 49.75–95.52) compared with the MSG group (74.21%, 58.85–86.38). The stent-level analysis demonstrated reduction in neointimal formation (neointimal hyperplasia area and volume reduction of ~14% and ~19%, respectively) in the MSG versus the BMS group. In the strut-level analysis, an even greater reduction (~22% in neointimal thickness) was seen in the MSG group. Layered neointimal was present in ~6% of the OCT frames in the BMS group while it was not present in the MSG group. Conclusions MSG induced a more homogeneous and predictable pattern of surface healing in the early stages following stent implantation. The biological effect of MSG on stent healing has the potential to improve the safety profile of current generation drug-eluting stents. Classifications BMS, OCT, clinical trials. PMID:28674616

  7. CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems

    DEFF Research Database (Denmark)

    Klank, Henning; Kutter, Jörg Peter; Geschke, Oliver

    2002-01-01

    , a three-layer polymer microstructure with included optical fibers was fabricated within two days. The use of CO2-laser systems to produce microfluidic systems has not been published before. These systems provide a cost effective alternative to UV-laser systems and they are especially useful......In this article, we focus on the enormous potential of a CO2-laser system for rapidly producing polymer microfluidic structures. The dependence was assessed of the depth and width of laser-cut channels on the laser beam power and on the number of passes of the beam along the same channel...... for microstructured PMMA [poly( methyl methacrylate)] parts were investigated, such as solvent-assisted glueing, melting, laminating and surface activation using a plasma asher. A solvent-assisted thermal bonding method proved to be the most time-efficient one. Using laser micromachining together with bonding...

  8. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  9. Simulation of the Mitra 15 micro-machine on IBM 360/91. Microprogramming of the fast Fourier transform

    International Nuclear Information System (INIS)

    Augustides, Jean

    1973-01-01

    As computing time did not allow working in real time, and as different methods had been proposed to reduce the computing time (the Cooley-Tuckey method, the use of specific FFT processors), this thesis proposes an intermediate solution, between the entirely programmed solution and the entirely cabled solution. After some generalities on micro-programming (definition, history, benefits and drawbacks, perspectives), the author reports the micro-programming of the Mitra 15 micro-machine: description of the machine, memory, command memory and associated circuits, interruptions and suspensions, descriptions of micro-statements, execution of a micro-statement. Programs and subroutines developed for the modelling of Mitra 15 micro-machine on IBM 360/91 are presented. Then, the author reports the micro-programming of the fast Fourier transform: theory, program description, and test

  10. Hypersonic force measurements using internal balance based on optical micromachined Fabry-Perot interferometry

    Science.gov (United States)

    Qiu, Huacheng; Min, Fu; Zhong, Shaolong; Song, Xin; Yang, Yanguang

    2018-03-01

    Force measurements using wind tunnel balance are necessary for determining a variety of aerodynamic performance parameters, while the harsh environment in hypersonic flows requires that the measurement instrument should be reliable and robust, in against strong electromagnetic interference, high vacuum, or metal (oxide) dusts. In this paper, we demonstrated a three-component internal balance for hypersonic aerodynamic force measurements, using novel optical micromachined Fabry-Perot interferometric (FPI) strain gauges as sensing elements. The FPI gauges were fabricated using Micro-Opto-Electro-Mechanical Systems (MOEMS) surface and bulk fabrication techniques. High-reflectivity coatings are used to form a high-finesse Fabry-Perot cavity, which benefits a high resolution. Antireflective and passivation coatings are used to reduce unwanted interferences. The FPI strain gauge based balance has been calibrated and evaluated in a Mach 5 hypersonic flow. The results are compared with the traditional technique using the foil resistive strain gauge balance, indicating that the proposed balance based on the MOEMS FPI strain gauge is reliable and robust and is potentially suitable for the hypersonic wind tunnel harsh environment.

  11. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  12. Micromachined high-performance RF passives in CMOS substrate

    International Nuclear Information System (INIS)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-01-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications. (topical review)

  13. Characterization of bulk-micromachined direct-bonded silicon nanofilters

    Science.gov (United States)

    Tu, Jay K.; Huen, Tony; Szema, Robert; Ferrari, Mauro

    1998-03-01

    The ability to separate 30-100 nm particles - nanofiltration - is critical for many biomedical applications. Where this filtration needs to be absolute, such as for viral elimination in the blood fractionation process, the large variations in pore size found with conventional polymeric filters can lead to the unwanted presence of viruses in the filtrate. To overcome this problem, we have developed a filter with micromachined channels sandwiched between two bonded silicon wafers. These channels are formed through the selective deposition and then removal of a thermally-grown oxide, the thickness of which can be controlled to +/- 4 percent for 30 nm pores. In this paper, we will present both the gas and liquid characterization, and the filtration studies done on 44 and 100 nm beads.

  14. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    OpenAIRE

    Zhou, Yu; Shafai, Cyrus

    2016-01-01

    This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that t...

  15. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  16. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents.

    Science.gov (United States)

    Huang, Tian-Yun; Sakar, Mahmut Selman; Mao, Angelo; Petruska, Andrew J; Qiu, Famin; Chen, Xue-Bo; Kennedy, Stephen; Mooney, David; Nelson, Bradley J

    2015-11-01

    Functional compound micromachines are fabricated by a design methodology using 3D direct laser writing and selective physical vapor deposition of magnetic materials. Microtransporters with a wirelessly controlled Archimedes screw pumping mechanism are engineered. Spatiotemporally controlled collection, transport, and delivery of micro particles, as well as magnetic nanohelices inside microfluidic channels are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro

    Science.gov (United States)

    Daghighi, Yasaman; Heidari, Hossein; Taylor, Hayden

    2018-02-01

    A predominant unsolved challenge in tissue engineering is the need of a robust technique for producing vascular networks, particularly when modeling human brain tissue. The availability of reliable in vitro human brain microvasculature models would advance our understanding of its function and would provide a platform for highthroughput drug screening. Current strategies for modeling vascularized brain tissue suffer from limitations such as (1) culturing non-human cell lines, (2) limited multi-cell co-culture, and (3) the effects of neighboring physiologically unrealistic rigid polymeric surfaces, such as solid membranes. We demonstrate a new micro-engineered platform that can address these shortcomings. Specifically, we have designed and prototyped a molding system to enable the precise casting of 100μm-diameter coaxial hydrogel structures laden with the requisite cells to mimic a vascular lumen. Here we demonstrate that a fine wire with diameter 130 μm or a needle with outer diameter 300 μm can be used as a temporary mold insert, and agarose-collagen composite matrix can be cast around these inserts and thermally gelled. When the wire or needle is retracted under the precise positional control afforded by our system, a microchannel is formed which is then seeded with human microvascular endothelial cells. After seven days of culture these cells produce an apparently confluent monolayer on the channel walls. In principle, this platform could be used to create multilayered cellular structures. By arranging a fine wire and a hollow needle coaxially, three distinct zones could be defined in the model: first, the bulk gel surrounding the needle; then, after needle retraction, a cylindrical shell of matrix; and finally, after retraction of the wire, a lumen. Each zone could be independently cell-seeded. To this end, we have also successfully 3D cultured human astrocytes and SY5Y glial cells in our agarose-collagen matrix. Our approach ultimately promises scalable

  18. High-intensity fibre laser design for micro-machining applications

    Science.gov (United States)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  19. 3D capacitive tactile sensor using DRIE micromachining

    Science.gov (United States)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  20. An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation

    International Nuclear Information System (INIS)

    Hung, Shao Hsuan; Hsieh, Hsin-Ta; John Su, Guo-Dung

    2008-01-01

    The design, fabrication and test results of an electromagnetic-actuated micromachined variable optical attenuator (VOA) are reported in this paper. Optical attenuation is achieved by moving a shutter into the light path between a pair of single mode fiber collimators. The shutter, consisting of a 500 µm × 1200 µm vertical micromirror, is monolithically integrated with an actuation flap. The micromirror was made by tetra-methyl ammonium hydroxide (TMAH) anisotropic wet etching with a sharp edge and a smooth reflecting surface. By arranging fiber collimators in different configurations, the reported VOA can be used as either normally-on or normally-off modes due to its relatively large shutter surface. The insertion loss of the VOA is 0.2 dB and 0.4 dB for normally-on and normally-off modes, respectively. Both optical and mechanical simulation models of the device were discussed, and the theoretical calculations based on these models offered an efficient way to predict the performance of the shutter-type VOA. The controllable attenuation range is approximately 40 dB with a driving voltage less than 0.5 V, and the driving power is less than 2 mW. A response time of 5 ms is achieved by applying proper driving waveform

  1. Human iPSC-Derived Endothelial Cells and Microengineered Organ-Chip Enhance Neuronal Development

    Directory of Open Access Journals (Sweden)

    Samuel Sances

    2018-04-01

    Full Text Available Summary: Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro. Microengineered organ-on-chip (or Organ-Chip systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo-like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition. : Sances et al. combine Organ-Chip technology with human induced pluripotent stem cell-derived spinal motor neurons to study the maturation effects of Organ-Chip culture. By including microvascular cells also derived from the same patient line, the authors show enhancement of neuronal function, reproduction of vascular-neuron pathways, and specific gene activation that resembles in vivo spinal cord development. Keywords: organ-on-chip, spinal cord, iPSC, disease modeling, amyotrophic lateral sclerosis, microphysiological system, brain microvascular endothelial cells, spinal motor neurons, vasculature, microfluidic device

  2. Channeling-based collimators for generation of microbeams produced by silicon micromachining technology

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Milan, E.; Ronzoni, A.; Martinelli, G.; Biryukov, V.M.; Chesnokov, Yu.A.

    2006-01-01

    The growing interest on micro-beams in recent years and the combined development of channeling technology in high-energy physics have opened the way to new concepts for micro-beams devices. Silicon micromachining technology is here applied to manufacture micro-collimators in inexpensive and feasible ways. Both dry and wet etchings can be employed for the purpose, though the latter technique appears to be cheaper and easier. Two designs for micro-collimator devices have been considered and preliminary samples have been produced accordingly

  3. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    International Nuclear Information System (INIS)

    Ito, Kota; Miura, Atsushi; Iizuka, Hideo; Toshiyoshi, Hiroshi

    2015-01-01

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics

  4. Parallel-plate submicron gap formed by micromachined low-density pillars for near-field radiative heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan); Miura, Atsushi; Iizuka, Hideo [Toyota Central Research and Development Laboratories, Nagakute, Aichi 480-1192 (Japan); Toshiyoshi, Hiroshi [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2015-02-23

    Near-field radiative heat transfer has been a subject of great interest due to the applicability to thermal management and energy conversion. In this letter, a submicron gap between a pair of diced fused quartz substrates is formed by using micromachined low-density pillars to obtain both the parallelism and small parasitic heat conduction. The gap uniformity is validated by the optical interferometry at four corners of the substrates. The heat flux across the gap is measured in a steady-state and is no greater than twice of theoretically predicted radiative heat flux, which indicates that the parasitic heat conduction is suppressed to the level of the radiative heat transfer or less. The heat conduction through the pillars is modeled, and it is found to be limited by the thermal contact resistance between the pillar top and the opposing substrate surface. The methodology to form and evaluate the gap promotes the near-field radiative heat transfer to various applications such as thermal rectification, thermal modulation, and thermophotovoltaics.

  5. Study of surfactant-added TMAH for applications in DRIE and wet etching-based micromachining

    Science.gov (United States)

    Tang, B.; Shikida, M.; Sato, K.; Pal, P.; Amakawa, H.; Hida, H.; Fukuzawa, K.

    2010-06-01

    In this paper, etching anisotropy is evaluated for a number of different crystallographic orientations of silicon in a 0.1 vol% Triton-X-100 added 25 wt% tetramethylammonium hydroxide (TMAH) solution using a silicon hemisphere. The research is primarily aimed at developing advanced applications of wet etching in microelectromechanical systems (MEMS). The etching process is carried out at different temperatures in the range of 61-81 °C. The etching results of silicon hemisphere and different shapes of three-dimensional structures in {1 0 0}- and {1 1 0}-Si surfaces are analyzed. Significantly important anisotropy, different from a traditional etchant (e.g. pure KOH and TMAH), is investigated to extend the applications of the wet etching process in silicon bulk micromachining. The similar etching behavior of exact and vicinal {1 1 0} and {1 1 1} planes in TMAH + Triton is utilized selectively to remove the scalloping from deep reactive-ion etching (DRIE) etched profiles. The direct application of the present research is demonstrated by fabricating a cylindrical lens with highly smooth etched surface finish. The smoothness of a micro-lens at different locations is measured qualitatively by a scanning electron microscope and quantitatively by an atomic force microscope. The present paper provides a simple and effective fabrication method of the silicon micro-lens for optical MEMS applications.

  6. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  7. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.

    2015-10-26

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  8. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; De Raedt, Walter; Sedky, Sherif; Vandenbosch, Guy A. E.; Soliman, Ezzeldin A.

    2015-01-01

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  9. RF Performance of a 600-720 GHz Sideband Separating Mixer with All-Copper Micromachined Waveguide Mixer Block

    NARCIS (Netherlands)

    Mena, F. P.; Kooi, J.; Baryshev, A. M.; Lodewijk, C. F. J.; Klapwijk, T. M.; Wild, W.; Desmaris, V.; Meledin, D.; Pavolotsky, A.; Belitsky, V.; Wild, Wolfgang

    2008-01-01

    Here we report on the RF performance of a 2SB mixer (600-720 GHz) fabricated in a new method that combines traditional micromachining with waveguide components fabricated by photolithography and electroplating. The latter allows reaching, in a reproducible way, the stringent accuracies necessary for

  10. Structural design considerations for micromachined solid-oxide fuel cells

    Science.gov (United States)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  11. Microfabrication in free-standing gallium nitride using UV laser micromachining

    International Nuclear Information System (INIS)

    Gu, E.; Howard, H.; Conneely, A.; O'Connor, G.M.; Illy, E.K.; Knowles, M.R.H.; Edwards, P.R.; Martin, R.W.; Watson, I.M.; Dawson, M.D.

    2006-01-01

    Gallium nitride (GaN) and related alloys are important semiconductor materials for fabricating novel photonic devices such as ultraviolet (UV) light-emitting diodes (LEDs) and vertical cavity surface-emitting lasers (VCSELs). Recent technical advances have made free-standing GaN substrates available and affordable. However, these materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high-resolution processing for these materials is increasingly important. In this paper, we report the fabrication of microstructures in free-standing GaN using pulsed UV lasers. An effective method was first developed to remove the re-deposited materials due to the laser machining. In order to achieve controllable machining and high resolution in GaN, machining parameters were carefully optimised. Under the optimised conditions, precision features such as holes (through holes, blind or tapered holes) on a tens of micrometer length scale have been machined. To fabricate micro-trenches in GaN with vertical sidewalls and a flat bottom, different process strategies of laser machining were tested and optimised. Using this technique, we have successfully fabricated high-quality micro-trenches in free-standing GaN with various widths and depths. The approach combining UV laser micromachining and other processes is also discussed. Our results demonstrate that the pulsed UV laser is a powerful tool for fabricating precision microstructures and devices in gallium nitride

  12. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    International Nuclear Information System (INIS)

    Nesprías, F.; Debray, M.E.; Davidson, J.; Kreiner, A.J.

    2013-01-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift 35 Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO 3 , a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well

  13. Millimeter length micromachining using a heavy ion nuclear microprobe with standard magnetic scanning

    Energy Technology Data Exchange (ETDEWEB)

    Nesprías, F. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Debray, M.E., E-mail: debray@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); Davidson, J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica, Av. Gral Paz 1499 (1650), San Martín, Buenos Aires (Argentina); Escuela de Ciencia y Tecnología. Universidad Nacional de Gral. San Martín, M. De Irigoyen 3100 (1650), San Martín, Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires (Argentina); and others

    2013-04-01

    In order to increase the scanning length of our microprobe, we have developed an irradiation procedure suitable for use in any nuclear microprobe, extending at least up to 400% the length of our heavy ion direct writing facility using standard magnetic exploration. Although this method is limited to patterns of a few millimeters in only one direction, it is useful for the manufacture of curved waveguides, optical devices such Mach–Zehnder modulators, directional couplers as well as channels for micro-fluidic applications. As an example, this technique was applied to the fabrication of 3 mm 3D-Mach–Zehnder modulators in lithium niobate with short Y input/output branches and long shaped parallel-capacitor control electrodes. To extend and improve the quality of the machined structures we developed new scanning control software in LabView™ platform. The new code supports an external dose normalization, electrostatic beam blanking and is capable of scanning figures at 16 bit resolution using a National Instruments™ PCI-6731 High-Speed I/O card. A deep and vertical micromachining process using swift {sup 35}Cl ions 70 MeV bombarding energy and direct write patterning was performed on LiNbO{sub 3}, a material which exhibits a strong natural anisotropy to conventional etching. The micromachined structures show the feasibility of this method for manufacturing micro-fluidic channels as well.

  14. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  15. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    Science.gov (United States)

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  16. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    International Nuclear Information System (INIS)

    Khuri-Yakub, Butrus T; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated front-end electronic circuits we developed and their use for 2D and 3D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a micro-electro-mechanical systems technology for many medical diagnostic and therapeutic applications

  17. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    Science.gov (United States)

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  18. Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics

    Science.gov (United States)

    Antoszewski, B.; Tofil, S.; Scendo, M.; Tarelnik, W.

    2017-08-01

    Elastomeric plastics belong to a wide range of polymeric materials with special properties. They are used as construction material for seals and other components in many branches of industry and, in particular, in the biomedical industry, mechatronics, electronics and chemical equipment. The micromachining of surfaces of these materials can be used to build micro-flow, insulating, dispensing systems and chemical and biological reactors. The paper presents results of research on the effects of micro-machining of selected elastomeric plastics using a UV laser emitting picosecond pulses. The authors see the prospective application of the developed technology in the sealing technique in particular to shaping the sealing pieces co-operating with the surface of the element. The result of the study is meant to show parameters of the UV laser’s performance when producing typical components such as grooves, recesses for optimum ablation in terms of quality and productivity.

  19. Achievement report for fiscal 1996 on the research and development of micromachine technology. Development of advanced-function maintenance technology for power generation facilities; 1996 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Technologies for integrating functions are studied for a self-propelled surroundings recognition system that travels in a small-diameter tube at power generation facilities. Parameters are analyzed, and piezoelectric locomotion devices are reduced in size. A disk shape microantenna is experimentally built and evaluated, which is for realizing energy supply and communication by means of microwaves. Studies are conducted to improve the performance of optical energy transmission devices and to realize their systematization. Basic specifications are established for the embodiment of CCD (charge coupled device) microcameras to be installed. A high-efficiency, high-reliability micromachine system is constructed, in which multiple machines coordinate with each other for the exterior inspection of groups of small-diameter tubes. Devices which are capable of driving, deceleration, and propulsion prove to be feasible. Basic specifications are established for microconnectors to connect, separate, and combine multiple machines as occasion calls. Also discussed is the development of a micromachine for tube interior check and repair which operates making use of the inspection hole enabling tube interior check and repair without the need of disassembling the equipment to be repaired.

  20. Determination of young's modulus of PZT and CO80Ni20 thin films by means of micromachined cantilevers

    NARCIS (Netherlands)

    Nazeer, H.; Abelmann, Leon; Tas, Niels Roelof; van Honschoten, J.W.; Siekman, Martin Herman; Elwenspoek, Michael Curt

    2009-01-01

    This paper presents a technique to determine the Young’s modulus and residual stress of thin films using a simple micromachined silicon cantilever as the test structure. An analytical relation was developed based on the shift in resonance frequency caused by the addition of a thin film on the

  1. Design and fabrication of PMMA-micromachined fluid lens based on electromagnetic actuation on PMMA–PDMS bonded membrane

    International Nuclear Information System (INIS)

    Lee, June Kyoo; Park, Kyung-Woo; Choi, Ju Chan; Kim, Hak-Rin; Kong, Seong Ho

    2012-01-01

    The fabrication of a poly(methyl methacrylate) (PMMA)-micromachined fluid lens with an optimally designed built-in electromagnetic actuator was demonstrated in this study. Through a finite element method, the number of winding turns and the distance between magnetic moments were estimated to design an effective and miniaturized electromagnetic actuator. The lens body composed of PMMA structures was simply and rapidly micromachined using computer numerical control micro-milling. The poly(dimethylsiloxane) (PDMS) membranes for electromagnetic actuation were bonded to the PMMA structures by using the proposed PMMA–PDMS bonding technique, which uses an SiO 2 intermediate layer. A physical repulsive force produced by the electromagnetic actuator applies a controllable fluidic pressure to a fluidic chamber that is sealed with the PDMS membrane, thus allowing dynamic focusing. The focus tunability of the fabricated lens was 67 diopters with a focus hysteresis of less than 1 mm and a response time of 2 ms. The solenoid of the built-in actuator showed negligible thermal crosstalk to the lens. (paper)

  2. Manufacture of Radio Frequency Micromachined Switches with Annealing

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Lin

    2014-01-01

    Full Text Available The fabrication and characterization of a radio frequency (RF micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  3. Manufacture of radio frequency micromachined switches with annealing.

    Science.gov (United States)

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  4. Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide

    Science.gov (United States)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey

    We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.

  5. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.

    Science.gov (United States)

    Park, Jongcheol; Park, Jae Yeong

    2013-10-01

    A piezoelectric vibration energy harvester with inter-digital IrO(x) electrode was developed by using silicon bulk micromachining technology. Most PZT cantilever based energy harvesters have utilized platinum electrode material. However, the PZT fatigue characteristics and adhesion/delamination problems caused by the platinum electrode might be serious problem in reliability of energy harvester. To address these problems, the iridium oxide was newly applied. The proposed energy harvester was comprised of bulk micromachined silicon cantilever with 800 x 1000 x 20 microm3, which having a silicon supporting membrane, sol-gel-spin coated Pb(Zr52, Ti48)O3 thin film, and sputtered inter-digitally shaped IrO(x) electrodes, and silicon inertial mass with 1000 x 1000 x 500 microm3 to adjust its resonant frequency. The fabricated energy harvester generated 1 microW of electrical power to 470 komega of load resistance and 1.4 V(peak-to-peak) from a vibration of 0.4 g at 1.475 kHz. The corresponding power density was 6.25 mW x cm(-3) x g(-2). As expected, its electrical failure was significantly improved.

  6. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning

    International Nuclear Information System (INIS)

    Raos, B J; Unsworth, C P; Costa, J L; Rohde, C A; Simpson, M C; Doyle, C S; Dickinson, M E; Bunting, A S; Murray, A F; Delivopoulos, E; Graham, E S

    2013-01-01

    Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO 2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO 2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics. (paper)

  7. Heavy ion beam micromachining on LiNbO3

    International Nuclear Information System (INIS)

    Nesprias, F.; Venturino, M.; Debray, M.E.; Davidson, J.; Davidson, M.; Kreiner, A.J.; Minsky, D.; Fischer, M.; Lamagna, A.

    2009-01-01

    In this work 3D micromachining of x-cut lithium niobate crystals was performed using the high energy heavy ion microbeam (HIM) at the Tandar Laboratory, Buenos Aires. The samples were machined using 35 Cl beams at 70 MeV bombarding energy combined with wet etching with hydrofluoric acid solutions at room temperature. As the ion beam penetrates the sample, it induces lattice damage increasing dramatically the local etching rate of the material. This technique was applied to the fabrication of 3D waveguides with long control electrodes. The resulting structures indicate that well defined contours with nearly vertical sidewalls can be made. The results also show that with fluences of only 5 x 10 12 ions/cm 2 , this technique is suitable for the fabrication of different shapes of LiNbO 3 control-waveguides that can be used in different optical devices and matched with the existing optical fibers.

  8. Advanced measurement and analysis of surface textures produced by micro-machining processes

    International Nuclear Information System (INIS)

    Bordatchev, Evgueni V; Hafiz, Abdullah M K

    2014-01-01

    Surface texture of a part or a product has significant effects on its functionality, physical-mechanical properties and visual appearance. In particular for miniature products, the implication of surface quality becomes critical owing to the presence of geometrical features with micro/nano-scale dimensions. Qualitative and quantitative assessments of surface texture are carried out predominantly by profile parameters, which are often insufficient to address the contribution of constituent spatial components with varied amplitudes and wavelengths. In this context, this article presents a novel approach for advanced measurement and analysis of profile average roughness (R a ) and its spatial distribution at different wavelength intervals. The applicability of the proposed approach was verified for three different surface topographies prepared by grinding, laser micro-polishing and micro-milling processes. From the measurement and analysis results, R a (λ) spatial distribution was found to be an effective measure of revealing the contributions of various spatial components within specific wavelength intervals towards formation of the entire surface profile. In addition, the approach was extended to the measurement and analysis of areal average roughness S a (λ) spatial distribution within different wavelength intervals. Besides, the proposed method was demonstrated to be a useful technique in developing a functional correlation between a manufacturing process and its corresponding surface profile. (paper)

  9. Silicon Micromachining in RF and Photonic Applications

    Science.gov (United States)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  10. Ultrasonic actuation for MEMS dormancy-related stiction reduction

    Science.gov (United States)

    Kaajakari, Ville; Kan, Shyi-Herng; Lin, Li-Jen; Lal, Amit; Rodgers, M. Steven

    2000-08-01

    The use of ultrasonic pulses incident on surface micromachines has been shown to reduce dormancy-related failure. We applied ultrasonic pulses from the backside of a silicon substrate carrying SUMMiT processed surface micromachined rotors, used earlier as ultrasonic motors. The amplitude of the pulses was less than what is required to actuate the rotor (sub-threshold actuation). By controlling the ultrasonic pulse exposure time it was found that pulsed samples had smaller actuation voltages as compared to non-pulsed samples after twelve-hour dormancy. This result indicates that the micromachine stiction to surfaces during dormant period can be effectively eliminated, resulting in long-term stability of surface micromachines in critical applications.

  11. A surface-micromachining-based inertial micro-switch with compliant cantilever beam as movable electrode for enduring high shock and prolonging contact time

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qiu [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Yang, Zhuoqing, E-mail: yzhuoqing@sjtu.edu.cn [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China); Fu, Bo; Li, Jianhua; Wu, Hao [Huaihai Industrial Group Co., Ltd., Changzhi, Shanxi Province, 046012 (China); Zhang, Qihuan; Sun, Yunna; Ding, Guifu; Zhao, Xiaolin [National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 (China)

    2016-11-30

    Highlights: • The designed cantilever beam attached to the proof mass can endure a larger shock acceleration (∼1000 g order of magnitude) compared to those traditional designs (∼100 g order of magnitude). • Effect of the pulse width on the threshold acceleration, the response time and the contact time is investigated. • A constraint sleeve structure is introduced to lower the off-axis sensitivity. - Abstract: A novel laterally-driven inertial micro-switch with two L-shaped elastic cantilever beams as the movable electrode, which is attached to the proof mass, is proposed in this paper. The advantage of this design is that the contact time of the inertial micro-switch can be prolonged. Meanwhile, the micro-switch can withstand a higher shock than the traditional designs whose cantilever beams are attached to the fixed electrode. The designed inertial micro-switch was simulated and optimized with ANSYS software and fabricated on a quartz substrate by surface micromachining technology. The simulated result demonstrates that the threshold acceleration (a{sub ths}) under stable switch-on state is about 288 g and the contact time is about 198 μs when the pulse width of acceleration loads is 1 ms. At the same time, it indicates that the threshold acceleration, the response time and the contact time of designed micro-switch all increase with the pulse width of acceleration loads. The simulation of impact process in non-sensitive direction shows that the introduced constraint sleeve structure in the novel inertial micro-switch can lower the off-axis sensitivity. The fabricated micro-switch prototype has been tested by a standard dropping hammer system under shock accelerations with various amplitudes and pulse widths. The experimental measurements show that the contact time is about 150 μs when the threshold acceleration is about 288 g. It also indicates that the response time and the contact time both increase with the pulse width, which is consistent with the

  12. UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Zeng, D.W.; Xie, C.S.; Li, K.; Chan, H.L.W.; Choy, C.L.; Yung, K.C.

    2004-01-01

    UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO 2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO 2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1-3 and concentric-ring 2-2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d 33 meter. Both composites show high piezoelectric properties. (orig.)

  13. Covalent functionalization of silicon nitride surfaces for anti-biofouling and bioselective capture

    NARCIS (Netherlands)

    Nguyen, A.T.

    2011-01-01

    Microsieves – microengineered membranes – have been introduced in microfiltration technology as a new generation of inorganic membranes. The thin membranes are made of silicon nitride (SixN4), which gives the membranes outstanding features, such as chemical inertness and high mechanical

  14. A fully packaged micromachined single crystalline resonant force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cavalloni, C.; Gnielka, M.; Berg, J. von [Kistler Instrumente AG, Winterthur (Switzerland); Haueis, M.; Dual, J. [ETH Zuerich, Inst. of Mechanical Systems, Zuerich (Switzerland); Buser, R. [Interstate Univ. of Applied Science Buchs, Buchs (Switzerland)

    2001-07-01

    In this work a fully packaged resonant force sensor for static load measurements is presented. The working principle is based on the shift of the resonance frequency in response to the applied load. The heart of the sensor, the resonant structure, is fabricated by micromachining using single crystalline silicon. To avoid creep and hysteresis and to minimize temperature induced stress the resonant structure is encapsulated using an all-in-silicon solution. This means that the load coupling, the excitation of the microresonator and the detection of the oscillation signal are integrated in only one single crystalline silicon chip. The chip is packaged into a specially designed housing made of steel which has been designed with respect to application in harsh environments. The unloaded sensor has an initial frequency of about 22,5 kHz. The sensitivity amounts to 26 Hz/N with a linearity error significantly less than 0,5%FSO. (orig.)

  15. Micromachined force sensors using thin film nickel–chromium piezoresistors

    International Nuclear Information System (INIS)

    Nadvi, Gaviraj S; Butler, Donald P; Çelik-Butler, Zeynep; Gönenli, İsmail Erkin

    2012-01-01

    Micromachined force/tactile sensors using nickel–chromium piezoresistors have been investigated experimentally and through finite-element analysis. The force sensors were designed with a suspended aluminum oxide (Al 2 O 3 ) membrane and optimally placed piezoresistors to measure the strain in the membrane when deflected with an applied force. Different devices, each with varying size and shape of both the membrane and the piezoresistors, were designed, fabricated and characterized. The piezoresistors were placed into a half-Wheatstone bridge configuration with two active and two passive nickel–chromium resistors to provide temperature drift compensation. The force sensors were characterized using a load cell and a nanopositioner to measure the sensor response with applied load. Piezoresistive gauge factors in the range of 1–5.2 have been calculated for the thin film nichrome (NiCr 80/20 wt%) from the measured results. The force sensors were calculated to have a noise equivalent force of 65–245 nN. (paper)

  16. Performance Enhancement of the Patch Antennas Applying Micromachining Technology

    Directory of Open Access Journals (Sweden)

    Mohamed N. Azermanesh

    2007-09-01

    Full Text Available This paper reports on the application of micromachining technology for performance enhancement of two types of compact antennas which are becoming a common practice in microsystems. Shorted patch antennas (SPA and folded shorted patch antennas operating in the 5-6 GHz ISM band, with intended application in short-range wireless communications, are considered. The electrical length of antennas are modified by etching the substrate of the antennas, thus providing a new degree of freedom to control the antenna operating properties, which is the main novelty of our work. The gain and bandwidth of the antennas are increased by increasing the etching depth. However, etching the substrate affects the operating frequency as well. To keep the operating frequency at a pre-specified value, the dimension of the antennas must be increased by deepening the etching depth. Therefore, a trade off between the performance enhancement of the antennas and the dimensional enlargement is required.

  17. Micro-machinable polymer-derived ceramic sensors for high-temperature applications

    Science.gov (United States)

    Liu, Jian; Xu, Chengying; An, Linan

    2010-04-01

    Micro-sensors are highly desired for on-line temperature/pressure monitoring in turbine engines to improve their efficiency and reduce pollution. The biggest challenge for developing this type of sensors is that the sensors have to sustain at extreme environments in turbine engine environments, such as high-temperatures (>800 °C), fluctuated pressure and oxidation/corrosion surroundings. In this paper, we describe a class of sensors made of polymer-derived ceramics (PDCs) for such applications. PDCs have the following advantages over conventional ceramics, making them particularly suitable for these applications: (i) micromachining capability, (ii) tunable electric properties, and (iii) hightemperature capability. Here, we will discuss the materials and their properties in terms of their applications for hightemperature micro-sensors, and microfabrication technologies. In addition, we will also discuss the design of a heat-flux sensor based on polymer-derived ceramics.

  18. Trend of advanced technology of micromachines in the USA; Beikoku ni okeru micro machine sentan gijutsu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In this research, the data of advanced technology of micromachines in the USA have been searched, collected, and arranged from the US patent information, technical journal information, and newspaper and general journal information. According to demand, the main undertaking information was interviewed from well-informed persons. The data were compiled as advanced technology trend of micromachines in the USA. Sensors are remarkably predominant in the elemental technology. There are also important topics in the fields of actuators, motors, lenses, devices, and structures. On the other hand, materials, etchings, packages, motive powers, and softwares are also important elemental technology in spite of their less information. From the viewpoint of usage, detection systems are remarkably predominant. Then, robots, processing systems, optics, analysis systems, motive power systems, medical systems, and acoustic systems are also important. From the viewpoint of industrial sector, the environmental items are predominant. Automobiles, medical treatments, and information communications follow the above. When new relationships to the secondary usage and tertiary usage are not found, it would be rather hard to express such a technology development trend more clearly.

  19. Sensors and Micromachined Devices for the Automotive and New Markets: The Delphi Delco Electronics MEMS Story.

    Science.gov (United States)

    Logsdon, James

    2002-03-01

    This presentation will provide a brief history of the development of MEMS products and technology, beginning with the manifold absolute pressure sensor in the late seventies through the current variety of Delphi Delco Electronics sensors available today. The technology development of micromachining from uncompensated P plus etch stops to deep reactive ion etching and the technology development of wafer level packaging from electrostatic bonding to glass frit sealing and silicon to silicon direct bonding will be reviewed.

  20. A Novel Silicon Micromachined Integrated MCM Thermal Management System

    Science.gov (United States)

    Kazmierczak, M. J.; Henderson, H. T.; Gerner, F. M.

    1997-01-01

    "Micromachining" is a chemical means of etching three-dimensional structures, typically in single- crystalline silicon. These techniques are leading toward what is coming to be referred to as MEMS (Micro Electro Mechanical Systems), where in addition to the ordinary two-dimensional (planar) microelectronics, it is possible to build three-dimensional n-ticromotors, electrically- actuated raicrovalves, hydraulic systems and much more on the same microchip. These techniques become possible because of differential etching rates of various crystallographic planes and materials used for semiconductor n-ticrofabfication. The University of Cincinnati group in collaboration with Karl Baker at NASA Lewis were the first to form micro heat pipes in silicon by the above techniques. Current work now in progress using MEMS technology is now directed towards the development of the next generation in MCM (Multi Chip Module) packaging. Here we propose to develop a complete electronic thermal management system which will allow densifica6on in chip stacking by perhaps two orders of magnitude. Furthermore the proposed technique will allow ordinary conu-nercial integrated chips to be utilized. Basically, the new technique involves etching square holes into a silicon substrate and then inserting and bonding commercially available integrated chips into these holes. For example, over a 100 1/4 in. by 1 /4 in. integrated chips can be placed on a 4 in. by 4 in. silicon substrate to form a Multi-Chip Module (MCM). Placing these MCM's in-line within an integrated rack then allows for three-diniensional stacking. Increased miniaturization of microelectronic circuits will lead to very high local heat fluxes. A high performance thermal management system will be specifically designed to remove the generated energy. More specifically, a compact heat exchanger with milli / microchannels will be developed and tested to remove the heat through the back side of this MCM assembly for moderate and high

  1. Placental Drug Transport-on-a-Chip: A Microengineered In Vitro Model of Transporter-Mediated Drug Efflux in the Human Placental Barrier.

    Science.gov (United States)

    Blundell, Cassidy; Yi, Yoon-Suk; Ma, Lin; Tess, Emily R; Farrell, Megan J; Georgescu, Andrei; Aleksunes, Lauren M; Huh, Dongeun

    2018-01-01

    The current lack of knowledge about the effect of maternally administered drugs on the developing fetus is a major public health concern worldwide. The first critical step toward predicting the safety of medications in pregnancy is to screen drug compounds for their ability to cross the placenta. However, this type of preclinical study has been hampered by the limited capacity of existing in vitro and ex vivo models to mimic physiological drug transport across the maternal-fetal interface in the human placenta. Here the proof-of-principle for utilizing a microengineered model of the human placental barrier to simulate and investigate drug transfer from the maternal to the fetal circulation is demonstrated. Using the gestational diabetes drug glyburide as a model compound, it is shown that the microphysiological system is capable of reconstituting efflux transporter-mediated active transport function of the human placental barrier to limit fetal exposure to maternally administered drugs. The data provide evidence that the placenta-on-a-chip may serve as a new screening platform to enable more accurate prediction of drug transport in the human placenta. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors

    Directory of Open Access Journals (Sweden)

    M. Cihan Çakır

    2016-09-01

    Full Text Available Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption–dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  3. Planar Indium Tin Oxide Heater for Improved Thermal Distribution for Metal Oxide Micromachined Gas Sensors.

    Science.gov (United States)

    Çakır, M Cihan; Çalışkan, Deniz; Bütün, Bayram; Özbay, Ekmel

    2016-09-29

    Metal oxide gas sensors with integrated micro-hotplate structures are widely used in the industry and they are still being investigated and developed. Metal oxide gas sensors have the advantage of being sensitive to a wide range of organic and inorganic volatile compounds, although they lack selectivity. To introduce selectivity, the operating temperature of a single sensor is swept, and the measurements are fed to a discriminating algorithm. The efficiency of those data processing methods strongly depends on temperature uniformity across the active area of the sensor. To achieve this, hot plate structures with complex resistor geometries have been designed and additional heat-spreading structures have been introduced. In this work we designed and fabricated a metal oxide gas sensor integrated with a simple square planar indium tin oxide (ITO) heating element, by using conventional micromachining and thin-film deposition techniques. Power consumption-dependent surface temperature measurements were performed. A 420 °C working temperature was achieved at 120 mW power consumption. Temperature distribution uniformity was measured and a 17 °C difference between the hottest and the coldest points of the sensor at an operating temperature of 290 °C was achieved. Transient heat-up and cool-down cycle durations are measured as 40 ms and 20 ms, respectively.

  4. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.

    Science.gov (United States)

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K

    2010-10-01

    This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.

  5. Fiscal 1993 report on technological results. R and D on micromachine technology; 1993 nendo micro machine gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Researches on basic element technology of micromachines are conducted with the view of establishing a mechanical system constituted of minute functional elements that perform autonomous operations in a narrow small part of complicated equipment in a power station for example or in a living body. The areas of activity are 1. research on micro actuators and 2. research on basic technology of micromachine; 1 is classified into researches of (1) shape-memory actuator, (2) bending and stretching type actuator, and (3) integrated micro actuator, while 2 is classified into researches of (1) total system for medical diagnosis, (2) micro tactile sensing technology and laser applied diagnosis/treatment technology, and (3) blood pressure/blood circulation sensing technology. In 1-(1), a chemo-mechanical actuator was studied using a shape memory alloy (SMA) and a high polymer gel, and in 1-(2), an SMA and bimetal were employed as a source of the driving force. Further, examination was also made on a fluid driving type actuator. (NEDO)

  6. Two Capacitive Micro-Machined Ultrasonic Transducers for Wind Speed Measurement.

    Science.gov (United States)

    Bui, Gia Thinh; Jiang, Yu-Tsung; Pang, Da-Chen

    2016-06-02

    This paper presents a new wind speed measurement method using a single capacitive micro-machined ultrasonic transducer (CMUT). The CMUT was arranged perpendicular to the direction of the wind flow, and a reflector was set up a short distance away, facing the CMUT. To reduce the size, weight, cost, and power consumption of conventional ultrasonic anemometers this study proposes two CMUT designs for the measurement of wind speed using either the amplitude of the signal or the time of flight (TOF). Each CMUT with a double array element design can transmit and receive signals in five different operation modes. Experiments showed that the two CMUT designs utilizing the TOF were better than those utilizing the amplitude of the signal for wind speed measurements ranging from 1 m/s to 10 m/s, providing a measurement error of less than 0.2 m/s. These results indicate that the sensitivity of the TOF is independent of the five operation modes.

  7. Corporate array of micromachined dipoles on silicon wafer for 60 GHz communication systems

    KAUST Repository

    Sallam, M. O.

    2013-03-01

    In this paper, an antenna array operating at 60 GHz and realized on 0.675 mm thick silicon substrate is presented. The array is constructed using four micromachined half-wavelength dipoles fed by a corporate feeding network. Isolation between the antenna array and its feeding network is achieved via a ground plane. This arrangement leads to maximizing the broadside radiation with relatively high front-to-back ratio. Simulations have been carried out using both HFSS and CST, which showed very good agreement. Results reveal that the proposed antenna array has good radiation characteristics, where the directivity, gain, and radiation efficiency are around 10.5 dBi, 9.5 dBi, and 79%, respectively. © 2013 IEEE.

  8. Microfabrication on a curved surface using 3D microlens array projection

    International Nuclear Information System (INIS)

    Li, Lei; Yi, Allen Y

    2009-01-01

    Accurate three-dimensional microstructures on silicon or other substrates are becoming increasingly important for optical, electronic, biomedical and medical applications. Traditional microfabrication processes based on cleanroom lithography and dry or wet etching processes are essentially two-dimensional methods. In the past, complicated procedures were designed to create some three-dimensional microstructures; however, these processes were mainly used to create features on planar silicon wafer substrates using the bulk silicon machining technique. In a major departure from previous micromachining processes, a microfabrication process based on microlens projection is presented in this paper. The proposed microfabrication system will have the capabilities of a typical conventional micromachining process plus the unique true three-dimensional replication features based on microlenses that were created on a steep curved substrate. These microlenses were precisely fabricated with a specific pattern on the curved surface that can be used to create microstructures on a pre-defined nonplanar substrate where a layer of photoresist was spin coated. After proper exposure and development, the desired micro patterns are created on the photoresist layer. These micro features can eventually be replicated on the substrate via wet or dry etching processes. The results show that the fabricated three-dimensional microlens array has very high dimensional accuracy and the profile error is less than 6 µm over the entire surface

  9. A Reuse Evaluation for Solar-Cell Silicon Wafers via Shift Revolution and Tool Rotation Using Magnetic Assistance in Ultrasonic Electrochemical Micromachining

    Directory of Open Access Journals (Sweden)

    P. S. Pa

    2013-01-01

    Full Text Available A new reuse fabrication using a tool module with rotation and revolution through a process of magnetic assistance in ultrasonic electrochemical micromachining (UEMM for removal of the surface layers from silicon wafers of solar cells is demonstrated. The target of the proposed reuse fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach to removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. The high revolution speed of the shift with the high rotation speed of the designed tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. High frequency and high power of ultrasonic with large electrolyte flow rate and high magnetic strengths with a small distance between the two magnets provide a large discharge effect and good removal; only a short period of time is required to remove the epoxy film and Si3N4 layer easily and cleanly.

  10. Benzocyclobutene-based electric micromachines supported on microball bearings: Design, fabrication, and characterization

    Science.gov (United States)

    Modafe, Alireza

    This dissertation summarizes the research activities that led to the development of the first microball-bearing-supported linear electrostatic micromotor with benzocyclobutene (BCB) low-k polymer insulating layers. The primary application of this device is long-range, high-speed linear micropositioning. The future generations of this device include rotary electrostatic micromotors and microgenerators. The development of the first generation of microball-bearing-supported micromachines, including device theory, design, and modeling, material characterization, process development, device fabrication, and device test and characterization is presented. The first generation of these devices is based on a 6-phase, bottom-drive, linear, variable-capacitance micromotor (B-LVCM). The design of the electrical and mechanical components of the micromotor, lumped-circuit modeling of the device and electromechanical characteristics, including variable capacitance, force, power, and speed are presented. Electrical characterization of BCB polymers, characterization of BCB chemical mechanical planarization (CMP), development of embedded BCB in silicon (EBiS) process, and integration of device components using microfabrication techniques are also presented. The micromotor consists of a silicon stator, a silicon slider, and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN, assuming a 100 V peak-to-peak square-wave voltage, was measured. The operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm/s when excited by a 40 Hz, 120 V square-wave voltage was reached without losing the synchronization. This research has a pivotal impact in the field of power microelectromechanical systems (MEMS). It establishes the foundation for the

  11. A 16-bit sigma-delta modulator applied in micro-machined inertial sensors

    Science.gov (United States)

    Honglin, Xu; Qiang, Fu; Hongna, Liu; Liang, Yin; Pengfei, Wang; Xiaowei, Liu

    2014-04-01

    A fourth-order low-distortion low-pass sigma-delta (ΣΔ) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of -3.88 dBFS at 9.8 kHz; the power consumption is 15 mW at a 5 V supply.

  12. A 16-bit sigma–delta modulator applied in micro-machined inertial sensors

    International Nuclear Information System (INIS)

    Xu Honglin; Fu Qiang; Liu Hongna; Yin Liang; Wang Pengfei; Liu Xiaowei

    2014-01-01

    A fourth-order low-distortion low-pass sigma–delta (ΣΔ) modulator is presented for micro-machined inertial sensors. The proposed single-loop single-bit feedback modulator is optimized with a feed-forward path to decrease the nonlinearities and power consumption. The IC is implemented in a standard 0.6 μm CMOS technology and operates at a sampling frequency of 3.846 MHz. The chip area is 2.12 mm 2 with 23 pads. The experimental results indicate a signal-to-noise ratio (SNR) of 100 dB and dynamic range (DR) of 103 dB at an oversampling rate (OSR) of 128 with the input signal amplitude of −3.88 dBFS at 9.8 kHz; the power consumption is 15 mW at a 5 V supply. (semiconductor integrated circuits)

  13. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2014-10-01

    Full Text Available A novel multifrequency excitation (MFE method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  14. Feasibility and its characteristics of CO2 laser micromachining-based PMMA anti-scattering grid estimated by MCNP code simulation.

    Science.gov (United States)

    Bae, Jun Woo; Kim, Hee Reyoung

    2018-01-01

    Anti-scattering grid has been used to improve the image quality. However, applying a commonly used linear or parallel grid would cause image distortion, and focusing grid also requires a precise fabrication technology, which is expensive. To investigate and analyze whether using CO2 laser micromachining-based PMMA anti-scattering grid can improve the performance of the grid at a lower cost. Thus, improvement of grid performance would result in improvement of image quality. The cross-sectional shape of CO2 laser machined PMMA is similar to alphabet 'V'. The performance was characterized by contrast improvement factor (CIF) and Bucky. Four types of grid were tested, which include thin parallel, thick parallel, 'V'-type and 'inverse V'-type of grid. For a Bucky factor of 2.1, the CIF of the grid with both the "V" and inverse "V" had a value of 1.53, while the thick and thick parallel types had values of 1.43 and 1.65, respectively. The 'V' shape grid manufacture by CO2 laser micromachining showed higher CIF than parallel one, which had same shielding material channel width. It was thought that the 'V' shape grid would be replacement to the conventional parallel grid if it is hard to fabricate the high-aspect-ratio grid.

  15. A sub-cm micromachined electron microscope

    Science.gov (United States)

    Feinerman, A. D.; Crewe, D. A.; Perng, D. C.; Shoaf, S. E.; Crewe, A. V.

    1993-01-01

    A new approach for fabricating macroscopic (approximately 10x10x10 mm(exp 3)) structures with micron accuracy has been developed. This approach combines the precision of semiconductor processing and fiber optic technologies. A (100) silicon wafer is anisotropically etched to create four orthogonal v-grooves and an aperture on each 10x12 mm die. Precision 308 micron optical fibers are sandwiched between the die to align the v-grooves. The fiber is then anodically bonded to the die above and below it. This procedure is repeated to create thick structures and a stack of 5 or 6 die will be used to create a miniature scanning electron microscope (MSEM). Two die in the structure will have a segmented electrode to deflect the beam and correct for astigmatism. The entire structure is UHV compatible. The performance of an SEM improves as its length is reduced and a sub-cm 2 keV MSEM with a field emission source should have approximately 1 nm resolution. A low voltage high resolution MSEM would be useful for the examination of biological specimens and semiconductors with a minimum of damage. The first MSEM will be tested with existing 6 micron thermionic sources. In the future a micromachined field emission source will be used. The stacking technology presented in this paper can produce an array of MSEMs 1 to 30 mm in length with a 1 mm or larger period. A key question being addressed by this research is the optimum size for a low voltage MSEM which will be determined by the required spatial resolution, field of view, and working distance.

  16. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  17. GaAs micromachining in the 1 H2SO4:1 H2O2:8 H2O system. From anisotropy to simulation

    Science.gov (United States)

    Tellier, C. R.

    2011-02-01

    The bulk micromachining on (010), (110) and (111)A GaAs substrates in the 1 H2SO4:1 H2O2:8 H2O system is investigated. Focus is placed on anisotropy of 3D etching shapes with a special emphasis on convex and concave undercuts which are of prime importance in the wet micromachining of mechanical structures. Etched structures exhibit curved contours and more and less rounded sidewalls showing that the anisotropy is of type 2. This anisotropy can be conveniently described by a kinematic and tensorial model. Hence, a database composed of dissolution constants is further determined from experiments. A self-elaborated simulator which works with the proposed database is used to derive theoretical 3D shapes. Simulated shapes agree well with observed shapes of microstructures. The successful simulations open up two important applications for MEMS: CAD of mask patterns and meshing of simulated shapes for FEM simulation tools.

  18. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  19. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  20. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm

    KAUST Repository

    Wang, Zhihong

    2012-08-14

    The coupling between dielectric polarization and strain gradient, known as flexoelectricity, becomes significantly large on the micro- and nanoscale. Here, it is shown that giant flexoelectric polarization can reverse remnant ferroelectric polarization in a bent Pb(Zr0.52Ti0.48) O3 (PZT) diaphragm fabricated by micromachining. The polarization induced by the strain gradient and the switching behaviors of the polarization in response to an external electric field are investigated by observing the electromechanical coupling of the diaphragm. The method allows determination of the absolute zero polarization state in a PZT film, which is impossible using other existing methods. Based on the observation of the absolute zero polarization state and the assumption that bending of the diaphragm is the only source of the self-polarization, the upper bound of flexoelectric coefficient of PZT film is calculated to be as large as 2.0 × 10-4 C m -1. The strain gradient induced by bending the diaphragm is measured to be on the order of 102 m-1, three orders of magnitude larger than that obtained in the bulk material. Because of this large strain gradient, the estimated giant flexoelectric polarization in the bent diaphragm is on the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.

    Science.gov (United States)

    Bozkurt, Ayhan; Yaralioglu, G Goksenin

    2016-11-01

    This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.

  2. Welcome to the 2014 volume of Journal of Micromechanics and Microengineering

    Science.gov (United States)

    Fang, Weileun

    2014-01-01

    It is my great honor to serve as the Editor-in-Chief of Journal of Micromechanics and Microengineering (JMM) starting from 2014, the 24th year of the journal. I would also like to take this opportunity to convey my sincere appreciation to (i) the past editors for their vision to bring this journal to be such a significant publication and research platform in MEMS and microsystems technology; (ii) the reviewers for their precious time and valuable comments that enhance the publication quality of this journal; and (iii) the authors for their choice to publish their best work in this journal and their contribution to our community; (iv) the readers who extend the journal's impact not only to their research fields but to industry and all human society; and finally (v) the publication team at IOP Publishing. As the sixth Editor-in-Chief, I will aim to continue my predecessors' leadership and guidance, and further extend the distinguished reputation of JMM. In the past year, the number of submissions to this journal neared 900, an increase on last year, with the acceptance number of 401 (an acceptance rate lower than 50%). I would also like to point out the articles published in 2013 has jumped up to 383, showing a healthy growth compared to 365 in year 2012. To achieve this progress, the average times of the receipt-first decision and the receipt-accept confirmations are 39 days and 104 days, respectively. Furthermore, the average time of the accept-web publication is within 26 days, which is a considerable improvement in this journal. All abovementioned numbers together become a very attractive feature of this journal. To deal with the rapid expansion of the incoming papers and associated reviewing process we have tremendous help from the members of the journal's Editorial Board and referees worldwide, whom I would like to acknowledge since their well-constructed evaluation is of great importance to continuously enhancing the quality of the journal. Of course it would

  3. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  4. Monolithic integration of micromachined sensors and CMOS circuits based on SOI technologies

    International Nuclear Information System (INIS)

    Yu Xiaomei; Tang Yaquan; Zhang Haitao

    2008-01-01

    This note presents a novel way to monolithically integrate micro-cantilever sensors and signal conditioning circuits by combining SOI CMOS and SOI micromachining technologies. In order to improve the sensor performance and reduce the system volume, an integrated sensor system composed of a piezoresistive cantilever array, a temperature-compensation current reference, a digitally controlled multiplexer and an instrument amplifier is designed and finally fabricated. A post-SOI CMOS process is developed to realize the integrated sensor system which is based on a standard CMOS process with one more mask to define the cantilever structure at the end of the process. Measurements on the finished SOI CMOS devices and circuits show that the integration process has good compatibility both for the cantilever sensors and for the CMOS circuits, and the SOI CMOS integration process can decrease about 25% sequences compared with the bulk silicon CMOS process. (note)

  5. Modeling and Design of Capacitive Micromachined Ultrasonic Transducers Based-on Database Optimization

    International Nuclear Information System (INIS)

    Chang, M W; Gwo, T J; Deng, T M; Chang, H C

    2006-01-01

    A Capacitive Micromachined Ultrasonic Transducers simulation database, based on electromechanical coupling theory, has been fully developed for versatile capacitive microtransducer design and analysis. Both arithmetic and graphic configurations are used to find optimal parameters based on serial coupling simulations. The key modeling parameters identified can improve microtransducer's character and reliability effectively. This method could be used to reduce design time and fabrication cost, eliminating trial-and-error procedures. Various microtransducers, with optimized characteristics, can be developed economically using the developed database. A simulation to design an ultrasonic microtransducer is completed as an executed example. The dependent relationship between membrane geometry, vibration displacement and output response is demonstrated. The electromechanical coupling effects, mechanical impedance and frequency response are also taken into consideration for optimal microstructures. The microdevice parameters with the best output signal response are predicted, and microfabrication processing constraints and realities are also taken into consideration

  6. Stability and spring constant investigation for micromachined inductive suspensions: theoretical analysis vs. experimental results

    International Nuclear Information System (INIS)

    Poletkin, K; Lu, Z; Wallrabe, U; Badilita, V; Den Hartogh, B

    2014-01-01

    We present a linear analytical model coupled with experimental analysis to discuss stability of a levitated proof mass (PM) in a micromachined inductive suspension (MIS), which has been previously introduced and characterized. The model is a function of the MIS geometry, describes the dynamics of a levitated disk-shaped PM near the equilibrium point, and predicts conditions for stable levitation. The experimental setup directly measures the lateral component of the Lorentz force, which has a stabilization role in the MIS structure, as well as the vertical levitation force. The experimental setup is further used to derive mechanical parameters such as stiffness values relative to lateral, vertical and angular displacements, proven to be in excellent agreement with the values predicted by the analytical model

  7. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    International Nuclear Information System (INIS)

    Chen, P.Ch.; Zou, J.; Hsieh, Sh.J.; Chen, Ch.Ch.

    2013-01-01

    We proposed fabricating an aluminum micro needle array with a nano channel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The micro needle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nano channel template. Therefore, the micro needle array can potentially be used in many technology applications. This 3D micro needle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the micro needle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the micro needle array can further be used on many detecting, storing, or drug delivering applications.

  8. Micromachined silicon cantilevers with integrated high-frequency magnetoimpedance sensors for simultaneous strain and magnetic field detection

    Science.gov (United States)

    Buettel, G.; Joppich, J.; Hartmann, U.

    2017-12-01

    Giant magnetoimpedance (GMI) measurements in the high-frequency regime utilizing a coplanar waveguide with an integrated Permalloy multilayer and micromachined on a silicon cantilever are reported. The fabrication process is described in detail. The aspect ratio of the magnetic multilayer in the magnetoresistive and magnetostrictive device was varied. Tensile strain and compressive strain were applied. Vector network analyzer measurements in the range from the skin effect to ferromagnetic resonance confirm the technological potential of GMI-based micro-electro-mechanical devices for strain and magnetic field sensing applications. The strain-impedance gauge factor was quantified by finite element strain calculations and reaches a maximum value of almost 200.

  9. Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model.

    Science.gov (United States)

    Andrei, Alexandru; Welkenhuysen, Marleen; Ameye, Lieveke; Nuttin, Bart; Eberle, Wolfgang

    2011-01-01

    Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.

  10. A Micromachined Infrared Senor for an Infrared Focal Plane Array

    Directory of Open Access Journals (Sweden)

    Seong M. Cho

    2008-04-01

    Full Text Available A micromachined infrared sensor for an infrared focal plane array has been designed and fabricated. Amorphous silicon was used as a sensing material, and silicon nitride was used as a membrane material. To get a good absorption in infrared range, the sensor structure was designed as a l/4 cavity structure. A Ni-Cr film was selected as an electrode material and mixed etching scheme was applied in the patterning process of the Ni-Cr electrode. All the processes were made in 0.5 μm iMEMS fabricated in the Electronics and Telecommunication Research Institute (ETRI. The processed MEMS sensor had a small membrane deflection less than 0.15 μm. This small deflection can be attributed to the rigorous balancing of the stresses of individual layers. The efficiency of infrared absorption was more than 75% in the wavelength range of 8 ~ 14 μm. The processed infrared sensor showed high responsivity of ~230 kV/W at 1.0V bias and 2 Hz operation condition. The time constant of the sensor was 8.6 msec, which means that the sensor is suitable to be operated in 30 Hz frame rate.

  11. Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

    KAUST Repository

    Wang, Zhihong

    2013-11-04

    We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr 0.52 Ti 0.48)O 3 (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initially exhibit electromechanical coupling or the piezoelectric response. However, upon the application of static air pressure to the diaphragm, both electromechanical coupling and the piezoelectric response can be induced in the originally depolarized diaphragm. The piezoelectric response increases as the curvature increases and a giant piezoelectric response can be obtained from a bent diaphragm. The obtained results clearly demonstrate that a high strain gradient in a diaphragm can polarize a PZT film through a flexoelectric effect, and that the induced piezoelectric response of the diaphragm can be controlled by adjusting its curvature.

  12. Achievement report for fiscal 1996 on the research and development of micromachine technology. Development of microfactory technology; 1996 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Microfactory gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The goal is to save energy and minimize the working space by constructing a manufacturing system comprising various micromachines with their dimensions fit for parts and products they handle. Development continues relative to microprocessing (electrolysis, and optical processing) and microscopic liquid operation (micropump, and part holding device). Under research in relation to the assembly process are a micro-arm to handle tiny parts and precision techniques for interfitting within a very small microfactory, a piezoelectric actuator for microscopic position adjusting, and ultraprecise microprocessing techniques indispensable for their manufacture. Also under research are the incorporation of optically driven microdevices developed before the preceding fiscal year into a microfactory and the study of microservo actuators capable of sophisticated positioning and velocity control. Concerning the microscopic transport system to deal with microscopic parts and products, studies are under way so as to embody systems driven by actuators of the electromagnetic type and electrostatic type. In this paper, reference is made to inspection techniques and comprehensive investigations. (NEDO)

  13. MEMS: A new approach to micro-optics

    Energy Technology Data Exchange (ETDEWEB)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlights polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.

  14. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  15. 3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM): A Makerspace Approach to the Fabrication of Biological Microdevices

    OpenAIRE

    Avra Kundu; Tariq Ausaf; Swaminathan Rajaraman

    2018-01-01

    We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM) for rapid prototyping of lab-on-a-chip (LOC) and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i) 2D microelectrode array (MEA) targeted at in vitro neural and cardi...

  16. Review of piezoelectric micromachined ultrasonic transducers and their applications

    International Nuclear Information System (INIS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Choi, Hongsoo; Ryu, Jungho

    2017-01-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient ( e 31 ) can be increased by controlling the crystal texture (seed layer of γ -Al 2 O 3 ), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO 2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size. (topical review)

  17. Review of piezoelectric micromachined ultrasonic transducers and their applications

    Science.gov (United States)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Shin, Eunjung; Ryu, Jungho; Choi, Hongsoo

    2017-11-01

    In recent decades, micromachined ultrasonic transducers (MUTs) have been investigated as an alternative to conventional piezocomposite ultrasonic transducers, primarily due to the advantages that microelectromechanical systems provide. Miniaturized ultrasonic systems require ultrasonic transducers integrated with complementary metal-oxide-semiconductor circuits. Hence, piezoelectric MUTs (pMUTs) and capacitive MUTs (cMUTs) have been developed as the most favorable solutions. This paper reviews the basic equations to understand the characteristics of thin-film-based piezoelectric devices and presents recent research on pMUTs, including current approaches and limitations. Methods to improve the coupling coefficient of pMUTs are also investigated, such as device structure, materials, and fabrication techniques. The device structure improvements include multielectrode pMUTs, partially clamped boundary conditions, and 3D pMUTs (curved and domed types), where the latter can provide an electromechanical coupling coefficient of up to 45%. The piezoelectric coefficient (e 31) can be increased by controlling the crystal texture (seed layer of γ-Al2O3), using single-crystal (PMN-PT) materials, or control of residual stresses (using SiO2 layer). Arrays of pMUTs can be implemented for various applications including intravascular ultrasound, fingerprint sensors, rangefinders in air, and wireless power supply systems. pMUTs are expected to be an ideal solution for applications such as mobile biometric security (fingerprint sensors) and rangefinders due to their superior power efficiency and compact size.

  18. Development of micro capacitive accelerometer for subsurface microseismic measurement; Micromachining ni yoru chika danseiha kenshutsu no tame no silicon yoryogata kasokudo sensor no seisaku

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, M; Niitsuma, H; Esashi, M [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-05-27

    A silicon capacitive accelerometer was fabricated to detect subsurface elastic waves by using micromachining technology. Characteristics required for it call for capability of detecting acceleration with amplitudes from 0.1 to 1 gal and flat amplitude characteristics in frequency bands of 10 Hz to several kHz. For the purpose of measuring transition phenomena, linear phase characteristics in the required bands must be guaranteed, cross sensitivity must be small, and resistance to water, pressure and heat is demanded. Sensitivity of the sensor is determined finally by noise level in a detection circuit. The sensor`s minimum detection capability was 40 mgal in the case of the distance between a weight and an electrode being 3 {mu}m. This specification value is a value realizable by the current micromachining technology. Dimensions for the weight and other members were decided with the natural frequency to make band width 2 kHz set to 4 kHz. Completion of the product has not been achieved yet, however, because of a problem that the weight gets stuck on the electrode plate in anode bonding in the assembly process. 7 refs., 5 figs., 1 tab.

  19. Survey of practical application fields of micro-machine and micro-factory technologies in Japan; Nippon ni okeru maikuro machine oyobi maikuro factory gijutsu no jitsuyoka bun`ya chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    As for micro-machine and micro-factory technologies, research and development trends promoted by private companies were surveyed except for national projects. In the field of main technology development by private companies which do not participate in national projects, developments of micro-devices, such as micro-sensor, and micro-actuator, as well as basic technologies, such as machining, assembly, and material technology, are predominant. The applied fields of these aim at electronic industries for measurement and analysis equipment, motorcar sensors, information, communication, and home electric products. While, there are a few research and developments as to micro-robots. Research and developments aiming at application to medical field are widely promoted by private companies. In this field, micro-machining technology for micro-surgery and endoscopes is prospective. There is a photo-forceps technology for handling the micro-parts. However, there are few researches considering the micro-factory. 146 refs., 73 figs., 7 tabs.

  20. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    Science.gov (United States)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  1. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    International Nuclear Information System (INIS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-01-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated. (paper)

  2. Predictive modeling, simulation, and optimization of laser processing techniques: UV nanosecond-pulsed laser micromachining of polymers and selective laser melting of powder metals

    Science.gov (United States)

    Criales Escobar, Luis Ernesto

    One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National

  3. Modeling the Microstructure Curvature of Boron-Doped Silicon in Bulk Micromachined Accelerometer

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2013-01-01

    Full Text Available Microstructure curvature, or buckling, is observed in the micromachining of silicon sensors because of the doping of impurities for realizing certain electrical and mechanical processes. This behavior can be a key source of error in inertial sensors. Therefore, identifying the factors that influence the buckling value is important in designing MEMS devices. In this study, the curvature in the proof mass of an accelerometer is modeled as a multilayered solid model. Modeling is performed according to the characteristics of the solid diffusion mechanism in the bulk-dissolved wafer process (BDWP based on the self-stopped etch technique. Moreover, the proposed multilayered solid model is established as an equivalent composite structure formed by a group of thin layers that are glued together. Each layer has a different Young’s modulus value and each undergoes different volume shrinkage strain owing to boron doping in silicon. Observations of five groups of proof mass blocks of accelerometers suggest that the theoretical model is effective in determining the buckling value of a fabricated structure.

  4. Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC.

    Science.gov (United States)

    DesAutels, G Logan; Powers, Peter; Brewer, Chris; Walker, Mark; Burky, Mark; Anderson, Gregg

    2008-07-20

    An optical temperature sensor was created using a femtosecond micromachined diffraction grating inside transparent bulk 6H-SiC, and to the best of our knowledge, this is a novel technique of measuring temperature. Other methods of measuring temperature using fiber Bragg gratings have been devised by other groups such as Zhang and Kahrizi [in MEMS, NANO, and Smart Systems (IEEE, 2005)]. This temperature sensor was, to the best of our knowledge, also used for a novel method of measuring the linear and nonlinear coefficients of the thermal expansion of transparent and nontransparent materials by means of the grating first-order diffracted beam. Furthermore the coefficient of thermal expansion of 6H-SiC was measured using this new technique. A He-Ne laser beam was used with the SiC grating to produce a first-order diffracted beam where the change in deflection height was measured as a function of temperature. The grating was micromachined with a 20 microm spacing and has dimensions of approximately 500 microm x 500 microm (l x w) and is roughly 0.5 microm deep into the 6H-SiC bulk. A minimum temperature of 26.7 degrees C and a maximum temperature of 399 degrees C were measured, which gives a DeltaT of 372.3 degrees C. The sensitivity of the technique is DeltaT=5 degrees C. A maximum deflection angle of 1.81 degrees was measured in the first-order diffracted beam. The trend of the deflection with increasing temperature is a nonlinear polynomial of the second-order. This optical SiC thermal sensor has many high-temperature electronic applications such as aircraft turbine and gas tank monitoring for commercial and military applications.

  5. Micromachining of commodity plastics by proton beam writing and fabrication of spatial resolution test-chart for neutron radiography

    International Nuclear Information System (INIS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.; Kada, W.; Kohka, M.; Satoh, T.; Ohkubo, T.; Ishii, Y.; Takano, K.

    2013-01-01

    Proton beam writing is a direct-write technique and a promising method for the micromachining of commodity plastics such as acrylic resins. Herein, we describe the fabrication of microscopic devices made from a relatively thick (∼75 μm) acrylic sheet using proton beam writing. In addition, a software package that converts image pixels into coordinates data was developed, and the successful fabrication of a very fine jigsaw puzzle was achieved. The size of the jigsaw puzzle pieces was 50 × 50 μm. For practical use, a prototype of a line and space test-chart was also successfully fabricated for the determination of spatial resolution in neutron radiography

  6. EDITORIAL: The Fourth International Workshop on Microfactories (IWMF'04)

    Science.gov (United States)

    Chu, Jiaru; Maeda, Ryutaro

    2005-10-01

    This special section of Journal of Micromechanics and Microengineering is devoted to the fourth International Workshop on Microfactories. After the first three successful Workshops, which took place in Tsukuba, Japan in 1998, Fribourg, Switzerland in 2000 and Minneapolis, USA in 2002, the fourth (IWMF'04) was held in Shanghai, China on 15-17 October 2004. The concept of the `microfactory' and miniaturized production systems was first proposed by the Mechanical Engineering Laboratory in Japan who demonstrated the feasibility of downsizing energy-saving, distributed and eventually environmentally conscious manufacturing systems. There is incredible potential in reducing the physical scale of numerous processes related to the manufacture of many forms of future dense `mechatronic' products and in the manipulation of microscopic and nanoscopic objects and materials for the benefit of mankind. Small systems capable of these operations can be referred to as `microfactories'. A worldwide effort is currently underway to bring such microfactories to fruition. MEMS, MST and micromachines are regarded as synonyms, but they do not necessarily have the same meaning. In particular, differences can be found in their technological approaches. Roughly speaking, research and development in the USA is based primarily on surface or bulk silicon micromachining processes, and the ideal realization of MEMS seems to be the monolithic device. The European approach also focuses on integration between electronics and mechanics but, especially in connection with the development of `µTAS', it also demands the integration of non-mechanical components into the system. In Japan the approaches for MST are said to be rather less focused. Besides the above-mentioned `classical' microsystem technologies, down-scaling of conventional manufacturing methods, or non-silicon based device processing within this field, completely new technological methods are also considered as `microsystem technologies

  7. Si Micro-turbine by Proton BeamWriting and Porous Silicon Micromachining

    International Nuclear Information System (INIS)

    Rajta, I.; Szilasi, S.Z.; Fekete, Z.

    2008-01-01

    Complete text of publication follows. A 3D Si micro-turbine characterized by high aspect ratio vertical walls was formed by the combination of proton beam writing (PBW) and subsequent selective porous Si (PS) etching. Crystal damages generated by the implanted protons result in increased resistivity, thereby limit or even prevent the current to flow through the implanted area during electrochemical etching. Characteristic feature of the proposed process is that the shape of the micro electromechanical (MEMS) components is defined by two implantation energies. A higher energy is applied for defining the housing of the device while the lower energy is used to write the moving components. The implantation energies were selected such as to result appropriate difference between the two projected ranges, thereby providing structures with different height after development. The thickness of the walls of the moving component and the isotropic etching profile of the electrochemical PS formation was also taken into consideration. The electrochemical etching is driven until the sacrificial PS layer completely under etches the moving components, but the etch-front does not reach the bottom of the housing. Therefore, the dissolution of PS results in a ready-to-operate device with a released moving component embedded in the cavity of the housing. The operation of the encapsulated device fabricated by the two-energy implantation is successfully demonstrated (Fig. 1). Rotation speed of the device is estimated in the range of thousands rpm, however, further analysis of the novel structure optimized for performance and MEMS compatible assembly will be done and precise characteristics will be determined by adequate optical read-out method. The feasibility of Proton Beam Writing combined with Porous Si Micromachining and conventional Si processing steps was successfully demonstrated by fabricating Si microturbine chip. The aligned, two-energy proton beam implantation can provide high

  8. Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.

    Science.gov (United States)

    Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W

    2000-01-01

    Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.

  9. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    Science.gov (United States)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  10. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    International Nuclear Information System (INIS)

    Cho, Y; Kumar, A; Xu, S; Zou, J

    2016-01-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays. (paper)

  11. Research on the effect of coverage rate on the surface quality in laser direct writing process

    Science.gov (United States)

    Pan, Xuetao; Tu, Dawei

    2017-07-01

    Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.

  12. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    International Nuclear Information System (INIS)

    Schwinkendorf, Jan-Patrick

    2012-05-01

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  13. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  14. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass

    Directory of Open Access Journals (Sweden)

    Rongguo Hou

    2018-01-01

    Full Text Available The ultrasonic vibration is used to enhance the capability of the abrasive water micromachining glass. And, the ultrasonic vibration is activated on the abrasive waterjet nozzle. The quality of the flow is improved, and the velocity of the abrasive is increased because of the addition of the ultrasonic energy. The relevant experimental results indicate that the erosion depth and the material volume removal of the glass are obviously increased when ultrasonic vibration is working. As for the influence of process parameters on the material removal of the glass such as vibration amplitude, system pressure, distance of the standoff, and abrasive size, the experimental results indicate that the system pressure and vibration contribute greatly to the glass material removal. Also, the erosion depth and the volume of material removal are increased with the increase in the vibration amplitude and system pressure. There are some uplifts found at the edge of erosion pit. Then, it can be inferred that the plastic method is an important material removal method during the machining process of ultrasonic vibration-assisted abrasive waterjet.

  15. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; Sedky, Sherif; Soliman, Ezzeldin A.

    2016-01-01

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  16. To study the effect of different electrolytes and their concentrations on electrochemical micromachining

    Science.gov (United States)

    Singh, Ramandeep

    2018-04-01

    The machining of materials on micro-meter and sub-micrometre is considered the technology of future. Due to challenging applications of biomedical and aerospace industries, the traditional manufacturing techniques lacks in dimensional accuracy. Thus for such industries, the technique that can control micron tolerances is Electrochemical Micromachining (EMM). Hard metals and alloys can also be machined by this technique. Thus to develop a novel EMM system setup and to investigate the effect of three different electrolytes i.e NaCl, NaNO3 and HCl with their different concentrations, the current study was conducted. Stainless Steel-304 and copper were chosen as the work piece material in the present study. Taguchi L18 orthogonal array was used for the best combination of experiment. According to the present investigation most prominent factor affecting the material removal (MR) comes out was electrolyte. HCl provides the better MR among other electrolytes i.e. NaNO3 and NaCl. The amount of MR increased with the increase in the concentration of electrolyte.

  17. On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    KAUST Repository

    Sallam, Mai O.

    2016-12-19

    In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two Ig/2 dipole radiators fed by coplanar strips waveguide. Two slightly shorter dipoles are placed in proximity to the main radiators. They act as parasitic dipole arms which increase the bandwidth of the antenna. Two versions of the same antenna topology are presented in this paper in which one uses a high resistivity silicon substrate while the other uses a low resistivity one. The proposed antenna was optimized using HFSS and the final design was simulated using both HFSS and CST for verifying the obtained results. Both simulators are in good agreement. They show that the antenna has very good radiation characteristics where its directivity is around 7.5 dBi. The addition of the parasitic arms increased the bandwidth of the antenna from 1.3 GHz (3.62 GHz) to 4.3 GHz (7.44 GHz) when designed on high (low) resistivity silicon substrate.

  18. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    Directory of Open Access Journals (Sweden)

    Mohamed Sultan Mohamed Ali

    2014-07-01

    Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  19. Chemical vapor detection using a capacitive micromachined ultrasonic transducer.

    Science.gov (United States)

    Lee, Hyunjoo J; Park, Kwan Kyu; Kupnik, Mario; Oralkan, O; Khuri-Yakub, Butrus T

    2011-12-15

    Distributed sensing of gas-phase chemicals using highly sensitive and inexpensive sensors is of great interest for many defense and consumer applications. In this paper we present ppb-level detection of dimethyl methylphosphonate (DMMP), a common simulant for sarin gas, with a ppt-level resolution using an improved capacitive micromachined ultrasonic transducer (CMUT) as a resonant chemical sensor. The improved CMUT operates at a higher resonant frequency of 47.7 MHz and offers an improved mass sensitivity of 48.8 zg/Hz/μm(2) by a factor of 2.7 compared to the previous CMUT sensors developed. A low-noise oscillator using the CMUT resonant sensor as the frequency-selective device was developed for real-time sensing, which exhibits an Allan deviation of 1.65 Hz (3σ) in the presence of a gas flow; this translates into a mass resolution of 80.5 zg/μm(2). The CMUT resonant sensor is functionalized with a 50-nm thick DKAP polymer developed at Sandia National Laboratory for dimethyl methylphosphonate (DMMP) detection. To demonstrate ppb-level detection of the improved chemical sensor system, the sensor performance was tested at a certified lab (MIT Lincoln Laboratory), which is equipped with an experimental chemical setup that reliably and accurately delivers a wide range of low concentrations down to 10 ppb. We report a high volume sensitivity of 34.5 ± 0.79 pptv/Hz to DMMP and a good selectivity of the polymer to DMMP with respect to dodecane and 1-octanol.

  20. Fabricación de micro-componentes mediante arranque de viruta. análisis del acabado superficial en aleaciones de aluminio y titanio

    Directory of Open Access Journals (Sweden)

    Francisco Mata Cabrera

    2011-07-01

    Se proponen modelos de predicción de la rugosidad, con buen grado de aproximación, para ayudar a la caracterización de los procesos de micro-mecanizado. Micro-machining is the most adequate technology for manufacturing of micro-components in the industry. This is a manufacturing precision process with applications in certain industrial field, for example the machining construction. The objective of this research is to analyze the surface quality in micro-machining processes and to evaluate her possible application in mechanical industry (surface roughness, geometry, aspect, etc. This work presents the experimental study of surface roughness (Ra and Rt using a specific micro-turning process. The measures of surface roughness reveal how it is possible to obtain superficial very good qualities up to diameters of 0.05 mm. For low diameters, it worsens the superficial quality and the faults of form increase, due to the low inflexibility of the piece. Prediction models of surface roughness are proposed to the characterization of micro-machining processes.  

  1. Development of micro capacitive accelerometer for subsurface microseismic measurement. Second Report; Micromachining ni yoru chika danseiha kenshutsu no tame no silicone yoryogata kasokudo sensor no seisaku. 2

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, M; Lim, G; Niitsuma, H; Esashi, M [Tohoku University, Sendai (Japan)

    1997-10-22

    Micromachining-aided manufacture is under way of a silicon capacitive accelerator sensor, high in sensitivity and broad in bandwidth, for detecting subsurface microseismic waves. The sensor detects acceleration by use of changes in capacities of the top and bottom capacitors generated when a spring-supported weight experiences displacement upon application of acceleration to the said weight. A diode bridge circuit is employed as the circuit for detecting acceleration. As for sensitivity of the sensor, when the virtual noise inputted into the electronic circuit is presumed at 1{mu}V and the circuit driving voltage at 5V, the sensor minimum detectability will be 2.5mgal in the presence of a 3{mu}m gap between the weight and an electrode plate. The natural vibration frequency is set at 1kHz. Such specifications may be realized using the current micromachining technology, and possibilities are that the bandwidth will be further expanded when the sensor is used in a servo-type configuration. The effort is still at the stage of acceleration sensor manufacturing, with a stopper just formed for the silicon weight. 9 refs., 6 figs., 1 tab.

  2. Generation of programmable temporal pulse shape and applications in micromachining

    Science.gov (United States)

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  3. Effect of the Detector Width and Gas Pressure on the Frequency Response of a Micromachined Thermal Accelerometer

    Directory of Open Access Journals (Sweden)

    Johann Courteaud

    2011-05-01

    Full Text Available In the present work, the design and the environmental conditions of a micromachined thermal accelerometer, based on convection effect, are discussed and studied in order to understand the behavior of the frequency response evolution of the sensor. It has been theoretically and experimentally studied with different detector widths, pressure and gas nature. Although this type of sensor has already been intensively examined, little information concerning the frequency response modeling is currently available and very few experimental results about the frequency response are reported in the literature. In some particular conditions, our measurements show a cut-off frequency at −3 dB greater than 200 Hz. By using simple cylindrical and planar models of the thermal accelerometer and an equivalent electrical circuit, a good agreement with the experimental results has been demonstrated.

  4. Design and Fabrication of Piezoresistive Based Encapsulated Poly-Si Cantilevers for Bio/chemical Sensing

    Science.gov (United States)

    Krishna, N. P. Vamsi; Murthy, T. R. Srinivasa; Reddy, K. Jayaprakash; Sangeeth, K.; Hegde, G. M.

    Cantilever-based sensing is a growing research field not only within micro regime but also in nano technology. The technology offers a method for rapid, on-line and in-situ monitoring of specific bio/chemical substances by detecting the nanomechanical responses of a cantilever sensor. Cantilever with piezoresistive based detection scheme is more attractive because of its electronics compatibility. Majority of commercially available micromachined piezoresistive sensors are bulk micromachined devices and are fabricated using single crystal silicon wafers. As substrate properties are not important in surface micromachining, the expensive silicon wafers can be replaced by cheaper substrates, such as poly-silicon, glass or plastic. Here we have designed SU-8 based bio/chemical compatible micro electro mechanical device that includes an encapsulated polysilicon piezoresistor for bio/chemical sensing. In this paper we report the design, fabrication and analysis of the encapsulated poly-Si cantilevers. Design and theoretical analysis are carried out using Finite Element Analysis software. For fabrication of poly-silicon piezoresistive cantilevers we followed the surface micromachining process steps. Preliminary characterization of the cantilevers is presented.

  5. Proton beam micromachining on strippable aqueous base developable negative resist

    International Nuclear Information System (INIS)

    Rajta, I.; Uzonyi, I.; Baradacs, E.; Chatzichristidi, M.; Raptis, I.; Valamontes, E.S.

    2004-01-01

    Complete text of publication follows. Proton Beam Micromachining (PBM, also known as P-beam writing), a novel direct- write process for the production of 3D microstructures, can be used to make multilevel structures in a single layer of resist by varying the ion energy. The interaction between the bombarding ions and the target material is mainly ionization, and very few ions suffer high angle nuclear collisions, therefore structures made with PBM have smooth near vertical side walls. The most commony applied resists in PBM are the positive, conventional, polymethyl methacrylate (PMMA); and the negative, chemically amplified, SU-8 (Micro Chem Corp). SU-8 is an epoxy based resist suitable also for LIGA and UV-LIGA processes, it offers good sensitivity, good process latitude, very high aspect ratio and therefore it dominates in the high aspect ratio micromachining applications. SU-8 requires 30 nC/mm 2 fluence for PBM irradiations at 2 MeV protons. Its crosslinking chemistry is based on the eight epoxy rings in the polymer chain, which provide a very dense three dimensional network in the presence of suitably activated photo acid generators (PAGs) which is very difficult to be stripped away after development. Thus, stripping has to be assisted with plasma processes or with special liquid removers. Moreover, the SU-8 developer is organic, propylene glycol methyl ether acetate (PGMEA), and thus environmentally non-friendly. To overcome the SU-8 stripping limitations, design of a negative resist system where solubility change is not based solely on cross- linking but also on the differentiation of hydrophilicity between exposed and non-exposed areas is desirable. A new resist formulation, fulfilling the above specifications has been developed recently [1]. This formulation is based on a specific grade epoxy novolac (EP) polymer, a partially hydrogenated poly-4-hydroxy styrene (PHS) polymer, and an onium salt as photoacid generator (PAG), and has been successfully

  6. Micromachined sensor for stress measurement and micromechanical study of free-standing thin films for MEMS applications

    Science.gov (United States)

    Zhang, Ping

    Microelectromechanical systems (MEMS) have a wide range of applications. In the field of wireless and microwave technology, considerable attention has been given to the development and integration of MEMS-based RF (radio frequency) components. An RF MEMS switch requires low insertion loss, high isolation, and low actuation voltage - electrical aspects that have been extensively studied. The mechanical requirements of the switch, such as low sensitivity to built-in stress and high reliability, greatly depend on the micromechanical properties of the switch materials, and have not been thoroughly explored. RF MEMS switches are typically in the form of a free-standing thin film structure. Large stress gradients and across-wafer stress variations developed during fabrication severely degrade their electrical performance. A micromachined stress measurement sensor has been developed that can potentially be employed for in-situ monitoring of stress evolution and stress variation. The sensors were micromachined using five masks on two wafer levels, each measuring 5x3x1 mm. They function by means of an electron tunneling mechanism, where a 2x2 mm silicon nitride membrane elastically deflects under an applied deflection voltage via an external feedback circuitry. For the current design, the sensors are capable of measuring tensile stresses up to the GPa range under deflection voltages of 50--100 V. Sensor functionality was studied by finite element modeling and a theoretical analysis of square membrane deflection. While the mechanical properties of thin films on substrates have been extensively studied, studies of free-standing thin films have been limited due to the practical difficulties in sample handling and testing. Free-standing Al and Al-Ti thin films specimens have been successfully fabricated and microtensile and stress relaxation tests have been performed using a custom-designed micromechanical testing apparatus. A dedicated TEM (transmission electron microscopy

  7. Short-pulse-width micromachining of hard materials using DPSS Nd:YAG lasers

    Science.gov (United States)

    Heglin, Michael; Govorkov, Sergei V.; Scaggs, Michael J.; Theoharidis, Haris; Schoelzel, T.

    2002-06-01

    The material processing of an industrial, short-pulse duration DPPS YAG laser producing peak powers greater than 0.2MW is discussed in this paper. This peak power provides sufficient materials processing capability to meet the micro machining needs in the automotive, semiconductor, micro- electronic, medical and telecommunication industries. All hard and soft materials including: plastics, metals, ceramics, diamond and other crystalline materials are suitable candidates for the processing capability of this laser. Micro level features can be machined in these materials to a depth in excess of 1mm with high quality results. In most applications feature sizes can be achieved that are not possible or economical with existing technologies. The optical beam delivery system requirements, and overall micro-machining set-up are also described. The drilling and cutting versatility down to feature sizes of less than 7 micrometers , as well as, complex shapes are shown. The wavelength, pulse length, and peakpower are described and relate to their effect on recast, micro-cracking and material removal rates. Material removal effects related to progressive penetration into the material will be reviewed. The requirements of this DPSS laser technology to meet the operational requirements for high duty cycle operation in industrial environments is covered along with processing flexibility and lower operating cost.

  8. Fiscal 1997 report on technological results. R and D on micromachine technology (Development of micro-factory technology); 1997 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Microfactory gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Activities are conducted in search of a micromachine system in which devices and equipment relating to machining, assembly, transportation, inspection, etc., in use for a manufacturing process are integrated in a narrow space, for the purpose of conserving energy through the miniaturization of the process of manufacturing small industrial products. With the activities in the two fields of (1) R and D of systematization technology (experimental system for micro fabrication/assembly) and (2) comprehensive investigation and research, examination on detailed specification for the experimental system was carried out, as were the examination of element technologies, element device operating experiments, technological investigation, etc.. In (1), sophistication of the element technologies was contrived that were required for realizing each experimental system, while the detailed specification of each experimental system was decided. Further, a part of the element devices was experimentally manufactured, with the basic functions verified. In (2), research studies were compiled on radio interference for example in the case where various devices were integrated and highly densified through the formation of a micro-factory; also compiled was a joint research with Agency of Industrial Science and Technology, a research conducted for the purpose of building the conception of the micro-factory. (NEDO)

  9. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  10. How to optimize ultrashort pulse laser interaction with glass surfaces in cutting regimes?

    Energy Technology Data Exchange (ETDEWEB)

    Bulgakova, Nadezhda M., E-mail: bulgakova@fzu.cz [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Institute of Thermophysics SB RAS, 1 Lavrentyev Ave., Novosibirsk 630090 (Russian Federation); Zhukov, Vladimir P. [Institute of Computational Technologies SB RAS, 6 Lavrentyev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Ave., 630073 Novosibirsk (Russian Federation); Collins, Adam R. [NCLA, NUI Galway, Galway (Ireland); Rostohar, Danijela; Derrien, Thibault J.-Y.; Mocek, Tomáš [HiLASE Centre, Institute of Physics ASCR, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2015-05-01

    Highlights: • The factors influencing laser micromachining of transparent materials are analyzed. • Important role of ambient gas in laser processing is shown by numerical simulations. • The large potential of bi-wavelength laser processing is demonstrated. - Abstract: The interaction of short and ultrashort pulse laser radiation with glass materials is addressed. Particular attention is paid to regimes which are important in industrial applications such as laser cutting, drilling, functionalization of material surfaces, etc. Different factors influencing the ablation efficiency and quality are summarized and their importance is illustrated experimentally. The effects of ambient gas ionization in front of the irradiated target are also analyzed. A possibility to enhance laser coupling with transparent solids by bi-wavelength irradiation is discussed.

  11. Analysis of the current density characteristics in through-mask electrochemical micromachining (TMEMM for fabrication of micro-hole arrays on invar alloy film

    Directory of Open Access Journals (Sweden)

    Da-som JIN

    2017-06-01

    Full Text Available Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes (OLEDs because of its low thermal expansion coefficient (1.86 × 10−6 cm/°C. To fabricate micro-hole arrays on 30 μm invar alloy film, through-mask electrochemical micromachining (TMEMM was developed and combined with a portion of the photolithography etching process. For precise hole shapes, patterned photoresist (PR film was applied as an insulating mask. To investigate the relationship between the current density and the material removal rate, the principle of the electrochemical machining was studied with a focus on the equation. The finite element method (FEM was used to verify the influence of each parameter on the current density on the invar alloy film surface. The parameters considered were the thickness of the PR mask, inter-electrode gap (IEG, and electrolyte concentration. Design of experiments (DOE was used to figure out the contribution of each parameter. A simulation was conducted with varying parameters to figure out their relationships with the current density. Optimization was conducted to select the suitable conditions. An experiment was carried out to verify the simulation results. It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM, which is a promising method that can be applied to fabrications of OLEDs shadow masks.

  12. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    Science.gov (United States)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  13. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    International Nuclear Information System (INIS)

    Cho, Y; Chang, C-C; Zou, J; Wang, L V

    2016-01-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT. (paper)

  14. Fiscal 1997 technological survey report. R and D on micromachine technology (Development of high functional maintenance technology for power station equipment); 1997 nendo micromachine gijutsu no kenkyu kaihatsu seika hokokusho. Hatsuden shisetsuyo kokino maintenance gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Activities were conducted in search of micromachine technology for a high functional maintenance system that inspects and repairs abnormal conditions such as cracks in a heat exchanger or a piping system without disassembling it in a power generating station such as a thermal or nuclear power plant. The activities were proceeded in four areas of (1) experimental manufacturing of the system (an inline self-running environment recognizing system, an external inspection system for fine tube group, and a system capable of light internal operation such as welding), (2) R and D on sophistication technology for functional devices, (3) R and D on common basic technologies, and (4) comprehensive investigation and research. In (1), examination of detailed basic specifications was carried out, as were examination of element technologies, experimental manufacturing and operation test of element devices, and performance evaluation. Further, a part of element devices was made on an experimental basis, with the basic functions demonstrated. In the comprehensive investigation and research, a trend in the future maintenance technology in power generating equipment was obtained and pigeonholed. (NEDO)

  15. The Fantastic Voyage of the Trypanosome: A Protean Micromachine Perfected during 500 Million Years of Engineering

    Directory of Open Access Journals (Sweden)

    Timothy Krüger

    2018-02-01

    Full Text Available The human body is constantly attacked by pathogens. Various lines of defence have evolved, among which the immune system is principal. In contrast to most pathogens, the African trypanosomes thrive freely in the blood circulation, where they escape immune destruction by antigenic variation and incessant motility. These unicellular parasites are flagellate microswimmers that also withstand the harsh mechanical forces prevailing in the bloodstream. They undergo complex developmental cycles in the bloodstream and organs of the mammalian host, as well as the disease-transmitting tsetse fly. Each life cycle stage has been shaped by evolution for manoeuvring in distinct microenvironments. Here, we introduce trypanosomes as blueprints for nature-inspired design of trypanobots, micromachines that, in the future, could explore the human body without affecting its physiology. We review cell biological and biophysical aspects of trypanosome motion. While this could provide a basis for the engineering of microbots, their actuation and control still appear more like fiction than science. Here, we discuss potentials and challenges of trypanosome-inspired microswimmer robots.

  16. Micromachining of Al2O3-TiC ceramics by excimer laser

    Directory of Open Access Journals (Sweden)

    Oliveira, V.

    1998-04-01

    Full Text Available Micromachining of Al2O3-TiC ceramic using a KrF excimer laser was studied in the fluence range 2 to 8 J/cm2 . The ablation rate decreases and the roughness increases with the first pulses but after about 200 pulses the process reaches a stationary stage where both roughness and ablation rate become constant. Observation of the processed areas by scanning electron microscopy showed that a globular topography is formed during the first stage and that the surface topography remains unchanged with further pulses. This globular topography is responsible for the variation of roughness and ablation rate observed during the first stage. EDS analysis showed that the globular features present an external region with higher titanium content and a core formed of unaffected material.

    Se estudia el micromecanizado de cerámicas Al2O3-TiC mediante un láser de excímero de KrF con un rango de fluencia de 2 a 8 J/cm2 . La velocidad de ablación disminuye y la rugosidad aumenta con los primeros pulsos. Sin embargo, después de 200 pulsos, el proceso alcanza el régimen estacionario, donde tanto la rugosidad como la velocidad de ablación permanecen constantes. La observación mediante SEM de determinadas áreas mostraban una topografía globular formada durante la primera etapa, mientras que con los siguientes pulsos permanece in cambios. Esta topografía globular es responsable de la variación de rugosidad y de la velocidad de ablación observada durante las primeras etapas del proceso. Los análisis de EDS sobre las zonas globulares mostraron la existencia de una región externa rica en titanio y un núcleo formado por el material sin afectar.

  17. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  18. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro Francelino

    2015-01-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  19. Achievement report on commissioned research of R and D in fiscal 2000 on micromachine technologies. Development of high function maintenance technology for power generation facilities; 2000 nendo kenkyu seika hokokusho. Hatsuden shisetsu you kokino mentenansu gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D has been carried out on a high function maintenance system that performs inspection and repair of anomalies such as internal cracks by using micromachines without need of disassembling heat exchangers and piping systems in power generation facilities. This paper summarizes the achievements in fiscal 2000. In the research of a prototype self-propelled system to recognize environment in tubes, the secondary prototype system integrating all of the elemental devices was fabricated, and its functions were verified. In the research of a prototype system to inspect outer surface of fine tube groups, a plurality of single machines that perform movement in narrow spaces on flat surface, interlocking, separation and flaw detection were connected to execute a vertical movement experiment. In the research of a prototype system for works internal to devices, fabrication and functional verification were conducted on the final prototype system which is equipped with functions of measuring very small nicks and performing repair works, which are mounted on the tip of a curved tube unit with multiple degrees of freedom. In the research of a functional device improving technology, a device that puts together artificial muscles, micro-joints, and a suspension device with very low friction was fabricated, and a functional verification was implemented thereon. (NEDO)

  20. A novel prototyping method for die-level monolithic integration of MEMS above-IC

    International Nuclear Information System (INIS)

    Cicek, Paul-Vahe; Zhang, Qing; Saha, Tanmoy; Mahdavi, Sareh; Allidina, Karim; Gamal, Mourad El; Nabki, Frederic

    2013-01-01

    This work presents a convenient and versatile prototyping method for integrating surface-micromachined microelectromechanical systems (MEMS) directly above IC electronics, at the die level. Such localized implementation helps reduce development costs associated with the acquisition of full-sized semiconductor wafers. To demonstrate the validity of this method, variants of an IC-compatible surface-micromachining MEMS process are used to build different MEMS devices above a commercial transimpedance amplifier chip. Subsequent functional assessments for both the electronics and the MEMS indicate that the integration is successful, validating the prototyping methodology presented in this work, as well as the suitability of the selected MEMS technology for above-IC integration. (paper)

  1. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    Science.gov (United States)

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  2. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    Science.gov (United States)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was

  3. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  4. Demonstrating Optothermal Actuators for an Autonomous Mems Microrobot

    Science.gov (United States)

    2004-03-01

    of Toggled Microthermal Actuators,” Journal of Micromechanics and Microengineering, Vol. 14, pp 49-56, 2004. [10] S. Baglio, S. Castorina, L...127-132, 2000. [8] Y. Lai, J. McDonald, M. Kujath and T. Hubbard, “Force, Deflection and Power Measurements of Toggled Microthermal Actuators...Hubbard, "Force, Deflection and Power Measurements of Toggled Microthermal Actuators", Journal of Micromechanics and Microengineering, Vol. 14, pp 49

  5. Surface photo reaction processes using synchrotron radiation; Hoshako reiki ni yoru hyomenko hanno process

    Energy Technology Data Exchange (ETDEWEB)

    Imaizumi, Y. [Tohoku University, Sendai (Japan). Institute for Materials Research; Yoshigoe, A. [Toyohashi University of Technology, Aichi (Japan); Urisu, T. [Toyohashi University of Technology, Aichi (Japan). Institute for Molecular Science

    1997-08-20

    This paper introduces the surface photo reaction processes using synchrotron radiation, and its application. A synchrotron radiation process using soft X-rays contained in electron synchrotron radiated light as an excited light source has a possibility of high-resolution processing because of its short wave length. The radiated light can excite efficiently the electronic state of a substance, and can induce a variety of photochemical reactions. In addition, it can excite inner shell electrons efficiently. In the aspect of its application, it has been found that, if radiated light is irradiated on surfaces of solids under fluorine-based reaction gas or Cl2, the surfaces can be etched. This technology is utilized practically. With regard to radiated light excited CVD process, it may be said that anything that can be deposited by the ordinary plasma CVD process can be deposited. Its application to epitaxial crystal growth may be said a nano processing application in thickness direction, such as forming an ultra-lattice structure, the application being subjected to expectation. In micromachine fabricating technologies, a possibility is searched on application of a photo reaction process of the radiated light. 5 refs., 6 figs.

  6. Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications.

    Science.gov (United States)

    Trantidou, T; Rao, C; Barrett, H; Camelliti, P; Pinto, K; Yacoub, M H; Athanasiou, T; Toumazou, C; Terracciano, C M; Prodromakis, T

    2014-06-01

    We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C scaffolds are fabricated by selectively increasing the material's surface water affinity through lithography and oxygen plasma treatment, providing free bonds for attachment of hydrophilic biomolecules. The micro-engineered constructs were tested as culture scaffolds for rat ventricular fibroblasts and neonatal myocytes (NRVM), toward modeling the unique anisotropic architecture of native cardiac tissue. The scaffolds induced the patterning of extracellular matrix compounds and therefore of the cells, which demonstrated substantial alignment compared to typical unstructured cultures. Ca(2+) cycling properties of the NRVM measured at rates of stimulation 0.5-2 Hz were significantly modified with a shorter time to peak and time to 90% decay, and a larger fluorescence amplitude (p micro-engineered substrates for a comprehensive interrogation of physiological parameters.

  7. Determination of the dissolution slowness surface by study of etched shapes I. Morphology of the dissolution slowness surface and theoretical etched shapes

    Science.gov (United States)

    Leblois, T.; Tellier, C. R.

    1992-07-01

    We propose a theoretical model for the anisotropic etching of crystals, in order to be applied in the micromachining. The originality of the model is due to the introduction of dissolution tensors to express the representative surface of the dissolution slowness. The knowledge of the equation of the slowness surface allows us to determine the trajectories of all the elements which compose the starting surface. It is then possible to construct the final etched shape by numerical simulation. Several examples are given in this paper which show that the final etched shapes are correlated to the extrema of the dissolution slowness. Since the slowness surface must be determined from experiments, emphasis is placed on difficulties encountered when we correlate theory to experiments. Nous avons modélisé le processus de dissolution anisotrope des cristaux en vue d'une application à la simulation des formes obtenues par photolithogravure chimique. La principale originalité de ce modèle tient à l'introduction de tenseurs de dissolution pour exprimer la surface représentative de la lenteur de dissolution. La connaissance de l'équation de la lenteur de dissolution permet de calculer les trajectoires des différents éléments constituant la surface de départ puis de reconstituer par simulation la forme dissoute. Les simulations démontrent que les formes limites des cristaux dissous sont corrélées aux extrema de la lenteur de dissolution. La détermination de la surface de la lenteur se faisant à partir de mesures expérimetales, nous nous sommes efforcés de montrer toutes les difficultés attachées à cette analyse.

  8. Self-Cleaning Synthetic Adhesive Surfaces Mimicking Tokay Geckos.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema; Burckel, David Bruce; Fan, Hongyou; Houston, Jack E.; Brinker, C. Jeffrey; Johnson, Patrick

    2006-11-01

    A gecko's extraordinary ability to suspend itself from walls and ceilings of varied surface roughness has interested humans for hundreds of years. Many theories and possible explanations describing this phenomenon have been proposed including sticky secretions, microsuckers, and electrostatic forces; however, today it is widely accepted that van der Waals forces play the most important role in this type of dry adhesion. Inarguably, the vital feature that allows a gecko's suspension is the presence of billions 3 of tiny hairs on the pad of its foot called spatula. These features are small enough to reach within van der Waals distances of any surface (spatula radius %7E100 nm); thus, the combined effect of billions of van der Waals interactions is more than sufficient to hold a gecko's weight to surfaces such as smooth ceilings or wet glass. Two lithographic approaches were used to make hierarchal structures with dimensions similar to the gecko foot dimensions noted above. One approach combined photo-lithography with soft lithography (micro-molding). In this fabrication scheme the fiber feature size, defined by the alumina micromold was 0.2 um in diameter and 60 um in height. The second approach followed more conventional photolithography-based patterning. Patterned features with dimensions %7E0.3 mm in diameter by 0.5 mm tall were produced. We used interfacial force microscopy employing a parabolic diamond tip with a diameter of 200 nm to measure the surface adhesion of these structures. The measured adhesive forces ranged from 0.3 uN - 0.6 uN, yielding an average bonding stress between 50 N/cm2 to 100 N/cm2. By comparison the reported literature value for the average stress of a Tokay gecko foot is 10 N/cm2. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). All coating processes were conducted in the cleanroom facility located at the University of New Mexico

  9. Fabrication of micro-prominences on PTFE surface using proton beam writing

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akane, E-mail: ogawa.akane@jaea.go.jp [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Koka, Masashi [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan); Kobayashi, Tomohiro [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 350-0198 (Japan); Kamiya, Tomihiro [Department of Advanced Radiation Technology, Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-Machi, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    Polytetrafluoroethylene (PTFE) is a typical fluoropolymer and it has several desirable technological properties such as electrical insulation, solid lubrication etc. However, the conventional microstructuring methods have not been well applied to PTFE due to its chemical inertness. Some effective micromachining using synchrotron radiation or ion beam irradiation has been reported. In this study, we create micro-prominences by raising the original surface using proton beam writing (PBW) without chemical etching. A conical prominence was formed by spiral drawing from the center with a 3 MeV proton beam. The body was porous, and the bulk PTFE below the prominence changed to fragmented structures. With decreasing writing speed, the prominence became taller but the height peaked. The prominence gradually reduced in size after the speed reached the optimum value. We expect that these porous projections with high aspect ratio will be versatile in medical fields and microelectromechanical systems (MEMS) technology.

  10. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    International Nuclear Information System (INIS)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H.

    2004-01-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 μm wide and 430 μm deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 μm thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices

  11. Post-CMOS Micromachining of Surface and Bulk Structures

    Science.gov (United States)

    2002-05-06

    Structures iii Acknowledgements I would like to thank my advisors, Professor Gary K. Fedder and Professor Dave W. Greve, for their continuing support...Donnelly, Plasma Chem. Plasma Process, vol. 1, pp. 37, 1981. [54] J. L. Mauer, J. S. Logan, L. B. Zielinski , and G. S. Schwartz, J. Vac. Sci. Technol

  12. Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining

    International Nuclear Information System (INIS)

    Pal, Prem; Sato, Kazuo

    2009-01-01

    Complex three-dimensional structures for microelectromechanical systems (MEMS) are fabricated in Si{1 0 0} wafers using wet bulk micromachining. The structures are divided into two categories: fixed and freestanding. The fabrication processes for both types utilize single wafers with sequentially deposited nitride and oxide layers, local oxidation of silicon (LOCOS) and two steps of wet anisotropic etching. The fixed structures contain perfectly sharp edges. Thermally deposited oxide is used as the material for the freestanding structures. Wet etching is performed in tetramethyl ammonium hydroxide (TMAH) with and without Triton X-100 (C 14 H 22 O(C 2 H 4 O) n , n = 9–10). For the fixed structures, both etching steps are performed either in 25 wt% TMAH + Triton or pure TMAH or both, depending upon the type of the structures. In the case of freestanding systems, TMAH + Triton is utilized first, followed by pure TMAH. The fabrication methods enable densely arrayed structures, allowing the manufacture of corrugated diaphragms, compact size liquid (or gas) flow delivery systems, newly shaped mold for soft MEMS structures (e.g. PDMS (polydimethylsiloxane)) and other applications. The present research is an approach to fabricate advanced MEMS structures, extending the range of 3D structures fabricated by silicon anisotropic etching

  13. Modeling and analysis of micro-WEDM process of titanium alloy (Ti–6Al–4V using response surface approach

    Directory of Open Access Journals (Sweden)

    P. Sivaprakasam

    2014-12-01

    Full Text Available Micro-machining technology is effectively used in modern manufacturing industries. This paper investigates the influence of three different input parameters such as voltage, capacitance and feed rate of micro-wire electrical discharge machining (micro-WEDM performances of material removal rate (MRR, Kerf width (KW and surface roughness (SR using response surface methodology with central composite design (CCD. The experiments are carried out on titanium alloy (Ti–6Al–4V. The machining characteristics are significantly influenced by the electrical and non-electrical parameters in micro-WEDM process. Analysis of variance (ANOVA was performed to find out the significant influence of each factor. The model developed can use a genetic algorithm (GA to determine the optimal machining conditions using multi-objective optimization technique. The optimal machining performance of material removal rate, Kerf width and surface roughness are 0.01802 mm3/min, 101.5 μm and 0.789 μm, respectively, using this optimal machining conditions viz. voltage 100 V, capacitance 10 nF and feed rate 15 μm/s.

  14. Ultraflat Tip-Tilt-Piston MEMS Deformable Mirror, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a Phase II SBIR project to develop high-resolution, ultraflat micromirror array devices using advanced silicon surface micromachining...

  15. Applications of picosecond lasers and pulse-bursts in precision manufacturing

    Science.gov (United States)

    Knappe, Ralf

    2012-03-01

    Just as CW and quasi-CW lasers have revolutionized the materials processing world, picosecond lasers are poised to change the world of micromachining, where lasers outperform mechanical tools due to their flexibility, reliability, reproducibility, ease of programming, and lack of mechanical force or contamination to the part. Picosecond lasers are established as powerful tools for micromachining. Industrial processes like micro drilling, surface structuring and thin film ablation benefit from a process, which provides highest precision and minimal thermal impact for all materials. Applications such as microelectronics, semiconductor, and photovoltaic industries use picosecond lasers for maximum quality, flexibility, and cost efficiency. The range of parts, manufactured with ps lasers spans from microscopic diamond tools over large printing cylinders with square feet of structured surface. Cutting glass for display and PV is a large application, as well. With a smart distribution of energy into groups of ps-pulses at ns-scale separation (known as burst mode) ablation rates can be increased by one order of magnitude or more for some materials, also providing a better surface quality under certain conditions. The paper reports on the latest results of the laser technology, scaling of ablation rates, and various applications in ps-laser micromachining.

  16. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  17. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    International Nuclear Information System (INIS)

    Çelen, Serap; Özden, Hüseyin

    2012-01-01

    Highlights: ► It is time for that paradigm shift and for an exploration of novel surfaces. ► We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. ► We analyzed these smart surface morphologies using FEM. ► We estimated their internal stiffness values which play a great role on stress shielding effect. ► We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser (λ = 1060 nm) with 200–250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  18. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.

    Science.gov (United States)

    Sammoura, Firas; Kim, Sang-Gook

    2012-05-01

    An electric circuit model for a circular bimorph piezoelectric micromachined ultrasonic transducer (PMUT) was developed for the first time. The model was made up of an electric mesh, which was coupled to a mechanical mesh via a transformer element. The bimorph PMUT consisted of two piezoelectric layers of the same material, having equal thicknesses, and sandwiched between three thin electrodes. The piezoelectric layers, having the same poling axis, were biased with electric potentials of the same magnitude but opposite polarity. The strain mismatches between the two layers created by the converse piezoelectric effect caused the membrane to vibrate and, hence, transmit a pressure wave. Upon receiving the echo of the acoustic wave, the membrane deformation led to the generation of electric charges as a result of the direct piezoelectric phenomenon. The membrane angular velocity and electric current were related to the applied electric field, the impinging acoustic pressure, and the moment at the edge of the membrane using two canonical equations. The transduction coefficients from the electrical to the mechanical domain and vice-versa were shown to be bilateral and the system was shown to be reversible. The circuit parameters of the derived model were extracted, including the transformer ratio, the clamped electric impedance, the spring-softening impedance, and the open-circuit mechanical impedance. The theoretical model was fully examined by generating the electrical input impedance and average plate displacement curves versus frequency under both air and water loading conditions. A PMUT composed of piezoelectric material with a lossy dielectric was also investigated and the maximum possible electroacoustical conversion efficiency was calculated.

  19. A novel measurement method for the thermal properties of liquids by utilizing a bridge-based micromachined sensor

    International Nuclear Information System (INIS)

    Beigelbeck, Roman; Nachtnebel, Herbert; Kohl, Franz; Jakoby, Bernhard

    2011-01-01

    In recent decades, the demands for online monitoring of liquids in various applications have increased significantly. In this context, the sensing of the thermal transport parameters of liquids (i.e. thermal conductivity and diffusivity) may be an interesting alternative to well-established monitoring parameters like permittivity, mass density or shear viscosity. We developed a micromachined thermal property sensor, applicable to non-flowing liquids, featuring three in parallel microbridges, which carry either a heater or one of in total two thermistors. Its active sensing region was designed to achieve almost negligible spurious thermal shunts between heater and thermistors. This enables the adoption of a simple two-dimensional model to describe the heat transfer from the heater to the thermistors, which is mainly governed by the thermal properties of the sample liquid. Founded on this theoretical model, a novel measurement method for the thermal parameters was devised that relies solely on the frequency response of the measured peak temperature and allows simultaneous extraction of the thermal conductivity and diffusivity of liquids. In this contribution, we describe the device prototype, the model, the deduced measurement method and the experimental verification by means of test measurements carried out on five sample liquids

  20. Surface processing by high power excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, M [SOPRA, 92 - Bois-Colombes (France)

    1995-03-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at {lambda} = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : (a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. (b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. (c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. (d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.).

  1. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  2. Wafer level packaging of MEMS

    International Nuclear Information System (INIS)

    Esashi, Masayoshi

    2008-01-01

    Wafer level packaging plays many important roles for MEMS (micro electro mechanical systems), including cost, yield and reliability. MEMS structures on silicon chips are encapsulated between bonded wafers or by surface micromachining, and electrical interconnections are made from the cavity. Bonding at the interface, such as glass–Si anodic bonding and metal-to-metal bonding, requires electrical interconnection through the lid vias in many cases. On the other hand, lateral electrical interconnections on the surface of the chip are used for bonding with intermediate melting materials, such as low melting point glass and solder. The cavity formed by surface micromachining is made using sacrificial etching, and the openings needed for the sacrificial etching are plugged using deposition sealing methods. Vacuum packaging methods and the structures for electrical feedthrough for the interconnection are discussed in this review. (topical review)

  3. Micro Elector Mechanical Systems

    International Nuclear Information System (INIS)

    Yun, Jun Bo; Jo, Il Ju; Choi, Yoon Seok

    1996-09-01

    This book consists of seven chapters, which are the flow of the age from macro world to micro world, what is MEMS, semiconductor, micro machining and MEMS, where do MEMS goes to?, How to make MEMS, MEMS in the future and knowing about MEMS more than. This book is written to explain in ease and fun. It deals with MEMS in IT, BT, NT, ST, micro robot technology, basic process for making MEMS such as Bulk micromachining, surface micromachining LGA technology, DARPA and organization in domestic and overseas and academy and journal related MEMS.

  4. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-01-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg −1 . This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  5. Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications.

    Science.gov (United States)

    Tommasi, Alessio; Cocuzza, Matteo; Perrone, Denis; Pirri, Candido Fabrizio; Mosca, Roberto; Villani, Marco; Delmonte, Nicola; Zappettini, Andrea; Calestani, Davide; Marasso, Simone Luigi

    2016-12-30

    In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such as miniaturized size, fast response, high sensitivity, low power consumption and selectivity for chemical sensing. This work compares the coplanar and the buried approach for the micro-hotplate heaters design with the aim to optimize the fabrication process and to propose a guideline for the choice of the suitable design with respect to the applications. In particular, robust Finite Element Method (FEM) models are set up in order to predict the electrical and thermal behavior of the micro-hotplates. The multiphysics approach used for the simulation allows to match as close as possible the actual device to the predictive model: geometries, materials, physics have been carefully linked to the fabricated devices to obtain the best possible accuracy. The materials involved in the fabrication process are accurately selected in order to improve the yield of the process and the performance of the devices. The fabricated micro-hotplates are able to warm the active region up to 400 °C (with a corresponding power consumption equal to 250 mW @ 400 °C) with a uniform temperature distribution in the buried micro-hotplate and a controlled temperature gradient in the coplanar one. A response time of about 70 ms was obtained on the virtual model, which perfectly agrees with the one measured on the fabricated device. Besides morphological, electrical and thermal characterizations, this work includes reliability tests in static and dynamic modes.

  6. Modeling, Fabrication and Testing of a Customizable Micromachined Hotplate for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Alessio Tommasi

    2016-12-01

    Full Text Available In the sensors field the active sensing material frequently needs a controlled temperature in order to work properly. In microsystems technology, micro-machined hotplates represent a platform consisting of a thin suspended membrane where the sensing material can be deposited, usually integrating electrical stimuli and temperature readout. The micro-hotplate ensures a series of advantages such as miniaturized size, fast response, high sensitivity, low power consumption and selectivity for chemical sensing. This work compares the coplanar and the buried approach for the micro-hotplate heaters design with the aim to optimize the fabrication process and to propose a guideline for the choice of the suitable design with respect to the applications. In particular, robust Finite Element Method (FEM models are set up in order to predict the electrical and thermal behavior of the micro-hotplates. The multiphysics approach used for the simulation allows to match as close as possible the actual device to the predictive model: geometries, materials, physics have been carefully linked to the fabricated devices to obtain the best possible accuracy. The materials involved in the fabrication process are accurately selected in order to improve the yield of the process and the performance of the devices. The fabricated micro-hotplates are able to warm the active region up to 400 °C (with a corresponding power consumption equal to 250 mW @ 400 °C with a uniform temperature distribution in the buried micro-hotplate and a controlled temperature gradient in the coplanar one. A response time of about 70 ms was obtained on the virtual model, which perfectly agrees with the one measured on the fabricated device. Besides morphological, electrical and thermal characterizations, this work includes reliability tests in static and dynamic modes.

  7. Laser-induced novel patterns: As smart strain actuators for new-age dental implant surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Celen, Serap, E-mail: serap.celen@ege.edu.tr [Ege University, Faculty of Engineering, Mechanical Engineering Department, Izmir, 35100 (Turkey); Oezden, Hueseyin [Ege University, Faculty of Engineering, Mechanical Engineering Department, Izmir, 35100 (Turkey)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer It is time for that paradigm shift and for an exploration of novel surfaces. Black-Right-Pointing-Pointer We developed novel 3D smart surfaces as strain actuators by nanosecond laser pulse energies. Black-Right-Pointing-Pointer We analyzed these smart surface morphologies using FEM. Black-Right-Pointing-Pointer We estimated their internal stiffness values which play a great role on stress shielding effect. Black-Right-Pointing-Pointer We gave the optimum operation parameters. - Abstract: Surface morphologies of titanium implants are of crucial importance for long-term mechanical adaptation for following implantation. One major problem is the stress shielding effect which originates from the mismatch of the bone and the implant elasticity. It is time for a paradigm shift and for an exploration of novel smart surfaces to prevent this problem. Several surface treatment methods have traditionally been used to modify the surface morphology of titanium dental implants. The laser micro-machining can be considered as a unique and promising, non-contact, no media, contamination free, and flexible treatment method for modifying surface properties of materials in the biomedical industry. The aim of the present study is two folds; to develop novel 3D smart surfaces which can be acted as strain actuators by nanosecond laser pulse energies and irradiation strategies. And analyze these smart surface morphologies using finite element methods in order to estimate their internal stiffness values which play a great role on stress shielding effect. Novel 3D smart strain actuators were prepared using an ytterbium fiber laser ({lambda} = 1060 nm) with 200-250 ns pulse durations on commercial pure titanium dental implant material specimen surfaces and optimum operation parameters were suggested.

  8. Micromachining of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-01-01

    Many experiments conducted on today's largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron

  9. Hamiltonian mechanics limits microscopic engines

    Science.gov (United States)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  10. Picosecond laser machined designed patterns with anti-ice effect

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2010-01-01

    Micromachining using ultra short laser pulses (USLP) has evolved over the past years as a versatile tool for introducing functional features in surfaces at a micrometric and even at a sub wavelength scale. Being able to control the surface topography at this level provides a method to change the

  11. Calculation of surface acoustic waves in a multilayered piezoelectric structure

    International Nuclear Information System (INIS)

    Zhang Zuwei; Wen Zhiyu; Hu Jing

    2013-01-01

    The propagation properties of the surface acoustic waves (SAWs) in a ZnO—SiO 2 —Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electromechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO—SiO 2 —Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO—SiO 2 —Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing. (semiconductor physics)

  12. Fabrication of Micromachined SnO2 Based MOS Gas Sensor with Inbuilt Microheater for Detection of Methanol

    Directory of Open Access Journals (Sweden)

    Priyanka Kakoty

    2016-09-01

    Full Text Available This paper presents a simple method to fabricate a vertical closed membrane structured gas sensor on silicon substrate using micromachining technology for methanol detection at lower concentration. An undoped tin dioxide thin film is deposited by DC magnetron sputtering technique on a pair of gold interdigitated microelectrodes of dimension 820 µm ´ 925 µm. A meander shaped platinum micro heater of dimension 1025 µm ´ 1000 µm is incorporated to provide optimum operating temperature (about 350 0C for sensing operation. Energy dispersive X-ray spectroscopy is done to confirm the chemical composition of the sensor. Temperature coefficient of resistance of the inbuilt micro heater is found to be 0.0941 /0C. The sensor resistance shows significant change when micro heater voltage is varied from 1.5 V-3 V. I-V analysis of the sensor is carried out at 25 0C, 50 0C and 75 0C, and shifts in current through the sensor at different temperatures are observed. I-V characterization is also carried out at different methanol concentration levels (50-110 ppm and it is found that at minimum 80 ppm, the sensor exhibits promising result. The response time and recovery time of the sensor is found to be 160 s and 167 s respectively.

  13. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A. [Berkeley Sensor and Actuator Center, University of California, Davis, 1 Shields Avenue, Davis, California 95616 (United States); Tang, H.; Boser, B. E. [Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720 (United States); Tsai, J. M.; Daneman, M. [InvenSense, Inc., 1745 Technology Drive, San Jose, California 95110 (United States)

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  14. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    International Nuclear Information System (INIS)

    Martínez-Calderon, M.; Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M.

    2016-01-01

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm"2 were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  15. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Calderon, M., E-mail: mmcalderon@ceit.es [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); Rodríguez, A.; Dias-Ponte, A.; Morant-Miñana, M.C.; Gómez-Aranzadi, M.; Olaizola, S.M. [CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2016-06-30

    Highlights: • Femtosecond laser treatment to achieve highly hydrophobic behavior on stainless steel. • Combination of micro-machined patterns with LIPSS into hierarchical structures. • Contact angles as high as 156° with only the femtosecond laser irradiation. - Abstract: In this work we have developed hierarchical structures that consist of micro-patterned surfaces covered by nanostructures with a femtosecond laser. The first part of this work is a study to determine the microscale modifications produced on a stainless steel alloy (AISI304) surface at high pulse energy, different velocities, and number of overscans in order to obtain microstructures with a selected depth of around 10 μm and line widths of 20 μm. The second part of the work is focused on finding the optimal irradiation parameters to obtain the nanostructure pattern. Nanostructures have been defined by means of Laser Induced Periodical Surface Structures (LIPSS) around 250 nm high and a period of 580 nm, which constitute the nanostructure pattern. Finally, dual scale gratings of 50 mm{sup 2} were fabricated with different geometries and their effect on the measured contact angle. Combining the micro-pattern with the LIPSS nano-pattern, highly hydrophobic surfaces have been developed with measured static contact angles higher than 150° on a stainless steel alloy.

  16. Bubble pump for integrated nanofluidics

    NARCIS (Netherlands)

    Tas, Niels Roelof; Berenschot, Johan W.; Sanders, Remco G.P.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt; van den Berg, Albert

    2001-01-01

    A new concept for liquid manipulation has been developed and implemented in surface micromachined fluid channels. It is based on the surface tension directed injection of a gas into the liquid flow through micron sized holes in the microchannel wall. The injected gas is directed to an exhaust by a

  17. Micromachined Si channel width and tortuosity on human osteoblast cell attachment and proliferation

    International Nuclear Information System (INIS)

    Leber, Christopher; Choi, Hongsoo; Bose, Susmita; Bandyopadhyay, Amit

    2010-01-01

    In this study, influence of coating chemistry, channel width and tortuosity of various two-dimensional micro-channels were explored on micromachined Si using osteoblast precursor cells line 1 (OPC1). The rationale for our study is to delineate the influence of different porosity parameters on bone cell attachment and proliferation in vitro. Channel widths of 100, 200, 300, 400, and 600 μm; channel bends of 0, 1, and 2 right angles; and gold and silicon dioxide coatings on single-crystal Si were studied. Experiments were conducted with channel tops under glass covered and uncovered conditions keeping the channel depth at 220 μm. Independent samples were evaluated using SEM imaging and MTT assay to measure bone cell morphology and quantity. Images were taken of micro-channels and exterior chambers at 50x, 500x, 1000x, and 5000x magnifications. Channel and chamber cell densities were scored as follows: bare (score = 0), scattered (1), limited (2), abundant (3), and overflowing (4). Samples were then scored and statistically analyzed for major differences. In general, OPC1 cells proliferated at least 5% or better based on cell numbers under uncovered conditions than glass covered. Channel widths of 100 μm largely prohibited cell proliferation and diffusion by narrow path inhibition with the lowest average score of 1.17. Among channel bends of 0, 1, and 2 right angles, an increase in micro-channel tortuosity from 0-2 bends amplified OPC1 cell growth upwards of ∼ 6.6%. A one-way ANOVA showed significant differences in cell quantity for alternating channel tortuosity at a significance level of p < 0.05. No preference was found for gold or silicon dioxide coatings on Si for bone cell proliferation.

  18. Freeform micromachining of an infrared Alvarez lens

    Science.gov (United States)

    Smilie, Paul J.; Dutterer, Brian S.; Lineberger, Jennifer L.; Davies, Matthew A.; Suleski, Thomas J.

    2011-02-01

    In 1967, Luis Alvarez introduced a novel concept for a focusing lens whereby two transmitting elements with cubic polynomial surfaces yield a composite lens of variable focal length with small lateral shifts. Computer simulations have demonstrated the behavior of these devices, but fabricating the refractive cubic surfaces of the types needed with adequate precision and depth modulation has proven to be challenging using standard methods, and, to the authors' knowledge, Alvarez lens elements have not been previously machined in infrared materials. Recent developments in freeform diamond machining capability have enabled the fabrication of such devices. In this paper, we discuss the fabrication of freeform refractive Alvarez elements in germanium using diamond micro-milling on a five-axis Moore Nanotech® 350FG Freeform Generator. Machining approaches are discussed, and measurements of surface figure and finish are presented. Initial experimental tests of optical performance are also discussed.

  19. Microencapsulation of silicon cavities using a pulsed excimer laser

    KAUST Repository

    Sedky, Sherif M.; Tawfik, Hani H.; Ashour, Mohamed; Graham, Andrew B.; Provine, John W.; Wang, Qingxiao; Zhang, Xixiang; Howe, Roger T.

    2012-01-01

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100°C furnace anneal

  20. Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications

    International Nuclear Information System (INIS)

    Trantidou, T; Toumazou, C; Prodromakis, T; Rao, C; Barrett, H; Camelliti, P; Pinto, K; Yacoub, M H; Terracciano, C M; Athanasiou, T

    2014-01-01

    We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C scaffolds are fabricated by selectively increasing the material's surface water affinity through lithography and oxygen plasma treatment, providing free bonds for attachment of hydrophilic biomolecules. The micro-engineered constructs were tested as culture scaffolds for rat ventricular fibroblasts and neonatal myocytes (NRVM), toward modeling the unique anisotropic architecture of native cardiac tissue. The scaffolds induced the patterning of extracellular matrix compounds and therefore of the cells, which demonstrated substantial alignment compared to typical unstructured cultures. Ca 2+  cycling properties of the NRVM measured at rates of stimulation 0.5–2 Hz were significantly modified with a shorter time to peak and time to 90% decay, and a larger fluorescence amplitude (p < 0.001). The proposed technique is compatible with standard cell culturing protocols and exhibits long-term pattern durability. Moreover, it allows the integration of monitoring modalities into the micro-engineered substrates for a comprehensive interrogation of physiological parameters. (paper)

  1. Microfabricated Ice-Detection Sensor

    National Research Council Canada - National Science Library

    DeAnna, Russell

    1997-01-01

    .... The sensor is capable of distinguishing between an ice covered and a clean surface. It employs a bulk micromachined wafer with a 7 micrometers thick, boron doped, silicon diaphragm which serves as one plate of a parallel plate capacitor...

  2. A combination of CO2 laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Wang, Zhecun; Li, Xiaoyu; Zhang, Lifang

    2015-01-01

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO 2 laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which gives

  3. Comparison between wire mesh and plate electrodes during Wide-pattern machining on invar fine sheet using through-mask electrochemical micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwang-ho; Jin, Da-som; Kim, Seong-hyun; Lee, Eun-sang [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    Many research on the fabrication of Organic light emitting diodes (OLED) shadow masks with high resolution have been carried out because of the development of the smart-display industry. It is the parts of display panel which has millions of micro holes on invar (Fe- Ni) fine sheet. Various techniques such as laser machining, chemical etching and Electrochemical micro-machining (EMM) are used to produce micro-hole arrays. In this study, Through-mask electrochemical machining (TMEMM) combine with portion of photolithography process was applied to fabricate micro-hole arrays on invar fine sheet. The sheet was coated with dry film photoresist. Two types of electrode, plate and mesh, was used to compare the influence of electrode type. The sheet was coated with dry film photoresist with micro- sized through holes. The results were compared in regard to uniformity and taper angle. Compared with the plate electrode, the mesh electrode has better uniformity and taper angle which is important criteria of OLED shadow mask. These results could be used to improve TMEMM for invar fine sheet when it is applied to fabricate micro-hole arrays and help to obtain optical uniformity and desired taper angles.

  4. Vapour HF release of airgap-based UV-visible optical filters

    NARCIS (Netherlands)

    Ghaderi, M.; Ayerden, N.P.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design and CMOS-compatible fabrication of airgap-based optical filters in a surface micromachining process with sacrificial release using thevapour phase is presented. An airgap-dielectric layer combination offers a higher refractive index contrast, as compared to the conventional

  5. Nanometer range closed-loop control of a stepper micro-motor for data storage

    NARCIS (Netherlands)

    Patrascu, M.; Stramigioli, Stefano; de Boer, Meint J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    We present a nanometer range, closed-loop control study for MEMS stepper actuators. Although generically applicable to other types of stepper motors, the control design presented here was particularly intended for one dimensional shuffle actuators fabricated by surface micromachining technology. The

  6. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  7. A combination of CO{sub 2} laser and plasma surface modification of poly(etheretherketone) to enhance osteoblast response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Wang, Zhecun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-07-30

    Highlights: • COOH and microgrooves containing micropores or microcraters structure were constructed on PEEK surface by a combination of CO{sub 2} laser and plasma treatment. • The mechanical properties of PEEK are maintained after single or dual surface treatment. • Pre-osteoblast cells (MC3T3-E1) adhesion, spreading and proliferation were improved remarkably on dual treated PEEK surface. • Cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, the bio-inert surface of PEEK tends to hinder its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, we demonstrate a dual modification method, which combines the laser and plasma surface treatment to combine advantages of both chemical states and microstructures for osteoblasts responses. While the plasma treatment introduces surface carboxyl groups (−COOH) onto PEEK surface, the laser treatment constructs microstructures over the PEEK surface. Our results indicated that −COOH as well as microgrooves containing micropores or microcraters structure are constructed on PEEK surface and plasma treatment has no apparent effect on the morphology of microstructures produced by laser micromachining. Unexpectedly, the superior mechanical properties of PEEK were maintained irrespective of the treatment used. Compared to native PEEK and single treated PEEK, dual modified PEEK is more favorable for pre-osteoblasts (MC3T3-E1) adhesion, spreading and proliferation. Moreover, cell pseudopodia protrude into the micropores or microcraters, in favor of forming firmer bone-implant integration. Our study illustrates enhanced osteoblasts responses to dual treated PEEK surface, which

  8. A bio-inspired hair- based acceleration sensor

    NARCIS (Netherlands)

    Droogendijk, H.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU- 8 lithography. Measu- rements show

  9. Electrostatic microactuators with integrated gear linkages for mechanical power transmission

    NARCIS (Netherlands)

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1996-01-01

    In this paper a surface micromachining process is presented which has been used to fabricate electrostatic microactuators that are interconnected with each other and linked to other movable microstructures by integrated gear linkages. The gear linkages consist of rotational and linear gear

  10. An electrostatic lower stator axial gap wobble motor: design and fabrication

    NARCIS (Netherlands)

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; van Baar, J.J.J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1995-01-01

    The fabrication, initial modelling and first results of an electrostatic lower stator axial gap wobble motor are presented. The four mask fabrication process is based on polysilicon surface micromachining techniques. Three to twelve stator pole wobble motor designs have been realized with rotor

  11. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  12. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical

  13. Project in fiscal 2000 of developing international standards for supporting new industries. Standardization of method for evaluating characteristics measurement for micromachine materials; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Micro machine yo zairyo no tokusei keisoku hyoka hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Targeting the international standardization of the method for evaluating properties measurement for micro-machine materials, R and D has been performed on measurement and evaluation of mechanical properties of different thin film materials with a thickness of about 10 {mu}m or less and a width of 100 {mu}m or less. This paper summarizes the achievements in fiscal 2000. The current fiscal year has executed tensile tests of thin film materials for micro-machines, and surveys on technological trends related to the standardization thereof inside and outside the country. A working process was developed to manufacture test pieces of the thin film materials including mono-crystalline silicon for the purpose of executing the round robin test. Prototype test pieces were fabricated. The round robin test was performed by using these test pieces, wherein improvements were given on the test pieces, structure of the testing machine, the distortion measuring method, and the test piece mounting method. Furthermore, discussions were given on the film forming conditions and the heat treatment conditions with regard to mainly the thin titanium film made by using the sputtering process and thin nickel film made by using the plating process. The IEC/TC47/WG4 committee has announced to propose this evaluation technology as the future international standard. (NEDO)

  14. Silicon microfabricated beam expander

    Science.gov (United States)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  15. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  16. Wafer-level packaged RF-MEMS switches fabricated in a CMOS fab

    NARCIS (Netherlands)

    Tilmans, H.A.C.; Ziad, H.; Jansen, Henricus V.; Di Monaco, O.; Jourdain, A.; De Raedt, W.; Rottenberg, X.; De Backer, E.; Decoussernaeker, A.; Baert, K.

    2001-01-01

    Reports on wafer-level packaged RF-MEMS switches fabricated in a commercial CMOS fab. Switch fabrication is based on a metal surface micromachining process. A novel wafer-level packaging scheme is developed, whereby the switches are housed in on-chip sealed cavities using benzocyclobutene (BCB) as

  17. High resolution shadow mask patterning in deep holes and its application to an electrical wafer feed-through

    NARCIS (Netherlands)

    Burger, G.J.; Burger, G.J.; Smulders, E.J.T.; Berenschot, Johan W.; Lammerink, Theodorus S.J.; Fluitman, J.H.J.; Imai, S.

    1995-01-01

    This paper presents a technique to pattern materials in deep holes and/or on non-planar substrate surfaces. A rather old technique, E-beam evaporation of metals through a shadow mask, is used [1]. The realisation of high resolution shadow masks using micromachining techniques is described. Further,

  18. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser; Texturizacao em superficies de titanio grau 2 irradiadas com laser com pulsos ultracurtos

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro Francelino

    2015-07-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  19. Silicon microfabricated beam expander

    International Nuclear Information System (INIS)

    Othman, A.; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-01-01

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed

  20. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  1. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    Science.gov (United States)

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  2. System for high-voltage control detectors with large number photomultipliers

    International Nuclear Information System (INIS)

    Donskov, S.V.; Kachanov, V.A.; Mikhajlov, Yu.V.

    1985-01-01

    A simple and inexpensive on-line system for hihg-voltage control which is designed for detectors with a large number of photomultipliers is developed and manufactured. It has been developed for the GAMC type hodoscopic electromagnetic calorimeters, comprising up to 4 thousand photomultipliers. High voltage variation is performed by a high-speed potentiometer which is rotated by a microengine. Block-diagrams of computer control electronics are presented. The high-voltage control system has been used for five years in the IHEP and CERN accelerator experiments. The operation experience has shown that it is quite simple and convenient in operation. In case of about 6 thousand controlled channels in both experiments no potentiometer and microengines failures were observed

  3. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  4. A 3-axis force balanced accelerometer using a single proof-mass

    Energy Technology Data Exchange (ETDEWEB)

    Lemkin, M.A.; Boser, B.E.; Auslander, D. [Univ. of California, Berkeley, CA (United States); Smith, J. [Sandia National Lab., Albuquerque, NM (United States)

    1997-04-01

    This paper presents a new method for wideband force balancing a proof-mass in multiple axes simultaneously. Capacitive position sense and force feedback are accomplished using the same air-gap capacitors through time multiplexing. Proof of concept is experimentally demonstrated with a single-mass monolithic surface micromachined 3-axis accelerometer.

  5. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-10-09

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20-50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a -6 dB bandwidth of approximately 65%.

  6. Electrical Microengineering of Redox Enzymes

    Science.gov (United States)

    1994-03-31

    Dehydrogenase and Its Application in an Amperometric Glucose Sensor", Biosensors 2.71-87. (32) Maehly, A.C. (1955). Plant Peroxidase. Meth. Enzymol...brittle, insulin-dependent M Aupoietric Blosensors diabetics. Although operation of a chemical or biotechnological manufacturing plant without...suiting glucose sensing cathode was less sensitive to ’Present Address: Department of Chemistry and Biochemistrv. Con- cordia University, 1455

  7. A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems

    International Nuclear Information System (INIS)

    Yoon, Sang-Hee; Park, Sungmin

    2011-01-01

    A woodpecker is known to drum the hard woody surface of a tree at a rate of 18 to 22 times per second with a deceleration of 1200 g, yet with no sign of blackout or brain damage. As a model in nature, a woodpecker is studied to find clues to develop a shock-absorbing system for micromachined devices. Its advanced shock-absorbing mechanism, which cannot be explained merely by allometric scaling, is analyzed in terms of endoskeletal structures. In this analysis, the head structures (beak, hyoid, spongy bone, and skull bone with cerebrospinal fluid) of the golden-fronted woodpecker, Melanerpes aurifrons, are explored with x-ray computed tomography images, and their shock-absorbing mechanism is analyzed with a mechanical vibration model and an empirical method. Based on these analyses, a new shock-absorbing system is designed to protect commercial micromachined devices from unwanted high-g and high-frequency mechanical excitations. The new shock-absorbing system consists of close-packed microglasses within two metal enclosures and a viscoelastic layer fastened by steel bolts, which are biologically inspired from a spongy bone contained within a skull bone encompassed with the hyoid of a woodpecker. In the experimental characterizations using a 60 mm smoothbore air-gun, this bio-inspired shock-absorbing system shows a failure rate of 0.7% for the commercial micromachined devices at 60 000 g, whereas a conventional hard-resin method yields a failure rate of 26.4%, thus verifying remarkable improvement in the g-force tolerance of the commercial micromachined devices.

  8. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  9. Design and fabrication of a GaAs/Al0.4Ga0.6As micro-accelerometer based on piezoresistive effect

    International Nuclear Information System (INIS)

    Liu Guowen; Zhang Binzhen; Zhang Kairui

    2009-01-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al 0.4 Ga 0.6 As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  10. Design and fabrication of a GaAs/Al{sub 0.4}Ga{sub 0.6}As micro-accelerometer based on piezoresistive effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guowen; Zhang Binzhen; Zhang Kairui [National Key Laboratory for Electronic Measurement Technology, North University of China Taiyuan, Shanxi, 030051 (China)], E-mail: jacky.mucklow@iop.org

    2009-03-01

    In this paper, a novel piezoresistive accelerometer based on the piezoresistive effect of GaAs/Al{sub 0.4}Ga{sub 0.6}As thin films was designed. The piezoresistive accelerometer contains four suspended flexural beams and a central proof mass configuration. The piezoresistive effect of a piezoresistor or thin film was used to make a resistor changing the output that is proportional to applied acceleration. The GaAs-based piezoresistive accelerometer was prepared with advanced surface micromachining processes, and bulk micromachining processes. Finally, the static pressure experiments were conducted on the sensing element. The experimental results showed that the combined semiconductor heterostructures and mechanical cantilevers have a good stress sensitive characteristic. The integration of these technologies promises to bring about a revolution in the applications of the semiconductor fine-structure devices.

  11. A versatile multi-user polyimide surface micromachinning process for MEMS applications

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    This paper reports a versatile multi-user micro-fabrication process for MEMS devices, the \\'Polyimide MEMS Multi-User Process\\' (PiMMPs). The reported process uses polyimide as the structural material and three separate metallization layers that can be interconnected depending on the desired application. This process enables for the first time the development of out-of-plane compliant mechanisms that can be designed using six different physical principles for actuation and sensing on a wafer from a single fabrication run. These principles are electrostatic motion, thermal bimorph actuation, capacitive sensing, magnetic sensing, thermocouple-based sensing and radio frequency transmission and reception. © 2015 IEEE.

  12. Modeling and evaluating of surface roughness prediction in micro-grinding on soda-lime glass considering tool characterization

    Science.gov (United States)

    Cheng, Jun; Gong, Yadong; Wang, Jinsheng

    2013-11-01

    The current research of micro-grinding mainly focuses on the optimal processing technology for different materials. However, the material removal mechanism in micro-grinding is the base of achieving high quality processing surface. Therefore, a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion topography is proposed in this paper. The differences of material removal mechanism between convention grinding process and micro-grinding process are analyzed. Topography characterization has been done on micro-grinding tools which are fabricated by electroplating. Models of grain density generation and grain interval are built, and new predicting model of micro-grinding surface roughness is developed. In order to verify the precision and application effect of the surface roughness prediction model proposed, a micro-grinding orthogonally experiment on soda-lime glass is designed and conducted. A series of micro-machining surfaces which are 78 nm to 0.98 μm roughness of brittle material is achieved. It is found that experimental roughness results and the predicting roughness data have an evident coincidence, and the component variable of describing the size effects in predicting model is calculated to be 1.5×107 by reverse method based on the experimental results. The proposed model builds a set of distribution to consider grains distribution densities in different protrusion heights. Finally, the characterization of micro-grinding tools which are used in the experiment has been done based on the distribution set. It is concluded that there is a significant coincidence between surface prediction data from the proposed model and measurements from experiment results. Therefore, the effectiveness of the model is demonstrated. This paper proposes a novel method for predicting surface roughness in micro-grinding of hard brittle materials considering micro-grinding tool grains protrusion

  13. Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback

    Science.gov (United States)

    Bicen, Baris

    Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress

  14. 3D Printing, Ink Casting and Micromachined Lamination (3D PICLμM: A Makerspace Approach to the Fabrication of Biological Microdevices

    Directory of Open Access Journals (Sweden)

    Avra Kundu

    2018-02-01

    Full Text Available We present a novel benchtop-based microfabrication technology: 3D printing, ink casting, micromachined lamination (3D PICLμM for rapid prototyping of lab-on-a-chip (LOC and biological devices. The technology uses cost-effective, makerspace-type microfabrication processes, all of which are ideally suited for low resource settings, and utilizing a combination of these processes, we have demonstrated the following devices: (i 2D microelectrode array (MEA targeted at in vitro neural and cardiac electrophysiology, (ii microneedle array targeted at drug delivery through a transdermal route and (iii multi-layer microfluidic chip targeted at multiplexed assays for in vitro applications. The 3D printing process has been optimized for printing angle, temperature of the curing process and solvent polishing to address various biofunctional considerations of the three demonstrated devices. We have depicted that the 3D PICLμM process has the capability to fabricate 30 μm sized MEAs (average 1 kHz impedance of 140 kΩ with a double layer capacitance of 3 μF, robust and reliable microneedles having 30 μm radius of curvature and ~40 N mechanical fracture strength and microfluidic devices having 150 μm wide channels and 400 μm fluidic vias capable of fluid mixing and transmitted light microparticle visualization. We believe our 3D PICLμM is ideally suited for applications in areas such as electrophysiology, drug delivery, disease in a dish, organ on a chip, environmental monitoring, agricultural therapeutic delivery and genomic testing.

  15. Achievement report on commissioned research of R and D in fiscal 2000 on micromachine technologies. Development of microfactory technology; 2000 nendo kenkyu seika hokokusho. Maikuro fakutori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    In order to achieve energy saving by miniaturizing the manufacturing process of small industrial products, R and D has been carried out on a micromachine system that puts together and assemble such devices as for processing, assembling, transportation and inspection used in the manufacturing process. This paper summarizes the achievements in fiscal 2000. In the research of a prototype micro-processing and assembling system, the secondary prototype system was fabricated, and verification was performed on its operation in processing and assembling works of a very small gear train. In the research of a micro liquid manipulating technology, high function liquid delivering device and holding device were developed, whereas the achievement of the targeted specifications was identified. In the research of a micro assembling technology, processing accuracy was improved on micro encoder disks. Furthermore, two second prototype micro arms were assembled into a microfactory to have performed verification on continuous operation to assemble trains of gears with a diameter of 10 mm. Other researches included the micro beam driving technology, micro electric power driving technology, micro transporting technology, and micro inspection technology. (NEDO)

  16. Development of optical interference-type micro accelerometer for subsurface microseismic measurement; Micromachining ni yoru chika danseiha keisoku no tame no hikari kanshogata kasokudo sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K; Niitsuma, H; Esashi, M [Tohoku University, Sendai (Japan). Faculty of Engineering

    1997-10-22

    Manufacture is under way of an optical interference-type micro accelerometer making use of the micromachining technology and an optical fiber measuring system for detecting microseismic waves in the ground. The sensor is required to be capable of detecting acceleration 0.1-1gal in amplitude, to be flat in amplitude characteristic in a frequency range of 10Hz-several kHz, to be ensured of straight phase characteristics to enable the measurement of transient phenomena, to be low in cross sensitivity, and to be high in resistance to water, pressure, and heat. The sensor is constructed in the following way. In the process for treating silicon, anisotropic etching is performed for the formation of a gap between the fiber end face and oscillator, boron is diffused, a stopper is formed, and then the silicon is subjected to penetrating etching. In the process for the optical fiber section, an optical fiber is inserted into a glass tube and fixed by an adhesive agent, and then the glass tube end face is polished, this together with the fiber end. Indium-tin oxide is sputtered onto the glass tube end. Finally, the sensor is assembled. 5 refs., 4 figs., 1 tab.

  17. Micromachining for Si etching using CW CO 2 laser

    International Nuclear Information System (INIS)

    Hawat, Sh.; Naddaf, M.; Al-Sadat, W.; Weiss, Sh.

    2012-08-01

    Many experiments were carried out to achieve etching for silicon samples located on glass substrate (Pyrex or Quartz) using Cw CO 2 laser under treating conditions which were in the case of linear scanning as: the power was 35-47 W, the number of round trips was 10-60 and the linear scanning speed was 17-75 mm/s, and in the case of fixed sample they were as: the power was 40 W and the exposure time was between 2-6 min. The obtained results were different depending on the form of etching and its quality, according to the applied treating conditions on the silicon samples, taking the treated silicon surface attached directly to the glass substrate surface or taking the opposite side of the silicon sample. The etching of the first type was easy to get, but the second one was more difficult to obtain, which requires very strong conditions. The best of these results were recorded using a quartz substrate under treating conditions: the laser power was 42.5 W, the number of round trips was 30, and the scanning speed was 75 mm/s, so the etching was limited to separate spots produced on the surface of the sample. In the all cases, the pictures of spots and lines formed on treated Si samples were taken using scanning electron microscope (SEM) for both sides of the studied samples. (authors)

  18. Micromachining for Si etching using CW CO_2 laser

    International Nuclear Information System (INIS)

    Al-Hawat, Sh.; Naddaf, M.; Al-Sadat, W.; Wiess, Sh.

    2015-01-01

    Many experiments were carried out to achieve etching for silicon samples located on glass substrate (Pyrex or Quartz) using CW CO_2 laser under treating conditions which were in the case of linear scanning as: the power was 35-47 W, the number of round trips was 10-60 and the linear scanning speed was 17-75 mm/s, and in the case of fixed sample they were as: the power was 40 W and the exposure time was between 2-6 min. The obtained results were different depending on the form of etching and its quality, according to the applied treating conditions on the silicon samples, taking the treated silicon surface attached directly to the glass substrate surface or taking the opposite side of the silicon sample. The etching of the first type was easy to get, but the second one was more difficult to obtain, which requires very strong conditions. The best of these results were recorded using a quartz substrate under treating conditions: the laser power was 42.5 W, the number of round trips was 30, and the scanning speed was 75 mm/s, so the etching was limited to separate spots produced on the surface of the sample. In the all cases, the pictures of spots and lines formed on treated Si samples were taken using scanning electron microscope (SEM) for both sides of the studied samples.(author)

  19. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Institute of Microengineering and Nanoelectronics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Jabil Circuit Sdn. Bhd., Bayan Lepas Industrial Park, 11900 Bayan Lepas, Penang, Malaysia; Shenzhen Kunqi Xinhua Technology Co., Ltd, Gangtou, Bantian, Longgang, Shenzhen, Guangdong, China ...

  20. Self-Calibration Method Based on Surface Micromaching of Light Transceiver Focal Plane for Optical Camera

    Directory of Open Access Journals (Sweden)

    Jin Li

    2016-10-01

    Full Text Available In remote sensing photogrammetric applications, inner orientation parameter (IOP calibration of remote sensing camera is a prerequisite for determining image position. However, achieving such a calibration without temporal and spatial limitations remains a crucial but unresolved issue to date. The accuracy of IOP calibration methods of a remote sensing camera determines the performance of image positioning. In this paper, we propose a high-accuracy self-calibration method without temporal and spatial limitations for remote sensing cameras. Our method is based on an auto-collimating dichroic filter combined with a surface micromachining (SM point-source focal plane. The proposed method can autonomously complete IOP calibration without the need of outside reference targets. The SM procedure is used to manufacture a light transceiver focal plane, which integrates with point sources, a splitter, and a complementary metal oxide semiconductor sensor. A dichroic filter is used to fabricate an auto-collimation light reflection element. The dichroic filter, splitter, and SM point-source focal plane are integrated into a camera to perform an integrated self-calibration. Experimental measurements confirm the effectiveness and convenience of the proposed method. Moreover, the method can achieve micrometer-level precision and can satisfactorily complete real-time calibration without temporal or spatial limitations.

  1. An electromechanical material testing system for in situ electron microscopy and applications

    OpenAIRE

    Zhu, Yong; Espinosa, Horacio D.

    2005-01-01

    We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution...

  2. Compact Low-Power Driver for Deformable Mirror Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Boston Micromachines Corporation (BMC), a leading developer of unique, high-resolution micromachined deformable mirrors (DMs), will develop a compact, low-power,...

  3. Synthetic Micro/Nanomachines and Their Applications: Towards 'Fantastic Voyage'

    Science.gov (United States)

    Gao, Wei

    The 1966 movie Fantastic Voyage captured the world's imagination, portraying a tiny submarine navigating through the human bloodstream and treating life-threatening medical conditions. My PhD research focuses on the synthetic nano/microscale machines to realize the Fantastic Voyage vision. Various biomedical and environmental areas would benefit from the developments of efficient fuel-free and fuel-driven nano/microscale machines. The polymer-based catalytic tubular microengine is synthesized using a template based electrodeposition method. The oxygen bubble propelled microengine harvests the energy from chemical fuels (such as H2O2) and displays very efficient propulsion. It can serve as an ideal platform for diverse biomedical and environmental applications. For example, lectin modified polyaniline based microengines can be used for selective bacteria (E. Coli) isolation from food, clinical and environmental samples; poly(3-aminophenylboronic acid)/Ni/Pt microengine itself provides the 'built in' glucose recognition capability for 'on-the-fly' capture, transport and release of yeast cells. A series of micromotors which can be self-propelled in natural environments without additional chemical fuels are developed, holding great promise for in vivo biomedical applications: the polyaniline/zinc microrockets display effective autonomous motion in extreme acidic environments (such as human stomach); the Al-Ga/Ti based Janus micromotor can be propelled by the hydrogen bubbles generated from the rapid aluminum and water reaction; alkanethiols modified seawater-driven Mg Janus micromotors, which utilize macrogalvanic corrosion and chloride pitting corrosion processes, can be used for environmental oil remediation. Magnetically powered nanoswimmers have attracted considerable attention due to their great biocompatibility. A high-speed magnetically-propelled nanowire swimmer which mimics swimming microorganisms by exploiting the flexible nanowire as artificial flagella

  4. Direct acceleration of electrons by a CO2 laser in a curved plasma waveguide

    CERN Document Server

    Yi, Longqing; Shen, Baifei

    2016-01-01

    Laser plasma interaction with micro-engineered targets at relativistic intensities has been greatly promoted by recent progress in the high contrast lasers and the manufacture of advanced micro- and nano-structures. This opens new possibilities for the physics of laser-matter interaction. Here we propose a novel approach that leverages the advantages of high-pressure CO 2 laser, laser-waveguide interaction, as well as micro-engineered plasma structure to accelerate electrons to peak energy greater than 1 GeV with narrow slice energy spread (~1%) and high overall efficiency. The acceleration gradient is 26 GV/m for a 1.3 TW CO2 laser system. The micro-bunching of a long electron beam leads to the generation of a chain of ultrashort electron bunches with the duration roughly equal to half-laser-cycle. These results open a way for developing a compact and economic electron source for diverse applications.

  5. Laser micromachining of chemically altered polymers

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, T.

    1998-08-01

    During the last decade laser processing of polymers has become an important field of applied and fundamental research. One of the most promising proposals, to use laser ablation as dry etching technique in photolithography, has not yet become an industrial application. Many disadvantages of laser ablation, compared to conventional photolithography, are the result of the use of standard polymers. These polymers are designed for totally different applications, but are compared to the highly specialized photoresist. A new approach to laser polymer ablation will be described; the development of polymers, specially designed for high resolution laser ablation. These polymers have photolabile groups in the polymer backbone, which decompose upon laser irradiation or standard polymers are modified for ablation at a specific irradiation wavelength. The absorption maximum can be tailored for specific laser emissino lines, e.g. 351, 308 and 248 nm lines of excimer lasers. The authors show that with this approach many problems associated with the application of laser ablation for photolithography can be solved. The mechanism of ablation for these photopolymers is photochemical, whereas for most of the standard polymers this mechanism is photothermal. The photochemical decomposition mechanism results in high resolution ablation with no thermal damage at the edges of the etched structures. In addition there are no redeposited ablation products or surface modifications of the polymer after ablation.

  6. Micro thrust and heat generator

    Science.gov (United States)

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  7. Cantilever sensors: Nanomechanical tools for diagnostics

    DEFF Research Database (Denmark)

    Datar, R.; Kim, S.; Jeon, S.

    2009-01-01

    Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfab......Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science...... and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever...... surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using...

  8. Optically Driven Mobile Integrated Micro-Tools for a Lab-on-a-Chip

    Directory of Open Access Journals (Sweden)

    Yi-Jui Liu

    2013-04-01

    Full Text Available This study proposes an optically driven complex micromachine with an Archimedes microscrew as the mechanical power, a sphere as a coupler, and three knives as the mechanical tools. The micromachine is fabricated by two-photon polymerization and is portably driven by optical tweezers. Because the microscrew can be optically trapped and rotates spontaneously, it provides driving power for the complex micro-tools. In other words, when a laser beam focuses on the micromachine, the microscrew is trapped toward the focus point and simultaneously rotates. A demonstration showed that the integrated micromachines are grasped by the optical tweezers and rotated by the Archimedes screw. The rotation efficiencies of the microrotors with and without knives are 1.9 rpm/mW and 13.5 rpm/mW, respectively. The micromachine can also be portably dragged along planed routes. Such Archimedes screw-based optically driven complex mechanical micro-tools enable rotation similar to moving machines or mixers, which could contribute to applications for a biological microfluidic chip or a lab-on-a-chip.

  9. Environmentally clean micromilling of electron beam melted Ti6Al4V

    DEFF Research Database (Denmark)

    Bruschi, S.; Tristo, G.; Rysava, Z.

    2016-01-01

    -milling tests were carried out on a high precision 5-axis micro-milling center, at varying cutting speed and feed per tooth. The performances of the different lubrication/cooling strategies were analyzed in terms of surface integrity, namely surface topography, nano-hardness and sub-surface microstructural...... alterations, in order to prove the impact of clean cutting conditions when applied to micro-machining of a AM titanium alloy of biomedical interest. It is shown that dry cutting assures the same performances of MQL, representing then the most suitable option to decrease the environmental impact...... of the machining process. (C) 2016 Elsevier Ltd. All rights reserved....

  10. Fabrication of a two-dimensional piezoelectric micromachined ultrasonic transducer array using a top-crossover-to-bottom structure and metal bridge connections

    International Nuclear Information System (INIS)

    Jung, Joontaek; Kim, Sangwon; Lee, Wonjun; Choi, Hongsoo

    2013-01-01

    A new design methodology and fabrication process for two-dimensional (2D) piezoelectric micromachined ultrasonic transducer (pMUT) arrays using a top-crossover-to-bottom (TCTB) structure was developed. Individual sensing and actuation of pMUT elements from a small number of connection lines was enabled by the TCTB structure, and the parasitic coupling capacitance of the array was significantly reduced as a result. A 32 × 32 pMUT array with a TCTB structure was fabricated, resulting in 64 connection lines over an area of 4.8 × 4.8 mm 2 . The top electrodes for each pMUT element were re-connected by metal bridging after bottom-electrode etching caused them to become disconnected. A deep reactive ion etching process was used to compactify the array. Each pMUT element was a circular-shaped K 31 -type ultrasonic transducer using a 1 µm thick sol–gel lead zirconate titanate (PZT: Pb1.10 Zr0.52 Ti0.48) thin film. To characterize a single element in the 2D pMUT array, the resonant frequency and coupling coefficient of 20 pMUT elements were averaged to 3.85 MHz and 0.0112, respectively. The maximum measured ultrasound intensity in water, measured at a distance of 4 mm, was 4.6 µW cm −2  from a single pMUT element driven by a 5 V pp  sine wave at 2.22 MHz. Potential applications for development of a TCTB-arranged 2D pMUT array include ultrasonic medical imaging, ultrasonic communication, ultrasonic range-finding and handwriting input systems. (paper)

  11. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Hernandez Diaz, Edwin

    2017-11-21

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  12. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Diaz, Edwin Hernandez; Alfano, Marco; Pulungan, Ditho Ardiansyah; Lubineau, Gilles

    2017-01-01

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  13. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    International Nuclear Information System (INIS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K.R.; Sathe, V.G.; Adhi, K.P.; Gosavi, S.W.

    2014-01-01

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm 2 . The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O 3 and Si-O 4 bonding at the expense of Si-C and Si-O 2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology

  14. Materials selection and design of microelectrothermal bimaterial actuators

    OpenAIRE

    Prasanna, S.; Spearing, S.M.

    2007-01-01

    A common form of MEMS actuator is a thermally actuated bimaterial, which is easy to fabricate by surface micromachining and permits out of plane actuation, which is otherwise difficult to achieve. This paper presents an analytical framework for the design of such microelectrothermal bimaterial actuators. Mechanics relationships for a cantilever bimaterial strip subjected to a uniform temperature were applied to obtain expressions for performance metrics for the actuator, i.e., maximum work/vo...

  15. Biomedical microsystems

    CERN Document Server

    Meng, Ellis

    2010-01-01

    IntroductionEvolution of MEMSApplications of MEMSBioMEMS ApplicationsMEMS ResourcesText Goals and OrganizationMiniaturization and ScalingBioMEMS MaterialsTraditional MEMS and Microelectronic MaterialsPolymeric Materials for MEMSBiomaterialsMicrofabrication Methods and Processes for BioMEMSIntroductionMicrolithographyDopingMicromachiningWafer Bonding, Assembly, and PackagingSurface TreatmentConversion Factors for Energy and Intensity UnitsLaboratory ExercisesMicrofluidicsIntroduction and Fluid PropertiesConcepts in MicrofluidicsFluid-Transport Phenomena and PumpingFlow ControlLaboratory Exercis

  16. High-flux membrane separation using fluid skimming dominated convective fluid flow

    NARCIS (Netherlands)

    Dinther, van A.M.C.; Schroën, C.G.P.H.; Boom, R.M.

    2011-01-01

    We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is

  17. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor

    DEFF Research Database (Denmark)

    El-Ali, Jamil; Perch-Nielsen, Ivan R.; Poulsen, Claus Riber

    2004-01-01

    We present a SU-8 based polymerase chain reaction (PCR) chip with integrated platinum thin film heaters and temperature sensor. The device is fabricated in SU-8 on a glass substrate. The use of SU-8 provides a simple microfabrication process for the PCR chamber, controllable surface properties......C/s, respectively, the performance of the chip is comparable with the best silicon micromachined PCR chips presented in the literature. The SU-8 chamber surface was found to be PCR compatible by amplification of yeast gene ribosomal protein S3 and Campylobacter gene cadF. The PCR compatibility of the chamber...

  18. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    Science.gov (United States)

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  19. Humidity dependence of adhesion for silane coated microcantilevers

    International Nuclear Information System (INIS)

    De Boer, Maarten P.; Mayer, Thomas M.; Carpick, Robert W.; Michalske, Terry A.; Srinivasan, U.; Maboudian, R.

    1999-01-01

    This study examines adhesion between silane-coated micromachined surfaces that are exposed to humid conditions. Our quantitative values for interfacial adhesion energies are determined from an in-situ optical measurement of deformations in partly-adhered cantilever beams. We coated micromachined cantilevers with either ODTS (C(sub 18)H(sub 37)SiCl(sub 3)) or FDTS (C(sub 8)F(sub 17)C(sub 2)H(sub 4)SiCl(sub 3)) with the objective of creating hydrophobic surfaces whose adhesion would be independent of humidity. In both cases, the adhesion energy is significantly lower than for uncoated, hydrophilic surfaces. For relative humidities (RH) less than 95% (ODTS) and 80% (FDTS) the adhesion energy was extremely low and constant. In fact, ODTS-coated beams exposed to saturated humidity conditions and long (48 hour) exposures showed only a factor of two increase in adhesion energy. Surprisingly, FDTS coated beams, which initially have a higher contact angle (115(degree)) with water than do ODTS coated beams (112(degree)), proved to be much more sensitive to humidity. The FDTS coated surfaces showed a factor of one hundred increase in adhesion energy after a seven hour exposure to 90% RH. Atomic force microscopy revealed agglomerated coating material after exposed to high RH, suggesting a redistribution of the monolayer film. This agglomeration was more prominent for FDTS than ODTS. These findings suggest a new mechanism for uptake of moisture under high humidity conditions. At high humidities, the silane coatings can reconfigure from a surface to a bulk phase leaving behind locally hydrophilic sites which increase the average measured adhesion energy. In order for the adhesion increase to be observed, a significant fraction of the monolayer must be converted from the surface to the bulk phase

  20. Fabrication of High-Frequency pMUT Arrays on Silicon Substrates

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Zawada, Tomasz; Hansen, Karsten

    2010-01-01

    A novel technique based on silicon micromachining for fabrication of linear arrays of high-frequency piezoelectric micromachined ultrasound transducers (pMUT) is presented. Piezoelectric elements are formed by deposition of lead zirconia titanate into etched features of a silicon substrate...

  1. Modeling of solid-state and excimer laser processes for 3D micromachining

    Science.gov (United States)

    Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.

    2005-04-01

    An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.

  2. MEMS Lens Scanners for Free-Space Optical Interconnects

    Science.gov (United States)

    2011-12-15

    electrothermal linear micromotors ,” Journal of Micromechanics and Microengineering, vol. 14, no. 2, pp. 226– 234, 2004. [59] Hyuck Choo and R. S. Muller...84] Mei Lin Chan et al., “Low friction liquid bearing mems micromotor ,” in 2011 IEEE 24th International Conference on Micro Electro Mechanical

  3. Optimization of Grooved Micromixer for Microengineering Technologies

    DEFF Research Database (Denmark)

    Sabotin, I.; Tristo, G.; Bissacco, Giuliano

    2013-01-01

    Due to the absence of turbulent flow and the slow diffusion process, mixing of solutions at micro-scale is a difficult task. This paper describes the optimization route towards the efficient design of a bottom grooved micromixer. Based on thoroughly discussed mixing mechanisms, the optimization w...

  4. An electrostatic lower stator axial gap wobble motor: design and fabrication

    OpenAIRE

    Legtenberg, R.; Legtenberg, Rob; Berenschot, Johan W.; van Baar, J.J.J.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    1995-01-01

    The fabrication, initial modelling and first results of an electrostatic lower stator axial gap wobble motor are presented. The four mask fabrication process is based on polysilicon surface micromachining techniques. Three to twelve stator pole wobble motor designs have been realized with rotor radii of 50 and 100 micrometer. A theoretical model predicts torque generations in the nNm range at high electrostatic fields. Motors have typically been operated between 10 and 20 Volts. Initial exper...

  5. Microfluidic organ-on-chip technology for blood-brain barrier research

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and

  6. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Madhushree Bute; Shinde, Shashikant D. [Department of Physics, University of Pune, Pune 411007 (India); Bodas, Dhananjay [Centre for Nanobioscience, Agharkar Research Institute, Agharkar road, Pune 411004 (India); Patil, K.R. [Center for Materials Characterization, National Chemical Laboratories, Pune 411008 (India); Sathe, V.G. [UGC DAE Inter University Consortium, Indore 452017 (India); Adhi, K.P. [Department of Physics, University of Pune, Pune 411007 (India); Gosavi, S.W., E-mail: swg@physics.unipune.ac.in [Department of Physics, University of Pune, Pune 411007 (India)

    2014-09-30

    Graphical abstract: - Highlights: • Use of KrF Laser micromachining for Lab-On-Chip applications at lower fluence. • Addition of Benzophenone in PDMS enhances its self development sensitivity. • Benzophenone helps efficient energy transfer for equal density of bond scissioning. • Correlation of chemical composition with laser dose and microstructure. • Microstructures with well defined clean sidewalls. - Abstract: This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm{sup 2}. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in C-O, C=O, Si-O{sub 3} and Si-O{sub 4} bonding at the expense of Si-C and Si-O{sub 2} bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  7. Experimental Investigation of Laser Ablation Characteristics on Nickel-Coated Beryllium Copper

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-03-01

    Full Text Available As electronic products are miniaturized, the components of the spring contact probe are made very fine. Current mechanical processing may make it difficult to perform micro-machining with a high degree of precision. A laser is often used for the high precision micro-machining due to its advantages such as a contact-free process, high energy concentration, fast processing time, and applicability to almost every material. The production of micro-electronics using nickel-coated copper is rapidly increasing and laser material processing is becoming a key processing technology owing to high precision requirements. Before applying laser material processing, it is necessary to understand the ablation characteristics of the materials. Therefore, this study systematically investigates the ablation characteristics of nickel-coated beryllium copper. Key laser parameters are pulse duration (4~200 ns and the total accumulated energy (1~1000 mJ. The processed workpiece is evaluated by analyzing the heat affected zone (HAZ, material removal zone (MRZ, and roundness. Moreover, the surface characteristics such as a burr, spatter, and roundness shapes are analyzed using scanning electron microscope (SEM.

  8. Analysis of the Forces in Micromilling of Hardened AISI H13 Steel with Different Grain Sizes Using the Taguchi Methodology

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Lauro

    2014-05-01

    Full Text Available The micromachining process has been applied to the free form and micromolds markets. This has occurred due to the growth in demand for microcomponents. However, micromachining of hardened steels is a challenge due to the reduction in tool life and the increase of the surface roughness when compared with the macromachining process. This paper focused on the analysis of micromilling forces on hardened AISI H13 steel with different grain sizes. Experimental tests were carried out on workpieces with different austenitic grain sizes and a hardness of 46 HRC. Micro-end-mill cutters with a diameter of 0.5 mm and (TiAlN coatings were applied in the milling of workpieces of 11 × 11 mm. The input parameters were two radial depths of cut, two cutting speeds, and two feed rates. The influence of the input parameters on the response cutting force was analyzed using the Taguchi method. Finally, considering the large grain size, the cutting forces in the x-, y-, and z-axes direction were small.

  9. Wafer scale nano-membrane supported on a silicon microsieve using thin-film transfer technology

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A new micromachining method to fabricate wafer scale nano-membranes is described. The delicate thin-film nano-membrane is supported on a robust silicon microsieve fabricated by plasma etching. The silicon sieve is micromachined independently of the thin-film, which is later transferred onto it by

  10. Applications of Nd:YAG laser micromanufacturing in high temperature gas reactor research

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Smal, C.A.; Steyn, J.

    2012-01-01

    Highlights: ► Two innovative applications of Nd:YAG laser micromachining techniques demonstrated. ► Firstly an alumina jig to contain multiple 500 μm diameter ZrO 2 spheres. ► Secondly the manufacture of a sealing system using laser micromachining. ► ZrO 2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal. ► Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. - Abstract: Two innovative applications of Nd:YAG laser micromachining techniques are demonstrated in this publication. Research projects to determine the fission product transport mechanisms in TRISO coated particles necessitate heat treatment studies as well as the manufacturing of a unique sealed system for experimentation at very high temperatures. This article describes firstly the design and creation of an alumina jig designed to contain 500 μm diameter ZrO 2 spheres intended for annealing experiments at temperatures up to 1600 °C. Functional requirements of this jig are the precision positioning of spheres for laser ablation, welding and post weld heat treatment in order to ensure process repeatability and accurate indexing of individual spheres. The design challenges and the performance of the holding device are reported. Secondly the manufacture of a sealing system using laser micromachining is reported. ZrO 2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal fit for application in a high temperature environment. The technique is described along with a discussion of the problems experienced during the sealing process. Typical problems experienced were seating dimensions and the relative small size (∼200 μm) of these plugs that posed handling challenges. Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. In conclusion, this article demonstrates the application of Nd-YAG micromachining in an innovative way to solve practical research

  11. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    Science.gov (United States)

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  12. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  13. Nanostructured surfaces using thermal nanoimprint lithography: Applications in thin membrane technology, piezoelectric energy harvesting and tactile pressure sensing

    Science.gov (United States)

    Nabar, Bhargav Pradip

    Oxide nanorods were characterized to determine their piezoelectric response to an applied force. An atomic force microscope operating in the force spectroscopy mode was used to apply forces in the nN range. In contrast to previously published reports using lateral tip motion (C-AFM), the action of the tip in our experiment was perpendicular to the plane of the nanorods, allowing a more defined tip -- nanorod interaction. Voltage pulses of a positive polarity with amplitude ranging from hundreds of microV to few mV were observed. The tip -- nanorod interaction was modeled using commercial solid modeling software and was simulated using finite element analysis. Comparison of the results yielded useful observations for design of piezoelectric energy harvesters/sensors using ZnO nanorods. A nanoelectromechanical (NEMS) piezoelectric energy harvester using crystalline ZnO nanowires is developed. The device converts ambient vibrations into usable electrical energy for low power sensor applications. This is accomplished by mechanical excitation of an ordered ZnO nanorod array using a suspended bulk micromachined proof mass. The device is capable of generating up to 14.2 mV single polarity voltage under an input vibration of amplitude 1 g (9.8 m/s2) at a frequency of 1.10 kHz. Finally, large area arrays of ordered ZnO piezoelectric nanorods are developed on flexible substrates towards self-powered sensing skin for robots. The sensor array is designed to measure tactile pressure in the 10 kPa-- 200 kPa range with 1 mm spatial resolution. A voltage signal in the range of few mV is observed in response to applied pressure. This work represents the first demonstration of perfectly ordered, vertically aligned, crystalline ZnO nanorod arrays, fabricated in polyimides to ensure conformity to non-planar surfaces such as a robot's. The sensors are self-packaged using a flexible substrate and a superstrate. In addition to the novelty of the sensor structure itself, the work includes an

  14. Femtosecond laser 3D micromachining for microfluidic and optofluidic applications

    CERN Document Server

    Sugioka, Koji

    2013-01-01

    Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensi

  15. Development of multi-axis laser micromachining system suitable for machining non-linear contoured surfaces

    OpenAIRE

    Kerimoğlu, Serhat

    2016-01-01

    Cataloged from PDF version of article. Thesis (M.S.): Bilkent University, Department of Mechanical Engineering, İhsan Doğramacı Bilkent University, 2016. Includes bibliographical references (leaves 82-84). In recent years, studies on manufacturing systems have proved the importance of cooperation of positioning systems with laser cutting technology. The performance of the manufacturing system can be improved by utilizing both laser and positioning systems together. In thi...

  16. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    International Nuclear Information System (INIS)

    Dantus, Marcos

    2008-01-01

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10 16 W/cm 2 . In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  17. Understanding the electrical characteristics of micromotors

    Science.gov (United States)

    Emadi, Ali; Irudayaraj, Sujay S.

    2005-06-01

    This paper presents a comprehensive list of issues related to the electrical characteristics of both electrostatic and electromagnetic micromotors and aims at understanding the behavior of the micromotor from the electrical standpoint. The paper takes the step-by-step approach by first presenting an overview of the laws of electrostatics and electromagnetism for micromachines, their applicability, features and limitations, and then progresses to independently analyze some of the important machine related quantities like electromotive torque, force-output, angular frequencies, supply conditions and requirements, for different types of electrostatic and electromagnetic micromotor constructions. A thorough study on the electric machine parameters that affect the performance of the micromotor need to be performed, since it would serve as a useful link in integrating the micromachine output performance with the fabrication process and challenges associated with it. Achieving such integration would then determine the optimized working condition for the micromotor. The main reason for this study is that although significant advancements have fostered the growth of micromotors in the recent past which has led to the establishment of the micromotor as quite a remarkable machine for powering micromechanical devices, and also as an industrial requirement for various applications, there has always been a concern about the optimal performance of the micromotor, since there is more than just one technology that is being incorporated to realize the micromotor. With fields ranging from surface engineering and chemistry to material science engineering exerting influence on the micromotor design, it becomes very important to completely comprehend the electrophysics of the micromachine that would in turn interact with the science of fabrication to result in the development of better micromotors with considerably less functional complexity.

  18. Report on achievements in fiscal 1999. Research and development of micro-machine technologies (development of micro-factory technologies); 1999 nendo micro machine gijutsu no kenkyu kaihatsu seika hokokusho. Micro factory gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    With an objective to achieve energy saving by micronizing the manufacturing processes of small industrial products, this research and development is intended to establish technologies to realize a micro-machine system, in which devices for processing, assembly, transportation and inspection used in the manufacturing processes are unified and incorporated in narrow spaces. Fiscal 1999 has performed, on the items of (1) research and development of the systematizing technologies and (2) comprehensive surveys and researches, with respect to the development of the first prototype system, and fabrication on the trial basis of devices to be mounted on the second prototype system, and discussions on further functional enhancement of the different devices. As a result in the research of the systematizing technology, the first prototype system was developed, that unifies the base unit fabricated in fiscal 1998, the electrolysis processing device, the fluid feeding device, the micro-arms, the coating device, the transportation device, and the environment recognizing device. The basic performances of the individual devices on the first prototype system were verified. Based on the result of this function verification, optimal design and fabrication on the trial basis of the devices mounted in the second prototype system were performed, and discussions were given on the further function enhancement in each functional device. (NEDO)

  19. 100 watts in a confetti; 100 watts dans un confetti

    Energy Technology Data Exchange (ETDEWEB)

    Guezel, J.Ch.

    2002-03-01

    Technologies transferred from microelectronics will allow to build miniature power generators for portable applications. This short article gives an overview of some techniques under study: the free-piston engine of the Honeywell Technology Center, the micro-combustion system with Seebeck effect of South Carolina Univ., the hydrogen micro-turbine of the MIT, the Wankel gas micro-engine of Berkeley univ. (J.S.)

  20. New facility boost CSIRO's micromanfacturing capability

    International Nuclear Information System (INIS)

    Grad, Paul.

    1997-01-01

    CSIRO is developing a leading edge microengineering capability, an electron beam lithography and device fabrication facility. Structures of submicron size can be manufactured and incorporated in microelectronic or micromechanical devices. Current and potential uses are outlined in this paper and include: chemical sensors, electronic surveillance and radar systems, microsensors, micromotors and microgages to be used in telecommunication, environment monitoring or medicine

  1. Fabrication of micromechanical structures on substrates selectively etched using a micropatterned ion-implantation method

    International Nuclear Information System (INIS)

    Nakano, Shizuka; Nakagawa, Sachiko; Ishikawa, Haruo; Ogiso, Hisato

    2001-01-01

    An advanced micromachining technique using ion implantation to modify materials was studied. Gold ion implantation into silicon decreased the etching rate when the silicon was etched in potassium hydroxide solution after the ion implantation; the implanted region remained, thus forming the microstructure. Observation of the cross-section of the resulting etched structure by transmission electron microscopy showed that the structure was made only from the ion-implanted region, and that gold was precipitated on the surface. To clarify the mechanism involved in the decrease in the etching rate, we varied the etching conditions. Our results show that precipitation of implanted gold on the surface decreased the etching rate, because solubility of gold is lower

  2. P3 microengine development at Washington State University

    International Nuclear Information System (INIS)

    Whalen, Scott; Apblett, Christopher Alan

    2004-01-01

    There is a pressing need for miniaturized power systems for a variety of applications requiring a long life in the field of operations. Such power systems are required to be capable of providing power for months to years of operation, which all but eliminates battery technologies and technologies that bring their own fuel systems (except for nuclear fuel systems, which have their own drawbacks) due to constraints of having the all of the chemical fuel necessary for the entire life of the operational run available at the starting point of the operation. Alternatively, harvesting energy directly from the local environment obviates this need for bringing along all of the fuel necessary for operation. Instead, locally available energy, either in the form of chemical, thermal, light, or motion can be harvested and converted into electrical energy for use in sensor applications. The work from this LDRD is focused on developing a thermal engine that can take scavenged thermal gradients and convert them into direct electrical energy. The converter system is a MEMS based external combustion engine that uses a modified Stirling cycle to generate mechanical work on a piezoelectric generator. This piezoelectric generator then produced an AC voltage and current that can be delivered into an external load. The MEMS engine works on the conversion of a two phase working fluid trapped between two deformable membranes. As heat is added to the system, the liquid working fluid is converted to a gas, which exerts pneumatic pressure on the membranes, expanding them outward. This outward expansion continues after the heat input is removed when the engine is operated at resonance, since the membrane is expanded further due to inertial forces. Finally, the engine cools and heat rejection is accomplished through the membranes, closing the thermodynamic cycle. A piezoelectric generator stack is deposited on one of the membranes, and this generator extracts the strain energy work from the membrane expansion and generates electrical work. The overall system is pulsed by an electrical heater to generate the input heat pulse. Currently, the system has a resonant frequency that is in the low kilohertz regime, but operations under a dynamic damping have demonstrated operation at resonance and the existence of an open mechanical cycle of heat addition, expansion, and heat rejection. Power generation of direct thermal-to-electrical conversion show a 1.45W, 6mJ heat pulse can generate a 0.8 (micro)W power output pulse, and continuous operation generates a sustained power output of 0.8 (micro)W at 240Hz. Future improvements in the device will allow active heat rejection, allowing resonance with external damping to improve the thermal to electrical power efficiency

  3. Near-infrared light-triggered "on/off" motion of polymer multilayer rockets.

    Science.gov (United States)

    Wu, Zhiguang; Lin, Xiankun; Wu, Yingjie; Si, Tieyan; Sun, Jianmin; He, Qiang

    2014-06-24

    We describe an approach to modulating the on-demand motion of catalytic polymer-based microengines via near-infrared (NIR) laser irradiation. The polymer multilayer motor was fabricated by the template-assisted layer-by-layer assembly and subsequently deposition of platinum nanoparticles inside and a thin gold shell outside. Then a mixed monolayer of a tumor-targeted peptide and an antifouling poly(ethylene glycol) was functionalized on the gold shell. The microengines remain motionless at the critical peroxide concentration (0.1%, v/v); however, NIR illumination on the engines leads to a photothermal effect and thus rapidly triggers the motion of the catalytic engines. Computational modeling explains the photothermal effect and gives the temperature profile accordingly. Also, the photothermal effect can alone activate the motion of the engines in the absence of the peroxide fuel, implying that it may eliminate the use of toxic fuel in the future. The targeted recognition ability and subsequently killing of cancer cells by the photothermal effect under the higher power of a NIR laser were illustrated. Our results pave the way to apply self-propelled synthetic engines in biomedical fields.

  4. The fabrication of millimeter-wavelength accelerating structures

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient (≥ 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented

  5. Design and Optimization of Dual Optical Fiber MEMS Pressure Sensor For Biomedical Applications

    International Nuclear Information System (INIS)

    Dagang, Guo; Po, Samuel Ng Choon; Hock, Francis Tay Eng; Rongming, Lin

    2006-01-01

    A novel Single Deeply Corrugated Diaphragm (SDCD) based dual optical fiber Fabry-Perot pressure sensor for blood pressure measurement is proposed. Both mechanical and optical simulations are performed to demonstrate the feasibility and superior performance of the proposed sensor. Result shows that less than 2% nonlinearity can be achieved for the proposed sensor using optimal Fabry-Perot microcavity. Also, the fabrication process of the proposed sensor is given, instead of complicated fusion bonding process, only bulk and surface micromachining techniques are required which facilitate the mass production of such biocompatible and disposable pressure sensors

  6. Epitaxial growth of metallic buffer layer structure and c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 thin film on Si for high performance piezoelectric micromachined ultrasonic transducer

    Science.gov (United States)

    Thao, Pham Ngoc; Yoshida, Shinya; Tanaka, Shuji

    2017-12-01

    This paper reports on the development of a metallic buffer layer structure, (100) SrRuO3 (SRO)/(100) Pt/(100) Ir/(100) yttria-stabilized zirconia (YSZ) layers for the epitaxial growth of a c-axis oriented Pb(Mn1/3,Nb2/3)O3-Pb(Zr,Ti)O3 (PMnN-PZT) thin film on a (100) Si wafer for piezoelectric micro-electro mechanical systems (MEMS) application. The stacking layers were epitaxially grown on a Si substrate under the optimal deposition condition. A crack-free PMnN-PZT epitaxial thin films was obtained at a thickness up to at least 1.7 µm, which is enough for MEMS applications. The unimorph MEMS cantilevers based on the PMnN-PZT thin film were fabricated and characterized. As a result, the PMnN-PZT thin film exhibited -10 to -12 C/m2 as a piezoelectric coefficient e 31,f and ˜250 as a dielectric constants ɛr. The resultant FOM for piezoelectric micromachined ultrasonic transducer (pMUT) is higher than those of general PZT and AlN thin films. This structure has a potential to provide high-performance pMUTs.

  7. EDITORIAL: The 19th MicroMechanics Europe Workshop (MME 2008) The 19th MicroMechanics Europe Workshop (MME 2008)

    Science.gov (United States)

    Schnakenberg, Uwe

    2009-07-01

    This special issue of Journal of Micromechanics and Microengineering is devoted to the 19th MicroMechanics Europe Workshop (MME 08), which took place at the RWTH Aachen University, Aachen, Germany, from 28-30 September, 2008. The workshop is a well recognized and established European event in the field of micro system technology using thin-film technologies for creating micro components, micro sensors, micro actuators, and micro systems. The first MME Workshop was held 1989 in Enschede (The Netherlands) and continued 1990 in Berlin (Germany), 1992 in Leuven (Belgium), and then was held annually in Neuchâtel (Switzerland), Pisa (Italy), Copenhagen (Denmark), Barcelona (Spain), Southampton (UK), Ulvik in Hardanger (Norway), Gif-sur-Yvette (France), Uppsala (Sweden), Cork (Ireland), Sinaia (Romania), Delft (The Netherlands), Leuven (Belgium), Göteborg (Sweden), Southampton (UK), and in Guimarães (Portugal). The two day workshop was attended by 180 delegates from 26 countries all over Europe and from Armenia, Austria, Bulgaria, Canada, China, Cuba, Iran, Japan, Korea, Malaysia, Taiwan, Turkey, and the United States of America. A total of 97 papers were accepted for presentation and there were a further five keynote presentations. I am proud to present 22 high-quality papers from MME 2008 selected for their novelty and relevance to Journal of Micromechanics and Microengineering. All the papers went through the regular reviewing procedure of IOP Publishing. I am eternally grateful to all the referees for their excellent work. I would also like to extend my thanks to the members of the Programme Committee of MME 2008, Dr Reinoud Wolffenbuttel, Professor José Higino Correia, and Dr Patrick Pons for pre-selection of the papers as well as to Professor Robert Puers for advice on the final selection of papers. My thanks also go to Dr Ian Forbes of IOP Publishing for managing the entire process and to the editorial staff of Journal of Micromechanics and Microengineering. I

  8. Advanced characterization of carrier profiles in germanium using micro-machined contact probes

    DEFF Research Database (Denmark)

    Clarysse, T.; Konttinen, M.; Parmentier, B.

    2012-01-01

    of new concepts based on micro machined, closely spaced contact probes (10 μm pitch). When using four probes to perform sheet resistance measurements, a quantitative carrier profile extraction based on the evolution of the sheet resistance versus depth along a beveled surface is obtained. Considering...... the properties of both approaches on Al+ implants in germanium with different anneal treatments....

  9. Localized, stepwise template growth of functional nanowires from an amino acid-supported framework in a microfluidic chip.

    Science.gov (United States)

    Puigmartí-Luis, Josep; Rubio-Martínez, Marta; Imaz, Inhar; Cvetković, Benjamin Z; Abad, Llibertat; Pérez Del Pino, Angel; Maspoch, Daniel; Amabilino, David B

    2014-01-28

    A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device

  10. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  11. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics.

    Science.gov (United States)

    Gonzalez-Solino, Carla; Lorenzo, Mirella Di

    2018-01-29

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  12. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    OpenAIRE

    Carla Gonzalez-Solino; Mirella Di Lorenzo

    2018-01-01

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  13. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  14. Piezoelectric micromachined ultrasonic transducers for fingerprint sensing

    Science.gov (United States)

    Lu, Yipeng

    Fingerprint identification is the most prevalent biometric technology due to its uniqueness, universality and convenience. Over the past two decades, a variety of physical mechanisms have been exploited to capture an electronic image of a human fingerprint. Among these, capacitive fingerprint sensors are the ones most widely used in consumer electronics because they are fabricated using conventional complementary metal oxide semiconductor (CMOS) integrated circuit technology. However, capacitive fingerprint sensors are extremely sensitive to finger contamination and moisture. This thesis will introduce an ultrasonic fingerprint sensor using a PMUT array, which offers a potential solution to this problem. In addition, it has the potential to increase security, as it allows images to be collected at various depths beneath the epidermis, providing images of the sub-surface dermis layer and blood vessels. Firstly, PMUT sensitivity is maximized by optimizing the layer stack and electrode design, and the coupling coefficient is doubled via series transduction. Moreover, a broadband PMUT with 97% fractional bandwidth is achieved by utilizing a thinner structure excited at two adjacent mechanical vibration modes with overlapping bandwidth. In addition, we proposed waveguide PMUTs, which function to direct acoustic waves, confine acoustic energy, and provide mechanical protection for the PMUT array. Furthermore, PMUT arrays were fabricated with different processes to form the membrane, including front-side etching with a patterned sacrificial layer, front-side etching with additional anchor, cavity SOI wafers and eutectic bonding. Additionally, eutectic bonding allows the PMUT to be integrated with CMOS circuits. PMUTs were characterized in the mechanical, electrical and acoustic domains. Using transmit beamforming, a narrow acoustic beam was achieved, and high-resolution (sub-100 microm) and short-range (~1 mm) pulse-echo ultrasonic imaging was demonstrated using a steel

  15. An isotropic suspension system for a biaxial accelerometer using electroplated thick metal with a HAR SU-8 mold

    International Nuclear Information System (INIS)

    Lee, Jin Seung; Lee, Seung S

    2008-01-01

    In this paper, a novel approach is developed to design an isotropic suspension system using thick metal freestanding micro-structures combining bulk micro-machining with electroplating based on a HAR SU-8 mold. An omega-shape isotropic suspension system composed of circular curved beams that have free switching of imaginary boundary conditions is proposed. This novel isotropic suspension design is not affected by geometric dimensional parameters and always achieves matching stiffness along the principle axes of elasticity. Using the finite element method, the isotropic suspension system was compared with an S-shaped meandering suspension system. In order to realize the suggested isotropic suspension system, a cost-effective fabrication process using electroplating with the SU-8 mold was developed to avoid expensive equipment and materials such as deep reactive-ion etching (DRIE) or a silicon-on-insulator (SOI) wafer. The fabricated isotropic suspension system was verified by electromagnetic actuation experiments. Finally, a biaxial accelerometer with isotropic suspension system was realized and tested using a vibration generator system. The proposed isotropic suspension system and the modified surface micro-machining technique based on electroplating with an SU-8 mold can contribute towards minimizing the system size, simplifying the system configuration, reducing the system price of and facilitating mass production of various types of low-cost sensors and actuators

  16. Influence of a preliminary tensile plastic strain on the first stages of oxidation of a Ni80-Cr20 alloy

    International Nuclear Information System (INIS)

    Schmitt, Jean-Francois

    1992-01-01

    This research thesis reports the study of the influence of surface, and maybe also volume, defects created by a uniaxial mechanical strain on the chemical reactivity of metal and alloy surface (adsorption, desorption, segregation, surface chemical reaction), and more particularly on their early stages of oxidation. A tensile micro-machine has been designed and manufactured to study the influence of a mechanical strain on the first stages of oxidation of sample ribbons of Ni80-Cr20 alloy. Tests have been performed under low oxygen pressures. In order to analyze the surface, each reaction is monitored by Auger electron spectrometry, and many samples are transferred to another apparatus to examine the oxide distribution. Results are interpreted in terms of evolution of nickel, chromium and oxygen Auger signals which have been recorded during oxidation experiments. The first layers of the sample alloy are simply modelled and some theoretical calculations are developed which correlate with experimental values [fr

  17. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    Science.gov (United States)

    Lemoff, Asuncion V [Union City, CA; Lee, Abraham P [Irvine, CA

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  18. Laser-assisted fabrication of batteries on wax paper

    International Nuclear Information System (INIS)

    Chitnis, G; Ziaie, B; Tan, T

    2013-01-01

    The functionality of paper-based diagnostic devices can be significantly enhanced by their integration with an on-board energy source. Here, we demonstrate the fabrication of paper-based electrochemical cells on wax paper using CO 2 laser surface treatment and micromachining. A four cell zinc–copper battery shows a steady open-circuit voltage of ∼3 V and can provide 0.25 mA for at least 30 min when connected to a 10 kΩ load. Higher voltages and current values can be obtained by adjusting the number and size of electrochemical cells in the battery without changing the fabrication process. (paper)

  19. Fiber-optical switch using cam-micromotor driven by scratch drive actuators

    Science.gov (United States)

    Kanamori, Y.; Aoki, Y.; Sasaki, M.; Hosoya, H.; Wada, A.; Hane, K.

    2005-01-01

    We fabricated a 1 × 1 fiber-optic switch using a cam-micromotor driven by scratch drive actuators (SDAs). Using the cam-micromotor, mechanical translation and precise positioning of an optical fiber were performed. An optical fiber of diameter 50 µm was bent and pushed out with a cam-mechanism driven by the SDAs fabricated by surface micromachining. The maximum rotation speed of the cam-micromotor was 7.5 rpm at a driving frequency of 1.5 kHz. The transient time of the switch to attenuate coupling efficiency less than -40 dB was around 10 ms.

  20. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  1. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    Science.gov (United States)

    Gonzalez-Solino, Carla; Lorenzo, Mirella Di

    2018-01-01

    With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs) hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors. PMID:29382147

  2. Enzymatic Fuel Cells: Towards Self-Powered Implantable and Wearable Diagnostics

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez-Solino

    2018-01-01

    Full Text Available With the rapid progress in nanotechnology and microengineering, point-of-care and personalised healthcare, based on wearable and implantable diagnostics, is becoming a reality. Enzymatic fuel cells (EFCs hold great potential as a sustainable means to power such devices by using physiological fluids as the fuel. This review summarises the fundamental operation of EFCs and discusses the most recent advances for their use as implantable and wearable self-powered sensors.

  3. Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection

    Directory of Open Access Journals (Sweden)

    Xinxin Li

    2009-01-01

    Full Text Available The paper reviews the recent researches implemented in Chinese Academy of Sciences, with achievements on integrated resonant microcantilever sensors. In the resonant cantilevers, the self-sensing elements and resonance exciting elements are both top-down integrated with silicon micromachining techniques. Quite a lot of effort is focused on optimization of the resonance mode and sensing structure for improvement of sensitivity. On the other hand, to enable the micro-cantilevers specifically sensitive to bio/chemical molecules, sensing materials are developed and modified on the cantilever surface with a self-assembled monolayer (SAM based bottom-up construction and surface functionalization. To improve the selectivity of the sensors and depress environmental noise, multiple and localized surface modifications are developed. The achieved volume production capability and satisfactory detecting resolution to trace-level biological antigen of alpha-fetoprotein (AFP give the micro-cantilever sensors a great promise for rapid and high-resoluble detection.

  4. Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment.

    Science.gov (United States)

    Kasem, Haytam; Tsipenyuk, Alexey; Varenberg, Michael

    2015-04-21

    Most biological hairy adhesive systems involved in locomotion rely on spatula-shaped terminal elements, whose operation has been actively studied during the last decade. However, though functional principles underlying their amazing performance are now well understood, due to technical difficulties in manufacturing the complex structure of hierarchical spatulate systems, a biomimetic surface structure featuring true shear-induced dynamic attachment still remains elusive. To try bridging this gap, a novel method of manufacturing gecko-like attachment surfaces is devised based on a laser-micromachining technology. This method overcomes the inherent disadvantages of photolithography techniques and opens wide perspectives for future production of gecko-like attachment systems. Advanced smart-performance surfaces featuring thin-film-based hierarchical shear-activated elements are fabricated and found capable of generating friction force of several tens of times the contact load, which makes a significant step forward towards a true gecko-like adhesive.

  5. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device's operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  6. Photoexcited Individual Nanowires: Key Elements in Room Temperature Detection of Oxidizing Gases

    International Nuclear Information System (INIS)

    Prades, J. D.; Jimenez-Diaz, R.; Manzanares, M.; Andreu, T.; Cirera, A.; Romano-Rodriguez, A.; Hernandez-Ramirez, F.; Morante, J. R.

    2009-01-01

    Illuminating metal oxide semiconductors with ultra-violet light is a feasible alternative to activate chemical reactions at their surface and thus, using them as gas sensors without the necessity of heating them. Here, the response at room temperature of individual single-crystalline SnO 2 nanowires towards NO 2 is studied in detail. The results reveal that similar responses to those obtained with thermally activated sensors can be achieved by choosing the optimal illumination conditions. This finding paves the way to the development of conductometric gas sensors operated at room temperature. The power consumption in these devices is in range with conventional micromachined sensors.

  7. Materials processing with superposed Bessel beams

    Science.gov (United States)

    Yu, Xiaoming; Trallero-Herrero, Carlos A.; Lei, Shuting

    2016-01-01

    We report experimental results of femtosecond laser processing on the surface of glass and metal thin film using superposed Bessel beams. These beams are generated by a combination of a spatial light modulator (SLM) and an axicon with >50% efficiency, and they possess the long depth-of-focus (propagation-invariant) property as found in ordinary Bessel beams. Through micromachining experiments using femtosecond laser pulses, we show that multiple craters can be fabricated on glass with single-shot exposure, and the 1+(⿿1) superposed beam can reduce collateral damage caused by the rings in zero-order Bessel beams in the scribing of metal thin film.

  8. MEMS Coupled Resonator for Filter Application in Air

    KAUST Repository

    Ilyas, Saad

    2017-11-03

    We present a mechanically coupled MEMS H resonator capable of performing simultaneous amplification and filter operation in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multilayer surface micromachining process. A special fabrication process and device design is employed to enable the device\\'s operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter. The device design combined with the mixed-frequency excitation is used to demonstrate simultaneous amplification and filtering in air.

  9. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  10. Micromachined pressure/flow-sensor

    NARCIS (Netherlands)

    Oosterbroek, R.E.; Lammerink, Theodorus S.J.; Berenschot, Johan W.; Krijnen, Gijsbertus J.M.; Elwenspoek, Michael Curt; van den Berg, Albert

    1999-01-01

    The micromechanical equivalent of a differential pressure flow-sensor, well known in macro mechanics, is discussed. Two separate pressure sensors are used for the device, enabling to measure both, pressure as well as volume flow-rate. An integrated sensor with capacitive read-out as well as a

  11. Symposium Gyro Technology 1997

    Energy Technology Data Exchange (ETDEWEB)

    Sorg, H [ed.; Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    1997-10-01

    This volume includes the twenty papers which were presented at the Symposium Gyro Technology 1997. The subjects that have been treated during the symposium were as follows: Performance and design of silicon micromachined gyro; improved rate gyroscope designs designated for fabrication by modern deep silicon etching; micromechanical vibratory rate gyroscopes fabricated in conventional CMOS; error modelling of silicon angular rate sensor; a capacitive accelerometer as an example for surface micromachined inertial sensors; initial production results of a new family of fiber optic gyroscopes; dual-axis multiplexed open loop fiber optic gyroscope; flattely supported vibratory gyro-sensor using a Trident-type tuning fork resonator; innovative mechanizations to optimize inertial sensors for high or low rate operations; design of a planar vibratory gyroscope using electrostatic actuation and electromanetic detection; fiber optic gyro based land navigation system; FOG AHRS and AHRS/GPS navigation system: the low cost solution; GPS/GLONASS/INS-navigation (GLOGINAV); small-sized integrated system of the sea mobile objects attitude and navigation; concepts for hybrid positioning; preliminary results from a large ring laser gyroscope for fundamental physics and geophysics; a `sense of balance` - AHRS with low-cost vibrating-gyroscopes for medical diagnostics; application of strapdown inertial systems of orientation and navigation in intrapipe moving diagnostic apparatus; investigation of a digital readout system for laser gyro; the use of angular rate multiple integrals as input signals for strapdown attitude algorithms. (AKF)

  12. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    Science.gov (United States)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  13. Artificial enzyme-powered microfish for water-quality testing.

    Science.gov (United States)

    Orozco, Jahir; García-Gradilla, Victor; D'Agostino, Mattia; Gao, Wei; Cortés, Allan; Wang, Joseph

    2013-01-22

    We present a novel micromotor-based strategy for water-quality testing based on changes in the propulsion behavior of artificial biocatalytic microswimmers in the presence of aquatic pollutants. The new micromotor toxicity testing concept mimics live-fish water testing and relies on the toxin-induced inhibition of the enzyme catalase, responsible for the biocatalytic bubble propulsion of tubular microengines. The locomotion and survival of the artificial microfish are thus impaired by exposure to a broad range of contaminants, that lead to distinct time-dependent irreversible losses in the catalase activity, and hence of the propulsion behavior. Such use of enzyme-powered biocompatible polymeric (PEDOT)/Au-catalase tubular microengine offers highly sensitive direct optical visualization of changes in the swimming behavior in the presence of common contaminants and hence to a direct real-time assessment of the water quality. Quantitative data on the adverse effects of the various toxins upon the swimming behavior of the enzyme-powered artificial swimmer are obtained by estimating common ecotoxicological parameters, including the EC(50) (exposure concentration causing 50% attenuation of the microfish locomotion) and the swimmer survival time (lifetime expectancy). Such novel use of artificial microfish addresses major standardization and reproducibility problems as well as ethical concerns associated with live-fish toxicity assays and hence offers an attractive alternative to the common use of aquatic organisms for water-quality testing.

  14. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  15. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  16. Using laser technological unit ALTI "Karavella" for precision components of IEP production

    Science.gov (United States)

    Labin, N. A.; Chursin, A. D.; Paramonov, V. S.; Klimenko, V. I.; Paramonova, G. M.; Kolokolov, I. S.; Vinogradov, K. Y.; Betina, L. L.; Bulychev, N. A.; Dyakov, Yu. A.; Zakharyan, R. A.; Kazaryan, M. A.; Koshelev, K. K.; Kosheleva, O. K.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.; Chen, C.

    2015-12-01

    The paper revealed the using of industrial production equipment ALTI "Karavella-1", "Karavella-1M", "Karavella-2" and "Karavella-2M" precision components of IEP production [1-4]. The basis for the ALTI using in the IEP have become the positive results of research and development of technologies of foil (0.01-0.2 mm) and thin sheets (0.3-1 mm) materials micromachining by pulsed radiation CVL [5, 6]. To assess the micromachining quality and precision the measuring optical microscope (UHL VMM200), projection microscope (Mitutoyo PV5100) and Carl Zeiss microscope were used.

  17. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  18. Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, P., E-mail: prasri@ece.ucsb.edu, E-mail: srinivasan@lifesci.ucsb.edu [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA and Neuroscience Research Institute, University of California, Santa Barbara, California 93106 (United States)

    2016-01-18

    Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.

  19. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  20. Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven self-alignment in micro-assembly

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Jorritsma, Mark; Arnaldo del Cerro, D.; Chang, Bo; Liimatainen, Ville; Zhou, Quan; Huis in 't Veld, Bert

    2011-01-01

    Fluid driven self-alignment is a low cost alternative to fast but relatively inaccurate robotic pickand-place assembly of micro-fabricated components. This fluidic self-alignment technique relies on a hydrophobic-hydrophilic pattern on the surface of the receiving substrate, which confines a fluid