WorldWideScience

Sample records for surface methodology applied

  1. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan.

    Science.gov (United States)

    dos Santos, Danilo Martins; Bukzem, Andrea de Lacerda; Campana-Filho, Sérgio Paulo

    2016-03-15

    A quaternized derivative of chitosan, namely N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (QCh), was synthesized by reacting glycidyltrimethylammonium chloride (GTMAC) and chitosan (Ch) in acid medium under microwave irradiation. Full-factorial 2(3) central composite design and response surface methodology (RSM) were applied to evaluate the effects of molar ratio GTMAC/Ch, reaction time and temperature on the reaction yield, average degree of quaternization (DQ) and intrinsic viscosity ([η]) of QCh. The molar ratio GTMAC/Ch was the most important factor affecting the response variables and RSM results showed that highly substituted QCh (DQ = 71.1%) was produced at high yield (164%) when the reaction was carried out for 30min. at 85°C by using molar ratio GTMAC/Ch 6/1. Results showed that microwave-assisted synthesis is much faster (≤30min.) as compared to conventional reaction procedures (>4h) carried out in similar conditions except for the use of microwave irradiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Optimization of the ethanolysis of Raphanus sativus (L. Var.) crude oil applying the response surface methodology.

    Science.gov (United States)

    Domingos, Anderson Kurunczi; Saad, Emir Bolzani; Wilhelm, Helena Maria; Ramos, Luiz Pereira

    2008-04-01

    Raphanus sativus (L. Var) is a perennial plant of the Brassicaceae (or Cruciferae) family whose oil has not been investigated in detail for biodiesel production, particularly when ethanol is used as the alcoholysis agent. In this work, response surface methodology (RSM) was used to determine the optimum condition for the ethanolysis of R. sativus crude oil. Three process variables were evaluated at two levels (2(3) experimental design): the ethanol:oil molar ratio (6:1 and 12:1), the catalyst concentration in relation to oil mass (0.4 and 0.8 wt% NaOH) and the alcoholysis temperature (45 and 65 degrees C). When the experimental results were tentatively adjusted by linear regression, only 58.15% of its total variance was explained. Therefore, a quadratic model was investigated to improve the poor predictability of the linear model. To apply the quadratic model, the 2(3) experimental design had to be expanded to a circumscribed central composite design. This allowed the development of a response surface that was able to predict 97.75% of the total variance of the system. Validation was obtained by performing one ethanolysis experiment at the conditions predicted by the model (38 degrees C, ethanol:oil molar ratio of 11.7:1 and 0.6 wt% NaOH). The resulting ester yield (104.10 wt% or 99.10% of the theoretical yield of 105.04 wt%) was shown to be the highest among all conditions tested in this study. The second ethanolysis stage of the best RSM product required 50% less ethanol and 90% less catalyst consumption. The amount of ethyl esters obtained after this procedure reached 94.5% of the theoretical yield. The resulting ethyl esters were shown to comply with most of the Brazilian biodiesel specification parameters except for oxidation stability. Addition of 500 ppm of BHT to the esters, however, complied with the specification target of 6h. The application of 2 wt% Magnesol after the second ethanolysis stage eliminated the need for water washing and helped generate a

  3. Methodology applied to develop the DHIE: applied methodology

    CSIR Research Space (South Africa)

    Herselman, Marlien

    2016-12-01

    Full Text Available This section will address the methodology that was applied to develop the South African Digital Health Innovation Ecosystem (DHIE). Each chapter under Section B represents a specific phase in the methodology....

  4. Mixed oxidizer hybrid propulsion system optimization under uncertainty using applied response surface methodology and Monte Carlo simulation

    Science.gov (United States)

    Whitehead, James Joshua

    The analysis documented herein provides an integrated approach for the conduct of optimization under uncertainty (OUU) using Monte Carlo Simulation (MCS) techniques coupled with response surface-based methods for characterization of mixture-dependent variables. This novel methodology provides an innovative means of conducting optimization studies under uncertainty in propulsion system design. Analytic inputs are based upon empirical regression rate information obtained from design of experiments (DOE) mixture studies utilizing a mixed oxidizer hybrid rocket concept. Hybrid fuel regression rate was selected as the target response variable for optimization under uncertainty, with maximization of regression rate chosen as the driving objective. Characteristic operational conditions and propellant mixture compositions from experimental efforts conducted during previous foundational work were combined with elemental uncertainty estimates as input variables. Response surfaces for mixture-dependent variables and their associated uncertainty levels were developed using quadratic response equations incorporating single and two-factor interactions. These analysis inputs, response surface equations and associated uncertainty contributions were applied to a probabilistic MCS to develop dispersed regression rates as a function of operational and mixture input conditions within design space. Illustrative case scenarios were developed and assessed using this analytic approach including fully and partially constrained operational condition sets over all of design mixture space. In addition, optimization sets were performed across an operationally representative region in operational space and across all investigated mixture combinations. These scenarios were selected as representative examples relevant to propulsion system optimization, particularly for hybrid and solid rocket platforms. Ternary diagrams, including contour and surface plots, were developed and utilized to aid in

  5. Response Surface Methodology

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.

    2014-01-01

    Abstract: This chapter first summarizes Response Surface Methodology (RSM), which started with Box and Wilson’s article in 1951 on RSM for real, non-simulated systems. RSM is a stepwise heuristic that uses first-order polynomials to approximate the response surface locally. An estimated polynomial

  6. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b.

    Science.gov (United States)

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-06-01

    Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections.

  7. An Improvement in Biodiesel Production from Waste Cooking Oil by Applying Thought Multi-Response Surface Methodology Using Desirability Functions

    Directory of Open Access Journals (Sweden)

    Marina Corral Bobadilla

    2017-01-01

    Full Text Available The exhaustion of natural resources has increased petroleum prices and the environmental impact of oil has stimulated the search for an alternative source of energy such as biodiesel. Waste cooking oil is a potential replacement for vegetable oils in the production of biodiesel. Biodiesel is synthesized by direct transesterification of vegetable oils, which is controlled by several inputs or process variables, including the dosage of catalyst, process temperature, mixing speed, mixing time, humidity and impurities of waste cooking oil that was studied in this case. Yield, turbidity, density, viscosity and higher heating value are considered as outputs. This paper used multi-response surface methodology (MRS with desirability functions to find the best combination of input variables used in the transesterification reactions to improve the production of biodiesel. In this case, several biodiesel optimization scenarios have been proposed. They are based on a desire to improve the biodiesel yield and the higher heating value, while decreasing the viscosity, density and turbidity. The results demonstrated that, although waste cooking oil was collected from various sources, the dosage of catalyst is one of the most important variables in the yield of biodiesel production, whereas the viscosity obtained was similar in all samples of the biodiesel that was studied.

  8. Toward methodological emancipation in applied health research.

    Science.gov (United States)

    Thorne, Sally

    2011-04-01

    In this article, I trace the historical groundings of what have become methodological conventions in the use of qualitative approaches to answer questions arising from the applied health disciplines and advocate an alternative logic more strategically grounded in the epistemological orientations of the professional health disciplines. I argue for an increasing emphasis on the modification of conventional qualitative approaches to the particular knowledge demands of the applied practice domain, challenging the merits of what may have become unwarranted attachment to theorizing. Reorienting our methodological toolkits toward the questions arising within an evidence-dominated policy agenda, I encourage my applied health disciplinary colleagues to make themselves useful to that larger project by illuminating that which quantitative research renders invisible, problematizing the assumptions on which it generates conclusions, and filling in the gaps in knowledge needed to make decisions on behalf of people and populations.

  9. Team building: conceptual, methodological, and applied considerations.

    Science.gov (United States)

    Beauchamp, Mark R; McEwan, Desmond; Waldhauser, Katrina J

    2017-08-01

    Team building has been identified as an important method of improving the psychological climate in which teams operate, as well as overall team functioning. Within the context of sports, team building interventions have consistently been found to result in improvements in team effectiveness. In this paper we review the extant literature on team building in sport, and address a range of conceptual, methodological, and applied considerations that have the potential to advance theory, research, and applied intervention initiatives within the field. This involves expanding the scope of team building strategies that have, to date, primarily focused on developing group cohesion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development and validation of method for heterocyclic compounds in wine: optimization of HS-SPME conditions applying a response surface methodology.

    Science.gov (United States)

    Burin, Vívian Maria; Marchand, Stéphanie; de Revel, Gilles; Bordignon-Luiz, Marilde T

    2013-12-15

    Considering the importance of the heterocyclic compounds in terms of wine flavor, this study aims to propose a new rapid and solvent free method to quantify different classes of heterocyclic compounds, such as furans, thiophenes, thiazols and pyrazines, which are products of the Maillard reaction, in wines. The use of a central composite design and the response surface methodology to determine the best conditions allows the optimum combination of analytical variables (pH, NaCl and extraction time) to be identified. The validation was carried out using several types of wine as matrices. The method shows satisfactory repeatability (2.7%heterocyclic compounds were determined, mainly for red wines. © 2013 Elsevier B.V. All rights reserved.

  11. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.

    Science.gov (United States)

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  12. Generalized Response Surface Methodology : A New Metaheuristic

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Generalized Response Surface Methodology (GRSM) is a novel general-purpose metaheuristic based on Box and Wilson.s Response Surface Methodology (RSM).Both GRSM and RSM estimate local gradients to search for the optimal solution.These gradients use local first-order polynomials.GRSM, however, uses

  13. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  14. From experience : applying the risk diagnosing methodology

    NARCIS (Netherlands)

    Keizer, J.A.; Halman, J.I.M.; Song, X.M.

    2002-01-01

    No risk, no reward. Companies must take risks to launch new products speedily and successfully. The ability to diagnose and manage risks is increasingly considered of vital importance in high-risk innovation. This article presents the Risk Diagnosing Methodology (RDM), which aims to identify and

  15. From experience: applying the risk diagnosing methodology

    NARCIS (Netherlands)

    Keizer, Jimme A.; Halman, Johannes I.M.; Song, Michael

    2002-01-01

    No risk, no reward. Companies must take risks to launch new products speedily and successfully. The ability to diagnose and manage risks is increasingly considered of vital importance in high-risk innovation. This article presents the Risk Diagnosing Methodology (RDM), which aims to identify and

  16. Methodological exploratory study applied to occupational epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Janete C.G. Gaburo; Vasques, MOnica Heloisa B.; Fontinele, Ricardo S.; Sordi, Gian Maria A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: janetegc@ipen.br

    2007-07-01

    The utilization of epidemiologic methods and techniques has been object of practical experimentation and theoretical-methodological reflection in health planning and programming process. Occupational Epidemiology is the study of the causes and prevention of diseases and injuries from exposition and risks in the work environment. In this context, there is no intention to deplete such a complex theme but to deal with basic concepts of Occupational Epidemiology, presenting the main characteristics of the analysis methods used in epidemiology, as investigate the possible determinants of exposition (chemical, physical and biological agents). For this study, the social-demographic profile of the IPEN-CNEN/SP work force was used. The knowledge of this reference population composition is based on sex, age, educational level, marital status and different occupations, aiming to know the relation between the health aggravating factors and these variables. The methodology used refers to a non-experimental research based on a theoretical methodological practice. The work performed has an exploratory character, aiming a later survey of indicators in the health area in order to analyze possible correlations related to epidemiologic issues. (author)

  17. Methodological exploratory study applied to occupational epidemiology

    International Nuclear Information System (INIS)

    Carneiro, Janete C.G. Gaburo; Vasques, MOnica Heloisa B.; Fontinele, Ricardo S.; Sordi, Gian Maria A.

    2007-01-01

    The utilization of epidemiologic methods and techniques has been object of practical experimentation and theoretical-methodological reflection in health planning and programming process. Occupational Epidemiology is the study of the causes and prevention of diseases and injuries from exposition and risks in the work environment. In this context, there is no intention to deplete such a complex theme but to deal with basic concepts of Occupational Epidemiology, presenting the main characteristics of the analysis methods used in epidemiology, as investigate the possible determinants of exposition (chemical, physical and biological agents). For this study, the social-demographic profile of the IPEN-CNEN/SP work force was used. The knowledge of this reference population composition is based on sex, age, educational level, marital status and different occupations, aiming to know the relation between the health aggravating factors and these variables. The methodology used refers to a non-experimental research based on a theoretical methodological practice. The work performed has an exploratory character, aiming a later survey of indicators in the health area in order to analyze possible correlations related to epidemiologic issues. (author)

  18. Assessment of Wind Turbine Structural Integrity using Response Surface Methodology

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Svenningsen, Lasse; Moser, Wolfgang

    2016-01-01

    Highlights •A new approach to assessment of site specific wind turbine loads is proposed. •The approach can be applied in both fatigue and ultimate limit state. •Two different response surface methodologies have been investigated. •The model uncertainty introduced by the response surfaces...

  19. Implied Volatility Surface: Construction Methodologies and Characteristics

    OpenAIRE

    Cristian Homescu

    2011-01-01

    The implied volatility surface (IVS) is a fundamental building block in computational finance. We provide a survey of methodologies for constructing such surfaces. We also discuss various topics which can influence the successful construction of IVS in practice: arbitrage-free conditions in both strike and time, how to perform extrapolation outside the core region, choice of calibrating functional and selection of numerical optimization algorithms, volatility surface dynamics and asymptotics.

  20. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  1. Response Surface Methodology: 1966-1986

    Science.gov (United States)

    1986-09-01

    male broilers to examine quantitatively the protein levels in starter and Gnisher rations and the time of ration change to optimize body weight, carcass...1983). ’Akn Investigation of Protein Levels for Broiler Starter and Finisher Rations and the Time of Ration Change by Response Surface Methodology...when Responses Within a Litter are Correlated,’ Biometrics, 37, 153-156. Shek, E., Ghani, M. and Jones, R.E. (1980). "Simplex Search in Optimization

  2. Application of Response Surface Methodology for Optimizing Oil ...

    African Journals Online (AJOL)

    Application of Response Surface Methodology for Optimizing Oil Extraction Yield From ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... from tropical almond seed by the use of response surface methodology (RSM).

  3. The Methodology of Investigation of Intercultural Rhetoric applied to SFL

    Directory of Open Access Journals (Sweden)

    David Heredero Zorzo

    2016-12-01

    Full Text Available Intercultural rhetoric is a discipline which studies written discourse among individuals from different cultures. It is a very strong field in the Anglo-Saxon scientific world, especially referring to English as a second language, but in Spanish as a foreign language it is not as prominent. Intercultural rhetoric has provided applied linguistics with important methods of investigation, thus applying this to SFL could introduce interesting new perspectives on the subject. In this paper, we present the methodology of investigation of intercultural rhetoric, which is based on the use of different types of corpora for analysing genders, and follows the precepts of tertium comparationis. In addition, it uses techniques of ethnographic investigation. The purpose of this paper is to show the applications of this methodology to SFL and to outline future investigations in the same field.

  4. Digital processing methodology applied to exploring of radiological images

    International Nuclear Information System (INIS)

    Oliveira, Cristiane de Queiroz

    2004-01-01

    In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)

  5. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  6. Tools and methodologies applied to eLearning

    OpenAIRE

    Seoane Pardo, Antonio M.; García-Peñalvo, Francisco José

    2006-01-01

    The aim of this paper is to show how eLearning technologies and methodologies should be useful for teaching and researching Logic. Firstly, a definition and explanation of eLearning and its main modalities will be given. Then, the most important elements and tools of eLearning activities will be shown. Finally, we will give three suggestions to improve learning experience with eLearning applied to Logic. Se muestran diversas tecnologías y metodologías de e-learning útiles en la enseñanza e...

  7. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  8. Deshidratación Osmótica de Láminas de Mango cv. Tommy Atkins Aplicando Metodología de Superficies de Respuesta Osmotic Dehydration of Mango Pieces cv. Tommy Atkins Applying Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    José Edgar Zapata Montoya

    2012-06-01

    Full Text Available Resumen. Se aplicó el método de superficies de respuesta para estudiar el efecto de la temperatura y la concentración de ácido cítrico sobre la deshidratación osmótica de láminas de mango cv. Tommy Atkins. La deshidratación osmótica se evaluó en términos del porcentaje de pérdida de peso (%PP, ganancia de sólidos (%GS, pérdida de humedad (%PH, y pérdida de actividad acuosa (%PAw. Los resultados indicaron que tanto la temperatura como la concentración de ácido cítrico, tuvieron efectos significativos sobre el %PP, %PH, y %PAw, en el rango de condiciones evaluado (25 ºC - 45 ºC y (1% - 3% respectivamente. La adición de ácido cítrico en la solución osmodeshidratante redujo de forma significativa los recuentos de microorganismos, sin afectar las características sensoriales del producto. Los niveles máximos de los parámetros cinéticos se consiguen después de 4 h de proceso, con temperaturas de 45 ºC y concentraciones de ácido cítrico de 3% p/p, siendo 47,62%, 53,07% y 6,04%, los valores óptimos para %PP, %PH y %PAw respectivamente, con aceptación sensorial del 100 % y reducciones en los recuentos microbianos de más de dos ciclos logarítmicos.Abstract. The response surface methodology was applied to study the effect of temperature and concentration of citric acid in osmotic dehydration of cv. Tommy Atkins mango pieces. Osmotic dehydration was evaluated in terms of the percentage of weight reduction (%WR, solid gain (%SG, water loss (%WL and reduction of water activity (%RWA. The results indicated that the temperature and the concentration of citric acid had significant effects on the (%WR, (%WL and (%RWA in the range of conditions evaluated (25 °C- 45 ºC and (1% - 3% respectively. The addition of citric acid in the osmodehydrating solution significantly reduced the microorganism recount without affecting the sensory characteristics of the product. The maximum values of kinetic parameter are reached after 4 h of

  9. Applying of component system development in object methodology, case study

    Directory of Open Access Journals (Sweden)

    Milan Mišovič

    2013-01-01

    Full Text Available To create computarization target software as a component system has been a very strong requirement for the last 20 years of software developing. Finally, the architectural components are self-contained units, presenting not only partial and overall system behavior, but also cooperating with each other on the basis of their interfaces. Among others, components have allowed flexible modification of processes the behavior of which is the foundation of components behavior without changing the life of the component system. On the other hand, the component system makes it possible, at design time, to create numerous new connections between components and thus creating modified system behaviors. This all enables the company management to perform, at design time, required behavioral changes of processes in accordance with the requirements of changing production and market.The development of software which is generally referred to as SDP (Software Development Process contains two directions. The first one, called CBD (Component–Based Development, is dedicated to the development of component–based systems CBS (Component–based System, the second target is the development of software under the influence of SOA (Service–Oriented Architecture. Both directions are equipped with their different development methodologies. The subject of this paper is only the first direction and application of development of component–based systems in its object–oriented methodologies. The requirement of today is to carry out the development of component-based systems in the framework of developed object–oriented methodologies precisely in the way of a dominant style. In some of the known methodologies, however, this development is not completely transparent and is not even recognized as dominant. In some cases, it is corrected by the special meta–integration models of component system development into an object methodology.This paper presents a case study

  10. Energy retrofit of commercial buildings. Case study and applied methodology

    Energy Technology Data Exchange (ETDEWEB)

    Aste, N.; Del Pero, C. [Department of Building Environment Science and Technology (BEST), Politecnico di Milano, Via Bonardi 3, 20133 Milan (Italy)

    2013-05-15

    Commercial buildings are responsible for a significant share of the energy requirements of European Union countries. Related consumptions due to heating, cooling, and lighting appear, in most cases, very high and expensive. Since the real estate is renewed with a very small percentage each year and current trends suggest reusing the old structures, strategies for improving energy efficiency and sustainability should focus not only on new buildings, but also and especially on existing ones. Architectural renovation of existing buildings could provide an opportunity to enhance their energy efficiency, by working on the improvement of envelopes and energy supply systems. It has also to be noted that the measures aimed to improve the energy performance of buildings should pay particular attention to the cost-effectiveness of the interventions. In general, there is a lack of well-established methods for retrofitting, but if a case study achieves effective results, the adopted strategies and methodologies can be successfully replicated for similar kinds of buildings. In this paper, an iterative methodology for energy retrofit of commercial buildings is presented, together with a specific application on an existing office building. The case study is particularly significant as it is placed in an urban climatic context characterized by cold winters and hot summers; consequently, HVAC energy consumption is considerable throughout the year. The analysis and simulations of energy performance before and after the intervention, along with measured data on real energy performance, demonstrate the validity of the applied approach. The specifically developed design and refurbishment methodology, presented in this work, could be also assumed as a reference in similar operations.

  11. Methodology for uranium compounds characterization applied to biomedical monitoring

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1991-01-01

    Chronic exposure and accidental contamination to uranium compounds in the nuclear industry, led the authors to develop a methodology in order to characterize those compounds applied to biomedical monitoring. Such a methodology, based on the recommendation of the ICRP and the assessment of Annual Limit on Intake (ALI) values, involves two main steps: (1) The characterization of the industrial compound, i.e. its physico-chemical properties like density (g cm -3 ), specific area (m 2 g -1 ), x-ray spectrum (crystalline form), solid infrared spectrum (wavelength and bounds), mass spectrometry (isotopic composition), and particle size distribution including measurement of the Activity Median Aerodynamic Diameter (AMAD). They'll specially study aging and hydration state of some compounds. (2) The study of in vitro solubility in several biochemical medium like bicarbonates, Basal Medium Eagle (BME) used in cellular culture, Gamble solvent, which is a serum simulant, with oxygen bubbling, and Gamble added with superoxide anions O2 - . Those different mediums allow one to understand the dissolution mechanisms (oxidation, chelating effects...) and to give ICRP classification D, W, or Y. Those two steps are essential to assess a biomedical monitoring either in routine or accidental exposure, and to calculate the ALI. Results on UO3, UF4 and U02 in the French uranium industry are given

  12. Framework for applying RI-ISI methodology for Indian PHWRs

    International Nuclear Information System (INIS)

    Vinod, Gopika; Saraf, R.K.; Ghosh, A.K.; Kushwaha, H.S.

    2006-01-01

    Risk Informed In-Service Inspection (RI-ISI) aims at categorizing the components for In-Service inspection based on their contribution to Risk. For defining the contribution of risk from components, their failure probabilities and its subsequent effect on Core Damage Frequency (CDF) needs to be evaluated using Probabilistic Safety Assessment methodology. During the last several years, both the U.S. Nuclear Regulatory Commission (NRC) and the nuclear industry have recognized that Probabilistic Safety Assessment (PSA) has evolved to be more useful in supplementing traditional engineering approaches in reactor regulation. The paper highlights the various stages involved in applying RI-ISI and then compares the findings with existing ISI practices. (author)

  13. Hyperspectral and thermal methodologies applied to landslide monitoring

    Science.gov (United States)

    Vellico, Michela; Sterzai, Paolo; Pietrapertosa, Carla; Mora, Paolo; Berti, Matteo; Corsini, Alessandro; Ronchetti, Francesco; Giannini, Luciano; Vaselli, Orlando

    2010-05-01

    Landslide monitoring is a very actual topic. Landslides are a widespread phenomenon over the European territory and these phenomena have been responsible of huge economic losses. The aim of the WISELAND research project (Integrated Airborne and Wireless Sensor Network systems for Landslide Monitoring), funded by the Italian Government, is to test new monitoring techniques capable to rapidly and successfully characterize large landslides in fine soils. Two active earthflows in the Northern Italian Appenines have been chosen as test sites and investigated: Silla (Bologna Province) and Valoria (Modena Province). The project implies the use of remote sensing methodologies, with particular focus on the joint use of airborne Lidar, hyperspectral and thermal systems. These innovative techniques give promising results, since they allow to detect the principal landslide components and to evaluate the spatial distribution of parameters relevant to landslide dynamics such as surface water content and roughness. In this paper we put the attention on the response of the terrain related to the use of a hyperspectral system and its integration with the complementary information obtained using a thermal sensor. The potentiality of a hyperspectral dataset acquired in the VNIR (Visible Near Infrared field) and of the spectral response of the terrain could be high since they give important information both on the soil and on the vegetation status. Several significant indexes can be calculated, such as NDVI, obtained considering a band in the Red field and a band in the Infrared field; it gives information on the vegetation health and indirectly on the water content of soils. This is a key point that bridges hyperspectral and thermal datasets. Thermal infrared data are closely related to soil moisture, one of the most important parameter affecting surface stability in soil slopes. Effective stresses and shear strength in unsaturated soils are directly related to water content, and

  14. Applying of component system development in object methodology

    Directory of Open Access Journals (Sweden)

    Milan Mišovič

    2013-01-01

    -oriented methodology (Arlo, Neust, 2007, (Kan, Müller, 2005, (​​Krutch, 2003 for problem domains with double-layer process logic. There is indicated an integration method, based on a certain meta-model (Applying of the Component system Development in object Methodology and leading to the component system formation. The mentioned meta-model is divided into partial workflows that are located in different stages of a classic object process-based methodology. Into account there are taken the consistency of the input and output artifacts in working practices of the meta-model and mentioned object methodology. This paper focuses on static component systems that are starting to explore dynamic and mobile component systems.In addition, in the contribution the component system is understood as a specific system, for its system properties and basic terms notation being used a set and graph and system algebra.

  15. Applying Statistical Process Quality Control Methodology to Educational Settings.

    Science.gov (United States)

    Blumberg, Carol Joyce

    A subset of Statistical Process Control (SPC) methodology known as Control Charting is introduced. SPC methodology is a collection of graphical and inferential statistics techniques used to study the progress of phenomena over time. The types of control charts covered are the null X (mean), R (Range), X (individual observations), MR (moving…

  16. BAT methodology applied to the construction of new CCNN

    International Nuclear Information System (INIS)

    Vilches Rodriguez, E.; Campos Feito, O.; Gonzalez Delgado, J.

    2012-01-01

    The BAT methodology should be used in all phases of the project, from preliminary studies and design to decommissioning, gaining special importance in radioactive waste management and environmental impact studies. Adequate knowledge of this methodology will streamline the decision making process and to facilitate the relationship with regulators and stake holders.

  17. Surface design methodology – challenge the steel

    International Nuclear Information System (INIS)

    Bergman, M; Rosen, B-G; Eriksson, L; Anderberg, C

    2014-01-01

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or ''feeling'' for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA

  18. Surface design methodology - challenge the steel

    Science.gov (United States)

    Bergman, M.; Rosen, B.-G.; Eriksson, L.; Anderberg, C.

    2014-03-01

    The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or "feeling" for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA.

  19. On Research Methodology in Applied Linguistics in 2002-2008

    Science.gov (United States)

    Martynychev, Andrey

    2010-01-01

    This dissertation examined the status of data-based research in applied linguistics through an analysis of published research studies in nine peer-reviewed applied linguistics journals ("Applied Language Learning, The Canadian Modern Language Review / La Revue canadienne des langues vivantes, Current Issues in Language Planning, Dialog on Language…

  20. Strategies and methodologies for applied marine radioactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The main objective of this document is to provide basic training in the theoretical background and practical applications of the methodologies for the measurement, monitoring and assessment of radioactivity in marine environment. This manual is a compilation of lectures and notes that have been presented at previous training courses. The document contains 16 individual papers, each of them was indexed separately.

  1. Strategies and methodologies for applied marine radioactivity studies

    International Nuclear Information System (INIS)

    1997-01-01

    The main objective of this document is to provide basic training in the theoretical background and practical applications of the methodologies for the measurement, monitoring and assessment of radioactivity in marine environment. This manual is a compilation of lectures and notes that have been presented at previous training courses. The document contains 16 individual papers, each of them was indexed separately

  2. An applied methodology for stakeholder identification in transdisciplinary research

    NARCIS (Netherlands)

    Leventon, Julia; Fleskens, Luuk; Claringbould, Heleen; Schwilch, Gudrun; Hessel, Rudi

    2016-01-01

    In this paper we present a novel methodology for identifying stakeholders for the purpose of engaging with them in transdisciplinary, sustainability research projects. In transdisciplinary research, it is important to identify a range of stakeholders prior to the problem-focussed stages of

  3. Applying living lab methodology to enhance skills in innovation

    CSIR Research Space (South Africa)

    Herselman, M

    2010-07-01

    Full Text Available and which is also inline with the South African medium term strategic framework and the millennium goals of the Department of Science and Technology. Evidence of how the living lab methodology can enhance innovation skills was made clear during various...

  4. Risk management methodology applied at thermal power plant

    International Nuclear Information System (INIS)

    Coppolino, R.

    2007-01-01

    Nowadays, the responsibility of the environmental risks, connected the productive processes and to the products of an enterprise, represent one of the main aspects which an adequate management approach has to foresee. In this paper it has been evaluated the guidelines followed by Edipower Thermoelectric Power plant of S. Filippo di Mela (ME). These guidelines were given in order to manage the chemical risk connected to the usage of various chemicals with which the workers get in touch when identifying the risks of the methodology introduced by the AZ/NZS 4360:2004 Risk Management Standard

  5. A robust methodology for modal parameters estimation applied to SHM

    Science.gov (United States)

    Cardoso, Rharã; Cury, Alexandre; Barbosa, Flávio

    2017-10-01

    The subject of structural health monitoring is drawing more and more attention over the last years. Many vibration-based techniques aiming at detecting small structural changes or even damage have been developed or enhanced through successive researches. Lately, several studies have focused on the use of raw dynamic data to assess information about structural condition. Despite this trend and much skepticism, many methods still rely on the use of modal parameters as fundamental data for damage detection. Therefore, it is of utmost importance that modal identification procedures are performed with a sufficient level of precision and automation. To fulfill these requirements, this paper presents a novel automated time-domain methodology to identify modal parameters based on a two-step clustering analysis. The first step consists in clustering modes estimates from parametric models of different orders, usually presented in stabilization diagrams. In an automated manner, the first clustering analysis indicates which estimates correspond to physical modes. To circumvent the detection of spurious modes or the loss of physical ones, a second clustering step is then performed. The second step consists in the data mining of information gathered from the first step. To attest the robustness and efficiency of the proposed methodology, numerically generated signals as well as experimental data obtained from a simply supported beam tested in laboratory and from a railway bridge are utilized. The results appeared to be more robust and accurate comparing to those obtained from methods based on one-step clustering analysis.

  6. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5eV to 300eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electrons spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained. The improvement of theoretical studies on surface excitations due to slow electrons will provide in the next future the possibility of analysing in a more quantitative way the results given by ELS [fr

  7. Urban Agglomerations in Regional Development: Theoretical, Methodological and Applied Aspects

    Directory of Open Access Journals (Sweden)

    Andrey Vladimirovich Shmidt

    2016-09-01

    Full Text Available The article focuses on the analysis of the major process of modern socio-economic development, such as the functioning of urban agglomerations. A short background of the economic literature on this phenomenon is given. There are the traditional (the concentration of urban types of activities, the grouping of urban settlements by the intensive production and labour communications and modern (cluster theories, theories of network society conceptions. Two methodological principles of studying the agglomeration are emphasized: the principle of the unity of the spatial concentration of economic activity and the principle of compact living of the population. The positive and negative effects of agglomeration in the economic and social spheres are studied. Therefore, it is concluded that the agglomeration is helpful in the case when it brings the agglomerative economy (the positive benefits from it exceed the additional costs. A methodology for examination the urban agglomeration and its role in the regional development is offered. The approbation of this methodology on the example of Chelyabinsk and Chelyabinsk region has allowed to carry out the comparative analysis of the regional centre and the whole region by the main socio-economic indexes under static and dynamic conditions, to draw the conclusions on a position of the city and the region based on such socio-economic indexes as an average monthly nominal accrued wage, the cost of fixed assets, the investments into fixed capital, new housing supply, a retail turnover, the volume of self-produced shipped goods, the works and services performed in the region. In the study, the analysis of a launching site of the Chelyabinsk agglomeration is carried out. It has revealed the following main characteristics of the core of the agglomeration in Chelyabinsk (structure feature, population, level of centralization of the core as well as the Chelyabinsk agglomeration in general (coefficient of agglomeration

  8. Methodology applied in Cuba for siting, designing, and building a radioactive waste repository under safety conditions

    International Nuclear Information System (INIS)

    Orbera, L.; Peralta, J.L.; Franklin, R.; Gil, R.; Chales, G.; Rodriguez, A.

    1993-01-01

    The work presents the methodology used in Cuba for siting, designing, and building a radioactive waste repository safely. This methodology covers both the technical and socio-economic factors, as well as those of design and construction so as to have a safe siting for this kind of repository under Cuba especial condition. Applying this methodology will results in a safe repository

  9. New methodologies of biological dosimetry applied to human protection

    International Nuclear Information System (INIS)

    Catena, C.; Parasacchi, P.; Conti, D.; Righi, E.

    1995-04-01

    Biological dosimetry is a diagnostic methodology for the measurement of the individual dose absorbed in the case of accidental overexposition to ionizing radiation. It is demonstrated how in vitro radiobiological and chemobiological studies using cytogenetic methods (count of chromosomal aberrations and micronuclei) on human lymphocytes from healthy subjects and individuals undergoing radiotherapy or chemotherapy, as well as on lymphocytes of mammals other than man (comparative cytogenetics), can help to increase the basic radiobiological and chemobiological scientific information. Such information gives a valid contribution to understanding of the action of ionizing radiation or of pharmaceuticals on cells and, in return, can be of value to human radioprotection and chemoprotection. Cytogenetic studies can be summerized as follows: a) biodosimetry (estimate of dose received after accidental events); b) individual radiosensitivity (level of individual response); c) clinical radiobiology and chemobiology (individual response to radiopharmaceuticals, to radiotherapy and to chemopharmaceuticals); d) comparative radiobiology (cytogenetic studies on species other than man); e) animal model in the environmental surveillance

  10. 3-D SURVEY APPLIED TO INDUSTRIAL ARCHAEOLOGY BY TLS METHODOLOGY

    Directory of Open Access Journals (Sweden)

    M. Monego

    2017-05-01

    Full Text Available This work describes the three-dimensional survey of “Ex Stazione Frigorifera Specializzata”: initially used for agricultural storage, during the years it was allocated to different uses until the complete neglect. The historical relevance and the architectural heritage that this building represents has brought the start of a recent renovation project and functional restoration. In this regard it was necessary a global 3-D survey that was based on the application and integration of different geomatic methodologies (mainly terrestrial laser scanner, classical topography, and GNSS. The acquisitions of point clouds was performed using different laser scanners: with time of flight (TOF and phase shift technologies for the distance measurements. The topographic reference network, needed for scans alignment in the same system, was measured with a total station. For the complete survey of the building, 122 scans were acquired and 346 targets were measured from 79 vertices of the reference network. Moreover, 3 vertices were measured with GNSS methodology in order to georeference the network. For the detail survey of machine room were executed 14 scans with 23 targets. The 3-D global model of the building have less than one centimeter of error in the alignment (for the machine room the error in alignment is not greater than 6 mm and was used to extract products such as longitudinal and transversal sections, plans, architectural perspectives, virtual scans. A complete spatial knowledge of the building is obtained from the processed data, providing basic information for restoration project, structural analysis, industrial and architectural heritage valorization.

  11. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  12. Energy loss spectroscopy applied to surface studies

    International Nuclear Information System (INIS)

    Lecante, J.

    1975-01-01

    The analysis of energy losses suffered by slow electrons (5 eV to 300 eV) back-scattered by single crystal surfaces appears to be a powerful method for surfaces studies. The inelastic scattering of these slow electrons limits their escape depth to the surface region which is defined here. After a review of the basic excitation processes due to the interaction between electrons and surfaces (phonons, plasmons and electronic transitions) a brief discussion is given about the instruments needed for this electron spectroscopy. Finally some experimental results are listed and it is shown that the comparison of the results given by ELS with other surface sensitive methods such as UPS is very fruitful and new information can be obtained [fr

  13. Applied design methodology for lunar rover elastic wheel

    Science.gov (United States)

    Cardile, Diego; Viola, Nicole; Chiesa, Sergio; Rougier, Alessandro

    2012-12-01

    In recent years an increasing interest in the Moon surface operations has been experienced. In the future robotic and manned missions of Moon surface exploration will be fundamental in order to lay the groundwork for more ambitious space exploration programs. Surface mobility systems will be the key elements to ensure an efficient and safe Moon exploration. Future lunar rovers are likely to be heavier and able to travel longer distances than the previously developed Moon rover systems. The Lunar Roving Vehicle (LRV) is the only manned rover, which has so far been launched and used on the Moon surface. Its mobility system included flexible wheels that cannot be scaled to the heavier and longer range vehicles. Thus the previously developed wheels are likely not to be suitable for the new larger vehicles. Taking all these considerations into account, on the basis of the system requirements and assumptions, several wheel concepts have been discussed and evaluated through a trade-off analysis. Semi-empirical equations have been utilized to predict the wheel geometrical characteristics, as well as to estimate the motion resistances and the ability of the system to generate thrust. A numerical model has also been implemented, in order to define more into the details the whole wheel design, in terms of wheel geometry and physical properties. As a result of the trade-off analysis, the ellipse wheel concept has shown the best behavior in terms of stiffness, mass budget and dynamic performance. The results presented in the paper have been obtained in cooperation with Thales Alenia Space-Italy and Sicme motori, in the framework of a regional program called STEPS . STEPS-Sistemi e Tecnologie per l'EsPlorazione Spaziale is a research project co-financed by Piedmont Region and firms and universities of the Piedmont Aerospace District in the ambit of the P.O.R-F.E.S.R. 2007-2013 program.

  14. Applying Lean Six Sigma methodology to reduce cesarean section rate.

    Science.gov (United States)

    Chai, Ze-Ying; Hu, Hua-Min; Ren, Xiu-Ling; Zeng, Bao-Jin; Zheng, Ling-Zhi; Qi, Feng

    2017-06-01

    This study aims to reduce cesarean section rate and increase rate of vaginal delivery. By using Lean Six Sigma (LSS) methodology, the cesarean section rate was investigated and analyzed through a 5-phase roadmap consisting of Define, Measure, Analyze, Improve, and Control. The principal causes of cesarean section were identified, improvement measures were implemented, and the rate of cesarean section before and after intervention was compared. After patients with a valid medical reason for cesarean were excluded, the main causes of cesarean section were maternal request, labor pain, parturient women assessment, and labor observation. A series of measures was implemented, including an improved parturient women assessment system, strengthened pregnancy nutrition guidance, implementation of painless labor techniques, enhanced midwifery team building, and promotion of childbirth-assist skills. Ten months after introduction of the improvement measures, the cesarean section rate decreased from 41.83% to 32.00%, and the Six Sigma score (ie, Z value) increased from 1.706 to 1.967 (P < .001). LSS is an effective way to reduce the rate of cesarean section. © 2016 John Wiley & Sons, Ltd.

  15. Optimization of galacto-oligosacharides synthesis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Carević Milica B.

    2017-01-01

    Full Text Available Galacto-oligosaccharides (GOS are important lactose-derived compounds, considered to be a prebiotics, based on abundant scientific evidence about their unique physical properties and physiological effects. This consequently allows their widespread application as supplement in food and feed industry. They are preferably produced by the enzymatic transgalactosylation action of β-galactosidase. However, this enzyme simultaneously performs its primary biological function of lactose hydrolysis, and it is of crucial importance to gain an insight into the influence of different reaction conditions, and provide favorization of transgalactosylation, particularly GOS synthesis reaction. In this study, the response surface methodology (RSM was applied in terms of individual experimental factors effect estimation, their mutual interaction identification and finally, the determination of optimum conditions for highest GOS yield achievement. Having said that, it can be observed that the temperature and pH have no significant impact on the GOS yield, while on the other hand, the lactose concentration of 400 g/l, enzyme concentration of 13.5 g/l and reaction time of 13 min represent the optimum conditions for achieving the highest GOS yields.

  16. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  17. The utilization of the response surface methodology for the ...

    African Journals Online (AJOL)

    SERVER

    2007-12-03

    Dec 3, 2007 ... Drojdiile ca aliment-medicament. In: Anghel I (ed). Biologia si Tehnologia Drojdiilor, vol 2, Editura Tehnica, Bucharest. Shieh CJ, Liao HF, Lee CC (2003). Optimization of lipase-catalyzed biodiesel by response surface methodology, Bioresour. Technol. 88: 103-106. Smigelschi O, Woinarovschy A (1978).

  18. Design methodology to enhance high impedance surfaces performances

    Directory of Open Access Journals (Sweden)

    M. Grelier

    2014-04-01

    Full Text Available A methodology is introduced for designing wideband, compact and ultra-thin high impedance surfaces (HIS. A parametric study is carried out to examine the effect of the periodicity on the electromagnetic properties of an HIS. This approach allows designers to reach the best trade-off for HIS performances.

  19. Response Surface Methodology's Steepest Ascent and Step Size Revisited

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; den Hertog, D.; Angun, M.E.

    2002-01-01

    Response Surface Methodology (RSM) searches for the input combination maximizing the output of a real system or its simulation.RSM is a heuristic that locally fits first-order polynomials, and estimates the corresponding steepest ascent (SA) paths.However, SA is scale-dependent; and its step size is

  20. A methodology for the geometric design of heat recovery steam generators applying genetic algorithms

    International Nuclear Information System (INIS)

    Durán, M. Dolores; Valdés, Manuel; Rovira, Antonio; Rincón, E.

    2013-01-01

    This paper shows how the geometric design of heat recovery steam generators (HRSG) can be achieved. The method calculates the product of the overall heat transfer coefficient (U) by the area of the heat exchange surface (A) as a function of certain thermodynamic design parameters of the HRSG. A genetic algorithm is then applied to determine the best set of geometric parameters which comply with the desired UA product and, at the same time, result in a small heat exchange area and low pressure losses in the HRSG. In order to test this method, the design was applied to the HRSG of an existing plant and the results obtained were compared with the real exchange area of the steam generator. The findings show that the methodology is sound and offers reliable results even for complex HRSG designs. -- Highlights: ► The paper shows a methodology for the geometric design of heat recovery steam generators. ► Calculates product of the overall heat transfer coefficient by heat exchange area as a function of certain HRSG thermodynamic design parameters. ► It is a complement for the thermoeconomic optimization method. ► Genetic algorithms are used for solving the optimization problem

  1. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...... to chemists, chemical engineers, biologists, material and food scientists and many more....

  2. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  3. Applied surface analysis of metal materials

    International Nuclear Information System (INIS)

    Weiss, Z.

    1987-01-01

    The applications of surface analytical techniques in the solution of technological problems in metalurgy and engineering are reviewed. Some important application areas such as corrosion, grain boundary segregation and metallurgical coatings are presented together with specific requirements for the type of information which is necessary for solving particular problems. The techniques discussed include: electron spectroscopies (Auger Electron Spectroscopy, Electron Spectroscopy for Chemical Analysis), ion spectroscopies (Secondary Ion Mass Spectrometry, Ion Scattering Spectroscopy), Rutherford Back-Scattering, nuclear reaction analysis, optical methods (Glow Discharge Optical Emission Spectrometry), ellipsometry, infrared and Raman spectroscopy, the Moessbauer spectroscopy and methods of consumptive depth profile analysis. Principles and analytical features of these methods are demonstrated and examples of their applications to metallurgy are taken from recent literature. (author). 4 figs., 2 tabs., 112 refs

  4. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    Science.gov (United States)

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  5. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    Energy Technology Data Exchange (ETDEWEB)

    Tarifeño-Saldivia, Ariel, E-mail: atarifeno@cchen.cl, E-mail: atarisal@gmail.com; Pavez, Cristian; Soto, Leopoldo [Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Santiago (Chile); Departamento de Ciencias Fisicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 220, Santiago (Chile); Mayer, Roberto E. [Instituto Balseiro and Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and Universidad Nacional de Cuyo, San Carlos de Bariloche R8402AGP (Argentina)

    2014-01-15

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  6. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E.

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods

  7. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  8. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  9. Application of Response Surface Methodology in Optimizing a Three Echelon Inventory System

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Razavi Hajiagha

    2014-01-01

    Full Text Available Inventory control is an important subject in supply chain management. In this paper, a three echelon production, distribution, inventory system composed of one producer, two wholesalers and a set of retailers has been considered. Costumers' demands follow a compound Poisson process and the inventory policy is a kind of continuous review (R, Q. In this paper, regarding the standard cost structure in an inventory model, the cost function of system has been approximated using Response Surface Methodology as a combination of designed experiments, simulation, regression analysis and optimization. The proposed methodology in this paper can be applied as a novel method in optimization of inventory policy of supply chains. Also, the joint optimization of inventory parameters, including reorder point and batch order size, is another advantage of the proposed methodology.

  10. Event based uncertainty assessment in urban drainage modelling, applying the GLUE methodology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Beven, K.J.; Jensen, Jacob Birk

    2008-01-01

    of combined sewer overflow. The GLUE methodology is used to test different conceptual setups in order to determine if one model setup gives a better goodness of fit conditional on the observations than the other. Moreover, different methodological investigations of GLUE are conducted in order to test......In the present paper an uncertainty analysis on an application of the commercial urban drainage model MOUSE is conducted. Applying the Generalized Likelihood Uncertainty Estimation (GLUE) methodology the model is conditioned on observation time series from two flow gauges as well as the occurrence...... if the uncertainty analysis is unambiguous. It is shown that the GLUE methodology is very applicable in uncertainty analysis of this application of an urban drainage model, although it was shown to be quite difficult of get good fits of the whole time series....

  11. Maximization of fructose esters synthesis by response surface methodology.

    Science.gov (United States)

    Neta, Nair Sampaio; Peres, António M; Teixeira, José A; Rodrigues, Ligia R

    2011-07-01

    Enzymatic synthesis of fructose fatty acid ester was performed in organic solvent media, using a purified lipase from Candida antartica B immobilized in acrylic resin. Response surface methodology with a central composite rotatable design based on five levels was implemented to optimize three experimental operating conditions (temperature, agitation and reaction time). A statistical significant cubic model was established. Temperature and reaction time were found to be the most significant parameters. The optimum operational conditions for maximizing the synthesis of fructose esters were 57.1°C, 100 rpm and 37.8 h. The model was validated in the identified optimal conditions to check its adequacy and accuracy, and an experimental esterification percentage of 88.4% (±0.3%) was obtained. These results showed that an improvement of the enzymatic synthesis of fructose esters was obtained under the optimized conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Residual analysis applied to S-N data of a surface rolled cast iron

    Directory of Open Access Journals (Sweden)

    Omar Maluf

    2005-09-01

    Full Text Available Surface rolling is a process extensively employed in the manufacture of ductile cast iron crankshafts, specifically in regions containing stress concentrators with the main aim to enhance fatigue strength. Such process hardens and introduces compressive residual stresses to the surface as a result of controlled strains, reducing cyclic tensile stresses near the surface of the part. The main purpose of this work was to apply the residual analysis to check the suitability of the S-N approach to describe the fatigue properties of a surface rolled cast iron. The analysis procedure proved to be very efficient and easy to implement and it can be applied in the verification of any other statistical model used to describe fatigue behavior. Results show that the conventional S-N methodology is able to model the high cycle fatigue behavior of surface rolled notch testpieces of a pearlitic ductile cast iron submitted to rotating bending fatigue tests.

  13. Development of Geometry Optimization Methodology with In-house CFD code, and Challenge in Applying to Fuel Assembly

    International Nuclear Information System (INIS)

    Jeong, J. H.; Lee, K. L.

    2016-01-01

    The wire spacer has important roles to avoid collisions between adjacent rods, to mitigate a vortex induced vibration, and to enhance convective heat transfer by wire spacer induced secondary flow. Many experimental and numerical works has been conducted to understand the thermal-hydraulics of the wire-wrapped fuel bundles. There has been enormous growth in computing capability. Recently, a huge increase of computer power allows to three-dimensional simulation of thermal-hydraulics of wire-wrapped fuel bundles. In this study, the geometry optimization methodology with RANS based in-house CFD (Computational Fluid Dynamics) code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI (General Grid Interface) function is developed for in-house CFD code. Furthermore, three-dimensional flow fields calculated with in-house CFD code are compared with those calculated with general purpose commercial CFD solver, CFX. The geometry optimization methodology with RANS based in-house CFD code has been successfully developed in air condition. In order to apply the developed methodology to fuel assembly, GGI function is developed for in-house CFD code as same as CFX. Even though both analyses are conducted with same computational meshes, numerical error due to GGI function locally occurred in only CFX solver around rod surface and boundary region between inner fluid region and outer fluid region.

  14. Gas migration from closed coal mines to the surface. Risk assessment methodology and prevention means

    International Nuclear Information System (INIS)

    Pokryszka, Z.; Tauziede, Ch.; Lagny, C.; Guise, Y.; Gobillot, R.; Planchenault, J.M.; Lagarde, R.

    2005-01-01

    French law as regards renunciation to mining concessions calls for the mining operator to first undertake analyses of the risks represented by their underground mining works. The problem of gas migration to the surface is especially significant in the context of coal mines. This is because mine gas can migrate to the earth's surface, then present significant risks: explosion, suffocation or gas poisoning risks. As part of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national mining operator Charbonnages de France, a general methodology for assessing the risk linked to gas in the context of closed coal mines. This article presents the principles of this methodology. An application example based on a true case study is then described. This is completed by a presentation of the preventive and monitoring resources recommended and usually applied in order to manage the risk linked to gaseous emissions. (authors)

  15. Optimization of sustained release aceclofenac microspheres using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Rameshwar K.; Naik, Jitendra B., E-mail: jitunaik@gmail.com

    2015-03-01

    Polymeric microspheres containing aceclofenac were prepared by single emulsion (oil-in-water) solvent evaporation method using response surface methodology (RSM). Microspheres were prepared by changing formulation variables such as the amount of Eudragit® RS100 and the amount of polyvinyl alcohol (PVA) by statistical experimental design in order to enhance the encapsulation efficiency (E.E.) of the microspheres. The resultant microspheres were evaluated for their size, morphology, E.E., and in vitro drug release. The amount of Eudragit® RS100 and the amount of PVA were found to be significant factors respectively for determining the E.E. of the microspheres. A linear mathematical model equation fitted to the data was used to predict the E.E. in the optimal region. Optimized formulation of microspheres was prepared using optimal process variables setting in order to evaluate the optimization capability of the models generated according to IV-optimal design. The microspheres showed high E.E. (74.14 ± 0.015% to 85.34 ± 0.011%) and suitably sustained drug release (minimum; 40% to 60%; maximum) over a period of 12 h. The optimized microspheres formulation showed E.E. of 84.87 ± 0.005 with small error value (1.39). The low magnitudes of error and the significant value of R{sup 2} in the present investigation prove the high prognostic ability of the design. The absence of interactions between drug and polymers was confirmed by Fourier transform infrared (FTIR) spectroscopy. Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) revealed the dispersion of drug within microspheres formulation. The microspheres were found to be discrete, spherical with smooth surface. The results demonstrate that these microspheres could be promising delivery system to sustain the drug release and improve the E.E. thus prolong drug action and achieve the highest healing effect with minimal gastrointestinal side effects. - Highlights: • Aceclofenac microspheres

  16. Covariance methodology applied to uncertainties in I-126 disintegration rate measurements

    International Nuclear Information System (INIS)

    Fonseca, K.A.; Koskinas, M.F.; Dias, M.S.

    1996-01-01

    The covariance methodology applied to uncertainties in 126 I disintegration rate measurements is described. Two different coincidence systems were used due to the complex decay scheme of this radionuclide. The parameters involved in the determination of the disintegration rate in each experimental system present correlated components. In this case, the conventional statistical methods to determine the uncertainties (law of propagation) result in wrong values for the final uncertainty. Therefore, use of the methodology of the covariance matrix is necessary. The data from both systems were combined taking into account all possible correlations between the partial uncertainties. (orig.)

  17. Surface current double-heterogeneous multilayer multicell methodology

    International Nuclear Information System (INIS)

    Stepanek, J.; Segev, M.

    1991-01-01

    A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered. Second, starting from the surface cosine-current formulation, a two-zone three-layer multicell formalism for reduction of heterogeneous flux expressions to equivalent homogeneous flux expression for table method was developed. This formalism allows an infinite, as well as a limited, number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first-and second-heterogeneity cell types is quite general. The 'outer' (right side) as well as 'inner' (left side) Dancoff probabilities can be calculated for any particular layer. An accurate, efficient, and compact interpolation procedure is developed to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices. The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells. (author) 1 fig., 2 tabs., 10 refs

  18. Robust Optimization in Simulation : Taguchi and Response Surface Methodology

    NARCIS (Netherlands)

    Dellino, G.; Kleijnen, J.P.C.; Meloni, C.

    2008-01-01

    Optimization of simulated systems is tackled by many methods, but most methods assume known environments. This article, however, develops a 'robust' methodology for uncertain environments. This methodology uses Taguchi's view of the uncertain world, but replaces his statistical techniques by

  19. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  20. A Data Preparation Methodology in Data Mining Applied to Mortality Population Databases.

    Science.gov (United States)

    Pérez, Joaquín; Iturbide, Emmanuel; Olivares, Víctor; Hidalgo, Miguel; Martínez, Alicia; Almanza, Nelva

    2015-11-01

    It is known that the data preparation phase is the most time consuming in the data mining process, using up to 50% or up to 70% of the total project time. Currently, data mining methodologies are of general purpose and one of their limitations is that they do not provide a guide about what particular task to develop in a specific domain. This paper shows a new data preparation methodology oriented to the epidemiological domain in which we have identified two sets of tasks: General Data Preparation and Specific Data Preparation. For both sets, the Cross-Industry Standard Process for Data Mining (CRISP-DM) is adopted as a guideline. The main contribution of our methodology is fourteen specialized tasks concerning such domain. To validate the proposed methodology, we developed a data mining system and the entire process was applied to real mortality databases. The results were encouraging because it was observed that the use of the methodology reduced some of the time consuming tasks and the data mining system showed findings of unknown and potentially useful patterns for the public health services in Mexico.

  1. From LCAs to simplified models: a generic methodology applied to wind power electricity.

    Science.gov (United States)

    Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle

    2013-02-05

    This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.

  2. Optimization of composite flour biscuits by mixture response surface methodology.

    Science.gov (United States)

    Okpala, Laura C; Okoli, Eric C

    2013-08-01

    Biscuits were produced from blends of pigeon pea, sorghum and cocoyam flours. The study was carried out using mixture response surface methodology as the optimization technique. Using the simplex centroid design, 10 formulations were obtained. Protein and sensory quality of the biscuits were analyzed. The sensory attributes studied were appearance, taste, texture, crispness and general acceptability, while the protein quality indices were biological value and net protein utilization. The results showed that while the addition of pigeon pea improved the protein quality, its addition resulted in reduced sensory ratings for all the sensory attributes with the exception of appearance. Some of the biscuits had sensory ratings, which were not significantly different (p > 0.05) from biscuits made with wheat. Rat feeding experiments indicated that the biological value and net protein utilization values obtained for most of the biscuits were above minimum recommended values. Optimization suggested biscuits containing 75.30% sorghum, 0% pigeon pea and 24.70% cocoyam flours as the best proportion of these components. This sample received good scores for the sensory attributes.

  3. Computational optimization of biodiesel combustion using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ganji Prabhakara Rao

    2017-01-01

    Full Text Available The present work focuses on optimization of biodiesel combustion phenomena through parametric approach using response surface methodology. Physical properties of biodiesel play a vital role for accurate simulations of the fuel spray, atomization, combustion, and emission formation processes. Typically methyl based biodiesel consists of five main types of esters: methyl palmitate, methyl oleate, methyl stearate, methyl linoleate, and methyl linolenate in its composition. Based on the amount of methyl esters present the properties of pongamia bio-diesel and its blends were estimated. CONVERGETM computational fluid dynamics software was used to simulate the fuel spray, turbulence and combustion phenomena. The simulation responses such as indicated specific fuel consumption, NOx, and soot were analyzed using design of experiments. Regression equations were developed for each of these responses. The optimum parameters were found out to be compression ratio – 16.75, start of injection – 21.9° before top dead center, and exhaust gas re-circulation – 10.94%. Results have been compared with baseline case.

  4. Carbohydrate metabolism teaching strategy for the Pharmacy course, applying active teaching methodology

    Directory of Open Access Journals (Sweden)

    Uderlei Donizete Silveira Covizzi

    2012-12-01

    Full Text Available The traditional teaching method has been widely questioned on the development of skills and abilities in training healthcare professionals. In the traditional methodology the main transmitter of knowledge is the teacher while students assume passive spectator role. Some Brazilian institutions broke with this model, structuring the curriculum to student-centered learning. Some medical schools have adopted the Problem Based Learning (PBL, a methodology that presents problem questions, to be encountered by future physicians, for resolution in small tutorial groups. Our work proposes to apply an active teaching-learning methodology addressing carbohydrate metabolism during the discipline of biochemistry for under graduation students from pharmacy course. Thus, the academic content was presented through brief and objective talks. Later, learners were split into tutorial groups for the resolution of issues in context. During the activities, the teacher drove the discussion to the issues elucidation. At the end of the module learners evaluated the teaching methodology by means of an applied questionnaire and the developed content was evaluated by an usual individual test. The questionnaire analysis indicates that students believe they have actively participated in the teaching-learning process, being encouraged to discuss and understand the theme. The answers highlight closer ties between students and tutor. According to the professor, there is a greater student engagement with learning. It is concluded that an innovative methodology, where the primary responsibility for learning is centered in the student himself, besides to increase the interest in learning, facilitates learning by cases discussion in groups. The issues contextualization establishes a narrowing between theory and practice.

  5. Covariance methodology applied to 35S disintegration rate measurements by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Koskinas, M.F.; Nascimento, T.S.; Yamazaki, I.M.; Dias, M.S.

    2014-01-01

    The Nuclear Metrology Laboratory (LMN) at IPEN is carrying out measurements in a LSC (Liquid Scintillation Counting system), applying the CIEMAT/NIST method. In this context 35 S is an important radionuclide for medical applications and it is difficult to be standardized by other primary methods due to low beta ray energy. The CIEMAT/NIST is a standard technique used by most metrology laboratories in order to improve accuracy and speed up beta emitter standardization. The focus of the present work was to apply the covariance methodology for determining the overall uncertainty in the 35 S disintegration rate. All partial uncertainties involved in the measurements were considered, taking into account all possible correlations between each pair of them. - Highlights: ► 35 S disintegration rate measured in Liquid Scintillator system using CIEMAT/NIST method. ► Covariance methodology applied to the overall uncertainty in the 35 S disintegration rate. ► Monte Carlo simulation was applied to determine 35 S activity in the 4πβ(PC)-γ coincidence system

  6. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  7. Applying distance-to-target weighing methodology to evaluate the environmental performance of bio-based energy, fuels, and materials

    International Nuclear Information System (INIS)

    Weiss, Martin; Patel, Martin; Heilmeier, Hermann; Bringezu, Stefan

    2007-01-01

    The enhanced use of biomass for the production of energy, fuels, and materials is one of the key strategies towards sustainable production and consumption. Various life cycle assessment (LCA) studies demonstrate the great potential of bio-based products to reduce both the consumption of non-renewable energy resources and greenhouse gas emissions. However, the production of biomass requires agricultural land and is often associated with adverse environmental effects such as eutrophication of surface and ground water. Decision making in favor of or against bio-based and conventional fossil product alternatives therefore often requires weighing of environmental impacts. In this article, we apply distance-to-target weighing methodology to aggregate LCA results obtained in four different environmental impact categories (i.e., non-renewable energy consumption, global warming potential, eutrophication potential, and acidification potential) to one environmental index. We include 45 bio- and fossil-based product pairs in our analysis, which we conduct for Germany. The resulting environmental indices for all product pairs analyzed range from -19.7 to +0.2 with negative values indicating overall environmental benefits of bio-based products. Except for three options of packaging materials made from wheat and cornstarch, all bio-based products (including energy, fuels, and materials) score better than their fossil counterparts. Comparing the median values for the three options of biomass utilization reveals that bio-energy (-1.2) and bio-materials (-1.0) offer significantly higher environmental benefits than bio-fuels (-0.3). The results of this study reflect, however, subjective value judgments due to the weighing methodology applied. Given the uncertainties and controversies associated not only with distance-to-target methodologies in particular but also with weighing approaches in general, the authors strongly recommend using weighing for decision finding only as a

  8. Development of a methodology for the safety assessment of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Simon, I.; Cancio, D.; Alonso, L.F.; Agueero, A.; Lopez de la Higuera, J.; Gil, E.; Garcia, E.

    2000-01-01

    The Project on the Environmental Radiological Impact in CIEMAT is developing, for the Spanish regulatory body Consejo de Seguridad Nuclear (CSN), a methodology for the Safety Assessment of near surface disposal facilities. This method has been developed incorporating some elements developed through the participation in the IAEA's ISAM Programme (Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities). The first step of the approach is the consideration of the assessment context, including the purpose of the assessment, the end-Points, philosophy, disposal system, source term and temporal scales as well as the hypothesis about the critical group. Once the context has been established, and considering the peculiarities of the system, an specific list of features, events and processes (FEPs) is produced. These will be incorporated into the assessment scenarios. The set of scenarios will be represented in the conceptual and mathematical models. By the use of mathematical codes, calculations are performed to obtain results (i.e. in terms of doses) to be analysed and compared against the criteria. The methodology is being tested by the application to an hypothetical engineered disposal system based on an exercise within the ISAM Programme, and will finally be applied to the Spanish case. (author)

  9. [Methodological novelties applied to the anthropology of food: agent-based models and social networks analysis].

    Science.gov (United States)

    Díaz Córdova, Diego

    2016-01-01

    The aim of this article is to introduce two methodological strategies that have not often been utilized in the anthropology of food: agent-based models and social networks analysis. In order to illustrate these methods in action, two cases based in materials typical of the anthropology of food are presented. For the first strategy, fieldwork carried out in Quebrada de Humahuaca (province of Jujuy, Argentina) regarding meal recall was used, and for the second, elements of the concept of "domestic consumption strategies" applied by Aguirre were employed. The underlying idea is that, given that eating is recognized as a "total social fact" and, therefore, as a complex phenomenon, the methodological approach must also be characterized by complexity. The greater the number of methods utilized (with the appropriate rigor), the better able we will be to understand the dynamics of feeding in the social environment.

  10. Applying a life cycle decision methodology to Fernald waste management alternatives

    International Nuclear Information System (INIS)

    Yuracko, K.L.; Gresalfi, M.; Yerace, P.

    1996-01-01

    During the past five years, a number of U.S. Department of Energy (DOE) funded efforts have demonstrated the technical efficacy of converting various forms of radioactive scrap metal (RSM) into useable products. From the development of large accelerator shielding blocks, to the construction of low-level waste containers, technology has been applied to this fabrication process in a safe and stakeholder supported manner. The potential health and safety risks to both workers and the public have been addressed. The question remains: can products be fabricated from RSM in a cost efficient and market competitive manner? This paper presents a methodology for use within DOE to evaluate the costs and benefits of recycling and reusing some RSM, rather than disposing of this RSM in an approved burial site. This life cycle decision methodology, developed by both the Oak Ridge National Laboratory (ORNL) and DOE Fernald, is the focus of the following analysis

  11. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    International Nuclear Information System (INIS)

    Rastegar, S.O.; Mousavi, S.M.; Shojaosadati, S.A.; Sheibani, S.

    2011-01-01

    Highlights: ► A UASB was successfully used for treatment of petroleum refinery effluent. ► Response surface methodology was applied to design and analysis of experiments. ► System was modeled between efficient factors include HRT, influent COD and V up . ► UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m 3 d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V up ) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V up of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  12. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  13. Optimization of Total Flavonoids Extraction from Coreopsis tinctoria Nutt. by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Liu, X. F.

    2014-11-01

    Full Text Available Response surface methodology (RSM was applied to predict optimum conditions for extraction of flavonoid from Coreopsis tinctoria Nutt. A central composite design (CCD was used to monitor the effect of extraction temperature, extraction time, and water-to-material ratio on yield of total flavonoids. The optimal extraction conditions were obtained as water-to-material ratio of 55 ml g−1, extraction temperature of 80 °C and extraction time of 70 minutes. Under these conditions, the average total flavonoids yield, according to the mass of raw material, was 9.0 ± 0.6 %, which corresponds to the predicted value of 8.9 %. Thus, the extraction method was applied successfully to extract total flavonoids from C. tinctoria.

  14. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  15. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  16. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    Vismari, Lucio Flavio; Batista Camargo Junior, Joao

    2011-01-01

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  17. Thin-film limit formalism applied to surface defect absorption.

    Science.gov (United States)

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  18. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the 239 Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant 239 Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total 239 Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the 239 Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the 239 Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the 239 Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the 239 Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables

  19. A review of methodologies applied in Australian practice to evaluate long-term coastal adaptation options

    Directory of Open Access Journals (Sweden)

    Timothy David Ramm

    2017-01-01

    Full Text Available Rising sea levels have the potential to alter coastal flooding regimes around the world and local governments are beginning to consider how to manage uncertain coastal change. In doing so, there is increasing recognition that such change is deeply uncertain and unable to be reliably described with probabilities or a small number of scenarios. Characteristics of methodologies applied in Australian practice to evaluate long-term coastal adaptation options are reviewed and benchmarked against two state-of-the-art international methods suited for conditions of uncertainty (Robust Decision Making and Dynamic Adaptive Policy Pathways. Seven out of the ten Australian case studies assumed the uncertain parameters, such as sea level rise, could be described deterministically or stochastically when identifying risk and evaluating adaptation options across multi-decadal periods. This basis is not considered sophisticated enough for long-term decision-making, implying that Australian practice needs to increase the use of scenarios to explore a much larger uncertainty space when assessing the performance of adaptation options. Two Australian case studies mapped flexible adaptation pathways to manage uncertainty, and there remains an opportunity to incorporate quantitative methodologies to support the identification of risk thresholds. The contextual framing of risk, including the approach taken to identify risk (top-down or bottom-up and treatment of uncertain parameters, were found to be fundamental characteristics that influenced the methodology selected to evaluate adaptation options. The small sample of case studies available suggests that long-term coastal adaptation in Australian is in its infancy and there is a timely opportunity to guide local government towards robust methodologies for developing long-term coastal adaptation plans.

  20. Adding value in oil and gas by applying decision analysis methodologies: case history

    Energy Technology Data Exchange (ETDEWEB)

    Marot, Nicolas [Petro Andina Resources Inc., Alberta (Canada); Francese, Gaston [Tandem Decision Solutions, Buenos Aires (Argentina)

    2008-07-01

    Petro Andina Resources Ltd. together with Tandem Decision Solutions developed a strategic long range plan applying decision analysis methodology. The objective was to build a robust and fully integrated strategic plan that accomplishes company growth goals to set the strategic directions for the long range. The stochastic methodology and the Integrated Decision Management (IDM{sup TM}) staged approach allowed the company to visualize the associated value and risk of the different strategies while achieving organizational alignment, clarity of action and confidence in the path forward. A decision team involving jointly PAR representatives and Tandem consultants was established to carry out this four month project. Discovery and framing sessions allow the team to disrupt the status quo, discuss near and far reaching ideas and gather the building blocks from which creative strategic alternatives were developed. A comprehensive stochastic valuation model was developed to assess the potential value of each strategy applying simulation tools, sensitivity analysis tools and contingency planning techniques. Final insights and results have been used to populate the final strategic plan presented to the company board providing confidence to the team, assuring that the work embodies the best available ideas, data and expertise, and that the proposed strategy was ready to be elaborated into an optimized course of action. (author)

  1. Proposal of a method for evaluating tsunami risk using response-surface methodology

    Science.gov (United States)

    Fukutani, Y.

    2017-12-01

    Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface

  2. Characterization of gloss properties of differently treated polymer coating surfaces by surface clarity measurement methodology.

    Science.gov (United States)

    Gruber, Dieter P; Buder-Stroisznigg, Michael; Wallner, Gernot; Strauß, Bernhard; Jandel, Lothar; Lang, Reinhold W

    2012-07-10

    With one measurement configuration, existing gloss measurement methodologies are generally restricted to specific gloss levels. A newly developed image-analytical gloss parameter called "clarity" provides the possibility to describe the perceptual result of a broad range of different gloss levels with one setup. In order to analyze and finally monitor the perceived gloss of products, a fast and flexible method also for the automated inspection is highly demanded. The clarity parameter is very fast to calculate and therefore usable for fast in-line surface inspection. Coated metal specimens were deformed by varying degree and polished afterwards in order to study the clarity parameter regarding the quantification of varying surface gloss types and levels. In order to analyze the correlation with the human gloss perception a study was carried out in which experts were asked to assess gloss properties of a series of surface samples under standardized conditions. The study confirmed clarity to exhibit considerably better correlation to the human perception than alternative gloss parameters.

  3. In Vitro Optimization of Enzymes Involved in Precorrin-2 Synthesis Using Response Surface Methodology.

    Science.gov (United States)

    Fang, Huan; Dong, Huina; Cai, Tao; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    In order to maximize the production of biologically-derived chemicals, kinetic analyses are first necessary for predicting the role of enzyme components and coordinating enzymes in the same reaction system. Precorrin-2 is a key precursor of cobalamin and siroheme synthesis. In this study, we sought to optimize the concentrations of several molecules involved in precorrin-2 synthesis in vitro: porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD), uroporphyrinogen III synthase (UROS), and S-adenosyl-l-methionine-dependent urogen III methyltransferase (SUMT). Response surface methodology was applied to develop a kinetic model designed to maximize precorrin-2 productivity. The optimal molar ratios of PBGS, PBGD, UROS, and SUMT were found to be approximately 1:7:7:34, respectively. Maximum precorrin-2 production was achieved at 0.1966 ± 0.0028 μM/min, agreeing with the kinetic model's predicted value of 0.1950 μM/min. The optimal concentrations of the cofactor S-adenosyl-L-methionine (SAM) and substrate 5-aminolevulinic acid (ALA) were also determined to be 200 μM and 5 mM, respectively, in a tandem-enzyme assay. By optimizing the relative concentrations of these enzymes, we were able to minimize the effects of substrate inhibition and feedback inhibition by S-adenosylhomocysteine on SUMT and thereby increase the production of precorrin-2 by approximately five-fold. These results demonstrate the effectiveness of kinetic modeling via response surface methodology for maximizing the production of biologically-derived chemicals.

  4. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  5. Risk Based Inspection Methodology and Software Applied to Atmospheric Storage Tanks

    Science.gov (United States)

    Topalis, P.; Korneliussen, G.; Hermanrud, J.; Steo, Y.

    2012-05-01

    A new risk-based inspection (RBI) methodology and software is presented in this paper. The objective of this work is to allow management of the inspections of atmospheric storage tanks in the most efficient way, while, at the same time, accident risks are minimized. The software has been built on the new risk framework architecture, a generic platform facilitating efficient and integrated development of software applications using risk models. The framework includes a library of risk models and the user interface is automatically produced on the basis of editable schemas. This risk-framework-based RBI tool has been applied in the context of RBI for above-ground atmospheric storage tanks (AST) but it has been designed with the objective of being generic enough to allow extension to the process plants in general. This RBI methodology is an evolution of an approach and mathematical models developed for Det Norske Veritas (DNV) and the American Petroleum Institute (API). The methodology assesses damage mechanism potential, degradation rates, probability of failure (PoF), consequence of failure (CoF) in terms of environmental damage and financial loss, risk and inspection intervals and techniques. The scope includes assessment of the tank floor for soil-side external corrosion and product-side internal corrosion and the tank shell courses for atmospheric corrosion and internal thinning. It also includes preliminary assessment for brittle fracture and cracking. The data are structured according to an asset hierarchy including Plant, Production Unit, Process Unit, Tag, Part and Inspection levels and the data are inherited / defaulted seamlessly from a higher hierarchy level to a lower level. The user interface includes synchronized hierarchy tree browsing, dynamic editor and grid-view editing and active reports with drill-in capability.

  6. Applied methodology for replacement pipe arcs in integral pipelines TE 'Oslomej'

    Directory of Open Access Journals (Sweden)

    Temelkoska Bratica K.

    2016-01-01

    Full Text Available The integral pipelines in thermal power plants present a linear spatial bearing construction with high operating parameters, complex static and dynamic load. The integral pipelines along its entire length are hanging on construction spring hangers from the boiler building, where the boiler is placed, next to the machine hall where the turbine is placed. Therefore, it is important to monitor the condition and to remove any possible defects from the applied methods. This paper describes the methodology of replacement of the pipe arch on one of the integral pipelines-the line for hot superheated steam. In addition, in this paper are given the method methods that led to this methodology for testing and evaluation of the condition of the pipe arch material that had been in exploitation and the new pipe arch that will be embedded. Furthermore the approach, the technology of replacement, anchoring of the steam line, technology of welding etc., as well as the preparation of the final design of constructed condition are also covered in this paper.

  7. Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site

    Directory of Open Access Journals (Sweden)

    João de Lassio

    2016-01-01

    Full Text Available The construction industry is increasingly concerned with improving the social, economic, and environmental indicators of sustainability. More than ever, the growing demand for construction materials reflects increased consumption of raw materials and energy, particularly during the phases of extraction, processing, and transportation of materials. This work aims to help decision-makers and to promote life cycle thinking in the construction industry. For this purpose, the life cycle assessment (LCA methodology was chosen to analyze the environmental impacts of building materials used in the construction of a residence project in São Gonçalo, Rio de Janeiro, Brazil. The LCA methodology, based on ISO 14040 and ISO 14044 guidelines, is applied with available databases and the SimaPro program. As a result, this work shows that there is a substantial waste of nonrenewable energy, increasing global warming and harm to human health in this type of construction. This study also points out that, for this type of Brazilian construction, ceramic materials account for a high percentage of the mass of a total building and are thus responsible for the majority of environmental impacts.

  8. Applying a learning design methodology in the flipped classroom approach – empowering teachers to reflect

    DEFF Research Database (Denmark)

    Triantafyllou, Evangelia; Kofoed, Lise; Purwins, Hendrik

    2016-01-01

    One of the recent developments in teaching that heavily relies on current technology is the “flipped classroom” approach. In a flipped classroom the traditional lecture and homework sessions are inverted. Students are provided with online material in order to gain necessary knowledge before class......, while class time is devoted to clarifications and application of this knowledge. The hypothesis is that there could be deep and creative discussions when teacher and students physically meet. This paper discusses how the learning design methodology can be applied to represent, share and guide educators...... and values of different stakeholders (i.e. institutions, educators, learners, and external agents), which influence the design and success of flipped classrooms. Moreover, it looks at the teaching cycle from a flipped instruction model perspective and adjusts it to cater for the reflection loops educators...

  9. ILUC mitigation case studies Tanzania. Applying the Low Indirect Impact Biofuel (LIIB) Methodology to Tanzanian projects

    Energy Technology Data Exchange (ETDEWEB)

    Van de Staaij, J.; Spoettle, M.; Weddige, U.; Toop, G. [Ecofys, Utrecht (Netherlands)

    2012-10-15

    NL Agency is supporting WWF and the Secretariat of the Roundtable on Sustainable Biofuels (RSB) with the development of a certification module for biofuels with a low risk of indirect land use change (ILUC), the Low Indirect Impact Biofuel (LIIB) methodology (www.LIIBmethodology.org). The LIIB methodology was developed to certify that biomass feedstock for biofuels has been produced with a low risk of indirect impacts. It is designed as an independent module that can be added to biofuel policies and existing certification systems for sustainable biofuel and/or feedstock production, such as the RSB Standard, RSPO or NTA8080. It presents detailed ILUC mitigation approaches for four different solution types field-tested and audited in international pilots. Within the Global Sustainable Biomass programme and the Sustainable Biomass Import programme, coordinated by NL Agency, three projects are working on sustainable jatropha in Tanzania. Ecofys has been commissioned by NL Agency to contribute to the further development of the LIIB methodology by applying it to these three jatropha projects in Tanzania. All three projects located in the North of Tanzania, address sustainability in one way or another, but focus on the direct effects of jatropha cultivation and use. Interestingly, they nevertheless seem to apply different methods that could also minimise negative indirect impacts, including ILUC. Bioenergy feedstock production can have unintended consequences well outside the boundary of production operations. These are indirect impacts, which cannot be directly attributed to a particular operation. The most cited indirect impacts are ILUC and food/feed commodity price increases (an indirect impact on food security). ILUC can occur when existing cropland is used to cover the feedstock demand of additional biofuel production. When this displaces the previous use of the land (e.g. food production) this can lead to expansion of land use to new areas (e.g. deforestation) when

  10. Equity portfolio optimization: A DEA based methodology applied to the Zagreb Stock Exchange

    Directory of Open Access Journals (Sweden)

    Margareta Gardijan

    2015-10-01

    Full Text Available Most strategies for selection portfolios focus on utilizing solely market data and implicitly assume that stock markets communicate all relevant information to all market stakeholders, and that these markets cannot be influenced by investor activities. However convenient, this is a limited approach, especially when applied to small and illiquid markets such as the Croatian market, where such assumptions are hardly realistic. Thus, there is a demand for including other sources of data, such as financial reports. Research poses the question of whether financial ratios as criteria for stock selection are of any use to Croatian investors. Financial and market data from selected publicly companies listed on the Croatian capital market are used. A two-stage portfolio selection strategy is applied, where the first stage involves selecting stocks based on the respective Data Envelopment Analysis (DEA efficiency scores. DEA models are becoming popular in stock portfolio selection given that the methodology includes numerous models that provide a great flexibility in selecting inputs and outputs, which in turn are considered as criteria for portfolio selection. Accordingly, there is much room for improvement of the current proposed strategies for selecting portfolios. In the second stage, two portfolio-weighting strategies are applied using equal proportions and score-weighting. To show whether these strategies create outstanding out–of–sample portfolios in time, time-dependent DEA Window Analysis is applied using a reference time of one year, and portfolio returns are compared with the market portfolio for each period. It is found that the financial data are a significant indicator of the future performance of a stock and a DEA-based portfolio strategy outperforms market return.

  11. PENGGUNAAN RESPONSE SURFACE METHODOLOGY UNTUK OPTIMASI PROSES DEKAFEINASI MENGGUNAKAN KITOSAN DARI KULIT UDANG [The Use of Response Surface Methodology in Decaffeination Process with Chitosan

    Directory of Open Access Journals (Sweden)

    Suhardi 1

    2002-04-01

    Full Text Available The objective of the present study was to determine the optimum condition of decaffeination process with chitosan in a model system using Response Surface Methodology. A 1000ppm caffeine solution was mixed with chitosan in varried concentrations, temperatures and process times. After filtration, caffeine in the filtrate was determined. The lower caffeine in the filtrate the more effective the decaffeination process. Result of the experiment showed that among chitosan concentrations of 50, 60, 70, 80, 90, and 100 mg per 100 ml caffeine solution, the concentration of 70mg was the most effective. Among temperatures applied of 28, 40, 60, 80, 90, and 100oC, the most effective was of 90oC. And among the process times of 15, 30, 60, and 90 minutes, 15 minutes was the most effective. Result of optimatization using RSM showed that the optimum condition of decaffeination process were concentration of chitosan of 69,52mg, temperature of 89,71oC, and process time of 14,88 minutes. Under this condition the process diminished 79,56% of caffeine from the model system.

  12. Biodiesel production from crude cottonseed oil: an optimization process using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaohu; Wang, Xi; Chen, Feng

    2011-07-01

    As the depletion of fossil resources continues, the demand for environmentally friendly sources of energy as biodiesel is increasing. Biodiesel is the resulting fatty acid methyl ester (FAME) from an esterification reaction. The use of cottonseed oil to produce biodiesel has been investigated in recent years, but it is difficult to find the optimal conditions of this process since multiple factors are involved. The aim of this study was to optimize the transesterification of cottonseed oil with methanol to produce biodiesel. A response surface methodology (RSM), an experimental method to seek optimal conditions for a multivariable system and reverse phase HPLC was used to analyze the conversion of triglyceride into biodiesel. RSM was successfully applied and the optimal condition was found with a 97% yield.

  13. Response surface methodology for the optimization of alpha amylase production by serratia marcescens SB08

    International Nuclear Information System (INIS)

    Venil, C.K.; Lakshmanaperumalsamy, P.

    2008-01-01

    In this work, central composite design combining with response surface methodology was successfully employed to optimize medium composition for the production of alpha amylase by Serratia marcescens SB08 in submerged fermentation. The process parameters that influence the enzyme production were identified using Plackett- Burman design. Among the various factors screened, inoculum concentration, pH, NaCl and CaCl/sub 2/ were found to be most significant. The optimum level of pH was 5.0, inoculum concentration 3%, NaCl 0.30 g/l and CaCl/sub 2/ 0.13 g/l. The actual enzyme yield before and after optimization was 56.43 U/ml and 87.23 U/ml, respectively. Thus, it is advisable to the microbial industry sponsors to apply such profitable bioprocess to maintain high yield for mass production of alpha amylase. (author)

  14. Optimization of Nanocomposite Modified Asphalt Mixtures Fatigue Life using Response Surface Methodology

    Science.gov (United States)

    Bala, N.; Napiah, M.; Kamaruddin, I.; Danlami, N.

    2018-04-01

    In this study, modelling and optimization of materials polyethylene, polypropylene and nanosilica for nanocomposite modified asphalt mixtures has been examined to obtain optimum quantities for higher fatique life. Response Surface Methodology (RSM) was applied for the optimization based on Box Behnken design (BBD). Interaction effects of independent variables polymers and nanosilica on fatique life were evaluated. The result indicates that the individual effects of polymers and nanosilica content are both important. However, the content of nanosilica used has more significant effect on fatique life resistance. Also, the mean error obtained from optimization results is less than 5% for all the responses, this indicates that predicted values are in agreement with experimental results. Furthermore, it was concluded that asphalt mixture design with high performance properties, optimization using RSM is a very effective approach.

  15. A methodological framework applied to the choice of the best method in replacement of nuclear systems

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2009-01-01

    The economic equipment replacement problem is a central question in Nuclear Engineering. On the one hand, new equipment are more attractive given their best performance, better reliability, lower maintenance cost etc. New equipment, however, require a higher initial investment. On the other hand, old equipment represent the other way around, with lower performance, lower reliability and specially higher maintenance costs, but in contrast having lower financial and insurance costs. The weighting of all these costs can be made with deterministic and probabilistic methods applied to the study of equipment replacement. Two types of distinct problems will be examined, substitution imposed by the wearing and substitution imposed by the failures. In order to solve the problem of nuclear system substitution imposed by wearing, deterministic methods are discussed. In order to solve the problem of nuclear system substitution imposed by failures, probabilistic methods are discussed. The aim of this paper is to present a methodological framework to the choice of the most useful method applied in the problem of nuclear system substitution.(author)

  16. Optimization of petroleum refinery effluent treatment in a UASB reactor using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rastegar, S.O. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mousavi, S.M., E-mail: mousavi_m@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, S.A. [Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Sheibani, S. [R and T Management Department, National Iranian Oil Refining and Distribution Company, Tehran (Iran, Islamic Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer A UASB was successfully used for treatment of petroleum refinery effluent. Black-Right-Pointing-Pointer Response surface methodology was applied to design and analysis of experiments. Black-Right-Pointing-Pointer System was modeled between efficient factors include HRT, influent COD and V{sub up}. Black-Right-Pointing-Pointer UASB was able to remove about 76.3% influent COD at optimum conditions. - Abstract: An upflow anaerobic sludge blanket (UASB) bioreactor was successfully used for the treatment of petroleum refinery effluent. Before optimization, chemical oxygen demand (COD) removal was 81% at a constant organic loading rate (OLR) of 0.4 kg/m{sup 3} d and a hydraulic retention time (HRT) of 48 h. The rate of biogas production was 559 mL/h at an HRT of 40 h and an influent COD of 1000 mg/L. Response surface methodology (RSM) was applied to predict the behaviors of influent COD, upflow velocity (V{sub up}) and HRT in the bioreactor. RSM showed that the best models for COD removal and biogas production rate were the reduced quadratic and cubic models, respectively. The optimum region, identified based on two critical responses, was an influent COD of 630 mg/L, a V{sub up} of 0.27 m/h, and an HRT of 21.4 h. This resulted in a 76.3% COD removal efficiency and a 0.25 L biogas/L feed d biogas production rate.

  17. Design Methodology And Performance Studies Of A Flexible Electrotextile Surface

    Directory of Open Access Journals (Sweden)

    Kayacan Ozan

    2015-09-01

    Full Text Available ‘The smart textiles’ concept has to develop products based not only on design, fashion and comfort but also in terms of functions. The novel electro-textiles in the market open up new trends in smart and interactive gadgets. ‘Easy to care and durability’ properties are among the most important features of these products. On the other hand, wearable electronic knitwear has been gaining the attention of both researchers and industrial sectors. Combining knitting technology with electronics may become a dominant trend in the future because of the wide application possibilities. This research is concerned primarily with the design methodology of knitted fabrics containing electrically conductive textiles and especially in-use performance studies. The structural characteristics of the fabrics have been evaluated to enhance the performance properties.

  18. Application of response surface methodology optimization for the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... of CQAs in tobacco waste were identified as three isomers containing chlorogenic acid (5-caffecylquinic acid ... Key words: Caffeic acid, caffeoylquinic acids (CQAs), hydrolysis reaction parameter optimization, response surface ..... Rosmarinic acid and caffeic acid produce antidepressive-like effect in.

  19. Methodology for risk assessment and reliability applied for pipeline engineering design and industrial valves operation

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Dierci [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgia. Lab. de Sistemas de Producao e Petroleo e Gas], e-mail: dsilveira@metal.eeimvr.uff.br; Batista, Fabiano [CICERO, Rio das Ostras, RJ (Brazil)

    2009-07-01

    Two kinds of situations may be distinguished for estimating the operating reliability when maneuvering industrial valves and the probability of undesired events in pipelines and industrial plants: situations in which the risk is identified in repetitive cycles of operations and situations in which there is a permanent hazard due to project configurations introduced by decisions during the engineering design definition stage. The estimation of reliability based on the influence of design options requires the choice of a numerical index, which may include a composite of human operating parameters based on biomechanics and ergonomics data. We first consider the design conditions under which the plant or pipeline operator reliability concepts can be applied when operating industrial valves, and then describe in details the ergonomics and biomechanics risks that would lend itself to engineering design database development and human reliability modeling and assessment. This engineering design database development and reliability modeling is based on a group of engineering design and biomechanics parameters likely to lead to over-exertion forces and working postures, which are themselves associated with the functioning of a particular plant or pipeline. This approach to construct based on ergonomics and biomechanics for a more common industrial valve positioning in the plant layout is proposed through the development of a methodology to assess physical efforts and operator reach, combining various elementary operations situations. These procedures can be combined with the genetic algorithm modeling and four elements of the man-machine systems: the individual, the task, the machinery and the environment. The proposed methodology should be viewed not as competing to traditional reliability and risk assessment bur rather as complementary, since it provides parameters related to physical efforts values for valves operation and workspace design and usability. (author)

  20. A Proven Methodology for Developing Secure Software and Applying It to Ground Systems

    Science.gov (United States)

    Bailey, Brandon

    2016-01-01

    Part Two expands upon Part One in an attempt to translate the methodology for ground system personnel. The goal is to build upon the methodology presented in Part One by showing examples and details on how to implement the methodology. Section 1: Ground Systems Overview; Section 2: Secure Software Development; Section 3: Defense in Depth for Ground Systems; Section 4: What Now?

  1. How to Select the most Relevant Roughness Parameters of a Surface: Methodology Research Strategy

    Science.gov (United States)

    Bobrovskij, I. N.

    2018-01-01

    In this paper, the foundations for new methodology creation which provides solving problem of surfaces structure new standards parameters huge amount conflicted with necessary actual floors quantity of surfaces structure parameters which is related to measurement complexity decreasing are considered. At the moment, there is no single assessment of the importance of a parameters. The approval of presented methodology for aerospace cluster components surfaces allows to create necessary foundation, to develop scientific estimation of surfaces texture parameters, to obtain material for investigators of chosen technological procedure. The methods necessary for further work, the creation of a fundamental reserve and development as a scientific direction for assessing the significance of microgeometry parameters are selected.

  2. Applying Lean-Six-Sigma Methodology in radiotherapy: Lessons learned by the breast daily repositioning case.

    Science.gov (United States)

    Mancosu, Pietro; Nicolini, Giorgia; Goretti, Giulia; De Rose, Fiorenza; Franceschini, Davide; Ferrari, Chiara; Reggiori, Giacomo; Tomatis, Stefano; Scorsetti, Marta

    2018-03-06

    Lean Six Sigma Methodology (LSSM) was introduced in industry to provide near-perfect services to large processes, by reducing improbable occurrence. LSSM has been applied to redesign the 2D-2D breast repositioning process (Lean) by the retrospective analysis of the database (Six Sigma). Breast patients with daily 2D-2D matching before RT were considered. The five DMAIC (define, measure, analyze, improve, and control) LSSM steps were applied. The process was retrospectively measured over 30 months (7/2014-12/2016) by querying the RT Record&Verify database. Two Lean instruments (Poka-Yoke and Visual Management) were considered for advancing the process. The new procedure was checked over 6 months (1-6/2017). 14,931 consecutive shifts from 1342 patients were analyzed. Only 0.8% of patients presented median shifts >1 cm. The major observed discrepancy was the monthly percentage of fractions with almost zero shifts (AZS = 13.2% ± 6.1%). Ishikawa fishbone diagram helped in defining the main discrepancy con-causes. Procedure harmonization involving a multidisciplinary team to increase confidence in matching procedure was defined. AZS was reduced to 4.8% ± 0.6%. Furthermore, distribution symmetry improvement (Skewness moved from 1.4 to 1.1) and outlier reduction, verified by Kurtosis diminution, demonstrated a better "normalization" of the procedure after the LSSM application. LSSM was implemented in a RT department, allowing to redesign the breast repositioning matching procedure. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Spatiotemporal mapping of interictal spike propagation: a novel methodology applied to pediatric intracranial EEG recordings.

    Directory of Open Access Journals (Sweden)

    Samuel Tomlinson

    2016-12-01

    Full Text Available Synchronized cortical activity is implicated in both normative cognitive functioning andmany neurological disorders. For epilepsy patients with intractable seizures, irregular patterns ofsynchronization within the epileptogenic zone (EZ is believed to provide the network substratethrough which seizures initiate and propagate. Mapping the EZ prior to epilepsy surgery is critical fordetecting seizure networks in order to achieve post-surgical seizure control. However, automatedtechniques for characterizing epileptic networks have yet to gain traction in the clinical setting.Recent advances in signal processing and spike detection have made it possible to examine thespatiotemporal propagation of interictal spike discharges across the epileptic cortex. In this study, wepresent a novel methodology for detecting, extracting, and visualizing spike propagation anddemonstrate its potential utility as a biomarker for the epileptogenic zone. Eighteen pre-surgicalintracranial EEG recordings were obtained from pediatric patients ultimately experiencing favorable(i.e., seizure-free, n = 9 or unfavorable (i.e., seizure-persistent, n = 9 surgical outcomes. Novelalgorithms were applied to extract multi-channel spike discharges and visualize their spatiotemporalpropagation. Quantitative analysis of spike propagation was performed using trajectory clusteringand spatial autocorrelation techniques. Comparison of interictal propagation patterns revealed anincrease in trajectory organization (i.e., spatial autocorrelation among Sz-Free patients compared toSz-Persist patients. The pathophysiological basis and clinical implications of these findings areconsidered.

  4. MAIA - Method for Architecture of Information Applied: methodological construct of information processing in complex contexts

    Directory of Open Access Journals (Sweden)

    Ismael de Moura Costa

    2017-04-01

    Full Text Available Introduction: Paper to presentation the MAIA Method for Architecture of Information Applied evolution, its structure, results obtained and three practical applications.Objective: Proposal of a methodological constructo for treatment of complex information, distinguishing information spaces and revealing inherent configurations of those spaces. Metodology: The argument is elaborated from theoretical research of analitical hallmark, using distinction as a way to express concepts. Phenomenology is used as a philosophical position, which considers the correlation between Subject↔Object. The research also considers the notion of interpretation as an integrating element for concepts definition. With these postulates, the steps to transform the information spaces are formulated. Results: This article explores not only how the method is structured to process information in its contexts, starting from a succession of evolutive cicles, divided in moments, which, on their turn, evolve to transformation acts. Conclusions: This article explores not only how the method is structured to process information in its contexts, starting from a succession of evolutive cicles, divided in moments, which, on their turn, evolve to transformation acts. Besides that, the article presents not only possible applications as a cientific method, but also as configuration tool in information spaces, as well as generator of ontologies. At last, but not least, presents a brief summary of the analysis made by researchers who have already evaluated the method considering the three aspects mentioned.

  5. Medium optimization for ε-poly-L-lysine production by Streptomyces diastatochromogenes using response surface methodology.

    Science.gov (United States)

    Guo, F; Zheng, H; Cheng, Y; Song, S; Zheng, Z; Jia, S

    2018-02-01

    Poly-ε-L-lysine is a natural homo-polyamide of L-lysine with excellent antimicrobial properties, which can be used as a novel preservative and has a wide range of applications. In this paper, the fermentation medium for ε-PL production by Streptomyces diastatochromogenes 6#-7 was optimized by Response Surface Methodology. The results of Plackett-Burman design showed that glucose, yeast extract and (NH 4 ) 2 SO 4 were the major influencing factors in ε-PL production of S. diastatochromogenes 6#-7. The optimal concentrations of glucose, yeast extract and (NH 4 ) 2 SO 4 were determined to be 60, 7·5 and 7·5 g l -1 according to Box-Behnken experiment and regression analysis, respectively. Under the optimized conditions, the ε-PL yield in shake-flask fermentation was 0·948 ± 0·030 g l -1 , which was in good agreement with the predicted value of 0·970 g l -1 . The yield was improved by 43·1% from that with the initial medium. In 5 l jar-fermenter the ε-PL yield reached 25·5 g l -1 , which was increased by 56·4% from the original medium. In addition, the fermentation time was reduced from 174 to 120 h. Medium optimization is a very practical and valuable tool for fermentation industry to improve product yield and minimize by-products as well as reduce overall manufacturing costs. The response surface methodology is not new, but it is still a very effective method in medium optimization research. This study used ε-polylysine fermentation as an example to demonstrate how the product yield can be significantly increased by medium optimization through surface response methodology. Similar approach can be used in other microbial fermentations such as in pharmaceutical, food, agricultural and energy industries. As an example, ε-polylysine is one of a few newly approved natural food-grade antimicrobials for food and beverages preservations. Yield improvement is economically beneficial to not only ε-polylysine manufacturers but also to their users and

  6. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  7. Determination of Critical Conditions for Puncturing Almonds Using Coupled Response Surface Methodology and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mahmood Mahmoodi-Eshkaftaki

    2013-01-01

    Full Text Available In this study, the effect of seed moisture content, probe diameter and loading velocity (puncture conditions on some mechanical properties of almond kernel and peeled almond kernel is considered to model a relationship between the puncture conditions and rupture energy. Furthermore, distribution of the mechanical properties is determined. The main objective is to determine the critical values of mechanical properties significant for peeling machines. The response surface methodology was used to find the relationship between the input parameters and the output responses, and the fitness function was applied to measure the optimal values using the genetic algorithm. Two-parameter Weibull function was used to describe the distribution of mechanical properties. Based on the Weibull parameter values, i.e. shape parameter (β and scale parameter (η calculated for each property, the mechanical distribution variations were completely described and it was confirmed that the mechanical properties are rule governed, which makes the Weibull function suitable for estimating their distributions. The energy model estimated using response surface methodology shows that the mechanical properties relate exponentially to the moisture, and polynomially to the loading velocity and probe diameter, which enabled successful estimation of the rupture energy (R²=0.94. The genetic algorithm calculated the critical values of seed moisture, probe diameter, and loading velocity to be 18.11 % on dry mass basis, 0.79 mm, and 0.15 mm/min, respectively, and optimum rupture energy of 1.97·10-³ J. These conditions were used for comparison with new samples, where the rupture energy was experimentally measured to be 2.68 and 2.21·10-³ J for kernel and peeled kernel, respectively, which was nearly in agreement with our model results.

  8. Defluoridation of water using activated alumina in presence of natural organic matter via response surface methodology.

    Science.gov (United States)

    Samarghandi, Mohammad Reza; Khiadani, Mehdi; Foroughi, Maryam; Zolghadr Nasab, Hasan

    2016-01-01

    Adsorption by activated alumina is considered to be one of the most practiced methods for defluoridation of freshwater. This study was conducted, therefore, to investigate the effect of natural organic matters (NOMs) on the removal of fluoride by activated alumina using response surface methodology. To the authors' knowledge, this has not been previously investigated. Physico-chemical characterization of the alumina was determined by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence (XRF), and X-ray diffractometer (XRD). Response surface methodology (RSM) was applied to evaluate the effect of single and combined parameters on the independent variables such as the initial concentration of fluoride, NOMs, and pH on the process. The results revealed that while presence of NOM and increase of pH enhance fluoride adsorption on the activated alumina, initial concentration of fluoride has an adverse effect on the efficiency. The experimental data were analyzed and found to be accurately and reliably fitted to a second-order polynomial model. Under optimum removal condition (fluoride concentration 20 mg/L, NOM concentration 20 mg/L, and pH 7) with a desirability value of 0.93 and fluoride removal efficiency of 80.6%, no significant difference was noticed with the previously reported sequence of the co-exiting ion affinity to activated alumina for fluoride removal. Moreover, aluminum residual was found to be below the recommended value by the guideline for drinking water. Also, the increase of fluoride adsorption on the activated alumina, as NOM concentrations increase, could be due to the complexation between fluoride and adsorbed NOM. Graphical abstract ᅟ.

  9. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-09-15

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY{sub H2}, TRE and CR could exhibit up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H{sub 2} yield (GY{sub H2}), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY{sub H2}, CR and TRE were established with Box–Behnken design. GY{sub H2}, CR and TRE reached up to 14.32 mmol·gTOC{sup −1}, 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO{sub 2} and H{sub 2} were the most abundant gaseous products. As a product of nitrogen-containing organics, NH{sub 3} has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient.

  10. Optimization of ultrasound-assisted extraction of polyphenolic compounds from coriander seeds using response surface methodology

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2016-01-01

    Full Text Available Coriandrum sativum L. (coriander seeds (CS were used for preparation of extracts with high content of biologically active compounds. In order to optimize ultrasoundassisted extraction process, three levels and three variables of Box-Behnken experimental design (BBD in combination with response surface methodology (RSM were applied, yielding maximized total phenolics (TP and flavonoids (TF content and antioxidant activity (IC50 and EC50 values. Independent variables were temperature (40-80oC, extraction time (40-80 min and ultrasonic power (96-216 W. Experimental results were fitted to a second-order polynomial model with multiple regression, while the analysis of variance (ANOVA was employed to assess the model fitness and determine optimal conditions for TP (79.60oC, 49.20 min, 96.69 W, TF (79.40oC, 43.60 min, 216.00 W, IC50 (80.00oC, 60.40 min, 216.00 W and EC50 (78.40oC, 68.60 min, 214.80 W. On the basis of the obtained mathematical models, three-dimensional surface plots were generated. The predicted values for TP, TF, IC50 and EC50 were: 382.68 mg GAE/100 g CS, 216 mg CE/100 g CS, 0.03764 mg/mL and 0.1425 mg/mL, respectively. [Projekat Ministarstva nauke Republike Srbije, br. TR31013

  11. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  12. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    Science.gov (United States)

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  13. Response surface methodology for sensitivity and uncertainty analysis: performance and perspectives

    International Nuclear Information System (INIS)

    Olivi, L.; Brunelli, F.; Cacciabue, P.C.; Parisi, P.

    1985-01-01

    Two main aspects have to be taken into account in studying a nuclear accident scenario when using nuclear safety codes as an information source. The first one concerns the behavior of the code response and the set of assumptions to be introduced for its modelling. The second one is connected with the uncertainty features of the code input, often modelled as a probability density function (pdf). The analyst can apply two well-defined approaches depending on whether he wants major emphasis put on either of the aspects. Response Surface Methodology uses polynomial and inverse polynomial models together with the theory of experimental design, expressly developed for the identification procedure. It constitutes a well-established body of techniques able to cover a wide spectrum of requirements, when the first aspect plays the crucial role in the definition of the objectives. Other techniques such as Latin hypercube sampling, stratified sampling or even random sampling can fit better, when the second aspect affects the reliability of the analysis. The ultimate goal for both approaches is the selection of the variable, i.e. the identification of the code input variables most effective on the output and the uncertainty propagation, i.e. the assessment of the pdf to be attributed to the code response. The main aim of this work is to present a sensitivity analysis method, already tested on a real case, sufficiently flexible to be applied in both approaches mentioned

  14. Optimization of ultrasonic assisted extraction of antioxidants from black soybean (Glycine max var) sprouts using response surface methodology.

    Science.gov (United States)

    Lai, Jixiang; Xin, Can; Zhao, Ya; Feng, Bing; He, Congfen; Dong, Yinmao; Fang, Yun; Wei, Shaomin

    2013-01-16

    Response surface methodology (RSM) using a central composite design (CCD) was employed to optimize the conditions for extraction of antioxidants from black soybean (Glycine max var) sprouts. Three influencing factors: liquid-solid ratio, period of ultrasonic assisted extraction and extraction temperature were investigated in the ultrasonic aqueous extraction. Then Response Surface Methodology (RSM) was applied to optimize the extraction process focused on DPPH radical-scavenging capacity of the antioxidants with respect to the above influencing factors. The best combination of each significant factor was determined by RSM design and optimum pretreatment conditions for maximum radical-scavenging capacity were established to be liquid-solid ratio of 29.19:1, extraction time of 32.13 min, and extraction temperature of 30 °C. Under these conditions, 67.60% of DPPH radical-scavenging capacity was observed experimentally, similar to the theoretical prediction of 66.36%.

  15. Applying the AcciMap methodology to investigate the tragic Sewol Ferry accident in South Korea.

    Science.gov (United States)

    Lee, Samuel; Moh, Young Bo; Tabibzadeh, Maryam; Meshkati, Najmedin

    2017-03-01

    This study applies the AcciMap methodology, which was originally proposed by Professor Jens Rasmussen (1997), to the analysis of the tragic Sewol Ferry accident in South Korea on April 16, 2014, which killed 304 mostly young people and is considered as a national disaster in that country. This graphical representation, by incorporating associated socio-technical factors into an integrated framework, provides a big-picture to illustrate the context in which an accident occurred as well as the interactions between different levels of the studied system that resulted in that event. In general, analysis of past accidents within the stated framework can define the patterns of hazards within an industrial sector. Such analysis can lead to the definition of preconditions for safe operations, which is a main focus of proactive risk management systems. In the case of the Sewol Ferry accident, a lot of the blame has been placed on the Sewol's captain and its crewmembers. However, according to this study, which relied on analyzing all available sources published in English and Korean, the disaster is the result of a series of lapses and disregards for safety across different levels of government and regulatory bodies, Chonghaejin Company, and the Sewol's crewmembers. The primary layers of the AcciMap framework, which include the political environment and non-proactive governmental body; inadequate regulations and their lax oversight and enforcement; poor safety culture; inconsideration of human factors issues; and lack of and/or outdated standard operating and emergency procedures were not only limited to the maritime industry in South Korea, and the Sewol Ferry accident, but they could also subject any safety-sensitive industry anywhere in the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Applying GRADE-CERQual to qualitative evidence synthesis findings-paper 3: how to assess methodological limitations.

    Science.gov (United States)

    Munthe-Kaas, Heather; Bohren, Meghan A; Glenton, Claire; Lewin, Simon; Noyes, Jane; Tunçalp, Özge; Booth, Andrew; Garside, Ruth; Colvin, Christopher J; Wainwright, Megan; Rashidian, Arash; Flottorp, Signe; Carlsen, Benedicte

    2018-01-25

    The GRADE-CERQual (Confidence in Evidence from Reviews of Qualitative research) approach has been developed by the GRADE (Grading of Recommendations Assessment, Development and Evaluation) Working Group. The approach has been developed to support the use of findings from qualitative evidence syntheses in decision-making, including guideline development and policy formulation. CERQual includes four components for assessing how much confidence to place in findings from reviews of qualitative research (also referred to as qualitative evidence syntheses): (1) methodological limitations, (2) coherence, (3) adequacy of data and (4) relevance. This paper is part of a series providing guidance on how to apply CERQual and focuses on CERQual's methodological limitations component. We developed the methodological limitations component by searching the literature for definitions, gathering feedback from relevant research communities and developing consensus through project group meetings. We tested the CERQual methodological limitations component within several qualitative evidence syntheses before agreeing on the current definition and principles for application. When applying CERQual, we define methodological limitations as the extent to which there are concerns about the design or conduct of the primary studies that contributed evidence to an individual review finding. In this paper, we describe the methodological limitations component and its rationale and offer guidance on how to assess methodological limitations of a review finding as part of the CERQual approach. This guidance outlines the information required to assess methodological limitations component, the steps that need to be taken to assess methodological limitations of data contributing to a review finding and examples of methodological limitation assessments. This paper provides guidance for review authors and others on undertaking an assessment of methodological limitations in the context of the CERQual

  17. Calibration methodology for proportional counters applied to yield measurements of a neutron burst

    International Nuclear Information System (INIS)

    Tarifeño-Saldivia, Ariel; Pavez, Cristian; Soto, Leopoldo; Mayer, Roberto E

    2015-01-01

    This work introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from detection of the burst of neutrons. An improvement of more than one order of magnitude in the accuracy of a paraffin wax moderated 3 He-filled tube is obtained by using this methodology with respect to previous calibration methods. (paper)

  18. Design methodology for nano-engineered surfaces to control adhesion: Application to the anti-adhesion of particles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taekyung [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Cheongwan [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); Jung, Myungki; Lee, Jinhyung; Park, Changsu [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of); Kang, Shinill, E-mail: snlkang@yonsei.ac.kr [National Center for Optically-Assisted Ultra-High Precision Mechanical Systems, Yonsei University, Seoul 03722 (Korea, Republic of); School of Mechanical Engineering, Yonsei University, Seoul 03722 (Korea, Republic of)

    2016-12-15

    Highlights: • A design method using the Derjaguin approximation with FEA for low-adhesion surface. • Fabrication of nanostructures with small adhesion forces by presented design method. • Characterization of adhesion force via AFM FD-curve with modified atypical tips. • Verification of low-adhesion of designed surfaces using centrifugal detachment tests. • Investigation of interdependence of hydrophobicity and anti-adhesion force. - Abstract: With increasing demand for means of controlling surface adhesion in various applications, including the semiconductor industry, optics, micro/nanoelectromechanical systems, and the medical industry, nano-engineered surfaces have attracted much attention. This study suggests a design methodology for nanostructures using the Derjaguin approximation in conjunction with finite element analysis for the control of adhesion forces. The suggested design methodology was applied for designing a nano-engineered surface with low-adhesion properties. To verify this, rectangular and sinusoidal nanostructures were fabricated and analyzed using force-distance curve measurements using atomic force microscopy and centrifugal detachment testing. For force-distance curve measurements, modified cantilevers with tips formed with atypical particles were used. Subsequently, centrifugal detachment tests were also conducted. The surface wettability of rectangular and sinusoidal nanostructures was measured and compared with the measured adhesion force and the number of particles remaining after centrifugal detachment tests.

  19. Methodology for evaluation of alternative technologies applied to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Selvaduray, G.S.; Goldstein, M.K.; Anderson, R.N.

    1977-07-01

    An analytic methodology has been developed to compare the performance of various nuclear fuel reprocessing techniques for advanced fuel cycle applications including low proliferation risk systems. The need to identify and to compare those processes, which have the versatility to handle the variety of fuel types expected to be in use in the next century, is becoming increasingly imperative. This methodology allows processes in any stage of development to be compared and to assess the effect of changing external conditions on the process

  20. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  1. Modeling the microstructure of surface by applying BRDF function

    Science.gov (United States)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  2. ECU@Risk, a methodology for risk management applied to MSMEs

    Directory of Open Access Journals (Sweden)

    Esteban Crespo Martínez

    2017-02-01

    Full Text Available Information is the most valuable element for any organization or person in this new century, which, for many companies, is a competitive advantage asset (Vásquez & Gabalán, 2015. However, despite the lack of knowledge about how to protect it properly or the complexity of international standards that indicate procedures to achieve an adequate level of protection, many organizations, especially the MSMEs sector, fails to achieve this goal.Therefore, this study proposes a methodology for information security risk management, which is applicable to the business and organizational environment of the Ecuadorian MSME sector. For this purpose, we analyze several methodologies as Magerit, CRAMM (CCTA Risk Analysis and Management Method, OCTAVE-S, Microsoft Risk Guide, COBIT 5 COSO III. These methodologies are internationally used in risk management of information; in the light of the frameworks of the industry: ISO 27001, 27002, 27005 and 31000.

  3. Least squares methodology applied to LWR-PV damage dosimetry, experience and expectations

    International Nuclear Information System (INIS)

    Wagschal, J.J.; Broadhead, B.L.; Maerker, R.E.

    1979-01-01

    The development of an advanced methodology for Light Water Reactors (LWR) Pressure Vessel (PV) damage dosimetry applications is the subject of an ongoing EPRI-sponsored research project at ORNL. This methodology includes a generalized least squares approach to a combination of data. The data include measured foil activations, evaluated cross sections and calculated fluxes. The uncertainties associated with the data as well as with the calculational methods are an essential component of this methodology. Activation measurements in two NBS benchmark neutron fields ( 252 Cf ISNF) and in a prototypic reactor field (Oak Ridge Pool Critical Assembly - PCA) are being analyzed using a generalized least squares method. The sensitivity of the results to the representation of the uncertainties (covariances) was carefully checked. Cross element covariances were found to be of utmost importance

  4. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    International Nuclear Information System (INIS)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B.

    2017-01-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, 3 H, 14 C, 55 Fe, 59 Ni, 63 Ni, 90 Sr, 93 Zr, 94 Nb, 99 Tc, 129 I, 235 U, 238 U, 238 Pu, 239 + 240 Pu, 241 Pu, 242 Pu, 241 Am, 242 Cm e 243 + 244 Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  5. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    Science.gov (United States)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  6. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius.

    Science.gov (United States)

    Sharma, Praveen; Singh, Lakhvinder; Dilbaghi, Neeraj

    2009-01-30

    The aim of our research was to study, effect of temperature, pH and initial dye concentration on decolorization of diazo dye Acid Red 151 (AR 151) from simulated dye solution using a fungal isolate Aspergillus fumigatus fresenius have been investigated. The central composite design matrix and response surface methodology (RSM) have been applied to design the experiments to evaluate the interactive effects of three most important operating variables: temperature (25-35 degrees C), pH (4.0-7.0), and initial dye concentration (100-200 mg/L) on the biodegradation of AR 151. The total 20 experiments were conducted in the present study towards the construction of a quadratic model. Very high regression coefficient between the variables and the response (R(2)=0.9934) indicated excellent evaluation of experimental data by second-order polynomial regression model. The RSM indicated that initial dye concentration of 150 mg/L, pH 5.5 and a temperature of 30 degrees C were optimal for maximum % decolorization of AR 151 in simulated dye solution, and 84.8% decolorization of AR 151 was observed at optimum growth conditions.

  7. Optimisation of medium composition for probiotic biomass production using response surface methodology.

    Science.gov (United States)

    Anvari, Masumeh; Khayati, Gholam; Rostami, Shora

    2014-02-01

    This study was aimed to optimise lactose, inulin and yeast extract concentration and also culture pH for maximising the growth of a probiotic bacterium, Bifidobacterium animalis subsp. lactis in apple juice and to assess the effects of these factors by using response surface methodology. A second-order central composite design was applied to evaluate the effects of these independent variables on growth of the microorganism. A polynomial regression model with cubic and quadratic terms was used for analysis of the experimental data. It was found that the effects involving inulin, yeast extract and pH on growth of the bacterium were significant, and the strongest effect was given by the yeast extract concentration. Estimated optimum conditions of the factors on the bacterial growth are as follows: lactose concentration=9·5 g/l; inulin concentration=38·5 mg/l; yeast extract concentration=9·6 g/l and initial pH=6·2.

  8. Statistical optimization for alkali pretreatment conditions of narrow-leaf cattail by response surface methodology

    Directory of Open Access Journals (Sweden)

    Arrisa Ruangmee

    2013-08-01

    Full Text Available Response surface methodology with central composite design was applied to optimize alkali pretreatment of narrow-leafcattail (Typha angustifolia. Joint effects of three independent variables; NaOH concentration (1-5%, temperature (60-100 ºC,and reaction time (30-150 min, were investigated to evaluate the increase in and the improvement of cellulosic componentscontained in the raw material after pretreatment. The combined optimum condition based on the cellulosic content obtainedfrom this study is: a concentration of 5% NaOH, a reaction time of 120 min, and a temperature of 100 ºC. This result has beenanalyzed employing ANOVA with a second order polynomial equation. The model was found to be significant and was able topredict accurately the response of strength at less than 5% error. Under this combined optimal condition, the desirable cellulosic content in the sample increased from 38.5 to 68.3%, while the unfavorable hemicellulosic content decreased from 37.6 to7.3%.

  9. Optimization of a novel improver gel formulation for Barbari flat bread using response surface methodology.

    Science.gov (United States)

    Pourfarzad, Amir; Haddad Khodaparast, Mohammad Hossein; Karimi, Mehdi; Mortazavi, Seyed Ali

    2014-10-01

    Nowadays, the use of bread improvers has become an essential part of improving the production methods and quality of bakery products. In the present study, the Response Surface Methodology (RSM) was used to determine the optimum improver gel formulation which gave the best quality, shelf life, sensory and image properties for Barbari flat bread. Sodium stearoyl-2-lactylate (SSL), diacetyl tartaric acid esters of monoglyceride (DATEM) and propylene glycol (PG) were constituents of the gel and considered in this study. A second-order polynomial model was fitted to each response and the regression coefficients were determined using least square method. The optimum gel formulation was found to be 0.49 % of SSL, 0.36 % of DATEM and 0.5 % of PG when desirability function method was applied. There was a good agreement between the experimental data and their predicted counterparts. Results showed that the RSM, image processing and texture analysis are useful tools to investigate, approximate and predict a large number of bread properties.

  10. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    Science.gov (United States)

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

  11. Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent

    Directory of Open Access Journals (Sweden)

    Nichaonn Chumuang

    2017-01-01

    Full Text Available The present study was performed to optimize a heterogeneous calcium methoxide (Ca(OCH32 catalyzed transesterification process assisted with tetrahydrofuran (THF as a cosolvent for biodiesel production from waste cooking oil. Response surface methodology (RSM with a 5-level-4-factor central composite design was applied to investigate the effect of experimental factors on the percentage of fatty acid methyl ester (FAME conversion. A quadratic model with an analysis of variance obtained from the RSM is suggested for the prediction of FAME conversion and reveals that 99.43% of the observed variation is explained by the model. The optimum conditions obtained from the RSM were 2.83 wt% of catalyst concentration, 11.6 : 1 methanol-to-oil molar ratio, 100.14 min of reaction time, and 8.65% v/v of THF in methanol concentration. Under these conditions, the properties of the produced biodiesel satisfied the standard requirement. THF as cosolvent successfully decreased the catalyst concentration, methanol-to-oil molar ratio, and reaction time when compared with biodiesel production without cosolvent. The results are encouraging for the application of Ca(OCH32 assisted with THF as a cosolvent for environmentally friendly and sustainable biodiesel production.

  12. Continuous electrocoagulation of cheese whey wastewater: an application of Response Surface Methodology.

    Science.gov (United States)

    Tezcan Un, Umran; Kandemir, Ayse; Erginel, Nihal; Ocal, S Eren

    2014-12-15

    In this study, treatment of cheese whey wastewater was performed using a uniquely-designed continuous electrocoagulation reactor, not previously encountered in the literature. An iron horizontal rotating screw type anode was used in the continuous mode. An empirical model, in terms of effective operational factors, such as current density (40, 50, 60 mA/cm(2)), pH (3, 5, 7) and retention time (20, 40, 60 min), was developed through Response Surface Methodology. An optimal region characterized by low values of Chemical Oxygen Demand (COD) was determined. As a result of experiments, a linear effect in the removal efficiency of COD was obtained for current density and retention time, while the initial pH of the wastewater was found to have a quadratic effect in the removal efficiency of COD. The best fit nonlinear mathematical model, with a coefficient of determination value (R(2)) of 85%, was defined. An initial COD concentration of 15.500 mg/L was reduced to 2112 mg/L with a removal efficiency of 86.4%. In conclusion, it can be said that electrocoagulation was successfully applied for the treatment of cheese whey wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology.

    Science.gov (United States)

    Tabaraki, Reza; Nateghi, Ashraf

    2011-11-01

    Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Optimization of lipase-catalyzed enantioselective production of 1-phenyl 1-propanol using response surface methodology.

    Science.gov (United States)

    Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku

    2010-01-01

    Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.

  15. An experimental strategy validated to design cost-effective culture media based on response surface methodology.

    Science.gov (United States)

    Navarrete-Bolaños, J L; Téllez-Martínez, M G; Miranda-López, R; Jiménez-Islas, H

    2017-07-03

    For any fermentation process, the production cost depends on several factors, such as the genetics of the microorganism, the process condition, and the culture medium composition. In this work, a guideline for the design of cost-efficient culture media using a sequential approach based on response surface methodology is described. The procedure was applied to analyze and optimize a culture medium of registered trademark and a base culture medium obtained as a result of the screening analysis from different culture media used to grow the same strain according to the literature. During the experiments, the procedure quantitatively identified an appropriate array of micronutrients to obtain a significant yield and find a minimum number of culture medium ingredients without limiting the process efficiency. The resultant culture medium showed an efficiency that compares favorably with the registered trademark medium at a 95% lower cost as well as reduced the number of ingredients in the base culture medium by 60% without limiting the process efficiency. These results demonstrated that, aside from satisfying the qualitative requirements, an optimum quantity of each constituent is needed to obtain a cost-effective culture medium. Study process variables for optimized culture medium and scaling-up production for the optimal values are desirable.

  16. Extraction of triterpenoids and phenolic compounds from Ganoderma lucidum: optimization study using the response surface methodology.

    Science.gov (United States)

    Oludemi, Taofiq; Barros, Lillian; Prieto, M A; Heleno, Sandrina A; Barreiro, Maria F; Ferreira, Isabel C F R

    2018-01-24

    The extraction of triterpenoids and phenolic compounds from Ganoderma lucidum was optimized by using the response surface methodology (RSM), using heat and ultrasound assisted extraction techniques (HAE and UAE). The obtained results were compared with that of the standard Soxhlet procedure. RSM was applied using a circumscribed central composite design with three variables (time, ethanol content, and temperature or ultrasonic power) and five levels. The conditions that maximize the responses (extraction yield, triterpenoids and total phenolics) were: 78.9 min, 90.0 °C and 62.5% ethanol and 40 min, 100.0 W and 89.5% ethanol for HAE and UAE, respectively. The latter was the most effective, resulting in an extraction yield of 4.9 ± 0.6% comprising a content of 435.6 ± 21.1 mg g -1 of triterpenes and 106.6 ± 16.2 mg g -1 of total phenolics. The optimized extracts were fully characterized in terms of individual phenolic compounds and triterpenoids by HPLC-DAD-ESI/MS. The recovery of the above-mentioned bioactive compounds was markedly enhanced using the UAE technique.

  17. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology.

    Science.gov (United States)

    Oladejo, Ayobami Olayemi; Ma, Haile

    2016-08-01

    Sweet potato is a highly nutritious tuber crop that is rich in β-carotene. Osmotic dehydration is a pretreatment method for drying of fruit and vegetables. Recently, ultrasound technology has been applied in food processing because of its numerous advantages which include time saving, little damage to the quality of the food. Thus, there is need to investigate and optimise the process parameters [frequency (20-50 kHz), time (10-30 min) and sucrose concentration (20-60% w/v)] for ultrasound-assisted osmotic dehydration of sweet potato using response surface methodology. The optimised values obtained were frequency of 33.93 kHz, time of 30 min and sucrose concentration of 35.69% (w/v) to give predicted values of 21.62, 4.40 and 17.23% for water loss, solid gain and weight reduction, respectively. The water loss and weight reduction increased when the ultrasound frequency increased from 20 to 35 kHz and then decreased as the frequency increased from 35 to 50 kHz. The results from this work show that low ultrasound frequency favours the osmotic dehydration of sweet potato and also reduces the use of raw material (sucrose) needed for the osmotic dehydration of sweet potato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Optimization of operating parameters in polysilicon chemical vapor deposition reactor with response surface methodology

    Science.gov (United States)

    An, Li-sha; Liu, Chun-jiao; Liu, Ying-wen

    2018-05-01

    In the polysilicon chemical vapor deposition reactor, the operating parameters are complex to affect the polysilicon's output. Therefore, it is very important to address the coupling problem of multiple parameters and solve the optimization in a computationally efficient manner. Here, we adopted Response Surface Methodology (RSM) to analyze the complex coupling effects of different operating parameters on silicon deposition rate (R) and further achieve effective optimization of the silicon CVD system. Based on finite numerical experiments, an accurate RSM regression model is obtained and applied to predict the R with different operating parameters, including temperature (T), pressure (P), inlet velocity (V), and inlet mole fraction of H2 (M). The analysis of variance is conducted to describe the rationality of regression model and examine the statistical significance of each factor. Consequently, the optimum combination of operating parameters for the silicon CVD reactor is: T = 1400 K, P = 3.82 atm, V = 3.41 m/s, M = 0.91. The validation tests and optimum solution show that the results are in good agreement with those from CFD model and the deviations of the predicted values are less than 4.19%. This work provides a theoretical guidance to operate the polysilicon CVD process.

  19. Optimization of biodiesel production from castor oil using response surface methodology.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2009-05-01

    The short supply of edible vegetable oils is the limiting factor in the progression of biodiesel technology; thus, in this study, we applied response surface methodology in order to optimize the reaction factors for biodiesel synthesis from inedible castor oil. Specifically, we evaluated the effects of multiple parameters and their reciprocal interactions using a five-level three-factor design. In a total of 20 individual experiments, we optimized the reaction temperature, oil-to-methanol molar ratio, and quantity of catalyst. Our model equation predicted that the following conditions would generate the maximum quantity of castor biodiesel (92 wt.%): a 40-min reaction at 35.5 degrees C, with an oil-to-methanol molar ratio of 1:8.24, and a catalyst concentration of 1.45% of KOH by weight of castor oil. Subsequent empirical analyses of the biodiesel generated under the predicted conditions showed that the model equation accurately predicted castor biodiesel yields within the tested ranges. The biodiesel produced from castor oil satisfied the relevant quality standards without regard to viscosity and cold filter plugging point.

  20. Removal of fluoride from aqueous solution by adsorption on hydroxyapatite (HAp using response surface methodology

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2015-11-01

    Full Text Available A study on the adsorption of fluoride onto hydroxyapatite was conducted and the process parameters were optimized using Response Surface Methodology (RSM. Hydroxyapatite has been characterized by using different physicochemical methods. In order to determine the effects of process parameters namely temperature (20–40 °C, initial solution pH (4–11, adsorbent dose (0.1–0.3 g and initial fluoride concentration (10–20 mg L−1 on fluoride uptake from aqueous solution, a three-level, four-factor, Box–Behnken design has been employed. The second order mathematical model was developed by regression analysis of the experimental data obtained from 29 batch runs. The optimum pH, temperature, adsorbent dose and initial concentration were found by desirability function to be 4.16, 39.02 °C, 0.28 g and 20 mg L−1, respectively. Fluoride removal was 86.34% at the optimum combination of process parameters. Dynamic adsorption data were applied to pseudo-first-order and pseudo-second-order rate equations. The time data fitted well to pseudo second order kinetic model. According to the correlation coefficients, the adsorption of fluoride on the hydroxyapatite was correlated well with the Langmuir and Freundlich models.

  1. Employing response surface methodology (RSM) to improve methane production from cotton stalk.

    Science.gov (United States)

    Zhang, Han; Khalid, Habiba; Li, Wanwu; He, Yanfeng; Liu, Guangqing; Chen, Chang

    2018-03-01

    China is the largest cotton producer with the cotton output accounting for 25% of the total world's cotton production. A large quantity of cotton stalk (CS) waste is generated which is burned and causes environmental and ecological problems. This study investigated the anaerobic digestibility of CS by focusing on improving the methane yield by applying central composite design of response surface methodology (RSM). The purpose of this study was to determine the best level of factors to optimize the desired output of methane production from CS. Thus, it was necessary to describe the relationship of many individual variables with one or more response values for the effective utilization of CS. The influences of feed to inoculum (F/I) ratio and organic loading (OL) on methane production were investigated. Results showed that the experimental methane yield (EMY) and volatile solid (VS) removal were calculated to be 70.22 mL/gVS and 14.33% at F/I ratio of 0.79 and organic loading of 25.61 gVS/L, respectively. Characteristics of final effluent showed that the anaerobic system was stable. This research laid a foundation for future application of CS to alleviate the problems of waste pollution and energy output.

  2. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    Science.gov (United States)

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Long-range alpha detection applied to soil surface monitoring

    International Nuclear Information System (INIS)

    Caress, R.W.; Allander, K.S.; Bounds, J.A.; Catlett, M.M.; MacArthur, D.W.; Rutherford, D.A.

    1992-01-01

    The long-range alpha detection (LRAD) technique depends on the detection of ion pairs generated by alpha particles losing energy in air rather than on detection of the alpha particles themselves. Typical alpha particles generated by uranium will travel less than 3 cm in air. In contrast, the ions have been successfully detected many inches or feet away from the contamination. Since LRAD detection systems are sensitive to all ions simultaneously, large LRAD soil surface monitors (SSMS) can be used to collect all of the ions from a large sample. The LRAD SSMs are designed around the fan-less LRAD detector. In this case a five-sided box with an open bottom is placed on the soil surface. Ions generated by alpha decays on the soil surface are collected on a charged copper plate within the box. These ions create a small current from the plate to ground which is monitored with a sensitive electrometer. The current measured is proportional to the number of ions in the box, which is, in turn, proportional to the amount of alpha contamination on the surface of the soil. This report includes the design and construction of a 1-m by 1-m SSM as well as the results of a study at Fernald, OH, as part of the Uranium in Soils Integrated Demonstration

  4. Applying the Tropos Methodology for Analysing Web Services Requirements and Reasoning about Qualities of Services

    NARCIS (Netherlands)

    Aiello, Marco; Giorgini, Paolo

    2004-01-01

    The shift in software engineering from the design, implementation and management of isolated software elements towards a network of autonomous interoperable service is calling for a shift in the way software is designed. We propose the use of the agent-oriented methodology Tropos for the analysis of

  5. Spatial vulnerability assessment : methodology for the community and district level applied to floods in Buzi, Mozambique

    International Nuclear Information System (INIS)

    Kienberger, S.

    2010-01-01

    Within this thesis a conceptual model is presented which allows for the definition of a vulnerability assessment according to its time and spatial scale and within a multi-dimensional framework, which should help to design and develop appropriate methodologies and adaptation of concepts for the required scale of implementation. Building on past experiences with participatory approaches in community mapping in the District of Buzi in Mozambique, the relevance of such approaches for a community-based disaster risk reduction framework is analysed. Finally, methodologies are introduced which allow the assessment of vulnerability and the prioritisation of vulnerability factors at the community level. At the district level, homogenous vulnerability regions are identified through the application of integrated modelling approaches which build on expert knowledge and weightings. A set of indicators is proposed, which allow the modelling of vulnerability in a data-scarce environment. In developing these different methodologies for the community and district levels, it has been identified that the monitoring of vulnerability and the identification of trends is essential to addressing the objective of a continuous and improved disaster risk management. In addition to the technical and methodological challenges discussed in this thesis, the commitment from different stakeholders and the availability of capacity in different domains is essential for the successful, practical implementation of the developed approaches. (author)

  6. Production of specifically structured lipids by enzymatic interesterification in a pilot enzyme bed reactor: process optimization by response surface methodology

    DEFF Research Database (Denmark)

    Xu, Xuebing; Mu, Huiling; Høy, Carl-Erik

    1999-01-01

    Pilot production of specifically structured lipids by Lipozyme IM-catalyzed interesterification was carried out in a continuous enzyme bed reactor without the use of solvent. Medium chain triacylglycerols and oleic acid were used as model substrates. Response surface methodology was applied...... and the production of mono-incorporated and di-incorporated structured lipids with multiple regression and backward elimination. The coefficient of determination (R2) for the incorporation was 0.93, and that for the di-incorporated products was 0.94. The optimal conditions were flow rate, 2 ml/min; temperature, 65...

  7. Mathematical Modelling and Optimization of Cutting Force, Tool Wear and Surface Roughness by Using Artificial Neural Network and Response Surface Methodology in Milling of Ti-6242S

    Directory of Open Access Journals (Sweden)

    Erol Kilickap

    2017-10-01

    Full Text Available In this paper, an experimental study was conducted to determine the effect of different cutting parameters such as cutting speed, feed rate, and depth of cut on cutting force, surface roughness, and tool wear in the milling of Ti-6242S alloy using the cemented carbide (WC end mills with a 10 mm diameter. Data obtained from experiments were defined both Artificial Neural Network (ANN and Response Surface Methodology (RSM. ANN trained network using Levenberg-Marquardt (LM and weights were trained. On the other hand, the mathematical models in RSM were created applying Box Behnken design. Values obtained from the ANN and the RSM was found to be very close to the data obtained from experimental studies. The lowest cutting force and surface roughness were obtained at high cutting speeds and low feed rate and depth of cut. The minimum tool wear was obtained at low cutting speed, feed rate, and depth of cut.

  8. Optimization of CO2 Laser Cutting Process using Taguchi and Dual Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Madić

    2014-09-01

    Full Text Available Selection of optimal cutting parameter settings for obtaining high cut quality in CO2 laser cutting process is of great importance. Among various analytical and experimental optimization methods, the application of Taguchi and response surface methodology is one of most commonly used for laser cutting process optimization. Although the concept of dual response surface methodology for process optimization has been used with success, till date, no experimental study has been reported in the field of laser cutting. In this paper an approach for optimization of CO2 laser cutting process using Taguchi and dual response surface methodology is presented. The goal was to determine the near optimal laser cutting parameter values in order to ensure robust condition for minimization of average surface roughness. To obtain experimental database for development of response surface models, Taguchi’s L25 orthogonal array was implemented for experimental plan. Three cutting parameters, the cutting speed (3, 4, 5, 6, 7 m/min, the laser power (0.7, 0.9, 1.1, 1.3, 1.5 kW, and the assist gas pressure (3, 4, 5, 6, 7 bar, were used in the experiment. To obtain near optimal cutting parameters settings, multi-stage Monte Carlo simulation procedure was performed on the developed response surface models.

  9. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  10. A methodology for evaluating alternative sites for a near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Watson, S.R.; Brownlow, S.A.

    1986-02-01

    This report addresses the issue of constructing an evaluation procedure for a near-surface radioactive waste repository. It builds on earlier work of the authors, and describes a basis for a practicable methodology for assessing the relative merits of different sites. (author)

  11. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology

    Science.gov (United States)

    Jae-Won Lee; Rita C.L.B. Rodrigues; Thomas W. Jeffries

    2009-01-01

    Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180º...

  12. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  13. Optimisation of warpage on thin shell plastic part using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    Science.gov (United States)

    Asyirah, B. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In manufacturing a variety of parts, plastic injection moulding is widely use. The injection moulding process parameters have played important role that affects the product's quality and productivity. There are many approaches in minimising the warpage ans shrinkage such as artificial neural network, genetic algorithm, glowworm swarm optimisation and hybrid approaches are addressed. In this paper, a systematic methodology for determining a warpage and shrinkage in injection moulding process especially in thin shell plastic parts are presented. To identify the effects of the machining parameters on the warpage and shrinkage value, response surface methodology is applied. In thos study, a part of electronic night lamp are chosen as the model. Firstly, experimental design were used to determine the injection parameters on warpage for different thickness value. The software used to analyse the warpage is Autodesk Moldflow Insight (AMI) 2012.

  14. Methodology and boundary conditions applied to the analysis on internal flooding for Kozloduy NPP units 5 and 6

    International Nuclear Information System (INIS)

    Demireva, E.; Goranov, S.; Horstmann, R.

    2004-01-01

    Within the Modernization Program of Units 5 and 6 of Kozloduy NPP a comprehensive analysis of internal flooding has been carried out for the reactor building outside the containment and for the turbine hall by FRAMATOME ANP and ENPRO Consult. The objective of this presentation is to provide information on the applied methodology and boundary conditions. A separate report called 'Methodology and boundary conditions' has been elaborated in order to provide the fundament for the study. The methodology report provides definitions and advice for the following topics: scope of the study; safety objectives; basic assumptions and postulates (plant conditions, grace periods for manual actions, single failure postulate, etc.); sources of flooding (postulated piping leaks and ruptures, malfunctions and personnel error); main activities of the flooding analysis; study conclusions and suggestions of remedial measures. (authors)

  15. Radiochemical methodologies applied to analytical characterization of low and intermediate level wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Roberto Pellacani G.; Júnior, Aluísio Souza R.; Kastner, Geraldo F.; Temba, Eliane S.C.; Oliveira, Thiago C. de; Amaral, Ângela M.; Franco, Milton B., E-mail: rpgm@cdtn.br, E-mail: reisas@cdtn.br, E-mail: gfk@cdtn.br, E-mail: esct@cdtn.br, E-mail: tco@cdtn.br, E-mail: ama@cdtn.br, E-mail: francom@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The aim of this work is to present radiochemical methodologies developed at CDTN/CNEN in order to answer a program for isotopic inventory of radioactive wastes from Brazilian Nuclear Power Plants. In this program some radionuclides, {sup 3}H, {sup 14}C, {sup 55}Fe, {sup 59}Ni, {sup 63}Ni, {sup 90}Sr, {sup 93}Zr, {sup 94}Nb, {sup 99}Tc, {sup 129}I, {sup 235}U, {sup 238}U, {sup 238}Pu, {sup 239}+{sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 242}Cm e {sup 243}+{sup 244}Cm, were determined in Low Level Wastes (LLW) and Intermediate Level Wastes (ILW) and a protocol of analytical methodologies based on radiochemical separation steps and spectrometric and nuclear techniques was established. (author)

  16. Proposal for an Experimental Methodology for Evaluation of Natural Lighting Systems Applied in Buildings

    Directory of Open Access Journals (Sweden)

    Anderson Diogo Spacek

    2017-07-01

    Full Text Available This work has the objective of developing a methodology for the evaluation of indoor natural lighting systems, which, with speed and practicality, provides from real conditions of use a reliable result about the quality and performance of the proposed system. The methodology is based on the construction of two real-size test environments, which will be subjected to a natural light system through reflexive tubes made from recycled material, and to a commercial system already certified and consolidated, creating the possibility of comparison. Furthermore, the data acquired in the test environments will be examined in light of the values of solar radiation obtained from a digital meteorological station, such that it is possible to stipulate the lighting capacity of the systems at different times of the year.

  17. Beamforming applied to surface EEG improves ripple visibility.

    Science.gov (United States)

    van Klink, Nicole; Mol, Arjen; Ferrier, Cyrille; Hillebrand, Arjan; Huiskamp, Geertjan; Zijlmans, Maeike

    2018-01-01

    Surface EEG can show epileptiform ripples in people with focal epilepsy, but identification is impeded by the low signal-to-noise ratio of the electrode recordings. We used beamformer-based virtual electrodes to improve ripple identification. We analyzed ten minutes of interictal EEG of nine patients with refractory focal epilepsy. EEGs with more than 60 channels and 20 spikes were included. We computed ∼79 virtual electrodes using a scalar beamformer and marked ripples (80-250 Hz) co-occurring with spikes in physical and virtual electrodes. Ripple numbers in physical and virtual electrodes were compared, and sensitivity and specificity of ripples for the region of interest (ROI; based on clinical information) were determined. Five patients had ripples in the physical electrodes and eight in the virtual electrodes, with more ripples in virtual than in physical electrodes (101 vs. 57, p = .007). Ripples in virtual electrodes predicted the ROI better than physical electrodes (AUC 0.65 vs. 0.56, p = .03). Beamforming increased ripple visibility in surface EEG. Virtual ripples predicted the ROI better than physical ripples, although sensitivity was still poor. Beamforming can facilitate ripple identification in EEG. Ripple localization needs to be improved to enable its use for presurgical evaluation in people with epilepsy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Analysis Planning Methodology: For Thesis, Joint Applied Project, & MBA Research Reports

    OpenAIRE

    Naegle, Brad R.

    2010-01-01

    Acquisition Research Handbook Series Purpose: This guide provides the graduate student researcher—you—with techniques and advice on creating an effective analysis plan, and it provides methods for focusing the data-collection effort based on that analysis plan. As a side benefit, this analysis planning methodology will help you to properly scope the research effort and will provide you with insight for changes in that effort. The information presented herein was supported b...

  19. Methodology supporting production control in a foundry applying modern DISAMATIC molding line

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available The paper presents methodology of production control using statistical methods in foundry conditions, using the automatic DISAMATIC molding line. The authors were inspired by many years of experience in implementing IT tools for foundries. The authors noticed that there is a lack of basic IT tools dedicated to specific casting processes, that would greatly facilitate their oversight and thus improve the quality of manufactured products. More and more systems are installed in the ERP or CAx area, but they integrate processes only partially, mainly in the area of technology design and business management from finance and control. Monitoring of foundry processes can generate a large amount of process-related data. This is particularly noticeable in automated processes. An example is the modern DISAMATIC molding line, which integrates several casting processes, such as mold preparation, assembly, pouring or shake out. The authors proposed a methodology that supports the control of the above-mentioned foundry processes using statistical methods. Such an approach can be successfully used, for example, during periodic external audits. The mentioned methodology in the innovative DISAM-ProdC computer tool was implemented.

  20. Geometric methods for estimating representative sidewalk widths applied to Vienna's streetscape surfaces database

    Science.gov (United States)

    Brezina, Tadej; Graser, Anita; Leth, Ulrich

    2017-04-01

    Space, and in particular public space for movement and leisure, is a valuable and scarce resource, especially in today's growing urban centres. The distribution and absolute amount of urban space—especially the provision of sufficient pedestrian areas, such as sidewalks—is considered crucial for shaping living and mobility options as well as transport choices. Ubiquitous urban data collection and today's IT capabilities offer new possibilities for providing a relation-preserving overview and for keeping track of infrastructure changes. This paper presents three novel methods for estimating representative sidewalk widths and applies them to the official Viennese streetscape surface database. The first two methods use individual pedestrian area polygons and their geometrical representations of minimum circumscribing and maximum inscribing circles to derive a representative width of these individual surfaces. The third method utilizes aggregated pedestrian areas within the buffered street axis and results in a representative width for the corresponding road axis segment. Results are displayed as city-wide means in a 500 by 500 m grid and spatial autocorrelation based on Moran's I is studied. We also compare the results between methods as well as to previous research, existing databases and guideline requirements on sidewalk widths. Finally, we discuss possible applications of these methods for monitoring and regression analysis and suggest future methodological improvements for increased accuracy.

  1. Nuclear reactor vessel surface inspecting technique applying electric resistance probe

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Enami, K.; Yoshioka, M.

    1975-01-01

    A new technique for inspecting the inner surface of the PWR type nuclear reactor vessel by use of an electric resistance probe is introduced, centering on a data processing system. This system is composed of a mini-computer, a system typewriter, an interface unit, a D-A converter and controller, and X-Y recorder and others. Its functions are judging flaws and making flaw detection maps. In order to judge flaws by flaw detection signals, three kinds of flaw judging methods have been developed. In case there is a flaw, its position and depth are calculated and listed on the system typewriter. The flaw detection maps are expressed in four kinds of modes and they are displayed on the X-Y recorder. (auth.)

  2. Economic evaluation of health promotion interventions for older people: do applied economic studies meet the methodological challenges?

    Science.gov (United States)

    Huter, Kai; Dubas-Jakóbczyk, Katarzyna; Kocot, Ewa; Kissimova-Skarbek, Katarzyna; Rothgang, Heinz

    2018-01-01

    In the light of demographic developments health promotion interventions for older people are gaining importance. In addition to methodological challenges arising from the economic evaluation of health promotion interventions in general, there are specific methodological problems for the particular target group of older people. There are especially four main methodological challenges that are discussed in the literature. They concern measurement and valuation of informal caregiving, accounting for productivity costs, effects of unrelated cost in added life years and the inclusion of 'beyond-health' benefits. This paper focuses on the question whether and to what extent specific methodological requirements are actually met in applied health economic evaluations. Following a systematic review of pertinent health economic evaluations, the included studies are analysed on the basis of four assessment criteria that are derived from methodological debates on the economic evaluation of health promotion interventions in general and economic evaluations targeting older people in particular. Of the 37 studies included in the systematic review, only very few include cost and outcome categories discussed as being of specific relevance to the assessment of health promotion interventions for older people. The few studies that consider these aspects use very heterogeneous methods, thus there is no common methodological standard. There is a strong need for the development of guidelines to achieve better comparability and to include cost categories and outcomes that are relevant for older people. Disregarding these methodological obstacles could implicitly lead to discrimination against the elderly in terms of health promotion and disease prevention and, hence, an age-based rationing of public health care.

  3. Digital processing methodology applied to exploring of radiological images; Metodologia de processamento digital aplicada a exploracao de imagens radiologicas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cristiane de Queiroz

    2004-07-01

    In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)

  4. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....

  5. Multi-criteria decision making with linguistic labels: a comparison of two methodologies applied to energy planning

    OpenAIRE

    Afsordegan, Arayeh; Sánchez Soler, Monica; Agell Jané, Núria; Cremades Oliver, Lázaro Vicente; Zahedi, Siamak

    2014-01-01

    This paper compares two multi-criteria decision making (MCDM) approaches based on linguistic label assessment. The first approach consists of a modified fuzzy TOPSIS methodology introduced by Kaya and Kahraman in 2011. The second approach, introduced by Agell et al. in 2012, is based on qualitative reasoning techniques for ranking multi-attribute alternatives in group decision-making with linguistic labels. Both approaches are applied to a case of assessment and selection of the most suita...

  6. Implementing the flipped classroom methodology to the subject "Applied computing" of the chemical engineering degree at the University of Barcelona

    Directory of Open Access Journals (Sweden)

    Montserrat Iborra

    2017-06-01

    Full Text Available This work is focus on implementation, development, documentation, analysis and assessment of flipped classroom methodology, by means of just in time teaching strategy, in a pilot group (1 of 6 of the subject “Applied Computing” of Chemical Engineering Undergraduate Degree of the University of Barcelona. The results show that this technique promotes self-learning, autonomy, time management as well as an increase in the effectiveness of classroom hours.

  7. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  8. Analyzing parameters optimisation in minimising warpage on side arm using response surface methodology (RSM)

    Science.gov (United States)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    This paper presents a systematic methodology to analyse the warpage of the side arm part using Autodesk Moldflow Insight software. Response Surface Methodology (RSM) was proposed to optimise the processing parameters that will result in optimal solutions by efficiently minimising the warpage of the side arm part. The variable parameters considered in this study was based on most significant parameters affecting warpage stated by previous researchers, that is melt temperature, mould temperature and packing pressure while adding packing time and cooling time as these is the commonly used parameters by researchers. The results show that warpage was improved by 10.15% and the most significant parameters affecting warpage are packing pressure.

  9. Development of a cost efficient methodology to perform allocation of flammable and toxic gas detectors applying CFD tools

    Energy Technology Data Exchange (ETDEWEB)

    Storch, Rafael Brod; Rocha, Gean Felipe Almeida [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil); Nalvarte, Gladys Augusta Zevallos [Det Norske Veritas (DNV), Novik (Norway)

    2012-07-01

    This paper is aimed to present a computational procedure for flammable and toxic gas detector allocation and quantification developed by DNV. The proposed methodology applies Computational Fluid Dynamics (CFD) simulations as well as operational and safety characteristics of the analyzed region to assess the optimal number of toxic and flammable gas detectors and their optimal location. A probabilistic approach is also used when applying the DNV software ThorEXPRESSLite, following NORSOK Z013 Annex G and presented in HUSER et al. 2000 and HUSER et al. 2001, when the flammable gas detectors are assessed. A DNV developed program, DetLoc, is used to run in an iterative way the procedure described above leading to an automatic calculation of the gas detectors location and number. The main advantage of the methodology presented above is the independence of human interaction in the gas detector allocation leading to a more precise and free of human judgment allocation. Thus, a reproducible allocation is generated when comparing several different analyses and a global criteria appliance is guaranteed through different regions in the same project. A case study is presented applying the proposed methodology. (author)

  10. Integrated management of operations in Santos Basin: methodology applied to a new philosophy of operations

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leandro Leonardo; Lima, Claudio Benevenuto de Campos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Derenzi Neto, Dario [Accenture, Rio de Janeiro, RJ (Brazil); Pinto, Vladimir Steffen [Soda IT, Rio de Janeiro, RJ (Brazil); Lima, Gilson Brito Alves [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-07-01

    The objective of this paper is to present the methodology used to develop the Integrated Management of Operations (GIOp) project in Santos Basin Operational Unit (UO-BS) in the South-Southeast Exploration and Production area of PETROBRAS. The following text describes how the activities were carried out to gather improvements opportunities and to design To-Be processes, considering the challenging environment of the Santos Basin in the coming years. At the end of more than 12 months of work, more than 50 processes and sub-processes were redesigned, involving a multidisciplinary team in the areas of operations, maintenance, safety, health and environment, flow assurance, wells, reservoirs and planning. (author)

  11. A calculation methodology applied for fuel management in PWR type reactors using first order perturbation theory

    International Nuclear Information System (INIS)

    Rossini, M.R.

    1992-01-01

    An attempt has been made to obtain a strategy coherent with the available instruments and that could be implemented with future developments. A calculation methodology was developed for fuel reload in PWR reactors, which evolves cell calculation with the HAMMER-TECHNION code and neutronics calculation with the CITATION code.The management strategy adopted consists of fuel element position changing at the beginning of each reactor cycle in order to decrease the radial peak factor. The bi-dimensional, two group First Order perturbation theory was used for the mathematical modeling. (L.C.J.A.)

  12. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  13. Methodology applied by IRSN for nuclear accident cost estimations in France

    International Nuclear Information System (INIS)

    2013-01-01

    This report describes the methodology used by IRSN to estimate the cost of potential nuclear accidents in France. It concerns possible accidents involving pressurized water reactors leading to radioactive releases in the environment. These accidents have been grouped in two accident families called: severe accidents and major accidents. Two model scenarios have been selected to represent each of these families. The report discusses the general methodology of nuclear accident cost estimation. The crucial point is that all cost should be considered: if not, the cost is underestimated which can lead to negative consequences for the value attributed to safety and for crisis preparation. As a result, the overall cost comprises many components: the most well-known is offsite radiological costs, but there are many others. The proposed estimates have thus required using a diversity of methods which are described in this report. Figures are presented at the end of this report. Among other things, they show that purely radiological costs only represent a non-dominant part of foreseeable economic consequences

  14. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues.

    Science.gov (United States)

    Zhou, Jia-Wei; Zou, Xue-Mei; Song, Shang-Hong; Chen, Guan-Hua

    2018-02-14

    The pesticide and veterinary drug residues brought by large-scale agricultural production have become one of the issues in the fields of food safety and environmental ecological security. It is necessary to develop the rapid, sensitive, qualitative and quantitative methodology for the detection of pesticide and veterinary drug residues. As one of the achievements of nanoscience, quantum dots (QDs) have been widely used in the detection of pesticide and veterinary drug residues. In these methodology studies, the used QD-signal styles include fluorescence, chemiluminescence, electrochemical luminescence, photoelectrochemistry, etc. QDs can also be assembled into sensors with different materials, such as QD-enzyme, QD-antibody, QD-aptamer, and QD-molecularly imprinted polymer sensors, etc. Plenty of study achievements in the field of detection of pesticide and veterinary drug residues have been obtained from the different combinations among these signals and sensors. They are summarized in this paper to provide a reference for the QD application in the detection of pesticide and veterinary drug residues.

  15. Applying rigorous decision analysis methodology to optimization of a tertiary recovery project

    International Nuclear Information System (INIS)

    Wackowski, R.K.; Stevens, C.E.; Masoner, L.O.; Attanucci, V.; Larson, J.L.; Aslesen, K.S.

    1992-01-01

    This paper reports that the intent of this study was to rigorously look at all of the possible expansion, investment, operational, and CO 2 purchase/recompression scenarios (over 2500) to yield a strategy that would maximize net present value of the CO 2 project at the Rangely Weber Sand Unit. Traditional methods of project management, which involve analyzing large numbers of single case economic evaluations, was found to be too cumbersome and inaccurate for an analysis of this scope. The decision analysis methodology utilized a statistical approach which resulted in a range of economic outcomes. Advantages of the decision analysis methodology included: a more organized approach to classification of decisions and uncertainties; a clear sensitivity method to identify the key uncertainties; an application of probabilistic analysis through the decision tree; and a comprehensive display of the range of possible outcomes for communication to decision makers. This range made it possible to consider the upside and downside potential of the options and to weight these against the Unit's strategies. Savings in time and manpower required to complete the study were also realized

  16. Project-based learning methodology in the area of microbiology applied to undergraduate medical research.

    Science.gov (United States)

    Mateo, Estibaliz; Sevillano, Elena

    2018-07-01

    In the recent years, there has been a decrease in the number of medical professionals dedicated to a research career. There is evidence that students with a research experience during their training acquire knowledge and skills that increase the probability of getting involved in research more successfully. In the Degree of Medicine (University of the Basque Country) the annual core subject 'Research Project' introduces students to research. The aim of this work was to implement a project-based learning methodology, with the students working on microbiology, and to analyse its result along time. Given an initial scenario, the students had to come up with a research idea related to medical microbiology and to carry out a research project, including writing a funding proposal, developing the experimental assays and analyzing and presenting their results to a congress organized by the University. Summative assessment was performed by both students and teachers. A satisfaction survey was carried out to gather the students' opinion. The overall results regarding to the classroom dynamics, learning results and motivation after the implementation were favourable. Students referred a greater interest about research than they had before. They would choose the project based methodology versus the traditional one.

  17. Residency Training: Quality improvement projects in neurology residency and fellowship: applying DMAIC methodology.

    Science.gov (United States)

    Kassardjian, Charles D; Williamson, Michelle L; van Buskirk, Dorothy J; Ernste, Floranne C; Hunderfund, Andrea N Leep

    2015-07-14

    Teaching quality improvement (QI) is a priority for residency and fellowship training programs. However, many medical trainees have had little exposure to QI methods. The purpose of this study is to review a rigorous and simple QI methodology (define, measure, analyze, improve, and control [DMAIC]) and demonstrate its use in a fellow-driven QI project aimed at reducing the number of delayed and canceled muscle biopsies at our institution. DMAIC was utilized. The project aim was to reduce the number of delayed muscle biopsies to 10% or less within 24 months. Baseline data were collected for 12 months. These data were analyzed to identify root causes for muscle biopsy delays and cancellations. Interventions were developed to address the most common root causes. Performance was then remeasured for 9 months. Baseline data were collected on 97 of 120 muscle biopsies during 2013. Twenty biopsies (20.6%) were delayed. The most common causes were scheduling too many tests on the same day and lack of fasting. Interventions aimed at patient education and biopsy scheduling were implemented. The effect was to reduce the number of delayed biopsies to 6.6% (6/91) over the next 9 months. Familiarity with QI methodologies such as DMAIC is helpful to ensure valid results and conclusions. Utilizing DMAIC, we were able to implement simple changes and significantly reduce the number of delayed muscle biopsies at our institution. © 2015 American Academy of Neurology.

  18. Methodology for safety assessment of near-surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Mateeva, M.

    1998-01-01

    The objective of the work is to present the conceptual model of the methodology of safety assessment of near-surface radioactive disposal facilities. The widely used mathematical models and approaches are presented. The emphasis is given on the mathematical models and approaches, which are applicable for the conditions in our country. The different transport models for analysis and safety assessment of migration processes are presented. The parallel between the Mixing-Cell Cascade model and model of Finite-Differences is made. In the methodology the basic physical and chemical processes and events, concerning mathematical modelling of the flow and the transport of radionuclides from the Near Field to Far Field and Biosphere are analyzed. Suitable computer codes corresponding to the ideology and appropriate for implementing of the methodology are shown

  19. Reconstructing the Economy: A Methodological Journey from the Surface to the Essence and Back

    Directory of Open Access Journals (Sweden)

    Peter Karl Fleissner

    2011-10-01

    Full Text Available The essential methodology in social science to “understand” phenomena is informed abstraction. But the way - how and what for the abstraction process is shaped - divides the economists into various schools. While mainstream econ- omists abstract from any links of the economy to human beings - replacing them by selfish machines maximizing their prof- its or individual utilities, and neglecting any deeper analysis of the basic constructions they use (like prices or money, heterodox economists try to look behind the surface, link them to certain periods of history and to the source of all value: humans are social beings and cannot exist without mutuality. The paper presents a heterodox way to reconstruct contempo- rary capitalist economies by applying the new science of information with its evolutionary concepts. It starts the description on a very abstract level: useful things and services produced by specialized labor. Step by step new layers of economic activities and related information are added and become the basis for the next one. Vice versa economic activities on lower layers become controlled and modified by higher layers. One can see that the higher controlling principles in contemporary capitalist economies do not assist the economic, social, and cultural well-being of the majority of people, but function ac- cording to the self-interest of a minority. For the first time in history capitalism has developed new technologies that in prin- ciple could allow for the participation of the many, to create abundance of information, and to offer tools for building a de- mocratic and sustainable society. But by the same capitalism, rigid Intellectual Property Rights and severe copy protection mechanisms enforce artificial shortage of information goods.

  20. Optimization of Chlorination Process for Mature Leachate Disinfection Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hamzeh Ali Jamali1

    2014-06-01

    Full Text Available Background: leachate from landfill contains high level of microbial pathogens which is considered as one of the most important threats for the environment. One of the common and simple methods for water and wastewater disinfection is chlorination, but it rarely has been used for leachate disinfection. The objective of this study was evaluating the efficiency of chlorine for leachate disinfection and optimization of the effect of concentration and contact time on the death of total and fecal coliforms, as a microbial contamination index. Methods: In this descriptive-analysis study, microbial indices monitoring in leachates initiated from landfill of Qazvin city were conducted for one year. After pre-tests, the range of chlorine concentration and contact time on the inactivation of microbial indices were determined. Central composite design (CCD and response surface methodology (RSM were applied to optimize chlorine concentration and contact time parameters effect on microbial inactivation. 13 runs of tests were performed on samples. Tests were included BOD, COD, total and fecal coliforms. All analytical experiments were according to the standard methods for the examination of water and wastewater. Results: Results of the study showed that microbial indices had relatively high sensitivity to inactivation by chlorination, which in the chlorine concentration of 2 mg/L and contact time of 9 min, and chlorine concentration of 0.5 mg/L and contact time of 12 min, 100% of total and fecal coliforms inactivated, respectively. The RSM method was used for analysis of bacterial inactivation. Analyses showed that in contact time of 9.4 min and chlorine concentration of 2.99 mg/L, the inactivation efficiency of total and fecal coliforms were 89.16% and 100%, respectively. Conclusions: Chlorine could be used for leachate disinfection. However, in high concentrations of organic matter in leachates, due to production potential of chlorination by-products, health

  1. Modeling and process optimization of electrospinning of chitosan-collagen nanofiber by response surface methodology

    Science.gov (United States)

    Amiri, Nafise; Moradi, Ali; Abolghasem Sajjadi Tabasi, Sayyed; Movaffagh, Jebrail

    2018-04-01

    Chitosan-collagen composite nanofiber is of a great interest to researchers in biomedical fields. Since the electrospinning is the most popular method for nanofiber production, having a comprehensive knowledge of the electrospinning process is beneficial. Modeling techniques are precious tools for managing variables in the electrospinning process, prior to the more time- consuming and expensive experimental techniques. In this study, a central composite design of response surface methodology (RSM) was employed to develop a statistical model as well as to define the optimum condition for fabrication of chitosan-collagen nanofiber with minimum diameter. The individual and the interaction effects of applied voltage (10–25 kV), flow rate (0.5–1.5 mL h‑1), and needle to collector distance (15–25 cm) on the fiber diameter were investigated. ATR- FTIR and cell study were done to evaluate the optimized nanofibers. According to the RSM, a two-factor interaction (2FI) model was the most suitable model. The high regression coefficient value (R 2 ≥ 0.9666) of the fitted regression model and insignificant lack of fit (P = 0.0715) indicated that the model was highly adequate in predicting chitosan-collagen nanofiber diameter. The optimization process showed that the chitosan-collagen nanofiber diameter of 156.05 nm could be obtained in 9 kV, 0.2 ml h‑1, and 25 cm which was confirmed by experiment (155.92 ± 18.95 nm). The ATR-FTIR and cell study confirmed the structure and biocompatibility of the optimized membrane. The represented model could assist researchers in fabricating chitosan-collagen electrospun scaffolds with a predictable fiber diameter, and optimized chitosan-collagen nanofibrous mat could be a potential candidate for wound healing and tissue engineering.

  2. Optimization of Mechanical Expression of Castor Seeds Oil (Ricinus communis using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    J. O. Olaoye

    2017-12-01

    Full Text Available The effect of the processing parameters of Castor seed on its oil yield was investigated. The castor seeds were passed through drying, crushing and separation into seeds and shells. These processing conditions were further succeeded by seed roasting and subsequent mechanical expression of the roasted nut by means of screw press in the course of its preparation for oil expression. Seed samples were conditioned by adding calculated amount of distilled water to obtain different moisture levels from the initial moisture content of the seeds. Samples were roasted at the temperatures of 83.18, 90.00, 100.00, 110.00 and 116.82°C, over periods of 6.59, 10.00, 15.00, 20.00 and 23.41min, seed moisture content of 6.32, 7.00, 8.00, 9.00 and 9.68 % wb, respectively and the oil was expressed using a screw roaster-expeller. Optimization of the oil expression process was achieved by applying Central Composite Rotatable Design of Response Surface Methodology. The optimal conditions for oil yield within the experimental range of the studied variables were 7%, 110°C and 20 min; moisture content, roasting temperature and roasting duration respectively. These values of the optimum process conditions were used to predict optimum value of oil yield to be 25.77%. A second-order model was obtained to predict oil yield as a function of moisture content, heating temperature and duration. Thus the result from this research work has established the optimal conditions for mechanical extraction of oil from castor seed. Closed agreement between experimental and predicted yield was obtained.

  3. Modelling of aflatoxin G1 reduction by kefir grain using response surface methodology.

    Science.gov (United States)

    Ansari, Farzaneh; Khodaiyan, Faramarz; Rezaei, Karamatollah; Rahmani, Anosheh

    2015-01-01

    Aflatoxin G1 (AFG1) is one of the main toxic contaminants in pistachio nuts and causes potential health hazards. Hence, AFG1 reduction is one of the main concerns in food safety. Kefir-grains contain symbiotic association of microorganisms well known for their aflatoxin decontamination effects. In this study, a central composite design (CCD) using response surface methodology (RSM) was applied to develop a model in order to predict AFG1 reduction in pistachio nuts by kefir-grain (already heated at 70 and 110°C). The independent variables were: toxin concentration (X1: 5, 10, 15, 20 and 25 ng/g), kefir-grain level (X2: 5, 10, 20, 10 and 25%), contact time (X3: 0, 2, 4, 6 and 8 h), and incubation temperature (X4: 20, 30, 40, 50 and 60°C). There was a significant reduction in AFG1 (p kefir-grain used. The variables including X1, X3 and the interactions between X2-X4 as well as X3-X4 have significant effects on AFG1 reduction. The model provided a good prediction of AFG1 reduction under the assay conditions. Optimization was used to enhance the efficiency of kefir-grain on AFG1 reduction. The optimum conditions for the highest AFG1 reduction (96.8%) were predicted by the model as follows: toxin concentration = 20 ng/g, kefir-grain level = 10%, contact time = 6 h, and incubation temperature = 30°C which validated practically in six replications.

  4. 1-Hexene Polymerization Using Ziegler-Natta Catalytic System with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Maliheh Mazaheriyan

    2017-07-01

    Full Text Available The effects of process conditions and their interactions on the catalyst activity in 1-hexene polymerization were studied with design of experiments by response surface methodology (RSM using a commercial Ziegler-Natta (ZN catalyst in the form of TiCl4/MgCl2/Di-n-butyl phthalate. The effect of different operational variables on the catalyst activity was examined by performing the primary experiments of 1-hexene polymerization.  Among different operational variables, three variables including monomer concentration, polymerization temperature and cocatalyst/catalyst molar ratio (Al/Ti were considered as the main parameters which affected the catalyst activity in the 1-hexene polymerization. The Box-Behnken model with three main parameters in three level responses for each factor was applied to analyze the parameter relationships. After demonstrating the reproducibility of the experimental results, the statistical analysis of experimental data showed that the monomer concentration and Al/Ti molar ratio affected the catalyst activity significantly. It was found that, at room temperature, by increasing the monomer concentration from 80.0 mmol to 239.9 mmol, the activity of the studied ZN catalyst increased from 75.2 to 265.1 gpoly(1-hexene/gcat. In addition, by changing the Al/Ti ratio from 45.9 to 136.8, the catalyst activity increased from 145.2 to 265.1 gpoly(1-hexene/gcat. The maximum activity of catalyst was obtained at the polymerization temperature around 25°C, and by increasing the temperature the activity of studied catalyst decreased. Based on the RSM, the best polymerization condition was obtained at a polymerization temperature of about 35°C, Al/Ti ratio of 136.8, and monomer concentration of 239.9 mmol, which resulted in maximum productivity of the catalyst.

  5. Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite

    Directory of Open Access Journals (Sweden)

    M. Mourabet

    2017-05-01

    Full Text Available In the present study, Response surface methodology (RSM was employed for the removal of fluoride on Brushite and the process parameters were optimized. Four important process parameters including initial fluoride concentration (40–50 mg/L, pH (4–11, temperature (10–40 °C and B dose (0.05–0.15 g were optimized to obtain the best response of fluoride removal using the statistical Box–Behnken design. The experimental data obtained were analyzed by analysis of variance (ANOVA and fitted to a second-order polynomial equation using multiple regression analysis. Numerical optimization applying desirability function was used to identify the optimum conditions for maximum removal of fluoride. The optimum conditions were found to be initial concentration = 49.06 mg/L, initial solution pH = 5.36, adsorbent dose = 0.15 g and temperature = 31.96 °C. A confirmatory experiment was performed to evaluate the accuracy of the optimization procedure and maximum fluoride removal of 88.78% was achieved under the optimized conditions. Several error analysis equations were used to measure the goodness-of-fit. Kinetic studies showed that the adsorption followed a pseudo-second order reaction. The equilibrium data were analyzed using Langmuir, Freundlich, and Sips isotherm models at different temperatures. The Langmuir model was found to be describing the data. The adsorption capacity from the Langmuir isotherm (QL was found to be 29.212, 35.952 and 36.260 mg/g at 298, 303, and 313 K respectively.

  6. Optimization of Maillard Reaction in Model System of Glucosamine and Cysteine Using Response Surface Methodology.

    Science.gov (United States)

    Arachchi, Shanika Jeewantha Thewarapperuma; Kim, Ye-Joo; Kim, Dae-Wook; Oh, Sang-Chul; Lee, Yang-Bong

    2017-03-01

    Sulfur-containing amino acids play important roles in good flavor generation in Maillard reaction of non-enzymatic browning, so aqueous model systems of glucosamine and cysteine were studied to investigate the effects of reaction temperature, initial pH, reaction time, and concentration ratio of glucosamine and cysteine. Response surface methodology was applied to optimize the independent reaction parameters of cysteine and glucosamine in Maillard reaction. Box-Behnken factorial design was used with 30 runs of 16 factorial levels, 8 axial levels and 6 central levels. The degree of Maillard reaction was determined by reading absorption at 425 nm in a spectrophotometer and Hunter's L, a, and b values. ΔE was consequently set as the fifth response factor. In the statistical analyses, determination coefficients (R 2 ) for their absorbance, Hunter's L, a, b values, and ΔE were 0.94, 0.79, 0.73, 0.96, and 0.79, respectively, showing that the absorbance and Hunter's b value were good dependent variables for this model system. The optimum processing parameters were determined to yield glucosamine-cysteine Maillard reaction product with higher absorbance and higher colour change. The optimum estimated absorbance was achieved at the condition of initial pH 8.0, 111°C reaction temperature, 2.47 h reaction time, and 1.30 concentration ratio. The optimum condition for colour change measured by Hunter's b value was 2.41 h reaction time, 114°C reaction temperature, initial pH 8.3, and 1.26 concentration ratio. These results can provide the basic information for Maillard reaction of aqueous model system between glucosamine and cysteine.

  7. Optimisation of process parameters on thin shell part using response surface methodology (RSM) and genetic algorithm (GA)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study conducts the simulation on optimisation of injection moulding process parameters using Autodesk Moldflow Insight (AMI) software. This study has applied some process parameters which are melt temperature, mould temperature, packing pressure, and cooling time in order to analyse the warpage value of the part. Besides, a part has been selected to be studied which made of Polypropylene (PP). The combination of the process parameters is analysed using Analysis of Variance (ANOVA) and the optimised value is obtained using Response Surface Methodology (RSM). The RSM as well as Genetic Algorithm are applied in Design Expert software in order to minimise the warpage value. The outcome of this study shows that the warpage value improved by using RSM and GA.

  8. Environmental risk assessment of water quality in harbor areas: a new methodology applied to European ports.

    Science.gov (United States)

    Gómez, Aina G; Ondiviela, Bárbara; Puente, Araceli; Juanes, José A

    2015-05-15

    This work presents a standard and unified procedure for assessment of environmental risks at the contaminant source level in port aquatic systems. Using this method, port managers and local authorities will be able to hierarchically classify environmental hazards and proceed with the most suitable management actions. This procedure combines rigorously selected parameters and indicators to estimate the environmental risk of each contaminant source based on its probability, consequences and vulnerability. The spatio-temporal variability of multiple stressors (agents) and receptors (endpoints) is taken into account to provide accurate estimations for application of precisely defined measures. The developed methodology is tested on a wide range of different scenarios via application in six European ports. The validation process confirms its usefulness, versatility and adaptability as a management tool for port water quality in Europe and worldwide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The HAZOP methodology applied to the study of the quality and the productivity

    International Nuclear Information System (INIS)

    Angel G, J.C.

    1996-01-01

    This article makes reference to an adaptation of the method HAZOP, used in Administration of Risks, to the study and solution of problems related with the quality and the productivity of matters cousins, processes, products and services. The described methodology, it is based in the definition of, intentions, or objectives for each part of the process, sub-process, product or service, with the purpose of finding, deviations, or problems of quality or productivity with the use of words g uide . It thinks about that each deviation should be analyzed for the determination of its causes and consequences, with the purpose of defining the corrective pertinent actions. The work of interdisciplinary groups intends as an unavoidable requirement, the same as the will of its members to make the things better every day

  10. Optimization of the Medium for the Production of Cellulase by the Mutant Trichoderma reesei WX-112 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Xue-Cai Hao

    2006-01-01

    Full Text Available The mutant strain Trichoderma reesei WX-112 with high cellulase activity was isolated by a newly invented plate. The mutant’s ability to produce cellulase increased 1.95 times after the treatment with UV and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG. Also, the medium composition was optimized using response surface methodology (RSM. A fractional factorial design (26–2 was applied to elucidate the medium components that significantly affect cellulase production. The concentration of Avicel and soybean cake flour in the medium were significant factors. The steepest ascent method was used to locate the optimal domain and a central composite design was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined. The composition of fermentation medium optimized with response surface methodology was (in g/L: wheat bran 30, Avicel 36.4, soybean cake flour 24.7, KH2PO4 4 and corn steep flour 5. Compared to the original medium, the cellulase activity increased from 7.2 to 10.6 IU/mL.

  11. An applied methodology for assessment of the sustainability of biomass district heating systems

    Science.gov (United States)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  12. Deterministic sensitivity and uncertainty methodology for best estimate system codes applied in nuclear technology

    International Nuclear Information System (INIS)

    Petruzzi, A.; D'Auria, F.; Cacuci, D.G.

    2009-01-01

    Nuclear Power Plant (NPP) technology has been developed based on the traditional defense in depth philosophy supported by deterministic and overly conservative methods for safety analysis. In the 1970s [1], conservative hypotheses were introduced for safety analyses to address existing uncertainties. Since then, intensive thermal-hydraulic experimental research has resulted in a considerable increase in knowledge and consequently in the development of best-estimate codes able to provide more realistic information about the physical behaviour and to identify the most relevant safety issues allowing the evaluation of the existing actual margins between the results of the calculations and the acceptance criteria. However, the best-estimate calculation results from complex thermal-hydraulic system codes (like Relap5, Cathare, Athlet, Trace, etc..) are affected by unavoidable approximations that are un-predictable without the use of computational tools that account for the various sources of uncertainty. Therefore the use of best-estimate codes (BE) within the reactor technology, either for design or safety purposes, implies understanding and accepting the limitations and the deficiencies of those codes. Taking into consideration the above framework, a comprehensive approach for utilizing quantified uncertainties arising from Integral Test Facilities (ITFs, [2]) and Separate Effect Test Facilities (SETFs, [3]) in the process of calibrating complex computer models for the application to NPP transient scenarios has been developed. The methodology proposed is capable of accommodating multiple SETFs and ITFs to learn as much as possible about uncertain parameters, allowing for the improvement of the computer model predictions based on the available experimental evidences. The proposed methodology constitutes a major step forward with respect to the generally used expert judgment and statistical methods as it permits a) to establish the uncertainties of any parameter

  13. Validation methodology focussing on fuel efficiency as applied in the eCoMove project

    NARCIS (Netherlands)

    Themann, P.; Iasi, L.; Larburu, M.; Trommer, S.

    2012-01-01

    This paper discusses the validation approach applied in the eCoMove project (a large scale EU 7th Framework Programme project). In this project, applications are developed that on the one hand optimise network-wide traffic management and control, and on the other hand advise drivers on the most

  14. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  15. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  16. How to assess solid waste management in armed conflicts? A new methodology applied to the Gaza Strip, Palestine.

    Science.gov (United States)

    Caniato, Marco; Vaccari, Mentore

    2014-09-01

    We have developed a new methodology for assessing solid waste management in a situation of armed conflict. This methodology is composed of six phases with specific activities, and suggested methods and tools. The collection, haulage, and disposal of waste in low- and middle-income countries is so complicated and expensive task for municipalities, owing to several challenges involved, that some waste is left in illegal dumps. Armed conflicts bring further constraints, such as instability, the sudden increase in violence, and difficulty in supplying equipment and spare parts: planning is very difficult and several projects aimed at improving the situation have failed. The methodology was validated in the Gaza Strip, where the geopolitical situation heavily affects natural resources. We collected information in a holistic way, crosschecked, and discussed it with local experts, practitioners, and authorities. We estimated that in 2011 only 1300 tonne day(-1) were transported to the three disposal sites, out of a production exceeding 1700. Recycling was very limited, while the composting capacity was 3.5 tonnes day(-1), but increasing. We carefully assessed system elements and their interaction. We identified the challenges, and developed possible solutions to increase system effectiveness and robustness. The case study demonstrated that our methodology is flexible and adaptable to the context, thus it could be applied in other areas to improve the humanitarian response in similar situations. © The Author(s) 2014.

  17. Evaluation of electro-oxidation of biologically treated landfill leachate using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Hui; Ran Xiaoni; Wu Xiaogang; Zhang Daobin

    2011-01-01

    Box-Behnken statistical experiment design and response surface methodology were used to investigate electrochemical oxidation of mature landfill leachate pretreated by sequencing batch reactor (SBR). Titanium coated with ruthenium dioxide (RuO 2 ) and iridium dioxide (IrO 2 ) was used as the anode in this study. The variables included current density, inter-electrode gap and reaction time. Response factors were ammonia nitrogen removal efficiency and COD removal efficiency. The response surface methodology models were derived based on the results. The predicted values calculated with the model equations were very close to the experimental values and the models were highly significant. The organic components before and after electrochemical oxidation were determined by GC-MS.

  18. SCIENTIFIC METHODOLOGY FOR THE APPLIED SOCIAL SCIENCES: CRITICAL ANALYSES ABOUT RESEARCH METHODS, TYPOLOGIES AND CONTRIBUTIONS FROM MARX, WEBER AND DURKHEIM

    Directory of Open Access Journals (Sweden)

    Mauricio Corrêa da Silva

    2015-06-01

    Full Text Available This study aims to discuss the importance of the scientific method to conduct and advertise research in applied social sciences and research typologies, as well as to highlight contributions from Marx, Weber and Durkheim to the scientific methodology. To reach this objective, we conducted a review of the literature on the term research, the scientific method,the research techniques and the scientific methodologies. The results of the investigation revealed that it is fundamental that the academic investigator uses a scientific method to conduct and advertise his/her academic works in applied social sciences in comparison with the biochemical or computer sciences and in the indicated literature. Regarding the contributions to the scientific methodology, we have Marx, dialogued, the dialectical, striking analysis, explicative of social phenomenon, the need to understand the phenomena as historical and concrete totalities; Weber, the distinction between “facts” and “value judgments” to provide objectivity to the social sciences and Durkheim, the need to conceptualize very well its object of study, reject sensible data and imbue with the spirit of discovery and of being surprised with the results.

  19. Service Innovation Methodologies II : How can new product development methodologies be applied to service innovation and new service development? : Report no 2 from the TIPVIS-project

    OpenAIRE

    Nysveen, Herbjørn; Pedersen, Per E.; Aas, Tor Helge

    2007-01-01

    This report presents various methodologies used in new product development and product innovation and discusses the relevance of these methodologies for service development and service innovation. The service innovation relevance for all of the methodologies presented is evaluated along several service specific dimensions, like intangibility, inseparability, heterogeneity, perishability, information intensity, and co-creation. The methodologies discussed are mainly collect...

  20. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    OpenAIRE

    Mrayam Mahjoubin-Tehran; Bahar Shahnavaz; Razie Ghazi-Birjandi; Mansour Mashreghi; Jamshid Fooladi

    2016-01-01

    Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533) was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 ) skim milk. First, the effects of variables w...

  1. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    OpenAIRE

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young; Lee, Chang-Ho; Hong, Sang; Jeon, Yeo-Won; Kim, Young-Eon

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio ...

  2. Numerical Optimization of Impeller for Backward-Curved Centrifugal Fan by Response Surface Methodology (RSM)

    OpenAIRE

    Fannian Meng; Quanlin Dong; Yan Wang; Pengfei Wang; Chunxi Zhang

    2013-01-01

    A numerical optimum study on three-dimensional unsteady viscous flow in a centrifugal fan with backward-curved blades was performed. The influence of the inlet angle, the outlet blade angle and blade number on aerodynamic performance of the centrifugal fan was analyzed concerning the whole impeller-volute configuration. Response Surface Methodology (RSM) based on a three-level, three -variable Box-Behnken Design (BBD) was used to evaluate the interactive effects of factors such as inlet blade...

  3. Applied nursing informatics research - state-of-the-art methodologies using electronic health record data.

    Science.gov (United States)

    Park, Jung In; Pruinelli, Lisiane; Westra, Bonnie L; Delaney, Connie W

    2014-01-01

    With the pervasive implementation of electronic health records (EHR), new opportunities arise for nursing research through use of EHR data. Increasingly, comparative effectiveness research within and across health systems is conducted to identify the impact of nursing for improving health, health care, and lowering costs of care. Use of EHR data for this type of research requires use of national and internationally recognized nursing terminologies to normalize data. Research methods are evolving as large data sets become available through EHRs. Little is known about the types of research and analytic methods for applied to nursing research using EHR data normalized with nursing terminologies. The purpose of this paper is to report on a subset of a systematic review of peer reviewed studies related to applied nursing informatics research involving EHR data using standardized nursing terminologies.

  4. Optimization of the extraction of flavonoids from grape leaves by response surface methodology

    International Nuclear Information System (INIS)

    Brad, K.; Liu, W.

    2013-01-01

    The extraction of flavonoids from grape leaves was optimized to maximize flavonoids yield in this study. A central composite design of response surface methodology involving extracting time, power, liquid-solid ratio, and concentration was used, and second-order model for Y was employed to generate the response surfaces. The optimum condition for flavonoids yield was determined as follows: extracting time 24.95 min, power 72.05, ethanol concentration 63.35%, liquid-solid ratio 10.04. Under the optimum condition, the flavonoids yield was 76.84 %. (author)

  5. The case for applying tissue engineering methodologies to instruct human organoid morphogenesis.

    Science.gov (United States)

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-05-01

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology. Human PSC-derived 3-D organoids are revolutionizing the biomedical sciences. They enable the study of development and disease within patient-specific genetic backgrounds and unprecedented biomimetic tissue microenvironments. However, their uncontrolled, spontaneous morphogenesis at the microscale yields inconsistences in macroscale organoid morphology, cytoarchitecture, and cellular composition that limits their standardization and application. Integration of tissue engineering methods with organoid derivation protocols could allow us to harness their potential by instructing standardized in vitro morphogenesis

  6. Calculation of t8/5 by response surface methodology for electric arc welding applications

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José Luis

    2014-01-01

    Full Text Available One of the greatest difficulties traditionally found in stainless steel constructions has been the execution of welding parts in them. At the present time, the available technology allows us to use arc welding processes for that application without any disadvantage. Response surface methodology is used to optimise a process in which the variables that take part in it are not related to each other by a mathematical law. Therefore, an empiric model must be formulated. With this methodology the optimisation of one selected variable may be done. In this work, the cooling time that takes place from 800 to 500ºC, t8/5, after TIG welding operation, is modelled by the response surface method. The arc power, the welding velocity and the thermal efficiency factor are considered as the variables that have influence on the t8/5 value. Different cooling times,t8/5, for different combinations of values for the variables are previously determined by a numerical method. The input values for the variables have been experimentally established. The results indicate that response surface methodology may be considered as a valid technique for these purposes.

  7. Methodology to characterize a residential building stock using a bottom-up approach: a case study applied to Belgium

    Directory of Open Access Journals (Sweden)

    Samuel Gendebien

    2014-06-01

    Full Text Available In the last ten years, the development and implementation of measures to mitigate climate change have become of major importance. In Europe, the residential sector accounts for 27% of the final energy consumption [1], and therefore contributes significantly to CO2 emissions. Roadmaps towards energy-efficient buildings have been proposed [2]. In such a context, the detailed characterization of residential building stocks in terms of age, type of construction, insulation level, energy vector, and of evolution prospects appears to be a useful contribution to the assessment of the impact of implementation of energy policies. In this work, a methodology to develop a tree-structure characterizing a residential building stock is presented in the frame of a bottom-up approach that aims to model and simulate domestic energy use. The methodology is applied to the Belgian case for the current situation and up to 2030 horizon. The potential applications of the developed tool are outlined.

  8. A methodology for automation and robotics evaluation applied to the space station telerobotic servicer

    Science.gov (United States)

    Smith, Jeffrey H.; Gyanfi, Max; Volkmer, Kent; Zimmerman, Wayne

    1988-01-01

    The efforts of a recent study aimed at identifying key issues and trade-offs associated with using a Flight Telerobotic Servicer (FTS) to aid in Space Station assembly-phase tasks is described. The use of automation and robotic (A and R) technologies for large space systems would involve a substitution of automation capabilities for human extravehicular or intravehicular activities (EVA, IVA). A methodology is presented that incorporates assessment of candidate assembly-phase tasks, telerobotic performance capabilities, development costs, and effect of operational constraints (space transportation system (STS), attached payload, and proximity operations). Changes in the region of cost-effectiveness are examined under a variety of systems design assumptions. A discussion of issues is presented with focus on three roles the FTS might serve: (1) as a research-oriented testbed to learn more about space usage of telerobotics; (2) as a research based testbed having an experimental demonstration orientation with limited assembly and servicing applications; or (3) as an operational system to augment EVA and to aid the construction of the Space Station and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations.

  9. Applying CSSI Methodology to the Interpretation of the Audit Expectation Gap

    Directory of Open Access Journals (Sweden)

    Bruno José Machado de Almeida

    2016-09-01

    Full Text Available The development of the audit process is underpinned by a set of concepts that are not generally understood by the users of financial information or by the generality of investors. An audit is developed based on an accounting platform whose abstract or formal object consists of a set of conventions, principles and standards that can give rise to what is called an accounting gap. An audit is also grounded on concepts of risk and materiality which, although considered audit anchors, are not perceived or understood by the general public and thus can give rise to an expectation gap. In addition, a credibility gap can occur, given the degree of judgment implicit in any accounting model: accounting principles and standards determine what should or should not be recognized. Equally present is the gap that exists between reasonable assurance and absolute assurance and the gap with respect to auditor performance. Analysing the concept and meaning of these terms is the main objective of this paper. Based on the model of Blumer, the methodology emphasizes symbolic interactionism, suggesting that, in society, every professional space interprets in a unique way the concepts and symbols used in the communication process. Our study suggests that  concepts are fundamental tools used in social practice for observing and representing the real world, and for acting and working in it.

  10. VISUALIZATION OF DATA AND RESULTS AS А METHODOLOGICAL BASIS OF APPLIED STATISTICS TEACHING

    Directory of Open Access Journals (Sweden)

    R. R. Nuriakhmetov

    2014-01-01

    Full Text Available Traditional methods of teaching in medical high school of informatics as computer sciences and statistics as a section of high mathematics contradict to requirements of modern applied medicine and a medical science. A research objective is revealing of the reasons of the given discrepancy and its elimination ways. Similar discrepancy was revealed earlier by foreign researchers studying efficiency of the statistic school programs. The revealed laws appeared to be extended to a technique of teaching of statistics in a high medical school. Pursuing this aim the tests of educational achievements developed by the author were applied on the students of medical and biologic department of the Siberian State Medical Universirty that trained on specialities of “biophysics" and “biochemistry". The fundamental problem of statistical education is that symbols used by these science concern to the objects, which students still have to design. As a substantiation of this conclusion serves the ontosemiotical approach to working out of the maintenance of a course. In the article there are considered the approaches to the permission of the given contradiction, based on the experience of teaching of statistics in foreign schools and on the wor­kings out of the author. In particular the conclusion about necessity of revision the tradition of using professional statistical packages and introduction of a special educational software. To working out the maintenance of a learning course it is offered to more widely apply the historical approach which concrete definition is represented by a principle of a guided reinvention.

  11. INTERPERSONAL COMMUNICATION AND METHODOLOGIES OF INNOVATION. A HEURISTIC EXPERIENCE IN THE CLASSROOM APPLYING SEMANTIC NETWORKS

    Directory of Open Access Journals (Sweden)

    José Manuel Corujeira Gómez

    2014-10-01

    Full Text Available The current definition of creativity gives importance to interpersonal communication in innovation strategies, and allows us to question the profiles of professionals –innovation partners– communication skills in the practice session in which they are applied. This text shows shallow results on the application of some of their tactics with a group of students. We tested structural/procedural descriptions of hypothetical effects of communication using indicators proposed by Network Theory in terms topologies provided by the group. Without a conclusive result, we expect this paper helps to the creativity's investigation in the innovation sessions.

  12. SUDOQU, a new dose-assessment methodology for radiological surface contamination.

    Science.gov (United States)

    van Dillen, Teun; van Dijk, Arjan

    2018-06-12

    A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked

  13. The Photogrammetric Survey Methodologies Applied to Low Cost 3d Virtual Exploration in Multidisciplinary Field

    Science.gov (United States)

    Palestini, C.; Basso, A.

    2017-11-01

    In recent years, an increase in international investment in hardware and software technology to support programs that adopt algorithms for photomodeling or data management from laser scanners significantly reduced the costs of operations in support of Augmented Reality and Virtual Reality, designed to generate real-time explorable digital environments integrated to virtual stereoscopic headset. The research analyzes transversal methodologies related to the acquisition of these technologies in order to intervene directly on the phenomenon of acquiring the current VR tools within a specific workflow, in light of any issues related to the intensive use of such devices , outlining a quick overview of the possible "virtual migration" phenomenon, assuming a possible integration with the new internet hyper-speed systems, capable of triggering a massive cyberspace colonization process that paradoxically would also affect the everyday life and more in general, on human space perception. The contribution aims at analyzing the application systems used for low cost 3d photogrammetry by means of a precise pipeline, clarifying how a 3d model is generated, automatically retopologized, textured by color painting or photo-cloning techniques, and optimized for parametric insertion on virtual exploration platforms. Workflow analysis will follow some case studies related to photomodeling, digital retopology and "virtual 3d transfer" of some small archaeological artifacts and an architectural compartment corresponding to the pronaus of Aurum, a building designed in the 1940s by Michelucci. All operations will be conducted on cheap or free licensed software that today offer almost the same performance as their paid counterparts, progressively improving in the data processing speed and management.

  14. Optimization of Protease Production by Psychrotrophic Rheinheimera sp. with Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Mrayam Mahjoubin-Tehran

    2016-10-01

    Full Text Available Background and Objectives: Psychrotrophic bacteria can produce enzymes at low temperatures; this provides a wide biotechnological potential, and offers numerous economical advantages over the use of mesophilic bacteria. In this study, extracellular protease production by psychrotrophic Rheinheimera sp. (KM459533 was optimized by the response surface methodology.Materials and Methods: The culture medium was tryptic soy broth containing 1% (w v -1 skim milk. First, the effects of variables were independently evaluated on the microbial growth and protease production by one-factor-at-a-time method within the following ranges: incubation time 24-120 h, temperature 15-37°C, pH 6- 11, skim milk concentration 0-2% (w v -1 , and inoculum size 0.5-3% (v v -1 . The combinational effects of the four major variable including temperature, pH, skim milk concentration, and inoculum size were then evaluated within 96 h using response surface methodology through 27 experiments.Results and Conclusion: In one-factor-at-a-time method, high cell density was detected at 72h, 20°C, pH 7, skim milk 2% (w v -1 , and inoculum size 3% (v v -1 , and maximum enzyme production (533.74 Uml-1 was achieved at 96h, 20°C, pH 9, skim milk 1% (w v -1 , and inoculum size 3% (v v -1 . The response surface methodology study showed that pH is the most effective factor in enzyme production, and among the other variables, only temperature had significant interaction with pH and inoculum size. The determination coefficient (R2 =0.9544 and non-significant lack of fit demonstrated correlation between the experimental and predicted values. The optimal conditions predicted by the response surface methodology for protease production were defined as: 22C, pH 8.5, skim milk 1.1% (w v -1 , and inoculum size 4% (v v -1 . Protease production under these conditions reached to 567.19 Uml-1 . The use of response surface methodology in this study increased protease production by eight times as

  15. A G-function-based reliability-based design methodology applied to a cam roller system

    International Nuclear Information System (INIS)

    Wang, W.; Sui, P.; Wu, Y.T.

    1996-01-01

    Conventional reliability-based design optimization methods treats the reliability function as an ordinary function and applies existing mathematical programming techniques to solve the design problem. As a result, the conventional approach requires nested loops with respect to g-function, and is very time consuming. A new reliability-based design method is proposed in this paper that deals with the g-function directly instead of the reliability function. This approach has the potential of significantly reducing the number of calls for g-function calculations since it requires only one full reliability analysis in a design iteration. A cam roller system in a typical high pressure fuel injection diesel engine is designed using both the proposed and the conventional approach. The proposed method is much more efficient for this application

  16. Methodology for Applying Cyber Security Risk Evaluation from BN Model to PSA Model

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Soo; Heo, Gyun Young [Kyung Hee University, Youngin (Korea, Republic of); Kang, Hyun Gook [KAIST, Dajeon (Korea, Republic of); Son, Han Seong [Joongbu University, Chubu (Korea, Republic of)

    2014-08-15

    There are several advantages to use digital equipment such as cost, convenience, and availability. It is inevitable to use the digital I and C equipment replaced analog. Nuclear facilities have already started applying the digital system to I and C system. However, the nuclear facilities also have to change I and C system even though it is difficult to use digital equipment due to high level of safety, irradiation embrittlement, and cyber security. A cyber security which is one of important concerns to use digital equipment can affect the whole integrity of nuclear facilities. For instance, cyber-attack occurred to nuclear facilities such as the SQL slammer worm, stuxnet, DUQU, and flame. The regulatory authorities have published many regulatory requirement documents such as U.S. NRC Regulatory Guide 5.71, 1.152, IAEA guide NSS-17, IEEE Standard, and KINS Regulatory Guide. One of the important problem of cyber security research for nuclear facilities is difficulty to obtain the data through the penetration experiments. Therefore, we make cyber security risk evaluation model with Bayesian network (BN) for nuclear reactor protection system (RPS), which is one of the safety-critical systems to trip the reactor when the accident is happened to the facilities. BN can be used for overcoming these problems. We propose a method to apply BN cyber security model to probabilistic safety assessment (PSA) model, which had been used for safety assessment of system, structure and components of facility. The proposed method will be able to provide the insight of safety as well as cyber risk to the facility.

  17. Methodology for Applying Cyber Security Risk Evaluation from BN Model to PSA Model

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Heo, Gyun Young; Kang, Hyun Gook; Son, Han Seong

    2014-01-01

    There are several advantages to use digital equipment such as cost, convenience, and availability. It is inevitable to use the digital I and C equipment replaced analog. Nuclear facilities have already started applying the digital system to I and C system. However, the nuclear facilities also have to change I and C system even though it is difficult to use digital equipment due to high level of safety, irradiation embrittlement, and cyber security. A cyber security which is one of important concerns to use digital equipment can affect the whole integrity of nuclear facilities. For instance, cyber-attack occurred to nuclear facilities such as the SQL slammer worm, stuxnet, DUQU, and flame. The regulatory authorities have published many regulatory requirement documents such as U.S. NRC Regulatory Guide 5.71, 1.152, IAEA guide NSS-17, IEEE Standard, and KINS Regulatory Guide. One of the important problem of cyber security research for nuclear facilities is difficulty to obtain the data through the penetration experiments. Therefore, we make cyber security risk evaluation model with Bayesian network (BN) for nuclear reactor protection system (RPS), which is one of the safety-critical systems to trip the reactor when the accident is happened to the facilities. BN can be used for overcoming these problems. We propose a method to apply BN cyber security model to probabilistic safety assessment (PSA) model, which had been used for safety assessment of system, structure and components of facility. The proposed method will be able to provide the insight of safety as well as cyber risk to the facility

  18. Mass Movement Hazards in the Mediterranean; A review on applied techniques and methodologies

    Science.gov (United States)

    Ziade, R.; Abdallah, C.; Baghdadi, N.

    2012-04-01

    Emergent population and expansions of settlements and life-lines over hazardous areas in the Mediterranean region have largely increased the impact of Mass Movements (MM) both in industrialized and developing countries. This trend is expected to continue in the next decades due to increased urbanization and development, continued deforestation and increased regional precipitation in MM-prone areas due to changing climatic patterns. Consequently, and over the past few years, monitoring of MM has acquired great importance from the scientific community as well as the civilian one. This article begins with a discussion of the MM classification, and the different topographic, geologic, hydrologic and environmental impacting factors. The intrinsic (preconditioning) variables determine the susceptibility of MM and extrinsic factors (triggering) can induce the probability of MM occurrence. The evolution of slope instability studies is charted from geodetic or observational techniques, to geotechnical field-based origins to recent higher levels of data acquisition through Remote Sensing (RS) and Geographic Information System (GIS) techniques. Since MM detection and zoning is difficult in remote areas, RS and GIS have enabled regional studies to predominate over site-based ones where they provide multi-temporal images hence facilitate greatly MM monitoring. The unusual extent of the spectrum of MM makes it difficult to define a single methodology to establish MM hazard. Since the probability of occurrence of MM is one of the key components in making rational decisions for management of MM risk, scientists and engineers have developed physical parameters, equations and environmental process models that can be used as assessment tools for management, education, planning and legislative purposes. Assessment of MM is attained through various modeling approaches mainly divided into three main sections: quantitative/Heuristic (1:2.000-1:10.000), semi-quantitative/Statistical (1

  19. Applying Costs, Risks and Values Evaluation (CRAVE) methodology to Engineering Support Request (ESR) prioritization

    Science.gov (United States)

    Joglekar, Prafulla N.

    1994-01-01

    Given limited budget, the problem of prioritization among Engineering Support Requests (ESR's) with varied sizes, shapes, and colors is a difficult one. At the Kennedy Space Center (KSC), the recently developed 4-Matrix (4-M) method represents a step in the right direction as it attempts to combine the traditional criteria of technical merits only with the new concern for cost-effectiveness. However, the 4-M method was not adequately successful in the actual prioritization of ESRs for the fiscal year 1995 (FY95). This research identifies a number of design issues that should help us to develop better methods. It emphasizes that given the variety and diversity of ESR's one should not expect that a single method could help in the assessment of all ESR's. One conclusion is that a methodology such as Costs, Risks, and Values Evaluation (CRAVE) should be adopted. It also is clear that the development of methods such as 4-M requires input not only from engineers with technical expertise in ESR's but also from personnel with adequate background in the theory and practice of cost-effectiveness analysis. At KSC, ESR prioritization is one part of the Ground Support Working Teams (GSWT) Integration Process. It was discovered that the more important barriers to the incorporation of cost-effectiveness considerations in ESR prioritization lie in this process. The culture of integration, and the corresponding structure of review by a committee of peers, is not conducive to the analysis and confrontation necessary in the assessment and prioritization of ESR's. Without assistance from appropriately trained analysts charged with the responsibility to analyze and be confrontational about each ESR, the GSWT steering committee will continue to make its decisions based on incomplete understanding, inconsistent numbers, and at times, colored facts. The current organizational separation of the prioritization and the funding processes is also identified as an important barrier to the

  20. Immobilized Rhizopus oryzae lipase catalyzed synthesis of palm stearin and cetyl alcohol wax esters: Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Gargouri Youssef

    2011-06-01

    Full Text Available Abstract Background Waxes are esters of long-chain fatty acids and long-chain alcohols. Their principal natural sources are animals (sperm whale oil and vegetables (jojoba which are expensive and not easily available. Wax esters synthesized by enzymatic transesterification, using palm stearin as raw material, can be considered as an alternative to natural ones. Results Palm stearin is a solid fraction obtained by fractionation of palm oil. Palm stearin was esterified with cetyl alcohol to produce a mixture of wax esters. A non-commercial immobilized lipase from Rhizopus oryzae was used as biocatalyst. Response surface methodology was employed to determine the effects of the temperature (30-50°C, the enzyme concentration (33.34-300 IU/mL, the alcohol/palm stearin molar ratio (3-7 mol/mol and the substrate concentration (0.06-0.34 g/mL on the conversion yield of palm stearin. Under optimal conditions (temperature, 30°C; enzyme concentration, 300 IU/mL; molar ratio 3 and substrate concentration 0.21 g/mL a high conversion yield of 98.52% was reached within a reaction time of 2 h. Conclusions Response surface methodology was successfully applied to determine the optimum operational conditions for synthesis of palm stearin based wax esters. This study may provide useful tools to develop economical and efficient processes for the synthesis of wax esters.

  1. Application of response surface methodology to optimise supercritical carbon dioxide extraction of volatile compounds from Crocus sativus.

    Science.gov (United States)

    Shao, Qingsong; Huang, Yuqiu; Zhou, Aicun; Guo, Haipeng; Zhang, Ailian; Wang, Yong

    2014-05-01

    Crocus sativus has been used as a traditional Chinese medicine for a long time. The volatile compounds of C. sativus appear biologically active and may act as antioxidants as well as anticonvulsants, antidepressants and antitumour agents. In order to obtain the highest possible yield of essential oils from C. sativus, response surface methodology was employed to optimise the conditions of supercritical fluid carbon dioxide extraction of the volatile compounds from C. sativus. Four factorswere investigated: temperature, pressure, extraction time and carbon dioxide flow rate. Furthermore, the chemical compositions of the volatile compounds extracted by supercritical fluid extraction were compared with those obtained by hydro-distillation and Soxhlet extraction. The optimum extraction conditions were found to be: optimised temperature 44.9°C, pressure 34.9 MPa, extraction time 150.2 min and CO₂ flow rate 10.1 L h⁻¹. Under these conditions, the mean extraction yield was 10.94 g kg⁻¹. The volatile compounds extracted by supercritical fluid extraction and Soxhlet extraction contained a large amount of unsaturated fatty acids. Response surface methodology was successfully applied for supercritical fluid CO₂ extraction optimisation of the volatile compounds from C. sativus. The study showed that pressure and CO₂ flow rate had significant effect on volatile compounds yield produced by supercritical fluid extraction. This study is beneficial for the further research operating on a large scale. © 2013 Society of Chemical Industry.

  2. Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology

    Directory of Open Access Journals (Sweden)

    Panagiota-Yiolanda Stergiou

    2014-06-01

    Full Text Available The aim of this work was to study the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 using optimized nutritional and cultural conditions in a complex yeast medium under aerobic batch fermentation. By applying the conventional "one-variable-at-a-time" approach and the response surface methodology, the effect of four fermentation parameters (type of carbon source, initial culture pH, temperature, and incubation time on the growth and α-amylase production was evaluated. The production of α-amylase during 60 h of fermentation increased 13-fold under optimized conditions (1% starch, pH 6.0, 30ºC in comparison to the conventional optimization method. The initial pH value of 6.13 and temperature of 30.3ºC were optimal conditions by the response surface methodology, leading to further improvement (up to 13-fold in the production of extracellular α-amylase. These results constituted first evidence that K. marxianus could be potentially used as an effective source of extracellular α-amylase.

  3. Synthesis of biocompatible and highly photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Arkan, Elham [Nano Drug Delivery Research Center Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Hosseinzadeh, Leila [Novel Drug Delivery Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2015-02-01

    Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg{sup 2+} ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight. - Highlights: • High fluorescent N-doped CQDs from lime juice have been prepared. • Response surface methodology was used to optimize and model the main factors. • N-doped CQDs were used in the selective and sensitive detection of Hg(II). • The biocompatibility of prepared N-doped CQDs was conformed using PC12 cells.

  4. Experimental and NMR theoretical methodology applied to geometric analysis of the bioactive clerodane trans-dehydrocrotonin

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Breno Almeida; Firme, Caio Lima, E-mail: firme.caio@gmail.com, E-mail: caiofirme@quimica.ufrn.br [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Instituto de Quimica; Maciel, Maria Aparecida Medeiros [Universidade Potiguar, Natal, RN (Brazil). Programa de Pos-graduacao em Biotecnologia; Kaiser, Carlos R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto de Quimica; Schilling, Eduardo; Bortoluzzi, Adailton J. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica

    2014-04-15

    trans-Dehydrocrotonin (t-DCTN) a bioactive 19-nor-diterpenoid clerodane type isolated from Croton cajucara Benth, is one of the most investigated clerodane in the current literature. In this work, a new approach joining X-ray diffraction data, nuclear magnetic resonance (NMR) data and theoretical calculations was applied to the thorough characterization of t-DCTN. For that, the geometry of t-DCTN was reevaluated by X-ray diffraction as well as {sup 1}H and {sup 13}C NMR data, whose geometrical parameters where compared to those obtained from B3LYP/6-311G++(d,p) level of theory. From the evaluation of both calculated and experimental values of {sup 1}H and {sup 13}C NMR chemical shifts and spin-spin coupling constants, it was found very good correlations between theoretical and experimental magnetic properties of t-DCTN. Additionally, the delocalization indexes between hydrogen atoms correlated accurately with theoretical and experimental spin-spin coupling constants. An additional topological analysis from quantum theory of atoms in molecules (QTAIM) showed intramolecular interactions for t-DCTN. (author)

  5. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  6. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    International Nuclear Information System (INIS)

    Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.

    2015-01-01

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

  7. Experimental and NMR theoretical methodology applied to geometric analysis of the bioactive clerodane trans-dehydrocrotonin

    International Nuclear Information System (INIS)

    Soares, Breno Almeida; Firme, Caio Lima; Maciel, Maria Aparecida Medeiros; Kaiser, Carlos R.; Schilling, Eduardo; Bortoluzzi, Adailton J.

    2014-01-01

    trans-Dehydrocrotonin (t-DCTN) a bioactive 19-nor-diterpenoid clerodane type isolated from Croton cajucara Benth, is one of the most investigated clerodane in the current literature. In this work, a new approach joining X-ray diffraction data, nuclear magnetic resonance (NMR) data and theoretical calculations was applied to the thorough characterization of t-DCTN. For that, the geometry of t-DCTN was reevaluated by X-ray diffraction as well as 1 H and 13 C NMR data, whose geometrical parameters where compared to those obtained from B3LYP/6-311G++(d,p) level of theory. From the evaluation of both calculated and experimental values of 1 H and 13 C NMR chemical shifts and spin-spin coupling constants, it was found very good correlations between theoretical and experimental magnetic properties of t-DCTN. Additionally, the delocalization indexes between hydrogen atoms correlated accurately with theoretical and experimental spin-spin coupling constants. An additional topological analysis from quantum theory of atoms in molecules (QTAIM) showed intramolecular interactions for t-DCTN. (author)

  8. Enhanced Production of Cellulase from Pineapple Waste by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2013-01-01

    Full Text Available Optimization of the media components for cellulase production using Trichoderma reesei was carried out. The optimization of cellulase production using pineapple waste as substrate was performed with statistical methodology based on experimental designs. The screening of nutrients and their influence on the cellulase production was studied using a Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and yeast extract were found to have the positive influence for the production of cellulase. The selected components were optimized using response surface methodology. The optimum concentrations are avicel: 26.5 g/L, soybean cake flour: 22.5 g/L, KH2PO4: 4.5 g/L, and yeast extract: 12.3 g/L. A maximum cellulase activity of 8.61 IU/mL was obtained under the optimized medium in the validation experiment.

  9. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology.

    Science.gov (United States)

    Akarsu, Ceyhun; Ozay, Yasin; Dizge, Nadir; Elif Gulsen, H; Ates, Hasan; Gozmen, Belgin; Turabik, Meral

    Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box-Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5-15 V), initial pH (4.5-8.0) and time (30-90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R(2) and Radj(2) values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R(2) values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage-time and pH-time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic

  10. Statistical analysis of surface roughness in turning based on cutting parameters and tool vibrations with response surface methodology (RSM)

    Science.gov (United States)

    Touati, Soufiane; Mekhilef, Slimane

    2018-03-01

    In this paper, we present an experimental study to determine the effect of the cutting conditions and tool vibration on the surface roughness in finish turning of 32CrMoV12-28 steel, using carbide cutting tool YT15. For these purposes, a linear quadratic model in interaction of connecting surface roughness (Ra, Rz) with different combinations of cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration, in radial and in tangential cutting force directions (Vy) and (Vz) is elaborated. In order to express the degree of interaction of cutting parameters and tool vibration, a multiple linear regression and response surface methodology are adopted. The application of this statistical technique for predicting the surface roughness shows that the feed rate is the most dominant factor followed by the cutting speed. However, the depth of the cut and tool vibrations have secondary effect. The presented models have some interest since they are used in the cutting process optimization.

  11. [Optimization of Formulation and Process of Paclitaxel PEGylated Liposomes by Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Shi, Ya-jun; Zhang, Xiao-feil; Guo, Qiu-ting

    2015-12-01

    To develop a procedure for preparing paclitaxel encapsulated PEGylated liposomes. The membrane hydration followed extraction method was used to prepare PEGylated liposomes. The process and formulation variables were optimized by "Box-Behnken Design (BBD)" of response surface methodology (RSM) with the amount of Soya phosphotidylcholine (SPC) and PEG2000-DSPE as well as the rate of SPC to drug as independent variables and entrapment efficiency as dependent variables for optimization of formulation variables while temperature, pressure and cycle times as independent variables and particle size and polydispersion index as dependent variables for process variables. The optimized liposomal formulation was characterized for particle size, Zeta potential, morphology and in vitro drug release. For entrapment efficiency, particle size, polydispersion index, Zeta potential, and in vitro drug release of PEGylated liposomes was found to be 80.3%, (97.15 ± 14.9) nm, 0.117 ± 0.019, (-30.3 ± 3.7) mV, and 37.4% in 24 h, respectively. The liposomes were found to be small, unilamellar and spherical with smooth surface as seen in transmission electron microscopy. The Box-Behnken response surface methodology facilitates the formulation and optimization of paclitaxel PEGylated liposomes.

  12. UTILIZATION OF RESPONSE SURFACE METHODOLOGY IN THE OPTIMIZATION OF ROSELLE ICE CREAM MAKING [Penggunaan Response Surface Methodology dalam Optimisasi Pembuatan Es Krim Rosella

    Directory of Open Access Journals (Sweden)

    Jeremia Manuel*

    2014-12-01

    Full Text Available This research was carried out to develop a functional ice cream product with natural colorant derived from an optimum set of roselle calyces extract and citric acid concentrations. Although citric acid can improve red color stability of rosella, its addition is limited due to the acidic and bitter aftertaste it imparts. Response surface methodology (RSM was employed to analyze the effect of roselle calyces extract and citric acid on physico-chemical characteristics and sensory acceptance of an ice cream. A central composite design consisting of two independent variables (roselle calyces extract and citric acid cocentrations at five levels (-1.41421, -1, 0, +1, and +1.41421 with 13 runs (formulations was prepared to establish the optimum set of variables. Higher concentration of roselle calyces extract significantly increased the total anthocyanin content and color acceptance, while decreased the ºHue and pH of the ice cream. Higher concentration of citric acid significantly increased the overrun and color acceptance, but decreased the viscosity, ºHue, pH, texture, taste acceptance, and overall acceptance of ice cream. The optimum scores of consumer sensory acceptance were met at 11.5% roselle calyces extract and 1.5% citric acid concentrations.

  13. Optimization of cocoa nib roasting based on sensory properties and colour using response surface methodology

    Directory of Open Access Journals (Sweden)

    D.M.H. A.H. Farah

    2012-05-01

    Full Text Available Roasting of cocoa beans is a critical stage for development of its desirable flavour, aroma and colour. Prior to roasting, cocoa bean may taste astringent, bitter, acidy, musty, unclean, nutty or even chocolate-like, depends on the bean sources and their preparations. After roasting, the bean possesses a typical intense cocoa flavour. The Maillard or non-enzymatic browning reactions is a very important process for the development of cocoa flavor, which occurs primarily during the roasting process and it has generally been agreed that the main flavor components, pyrazines formation is associated within this reaction involving amino acids and reducing sugars. The effect of cocoa nib roasting conditions on sensory properties and colour of cocoa beans were investigated in this study. Roasting conditions in terms of temperature ranged from 110 to 160OC and time ranged from 15 to 40 min were optimized by using Response Surface Methodology based on the cocoa sensory characteristics including chocolate aroma, acidity, astringency, burnt taste and overall acceptability. The analyses used 9- point hedonic scale with twelve trained panelist. The changes in colour due to the roasting condition were also monitored using chromameter. Result of this study showed that sensory quality of cocoa liquor increased with the increase in roasting time and temperature up to 160OC and up to 40 min, respectively. Based on the Response Surface Methodology, the optimised operating condition for the roaster was at temperature of 127OC and time of 25 min. The proposed roasting conditions were able to produce superior quality cocoa beans that will be very useful for cocoa manufactures.Key words : Cocoa, cocoa liquor, flavour, aroma, colour, sensory characteristic, response surface methodology.

  14. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    Science.gov (United States)

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  15. The Use of Response Surface Methodology to Optimize the Ultrasound-Assisted Extraction of Five Anthraquinones from Rheum palmatum L.

    Directory of Open Access Journals (Sweden)

    Xianghua Xia

    2011-07-01

    Full Text Available In this paper, ultrasound-assisted extraction (UAE was applied to the extraction of anthraquinones (aloe-emodin, rhein, emodin, chrysophanol and physcion from Rheum palmatum L. The five anthraquinones were quantified and analyzed by high performance liquid chromatography coupled with UV detection (HPLC-UV. The extraction solvent, extraction temperature and extraction time parameters, the three main factors for UAE, were optimized with response surface methodology (RSM to obtain the highest extraction efficiency. The optimal conditions were the use of 84% methanol as solvent, an extraction time of 33 min and an extraction temperature of 67 °C. Under these optimal conditions, the experimental values agreed closely with the predicted values. The analysis of variance indicated a high goodness of model fit and the success of RSM method for optimizing anthraquinones extraction in Rheum palmatum L.

  16. An Effective Vacuum Assisted Extraction Method for the Optimization of Labdane Diterpenoids from Andrographis paniculata by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ya-Qi Wang

    2014-12-01

    Full Text Available An effective vacuum assisted extraction (VAE technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM. Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  17. Production of Heat Sensitive Monoacylglycerols by Enzymatic Glycerolysis in Tert-pentanol: Process Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Damstrup, Marianne L.; Jensen, Tine; Sparsø, Flemming V.

    2006-01-01

    The aim of this study was to optimize production of MAG by lipase-catalyzed glycerolysis in a tert-pentanol system. Twenty-nine batch reactions consisting of glycerol, sunflower oil, tert-pentanol, and commercially available lipase (Novozym®435) were carried out, with four process parameters being...... varied: Enzyme load, reaction time, substrate ratio of glycerol to oil, and solvent amount. Response surface methodology was applied to optimize the reaction system based on the experimental data achieved. MAG, DAG, and TAG contents, measured after a selected reaction time, were used as model responses....... Well-fitting quadratic models were obtained for MAG, DAG, and TAG contents as a function of the process parameters with determination coefficients (R2) of 0.89, 0.88, and 0.92, respectively. Of the main effects examined, only enzyme load and reaction time significantly influenced MAG, DAG, and TAG...

  18. Optimisation on processing parameters for minimising warpage on side arm using response surface methodology (RSM) and particle swarm optimisation (PSO)

    Science.gov (United States)

    Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.

    2017-09-01

    This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.

  19. Optimization of enzymatic hydrolysis of guar gum using response surface methodology

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B. S.

    2012-01-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3–7), temperature (20–60 °C), reaction time (1–5 h) and cellulase concentration (0.25–1.25 mg/g) on viscosity d...

  20. [Optimization of riboflavin sodium phosphate loading to calcium alginate floating microspheres by response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2009-12-18

    To investigate the preparation, optimization and in vitro properties of riboflavin sodium phosphate floating microspheres. The floating microspheres composed of riboflavin sodium phosphate and calcium alginate were prepared using ion gelatin-oven drying method. The properties of the microspheres were investigated, including the buoyancy, release, appearance and entrapment efficiency. The formulation was optimized by response surface methodology (RSM). The optimized microspheres were round. The entrapment efficiency was 57.49%. All the microspheres could float on the artificial gastric juice over 8 hours. The release of the drug from the microspheres complied with Fick's diffusion.

  1. Isolation of Nanocrystalline Cellulose from oil palm empty fruit bunch – A response surface methodology study

    Directory of Open Access Journals (Sweden)

    Song Yee Kai

    2016-01-01

    Full Text Available The research work studied the extraction of Nano Crystalline Cellulose (NCC from oil palm empty fruit bunch (EFB, with aid of Response Surface Methodology (RSM. Particle size analysis using Malvern Zetasizer had confirmed the extracted NCC fall within the desired nano scaled range. The impact of three input parameters, namely concentration of NaOH solution during alkaline treatment, concentration of H2SO4 solution during acid hydrolysis, and duration for acid hydrolysis on NCC particle were investigated. From ANOVA study, it had suggested that the current RSM model is significant to interpret the interaction among the all three input parameters.

  2. Electrodeposition of Iridium Oxide by Cyclic Voltammetry: Application of Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kakooei Saeid

    2014-07-01

    Full Text Available The effects of scan rate, temperature, and number of cycles on the coating thickness of IrOX electrodeposited on a stainless steel substrate by cyclic voltammetry were investigated in a statistical system. The central composite design, combined with response surface methodology, was used to study condition of electrodeposition. All fabricated electrodes were characterized using electrochemical methods. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy were performed for IrOX film characterization. Results showed that scan rate significantly affects the thickness of the electrodeposited layer. Also, the number of cycles has a greater effect than temperature on the IrOX thickness.

  3. Warpage analysis on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Zulhasif, Z.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    The optimisation of moulding parameters appropriate to reduce warpage defects produce using Autodesk Moldflow Insight (AMI) 2012 software The product is injected by using Acrylonitrile-Butadiene-Styrene (ABS) materials. This analysis has processing parameter that varies in melting temperature, mould temperature, packing pressure and packing time. Design of Experiments (DOE) has been integrated to obtain a polynomial model using Response Surface Methodology (RSM). The Glowworm Swarm Optimisation (GSO) method is used to predict a best combination parameters to minimise warpage defect in order to produce high quality parts.

  4. Consideration on safety assessment methodologies applied to the near surface repository Baita Bihor

    International Nuclear Information System (INIS)

    Dogaru, D.

    2003-01-01

    The Romanian legislation in respect of RAW management is described. The waste facilities in the country are: for low and intermediate level waste - Radioactive Waste Treatment Plant - Bucharest Magurele; Radioactive Waste Treatment Plant - Pitesti; National Repository for Radioactive Waste - Baita Bihor. for spent fuel - Intermediate dry spent fuel storage facility (DICA) - CNE Cernavoda; Intermediate wet spent fuel storage facility WWR-S - Bucharest Magurele. A detailed description of the facilities and waste characterisation are given in the report. Due o insufficient and incomplete information about site characterisation and inventory a Phare project 'Preliminary Safety Analysis for the Low-Level Radioactive Waste Repository Baita Bihor, Romania' has been approved. The project purposes are: to achieve a database with specific parameters; validation of scenarios and conceptual models for normal and altered evolution of the disposal site; validation and qualification of existing calculation methods and identification of the complementary suitable computer codes to be installed in Romania; validation and analyses of the final results expertise PSAR final results; recommendation for further completion of Integrated Performance Assessment. The results, conclusions and recommendations of the project will be included in the Preliminary Safety Analyses Report to be sent to the Romanian Authority - CNCAN for licensing of the repository operation

  5. SGFM applied to the calculation of surface band structure of V

    International Nuclear Information System (INIS)

    Baquero, R.; Velasco, V.R.; Garcia Moliner, F.

    1986-07-01

    The surface Green function matching (SGFM) method has been developed recently to deal with a great variety of problems in a unified way. The method was first developed for continuum systems. The recent advances for discrete structures can deal with surfaces, interfaces, quantum wells, superlattices, intercalated layered compounds, and other systems. Several applications of this formalism are being carried out. In the present note we will describe how the formalism applies to the calculation of the electronic surface band structure of vanadium which is a quite interesting transition metal with very active magnetic properties at the surface, in particular at the (100) surface. It is straightforward, on the basis of the calculation presented here, to obtain the magnetic moment on the surface, for example, through the method followed by G. Allan or the surface paramagnon density which should be particularly enhanced at this surface as compared to the bulk

  6. Surface Signature Characterization at SPE through Ground-Proximal Methods: Methodology Change and Technical Justification

    Energy Technology Data Exchange (ETDEWEB)

    Schultz-Fellenz, Emily S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-09

    A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation and careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.

  7. Optimization of biosurfactant production by Bacillus brevis using response surface methodology

    Directory of Open Access Journals (Sweden)

    Foukia E. Mouafi

    2016-03-01

    Full Text Available The present study aims to evaluate and validate a statistical model for maximizing biosurfactant productivity by Bacillus brevis using response surface methodology. In this respect, twenty bacterial isolates were screened for biosurfactant production using hemolytic activity, oil spreading technique, and emulsification index (E24. The most potent biosurfactant-producing bacterium (B. brevis was used for construction of the statistical response surface model. The optimum conditions for biosurfactant production by B. brevis were: 33 °C incubation temperature at pH 8 for 10 days incubation period and 8.5 g/L glucose concentration as a sole carbon source. The produced biosurfactant (BS (73% exhibited foaming activity, thermal stability in the range 30–80 °C for 30 min., pH stability, from 4 to 9 and antimicrobial activity against (Escherichia coli. The BS gave a good potential application as an emulsifier.

  8. Advanced surface technology a holistic view on the extensive and intertwined world of applied surface engineering

    CERN Document Server

    Moller, Per

    2013-01-01

    These two volumes serve as an inclusive and practical reference in manufacturing as well as a comprehensive text for university-level course work. Before delving into the variety of conventional and emerging surface finishing processes available to the 21st century practitioner, the authors cover the principles behind the processes, including wear and other mechanical properties, corrosion and electrochemistry. Throughout, the material also covers testing, property measurement and a generic introduction to basically all surface relevant characterization techniques, keyed to the specific process and application under discussion.

  9. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  10. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    International Nuclear Information System (INIS)

    Chinnadurai, T.; Vendan, S.A.

    2016-01-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  11. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chinnadurai, T.; Vendan, S.A.

    2016-07-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  12. An optimization study on transesterification catalyzed by the activated carbide slag through the response surface methodology

    International Nuclear Information System (INIS)

    Liu, Mengqi; Niu, Shengli; Lu, Chunmei; Cheng, Shiqing

    2015-01-01

    Highlights: • New catalyst material for biodiesel production. • New utilization approach of waste carbide slag. • Detailed characterization of carbide slag used as transesterification catalyst. • Optimal parameters for biodiesel production obtained by response surface methodology. • Effect of impurities on catalytic activity of carbide slag in transesterification. - Abstract: After activated at 850 °C under air condition, calcium hydroxide and calcium carbonate in carbide slag are transformed into calcium oxide. The prepared transesterification catalyst, labeled as CS-850, gains surface area of 8.00 m 2 g −1 , functional groups of vanishing O−C−O and O−H bonds, surface morphology of tenuous branch and porous structure and basic strength of 9.8 < H – < 15.0. From aspects of the molar ratio of methanol to oil (γ), the catalyst added amount (ζ) and the reaction temperature (T r ), transesterification catalyzed by CS-850 is optimized through the Box–Behnken design of the response surface methodology (BBD–RSM). A quadratic polynomial model is preferred for transesterification efficiency prediction with coefficient of determination (R 2 ) of 0.9815. The optimal parameters are predicted to be γ = 13.8, ζ = 6.7% and T r = 60 °C with the efficiency of 94.70% and validated by experimental value of 93.83%. Meanwhile, γ is demonstrated to be the most significant variable for the minimum p-value. Besides, CS-850 performs acceptable reusability and for the fifth time reusage, efficiency of 82.61% could still be supplied. Aluminium oxide is proved to have the greatest effect on the catalytic activity of CS-850 among other small quality oxides. Physicochemical properties of the purified biodiesel meet American Society for Testing and Material (ASTM) standard

  13. 'Intelligent' triggering methodology for improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces

    International Nuclear Information System (INIS)

    Gustafsson, Joergen; Axner, Ove

    2003-01-01

    The wavelength modulation-diode laser absorption spectrometry (WM-DLAS) technique experiences a limited detectability when window-equipped sample compartments are used because of multiple reflections between components in the optical system (so-called etalon effects). The problem is particularly severe when the technique is used with a window-equipped graphite furnace (GF) as atomizer since the heating of the furnace induces drifts of the thickness of the windows and thereby also of the background signals. This paper presents a new detection methodology for WM-DLAS applied to a window-equipped GF in which the influence of the background signals from the windows is significantly reduced. The new technique, which is based upon a finding that the WM-DLAS background signals from a window-equipped GF are reproducible over a considerable period of time, consists of a novel 'intelligent' triggering procedure in which the GF is triggered at a user-chosen 'position' in the reproducible drift-cycle of the WM-DLAS background signal. The new methodology makes also use of 'higher-than-normal' detection harmonics, i.e. 4f or 6f, since these previously have shown to have a higher signal-to-background ratio than 2f-detection when the background signals originates from thin etalons. The results show that this new combined background-drift-reducing methodology improves the limit of detection of the WM-DLAS technique used with a window-equipped GF by several orders of magnitude as compared to ordinary 2f-detection, resulting in a limit of detection for a window-equipped GF that is similar to that of an open GF

  14. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Bobby, E-mail: philipb@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Dilts, Gary A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  15. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh

    2016-01-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  16. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School

    2016-08-01

    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  17. Development, Characterization, and Optimization of Protein Level in Date Bars Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2012-01-01

    Full Text Available This project was designed to produce a nourishing date bar with commercial value especially for school going children to meet their body development requirements. Protein level of date bars was optimized using response surface methodology (RSM. Economical and underutilized sources, that is, whey protein concentrate and vetch protein isolates, were explored for protein supplementation. Fourteen date bar treatments were produced using a central composite design (CCD with 2 variables and 3 levels for each variable. Date bars were then analyzed for nutritional profile. Proximate composition revealed that addition of whey protein concentrate and vetch protein isolates improved the nutritional profile of date bars. Protein level, texture, and taste were considerably improved by incorporating 6.05% whey protein concentrate and 4.35% vetch protein isolates in date bar without affecting any sensory characteristics during storage. Response surface methodology was observed as an economical and effective tool to optimize the ingredient level and to discriminate the interactive effects of independent variables.

  18. Adsorptive removal of residual catalyst from palm biodiesel: Application of response surface methodology

    Directory of Open Access Journals (Sweden)

    Mjalli Sabri Farouq

    2012-01-01

    Full Text Available In this work, the residual potassium hydroxide catalyst was removed from palm oil-based methyl esters using an adsorption technique. The produced biodiesel was initially purified through a water washing process. To produce a biodiesel with a better quality and also to meet standard specifications (EN 14214 and ASTM D6751, batch adsorption on palm shell activated carbon was used for further catalyst removal. The Central Composite Design (CCD of the Response Surface Methodology (RSM was used to study the influence of adsorbent amount, time and temperature on the adsorption of potassium species. The maximum catalyst removal was achieved at 40°C using 0.9 g activated carbon for 20 h adsorption time. The results from the Response Surface Methodology are in a good agreement with the measured values. The absolute error in prediction at the optimum condition was 3.7%, which is reasonably accurate. This study proves that adsorption post-treatment techniques can be successfully employed to improve the quality of biodiesel fuel for its effective use on diesel engines and to minimize the usage of water.

  19. Modeling of Throughput in Production Lines Using Response Surface Methodology and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Federico Nuñez-Piña

    2018-01-01

    Full Text Available The problem of assigning buffers in a production line to obtain an optimum production rate is a combinatorial problem of type NP-Hard and it is known as Buffer Allocation Problem. It is of great importance for designers of production systems due to the costs involved in terms of space requirements. In this work, the relationship among the number of buffer slots, the number of work stations, and the production rate is studied. Response surface methodology and artificial neural network were used to develop predictive models to find optimal throughput values. 360 production rate values for different number of buffer slots and workstations were used to obtain a fourth-order mathematical model and four hidden layers’ artificial neural network. Both models have a good performance in predicting the throughput, although the artificial neural network model shows a better fit (R=1.0000 against the response surface methodology (R=0.9996. Moreover, the artificial neural network produces better predictions for data not utilized in the models construction. Finally, this study can be used as a guide to forecast the maximum or near maximum throughput of production lines taking into account the buffer size and the number of machines in the line.

  20. Ultrasound-assisted xanthation of cellulose from lignocellulosic biomass optimized by response surface methodology for Pb(II) sorption.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Gu, Guohua

    2018-02-15

    Alkali treatment of lignocellulosic biomass is conducted to remove hemi-cellulose and lignin, further increasing the reactivity and accessibility of cellulose. Ultrasound-assisted xanthation of alkali cellulose is optimized by response surface methodology (RSM) with a Box-Behnken design. A predicting mathematical model is obtained by fitting experimental data, and it is verified by analysis of variance. Response surface plots and the contour plots obtained from the model are applied to determine the interactions of experimental variables. The optimum conditions are NaOH concentration 1.3mol/L, ultrasonic time 71.6min and CS 2 dosage 1.5mL. FTIR, SEM and XPS characterizations confirm the synthesis and sorption mechanism of cellulose xanthate (CX). Biosorption of Pb (II) onto CX obeys pseudo-second order model and Langmuir model. The sorption mechanism is attributed to surface complexation or ion exchange. CX shows good reusability for Pb (II) sorption. The maximum sorption capacity of Pb(II) is 134.41mg/g, higher than that of other biosorbents. CX has great potential as an efficient and low-cost biosorbent for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fiber-Optic Temperature and Pressure Sensors Applied to Radiofrequency Thermal Ablation in Liver Phantom: Methodology and Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Daniele Tosi

    2015-01-01

    Full Text Available Radiofrequency thermal ablation (RFA is a procedure aimed at interventional cancer care and is applied to the treatment of small- and midsize tumors in lung, kidney, liver, and other tissues. RFA generates a selective high-temperature field in the tissue; temperature values and their persistency are directly related to the mortality rate of tumor cells. Temperature measurement in up to 3–5 points, using electrical thermocouples, belongs to the present clinical practice of RFA and is the foundation of a physical model of the ablation process. Fiber-optic sensors allow extending the detection of biophysical parameters to a vast plurality of sensing points, using miniature and noninvasive technologies that do not alter the RFA pattern. This work addresses the methodology for optical measurement of temperature distribution and pressure using four different fiber-optic technologies: fiber Bragg gratings (FBGs, linearly chirped FBGs (LCFBGs, Rayleigh scattering-based distributed temperature system (DTS, and extrinsic Fabry-Perot interferometry (EFPI. For each instrument, methodology for ex vivo sensing, as well as experimental results, is reported, leading to the application of fiber-optic technologies in vivo. The possibility of using a fiber-optic sensor network, in conjunction with a suitable ablation device, can enable smart ablation procedure whereas ablation parameters are dynamically changed.

  2. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology.

    Science.gov (United States)

    Radaei, Payam; Mashayekhan, Shohreh; Vakilian, Saeid

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Degradation of ticarcillin by subcritial water oxidation method: Application of response surface methodology and artificial neural network modeling.

    Science.gov (United States)

    Yabalak, Erdal

    2018-05-18

    This study was performed to investigate the mineralization of ticarcillin in the artificially prepared aqueous solution presenting ticarcillin contaminated waters, which constitute a serious problem for human health. 81.99% of total organic carbon removal, 79.65% of chemical oxygen demand removal, and 94.35% of ticarcillin removal were achieved by using eco-friendly, time-saving, powerful and easy-applying, subcritical water oxidation method in the presence of a safe-to-use oxidizing agent, hydrogen peroxide. Central composite design, which belongs to the response surface methodology, was applied to design the degradation experiments, to optimize the methods, to evaluate the effects of the system variables, namely, temperature, hydrogen peroxide concentration, and treatment time, on the responses. In addition, theoretical equations were proposed in each removal processes. ANOVA tests were utilized to evaluate the reliability of the performed models. F values of 245.79, 88.74, and 48.22 were found for total organic carbon removal, chemical oxygen demand removal, and ticarcillin removal, respectively. Moreover, artificial neural network modeling was applied to estimate the response in each case and its prediction and optimizing performance was statistically examined and compared to the performance of central composite design.

  4. Artificial intelligence methodologies applied to quality control of the positioning services offered by the Red Andaluza de Posicionamiento (RAP network

    Directory of Open Access Journals (Sweden)

    Antonio José Gil

    2012-12-01

    Full Text Available On April 26, 2012, Elena Giménez de Ory defend-ed her Ph.D. thesis at University of Jaén, entitled: “Robust methodologies applied to quality control of the positioning services offered by the Red Andaluza de Posicionamiento (RAP network”. Elena Giménez de Ory defended her dissertation in a publicly open presentation held in the Higher Polytechnic School at the University of Jaén, and was able to comment on every question raised by her thesis committee and the audience. The thesis was supervised by her advisor, Prof. Antonio J. Gil Cruz, and the rest of his thesis committee, Prof. Manuel Sánchez de la Orden, Dr. Antonio Miguel Ruiz Armenteros and Dr. Gracia Rodríguez Caderot. The thesis has been read and approved by his thesis committee, receiving the highest rating. All of them were present at the presentation.

  5. Application of the PISC results and methodology to assess the effectiveness of NDT techniques applied on non nuclear components

    International Nuclear Information System (INIS)

    Maciga, G.; Papponetti, M.; Crutzen, S.; Jehenson, P.

    1990-01-01

    Performance demonstration for NDT has been an active topic for several years. Interest in it came to the fore in the early 1980's when several institutions started to propose to use of realistic training assemblies and the formal approach of Validation Centers. These steps were justified for example by the results of the PISC exercises which concluded that there was a need for performance demonstration starting with capability assessment of techniques and procedure as they were routinely applied. If the PISC programme is put under the general ''Nuclear Motivation'', the PISC Methodology could be extended to problems to structural components in general, such as on conventional power plants, chemical, aerospace and offshore industries, where integrity and safety have regarded as being of great importance. Some themes of NDT inspections of fossil power plant and offshore components that could be objects of validation studies will be illustrated. (author)

  6. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  7. On the development of a new methodology in sub-surface parameterisation on the calibration of groundwater models

    Science.gov (United States)

    Klaas, D. K. S. Y.; Imteaz, M. A.; Sudiayem, I.; Klaas, E. M. E.; Klaas, E. C. M.

    2017-10-01

    In groundwater modelling, robust parameterisation of sub-surface parameters is crucial towards obtaining an agreeable model performance. Pilot point is an alternative in parameterisation step to correctly configure the distribution of parameters into a model. However, the methodology given by the current studies are considered less practical to be applied on real catchment conditions. In this study, a practical approach of using geometric features of pilot point and distribution of hydraulic gradient over the catchment area is proposed to efficiently configure pilot point distribution in the calibration step of a groundwater model. A development of new pilot point distribution, Head Zonation-based (HZB) technique, which is based on the hydraulic gradient distribution of groundwater flow, is presented. Seven models of seven zone ratios (1, 5, 10, 15, 20, 25 and 30) using HZB technique were constructed on an eogenetic karst catchment in Rote Island, Indonesia and their performances were assessed. This study also concludes some insights into the trade-off between restricting and maximising the number of pilot points and offers a new methodology for selecting pilot point properties and distribution method in the development of a physically-based groundwater model.

  8. Modeling and Analysis of The Pressure Die Casting Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Kittur, Jayant K.; Herwadkar, T. V.; Parappagoudar, M. B.

    2010-01-01

    Pressure die casting is successfully used in the manufacture of Aluminum alloys components for automobile and many other industries. Die casting is a process involving many process parameters having complex relationship with the quality of the cast product. Though various process parameters have influence on the quality of die cast component, major influence is seen by the die casting machine parameters and their proper settings. In the present work, non-linear regression models have been developed for making predictions and analyzing the effect of die casting machine parameters on the performance characteristics of die casting process. Design of Experiments (DOE) with Response Surface Methodology (RSM) has been used to analyze the effect of effect of input parameters and their interaction on the response and further used to develop nonlinear input-output relationships. Die casting machine parameters, namely, fast shot velocity, slow shot to fast shot change over point, intensification pressure and holding time have been considered as the input variables. The quality characteristics of the cast product were determined by porosity, hardness and surface rough roughness (output/responses). Design of experiments has been used to plan the experiments and analyze the impact of variables on the quality of casting. On the other-hand Response Surface Methodology (Central Composite Design) is utilized to develop non-linear input-output relationships (regression models). The developed regression models have been tested for their statistical adequacy through ANOVA test. The practical usefulness of these models has been tested with some test cases. These models can be used to make the predictions about different quality characteristics, for the known set of die casting machine parameters, without conducting the experiments.

  9. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  10. Enhanced cell disruption strategy in the release of recombinant hepatitis B surface antigen from Pichia pastoris using response surface methodology

    Science.gov (United States)

    2012-01-01

    Background Cell disruption strategies by high pressure homogenizer for the release of recombinant Hepatitis B surface antigen (HBsAg) from Pichia pastoris expression cells were optimized using response surface methodology (RSM) based on the central composite design (CCD). The factors studied include number of passes, biomass concentration and pulse pressure. Polynomial models were used to correlate the above mentioned factors to project the cell disruption capability and specific protein release of HBsAg from P. pastoris cells. Results The proposed cell disruption strategy consisted of a number of passes set at 20 times, biomass concentration of 7.70 g/L of dry cell weight (DCW) and pulse pressure at 1,029 bar. The optimized cell disruption strategy was shown to increase cell disruption efficiency by 2-fold and 4-fold for specific protein release of HBsAg when compared to glass bead method yielding 75.68% cell disruption rate (CDR) and HBsAg concentration of 29.20 mg/L respectively. Conclusions The model equation generated from RSM on cell disruption of P. pastoris was found adequate to determine the significant factors and its interactions among the process variables and the optimum conditions in releasing HBsAg when validated against a glass bead cell disruption method. The findings from the study can open up a promising strategy for better recovery of HBsAg recombinant protein during downstream processing. PMID:23039947

  11. The Methodology Applied in DPPH, ABTS and Folin-Ciocalteau Assays Has a Large Influence on the Determined Antioxidant Potential.

    Science.gov (United States)

    Abramovič, Helena; Grobin, Blaž; Poklar, Nataša; Cigić, Blaž

    2017-06-01

    Antioxidant potential (AOP) is not only the property of the matrix analyzed but also depends greatly on the methodology used. The chromogenic radicals 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and Folin-Ciocalteu (FC) assay were applied to estimate how the method and the composition of the assay solvent influence the AOP determined for coffee, tea, beer, apple juice and dietary supplements. Large differences between the AOP values depending on the reaction medium were observed, with the highest AOP determined mostly in the FC assay. In reactions with chromogenic radicals several fold higher values of AOP were obtained in buffer pH 7.4 than in water or methanol. The type of assay and solvent composition have similar influences on the reactivity of a particular antioxidant, either pure or as part of a complex matrix. The reaction kinetics of radicals with antioxidants in samples reveals that AOP depends strongly on incubation time, yet differently for each sample analyzed and the assay applied.

  12. A methodology for treating missing data applied to daily rainfall data in the Candelaro River Basin (Italy).

    Science.gov (United States)

    Lo Presti, Rossella; Barca, Emanuele; Passarella, Giuseppe

    2010-01-01

    Environmental time series are often affected by the "presence" of missing data, but when dealing statistically with data, the need to fill in the gaps estimating the missing values must be considered. At present, a large number of statistical techniques are available to achieve this objective; they range from very simple methods, such as using the sample mean, to very sophisticated ones, such as multiple imputation. A brand new methodology for missing data estimation is proposed, which tries to merge the obvious advantages of the simplest techniques (e.g. their vocation to be easily implemented) with the strength of the newest techniques. The proposed method consists in the application of two consecutive stages: once it has been ascertained that a specific monitoring station is affected by missing data, the "most similar" monitoring stations are identified among neighbouring stations on the basis of a suitable similarity coefficient; in the second stage, a regressive method is applied in order to estimate the missing data. In this paper, four different regressive methods are applied and compared, in order to determine which is the most reliable for filling in the gaps, using rainfall data series measured in the Candelaro River Basin located in South Italy.

  13. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    rather than using a water slug in between. The results of the pre-evaluation show that two sequences of the ASP group have the highest NPV corresponding to the dissimilar applied oil prices. In the post-evaluation, the successful use of response surface methodology (RSM in the estimation and optimization procedures with coefficients of determination R2 greater than 0.97 shows that the project can possibly gain 4.47 $MM at a mean oil price of 46.5 $/bbl with the field scale of a quarter five-spot pattern. Further, with the novel assumption of normal distribution for the oil price variation, the chemical flooding sequence of concurrent alkali-surfactant-polymer injection with a buffering polymer solution is evaluated as the most feasible scheme owing to the achievement of the highest NPV at the highly possible oil price of 40–55 $/bbl compared to the other scheme.

  14. Enamel surface topography analysis for diet discrimination. A methodology to enhance and select discriminative parameters

    Science.gov (United States)

    Francisco, Arthur; Blondel, Cécile; Brunetière, Noël; Ramdarshan, Anusha; Merceron, Gildas

    2018-03-01

    Tooth wear and, more specifically, dental microwear texture is a dietary proxy that has been used for years in vertebrate paleoecology and ecology. DMTA, dental microwear texture analysis, relies on a few parameters related to the surface complexity, anisotropy and heterogeneity of the enamel facets at the micrometric scale. Working with few but physically meaningful parameters helps in comparing published results and in defining levels for classification purposes. Other dental microwear approaches are based on ISO parameters and coupled with statistical tests to find the more relevant ones. The present study roughly utilizes most of the aforementioned parameters in their more or less modified form. But more than parameters, we here propose a new approach: instead of a single parameter characterizing the whole surface, we sample the surface and thus generate 9 derived parameters in order to broaden the parameter set. The identification of the most discriminative parameters is performed with an automated procedure which is an extended and refined version of the workflows encountered in some studies. The procedure in its initial form includes the most common tools, like the ANOVA and the correlation analysis, along with the required mathematical tests. The discrimination results show that a simplified form of the procedure is able to more efficiently identify the desired number of discriminative parameters. Also highlighted are some trends like the relevance of working with both height and spatial parameters, as well as the potential benefits of dimensionless surfaces. On a set of 45 surfaces issued from 45 specimens of three modern ruminants with differences in feeding preferences (grazing, leaf-browsing and fruit-eating), it is clearly shown that the level of wear discrimination is improved with the new methodology compared to the other ones.

  15. Modeling and optimization of ammonia treatment by acidic biochar using response surface methodology

    Directory of Open Access Journals (Sweden)

    Narong Chaisongkroh

    2012-09-01

    Full Text Available Emission of ammonia (NH3 contaminated waste air to the atmosphere without treatment has affected humans andenvironment. Eliminating NH3 in waste air emitted from industries is considered an environmental requisite. In this study,optimization of NH3 adsorption time using acidic rubber wood biochar (RWBs impregnated with sulfuric acid (H2SO4 wasinvestigated. The central composite design (CCD in response surface methodology (RSM by the Design Expert softwarewas used for designing the experiments as well as the full response surface estimation. The RSM was used to evaluate theeffect of adsorption parameters in continuous mode of fixed bed column including waste air flow rate, inlet NH3 concentration in waste air stream, and H2SO4 concentration for adsorbent surface modification. Based on statistical analysis, the NH3symmetric adsorption time (at 50% NH3 removal efficiency model proved to be very highly significant (p<0.0001. The optimum conditions obtained were 300 ppmv inlet NH3 concentration, 72% H2SO4, and 2.1 l/min waste air flow rate. This resultedin 219 minutes of NH3 adsorption time as obtained from the predicted model, which fitted well with the laboratory verification result. This was supported by the high value of coefficient of determination (R2=0.9137. (NH42SO4, a nitrogen fertilizerfor planting, was the by-product from chemical adsorption between NH3 and H2SO4.

  16. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Science.gov (United States)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  17. Enhanced Production of Xylitol from Corncob by Pachysolen tannophilus Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    S. Ramesh

    2013-01-01

    Full Text Available Optimization of the culture medium and process variables for xylitol production using corncob hemicellulose hydrolysate by Pachysolen tannophilus (MTTC 1077 was performed with statistical methodology based on experimental designs. The screening of nine nutrients for their influence on xylitol production was achieved using a Plackett-Burman design. Peptone, xylose, MgSO4·7H2O, and yeast extract were selected based on their positive influence on xylitol production. The selected components were optimized with Box-Behnken design using response surface methodology (RSM. The optimum levels (g/L were peptone: 6.03, xylose: 10.62, MgSO4·7H2O: 1.39, yeast extract: 4.66. The influence of various process variables on the xylitol production was evaluated. The optimal levels of these variables were quantified by the central composite design using RSM, for establishment of a significant mathematical model with a coefficient determination of . The validation experimental was consistent with the prediction model. The optimum levels of process variables were temperature (36.56°C, pH (7.27, substrate concentration (3.55 g/L, inoculum size (3.69 mL, and agitation speed (194.44 rpm. These conditions were validated experimentally which revealed an enhanced xylitol yield of 0.80 g/g.

  18. Statistical investigation of Kluyveromyces lactis cells permeabilization with ethanol by response surface methodology.

    Science.gov (United States)

    de Faria, Janaína T; Rocha, Pollyana F; Converti, Attilio; Passos, Flávia M L; Minim, Luis A; Sampaio, Fábio C

    2013-12-01

    The aim of our study was to select the optimal operating conditions to permeabilize Kluyveromyces lactis cells using ethanol as a solvent as an alternative to cell disruption and extraction. Cell permeabilization was carried out by a non-mechanical method consisting of chemical treatment with ethanol, and the results were expressed as β-galactosidase activity. Experiments were conducted under different conditions of ethanol concentration, treatment time and temperature according to a central composite rotatable design (CCRD), and the collected results were then worked out by response surface methodology (RSM). Cell permeabilization was improved by an increase in ethanol concentration and simultaneous decreases in the incubation temperature and treatment time. Such an approach allowed us to identify an optimal range of the independent variables within which the β-galactosidase activity was optimized. A maximum permeabilization of 2,816 mmol L(-1) oNP min(-1) g(-1) was obtained by treating cells with 75.0% v/v of ethanol at 20.0 °C for 15.0 min. The proposed methodology resulted to be effective and suited for K. lactis cells permeabilization at a lab-scale and promises to be of possible interest for future applications mainly in the food industry.

  19. Parametric optimization of rice bran oil extraction using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Syed W.

    2016-09-01

    Full Text Available Use of bran oil in various edible and nonedible industries is very common. In this research work, efficient and optimized methodology for the recovery of rice bran oil has been investigated. The present statistical study includes parametric optimization, based on experimental results of rice bran oil extraction. In this study, three solvents, acetone, ethanol and solvent mixture (SM [acetone: ethanol (1:1 v/v] were employed in extraction investigations. Response surface methodology (RSM, an optimization technique, was exploited for this purpose. A five level central composite design (CCD consisting four operating parameter, like temperature, stirring rate, solvent-bran ratio and contact time were examined to optimize rice bran oil extraction. Experimental results showed that oil recovery can be enhanced from 71% to 82% when temperature, solvent-bran ratio, stirring rate and contact time were kept at 55°C, 6:1, 180 rpm and 45 minutes, respectively while fixing the pH of the mixture at 7.1.

  20. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  1. [Optimization of calcium alginate floating microspheres loading aspirin by artificial neural networks and response surface methodology].

    Science.gov (United States)

    Zhang, An-yang; Fan, Tian-yuan

    2010-04-18

    To investigate the preparation and optimization of calcium alginate floating microspheres loading aspirin. A model was used to predict the in vitro release of aspirin and optimize the formulation by artificial neural networks (ANNs) and response surface methodology (RSM). The amounts of the material in the formulation were used as inputs, while the release and floating rate of the microspheres were used as outputs. The performances of ANNs and RSM were compared. ANNs were more accurate in prediction. There was no significant difference between ANNs and RSM in optimization. Approximately 90% of the optimized microspheres could float on the artificial gastric juice over 4 hours. 42.12% of aspirin was released in 60 min, 60.97% in 120 min and 78.56% in 240 min. The release of the drug from the microspheres complied with Higuchi equation. The aspirin floating microspheres with satisfying in vitro release were prepared successfully by the methods of ANNs and RSM.

  2. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  3. OPTIMIZATION OF HIBISCUS SABDARIFFA L. (ROSELLE ANTHOCYANIN AQUEOUS-ETHANOL EXTRACTION PARAMETERS USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ANILÚ MIRANDA-MEDINA

    2018-03-01

    Full Text Available Anthocyanins along with protocatechuic acid and quercetin have been recognized as bioactive compounds in Hibiscus sabdariffa L. aqueous extracts. Characteristic anthocyanin absorption in the visible region makes their quantification possible without the interference of the other two compounds, and also can favor its potential application as an alternative to organic-based dye sensitized solar cell, in various forms. In order to optimize measurable factors linked to the extraction of these flavonoids, an optimization was performed using a Box-Behnken experimental design and response surface methodology (RSM. Three levels of ethanol concentration, temperature and solid-solvent ratio (SSR were investigated. The optimization model showed that with 96 % EtOH, 65 °C, and 1:50 SSR, the highest anthocyanin concentration of 150 mg/100 g was obtained.

  4. OPTIMIZATION OF PRETREATMENT CONDITIONS OF CARROTS TO MAXIMIZE JUICE RECOVERY BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    H. K. SHARMA

    2006-12-01

    Full Text Available Carrot juice was expressed in a hydraulic press using a wooden set up. Carrot samples pretreated at different designed combinations, using Central Composite Rotatable Design (CCRD, Response Surface Methodology (RSM, of pH, temperature and time were expressed and juice so obtained was characterized for various physico-chemical parameters which involved yield, TSS and water content, reducing sugars, total sugars and color (absorbance. The study indicated that carrots exposed to the different pretreatment conditions resulted in increased amount of yield than that of the control. The responses were optimized by numerical method and were found to be 78.23% yield, 0.93% color (abs, 3.41% reducing sugars, 5.53% total sugars, 6.69obrix, and 90.50% water content. All the derived mathematical models for the various responses were found to be fit significantly to predict the data.

  5. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  6. OPTIMIZATION OF EXTRACELLULAR TANNASE PRODUCTION BY ASPERGILLUS NIGER VAN TIEGHEM USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Hamada Abou-Bakr

    2013-12-01

    Full Text Available Response surface methodology (RSM was used to optimize the production of tannase by a newly isolate of Aspergillus niger Van Tieghem using rotatable central composite design (RCCD. This statistical optimization process was carried out involving four of quantitative growth parameters (variables, namely tannic acid concentration, nitrogen source concentration, initial pH of the medium and inoculum size. A mathematical model expressing the production process of tannase by submerged fermentation (SmF technique was generated statistically in the form of a second order polynomial equation. The model indicated the presence of significant linear, quadratic and interaction effects of the studied variables on tannase production by the fungal isolate. The results showed maximum tannase production (580 U/50 ml medium at 2% tannic acid, 4 g/l sodium nitrate, pH 4 and inoculum size of 5×107 spores/50 ml medium, which was also verified by experimental data.

  7. ESTABLISHING EMPIRICAL RELATION TO PREDICT TEMPERATURE DIFFERENCE OF VORTEX TUBE USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    PRABAKARAN J.

    2012-12-01

    Full Text Available Vortex tube is a device that produces cold and hot air simultaneously from the source of compressed air. In this work an attempt has been made to investigate the effect of three controllable input variables namely diameter of the orifices, diameter of the nozzles and inlet pressure over the temperature difference in the cold side as output using Response Surface Methodology (RSM. Experiments are conducted using central composite design with three factors at three levels. The influence of vital parameters and interaction among these are investigated using analysis of variance (ANOVA. The proposed mathematical model in this study has proven to fit and in line with experimental values with a 95% confidence interval. It is found that the inlet pressure and diameter of nozzle are significant factors that affect the performance of vortex tube.

  8. Bioethanol Production from Raw Juice as Intermediate of Sugar Beet Processing: A Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Stevan Popov

    2010-01-01

    Full Text Available Response surface methodology (RSM was used for selecting optimal fermentation time and initial sugar mass fraction in cultivation media based on raw juice from sugar beet in order to produce ethanol. Optimal fermentation time and initial sugar mass fraction for ethanol production in batch fermentation by free Saccharomyces cerevisiae cells under anaerobic conditions at the temperature of 30 °C and agitation rate of 200 rpm were estimated to be 38 h and 12.30 % by mass, respectively. For selecting optimal conditions for industrial application, further techno-economic analysis should be performed by using the obtained mathematical representation of the process (second degree polynomial model. The overall fermentation productivity of five different types of yeast was examined and there is no significant statistical difference between them.

  9. Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology.

    Science.gov (United States)

    Lee, Lan-Sook; Lee, Namhyouck; Kim, Young Ho; Lee, Chang-Ho; Hong, Sang Pil; Jeon, Yeo-Won; Kim, Young-Eon

    2013-10-31

    Response surface methodology (RSM) has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 ° C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg)/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  10. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    Science.gov (United States)

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  11. Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

    Science.gov (United States)

    Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

  12. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  13. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Its Optimization by Response Surface Methodology

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Glasius, Marianne; Xu, Xuebing

    2012-01-01

    formation of feruloyl fish oil products as well when appropriate amount of glycerol was present in the reaction. Therefore, the addition of equivalent molar amount of glycerol to EF was decided for the practical optimization of the system. The mutual effects of temperature (40 to 70 oC), reaction time (1......The enzymatic transesterification of ethyl ferulate (EF) with cod liver fish oil was investigated with Novozym 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for production of feruloyl fish oil in industry. The modified HPLC method...... to 5 days), enzyme load (2 to 20 %) and substrate amount ratio of fish oil/EF (1 to 5) were thus studied with assistance of response surface methodology (RSM) for the purpose of maximizing the formation towards feruloyl fish oil. The models were well fitted and verified. The optimized conditions were...

  14. Optimization of Progressive Freeze Concentration on Apple Juice via Response Surface Methodology

    Science.gov (United States)

    Samsuri, S.; Amran, N. A.; Jusoh, M.

    2018-05-01

    In this work, a progressive freeze concentration (PFC) system was developed to concentrate apple juice and was optimized by response surface methodology (RSM). The effects of various operating conditions such as coolant temperature, circulation flowrate, circulation time and shaking speed to effective partition constant (K) were investigated. Five different level of central composite design (CCD) was employed to search for optimal concentration of concentrated apple juice. A full quadratic model for K was established by using method of least squares. A coefficient of determination (R2) of this model was found to be 0.7792. The optimum conditions were found to be coolant temperature = -10.59 °C, circulation flowrate = 3030.23 mL/min, circulation time = 67.35 minutes and shaking speed = 30.96 ohm. A validation experiment was performed to evaluate the accuracy of the optimization procedure and the best K value of 0.17 was achieved under the optimized conditions.

  15. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    Science.gov (United States)

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  16. Optimization of Gluten-Free Tulumba Dessert Formulation Including Corn Flour: Response Surface Methodology Approach

    Directory of Open Access Journals (Sweden)

    Yildiz Önder

    2017-03-01

    Full Text Available Tulumba dessert is widely preferred in Turkey; however, it cannot be consumed by celiac patients because it includes gluten. The diversity of gluten-free products should be expanded so that celiac patients may meet their daily needs regularly. In this study, corn flour (CF / potato starch (PS blend to be used in the gluten-free tulumba dessert formulation was optimized using the Response Surface Methodology (RSM. Increasing ratio of PS in the CF-PS led to a decrease in hardness of the dessert and to an increase in expansion, viscosity, adhesiveness, yield of dessert both with and without syrup (P0.05, additionally these desserts had a much higher sensory score compared to the control sample in terms of the overall quality and pore structure (P<0.05.

  17. Optimizing removal of cod from water by catalytic ozonation of cephalexin using response surface methodology

    International Nuclear Information System (INIS)

    Akhtar, J.; Amin, N.S.; Zahoor, M.K.

    2013-01-01

    Response surface methodology (RSM) has been used to optimize the effect of circulation rates, ozone supply, cephalexin (CEX) concentration, and granular activated carbon (GAC) dose on removal of COD from solution. According to statistical analysis, all of the input variables exerted significant influence on COD removal, however, the effect of interaction variables was not found to be significant on comparative basis. Further, the developed quadratic regression model based on obtained results emphasized the significance of individual terms and little of interaction terms. The values of r/sup 2/ (0.959), adjusted r/sup 2/ (0.902) obtained by analysis of variance (ANOVA) indicates the significance of quadratic model in predicting desired response. The maximum of 70% of COD was removed in these experiments and optimized value according to main effect of variables was 60%. (author)

  18. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Deepak, V; Kalishwaralal, K; Ramkumarpandian, S; Babu, S Venkatesh; Senthilkumar, S R; Sangiliyandi, G

    2008-11-01

    Response surface methodology and central composite rotary design (CCRD) was employed to optimize a fermentation medium for the production of Nattokinase by Bacillus subtilis at pH 7.5. The four variables involved in this study were Glucose, Peptone, CaCl2, and MgSO4. The statistical analysis of the results showed that, in the range studied; only peptone had a significant effect on Nattokinase production. The optimized medium containing (%) Glucose: 1, Peptone: 5.5, MgSO4: 0.2 and CaCl2: 0.5 resulted in 2-fold increased level of Nattokinase (3194.25U/ml) production compared to initial level (1599.09U/ml) after 10h of fermentation. Nattokinase production was checked with fibrinolytic activity.

  19. Optimization of maltodextrin production from avocado seed starch by response surface methodology

    Science.gov (United States)

    Nguyen, Thanh Viet; Ma, Tuyen-Hoang Nguyen; Nguyen, Tha Thi; Ho, Vinh-Nghi Kim; Vo, Hau Tan

    2018-04-01

    A process for maltodextrin production from avocado seed starch was reported in this study. Response surface methodology was used to investigate the effects of three independent variables for hydrolysis of the starch using a commercial food-grade α-amylase, Termamyl SC. These variables included enzyme concentration (0.05 - 0.15% starch), pH (5.0 - 6.0) and hydrolysis time (1.0 - 3.0 h), while the temperature fixed at 95°C. The result showed that the optimum conditions were using enzyme concentration at 0.12%, pH at 5.5 and 2.75 h of the incubation time. Under the optimum conditions, the recovered starch yield was 79.8% and the maltodextrin powder had 15.8 of dextrose equivalent.

  20. Power Prediction Model for Turning EN-31 Steel Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    M. Hameedullah

    2010-01-01

    Full Text Available Power consumption in turning EN-31 steel (a material that is most extensively used in automotive industry with tungstencarbide tool under different cutting conditions was experimentally investigated. The experimental runs were planned accordingto 24+8 added centre point factorial design of experiments, replicated thrice. The data collected was statisticallyanalyzed using Analysis of Variance technique and first order and second order power consumption prediction models weredeveloped by using response surface methodology (RSM. It is concluded that second-order model is more accurate than thefirst-order model and fit well with the experimental data. The model can be used in the automotive industries for decidingthe cutting parameters for minimum power consumption and hence maximum productivity

  1. Optimization of castor seed oil extraction process using response surface methodology

    Directory of Open Access Journals (Sweden)

    J. D. Mosquera-Artamonov

    2016-09-01

    Full Text Available This work focuses on the study of the oil extraction yield from castor seed using three different seed conditions: whole, minced and bare endosperm. Taguchi design was used to determine the contribution of the following parameters: seed condition, seed load in the extractor, temperature, and pressure. It was proved that it is necessary to introduce the whole seed and that the presence of the pericarp increases the extraction yield. The contribution of the control factors has an extraction yield limit. After determining which factors contributed to the process, these were left at their optimum levels aiming to reduce the control factors to only two. The complete analysis was done using a surface response methodology giving the best parameter for temperature and pressure that allows a better yielding mechanical extraction. The oil extraction yield can be kept up to 35% of the seed.

  2. Optimization of Ultrasonic Extraction of Phenolic Antioxidants from Green Tea Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Lan-Sook Lee

    2013-10-01

    Full Text Available Response surface methodology (RSM has been used to optimize the extraction conditions of antioxidants with relatively low caffeine content from green tea by using ultrasonic extraction. The predicted optimal conditions for the highest antioxidant activity and minimum caffeine level were found at 19.7% ethanol, 26.4 min extraction time, and 24.0 °C extraction temperature. In the predicted optimal conditions, the experimental values were very close to the predicted values. Moreover, the ratio of (EGCg + ECg/EGC was identified a major factor contributing to the antioxidant activity of green tea extracts. In this study, ultrasonic extraction showed that the ethanol concentration and extraction time used for antioxidant extraction could be remarkably reduced without a decrease in antioxidant activity compared to the conventional extraction conditions.

  3. Ultrasound-assisted extraction of Mangiferin from Mango (Mangifera indica L.) leaves using response surface methodology.

    Science.gov (United States)

    Zou, Tang-Bin; Xia, En-Qin; He, Tai-Ping; Huang, Ming-Yuan; Jia, Qing; Li, Hua-Wen

    2014-01-27

    Mangiferin is a xanthone widely distributed in higher plants showing antioxidative, antiviral, anticancer, antidiabetic, immunomodulatory, hepatoprotective and analgesic effects. In the present study, an ultrasonic-assisted extraction method was developed for the effective extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, extraction temperature, and extraction time were optimized by single-factor experiment and response surface methodology. The optimal extraction conditions were 44% ethanol, the liquid-to-solid ratio was 38:1, and extraction for 19.2 min at 60 °C under ultrasound irradiation of 200 W. Under optimal conditions, the yield of mangiferin was 58.46 ± 1.27 mg/g. The results obtained are helpful for the full utilization of mango leaves, and also indicated that ultrasonic-assisted extraction is a very useful method for the extraction of mangiferin from plant materials.

  4. Shrinkage Analysis on Thick Plate Part using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Isafiq M.

    2016-01-01

    Full Text Available The work reported herein is about an analysis on the quality (shrinkage on a thick plate part using Response Surface Methodology (RSM. Previous researches showed that the most influential factor affecting the shrinkage on moulded parts are mould and melt temperature. Autodesk Moldflow Insight software was used for the analysis, while specifications of Nessei NEX 1000 injection moulding machine and P20 mould material were incorporated in this study on top of Acrylonitrile Butadiene Styrene (ABS as a moulded thermoplastic material. Mould temperature, melt temperature, packing pressure and packing time were selected as variable parameters. The results show that the shrinkage have improved 42.48% and 14.41% in parallel and normal directions respectively after the optimisation process.

  5. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  6. Media optimization for laccase production by Trichoderma harzianum ZF-2 using response surface methodology.

    Science.gov (United States)

    Gao, Huiju; Chu, Xiang; Wang, Yanwen; Zhou, Fei; Zhao, Kai; Mu, Zhimei; Liu, Qingxin

    2013-12-01

    Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and CuSO4 were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, (NH4)2SO4 1 g/l, CuSO4 0.51 g/l, Tween-20 1 g/l, MgSO4 1 g/l, and KH2PO4 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

  7. Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions

    International Nuclear Information System (INIS)

    Tirand, Loraine; Bastogne, Thierry; Bechet, Denise M.Sc.; Linder, Michel; Thomas, Noemie; Frochot, Celine; Guillemin, Francois; Barberi-Heyob, Muriel

    2009-01-01

    Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm 2 ; fluence rate, 85 mW/cm 2 ). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.

  8. Formulation and in vitro evaluation of mucoadhesive controlled release matrix tablets of flurbiprofen using response surface methodology

    Directory of Open Access Journals (Sweden)

    Ikrima Khalid

    2014-09-01

    Full Text Available The objective of the current study was to formulate mucoadhesive controlled release matrix tablets of flurbiprofen and to optimize its drug release profile and bioadhesion using response surface methodology. Tablets were prepared via a direct compression technique and evaluated for in vitro dissolution parameters and bioadhesive strength. A central composite design for two factors at five levels each was employed for the study. Carbopol 934 and sodium carboxymethylcellulose were taken as independent variables. Fourier transform infrared (FTIR spectroscopy studies were performed to observe the stability of the drug during direct compression and to check for a drug-polymer interaction. Various kinetic models were applied to evaluate drug release from the polymers. Contour and response surface plots were also drawn to portray the relationship between the independent and response variables. Mucoadhesive tablets of flurbiprofen exhibited non-Fickian drug release kinetics extending towards zero-order, with some formulations (F3, F8, and F9 reaching super case II transport, as the value of the release rate exponent (n varied between 0.584 and 1.104. Polynomial mathematical models, generated for various response variables, were found to be statistically significant (P<0.05. The study also helped to find the drug's optimum formulation with excellent bioadhesive strength. Suitable combinations of two polymers provided adequate release profile, while carbopol 934 produced more bioadhesion.

  9. Modelling the effects of transglutaminase and L-ascorbic acid on substandard quality wheat flour by response surface methodology

    Directory of Open Access Journals (Sweden)

    Šimurina Olivera D.

    2014-01-01

    Full Text Available In recent decade, there have been observed extreme variations in climatic conditions which in combination with inadequate agro techniques lead to decreased quality of mercantile wheat, actally flour. The application of improvers can optimise the quality of substandard wheat flour. This paper focuses to systematic analysis of individual and interaction effects of ascorbic acid and transglutaminase as dough strengthening improvers. The effects were investigated using the Response Surface Methodology. Transglutaminase had much higher linear effect on the rheological and fermentative properties of dough from substandard flour than L-ascorbic acid. Both transglutaminase and L-ascorbic acid additions had a significant linear effect on the increase of bread specific volume. Effects of transglutaminase and ascorbic acid are dependent on the applied concentrations and it is necessary to determine the optimal concentration in order to achieve the maximum quality of the dough and bread. Optimal levels of tested improvers were determined using appropriate statistical techniques which applied the desirability function. It was found that the combination of 30 mg/kg of transglutaminase and 75.8 mg/kg of L-ascorbic acid achieved positive synergistic effect on rheological and fermentative wheat dough properties, as well on textural properties and specific volume of bread made from substandard quality flour.

  10. Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF Juice Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Muhamad Nasrah Nur Syazana

    2017-01-01

    Full Text Available The interaction between incubation temperature, yeast extract concentration and inoculum size was investigated to optimize critical environmental parameters for production of biobutanol from oil palm frond (OPF juice by Clostridium acetobutylicum ATCC 824 using response surface methodology (RSM. A central composite design (CCD was applied as the experimental design and a polynomial regression model with quadratic term was used to analyse the experimental data using analysis of variance (ANOVA. ANOVA analysis showed that the model was very significant (p < 0.0001 for the biobutanol production. The incubation temperature, yeast extract concentration and inoculum size showed significant value at p < 0.005. The results of optimization process showed that a maximum biobutanol production was obtained under the condition of temperature 37 °C, yeast extract concentration 5.5 g/L and inoculum size 10%. Under these optimized conditions, the highest biobutanol yield was 0.3054 g/g after 144 hours of incubation period. The model was validated by applying the optimized conditions and 0.2992 g/g biobutanol yield was obtained. These experimental findings were in close agreement with the model prediction, with a difference of only 9.76%.

  11. Structure and morphology of surface of silicon crystals to be applied for channeling at relativistic energies

    International Nuclear Information System (INIS)

    Vomiero, Alberto; Restello, Silvio; Scian, Carlo; Marchi, Enrico Boscolo; Mea, Gianantonio Della; Guidi, Vincenzo; Milan, Emiliano; Baricordi, Stefano; Martinelli, Giuliano; Carnera, Alberto; Sambo, Andrea

    2006-01-01

    Bent crystals can be successfully applied for extraction/collimation of relativistic particles. A crucial feature to obtain high extraction efficiencies is the treatment of the surfaces being encountered by the beam, since mechanical operations induce considerable lattice imperfections. In order to remove the superficial damaged layer a planar etching can be applied on the surface exposed to the beam. This work presents a systematic study of the morphology and the crystalline perfection of the surface of the samples that have been used in accelerators with high efficiency. Crystals with different surface treatments have been investigated. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied on the characterisation of surface morphology. Low energy backscattering channeling of 2-MeV α particles or protons was used as a probe for the crystalline structure. The presence of a superficial damaged layer in the samples just after mechanical treatment was unveiled, while, in contrast, chemical etching leaves a surface with high crystalline perfection that can be related to the record efficiency

  12. 3D scanning electron microscopy applied to surface characterization of fluorosed dental enamel.

    Science.gov (United States)

    Limandri, Silvina; Galván Josa, Víctor; Valentinuzzi, María Cecilia; Chena, María Emilia; Castellano, Gustavo

    2016-05-01

    The enamel surfaces of fluorotic teeth were studied by scanning electron stereomicroscopy. Different whitening treatments were applied to 25 pieces to remove stains caused by fluorosis and their surfaces were characterized by stereomicroscopy in order to obtain functional and amplitude parameters. The topographic features resulting for each treatment were determined through these parameters. The results obtained show that the 3D reconstruction achieved from the SEM stereo pairs is a valuable potential alternative for the surface characterization of this kind of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Cork-resin ablative insulation for complex surfaces and method for applying the same

    Science.gov (United States)

    Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)

    1980-01-01

    A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.

  14. Biosynthesis of ergot alkaloids from penicillium commune using response surface methodology (RSM)

    International Nuclear Information System (INIS)

    Shahid, M. G.; Cheema, T. A.; Baig, S.; Nadeem, M.; Nelofar, R.

    2017-01-01

    The present study employed the response surface methodology (RSM), a statistical technique, for the identification, screening and optimization of fermentation factors to produce ergot alkaloids under laboratory conditions by Penicillium commune. The static surface culture fermentation technique helped to enhance the production of ergot alkaloids. In the first step Plackett-Burman design (PBD) was used to evaluate the effect of ten factors, including nine ingredients of fermentation medium and one process parameter. It was found that sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O played the pivotal role in enhancing the yield of ergot alkaloids. In the second step, the effect of concentration levels of sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O was further optimized using Box-Behnken design (BBD) under the same fermentation conditions. The optimized concentrations of sucrose, yeast extract and FeSO/sub 4/.7H/sub 2/O were 41%, 39% and 0.11% respectively, which significantly enhanced the yield of ergot alkaloids. (author)

  15. Amoxicillin degradation from contaminated water by solar photocatalysis using response surface methodology (RSM).

    Science.gov (United States)

    Moosavi, Fatemeh Sadat; Tavakoli, Touraj

    2016-11-01

    In this study, the solar photocatalytic process in a pilot plant with compound parabolic collectors (CPCs) was performed for amoxicillin (AMX) degradation, an antibiotic widely used in the world. The response surface methodology (RSM) based on Box-Behnken statistical experiment design was used to optimize independent variables, namely TiO 2 dosage, antibiotic initial concentration, and initial pH. The results showed that AMX degradation efficiency affected by positive or negative effect of variables and their interactions. The TiO 2 dosage, pH, and interaction between AMX initial concentration and TiO 2 dosage exhibited a synergistic effect, while the linear and quadratic term of AMX initial concentration and pH showed antagonistic effect in the process response. Response surface and contour plots were used to perform process optimization. The optimum conditions found in this regard were TiO 2 dosage = 1.5 g/L, AMX initial concentration = 17 mg/L, and pH = 9.5 for AMX degradation under 240 min solar irradiation. The photocatalytic degradation of AMX after 34.95 kJ UV /L accumulated UV energy per liter of solution was 84.12 % at the solar plant.

  16. Optimization of Selenium-enriched Candida utilis by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2014-12-01

    Full Text Available The fermentation conditions of selenium enrichment by Candida utilis were studied. Based on the results of the single factor experiment, three factors including the concentration of sodium selenite, inital pH and incubation temperature were selected. The response surface method was used to optimize the various factors. The optimal conditions were obtained as follows: incubation time was 30 h, time of adding selenium was mid-logarithmic, the sodium selenite concentration was 35 mg·L-1 with inital pH of 6.6, incubation concentration of 10%, incubation temperature of 27 ℃, the medium volume of 150 mL/500 mL, respectively. Under the optimal condition, the biomass was 6.87 g·L-1. The total selenium content of Candida utilis was 12 639.7 μg·L-1, and the selenium content of the cells was 1 839.8 μg·g-1, in which sodium selenite conversion rate was 79.1% and the organic selenium was higher than 90%. The actual value of selenium content was substantially consistent with the theoretical value, and the response surface methodology was applicable for the fermentation conditions of selenium enriched by Candida utilis.

  17. Antiproliferative activity of Curcuma phaeocaulis Valeton extract using ultrasonic assistance and response surface methodology.

    Science.gov (United States)

    Wang, Xiaoqin; Jiang, Ying; Hu, Daode

    2017-01-02

    The objective of the study was to optimize the ultrasonic-assisted extraction of curdione, furanodienone, curcumol, and germacrone from Curcuma phaeocaulis Valeton (Val.) and investigate the antiproliferative activity of the extract. Under the suitable high-performance liquid chromatography condition, the calibration curves for these four tested compounds showed high levels of linearity and the recoveries of these four compounds were between 97.9 and 104.3%. Response surface methodology (RSM) combining central composite design and desirability function (DF) was used to define optimal extraction parameters. The results of RSM and DF revealed that the optimum conditions were obtained as 8 mL g -1 for liquid-solid ratio, 70% ethanol concentration, and 20 min of ultrasonic time. It was found that the surface structures of the sonicated herbal materials were fluffy and irregular. The C. phaeocaulis Val. extract significantly inhibited the proliferation of RKO and HT-29 cells in vitro. The results reveal that the RSM can be effectively used for optimizing the ultrasonic-assisted extraction of bioactive components from C. phaeocaulis Val. for antiproliferative activity.

  18. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    P. Arulmathi

    2015-01-01

    Full Text Available Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD. The results showed that electrochemical treatment process effectively removed the COD (89.5% and color (95.1% of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl concentration of 1.67 g/L, respectively.

  19. Optimization of Sugar Replacement with Date Syrup in Prebiotic Chocolate Milk Using Response Surface Methodology.

    Science.gov (United States)

    Kazemalilou, Sahar; Alizadeh, Ainaz

    2017-01-01

    Chocolate milk is one of the most commonly used non-fermentative dairy products, which, due to high level of sucrose, could lead to diabetes and tooth decay among children. Therefore, it is important to replace sucrose with other types of sweeteners, especially, natural ones. In this research, response surface methodology (RSM) was used to optimize the ingredients formulation of prebiotic chocolate milk, date syrup as sweetener (4-10%w/w), inulin as prebiotic texturizer (0-0.5%w/w) and carrageenan as thickening agent (0-0.04%w/w) in the formulation of chocolate milk. The fitted models to predict the variables of selected responses such as pH, viscosity, total solid, sedimentation and overall acceptability of chocolate milk showed a high coefficient of determination. The independent effect of carrageenan was the most effective parameter which led to pH and sedimentation decrease but increased viscosity. Moreover, in most treatments, date syrup and inulin variables had significant effects which had a mutual impact. Optimization of the variables, based on the responses surface 3D plots showed that the sample containing 0.48% (w/w) of inulin, 0.04% (w/w) of carrageenan, and 10% of date syrup was selected as the optimum condition.

  20. Response surface methodology to evaluation the recovery of amylases by hollow fiber membrane

    Directory of Open Access Journals (Sweden)

    João Baptista Severo Júnior

    2007-07-01

    Full Text Available This work aimed to study the pH and the transmembrane pressure effects during the recovery of alpha and beta amylases enzymes from corn malt (Zea mays by hollow fiber membrane. The optimal condition was obtained for a statistical model, established by response surface methodology (RSM. The response surface analysis showed that the best operation condition for amylolitics enzymes recovery by hollow fiber membrane was 0.05 bar and pH 5.00, while the enzymes were purified about of 26 times.Este trabalho objetivou estudar o efeito do pH e da pressão trans-membrana durante a recuperação das enzimas alfa e beta amilases do malte de milho (Zea mays por membranas de fibras ocas, a obtenção das condições ótimas foi feita por um modelo estatístico, estabelecido pela metodologia de superfície de resposta (RSM. A análise da superfície de resposta mostrou que as melhores condições operacionais para a recuperação das enzimas amiloliticas por membranas de fibras ocas foi 0,05 bar e pH 5,00; onde as enzimas foram purificadas cerca de 26 vezes.

  1. Optimization of enzymatic clarification of green asparagus juice using response surface methodology.

    Science.gov (United States)

    Chen, Xuehong; Xu, Feng; Qin, Weidong; Ma, Lihua; Zheng, Yonghua

    2012-06-01

    Enzymatic clarification conditions for green asparagus juice were optimized by using response surface methodology (RSM). The asparagus juice was treated with pectinase at different temperatures (35 °C-45 °C), pH values (4.00-5.00), and enzyme concentrations (0.6-1.8 v/v%). The effects of enzymatic treatment on juice clarity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging capacity were investigated by employing a 3-factor central composite design coupled with RSM. According to response surface analysis, the optimal enzymatic treatment condition was pectinase concentration of 1.45%, incubation temperature of 40.56 °C and pH of 4.43. The clarity, juice yield, and soluble solid contents in asparagus juice were significantly increased by enzymatic treatment at the optimal conditions. DPPH radical-scavenging capacity was maintained at the level close to that of raw asparagus juice. These results indicated that enzymatic treatment could be a useful technique for producing green asparagus juice with high clarity and high-antioxidant activity. Treatment with 1.45% pectinase at 40.56 ° C, pH 4.43, significantly increased the clarity and yield of asparagus juice. In addition, enzymatic treatment maintained antioxidant activity. Thus, enzymatic treatment has the potential for industrial asparagus juice clarification. © 2012 Institute of Food Technologists®

  2. Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology.

    Science.gov (United States)

    Parmar, Indu; Sharma, Sowmya; Rupasinghe, H P Vasantha

    2015-04-01

    The present study investigated five cyclodextrins (CDs) for the extraction of flavonols from apple pomace powder and optimized β-CD based extraction of total flavonols using response surface methodology. A 2(3) central composite design with β-CD concentration (0-5 g 100 mL(-1)), extraction temperature (20-72 °C), extraction time (6-48 h) and second-order quadratic model for the total flavonol yield (mg 100 g(-1) DM) was selected to generate the response surface curves. The optimal conditions obtained were: β-CD concentration, 2.8 g 100 mL(-1); extraction temperature, 45 °C and extraction time, 25.6 h that predicted the extraction of 166.6 mg total flavonols 100 g(-1) DM. The predicted amount was comparable to the experimental amount of 151.5 mg total flavonols 100 g(-1) DM obtained from optimal β-CD based parameters, thereby giving a low absolute error and adequacy of fitted model. In addition, the results from optimized extraction conditions showed values similar to those obtained through previously established solvent based sonication assisted flavonol extraction procedure. To the best of our knowledge, this is the first study to optimize aqueous β-CD based flavonol extraction which presents an environmentally safe method for value-addition to under-utilized bio resources.

  3. Study of Syngas Conversion to Light Olefins by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Hossein Atashi

    2013-01-01

    Full Text Available The effect of adding MgO to a precipitated iron-cobalt-manganese based Fischer-Tropsch synthesis (FTS catalyst was investigated via response surface methodology. The catalytic performance of the catalysts was examined in a fixed bed microreactor at a total pressure of 1–7 bar, temperature of 280–380°C, MgO content of 5–25% and using a syngas having a H2 to CO ratio equal to 2.The dependence of the activity and product distribution on MgO content, temperature, and pressure was successfully correlated via full quadratic second-order polynomial equations. The statistical analysis and response surface demonstrations indicated that MgO significantly influences the CO conversion and chain growth probability as well as ethane, propane, propylene, butylene selectivity, and alkene/alkane ratio. A strong interaction between variables was also evidenced in some cases. The decreasing effect of pressure on alkene to alkane ratio is investigated through olefin readsorption effects and CO hydrogenation kinetics. Finally, a multiobjective optimization procedure was employed to calculate the best amount of MgO content in different reactor conditions.

  4. Applying the methodology of Design of Experiments to stability studies: a Partial Least Squares approach for evaluation of drug stability.

    Science.gov (United States)

    Jordan, Nika; Zakrajšek, Jure; Bohanec, Simona; Roškar, Robert; Grabnar, Iztok

    2018-05-01

    The aim of the present research is to show that the methodology of Design of Experiments can be applied to stability data evaluation, as they can be seen as multi-factor and multi-level experimental designs. Linear regression analysis is usually an approach for analyzing stability data, but multivariate statistical methods could also be used to assess drug stability during the development phase. Data from a stability study for a pharmaceutical product with hydrochlorothiazide (HCTZ) as an unstable drug substance was used as a case example in this paper. The design space of the stability study was modeled using Umetrics MODDE 10.1 software. We showed that a Partial Least Squares model could be used for a multi-dimensional presentation of all data generated in a stability study and for determination of the relationship among factors that influence drug stability. It might also be used for stability predictions and potentially for the optimization of the extent of stability testing needed to determine shelf life and storage conditions, which would be time and cost-effective for the pharmaceutical industry.

  5. Clarification of Pharmaceutical Wastewater with Moringa Oleifera: Optimization Through Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Iva Rustanti Eri

    2018-05-01

    Full Text Available Herbal pharmaceutical industrial wastewater contains a high amount of suspended solids and alkaline (pH > 8; therefore it requires approprite coagulant and flocculant compounds for its wastewater treatment. The most widely used flocculant is a synthetic that has certain problems such as non-biodegradability and releases of toxic residual monomers. The use of eco-friendly flocculants as alternative materials for conventional flocculant in water and wastewater treatments is increasing. Numerous factors influence the performance of coagulation-flocculation process, such as coagulant dosage, flocculant dosage, initial potential of hydrogen (pH and velocity gradient of coagulation-flocculation. The main aim of this research is to evaluate the capability and effectiveness of Moringa oleifera extract for removal of suspended solid in herbal pharmaceutical industry. A coagulation-flocculation test was done by performing jar test at various speeds, according to the variation of the conducted treatment research. In this study, response surface methodology (RSM approach was used to optimize the concentration of coagulant dosage, flocculant dosage and flocculation velocity gradient (G, and the results were measured as maximum percentage of suspended solid removal. The wastewater used in this research originally came from the inlet of herbal pharmaceutical industry wastewater treatment plant, which was collected over 3 days. The wastewater has a total suspended solids of more than 1250 mg/L, and was alkaline (pH 9-10. The moringa extract was made from the extraction of a fat free moringa powder with a salt solution in a certain ratio. The percentage removal of suspended solid was 93.42-99.54%. The final results of the analysis of response surface showed that the variables of flocculant dosage and the flocculation velocity gradient (G have a huge impact on the amount of suspended solid removal, compared with the coagulant dosage. The model generated from the

  6. Optimization and evaluation of chelerythrine nanoparticles composed of magnetic multiwalled carbon nanotubes by response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yong [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Yuan, Yulin [Department of Clinical Laboratory, the People' s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021 (China); Zhou, Zhide; Liang, Jintao; Chen, Zhencheng [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China); Li, Guiyin, E-mail: liguiyin01@163.com [School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi 541014 (China)

    2014-02-15

    In this study, a new chelerythrine nanomaterial targeted drug delivery system (Fe{sub 3}O{sub 4}/MWNTs-CHE) was designed with chelerythrine (CHE) as model of antitumor drug and magnetic multiwalled carbon nanotubes (Fe{sub 3}O{sub 4}/MWNTs) nanocomposites as drug carrier. The process and formulation variables of Fe{sub 3}O{sub 4}/MWNTs-CHE were optimized using response surface methodology (RSM) with a three-level, three-factor Box–Behnken design (BBD). Mathematical equations and response surface plots were used to relate the dependent and independent variables. The experimental results were fitted into second-order response surface model. When Fe{sub 3}O{sub 4}/MWNTs:CHE ratio was 20.6:1, CHE concentration was 172.0 μg/mL, temperature was 34.5 °C, the drug loading content and entrapment efficiency were 3.04 ± 0.17% and 63.68 ± 2.36%, respectively. The optimized Fe{sub 3}O{sub 4}/MWNTs-CHE nanoparticles were characterized by scanning electron microscopy (SEM), Zeta potential, in vitro drug release and MTT assays. The in vitro CHE drug release behavior from Fe{sub 3}O{sub 4}/MWNTs-CHE displayed a biphasic drug release pattern and followed Korsmeyer–Peppas model with Fickian diffusion mechanism for drug release. The results from MTT assays suggested that the Fe{sub 3}O{sub 4}/MWNTs-CHE could effectively inhibit the proliferation of human hepatoma cells (HepG2), which displayed time or concentration-dependent manner. All these preliminary studies were expected to provide a theoretical basis and offer new methods for preparation efficient magnetic targeted drug delivery systems.

  7. Remote sensing the sea surface CO2 of the Baltic Sea using the SOMLO methodology

    Science.gov (United States)

    Parard, G.; Charantonis, A. A.; Rutgerson, A.

    2015-06-01

    Studies of coastal seas in Europe have noted the high variability of the CO2 system. This high variability, generated by the complex mechanisms driving the CO2 fluxes, complicates the accurate estimation of these mechanisms. This is particularly pronounced in the Baltic Sea, where the mechanisms driving the fluxes have not been characterized in as much detail as in the open oceans. In addition, the joint availability of in situ measurements of CO2 and of sea-surface satellite data is limited in the area. In this paper, we used the SOMLO (self-organizing multiple linear output; Sasse et al., 2013) methodology, which combines two existing methods (i.e. self-organizing maps and multiple linear regression) to estimate the ocean surface partial pressure of CO2 (pCO2) in the Baltic Sea from the remotely sensed sea surface temperature, chlorophyll, coloured dissolved organic matter, net primary production, and mixed-layer depth. The outputs of this research have a horizontal resolution of 4 km and cover the 1998-2011 period. These outputs give a monthly map of the Baltic Sea at a very fine spatial resolution. The reconstructed pCO2 values over the validation data set have a correlation of 0.93 with the in situ measurements and a root mean square error of 36 μatm. Removing any of the satellite parameters degraded this reconstructed CO2 flux, so we chose to supply any missing data using statistical imputation. The pCO2 maps produced using this method also provide a confidence level of the reconstruction at each grid point. The results obtained are encouraging given the sparsity of available data, and we expect to be able to produce even more accurate reconstructions in coming years, given the predicted acquisition of new data.

  8. Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis.

    Science.gov (United States)

    Wang, Yalin; Yuan, Lei; Shi, Jie; Greve, Alexander; Ye, Jieping; Toga, Arthur W; Reiss, Allan L; Thompson, Paul M

    2013-07-01

    Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information and machine learning with 3D maps derived from brain images may help detect subtle differences or classify subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to parametric surface models for diagnostic classification. We use this approach to identify cortical surface features for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameterization approach provides a natural way to register anatomical surfaces across subjects using a constrained harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D image is large, sparse learning is a promising method to select a subset of imaging features and to improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using the surface features selected by an L1-norm based sparse learning method. Stability selection is applied to validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies, and may assist with image-based classification. Copyright © 2013

  9. Proposal of a methodology to be applied for the characterization of external exposure risk of employees in nuclear medicine services

    International Nuclear Information System (INIS)

    Simoes, Rafael Figueiredo Pohlmann

    2010-01-01

    Nuclear medicine procedure requires the administration of radioactive material by injection, ingestion or inhalation. After incorporation, the patient becomes a mobile source of radiation and, after their examination; they can irradiate everyone on their way out of the Nuclear Medicine Service (NMS). A group of workers in this path is considered a critical group, but there are no conviction on this classification, because there are not measurements available. Thus, workers claiming for occupationally exposed individual's (OEI) rights are common. Employers are always in a complex situation, because if they decided to undertake the individual external monitoring of the critical working groups, the Court considers all as OEI and employers are taxed. On the other hand, if they do not provide monitoring, it is impossible to prove that these workers were not exposed to effective doses higher than individual annual public's limit and they lose the actions, too. This work proposes a methodology to evaluate, using TLD environmental monitors, air kerma rate at critical staff points in a NMS. This method provides relevant information about critical groups' exposure. From these results, the clinic or hospital may prove technically, without individual monitoring of employees, the classification of areas and can estimate the maximum flow of patients in the free areas which guarantees exposures below the public individual dose limit. This methodology has been applied successfully to a private clinic in Rio de Janeiro, which operates a NMS. The only critical group that received exposure statistically different from clinic background radiation was that on the antechamber of the NMS. This is a site that should be characterized as a supervised area and the group of workers in this environment as OEI, as the estimated extrapolated annual effective dose in this position was 1.2 +- 0.7 mSv/year, above the public annual limit (1,0 mSv/year). Normalizing by the number of patients, it can

  10. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: Using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Radaei, Payam [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Mashayekhan, Shohreh, E-mail: mashayekhan@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Vakilian, Saeid [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-8639 (Iran, Islamic Republic of); Stem Cell Technology Research Center, Tehran 1997775555 (Iran, Islamic Republic of)

    2017-06-01

    Electrospray ionization is a wide spread technique for producing polymeric microcarriers (MCs) by applying electrostatic force and ionic cross-linker, simultaneously. In this study, fabrication process of gelatin-chitosan MCs and its optimization using the Response Surface Methodology (RSM) is reported. Gelatin/chitosan (G/C) blend ratio, applied voltage and feeding flow rate, their individual and interaction effects on the diameter and mechanical strength of the MCs were investigated. The obtained models for diameter and mechanical strength of MCs have a quadratic relationship with G/C blend ratio, applied voltage and feeding flow rate. Using the desirability curve, optimized G/C blend ratios that are introduced, include the desirable quantities for MCs diameter and mechanical strength. MCs of the same desirable diameter (350 μm) and different G/C blend ratio (1, 2, and 3) were fabricated and their elasticity was investigated via Atomic Force Microscopy (AFM). The biocompatibility of the MCs was evaluated using MTT assay. The results showed that human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) could attach and proliferate on fabricated MCs during 7 days of culturing especially on those prepared with G/C blend ratios of 1 and 2. Such gelatin-chitosan MCs may be considered as a promising candidate for injectable tissue engineering scaffolds, supporting attachment and proliferation of hUCMSCs. - Highlights: • Gelatin-chitosan Micro-carriers fabricated by electrospray ionization method. • The effects of blend ratio, the syringe feeding rate, and voltage on micro-carrier optimization were investigated via RSM. • Both diameter and mechanical strength of Micro-carriers have a quadratic relationship with selected parameters. • The optimum conditions with fixed diameter of 350μm and maximized strength in different blend ratios were achieved. • The elasticity and biocompatibility of desirable fabricated micro-carriers characterized.

  11. Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case.

    Science.gov (United States)

    Camcıoğlu, Ş; Özyurt, B; Doğan, I C; Hapoğlu, H

    2017-12-01

    In this work the application of response surface methodology (RSM) to proportional-integral-derivative (PID) controller parameter tuning for electrocoagulation (EC) treatment of pulp and paper mill wastewater was researched. Dynamic data for two controlled variables (pH and electrical conductivity) were obtained under pseudo random binary sequence (PRBS) input signals applied to manipulated variables (acid and supporting electrolyte flow rates). Third order plus time delay model parameters were evaluated through System Identification Toolbox™ in MATLAB ® . Four level full factorial design was applied to form a design matrix for three controller tuning parameters as factors and to evaluate statistical analysis of the system in terms of integral of square error (ISE), integral of absolute error (IAE), integral of time square error (ITSE) and integral of time absolute error (ITAE) performance criteria as response. Numerical values of the responses for the runs in the design matrices were determined using closed-loop PID control system simulations designed in Simulink ® . Optimum proportional gain, integral action and derivative action values for electrical conductivity control were found to be 1,500 s, 0 s and 16.4636 s respectively. Accordingly, the same optimization scheme was followed for pH control and optimum controller parameters were found to be -8.6970 s, 0.0211 s and 50 s, respectively. Theoretically optimized controller parameters were applied to batch experimental studies. Chemical oxygen demand (COD) removal efficiency and energy consumption of pulp and paper mill wastewater treatment by EC under controlled action of pH at 5.5 and electrical conductivity at 2.72 mS/cm was found to be 85% and 3.87 kWh/m 3 respectively. Results showed that multi input-multi output (MIMO) control action increased removal efficiency of COD by 15.41% and reduced energy consumption by 6.52% in comparison with treatment under uncontrolled conditions.

  12. The monocular visual imaging technology model applied in the airport surface surveillance

    Science.gov (United States)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  13. A methodology to determine margins by EPID measurements of patient setup variation and motion as applied to immobilization devices

    International Nuclear Information System (INIS)

    Prisciandaro, Joann I.; Frechette, Christina M.; Herman, Michael G.; Brown, Paul D.; Garces, Yolanda I.; Foote, Robert L.

    2004-01-01

    Assessment of clinic and site specific margins are essential for the effective use of three-dimensional and intensity modulated radiation therapy. An electronic portal imaging device (EPID) based methodology is introduced which allows individual and population based CTV-to-PTV margins to be determined and compared with traditional margins prescribed during treatment. This method was applied to a patient cohort receiving external beam head and neck radiotherapy under an IRB approved protocol. Although the full study involved the use of an EPID-based method to assess the impact of (1) simulation technique (2) immobilization, and (3) surgical intervention on inter- and intrafraction variations of individual and population-based CTV-to-PTV margins, the focus of the paper is on the technique. As an illustration, the methodology is utilized to examine the influence of two immobilization devices, the UON TM thermoplastic mask and the Type-S TM head/neck shoulder immobilization system on margins. Daily through port images were acquired for selected fields for each patient with an EPID. To analyze these images, simulation films or digitally reconstructed radiographs (DRR's) were imported into the EPID software. Up to five anatomical landmarks were identified and outlined by the clinician and up to three of these structures were matched for each reference image. Once the individual based errors were quantified, the patient results were grouped into populations by matched anatomical structures and immobilization device. The variation within the subgroup was quantified by calculating the systematic and random errors (Σ sub and σ sub ). Individual patient margins were approximated as 1.65 times the individual-based random error and ranged from 1.1 to 6.3 mm (A-P) and 1.1 to 12.3 mm (S-I) for fields matched on skull and cervical structures, and 1.7 to 10.2 mm (L-R) and 2.0 to 13.8 mm (S-I) for supraclavicular fields. Population-based margins ranging from 5.1 to 6.6 mm (A

  14. Application of Response Surface Methodology in Extraction of Bioactive Component from Palm Leaves (Elaeis guineensis

    Directory of Open Access Journals (Sweden)

    Nur Afiqah Arham

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 The hydroxyl groups of the polyphenols are capable to act as reducing agent for reduction reaction. The effect of drying temperature, extraction temperature and extraction duration were evaluated using central composite design which consists of 20 experimental runs. Response surface methodology (RSM was used to estimate the optimum parameters in extracting polyphenols from the palm leaves. The correspondence analysis of the results yielded a quadratic model which can be used to find optimum conditions of extraction process. The optimum extraction condition of drying temperature, extraction temperature and extraction duration are 70°C, at 70°C of 10 minutes, respectively. Total polyphenols were determined by application of the Folin-Ciocalteu micro method and the extract was found contain of 8 mg GAE/g dry palm leaves at optimum conditions. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Doi: 10.12777/ijse.5.2.95-100 [How to cite this article: Arham, N.A., Mohamad, N.A.N., Jai, J., Krishnan, J., Noorsuhana Mohd Yusof, N.M. (2013. Application of Response Surface Methodology in Extraction of Bioactive Component from Palm Leaves (Elaeis guineensis. International Journal of Science and

  15. Evolutionary computation applied to the reconstruction of 3-D surface topography in the SEM.

    Science.gov (United States)

    Kodama, Tetsuji; Li, Xiaoyuan; Nakahira, Kenji; Ito, Dai

    2005-10-01

    A genetic algorithm has been applied to the line profile reconstruction from the signals of the standard secondary electron (SE) and/or backscattered electron detectors in a scanning electron microscope. This method solves the topographical surface reconstruction problem as one of combinatorial optimization. To extend this optimization approach for three-dimensional (3-D) surface topography, this paper considers the use of a string coding where a 3-D surface topography is represented by a set of coordinates of vertices. We introduce the Delaunay triangulation, which attains the minimum roughness for any set of height data to capture the fundamental features of the surface being probed by an electron beam. With this coding, the strings are processed with a class of hybrid optimization algorithms that combine genetic algorithms and simulated annealing algorithms. Experimental results on SE images are presented.

  16. ASAM - The international programme on application of safety assessment methodologies for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.

    2002-01-01

    The IAEA has launched a new Co-ordinated Research Project (CRP) on Application of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ASAM). The CRP will focus on the practical application of the safety assessment methodology, developed under the ISAM programme, for different purposes, such as developing design concepts, licensing, upgrading existing repositories, reassessment of operating disposal facilities. The overall aim of the programme is to assist safety assessors, regulators and other specialists involved in the development and review of safety assessment for near surface disposal facilities in order to achieve transparent, traceable and defendable evaluation of safety of these facilities. (author)

  17. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    Science.gov (United States)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  18. BAT methodology applied to the construction of new CCNN; Metodologia BAT aplicada a la construccion de nuevas CCNN

    Energy Technology Data Exchange (ETDEWEB)

    Vilches Rodriguez, E.; Campos Feito, O.; Gonzalez Delgado, J.

    2012-07-01

    The BAT methodology should be used in all phases of the project, from preliminary studies and design to decommissioning, gaining special importance in radioactive waste management and environmental impact studies. Adequate knowledge of this methodology will streamline the decision making process and to facilitate the relationship with regulators and stake holders.

  19. Applying a learning design methodology in the flipped classroom approach – empowering teachers to reflect and design for learning

    Directory of Open Access Journals (Sweden)

    Evangelia Triantafyllou

    2016-05-01

    Full Text Available One of the recent developments in teaching that heavily relies on current technology is the “flipped classroom” approach. In a flipped classroom the traditional lecture and homework sessions are inverted. Students are provided with online material in order to gain necessary knowledge before class, while class time is devoted to clarifications and application of this knowledge. The hypothesis is that there could be deep and creative discussions when teacher and students physically meet. This paper discusses how the learning design methodology can be applied to represent, share and guide educators through flipped classroom designs. In order to discuss the opportunities arising by this approach, the different components of the Learning Design – Conceptual Map (LD-CM are presented and examined in the context of the flipped classroom. It is shown that viewing the flipped classroom through the lens of learning design can promote the use of theories and methods to evaluate its effect on the achievement of learning objectives, and that it may draw attention to the employment of methods to gather learner responses. Moreover, a learning design approach can enforce the detailed description of activities, tools and resources used in specific flipped classroom models, and it can make educators more aware of the decisions that have to be taken and people who have to be involved when designing a flipped classroom. By using the LD-CM, this paper also draws attention to the importance of characteristics and values of different stakeholders (i.e. institutions, educators, learners, and external agents, which influence the design and success of flipped classrooms. Moreover, it looks at the teaching cycle from a flipped instruction model perspective and adjusts it to cater for the reflection loops educators are involved when designing, implementing and re-designing a flipped classroom. Finally, it highlights the effect of learning design on the guidance

  20. RiskSOAP: Introducing and applying a methodology of risk self-awareness in road tunnel safety.

    Science.gov (United States)

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-05-01

    Complex socio-technical systems, such as road tunnels, can be designed and developed with more or less elements that can either positively or negatively affect the capability of their agents to recognise imminent threats or vulnerabilities that possibly lead to accidents. This capability is called risk Situation Awareness (SA) provision. Having as a motive the introduction of better tools for designing and developing systems that are self-aware of their vulnerabilities and react to prevent accidents and losses, this paper introduces the Risk Situation Awareness Provision (RiskSOAP) methodology to the field of road tunnel safety, as a means to measure this capability in this kind of systems. The main objective is to test the soundness and the applicability of RiskSOAP to infrastructure, which is advanced in terms of technology, human integration, and minimum number of safety requirements imposed by international bodies. RiskSOAP is applied to a specific road tunnel in Greece and the accompanying indicator is calculated twice, once for the tunnel design as defined by updated European safety standards and once for the 'as-is' tunnel composition, which complies with the necessary safety requirements, but calls for enhancing safety according to what EU and PIARC further suggest. The derived values indicate the extent to which each tunnel version is capable of comprehending its threats and vulnerabilities based on its elements. The former tunnel version seems to be more enhanced both in terms of it risk awareness capability and safety as well. Another interesting finding is that despite the advanced tunnel safety specifications, there is still room for enriching the safe design and maintenance of the road tunnel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. OPTIMIZATION OF SURFACE RESISTIVITY AND RELATIVE PERMITTIVITY OF SILICONE RUBBER FOR HIGH VOLTAGE APPLICATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    N.N. Ali

    2017-06-01

    Full Text Available Silicone Rubber (SiR is considered as one of the most established insulator in High Voltage (HV industry. SiR possess a great function ability such as its lighter weight, great heat resistance and substantial electrical insulation properties. Dynamic research were performed all around the world in order to explore the unique insulating behavior of SiR but very little are done on the optimization of SiR in term of their processing parameters and formulation. In this work, four materials and processing factors were introduced; A: Alumina Trihydrate (ATH, B: Dicumyl-Peroxide (DCP, C: mixing speed and D: mixing time in order to analyze its contribution towards improving the surface resistivity and relative permittivity of SIR rubber. The factors range were set based on prior screening and are defined as; ATH (10 – 50 pphr, Dicumyl Peroxide (0.50 -1.50 pphr, speed of mixer (40 – 70 rpm and mixing period (5 – 10 mins which were then varied accordingly to produce an overall 19 samples of SiR blends. The testing results were analyzed using statistical Design of Experiment (DOE by applying two level full factorial from Design Expert Software (v10 to discover the inter-correlation between the factors studied and benefaction of each factor in improving both surface resistivity and relative permittivity responses of produced SiR blends. The model analysis on surface resistivity shows the coefficient of determination R2 value of 88.72% while the one for relative permittivity shows R2 value of 82.34 %. Combination of both dependent variables had yielded an optimization suggestion for SiR formulation and processing strategy of ATH: 50 pphr, DCP: 0.50 pphr, mixing speed: 70 rpm and mixing period: 10 mins with the desirability level of 0.835. The optimized formulation had resulted in the production of SiR blend with the characteristic of surface resistivity of 1.02039x10^14 Ω/sq and relative permittivity of 4.0231, respectively. In conclusion, it can be

  2. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    Science.gov (United States)

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A multilinear regression methodology to analyze the effect of atmospheric and surface forcing on Arctic clouds

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.; Li, Y.

    2017-12-01

    Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.

  4. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  5. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  6. A Case Study on Maximizing Aqua Feed Pellet Properties Using Response Surface Methodology and Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tumuluru, Jaya

    2013-01-10

    Aims: The present case study is on maximizing the aqua feed properties using response surface methodology and genetic algorithm. Study Design: Effect of extrusion process variables like screw speed, L/D ratio, barrel temperature, and feed moisture content were analyzed to maximize the aqua feed properties like water stability, true density, and expansion ratio. Place and Duration of Study: This study was carried out in the Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India. Methodology: A variable length single screw extruder was used in the study. The process variables selected were screw speed (rpm), length-to-diameter (L/D) ratio, barrel temperature (degrees C), and feed moisture content (%). The pelletized aqua feed was analyzed for physical properties like water stability (WS), true density (TD), and expansion ratio (ER). Extrusion experimental data was collected by based on central composite design. The experimental data was further analyzed using response surface methodology (RSM) and genetic algorithm (GA) for maximizing feed properties. Results: Regression equations developed for the experimental data has adequately described the effect of process variables on the physical properties with coefficient of determination values (R2) of > 0.95. RSM analysis indicated WS, ER, and TD were maximized at L/D ratio of 12-13, screw speed of 60-80 rpm, feed moisture content of 30-40%, and barrel temperature of = 80 degrees C for ER and TD and > 90 degrees C for WS. Based on GA analysis, a maxium WS of 98.10% was predicted at a screw speed of 96.71 rpm, L/D radio of 13.67, barrel temperature of 96.26 degrees C, and feed moisture content of 33.55%. Maximum ER and TD of 0.99 and 1346.9 kg/m3 was also predicted at screw speed of 60.37 and 90.24 rpm, L/D ratio of 12.18 and 13.52, barrel temperature of 68.50 and 64.88 degrees C, and medium feed moisture content of 33.61 and 38.36%. Conclusion: The present data analysis indicated

  7. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2011-01-01

    Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/797

  8. Response surface methodology for autolysis parameters optimization of shrimp head and amino acids released during autolysis.

    Science.gov (United States)

    Cao, Wenhong; Zhang, Chaohua; Hong, Pengzhi; Ji, Hongwu

    2008-07-01

    Protein hydrolysates were prepared from the head waste of Penaens vannamei, a China seawater major shrimp by autolysis method. Autolysis conditions (viz., temperature, pH and substrate concentration) for preparing protein hydrolysates from the head waste proteins were optimized by response surface methodology (RSM) using a central composite design. Model equation was proposed with regard to the effect of temperature, pH and substrate concentration. Substrate concentration at 23% (w/v), pH at 7.85 and temperature at 50°C were found to be the optimal conditions to obtain a higher degree of hydrolysis close to 45%. The autolysis reaction was nearly finished in the initial 3h. The amino acid compositions of the autolysis hydrolysates prepared using the optimized conditions in different time revealed that the hydrolysates can be used as a functional food ingredient or flavor enhancer. Endogenous enzymes in the shrimp heads had a strong autolysis capacity (AC) for releasing threonine, serine, valine, isoleucine, tyrosine, histidine and tryptophan. Endogenous enzymes had a relatively lower AC for releasing cystine and glycine. Copyright © 2008. Published by Elsevier Ltd.

  9. Esterification Optimization of Crude African Palm Olein Using Response Surface Methodology and Heterogeneous Acid Catalysis

    Directory of Open Access Journals (Sweden)

    Francisco Anguebes-Franseschi

    2018-01-01

    Full Text Available In this work, the effect of zeolite montmorillonite KSF in the esterification of free fatty acids (FFAs of crude African palm olein (Eleaias guinnesis Jacq was studied. To optimize the esterification of FFAs of the crude African palm olein (CAPO, the response surface methodology (RSM that was based on a central composite rotatable design (CCRD was used. The effects of three parameters were investigated: (a catalyst loading (2.6–9.4 wt %, (b reaction temperature (133.2–166.2 °C, and (c reaction time (0.32–3.68 h. The Analysis of variance (ANOVA indicated that linear terms of catalyst loading (X1, reaction temperature (X2, the quadratic term of catalyst loading ( X 1 2 , temperature reaction ( X 2 2 , reaction time ( X 3 2 , the interaction catalyst loading with reaction time ( X 1 * X3, and the interaction reaction temperature with reaction time ( X 2 * X3 have a significant effect (p < 0.05 with a 95% confidence level on Fatty Methyl Ester (FAME yield. The result indicated that the optimum reaction conditions to esterification of FFAs were: catalyst loading 9.4 wt %, reaction temperature 155.5 °C, and 3.3 h for reaction time, respectively. Under these conditions, the numerical estimation of FAME yield was 91.81 wt %. This result was experimentally validated obtaining a difference of 1.7% FAME yield, with respect to simulated values.

  10. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  11. Response surface methodology to simplify calculation of wood energy potency from tropical short rotation coppice species

    Science.gov (United States)

    Haqiqi, M. T.; Yuliansyah; Suwinarti, W.; Amirta, R.

    2018-04-01

    Short Rotation Coppice (SRC) system is an option to provide renewable and sustainable feedstock in generating electricity for rural area. Here in this study, we focussed on application of Response Surface Methodology (RSM) to simplify calculation protocols to point out wood chip production and energy potency from some tropical SRC species identified as Bauhinia purpurea, Bridelia tomentosa, Calliandra calothyrsus, Fagraea racemosa, Gliricidia sepium, Melastoma malabathricum, Piper aduncum, Vernonia amygdalina, Vernonia arborea and Vitex pinnata. The result showed that the highest calorific value was obtained from V. pinnata wood (19.97 MJ kg-1) due to its high lignin content (29.84 %, w/w). Our findings also indicated that the use of RSM for estimating energy-electricity of SRC wood had significant term regarding to the quadratic model (R2 = 0.953), whereas the solid-chip ratio prediction was accurate (R2 = 1.000). In the near future, the simple formula will be promising to calculate energy production easily from woody biomass, especially from SRC species.

  12. Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology

    Directory of Open Access Journals (Sweden)

    Yuanliang Hu

    2016-01-01

    Full Text Available Saccharomyces boulardii preparations are promising probiotics and clinical agents for animals and humans. This work focused on optimizing the nutritional conditions for the production of S. boulardii in solid-state fermentation by using classical and statistical methods. In single-factor experiments, the S. boulardii production was significantly increased by the addition of glucoamylase and the optimal carbon and nitrogen sources were found to be soluble starch and NH4Cl, respectively. The effects of the glucoamylase, soluble starch and NH4Cl on S. boulardii production were evaluated by a three-level three-factor Box–Behnken design and response surface methodology (RSM. The maximal yeast count (4.50 ×109CFU/g was obtained under the optimized conditions (198 U/g glucoamylase, 2.37% soluble starch and 0.9% NH4Cl, which was in a good agreement with the predicted value of the model. This study has provided useful information on how to improve the accumulation of yeast cells by RSM.

  13. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Christoph Silow

    2017-02-01

    Full Text Available Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200 and the final thickness (1.0–3.5 mm of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK and Multiple Puncture Probe (MPP, the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30% puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt % products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05 positive correlation to ‘liking of flavor’ and overall acceptance by the assessors.

  14. Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.

    Science.gov (United States)

    Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K

    2017-02-22

    Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.

  15. Extraction optimization of mucilage from Basil (Ocimum basilicum L.) seeds using response surface methodology.

    Science.gov (United States)

    Nazir, Sadaf; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad

    2017-05-01

    Aqueous extraction of basil seed mucilage was optimized using response surface methodology. A Central Composite Rotatable Design (CCRD) for modeling of three independent variables: temperature (40-91 °C); extraction time (1.6-3.3 h) and water/seed ratio (18:1-77:1) was used to study the response for yield. Experimental values for extraction yield ranged from 7.86 to 20.5 g/100 g. Extraction yield was significantly ( P  < 0.05) affected by all the variables. Temperature and water/seed ratio were found to have pronounced effect while the extraction time was found to have minor possible effects. Graphical optimization determined the optimal conditions for the extraction of mucilage. The optimal condition predicted an extraction yield of 20.49 g/100 g at 56.7 °C, 1.6 h, and a water/seed ratio of 66.84:1. Optimal conditions were determined to obtain highest extraction yield. Results indicated that water/seed ratio was the most significant parameter, followed by temperature and time.

  16. Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology

    Directory of Open Access Journals (Sweden)

    Abimael I. Ávila-Lara

    2015-09-01

    Full Text Available Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA and alkaline (AL catalyst providing specific effects on the physicochemical structure of the biomass such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15% since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification which will be reflected in lower capital costs, however this data is currently limited. In this study, several variables such as catalyst loading, retention time and solids loading, were studied using Response Surface Methodology (RSM based on a factorial Central Composite Design (CCD of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS yield. Pretreated biomass

  17. Optimization of Extraction Parameters of Phenolic Compounds from Sarcopoterium spinosum Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ceren Sunguc

    2017-07-01

    Full Text Available The shrublands are very common in Urla-Çeşme-Karaburun peninsula located in the western point of Turkey. Prickly shrubby burnet (Sarcopoterium spinosum L. is one of the common weed which has intensive thorns making its consumption for the local domestic animals. However, Sarcopoterium spinosum is a valuable and common medicinal plant in the Mediterranean region. Crude extract of S. spinosum leaves exhibited higher antioxidant activity, as 3143.5± 238.5 µM TEAC (Trolox Equivalent Antioxidant Capacity/g dry weight (DW, when compared to other medicinal plants found in the literature. The aim of this study was to determine the effect of extraction parameters on the content and biological activity of the extract by response surface methodology (RSM as well as to identify its major compounds. High Performance Liquid Chromatography (HPLC was employed to investigate the phenolic content of S. spinosum extract. The composition of the phenolic contents including hyperoside and isoquercetin, the latter being the major component, in S. spinosum extract has been shown for the first time by HPLC. Antimicrobial activity of S. spinosum extract, identified by minimum inhibition concentration (MIC assay, indicated that the crude extract had antifungal activity against Candida albicans.

  18. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  19. Optimization of lipase-catalyzed synthesis of ginsenoside Rb1 esters using response surface methodology.

    Science.gov (United States)

    Hu, Jiang-Ning; Lee, Jeung-Hee; Zhu, Xue-Mei; Shin, Jung-Ah; Adhikari, Prakash; Kim, Jae-Kyung; Lee, Ki-Teak

    2008-11-26

    In the lipase (Novozyme 435)-catalyzed synthesis of ginsenoside Rb1 esters, different acyl donors were found to affect not only the degree of conversion but also the regioselectivity. The reaction of acyl donors with short carbon chain was more effective, showing higher conversion than those with long carbon chain. Among the three solvent systems, the reaction in tert-amyl alcohol showed the highest conversion rate, while the reaction in the mixed solvent of t-BuOH and pyridine (1:1) had the lowest conversion rate. To allow the increase of GRb1 lipophilicity, we decided to further study the optimal condition of synthesis of GRb1 with vinyl decanoate with 10 carbon chain fatty acids in tert-amyl alcohol. Response surface methodology (RSM) was employed to optimize the synthesis condition. From the ridge analysis with maximum responses, the maximum GRb1 conversion was predicted to be 61.51% in a combination of factors (40.2 h, 52.95 degrees C, substrate mole ratio 275.57, and enzyme amount 39.81 mg/mL). Further, the adequacy of the predicted model was examined by additional independent experiments at the predicted maximum synthesis conditions. Results showed that the RSM was effective to optimize a combination of factors for lipase-catalyzed synthesis of ginsenoside Rb1 with vinyl decanoate.

  20. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  1. Optimization of HNO3 leaching of copper from old AMD Athlon processors using response surface methodology.

    Science.gov (United States)

    Javed, Umair; Farooq, Robina; Shehzad, Farrukh; Khan, Zakir

    2018-04-01

    The present study investigates the optimization of HNO 3 leaching of Cu from old AMD Athlon processors under the effect of nitric acid concentration (%), temperature (°C) and ultrasonic power (W). The optimization study is carried out using response surface methodology with central composite rotatable design (CCRD). The ANOVA study concludes that the second degree polynomial model is fitted well to the fifteen experimental runs based on p-value (0.003), R 2 (0.97) and Adj-R 2 (0.914). The study shows that the temperature is the most significant process variable to the leaching concentration of Cu followed by nitric acid concentration. However, ultrasound power shows no significant impact on the leaching concentration. The optimum conditions were found to be 20% nitric acid concentration, 48.89 °C temperature and 5.52 W ultrasound power for attaining maximum concentration of 97.916 mg/l for Cu leaching in solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology.

    Science.gov (United States)

    Sun, Guohui; Zhang, Xin; Bao, Zixian; Lang, Xuqian; Zhou, Zhongzheng; Li, Yang; Feng, Chao; Chen, Xiguang

    2018-06-01

    To strengthen the mechanical strength of thermo-sensitive hydroxybutyl chitosan (HBC) hydrogel, chitin whiskers were used as sticker to fabricate reinforced HBC (HBCW) hydrogel by using response surface methodology. Unlike the intrinsic network of HBC hydrogel, HBCW hydrogel showed a laminar shape with firm structure. The preparation condition was optimized by three-factor-three-level Box-Behnken design. The maximum mechanical strength (1011.11 Pa) was achieved at 50 °C, when the concentrations of HBC and chitin whiskers were 5.1 wt% and 2.0 wt%, respectively. The effects of temperature, pH value and NaCl concentration on mechanical strength of HBCW hydrogels were investigated via the oscillatory stress sweeps. The results showed that HBCW hydrogel could reach the maximum stiffness (∼1126 Pa) at 37 °C pH 12.0. Low pH and high salty ions could decrease the stability of hydrogel, while chitin whiskers could increase the stress tolerance and related ruptured strain of HBCW hydrogels. Copyright © 2018. Published by Elsevier Ltd.

  3. Application of Response Surface Methodology for the Technological Improvement of Solid Lipid Nanoparticles.

    Science.gov (United States)

    Dal Pizzol, Carine; O'Reilly, Andre; Winter, Evelyn; Sonaglio, Diva; de Campos, Angela Machado; Creczynski-Pasa, Tânia Beatriz

    2016-02-01

    Solid lipid nanoparticles (SLN) are colloidal particles consisting of a matrix composed of solid (at room and body temperatures) lipids dispersed in aqueous emulsifier solution. During manufacture, their physicochemical properties may be affected by several formulation parameters, such as type and concentration of lipid, proportion of emulsifiers and amount of solvent. Thus, the aim of this work was to study the influence of these variables on the preparation of SLN. A D-optimal Response Surface Methodology design was used to establish a mathematical model for the optimization of SLN. A total of 30 SLN formulations were prepared using the ultrasound method, and then characterized on the basis of their physicochemical properties, including particle size, polydispersity index (PI) and Zeta Potential (s). Particle sizes ranged between 107 and 240 nm. All SLN formulations showed negative sigma and PI values below 0.28. Prediction of the optimal conditions was performed using the desirability function targeting the reduction of all responses. The optimized SLN formulation showed similar theoretical and experimental values, confirming the sturdiness and predictive ability of the mathematical model for SLN optimization.

  4. Arsenic Removal from Natural Groundwater by Electrocoagulation Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. M. García-Lara

    2014-01-01

    Full Text Available Contamination of natural groundwater by arsenic (As is a serious problem that appears in some areas of Northern Central Mexico (NCM. In this research, As was removed from NCM wells groundwater by the electrocoagulation (EC technique. Laboratory-scale arsenic electroremoval experiments were carried out at continuous flow rates between 0.25 and 1.00 L min−1 using current densities of 5, 10, and 20 A m−2. Experiments were performed under galvanostatic conditions during 5 min, at constant temperature and pH. The response surface methodology (RSM was used for the optimization of the processing variables (flow rate and current density, response modeling, and predictions. The highest arsenic removal efficiency from underground water (99% was achieved at low flow rates (0.25 L min−1 and high current densities (20 A m−2. The response models developed explained 93.7% variability for As removal efficiency.

  5. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  6. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  7. Extraction, stability, and separation of betalains from Opuntia joconostle cv. using response surface methodology.

    Science.gov (United States)

    Sanchez-Gonzalez, Noe; Jaime-Fonseca, Monica R; San Martin-Martinez, Eduardo; Zepeda, L Gerardo

    2013-12-11

    Betalains were extracted and analyzed from Opuntia joconostle (the prickly pear known as xoconostle in Mexico). For the extraction, two solvent systems were used, methanol/water and ethanol/water. A three-variable Box-Behnken statistical design was used for extraction: solvent concentration (0-80%, v/v), temperature (5-30 °C), and treatment time (10-30 min). The extraction and stability of betalains from xoconostle were studied using response surface methodology (RSM). Techniques such as UV-vis, column chromatography, and HPLC were employed for the separation and analysis of the main pigments present in the extracts. Maximum pigment concentration (92 mg/100 g of fruit) was obtained at a temperature of 15 °C and a time of 10 min for methanol/water (20:80), whereas maximum stability of the pigment was observed at pH 5 and a temperature of 25 °C. HPLC chromatograms showed the main betalains of the xoconostle characterized were betalain, betanidin, and isobetalain.

  8. Response surface methodology to optimise Accelerated Solvent Extraction of steviol glycosides from Stevia rebaudiana Bertoni leaves.

    Science.gov (United States)

    Jentzer, Jean-Baptiste; Alignan, Marion; Vaca-Garcia, Carlos; Rigal, Luc; Vilarem, Gérard

    2015-01-01

    Following the approval of steviol glycosides as a food additive in Europe in December 2011, large-scale stevia cultivation will have to be developed within the EU. Thus there is a need to increase the efficiency of stevia evaluation through germplasm enhancement and agronomic improvement programs. To address the need for faster and reproducible sample throughput, conditions for automated extraction of dried stevia leaves using Accelerated Solvent Extraction were optimised. A response surface methodology was used to investigate the influence of three factors: extraction temperature, static time and cycle number on the stevioside and rebaudioside A extraction yields. The model showed that all the factors had an individual influence on the yield. Optimum extraction conditions were set at 100 °C, 4 min and 1 cycle, which yielded 91.8% ± 3.4% of total extractable steviol glycosides analysed. An additional optimisation was achieved by reducing the grind size of the leaves giving a final yield of 100.8% ± 3.3%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Efficient harvesting of marine Chlorella vulgaris microalgae utilizing cationic starch nanoparticles by response surface methodology.

    Science.gov (United States)

    Bayat Tork, Mahya; Khalilzadeh, Rasoul; Kouchakzadeh, Hasan

    2017-11-01

    Harvesting involves nearly thirty percent of total production cost of microalgae that needs to be done efficiently. Utilizing inexpensive and highly available biopolymer-based flocculants can be a solution for reducing the harvest costs. Herein, flocculation process of Chlorella vulgaris microalgae using cationic starch nanoparticles (CSNPs) was evaluated and optimized through the response surface methodology (RSM). pH, microalgae and CSNPs concentrations were considered as the main independent variables. Under the optimum conditions of microalgae concentration 0.75gdry weight/L, CSNPs concentration 7.1mgdry weight/L and pH 11.8, the maximum flocculation efficiency (90%) achieved. Twenty percent increase in flocculation efficiency observed with the use of CSNPs instead of the non-particulate starch which can be due to the more electrostatic interactions between the cationic nanoparticles and the microalgae. Therefore, the synthesized CSNPs can be employed as a convenient and economical flocculants for efficient harvest of Chlorella vulgaris microalgae at large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Optimization of Medium Using Response Surface Methodology for Lipid Production by Scenedesmus sp.

    Science.gov (United States)

    Yang, Fangfang; Long, Lijuan; Sun, Xiumei; Wu, Hualian; Li, Tao; Xiang, Wenzhou

    2014-01-01

    Lipid production is an important indicator for assessing microalgal species for biodiesel production. In this work, the effects of medium composition on lipid production by Scenedesmus sp. were investigated using the response surface methodology. The results of a Plackett–Burman design experiment revealed that NaHCO3, NaH2PO4·2H2O and NaNO3 were three factors significantly influencing lipid production, which were further optimized by a Box–Behnken design. The optimal medium was found to contain 3.07 g L−1 NaHCO3, 15.49 mg L−1 NaH2PO4·2H2O and 803.21 mg L−1 NaNO3. Using the optimal conditions previously determined, the lipid production (304.02 mg·L−1) increased 54.64% more than that using the initial medium, which agreed well with the predicted value 309.50 mg L−1. Additionally, lipid analysis found that palmitic acid (C16:0) and oleic acid (C18:1) dominantly constituted the algal fatty acids (about 60% of the total fatty acids) and a much higher content of neutral lipid accounted for 82.32% of total lipids, which strongly proved that Scenedesmus sp. is a very promising feedstock for biodiesel production. PMID:24663113

  11. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani

    2017-09-01

    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  12. Adsorption of malachite green by magnetic litchi pericarps: A response surface methodology investigation.

    Science.gov (United States)

    Zheng, Hao; Qi, Jinqiu; Jiang, Ruixue; Gao, Yan; Li, Xiaochen

    2015-10-01

    In this work, we synthesized a novel magnetic adsorbent containing litchi pericarps, denoted as MLP, for the removal of malachite green (MG) from solution. The factors influencing MG adsorption, such as contact time, adsorbent dosage, and initial dye concentration, were optimized using the Box-Behnken response surface methodology (RSM). The adsorption isotherms as well as the kinetics and thermodynamics of the adsorption of MG onto MLP are discussed. The results showed that MLP has a maximum adsorption efficiency of 99.5% when the temperature, pH, contact time, adsorbent dosage, and initial MG concentration were optimally set as 25 °C, 6.0, 66.69 min, 5.14 g/L, and 150 mg/L, respectively. The best model to describe this process is the Langmuir isotherm, with the maximum adsorption capacity being 70.42 mg/g. In addition, the kinetics of MG adsorption onto MLP followed a pseudo-second-order model; moreover, thermodynamic analysis suggested that MG adsorption onto MLP is spontaneous and endothermic. Finally, it was found that the new magnetic adsorbent can be separated easily and rapidly from mixed solutions in the presence of an external magnetic field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimization of solvent extraction of shea butter (Vitellaria paradoxa) using response surface methodology and its characterization.

    Science.gov (United States)

    Ajala, E O; Aberuagba, F; Olaniyan, A M; Onifade, K R

    2016-01-01

    Shea butter (SB) was extracted from its kernel by using n-hexane as solvent in an optimization study. This was to determine the optima operating variables that would give optimum yield of SB and to study the effect of solvent on the physico-chemical properties and chemical composition of SB extracted using n-hexane. A Box-behnken response surface methodology (RSM) was used for the optimization study while statistical analysis using ANOVA was used to test the significance of the variables for the process. The variables considered for this study were: sample weight (g), solvent volume (ml) and extraction time (min). The physico-chemical properties of SB extracted were determined using standard methods and Fourier Transform Infrared Spectroscopy (FTIR) for the chemical composition. The results of RSM analysis showed that the three variables investigated have significant effect (p food, biodiesel production, cosmetics, medicinal and pharmaceutical purposes than shea butter extracted using solvent extraction method (SBS). Fourier Transform Infrared Spectroscopy (FTIR) results obtained for the two samples were similar to what was obtainable from other vegetable oil.

  14. Optimization of osmotic dehydration of chestnut (Castanea sativa Mill. slices using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Teresa Delgado

    2018-04-01

    Full Text Available Osmotic dehydration of chestnut slices in sucrose was optimized for the first time by Response Surface Methodology (RSM. Experiments were planned according to a three-factor central composite design (α=1.68, studying the influence of sucrose concentration, temperature and time, on the following parameters: volume ratio, water activity, color variation, weight reduction, solids gain, water loss and normalized moisture content, as well as total moisture, ash and fat contents. The experimental data was adequately fitted into second-order polynomial models with coefficients of determination (R2 from 0.716 to 0.976, adjusted-R2 values from 0.460 to 0.954, and non-significant lacks of fit. The optimal osmotic dehydration process conditions for maximum water loss and minimum solids gain and color variation were determined by the “Response Optimizer” option: 83% sucrose concentration, 20 °C and 9.2 hours. Thus, the best operational conditions corresponded to high sugar concentration and low temperature, improving energy saving and decreasing the process costs.

  15. Optimization of enzymatic esterification of dihydrocaffeic acid with hexanol in ionic liquid using response surface methodology.

    Science.gov (United States)

    Gholivand, Somayeh; Lasekan, Ola; Tan, Chin Ping; Abas, Faridah; Wei, Leong Sze

    2017-05-26

    Developing an efficient lipophilization reaction system for phenolic derivatives could enhance their applications in food processing. Low solubility of phenolic acids reduces the efficiency of phenolic derivatives in most benign enzyme solvents. The conversion of phenolic acids through esterification alters their solubility and enhances their use as food antioxidant additives as well as their application in cosmetics. This study has shown that lipase-catalyzed esterification of dihydrocaffeic acid with hexanol in ionic liquid (1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide) was the best approach for esterification reaction. In order to achieve the maximum yield, the process was optimized by response surface methodology (RSM) based on a five-level and four independent variables such as: dosage of enzyme; hexanol/dihydrocaffeic acid mole ratio; temperature and reaction time. The optimum esterification condition (Y = 84.4%) was predicted to be obtained at temperature of 39.4 °C, time of 77.5 h dosage of enzyme at 41.6% and hexanol/dihydrocaffeic acid mole ratio of 2.1. Finally, this study has produced an efficient enzymatic esterification method for the preparation of hexyl dihydrocaffeate in vitro using a lipase in an ionic liquid system. Concentration of hexanol was the most significant (p < 0.05) independent variable that influenced the yield of hexyl dihydrocaffeate. Graphical abstract Synthesis of different Hexyl dihydrocaffeates in ionic liquid.

  16. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology

    Directory of Open Access Journals (Sweden)

    Javed Ahamad

    2015-01-01

    Full Text Available Background: Momordica charantia Linn. (Cucurbitaceae fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. Objective: The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Materials and Methods: Response surface methodology (RSM was used for the optimization of ultrasound-assisted extraction (UAE conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD, and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. Results: The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. Conclusions:A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  17. Optimization of ultrasound-assisted extraction of charantin from Momordica charantia fruits using response surface methodology.

    Science.gov (United States)

    Ahamad, Javed; Amin, Saima; Mir, Showkat R

    2015-01-01

    Momordica charantia Linn. (Cucurbitaceae) fruits are well known for their beneficial effects in diabetes that are often attributed to its bioactive component charantin. The aim of the present study is to develop and optimize an efficient protocol for the extraction of charantin from M. charantia fruits. Response surface methodology (RSM) was used for the optimization of ultrasound-assisted extraction (UAE) conditions. RSM was based on a three-level, three-variable Box-Behnken design (BBD), and the studied variables included solid to solvent ratio, extraction temperature, and extraction time. The optimal conditions predicted by the BBD were: UAE with methanol: Water (80:20, v/v) at 46°C for 120 min with solid to solvent ratio of 1:26 w/v, under which the yield of charantin was 3.18 mg/g. Confirmation trials under slightly adjusted conditions yielded 3.12 ± 0.14 mg/g of charantin on dry weight basis of fruits. The result of UAE was also compared with Soxhlet extraction method and UAE was found 2.74-fold more efficient than the Soxhlet extraction for extracting charantin. A facile UAE protocol for a high extraction yield of charantin was developed and validated.

  18. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology

    Science.gov (United States)

    Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra

    2015-01-01

    Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205

  19. Improvement of Folate Biosynthesis by Lactic Acid Bacteria Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Norfarina Muhamad Nor

    2010-01-01

    Full Text Available Lactic acid bacteria (Lactococcus lactis NZ9000, Lactococcus lactis MG1363, Lactobacillus plantarum I-UL4 and Lactobacillus johnsonii DSM 20553 have been screened for their ability to produce folate intracellularly and/or extracellularly. L. plantarum I-UL4 was shown to be superior producer of folate compared to other strains. Statistically based experimental designs were used to optimize the medium formulation for the growth of L. plantarum I-UL4 and folate biosynthesis. The optimal values of important factors were determined by response surface methodology (RSM. The effects of carbon sources, nitrogen sources and para-aminobenzoic acid (PABA concentrations on folate biosynthesis were determined prior to RSM study. The biosynthesis of folate by L. plantarum I-UL4 increased from 36.36 to 60.39 µg/L using the optimized medium formulation compared to the selective Man de Rogosa Sharpe (MRS medium. Conditions for the optimal growth of L. plantarum I-UL4 and folate biosynthesis as suggested by RSM were as follows: lactose 20 g/L, meat extract 16.57 g/L and PABA 10 µM.

  20. Fungistatic activity of heat-treated flaxseed determined by response surface methodology.

    Science.gov (United States)

    Xu, Y; Hall, C; Wolf-Hall, C

    2008-08-01

    The objective of this study was to evaluate the effect of heat treatment on the fungistatic activity of flaxseed (Linum usitatissimum) in potato dextrose agar (PDA) medium and a fresh noodle system. The radial growth of Penicilliumn chrysogenum, Aspergillus flavus, and a Penicillium sp. isolated from moldy noodles, as well as the mold count of fresh noodle enriched with heat treated flaxseed, were used to assess antifungal activity. A central composite design in the response surface methodology was used to predict the effect of heating temperature and time on antifungal activity of flaxseed flour (FF). Statistical analysis determined that the linear terms of both variables (that is, heating temperature and time) and the quadratic terms of the heating temperature had significant (P<0.05) effects on the radial growth of all 3 test fungi and the mold count log-cycle reduction of fresh noodle. The interactions between the temperature and time were significant for all dependent variables (P<0.05). Significant reductions in antifungal activities were found when FF was subjected to high temperatures, regardless of heating time. In contrast, prolonging the heating time did not substantially affect the antifungal activities of FF at low temperature. However, 60% of the antifungal activity was retained after FF was heated at 100 degrees C for 15 min, which suggests a potential use of FF as an antifungal additive in food products subjected to low to mild heat treatments.

  1. Application of Response Surface Methodology in Development of Sirolimus Liposomes Prepared by Thin Film Hydration Technique

    Directory of Open Access Journals (Sweden)

    Saeed Ghanbarzadeh

    2013-04-01

    Full Text Available Introduction: The present investigation was aimed to optimize the formulating process of sirolimus liposomes by thin film hydration method. Methods: In this study, a 32 factorial design method was used to investigate the influence of two independent variables in the preparation of sirolimus liposomes. The dipalmitoylphosphatidylcholine (DPPC /Cholesterol (Chol and dioleoyl phosphoethanolamine(DOPE /DPPC molar ratios were selected as the independent variables. Particle size (PS and Encapsulation Efficiency (EE % were selected as the dependent variables. To separate the un-encapsulated drug, dialysis method was used. Drug analysis was performed with a validated RP-HPLC method. Results: Using response surface methodology and based on the coefficient values obtained for independent variables in the regression equations, it was clear that the DPPC/Chol molar ratio was the major contributing variable in particle size and EE %. The use of a statistical approach allowed us to see individual and/or interaction effects of influencing parameters in order to obtain liposomes with desired properties and to determine the optimum experimental conditions that lead to the enhancement of characteristics. In the prediction of PS and EE % values, the average percent errors are found to be as 3.59 and 4.09%. This value is sufficiently low to confirm the high predictive power of model. Conclusion: Experimental results show that the observed responses were in close agreement with the predicted values and this demonstrates the reliability of the optimization procedure in prediction of PS and EE % in sirolimus liposomes preparation.

  2. Application of Response Surface Methodology for Optimization of Paracetamol Particles Formation by RESS Method

    International Nuclear Information System (INIS)

    Sabet, J.K.; Ghotbi, C.; Dorkoosh, F.

    2012-01-01

    Ultrafine particles of paracetamol were produced by Rapid Expansion of Supercritical Solution (RESS). The experiments were conducted to investigate the effects of extraction temperature (313-353 K), extraction pressure (10-18 MPa), pre expansion temperature (363-403 K), and post expansion temperature (273-323 K) on particles size and morphology of paracetamol particles. The characterization of the particles was determined by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Liquid Chromatography/Mass Spectrometry (LC-MS) analysis. The average particle size of the original paracetamol was 20.8 μm, while the average particle size of paracetamol after nan onization via the RESS process was 0.46 μm depending on the experimental conditions used. Moreover, the morphology of the processed particles changed to spherical and regular while the virgin particles of paracetamol were needle-shape and irregular. Response surface methodology (RSM) was used to optimize the process parameters. The extraction temperature, 347 K; extraction pressure, 12 MPa; pre expansion temperature, 403?K; and post expansion temperature, 322 K was found to be the optimum conditions to achieve the minimum average particle size of paracetamol.

  3. Development of gluten-free fish (Pseudoplatystoma corruscans) patties by response surface methodology.

    Science.gov (United States)

    Romero, Mara C; Fogar, Ricardo A; Rolhaiser, Fabiana; Clavero, Verónica V; Romero, Ana M; Judis, María A

    2018-05-01

    The goal of this study was to develop a fish-based product suitable for people with celiac disease. Water and gluten-free flours (rice, corn, amaranth or quinoa) were added to improve cooking yield, texture parameters and as an aid in improving quality attributes such as taste and juiciness. Cooking yields of patties containing gluten-free flours were higher than control and maximum values ranged between 91 and 93%. Hardness was higher in patties made with amaranth or quinoa flour, whereas cohesiveness and springiness were higher in patties made with corn and rice flour, respectively. Response surface methodology was used to optimize patties formulations. Optimized formulations were prepared and evaluated showing a good agreement between predicted and experimental responses. Also, nutritional value and consumer acceptance of optimized formulations were analysed. Flours addition affected proximate composition increasing carbohydrates, total fat and mineral content compared to control. Sensory evaluation showed that no differences were found in the aroma of products. Addition of rice flour increased juiciness and tenderness whereas taste, overall acceptance and buying intention were higher in control patty, followed by patties made with corn flour. The present investigation shows good possibilities for further product development, including the scale up at an industrial level.

  4. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology

    Directory of Open Access Journals (Sweden)

    Vanessa Webber

    2012-12-01

    Full Text Available This study aims to optimize an alternative method of extraction of carrageenan without previous alkaline treatment and ethanol precipitation using Response Surface Methodology (RSM. In order to introduce an innovation in the isolation step, atomization drying was used reducing the time for obtaining dry carrageenan powder. The effects of extraction time and temperature on yield, gel strength, and viscosity were evaluated. Furthermore, the extracted material was submitted to structural analysis, by infrared spectroscopy and nuclear magnetic resonance spectroscopy (¹H-NMR, and chemical composition analysis. Results showed that the generated regression models adequately explained the data variation. Carrageenan yield and gel viscosity were influenced only by the extraction temperature. However, gel strength was influenced by both, extraction time and extraction temperature. Optimal extraction conditions were 74 ºC and 4 hours. In these conditions, the carrageenan extract properties determined by the polynomial model were 31.17%, 158.27 g.cm-2, and 29.5 cP for yield, gel strength, and viscosity, respectively, while under the experimental conditions they were 35.8 ± 4.68%, 112.50 ± 4.96 g.cm-2, and 16.01 ± 1.03 cP, respectively. The chemical composition, nuclear magnetic resonance spectroscopy, and infrared spectroscopy analyses showed that the crude carrageenan extracted is composed mainly of κ-carrageenan.

  5. Aroma profile design of wine spirits: Multi-objective optimization using response surface methodology.

    Science.gov (United States)

    Matias-Guiu, Pau; Rodríguez-Bencomo, Juan José; Pérez-Correa, José R; López, Francisco

    2018-04-15

    Developing new distillation strategies can help the spirits industry to improve quality, safety and process efficiency. Batch stills equipped with a packed column and an internal partial condenser are an innovative experimental system, allowing a fast and flexible management of the rectification. In this study, the impact of four factors (heart-cut volume, head-cut volume, pH and cooling flow rate of the internal partial condenser during the head-cut fraction) on 18 major volatile compounds of Muscat spirits was optimized using response surface methodology and desirability function approaches. Results have shown that high rectification at the beginning of the heart-cut enhances the overall positive aroma compounds of the product, reducing off-flavor compounds. In contrast, optimum levels of heart-cut volume, head-cut volume and pH factors varied depending on the process goal. Finally, three optimal operational conditions (head off-flavors reduction, flowery terpenic enhancement and fruity ester enhancement) were evaluated by chemical and sensory analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Extraction Optimization of Rhizome of Curcuma longa by Response Surface Methodology and Support Vector Regression].

    Science.gov (United States)

    Zhou, Pei-pei; Shan, Jin-feng; Jiang, Jian-lan

    2015-12-01

    To optimize the optimal microwave-assisted extraction method of curcuminoids from Curcuma longa. On the base of single factor experiment, the ethanol concentration, the ratio of liquid to solid and the microwave time were selected for further optimization. Support Vector Regression (SVR) and Central Composite Design-Response Surface Methodology (CCD) algorithm were utilized to design and establish models respectively, while Particle Swarm Optimization (PSO) was introduced to optimize the parameters of SVR models and to search optimal points of models. The evaluation indicator, the sum of curcumin, demethoxycurcumin and bisdemethoxycurcumin by HPLC, were used. The optimal parameters of microwave-assisted extraction were as follows: ethanol concentration of 69%, ratio of liquid to solid of 21 : 1, microwave time of 55 s. On those conditions, the sum of three curcuminoids was 28.97 mg/g (per gram of rhizomes powder). Both the CCD model and the SVR model were credible, for they have predicted the similar process condition and the deviation of yield were less than 1.2%.

  7. Optimization and Modeling of Process Variables of Biodiesel Production from Marula Oil using Response Surface Methodology

    International Nuclear Information System (INIS)

    Enweremadu, C. C.; Rutto, H. L.

    2015-01-01

    This paper presents an optimization study in the production of biodiesel production from Marula oil. The study was carried out using a central composite design of experiments under response surface methodology. A mathematical model was developed to correlate the transesterification process variables to biodiesel yield. The transesterification reaction variables were methanol to oil ratio, x /sub 1/ (10-50 wt percentage), reaction time, x /sub 2/ (30-90 min), reaction temperature, x /sub 3/ (30-90 Degree C) stirring speed, x /sub 4/ (100-400 rpm) and amount of catalyst, x /sub 5/ (0.5-1.5 g). The optimum conditions for the production of the biodiesel were found to be methanol to oil ratio (29.43 wt percentage), reaction time (59.17 minutes), reaction temperature (58.80 Degree C), stirring speed (325 rpm) and amount of catalyst (1.02 g). The optimum yield of biodiesel that can be produced was 95 percentage. The results revealed that the crucial fuel properties of the biodiesel produced at the optimum conditions met the ASTM biodiesel specifications. (author)

  8. OPTIMIZATION OF POTASSIUM NITRATE BASED SOLID PROPELLANT GRAINS FORMULATION USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Oladipupo Olaosebikan Ogunleye

    2015-08-01

    Full Text Available This study was designed to evaluate the effect of propellant formulation and geometry on the solid propellant grains internal ballistic performance using core, bates, rod and tubular and end-burn geometries. Response Surface Methodology (RSM was used to analyze and optimize the effect of sucrose, potassium nitrate and carbon on the chamber pressure, temperature, thrust and specific impulse of the solid propellant grains through Central Composite Design (CCD of the experiment. An increase in potassium nitrate increased the specific impulse while an increase in sucrose and carbon decreased specific impulse. The coefficient of determination (R2 for models of chamber pressure, temperature, thrust and specific impulse in terms of composition and geometry were 0.9737, 0.9984, 0.9745 and 0.9589, respectively. The optimum specific impulse of 127.89 s, pressure (462201 Pa, temperature (1618.3 K and thrust (834.83 N were obtained using 0.584 kg of sucrose, 1.364 kg of potassium nitrate and 0.052 kg of carbon as well as bate geometry. There was no significant difference between the calculated and experimented ballistic properties at p < 0.05. The bate grain geometry is more efficient for minimizing the oscillatory pressure in the combustion chamber.

  9. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  10. Optimal color design of psychological counseling room by design of experiments and response surface methodology.

    Science.gov (United States)

    Liu, Wenjuan; Ji, Jianlin; Chen, Hua; Ye, Chenyu

    2014-01-01

    Color is one of the most powerful aspects of a psychological counseling environment. Little scientific research has been conducted on color design and much of the existing literature is based on observational studies. Using design of experiments and response surface methodology, this paper proposes an optimal color design approach for transforming patients' perception into color elements. Six indices, pleasant-unpleasant, interesting-uninteresting, exciting-boring, relaxing-distressing, safe-fearful, and active-inactive, were used to assess patients' impression. A total of 75 patients participated, including 42 for Experiment 1 and 33 for Experiment 2. 27 representative color samples were designed in Experiment 1, and the color sample (L = 75, a = 0, b = -60) was the most preferred one. In Experiment 2, this color sample was set as the 'central point', and three color attributes were optimized to maximize the patients' satisfaction. The experimental results show that the proposed method can get the optimal solution for color design of a counseling room.

  11. Determination of Optimum Condition of Leucine Content in Beef Protein Hydrolysate using Response Surface Methodology

    International Nuclear Information System (INIS)

    Siti Roha Ab Mutalib; Zainal Samicho; Noriham Abdullah

    2016-01-01

    The aim of this study is to determine the optimum condition of leucine content in beef hydrolysate. Beef hydrolysate was prepared by enzymatic hydrolysis using bromelain enzyme produced from pineapple peel. Parameter conditions such as concentration of bromelain, hydrolysis temperature and hydrolysis time were assessed to obtain the optimum leucine content of beef hydrolysate according to experimental design which was recommended by response surface methodology (RSM). Leucine content in beef hydrolysate was determined using AccQ. Tag amino acid analysis method using high performance liquid chromatography (HPLC). The condition of optimum leucine content was at bromelain concentration of 1.38 %, hydrolysis temperature of 42.5 degree Celcius and hydrolysis time of 31.59 hours with the predicted leucine content of 26.57 %. The optimum condition was verified with the leucine value obtained was 26.25 %. Since there was no significant difference (p>0.05) between the predicted and verified leucine values, thus it indicates that the predicted optimum condition by RSM can be accepted to predict the optimum leucine content in beef hydrolysate. (author)

  12. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  13. Response surface methodology optimization of nickel (II) removal using pigeon pea pod bio sorbent

    International Nuclear Information System (INIS)

    Aravind, J.; Lenin, C.; Nancyflavia, C.; Rashika, P.; Saravanan, S.

    2015-01-01

    Pod of pigeon pea (Cajanus cajan), a cellulose rich agricultural residue, was investigated for its nickel binding efficiency. The influence of key physicochemical parameters such as contact time, initial metal ion concentration, adsorbent dosage and p H on nickel (II) removal was studied. The equilibrium time was found to be 45 min. The optimum Ni (II) removal was obtained at an initial metal ion concentration of 80 mg/l, p H of 9.0 and an adsorbent dose of 400 mg/100 ml. A search for optimal combination of key variables was studied by response surface methodology for maximum removal of nickel. The experiment encompassing 17 runs was established with the aid of Box–Behnken design. Owing to the reasonable agreement between predicted and adjusted R2 value (0.9714), the corresponding quadratic model gives the most appropriate relationship between the variables and response. The optimal point obtained was located in the valid region and the optimum adsorption parameters were predicted as an initial Ni (II) concentration of 60 mg/l, p H value of 9.0 and contact time of 75 min. Under these adsorption conditions, a maximum removal of 96.54 % of initial metal concentration was demonstrated.

  14. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    Science.gov (United States)

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  15. OPTIMIZATION OF REACTIVE BLUE 19 DECOLORIZATION BY GANODERMA SP. USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    1M. Mohammadian Fazli, *1A. R. Mesdaghinia, 1K. Naddafi, 1S. Nasseri , 1M. Yunesian, 2M. Mazaheri Assadi, 3S. Rezaie, 4H. Hamzehei

    2010-01-01

    Full Text Available Synthetic dyes are extensively used in different industries. Dyes have adverse impacts such as visual effects, chemical oxygen demand, toxicity, mutagenicity and carcinogenicity characteristics. White rot fungi, due to extracellular enzyme system, are capable to degrade dyes and various xenobiotics. The aim of this study was to optimize decolorization of reactive blue 19 (RB19 dye using Ganoderma sp. fungus. Response Surface Methodology (RSM was used to study the effect of independent variables, namely glycerol concentration (15, 20 and 25 g/L, temperature (27, 30 and 33 oC and pH (5.5, 6.0 and 6.5 on color removal efficiency in aqueous solution. From RSM-generated model, the optimum conditions for RB19 decolorization were identified to be at temperature of 27oC, glycerol concentration of 19.14 mg/L and pH=6.3. At the optimum conditions, predicted decolorization was 95.3 percent. The confirmatory experiments were conducted and confirmed the results by 94.89% color removal. Thus, this statistical approach enabled to improve reactive blue 19 decolorization process by Ganoderma sp. up to 1.27 times higher than non-optimized conditions.

  16. Optimization of Baker's Yeast Production on Date Extract Using Response Surface Methodology (RSM).

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-08-07

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R² = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model ( R² = 0.981). The values of kinetic parameters ( Ks , X m , μ m , p and q ) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (-9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data.

  17. Study of decolorisation of binary dye mixture by response surface methodology.

    Science.gov (United States)

    Khamparia, Shraddha; Jaspal, Dipika

    2017-10-01

    Decolorisation of a complex mixture of two different classes of textile dyes Direct Red 81 (DR81) and Rhodamine B (RHB), simulating one of the most important condition in real textile effluent was investigated onto deoiled Argemone Mexicana seeds (A. Mexicana). The adsorption behaviour of DR81 and RHB dyes was simultaneously analyzed in the mixture using derivative spectrophotometric method. Central composite design (CCD) was employed for designing the experiments for this complex binary mixture where significance of important parameters and possible interactions were analyzed by response surface methodology (RSM). Maximum adsorption of DR81 and RHB by A. Mexicana was obtained at 53 °C after 63.33 min with 0.1 g of adsorbent and 8 × 10 -6  M DR81, 12 × 10 -6  M RHB with composite desirability of 0.99. The predicted values for percentage removal of dyes from the mixture were in good agreement with the experimental values with R 2 > 96% for both the dyes. CCD superimposed RSM confirmed that presence of different dyes in a solution created a competition for the adsorbent sites and hence interaction of dyes was one of the most important factor to be studied to simulate the real effluent. The adsorbent showed remarkable adsorption capacities for both the dyes in the mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optimization of mucilage extraction from chia seeds (Salvia hispanica L.) using response surface methodology.

    Science.gov (United States)

    Orifici, Stefania C; Capitani, Marianela I; Tomás, Mabel C; Nolasco, Susana M

    2018-02-25

    Chia mucilage has potential application as a functional ingredient; advances on maximizing its extraction yield could represent a significant technological and economic impact for the food industry. Thus, first, the effect of mechanical agitation time (1-3 h) on the exudation of chia mucilage was analyzed. Then, response surface methodology was used to determine the optimal combination of the independent variables temperature (15-85 °C) and seed: water ratio (1: 12-1: 40.8 w/v) for the 2 h exudation that give maximum chia mucilage yield. Experiments were designed according to central composite rotatable design. A second-order polynomial model predicted the variation in extraction mucilage yield with the variables temperature and seed: water ratio. The optimal operating conditions were found to be temperature 85 °C and a seed: water ratio of 1: 31 (w/v), reaching an experimental extraction yield of 116 ± 0.21 g kg -1 (dry basis). The mucilage obtained exhibited good functional properties, mainly in terms of water-holding capacity, emulsifying activity, and emulsion stability. The results obtained show that temperature, seed: water ratio, and exudation time are important variables of the process that affect the extraction yield and the quality of the chia mucilage, determined according to its physicochemical and functional properties. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. Finite Element Based Response Surface Methodology to Optimize Segmental Tunnel Lining

    Directory of Open Access Journals (Sweden)

    A. Rastbood

    2017-04-01

    Full Text Available The main objective of this paper is to optimize the geometrical and engineering characteristics of concrete segments of tunnel lining using Finite Element (FE based Response Surface Methodology (RSM. Input data for RSM statistical analysis were obtained using FEM. In RSM analysis, thickness (t and elasticity modulus of concrete segments (E, tunnel height (H, horizontal to vertical stress ratio (K and position of key segment in tunnel lining ring (θ were considered as input independent variables. Maximum values of Mises and Tresca stresses and tunnel ring displacement (UMAX were set as responses. Analysis of variance (ANOVA was carried out to investigate the influence of each input variable on the responses. Second-order polynomial equations in terms of influencing input variables were obtained for each response. It was found that elasticity modulus and key segment position variables were not included in yield stresses and ring displacement equations, and only tunnel height and stress ratio variables were included in ring displacement equation. Finally optimization analysis of tunnel lining ring was performed. Due to absence of elasticity modulus and key segment position variables in equations, their values were kept to average level and other variables were floated in related ranges. Response parameters were set to minimum. It was concluded that to obtain optimum values for responses, ring thickness and tunnel height must be near to their maximum and minimum values, respectively and ground state must be similar to hydrostatic conditions.

  20. Warpage optimization on a mobile phone case using response surface methodology (RSM)

    Science.gov (United States)

    Lee, X. N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Shazzuan, S.

    2017-09-01

    Plastic injection moulding is a popular manufacturing method not only it is reliable, but also efficient and cost saving. It able to produce plastic part with detailed features and complex geometry. However, defects in injection moulding process degrades the quality and aesthetic of the injection moulded product. The most common defect occur in the process is warpage. Inappropriate process parameter setting of injection moulding machine is one of the reason that leads to the occurrence of warpage. The aims of this study were to improve the quality of injection moulded part by investigating the optimal parameters in minimizing warpage using Response Surface Methodology (RSM). Subsequent to this, the most significant parameter was identified and recommended parameters setting was compared with the optimized parameter setting using RSM. In this research, the mobile phone case was selected as case study. The mould temperature, melt temperature, packing pressure, packing time and cooling time were selected as variables whereas warpage in y-direction was selected as responses in this research. The simulation was carried out by using Autodesk Moldflow Insight 2012. In addition, the RSM was performed by using Design Expert 7.0. The warpage in y direction recommended by RSM were reduced by 70 %. RSM performed well in solving warpage issue.

  1. Analysis of the shrinkage at the thick plate part using response surface methodology

    Science.gov (United States)

    Hatta, N. M.; Azlan, M. Z.; Shayfull, Z.; Roselina, S.; Nasir, S. M.

    2017-09-01

    Injection moulding is well known for its manufacturing process especially in producing plastic products. To measure the final product quality, there are lots of precautions to be taken into such as parameters setting at the initial stage of the process. Sometimes, if these parameters were set up wrongly, defects may be occurred and one of the well-known defects in the injection moulding process is a shrinkage. To overcome this problem, a maximisation at the precaution stage by making an optimal adjustment on the parameter setting need to be done and this paper focuses on analysing the shrinkage by optimising the parameter at thick plate part with the help of Response Surface Methodology (RSM) and ANOVA analysis. From the previous study, the outstanding parameter gained from the optimisation method in minimising the shrinkage at the moulded part was packing pressure. Therefore, with the reference from the previous literature, packing pressure was selected as the parameter setting for this study with other three parameters which are melt temperature, cooling time and mould temperature. The analysis of the process was obtained from the simulation by Autodesk Moldflow Insight (AMI) software and the material used for moulded part was Acrylonitrile Butadiene Styrene (ABS). The analysis and result were obtained and it found that the shrinkage can be minimised and the significant parameters were found as packing pressure, mould temperature and melt temperature.

  2. Defatted flaxseed meal incorporated corn-rice flour blend based extruded product by response surface methodology.

    Science.gov (United States)

    Ganorkar, Pravin M; Patel, Jhanvi M; Shah, Vrushti; Rangrej, Vihang V

    2016-04-01

    Considering the evidence of flaxseed and its defatted flaxseed meal (DFM) for human health benefits, response surface methodology (RSM) based on three level four factor central composite rotatable design (CCRD) was employed for the development of DFM incorporated corn - rice flour blend based extruded snack. The effect of DFM fortification (7.5-20 %), moisture content of feed (14-20 %, wb), extruder barrel temperature (115-135 °C) and screw speed (300-330 RPM) on expansion ratio (ER), breaking strength (BS), overall acceptability (OAA) score and water solubility index (WSI) of extrudates were investigated using central composite rotatable design (CCRD). Significant regression models explained the effect of considered variables on all responses. DFM incorporation level was found to be most significant independent variable affecting on extrudates characteristics followed by extruder barrel temperature and then screw rpm. Feed moisture content did not affect extrudates characteristics. As DFM level increased (7.5 % to 20 %), ER and OAA value decreased. However, BS and WSI values were found to increase with increase in DFM level. Based on the defined criteria for numerical optimization, the combination for the production of DFM incorporated extruded snack with desired sensory attributes was achieved by incorporating 10 % DFM (replacing rice flour in flour blend) and by keeping 20 % moisture content, 312 screw rpm and 125 °C barrel temperature.

  3. Optimization of Fenton's oxidation of herbicide dicamba in water using response surface methodology

    Science.gov (United States)

    Sangami, Sanjeev; Manu, Basavaraju

    2017-12-01

    In this study Fenton's oxidation of dicamba in aqueous medium was investigated by using the response surface methodology. The influence of H2O2/COD ( A), H2O2/Fe2+ ( B), pH ( C) and reaction time ( D) as independent variables were studied on two responses (COD and dicamba removal efficiency). The dosage of H2O2 (5.35-17.4 mM) and Fe2+ (0.09-2.13 mM) were varied and optimum percentage removal of dicamba of 84.01% with H2O2 and Fe2+ dosage of 11.38 and 0.33 mM respectively. The whole oxidation process was monitored by high performance liquid chromatography (HPLC) along with liquid chromatography/mass spectrometry (LC/MS). It was found that 82% of dicamba was mineralized to oxalic acid, chloride ion, CO2 and H2O, which was confirmed with COD removal of 81.53%. The regression analysis was performed, in which standard deviation (2.74), coefficient of correlation ( R 2 = R_{adj}2) and adequate precision (>12) were in good agreement with model values. Finally, the treatment process was validated by performing the additional experiments.

  4. Study on fermentation conditions of palm juice vinegar by response surface methodology and development of a kinetic model

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    2012-09-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for palm juice vinegar production from palm juice (Borassus flabellifer wine, this biochemical process being aided by Acetobacter aceti (NCIM 2251. The physical parameters of the fermentation conditions such as temperature, pH, and time were investigated by Response Surface Methodology (RSM with 2³ factorial central composite designs (CCD. The optimum pH, temperature and time were 5.5, 30 °C and 72 hrs for the highest yield of acetic acid (68.12 g / L. The quadratic model equation had a R² value of 0.992. RSM played an important role in elucidating the basic mechanisms in a complex situation, thus providing better process control by maximizing acetic acid production with the respective physical parameters. At the optimized conditions of temperature, pH and time and with the help of mathematical kinetic equations, the Monod specific growth rate ( µ max= 0.021 h-1, maximum Logistic specific growth rate ( µ 'max = 0.027 h-1 and various other kinetic parameters were calculated, which helped in validation of the experimental data. Therefore, the established kinetic models may be applied for the production of natural vinegar by fermentation of low cost palm juice.

  5. Optimization of microwave-assisted drying of Jerusalem artichokes (Helianthus tuberosus L. by response surface methodology and genetic algorithm

    Directory of Open Access Journals (Sweden)

    E. KARACABEY

    2016-03-01

    Full Text Available The objective of the present study was to investigate microwave-assisted drying of Jerusalem artichoke tubers to determine the effects of the processing conditions. Drying time (DT and effectivemoisture diffusivity (EMD were determined to evaluate the drying process in terms of dehydration performance, whereas the rehydration ratio (RhR was considered as a significant quality index. A pretreatment of soaking in a NaCl solution was applied before all trials. The output power of the microwave oven, slice thickness and NaCl concentration of the pretreatment solution werethe three investigated parameters. The drying process was accelerated by altering the conditions while obtaining a higher quality product. For optimization of the drying process, response surface methodology (RSM and genetic algorithms (GA were used. Model adequacy was evaluated for each corresponding mathematical expression developed for interested responses by RSM. The residual of the model obtained by GA was compared to that of the RSM model. The GA was successful in high-performance prediction and produced results similar to those of RSM. The analysis and results of the present study show that both RSM and GA models can be used in cohesion to gain insight into the bioprocessing system.

  6. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    Science.gov (United States)

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  7. Enhanced styrene recovery from waste polystyrene pyrolysis using response surface methodology coupled with Box-Behnken design.

    Science.gov (United States)

    Mo, Yu; Zhao, Lei; Wang, Zhonghui; Chen, Chia-Lung; Tan, Giin-Yu Amy; Wang, Jing-Yuan

    2014-04-01

    A work applied response surface methodology coupled with Box-Behnken design (RSM-BBD) has been developed to enhance styrene recovery from waste polystyrene (WPS) through pyrolysis. The relationship between styrene yield and three selected operating parameters (i.e., temperature, heating rate, and carrier gas flow rate) was investigated. A second order polynomial equation was successfully built to describe the process and predict styrene yield under the study conditions. The factors identified as statistically significant to styrene production were: temperature, with a quadratic effect; heating rate, with a linear effect; carrier gas flow rate, with a quadratic effect; interaction between temperature and carrier gas flow rate; and interaction between heating rate and carrier gas flow rate. The optimum conditions for the current system were determined to be at a temperature range of 470-505°C, a heating rate of 40°C/min, and a carrier gas flow rate range of 115-140mL/min. Under such conditions, 64.52% WPS was recovered as styrene, which was 12% more than the highest reported yield for reactors of similar size. It is concluded that RSM-BBD is an effective approach for yield optimization of styrene recovery from WPS pyrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Optimization for decolorization of azo dye acid green 20 by ultrasound and H2O2 using response surface methodology

    International Nuclear Information System (INIS)

    Zhang Zhanmei; Zheng Huaili

    2009-01-01

    Response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the operating conditions in decolorization of acid green 20 (AG 20) by ultrasonic irradiation in the presence of H 2 O 2 . The effects of three operating variables, ultrasonic power density, initial pH value of dye solution and H 2 O 2 concentration on the decolorization efficiency of AG 20 were evaluated. A quadratic model for AG 20 decolorization was proposed. Analysis of variance (ANOVA) indicated that the proposed quadratic model could be used to navigate the design space. The proposed model was approximately in accordance with the experimental case with correlation coefficients R 2 and R adj 2 of 0.9995 and 0.9984, respectively. The optimum operating conditions for AG 20 decolorization were found to be 1.08 W/mL of ultrasonic power density, 4.85 of initial pH and 1.94 mM of H 2 O 2 concentration, respectively. The predicted decolorization rate under the optimum conditions determined by RSM was 96.8%. Confirmatory tests were carried out under the optimum conditions and the decolorization rate of 96.3% was observed, which closely agreed with the predicted value. The results confirmed that RSM based on Box-Behnken design was an accurate and reliable method to optimize the operating conditions of AG 20 decolorization.

  9. Mechanical behavior and wear prediction of stir cast Al–TiB2 composites using response surface methodology

    International Nuclear Information System (INIS)

    Suresh, S.; Shenbaga Vinayaga Moorthi, N.; Vettivel, S.C.; Selvakumar, N.

    2014-01-01

    Graphical abstract: - Highlights: • Various experiments were conducted on Al6061–TiB 2 composite. • XRD and EDS studies confirm the crystalline size and elements present. • SEM, EDS and OM observations were used to study the characteristics. • Curve fitting and RSM design methods are effectively used to develop the model. - Abstract: Al6061 was reinforced with various percentages of TiB 2 particles by using high energy stir casting method. The characterization was performed through X-ray Diffraction, Energy Dispersive Spectrum and Scanning Electron Microscope. The mechanical behaviors such as hardness, tensile strength and tribological behavior were investigated. Wear experiments were conducted by using a pin-on-disc wear tester at varying load. The curve fitting technique was used to develop the respective polynomial and power law equations. The wear mechanism of the specimen was studied through SEM. Response Surface Methodology was used to minimize the number of experimental conditions and develop the mathematical models between the key process parameters namely weight percentage of TiB 2 , load and sliding distance. Analysis of Variance technique was applied to check the validity of the developed model. The mathematical model developed for the specific wear rate was predicted at 99.5% confidence level and some useful conclusions were made

  10. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  11. Flavonoids Extraction from Taraxacum officinale (Dandelion: Optimisation Using Response Surface Methodology and Antioxidant Activity

    Directory of Open Access Journals (Sweden)

    Zongxi Sun

    2014-01-01

    Full Text Available The Box-Behnken design combined with response surface method was employed to optimize ultrasonic-assisted extraction of flavonoids from Taraxacum officinale. The optimized results showed that the highest extraction yield with ultrasonic-assisted extraction could reach 2.62% using 39.6% (v/v ethanol and 59.5 : 1 (mL/g liquid-solid ratio for 43.8 min. The crude extract was then purified by HPD-100 macroporous adsorption resin, and the flavonoids content in the purified extract increased to 54.7%. The antioxidant activity of the purified flavonoids was evaluated in vitro by scavenging capacity of ABTS or DPPH, β-carotene bleaching, and FTC test. The knowledge obtained from this study should be useful to further develop and apply this plant resource.

  12. The Rock Engineering System (RES) applied to landslide susceptibility zonation of the northeastern flank of Etna: methodological approach and results

    Science.gov (United States)

    Apuani, Tiziana; Corazzato, Claudia

    2015-04-01

    instability-related numerical ratings are assigned to classes. An instability index map is then produced by assigning, to each areal elementary cell (in our case a 10 m pixel), the sum of the products of each weight factor to the normalized parameter rating coming from each input zonation map. This map is then opportunely classified in landslide susceptibility classes (expressed as a percentage), enabling to discriminate areas prone to instability. Overall, the study area is characterized by a low propensity to slope instability. Few areas have an instability index of more than 45% of the theoretical maximum imposed by the matrix. These are located in the few steep slopes associated with active faults, and strongly depending on the seismic activity. Some other areas correspond to limited outcrops characterized by significantly reduced lithotechnical properties (low shear strength). The produced susceptibility map combines the application of the RES with the parameter zonation, following methodology which had never been applied up to now in in active volcanic environments. The comparison of the results with the ground deformation evidence coming from monitoring networks suggests the validity of the approach.

  13. APPLYING SPARSE CODING TO SURFACE MULTIVARIATE TENSOR-BASED MORPHOMETRY TO PREDICT FUTURE COGNITIVE DECLINE.

    Science.gov (United States)

    Zhang, Jie; Stonnington, Cynthia; Li, Qingyang; Shi, Jie; Bauer, Robert J; Gutman, Boris A; Chen, Kewei; Reiman, Eric M; Thompson, Paul M; Ye, Jieping; Wang, Yalin

    2016-04-01

    Alzheimer's disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also growing interests in identifying brain imaging biomarkers that help evaluate AD risk presymptomatically. Here, we applied a recently developed multivariate tensor-based morphometry (mTBM) method to extract features from hippocampal surfaces, derived from anatomical brain MRI. For such surface-based features, the feature dimension is usually much larger than the number of subjects. We used dictionary learning and sparse coding to effectively reduce the feature dimensions. With the new features, an Adaboost classifier was employed for binary group classification. In tests on publicly available data from the Alzheimers Disease Neuroimaging Initiative, the new framework outperformed several standard imaging measures in classifying different stages of AD. The new approach combines the efficiency of sparse coding with the sensitivity of surface mTBM, and boosts classification performance.

  14. Numerical thermal analysis and optimization of multi-chip LED module using response surface methodology and genetic algorithm

    NARCIS (Netherlands)

    Tang, Hong Yu; Ye, Huai Yu; Chen, Xian Ping; Qian, Cheng; Fan, Xue Jun; Zhang, G.Q.

    2017-01-01

    In this paper, the heat transfer performance of the multi-chip (MC) LED module is investigated numerically by using a general analytical solution. The configuration of the module is optimized with genetic algorithm (GA) combined with a response surface methodology. The space between chips, the

  15. Optimization of hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus in submerged fermentation using response surface methodology

    NARCIS (Netherlands)

    Chen, H.; Xu, X.; Zhu, Y.

    2010-01-01

    The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different

  16. Assessment of historical leak model methodology as applied to the REDOX high-level waste tank SX-108

    International Nuclear Information System (INIS)

    JONES, T.E.

    1999-01-01

    Using the Historical Leak Model approach, the estimated leak rate (and therefore, projected leak volume) for Tank 241-SX-108 could not be reproduced using the data included in the initial document describing the leak methodology. An analysis of parameters impacting tank heat load calculations strongly suggest that the historical tank operating data lack the precision and accuracy required to estimate tank leak volumes using the Historical Leak Model methodology

  17. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sudarjanto, Gatut [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller-Lehmann, Beatrice [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia); Keller, Jurg [Advanced Wastewater Management Centre, The University of Queensland, Qld 4072 (Australia)]. E-mail: j.keller@awmc.uq.edu.au

    2006-11-02

    The integrated chemical-biological degradation combining advanced oxidation by UV/H{sub 2}O{sub 2} followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H{sub 2}O{sub 2}/L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required.

  18. Optimization of integrated chemical-biological degradation of a reactive azo dye using response surface methodology

    International Nuclear Information System (INIS)

    Sudarjanto, Gatut; Keller-Lehmann, Beatrice; Keller, Jurg

    2006-01-01

    The integrated chemical-biological degradation combining advanced oxidation by UV/H 2 O 2 followed by aerobic biodegradation was used to degrade C.I. Reactive Azo Red 195A, commonly used in the textile industry in Australia. An experimental design based on the response surface method was applied to evaluate the interactive effects of influencing factors (UV irradiation time, initial hydrogen peroxide dosage and recirculation ratio of the system) on decolourisation efficiency and optimizing the operating conditions of the treatment process. The effects were determined by the measurement of dye concentration and soluble chemical oxygen demand (S-COD). The results showed that the dye and S-COD removal were affected by all factors individually and interactively. Maximal colour degradation performance was predicted, and experimentally validated, with no recirculation, 30 min UV irradiation and 500 mg H 2 O 2 /L. The model predictions for colour removal, based on a three-factor/five-level Box-Wilson central composite design and the response surface method analysis, were found to be very close to additional experimental results obtained under near optimal conditions. This demonstrates the benefits of this approach in achieving good predictions while minimising the number of experiments required

  19. Model development and optimization of operating conditions to maximize PEMFC performance by response surface methodology

    International Nuclear Information System (INIS)

    Kanani, Homayoon; Shams, Mehrzad; Hasheminasab, Mohammadreza; Bozorgnezhad, Ali

    2015-01-01

    Highlights: • The optimization of the operating parameters in a serpentine PEMFC is done using RSM. • The RSM model can predict the cell power over the wide range of operating conditions. • St-An, St-Ca and RH-Ca have an optimum value to obtain the best performance. • The interactions of the operating conditions affect the output power significantly. • The cathode and anode stoichiometry are the most effective parameters on the power. - Abstract: Optimization of operating conditions to obtain maximum power in PEMFCs could have a significant role to reduce the costs of this emerging technology. In the present experimental study, a single serpentine PEMFC is used to investigate the effects of operating conditions on the electrical power production of the cell. Four significant parameters including cathode stoichiometry, anode stoichiometry, gases inlet temperature, and cathode relative humidity are studied using Design of Experiment (DOE) to obtain an optimal power. Central composite second order Response Surface Methodology (RSM) is used to model the relationship between goal function (power) and considered input parameters (operating conditions). Using this statistical–mathematical method leads to obtain a second-order equation for the cell power. This model considers interactions and quadratic effects of different operating conditions and predicts the maximum or minimum power production over the entire working range of the parameters. In this range, high stoichiometry of cathode and low stoichiometry of anode results in the minimum cell power and contrary the medium range of fuel and oxidant stoichiometry leads to the maximum power. Results show that there is an optimum value for the anode stoichiometry, cathode stoichiometry and relative humidity to reach the best performance. The predictions of the model are evaluated by experimental tests and they are in a good agreement for different ranges of the parameters

  20. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    International Nuclear Information System (INIS)

    Rashid, Umer; Anwar, Farooq; Ashraf, Muhammad; Saleem, Muhammad; Yusup, Suzana

    2011-01-01

    Highlights: → Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. → RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). → Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. → Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  1. Enhancing the Bioconversion of Azelaic Acid to Its Derivatives by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Nurshafira Khairudin

    2018-02-01

    Full Text Available Azelaic acid (AzA and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435 is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R2 of 0.9732.The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3 was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.

  2. Optimization of deposition conditions of CdS thin films using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Güler, Nuray [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2014-03-15

    Highlights: • Statistical methods used for optimization of CdS deposition parameters. • The morphology of the films was smooth, homogeneous and continuous. • Optimal conditions found as pH 11, stirring speed:361 rpm and deposition time: 55 min. • CdS thin film band gap value was 2.72 eV under the optimum conditions. -- Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by chemical bath deposition (CBD) technique under different pH, stirring speed and deposition time. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimization of deposition parameters of the CdS thin films. RSM and CCD were also used to understand the significance and interaction of the factors affecting the film quality. Variables were determined as pH, stirring speed and deposition time. The band gap was chosen as response in the study. Influences of the variables on the band gap and the film quality were investigated. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition conditions parameters such as pH (10.2–11.8), stirring speed (132–468 rpm) and deposition time (33–67 min) on the band gap of the films. The samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible spectroscopy (UV–vis) measurements. The optimal conditions for the deposition parameters of the CdS thin films have been found to be: pH 11, 361 of stirring speed and 55 min of deposition time. Under the optimal conditions theoretical (predicted) band gap of CdS (2.66 eV) was calculated using optimal coded values from the model and the theoretical value is good agreement with the value (2.72 eV) obtained by verification experiment.

  3. Enzymatic Transesterification of Ethyl Ferulate with Fish Oil and Reaction Optimization by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2012-01-01

    Full Text Available The enzymatic transesterification of ethyl ferulate (EF with fish oil from cod liver was investigated with Novozym® 435 as catalyst under solvent-free conditions. The purpose of the study is to evaluate the synthesis system for the production of feruloyl fish oil in industry. The modified HPLC method was first set up to characterise the reaction products together with liquid chromatography electrospray time-of-flight mass spectrometry (HPLC-ESI-TOF-MS. The influence of the addition of glycerol to the system on the feruloyl acylglycerol profile was investigated in terms of transesterification performance. The bioconversion rate of EF can be significantly increased with the increased formation of feruloyl fish oil products when appropriate amount of glycerol is present in the reaction. Therefore, an equivalent molar amount of glycerol was added to EF for the practical optimization of the system. The mutual effects of temperature (40 to 70 °C, reaction time (1 to 5 days, enzyme load (2 to 20 % and molar ratio of fish oil and EF in the substrate (1 to 5 were thus studied with the assistance of response surface methodology (RSM for the purpose of maximizing the formation of feruloyl fish oil. The models were well fitted and verified. The optimized conditions were found to be: temperature 70 °C, enzyme load 4.3 %, substrate ratio 4.7, and reaction time 5 days. Under these conditions, the maximum conversion of EF reached 92.4 %, and the formation of feruloyl fish oil reached 80.4 %, but the formation of by-product was minimized to 11.4 % only.

  4. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology

    International Nuclear Information System (INIS)

    Ma, Lingling; Han, Ying; Sun, Kaian; Lu, Jie; Ding, Jincheng

    2015-01-01

    Highlights: • As lipid source, acidified oil are from industrial wastes for renewable energy. • The predicted conversion rate of FFAs was 75.24% under the RSM optimized conditions. • The adsorption system was employed to remove the water produced to shift the equilibrium toward ethyl ester production. • Maximum conversion rate of 98.32% was obtained using adsorption system at optimum process parameters. • Compared with tradition methods, molecular sieve dehydration method improved the conversion rate by 23.08%. - Abstract: The esterification of acidified oil with ethanol catalyzed by sulfonated cation exchange resins (SCER) was optimized using the response surface methodology (RSM). The effects of the molar ratio of ethanol to acidified oil, reaction time and catalyst loading on the conversion rate of free fatty acids (FFAs) were investigated at the temperature of the boiling point of ethanol. Results showed that the highest conversion rate of 75.24% was obtained at the molar ratio of ethanol to acidified oil of 23.2, reaction time of 8.0 h and catalyst loading of 35.0 wt.%. Moreover, the conversion rate of FFAs was increased to 98.32% by using a water adsorption apparatus under the RSM optimized conditions. Scanning electronic microscopic–energy dispersive spectrometric (SEM–EDS), X-ray diffractometric (XRD) and thermogravimetric–derivative thermogravimetric (TG–DTG) analyses confirmed that the morphology of catalysts did not change much and the mechanical and thermal stabilities were still good after the reaction. Furthermore, SCER exhibited a high catalytic activity and stability after being reused for five successive times. The fuel properties of the biodiesel were comparable to that of ASTM, EN and GB biodiesel standard

  5. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology

    Directory of Open Access Journals (Sweden)

    Li Wu

    2017-02-01

    Full Text Available Fusarium mycotoxins deoxynivalenol (DON and zearalenone (ZEN are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD. The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.

  6. Optimization of a Functional Cookie Formulation by Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Lee, L.Y.; Tan, K.S.; Liew, S.L.

    2011-01-01

    A functional cookie formulation containing oligo fructose, dietary fibre and lower calorie, fat and sugar contents than conventional cookies was optimized using Response Surface Methodology (RSM). Instant N-Oil II was used as a fat replacer, while Raftilose P95 was used as a sugar substitute with the addition of fructose to enhance sweetness. Selection of the optimal formulation was based on caloric content. An optimized formulation, V1, was obtained from the model Y = 4927.70 - 152.34X 1 - 155.42X 3 + 104.20X 3 2 + 151.71X 3 3 - 95.08X 3 4 , where Instant N-Oil II replaced 30 % of butter and 24.4 %, w/w (30.5 g) fructose replaced 40.0 %, w/w (50.0 g) sucrose. Two additional optimized formulations, S1 and S2, were proposed which contained the same ingredients as V1, but both contained 19.0 %, w/w (23.8 g) Raftilose P95. Also, S2 had a higher fat replacement level (42 %). A reference cookie prepared from a conventional recipe received significantly higher scores (P < 0.05) than the functional cookies V1, S1 and S2 in the sensory evaluation. However, when health benefits of the functional cookies were explained to the panel after the sensory evaluation had concluded, majority of the panelists stated that they would prefer S1, had they known of its health benefits. S1 contained 19.04 % fat, 8.62 % fructose and 0.74 % sucrose, namely, significantly lower fat and sucrose levels and higher fructose content than the conventional cookie. (author)

  7. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: Response surface methodology and artificial neural network

    Directory of Open Access Journals (Sweden)

    Esfahanian Mehri

    2013-01-01

    Full Text Available In this study, the capabilities of response surface methodology (RSM and artificial neural networks (ANN for modeling and optimization of ethanol production from glucoseusing Saccharomyces cerevisiae in batch fermentation process were investigated. Effect of three independent variables in a defined range of pH (4.2-5.8, temperature (20-40ºC and glucose concentration (20-60 g/l on the cell growth and ethanol production was evaluated. Results showed that prediction accuracy of ANN was apparently similar to RSM. At optimum condition of temperature (32°C, pH (5.2 and glucose concentration (50 g/l suggested by the statistical methods, the maximum cell dry weight and ethanol concentration obtained from RSM were 12.06 and 16.2 g/l whereas experimental values were 12.09 and 16.53 g/l, respectively. The present study showed that using ANN as fitness function, the maximum cell dry weight and ethanol concentration were 12.05 and 16.16 g/l, respectively. Also, the coefficients of determination for biomass and ethanol concentration obtained from RSM were 0.9965 and 0.9853 and from ANN were 0.9975 and 0.9936, respectively. The process parameters optimization was successfully conducted using RSM and ANN; however prediction by ANN was slightly more precise than RSM. Based on experimental data maximum yield of ethanol production of 0.5 g ethanol/g substrate (97 % of theoretical yield was obtained.

  8. Design and optimization of hydrogen production from hydrothermally pretreated sugarcane bagasse using response surface methodology.

    Science.gov (United States)

    Soares, Lais Américo; Braga, Juliana Kawanishi; Motteran, Fabrício; Sakamoto, Isabel Kimiko; Silva, Edson Luiz; Varesche, Maria Bernadete Amâncio

    2017-07-01

    Hydrogen production from hydrothermally pretreated (200 °C for 10 min at 16 bar) sugarcane bagasse was analyzed using response surface methodology. The yeast extract concentration and the temperature had a significant influence for hydrogen production (p-value 0.027 and 0.009, respectively). Maximum hydrogen production (17.7 mmol/L) was observed with 3 g/L yeast extract at 60 °C (C10). In this conditions were produced acetic acid (50.44 mg/L), butyric acid (209.71 mg/L), ethanol (38.4 mg/L), and methane (6.27 mmol/L). Lower hydrogen productions (3.5 mmol/L and 3.9 mmol/L) were observed under the conditions C7 (2 g/L of yeast extract, 35.8 °C) and C9 (1 g/L of yeast extract, 40 °C), respectively. The low yeast extract concentration and low temperature caused a negative effect on the hydrogen production. By means of denaturing gradient gel electrophoresis 20% of similarity was observed between the archaeal population of mesophilic (35 and 40 °C) and thermophilic (50, 60 and 64 °C) reactors. Likewise, similarity of 22% was noted between the bacterial population for the reactors with the lowest hydrogen production (3.5 mmol/L), at 35.8 °C and with the highest hydrogen production (17.7 mmol/L) at 60 °C demonstrating that microbial population modification was a function of incubation temperature variation.

  9. Adsorption of cellulase on cereal brans: a simple functional model from response surface methodology

    Directory of Open Access Journals (Sweden)

    Rui Sergio F. da Silva

    1980-11-01

    Full Text Available A functional model based on Langmuirian adsorption as a limiting mechanism was proposed to explain the effect of cellulase during the enzymatic pretreatment of bran, conducted prior to extraction of proteins, by wet alkaline process from wheat and buckwheat bran materials. The proposed model provides a good fit (r = 0.99 for the data generated thru predictive model taken from the response surface methodology, permitting calculation of a affinity constant (b and capacity constant (k, for wheat bran (b = 0.255 g/IU and k = 17.42% and buckwheat bran (b = 0.066g/IUand k = 78.74%.Modelo funcional baseado na adsorção de Langmuir como mecanismo limitante proposto para explicar o efeito da celulase durante o pré-tratamento enzimático de farelos, visando à extração de proteínas, através do método alcalino-úmido. O referido modelo ajusta se muito bem (r = 0,99 aos dados gerados com base em modelo preditivo obtido da metodologia da superfície de resposta. Pode-se calcular a constante de afinidade (b e a constante de capacidade (k para o farelo de trigo e farelo de trigo mourisco (sarraceno, usando uma equação análoga à isoterma de adsorção de Langmuir. Os resultados indicaram que o farelo de trigo mourisco apresenta uma capacidade mais alta para adsorver celulase e, conseqüentemente,'pode-se esperar uma resposta maior ao pré-tratamento com esta enzima.

  10. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Zoran Zeković

    2012-01-01

    Full Text Available The extraction of active components from natural sources depends on different factors. The knowledge of the effects of different extraction parameters is useful for the optimization of the process, as well for the ability to predict the extraction yield. The aim of this study is to examine the influence of solvent concentration (ethanol/water 40–80 %, by volume, temperature (40–80 °C and solvent/raw material ratio (10–30 mL/g on the extraction yield of phenolic compounds, flavonoids and antioxidant activity from black mulberry (Morus nigra L. leaves. Experimental values of total phenolic content were in the range from 18.6 to 48.7 mg of chlorogenic acid equivalents per g of dried leaves and total flavonoids in the range from 6.0 to 21.4 mg of rutin eqivalents per g of dried leaves. Antioxidant activity expressed as the inhibition concentration at 50 % (IC50 value was in the range from 0.019 to 0.078 mg of mulberry extract per mL. Response surface methodology (RSM was used to determine the optimum extraction conditions and to investigate the effect of different variables on the observed properties of mulberry leaf extracts. The results show a good fit to the proposed model (R˄2>0.90. The optimal conditions for obtaining the highest extraction yield of phenolics and flavonoids were within the experimental range. The experimental values agreed with those predicted, thus indicating suitability of the used model and the success of RSM in optimizing the investigated extraction conditions.

  11. Optimization of a two stage process for biodiesel production from shea butter using response surface methodology

    Directory of Open Access Journals (Sweden)

    E.O. Ajala

    2017-12-01

    Full Text Available The challenges of biodiesel production from high free fatty acid (FFA shea butter (SB necessitated this study. The reduction of %FFA of SB by esterification and its subsequent utilization by transesterification for biodiesel production in a two stage process for optimization studies was investigated using response surface methodology based on a central composite design (CCD. Four operating conditions were investigated to reduce the %FFA of SB and increase the %yield of shea biodiesel (SBD. The operating conditions were temperature (40–60°C, agitation speed (200–1400 rpm, methanol (MeOH: oil mole ratio: 2:1–6:1 (w/w for esterification and 4:1–8:1 (w/w for transesterification and catalyst loading: 1–2% (H2SO4, (v/v for esterification and KOH, (w/w for transesterification. The significance of the parameters obtained in linear and non-linear form from the models were determined using analysis of variance (ANOVA. The optimal operating conditions that gave minimum FFA of 0.26% were 52.19°C, 200 rpm, 2:1 (w/w and 1.5% (v/v, while those that gave maximum yield of 92.16% SBD were 40°C, 800 rpm, 7:1 (w/w and 1% (w/w. The p-value of <0.0001 for each of the stages showed that the models were significant with R2 of 0.96 each. These results indicate the reproducibility of the models and showed that the RSM is suitable to optimize the esterification and transesterification of SB for SBD production. Therefore, RSM is a useful tool that can be employed in industrial scale production of SBD from high FFA SB.

  12. Optimization of extraction parameters of pentacyclic triterpenoids from Swertia chirata stem using response surface methodology.

    Science.gov (United States)

    Pandey, Devendra Kumar; Kaur, Prabhjot

    2018-03-01

    In the present investigation, pentacyclic triterpenoids were extracted from different parts of Swertia chirata by solid-liquid reflux extraction methods. The total pentacyclic triterpenoids (UA, OA, and BA) in extracted samples were determined by HPTLC method. Preliminary studies showed that stem part contains the maximum pentacyclic triterpenoid and was chosen for further studies. Response surface methodology (RSM) has been employed successfully by solid-liquid reflux extraction methods for the optimization of different extraction variables viz., temperature ( X 1 35-70 °C), extraction time ( X 2 30-60 min), solvent composition ( X 3 20-80%), solvent-to-solid ratio ( X 4 30-60 mlg -1 ), and particle size ( X 5 3-6 mm) on maximum recovery of triterpenoid from stem parts of Swertia chirata . A Plackett-Burman design has been used initially to screen out the three extraction factors viz., particle size, temperature, and solvent composition on yield of triterpenoid. Moreover, central composite design (CCD) was implemented to optimize the significant extraction parameters for maximum triterpenoid yield. Three extraction parameters viz., mean particle size (3 mm), temperature (65 °C), and methanol-ethyl acetate solvent composition (45%) can be considered as significant for the better yield of triterpenoid A second-order polynomial model satisfactorily fitted the experimental data with the R 2 values of 0.98 for the triterpenoid yield ( p  < 0.001), implying good agreement between the experimental triterpenoid yield (3.71%) to the predicted value (3.79%).

  13. Optimization of Alkaline and Dilute Acid Pretreatment of Agave Bagasse by Response Surface Methodology

    Science.gov (United States)

    Ávila-Lara, Abimael I.; Camberos-Flores, Jesus N.; Mendoza-Pérez, Jorge A.; Messina-Fernández, Sarah R.; Saldaña-Duran, Claudia E.; Jimenez-Ruiz, Edgar I.; Sánchez-Herrera, Leticia M.; Pérez-Pimienta, Jose A.

    2015-01-01

    Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading. PMID:26442260

  14. Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Umer, E-mail: umer.rashid@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia); Anwar, Farooq, E-mail: fqanwar@yahoo.com [Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040 (Pakistan); Ashraf, Muhammad, E-mail: ashrafbot@yahoo.com [Department of Botany, University of Agriculture, Faisalabad 38040 (Pakistan); Department of Botany and Microbiology, King Saud University, Riyadh (Saudi Arabia); Saleem, Muhammad [Department of Statistics, Government College University, Faisalabad 38000 (Pakistan); Yusup, Suzana, E-mail: drsuzana_yusuf@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 31750, Tronoh, Perak (Malaysia)

    2011-08-15

    Highlights: {yields} Biodiesel production from Moringa oil (MO) has been optimized for the first time using RSM. {yields} RSM-optimized reaction conditions gave a high Moringa oil methyl esters (MOMEs) yield (94.3%). {yields} Fuel properties of MOMEs yielded satisfied the ASTM D 6751 and EU 14214 specifications. {yields} Present RSM-model can be useful for predicting optimum biodiesel yield from other oils. - Abstract: Response surface methodology (RSM), with central composite rotatable design (CCRD), was used to explore optimum conditions for the transesterification of Moringa oleifera oil. Effects of four variables, reaction temperature (25-65 deg. C), reaction time (20-90 min), methanol/oil molar ratio (3:1-12:1) and catalyst concentration (0.25-1.25 wt.% KOH) were appraised. The quadratic term of methanol/oil molar ratio, catalyst concentration and reaction time while the interaction terms of methanol/oil molar ratio with reaction temperature and catalyst concentration, reaction time with catalyst concentration exhibited significant effects on the yield of Moringa oil methyl esters (MOMEs)/biodiesel, p < 0.0001 and p < 0.05, respectively. Transesterification under the optimum conditions ascertained presently by RSM: 6.4:1 methanol/oil molar ratio, 0.80% catalyst concentration, 55 deg. C reaction temperature and 71.08 min reaction time offered 94.30% MOMEs yield. The observed and predicted values of MOMEs yield showed a linear relationship. GLC analysis of MOMEs revealed oleic acid methyl ester, with contribution of 73.22%, as the principal component. Other methyl esters detected were of palmitic, stearic, behenic and arachidic acids. Thermal stability of MOMEs produced was evaluated by thermogravimetric curve. The fuel properties such as density, kinematic viscosity, lubricity, oxidative stability, higher heating value, cetane number and cloud point etc., of MOMEs were found to be within the ASTM D6751 and EN 14214 biodiesel standards.

  15. Modeling of cryogenic frictional behaviour of titanium alloys using Response Surface Methodology approach

    International Nuclear Information System (INIS)

    El-Tayeb, N.S.M.; Yap, T.C.; Venkatesh, V.C.; Brevern, P.V.

    2009-01-01

    The potential of cryogenic effect on frictional behaviour of newly developed titanium alloy Ti-5Al-4V-0.6Mo-0.4Fe (Ti54) sliding against tungsten carbide was investigated and compared with conventional titanium alloy Ti6Al4V (Ti64). In this study, four models were developed to describe the interrelationship between the friction coefficient (response) and independent variables such as speed, load, and sliding distance (time). These variables were investigated using the design of experiments and utilization of the response surface methodology (RSM). By using this method, it was possible to study the effect of main and mixed (interaction) independent variables on the friction coefficient (COF) of both titanium alloys. Under cryogenic condition, the friction coefficient of both Ti64 and Ti54 behaved differently, i.e. an increase in the case of Ti64 and decrease in the case of Ti54. For Ti64, at higher levels of load and speed, sliding in cryogenic conditions produces relatively higher friction coefficients compared to those obtained in dry air conditions. On contrary, introduction of cryogenic fluid reduces the friction coefficients of Ti54 at all tested conditions of load, speed, and time. The established models demonstrated that the mixed effect of load/speed, time/speed, and load/time consistently decrease the COF of Ti54. However this was not the case for Ti64 whereas the COF increased up to 20% when the Ti64 was tested at higher levels of load and sliding time. Furthermore, the models indicated that interaction of loads and speeds was more effective for both Ti-alloy and have the most substantial influence on the friction. In addition, COF for both alloys behaved linearly with the speed but nonlinearly with the load.

  16. Medium optimization for the production of recombinant nattokinase by Bacillus subtilis using response surface methodology.

    Science.gov (United States)

    Chen, Po Ting; Chiang, Chung-Jen; Chao, Yun-Peng

    2007-01-01

    Nattokinase is a potent fibrinolytic enzyme with the potential for fighting cardiovascular diseases. Most recently, a new Bacillus subtilis/Escherichia coli (B. subtilis/E. coli) shuttle vector has been developed to achieve stable production of recombinant nattokinase in B. subtilis (Chen; et al. 2007, 23, 808-813). With this developed B. subtilis strain, the design of an optimum but cost-effective medium for high-level production of recombinant nattokinase was attempted by using response surface methodology. On the basis of the Plackett-Burman design, three critical medium components were selected. Subsequently, the optimum combination of selected factors was investigated by the Box-Behnken design. As a result, it gave the predicted maximum production of recombinant nattokinase with 71 500 CU/mL for shake-flask cultures when the concentrations of soybean hydrolysate, potassium phosphate, and calcium chloride in medium were at 6.100, 0.415, and 0.015%, respectively. This was further verified by a duplicated experiment. Moreover, the production scheme based on the optimum medium was scaled up in a fermenter. The batch fermentation of 3 L was carried out by controlling the condition at 37 degrees C and dissolved oxygen reaching 20% of air saturation level while the fermentation pH was initially set at 8.5. Without the need for controlling the broth pH, recombinant nattokinase production with a yield of 77 400 CU/mL (corresponding to 560 mg/L) could be obtained in the culture broth within 24 h. In particular, the recombinant B. subtilis strain was found fully stable at the end of fermentation when grown on the optimum medium. Overall, it indicates the success of this experimental design approach in formulating a simple and cost-effective medium, which provides the developed strain with sufficient nutrient supplements for stable and high-level production of recombinant nattokinase in a fermenter.

  17. Optimization of Baker’s Yeast Production on Date Extract Using Response Surface Methodology (RSM)

    Science.gov (United States)

    Kara Ali, Mounira; Outili, Nawel; Ait Kaki, Asma; Cherfia, Radia; Benhassine, Sara; Benaissa, Akila; Kacem Chaouche, Noreddine

    2017-01-01

    This work aims to study the production of the biomass of S. cerevisiae on an optimized medium using date extract as the only carbon source in order to obtain a good yield of the biomass. The biomass production was carried out according to the central composite experimental design (CCD) as a response surface methodology using Minitab 16 software. Indeed, under optimal biomass production conditions, temperature (32.9 °C), pH (5.35) and the total reducing sugar extracted from dates (70.93 g/L), S. cerevisiae produced 40 g/L of their biomass in an Erlenmeyer after only 16 h of fermentation. The kinetic performance of the S. cerevisiae strain was investigated with three unstructured models i.e., Monod, Verhulst, and Tessier. The conformity of the experimental data fitted showed a good consistency with Monod and Tessier models with R2 = 0.945 and 0.979, respectively. An excellent adequacy was noted in the case of the Verhulst model (R2 = 0.981). The values of kinetic parameters (Ks, Xm, μm, p and q) calculated by the Excel software, confirmed that Monod and Verhulst were suitable models, in contrast, the Tessier model was inappropriately fitted with the experimental data due to the illogical value of Ks (−9.434). The profiles prediction of the biomass production with the Verhulst model, and that of the substrate consumption using Leudeking Piret model over time, demonstrated a good agreement between the simulation models and the experimental data. PMID:28783118

  18. Ethanol production from sweet sorghum bagasse through process optimization using response surface methodology.

    Science.gov (United States)

    Lavudi, Saida; Oberoi, Harinder Singh; Mangamoori, Lakshmi Narasu

    2017-08-01

    In this study, comparative evaluation of acid- and alkali pretreatment of sweet sorghum bagasse (SSB) was carried out for sugar production after enzymatic hydrolysis. Results indicated that enzymatic hydrolysis of alkali-pretreated SSB resulted in higher production of glucose, xylose and arabinose, compared to the other alkali concentrations and also acid-pretreated biomass. Response Surface Methodology (RSM) was, therefore, used to optimize parameters, such as alkali concentration, temperature and time of pretreatment prior to enzymatic hydrolysis to maximize the production of sugars. The independent variables used during RSM included alkali concentration (1.5-4%), pretreatment temperature (125-140 °C) and pretreatment time (10-30 min) were investigated. Process optimization resulted in glucose and xylose concentration of 57.24 and 10.14 g/L, respectively. Subsequently, second stage optimization was conducted using RSM for optimizing parameters for enzymatic hydrolysis, which included substrate concentration (10-15%), incubation time (24-60 h), incubation temperature (40-60 °C) and Celluclast concentration (10-20 IU/g-dwt). Substrate concentration 15%, (w/v) temperature of 60 °C, Celluclast concentration of 20 IU/g-dwt and incubation time of 58 h led to a glucose concentration of 68.58 g/l. Finally, simultaneous saccharification fermentation (SSF) as well as separated hydrolysis and fermentation (SHF) was evaluated using Pichia kudriavzevii HOP-1 for production of ethanol. Significant difference in ethanol concentration was not found using either SSF or SHF; however, ethanol productivity was higher in case of SSF, compared to SHF. This study has established a platform for conducting scale-up studies using the optimized process parameters.

  19. On-surface construction of low-dimensional nanostructures with terminal alkynes: Linking strategies and controlling methodologies

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Qi-Wei Chen; Kai Wu

    2017-01-01

    Bottom-up approach to constructing low-dimensional nanostructures on surfaces with terminal alkynes has drawn great interest because of its potential applications in fabricating advanced functional nanomaterials.The diversity of the achieved products manifests rich chemistry of terminal alkynes and hence careful linking strategies and proper controlling methodologies are required for selective preparations of high-quality target nanoarchitectures.This review summarizes various on-surface linking strategies for terminal alkynes,including non-bonding interactions as well as organometallic and covalent bonds,and presents examples to show effective control of surface assemblies and reactions of terminal alkynes by variations of the precursor structures,substrates and activation modes.Systematic studies of the on-surface linkage of terminal alkynes may help efficient and predictable preparations of surface nanomaterials and further understanding of surface chemistry.

  20. Clearance of surface-contaminated objects from the controlled area of a nuclear facility. Application of the SUDOQU methodology

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.; Mommaert, C. [Bel V, Brussels (Belgium); Dillen, T. van [National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands)

    2018-01-15

    The lack of clearly defined surface-clearance levels in the Belgian regulation led Bel V to start a collaboration with the Dutch National Institute for Public Health and the Environment (RIVM) to evaluate the applicability of the SUDOQU methodology for the derivation of nuclide-specific surface-clearance criteria for objects released from nuclear facilities. SUDOQU is a methodology for the dose assessment of exposure to a surface-contaminated object, with the innovative assumption of a time-dependent surface activity whose evolution is influenced by removal and deposition mechanisms. In this work, calculations were performed to evaluate the annual effective dose resulting from the use of a typical office item, e.g. a bookcase. Preliminary results allow understanding the interdependencies between the model's underlying mechanisms, and show a strong sensitivity to the main input parameters. The results were benchmarked against those from a model described in Radiation Protection 101, to investigate the impact of the model's main assumptions. Results of the two models were in good agreement. The SUDOQU methodology appears to be a flexible and powerful tool, suitable for the proposed application. Therefore, the project will be extended to more generic study cases, to eventually develop surface-clearance levels applicable to objects leaving nuclear facilities.

  1. A situational analysis methodology to inform comprehensive HIV prevention and treatment programming, applied in rural South Africa.

    Science.gov (United States)

    Treves-Kagan, Sarah; Naidoo, Evasen; Gilvydis, Jennifer M; Raphela, Elsie; Barnhart, Scott; Lippman, Sheri A

    2017-09-01

    Successful HIV prevention programming requires engaging communities in the planning process and responding to the social environmental factors that shape health and behaviour in a specific local context. We conducted two community-based situational analyses to inform a large, comprehensive HIV prevention programme in two rural districts of North West Province South Africa in 2012. The methodology includes: initial partnership building, goal setting and background research; 1 week of field work; in-field and subsequent data analysis; and community dissemination and programmatic incorporation of results. We describe the methodology and a case study of the approach in rural South Africa; assess if the methodology generated data with sufficient saturation, breadth and utility for programming purposes; and evaluate if this process successfully engaged the community. Between the two sites, 87 men and 105 women consented to in-depth interviews; 17 focus groups were conducted; and 13 health facilities and 7 NGOs were assessed. The methodology succeeded in quickly collecting high-quality data relevant to tailoring a comprehensive HIV programme and created a strong foundation for community engagement and integration with local health services. This methodology can be an accessible tool in guiding community engagement and tailoring future combination HIV prevention and care programmes.

  2. Methodology to evaluate the impact of the erosion in cultivated floors applying the technique of the 137CS

    International Nuclear Information System (INIS)

    Gil Castillo, R.; Peralta Vital, J.L.; Carrazana, J.; Riverol, M.; Penn, F.; Cabrera, E.

    2004-01-01

    The present paper shows the results obtained in the framework of 2 Nuclear Projects, in the topic of application of nuclear techniques to evaluate the erosion rates in cultivated soils. Taking into account the investigations with the 137 CS technique, carried out in the Province of Pinar del Rio, was obtained and validated (first time) a methodology to evaluate the erosion impact in a cropland. The obtained methodology includes all relevant stages for the adequate application of the 137 CS technique, from the initial step of area selection, the soil sampling process, selection of the models and finally, the results evaluation step. During the methodology validation process in soils of the Municipality of San Juan y Martinez, the erosion rates estimated by the methodology and the obtained values by watershed segment measures (traditional technique) were compared in a successful manner. The methodology is a technical guide, for the adequate application of the 137 CS technique to estimate the soil redistribution rates in cultivated soils

  3. A new methodology for strategic planning using technological maps and detection of emerging research fronts applied to radiopharmacy

    International Nuclear Information System (INIS)

    Didio, Robert Joseph

    2011-01-01

    This research aims the development of a new methodology to support the strategic planning, using the process of elaboration of technological maps (TRM - Technological Roadmaps), associated with application of the detection process of emerging fronts of research in databases of scientific publications and patents. The innovation introduced in this research is the customization of the process of TRM to the radiopharmacy and, specifically, its association to the technique of detection of emerging fronts of research, in order to prove results and to establish a new and very useful methodology to the strategic planning of this area of businesses. The business unit DIRF - Diretoria de Radiofarmacia - of IPEN CNEN/SP was used as base of the study and implementation of this methodology presented in this work. (author)

  4. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have large effects on water

  5. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    . Differences in the aquifer refilling process subsequent to dry periods, for example a too slow refill when the groundwater table rises after dry summers. This may be due to local deviations in the applied pF-curves in the unsaturated zone description. Differences in near-surface groundwater elevations. For example, the calculated groundwater level reaches the ground surface during the fall and spring at locations where the measured groundwater depth is just below the ground surface. This may be due to the presence of near-surface high-conductive layers. A sensitivity analysis has been made on calibration parameters. For parameters that have 'global' effects, such as the hydraulic conductivity in the saturated zone, the analysis was performed using the 'full' model. For parameters with more local effects, such as parameters influencing the evapotranspiration and the net recharge, the model was scaled down to a column model, representing two different type areas. The most important conclusions that can be drawn from the sensitivity analysis are the following: The results indicate that the horizontal hydraulic conductivity generally should be increased at topographic highs, and reduced at local depressions in the topography. The results indicate that no changes should be made to the vertical hydraulic conductivity at locations where the horizontal conductivity has been increased, and that the vertical conductivity generally should be decreased where the horizontal conductivity has been decreased. The vegetation parameters that have the largest influence on the total groundwater recharge are the root mass distribution and the crop coefficient. The unsaturated zone parameter that have the largest influence on the total groundwater recharge is the effective porosity given in the pF-curve. In addition, the shape of the pF-curve above the water content at field capacity is also of great importance. The general conclusion is that the surrounding conditions have

  6. Residential surface soil guidance values applied worldwide to the original 2001 Stockholm Convention POP pesticides.

    Science.gov (United States)

    Jennings, Aaron A; Li, Zijian

    2015-09-01

    Surface soil contamination is a worldwide problem. Many regulatory jurisdictions attempt to control human exposures with regulatory guidance values (RGVs) that specify a soil's maximum allowable concentration. Pesticides are important soil contaminants because of their intentional toxicity and widespread surface soil application. Worldwide, at least 174 regulatory jurisdictions from 54 United Nations member states have published more than 19,400 pesticide RGVs for at least 739 chemically unique pesticides. This manuscript examines the variability of the guidance values that are applied worldwide to the original 2001 Stockholm Convention persistent organic pollutants (POP) pesticides (Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor, Mirex, and Toxaphene) for which at least 1667 RGVs have been promulgated. Results indicate that the spans of the RGVs applied to each of these pesticides vary from 6.1 orders of magnitude for Toxaphene to 10.0 orders of magnitude for Mirex. The distribution of values across these value spans resembles the distribution of lognormal random variables, but also contain non-random value clusters. Approximately 40% of all the POP RGVs fall within uncertainty bounds computed from the U.S. Environmental Protection Agency (USEPA) RGV cancer risk model. Another 22% of the values fall within uncertainty bounds computed from the USEPA's non-cancer risk model, but the cancer risk calculations yield the binding (lowest) value for all POP pesticides except Endrin. The results presented emphasize the continued need to rationalize the RGVs applied worldwide to important soil contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Development of a Standardized Methodology for the Use of COSI-Corr Sub-Pixel Image Correlation to Determine Surface Deformation Patterns in Large Magnitude Earthquakes.

    Science.gov (United States)

    Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.

    2014-12-01

    Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean

  8. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    Science.gov (United States)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  9. Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

    International Nuclear Information System (INIS)

    Al Touma, Albert; Ghali, Kamel; Ghaddar, Nesreen; Ismail, Nagham

    2016-01-01

    This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%. The proposed system is applied to a typical office space to analyze its effectiveness in reducing the window temperature, the space load and radiation asymmetry, while maintaining the indoor comfort conditions. Results have shown that the system is reduced the space load by −19.8% and attenuated the radiation asymmetry significantly for office spaces having window-to-wall ratio of 40% in climate of Riyadh, KSA. The system performance diminished when applied in locations suffering from humid weather climates. - Highlights: • A passive evaporative-cooled solar chimney system is introduced to decrease window temperature. • A mathematical model is developed of the system to predict induce air flow and window surface temperature. • The model is validated with experiments in twin room climatic chamber and using artificial solar lamps. • The system reduces window maximum temperature by 5 °C in the hot dry climate of Riyadh, KSA. • It reduced the space load by 19.4% for office spaces at window-to-wall ratio of 40% in Riyadh, KSA.

  10. The Service-Learning methodology applied to Operations Management: From the Operations Plan to business start up.

    Directory of Open Access Journals (Sweden)

    Constantino García-Ramos

    2017-06-01

    After developing this activity of teaching innovation, we can conclude that the SL is a good methodology to improve the academic, personal and social development of students, suggesting that it is possible to join their academic success with the social commitment of the University.

  11. Methodology and computer program for applying improved, inelastic ERR for the design of mine layouts on planar reefs.

    CSIR Research Space (South Africa)

    Spottiswoode, SM

    2002-08-01

    Full Text Available and the visco-plastic models of Napier and Malan (1997) and Malan (2002). Methodologies and a computer program (MINF) are developed during this project that write synthetic catalogues of seismic events to simulate the rock response to mining...

  12. Hydrogen safety risk assessment methodology applied to a fluidized bed membrane reactor for autothermal reforming of natural gas

    NARCIS (Netherlands)

    Psara, N.; Van Sint Annaland, M.; Gallucci, F.

    2015-01-01

    The scope of this paper is the development and implementation of a safety risk assessment methodology to highlight hazards potentially prevailing during autothermal reforming of natural gas for hydrogen production in a membrane reactor, as well as to reveal potential accidents related to hydrogen

  13. Process design for isolation of soybean oil bodies by applying the product-driven process synthesis methodology

    NARCIS (Netherlands)

    Zderic, A.; Taraksci, T.; Hooshyar, N.; Zondervan, E.; Meuldijk, J.

    2014-01-01

    The present work describes the product driven process synthesis (PDPS) methodology for the conceptual design of extraction of intact oil bodies from soybeans. First, in this approach consumer needs are taken into account and based on these needs application of the final product (oil bodies) is

  14. Identification of Optimum Magnetic Behavior of NanoCrystalline CmFeAl Type Heusler Alloy Powders Using Response Surface Methodology

    Science.gov (United States)

    Srivastava, Y.; Srivastava, S.; Boriwal, L.

    2016-09-01

    Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.

  15. The role of cold work and applied stress on surface oxidation of 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Perez, Sergio, E-mail: sergio.lozano-perez@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Kruska, Karen [Department of Materials, University of Oxford, Parks Rd., Oxford OX1 3PH (United Kingdom); Iyengar, Ilya [Winchester College, College Street, Winchester SO23 9LX (United Kingdom); Terachi, Takumi; Yamada, Takuyo [Institute of Nuclear Safety System (INSS), 64 Sata, Mihama-cho, Mikata-gun, Fukui 919-1205 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FIB 3D sequential sectioning is an ideal technique to characterize surface oxidation. Black-Right-Pointing-Pointer 3D models of the oxide can be produced with nanometre resolution. Black-Right-Pointing-Pointer The effects of stress and cold work in grain boundary oxidation have been analysed. Black-Right-Pointing-Pointer At least three different oxidation modes are observed when stress is applied. - Abstract: FIB 3-dimensional (3D) sequential sectioning has been used to characterize environmental degradation of 304 stainless steels in pressurized water reactor (PWR) simulated primary water. In particular, the effects of cold work and applied stress on oxidation have been studied in detail. It was found that a description of the oxidation behaviour of this alloy is only complete if it is treated statistically, since it can suffer from high variability depending on the feature described.

  16. Updating Optimal Decisions Using Game Theory and Exploring Risk Behavior Through Response Surface Methodology

    National Research Council Canada - National Science Library

    Jordan, Jeremy D

    2007-01-01

    .... Methodology is developed that allows a decision maker to change his perceived optimal policy based on available knowledge of the opponents strategy, where the opponent is a rational decision maker...

  17. Inactivation of Burkholderia pseudomallei on environmental surfaces using spray-applied, common liquid disinfectants.

    Science.gov (United States)

    Calfee, M W; Wendling, M

    2015-11-01

    Five commercially available liquid antimicrobials were evaluated for their ability to decontaminate common environmental surface materials, contaminated with Burkholderia pseudomallei, using a spray-based disinfectant delivery procedure. Tests were conducted at both an ambient temperature (c. 20°C) and a lower temperature (c. 12°C) condition. Nonporous materials (glass and aluminium) were more easily decontaminated than porous materials (wood, concrete and carpet). Citric acid (1%) demonstrated poor efficacy in all test conditions. Bleach (pH-adjusted), ethanol (70%), quaternary ammonium and PineSol®, demonstrated high (>6 log10 reduction) efficacies on glass and aluminium at both temperatures, but achieved varying results for wood, carpet and concrete. Temperature had minimal effect on decontamination efficacy during these tests. Much of the antimicrobial efficacy data for pathogenic micro-organisms are generated with testing that utilizes hard nonporous surface materials. These data are not directly translatable for decontaminant selection following an incident whereby complex and porous environmental surfaces are contaminated. This study presents efficacy data for spray-applied antimicrobial liquids, when used to decontaminate common environmental surfaces contaminated with Burkholderia pseudomallei. These data can help responders develop effective remediation strategies following an environmental contamination incident involving B. pseudomallei. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  18. OPTIMIZATION OF SESAME SEEDS OIL EXTRACTION OPERATING CONDITIONS USING THE RESPONSE SURFACE DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    HAITHAM OSMAN

    2016-12-01

    Full Text Available This paper applies Response Surface Design (RSD to model the experimental data obtained from the extraction of sesame seeds oil using n-hexane, chloroform and acetone as solvents under different operating conditions. The results obtained revealed that n-hexane outperformed the extraction obtained using chloroform and acetone. The developed model predicted that n-hexane with a rotational speed of 547 rpm and a contact time between the solvent and seeds of 19.46 hours with solvent: seeds ratio of 4.93, yields the optimum oil extracted of 37.03 %, outperforming chloroform and acetone models that gave prediction for 4.75 and 4.21 respectively. While the maximum predictions yield for chloroform is 6.73 %, under the operating conditions of 602 rpm, and 24 hours contact time, with a ratio of solvent: seeds of 1.74. On the other hand the acetone maximum prediction is only 4.37 %, with operational conditions of 467 rpm, and 6.00 hours contact time, with a ratio of solvent: seeds of 1. It is has been found that the maximum oil extraction yield obtained from the chloroform (6.73 % and Acetone (4.37 % is much lower than that predicted by n-hexane 37.03 %.

  19. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology.

    Science.gov (United States)

    Hu, Guangji; Li, Jianbing; Zhang, Xinying; Li, Yubao

    2017-05-01

    The treatment of waste biomass (sawdust) through co-pyrolysis with refinery oily sludge was carried out in a fixed-bed reactor. Response surface method was applied to evaluate the main and interaction effects of three experimental factors (sawdust percentage in feedstock, temperature, and heating rate) on pyrolysis oil and char yields. It was found that the oil and char yields increased with sawdust percentage in feedstock. The interaction between heating rate and sawdust percentage as well as between heating rate and temperature was significant on the pyrolysis oil yield. The higher heating value of oil originated from sawdust during co-pyrolysis at a sawdust/oily sludge ratio of 3:1 increased by 5 MJ/kg as compared to that during sawdust pyrolysis alone, indicating a synergistic effect of co-pyrolysis. As a result, petroleum sludge can be used as an effective additive in the pyrolysis of waste biomass for improving its energy recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  1. OPTIMIZATION OF RED PIGMENT PRODUCTION BY MONASCUS PURPUREUS FTC 5356 USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Farhan M. Said

    2018-06-01

    Full Text Available Factors such as environmental conditions and nutrients are significant for successful growth and reproduction of microorganisms. Manipulations of the factors are the most effective way to stimulate the growth of the microorganism, which can be used to optimize the yield of a product. In this study, Central Composite Design (CCD of Response Surface Methodology (RSM was used to optimize the production of red pigment by Monascus purpureus FTC 5356 using the petioles of oil palm fronds (OPF as a substrate in solid state fermentation (SSF. The data was analyzed using Design Expert Software. The optimum combination predicted via RSM was confirmed through experimental work. The interactions between three variables such as initial moisture content (%, initial pH value (pH, and peptone concentration (% were studied and modelled. The statistical analysis of the results showed that the optimal conditions for red pigment production 47 AU/g with the biomass of 425.1 mg/g was at 55% initial moisture content, 3% of peptone, and at pH 3.  The RSM results showed that the initial pH value had a significant effect on red pigment production (P-value <0.05. The validation of these results was also conducted by fermentation with predicted conditions and it was found that there was a discrepancy of 0.39% between the values of the experimental result and those of the predicted values. ABSTRAK: Keadaan persekitaran dan nutrien merupakan faktor-faktor penting dalam pertumbuhan mikroorganisma. Manipulasi faktor-faktor tersebut adalah kaedah terbaik bagi meningkatkan pertumbuhan mikroorganisma dan mengoptimumkan penghasilan produk. Kajian ini mengguna pakai Rekaan Gabungan Pusat (CCD melalui Kaedah Tindak balas Permukaan (RSM bagi penghasilan pigmen merah optimum oleh Monascus purpureus FTC 5356 menggunakan batang pelepah kelapa sawit (OPF sebagai perumah dalam proses penapaian pepejal (SSF. Data telah dianalisis menggunakan perisian Design Expert. Gabungan parameter

  2. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Nik Ab Rahman, Nik Norulaini [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Balakrishnan, Venugopal [Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang (Malaysia); Alkarkhi, Abbas F.M. [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Ahmad Rajion, Zainul [School of Dental Science, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Ab Kadir, Mohd Omar, E-mail: akmomar@usm.my [Department of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-15

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO{sub 2}) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO{sub 2} sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO{sub 2}-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO{sub 2} exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.

  3. Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology

    International Nuclear Information System (INIS)

    Hossain, Md. Sohrab; Nik Ab Rahman, Nik Norulaini; Balakrishnan, Venugopal; Alkarkhi, Abbas F.M.; Ahmad Rajion, Zainul; Ab Kadir, Mohd Omar

    2015-01-01

    Highlights: • Supercritical carbon dioxide sterilization of clinical solid waste. • Inactivation of bacteria in clinical solid waste using supercritical carbon dioxide. • Reduction of the hazardous exposure of clinical solid waste. • Optimization of the supercritical carbon dioxide experimental conditions. - Abstract: Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO 2 ) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO 2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO 2 -treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO 2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials

  4. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  5. Application of Response Surface Methodology for characterization of ozone production from Multi-Cylinder Reactor in non-thermal plasma device

    Science.gov (United States)

    Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim

    2018-04-01

    Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.

  6. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    International Nuclear Information System (INIS)

    Adamczyk, J.; Horny, N.; Tricoteaux, A.; Jouan, P.-Y.; Zadam, M.

    2008-01-01

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer (θ-2θ) with the CuKα radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments

  7. Control and evaluation methodology of reclaimed surfaces in coal mines; Metodologia para el Seguimiento y Evaluacion de Superficies Restauradas en Minas de Carbon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The objective of the project has been to establish a control and evaluation methodology of reclaimed surfaces in coal mines, ash dumps,... etc. to be applied especially in locations with limited availability of ton soil, and to be used by mining companies to establish an internal quality control of the reclamation carried out. This methodology has been developed based on the evaluation of the results obtained from the reclamation that Endesa carries out at the Puentes mine. An operating and simplified method which may be adopted by smaller sites has been developed. This project has been carried out during the period 1994-1996 and includes a study about the physicochemical conditions of reclaimed surfaces, soil organisms study and about vegetation productivity associated to micorrizae. The conclusions and recommendations obtained include reclamation techniques (study and management of the deposit dumped, top soil management, addition of basic correctors, fertilization, top soil and maintenance works) and reclaimed surface control techniques (physicochemical soil conditions, soil organisms and vegetation). (Author)

  8. On the use of response surface methodology to predict and interpret the preferred c-axis orientation of sputtered AlN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Adamczyk, J.; Horny, N.; Tricoteaux, A. [IUT de Valenciennes, Departement Mesures Physiques, UVHC, Z.I. du Champ de l' Abbesse, 59600 Maubeuge (France); Jouan, P.-Y. [IUT de Valenciennes, Departement Mesures Physiques, UVHC, Z.I. du Champ de l' Abbesse, 59600 Maubeuge (France)], E-mail: pierre-yves.jouan@univ-valenciennes.fr; Zadam, M. [Electronic Department, Badji Mokhtar University, BP12 Annaba (Algeria)

    2008-01-15

    This paper deals with experimental design applied to response surface methodology (RSM) in order to determine the influence of the discharge conditions on preferred c-axis orientation of sputtered AlN thin films. The thin films have been deposited by DC reactive magnetron sputtering on Si (1 0 0) substrates. The preferred orientation was evaluated using a conventional Bragg-Brentano X-ray diffractometer ({theta}-2{theta}) with the CuK{alpha} radiation. We have first determined the experimental domain for 3 parameters: sputtering pressure (2-6 mTorr), discharge current (312-438 mA) and nitrogen percentage (17-33%). For the setup of the experimental design we have used a three factors Doehlert matrix which allows the use of the statistical response surface methodology (RSM) in a spherical domain. A four dimensional surface response, which represents the (0 0 0 2) peak height as a function of sputtering pressure, discharge current and nitrogen percentage, was obtained. It has been found that the main interaction affecting the preferential c-axis orientation was the pressure-nitrogen percentage interaction. It has been proved that a Box-Cox transformation is a very useful method to interpret and discuss the experimental results and leads to predictions in good agreement with experiments.

  9. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    Science.gov (United States)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  10. Development of an analysis methodology applied to 4πβ-γ software coincidence data acquisition system

    International Nuclear Information System (INIS)

    Brancaccio, Franco; Dias, Mauro da Silva; Toledo, Fabio de

    2009-01-01

    The present work describes the new software methodology under development at the IPEN Nuclear Metrology Laboratory for radionuclide standardizations with 4πβ-γ coincidence technique. The software includes the Coincidence Graphic User Interface (GUI) and the Coincidence Analysis Program. The first results for a 60 Co sample measurement are discussed and compared to the results obtained with two different conventional coincidence systems. (author)

  11. Direct cost analysis of intensive care unit stay in four European countries: applying a standardized costing methodology.

    Science.gov (United States)

    Tan, Siok Swan; Bakker, Jan; Hoogendoorn, Marga E; Kapila, Atul; Martin, Joerg; Pezzi, Angelo; Pittoni, Giovanni; Spronk, Peter E; Welte, Robert; Hakkaart-van Roijen, Leona

    2012-01-01

    The objective of the present study was to measure and compare the direct costs of intensive care unit (ICU) days at seven ICU departments in Germany, Italy, the Netherlands, and the United Kingdom by means of a standardized costing methodology. A retrospective cost analysis of ICU patients was performed from the hospital's perspective. The standardized costing methodology was developed on the basis of the availability of data at the seven ICU departments. It entailed the application of the bottom-up approach for "hotel and nutrition" and the top-down approach for "diagnostics," "consumables," and "labor." Direct costs per ICU day ranged from €1168 to €2025. Even though the distribution of costs varied by cost component, labor was the most important cost driver at all departments. The costs for "labor" amounted to €1629 at department G but were fairly similar at the other departments (€711 ± 115). Direct costs of ICU days vary widely between the seven departments. Our standardized costing methodology could serve as a valuable instrument to compare actual cost differences, such as those resulting from differences in patient case-mix. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. [Optimization of enzymatic extraction of polysaccharide from Dendrobium officinale by box-Behnken design and response surface methodology].

    Science.gov (United States)

    Hu, Jian-mei; Li, Jing-ling; Feng, Peng; Zhang, Xiang-dong; Zhong, Ming

    2014-01-01

    To optimize the processing of enzymatic extraction of polysaccharide from Dendrobium officinale. With phenol-sulfuric acid method and the DNS determination polysaccharide, Box-Behnken response surface methodology was used to optimize different enzyme dosage, reaction temperature and reaction time by using Design-Expert 8.05 software for data analysis and processing. According to Box-Behnken response, the best extraction conditions for the polysaccharide from Dendrobium officinale were as follows: the amount of enzyme complex was 3.5 mg/mL, hydrolysis temperature was 53 degrees C, and reaction time was 70 min. In accordance with the above process, the polysaccharide yield was 16.11%. Box-Behnken response surface methodology is used to optimize the enzymatic extraction process for the polysaccharide in this study, which is effective, stable and feasible.

  13. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].

    Science.gov (United States)

    Jiang, Zheng; Wang, Hong; Wu, Qi-nan

    2015-06-01

    To optimize the processing of polysaccharide extraction from Spirodela polyrrhiza. Five factors related to extraction rate of polysaccharide were optimized by the Plackett-Burman design. Based on this study, three factors, including alcohol volume fraction, extraction temperature and ratio of material to liquid, were regarded as investigation factors by Box-Behnken response surface methodology. The effect order of three factors on the extraction rate of polysaccharide from Spirodela polyrrhiza were as follows: extraction temperature, alcohol volume fraction,ratio of material to liquid. According to Box-Behnken response, the best extraction conditions were: alcohol volume fraction of 81%, ratio of material to liquid of 1:42, extraction temperature of 100 degrees C, extraction time of 60 min for four times. Plackett-Burman design and Box-Behnken response surface methodology used to optimize the extraction process for the polysaccharide in this study is effective and stable.

  14. Ultrasonic Extraction of Antioxidants from Chinese Sumac (Rhus typhina L.) Fruit Using Response Surface Methodology and Their Characterization

    OpenAIRE

    Lai, Jixiang; Wang, Huifang; Wang, Donghui; Fang, Fang; Wang, Fengzhong; Wu, Tao

    2014-01-01

    For the first time, response surface methodology (RSM) using a Box-Behnken Design (BBD) was employed to optimize the conditions for ultrasonic assisted extraction (UAE) of antioxidants from Chinese sumac (Rhus typhina L.) fruits. Initially, influencing factors such as liquid-solid ratio, duration of ultrasonic assisted extraction, pH range, extraction temperature and ethanol concentration were identified using single-factor experiments. Then, with respect to the three most significant influen...

  15. Formulation and Evaluation of Cookies Containing Germinated Pigeon Pea, Fermented Sorghum and Cocoyam Flour Blends using Mixture Response Surface Methodology

    OpenAIRE

    Laura C. Okpala; Eric C. Okoli

    2011-01-01

    Cookies were produced from blends of germinated pigeon pea, fermented sorghum and cocoyam flours. The study was carried out to evaluate the effects of varying the proportions of these components on the sensory and protein quality of the cookies. The sensory attributes studied were colour, taste, texture, crispiness and general acceptability while the protein quality indices were Biological Value (BV) and Net Protein Utilization (NPU). Mixture response surface methodology was used to model the...

  16. Downscaling Surface Water Inundation from Coarse Data to Fine-Scale Resolution: Methodology and Accuracy Assessment

    Directory of Open Access Journals (Sweden)

    Guiping Wu

    2015-11-01

    Full Text Available The availability of water surface inundation with high spatial resolution is of fundamental importance in several applications such as hydrology, meteorology and ecology. Medium spatial resolution sensors, like MODerate-resolution Imaging Spectroradiometer (MODIS, exhibit a significant potential to study inundation dynamics over large areas because of their high temporal resolution. However, the low spatial resolution provided by MODIS is not appropriate to accurately delineate inundation over small scale. Successful downscaling of water inundation from coarse to fine resolution would be crucial for improving our understanding of complex inundation characteristics over the regional scale. Therefore, in this study, we propose an innovative downscaling method based on the normalized difference water index (NDWI statistical regression algorithm towards generating small-scale resolution inundation maps from MODIS data. The method was then applied to the Poyang Lake of China. To evaluate the performance of the proposed downscaling method, qualitative and quantitative comparisons were conducted between the inundation extent of MODIS (250 m, Landsat (30 m and downscaled MODIS (30 m. The results indicated that the downscaled MODIS (30 m inundation showed significant improvement over the original MODIS observations when compared with simultaneous Landsat (30 m inundation. The edges of the lakes become smoother than the results from original MODIS image and some undetected water bodies were delineated with clearer shapes in the downscaled MODIS (30 m inundation map. With respect to high-resolution Landsat TM/ETM+ derived inundation, the downscaling procedure has significantly increased the R2 and reduced RMSE and MAE both for the inundation area and for the value of landscape metrics. The main conclusion of this study is that the downscaling algorithm is promising and quite feasible for the inundation mapping over small-scale lakes.

  17. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2018-06-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.