WorldWideScience

Sample records for surface metal site

  1. Site-Specific Molecule-Surface Interactions on Metal Oxides

    National Research Council Canada - National Science Library

    Reisler, Hanna

    1998-01-01

    .... At low incident energies rotational and translational temperatures of scattered HCl were equal to the surface temperature, and residence times in the millisecond regime were observed at low surface temperature. When HCl(v=2, J=1...

  2. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  3. Risk assessing heavy metals in the groundwater-surface water interface at a contaminated site

    DEFF Research Database (Denmark)

    Bigi, Giovanni; McKnight, Ursula S.; Bjerg, Poul Løgstrup

    such as surface water and groundwater (EC, 2017). The current study quantified and assessed the contamination of As, Cd, Cr, Cu, Ni, Pb and Zn in the shallow aquifer, hyporheic zone, stream water and streambed sediments at Rådvad site, a former metal manufacturing industrial area located in Denmark, investigating...... in the soil). Stream water was sampled in 12 points, while groundwater was sampled in 4 wells close to the stream where the interaction was suspected. Sediments and hyporheic zone were sampled in pair, where upward hydraulic heads have been detected. A drain discharging in the river was also sampled....... Sediments were divided in different layers and both heavy metal total concentration and chemical partitioning were analysed. Redox species and dissolved organic matter were also analysed in the water samples, while fraction of organic carbon was investigated in the extracted sediments. Results showed a high...

  4. [Adsorption of heavy metals on the surface of birnessite relationship with its Mn average oxidation state and adsorption sites].

    Science.gov (United States)

    Wang, Yan; Tan, Wen-Feng; Feng, Xiong-Han; Qiu, Guo-Hong; Liu, Fan

    2011-10-01

    Adsorption characteristics of mineral surface for heavy metal ions are largely determined by the type and amount of surface adsorption sites. However, the effects of substructure variance in manganese oxide on the adsorption sites and adsorption characteristics remain unclear. Adsorption experiments and powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) were combined to examine the adsorption characteristics of Pb2+, Cu2+, Zn2+ and Cd2+ sequestration by birnessites with different Mn average oxidation state (AOS), and the Mn AOS dependent adsorption sites and adsorption characteristics. The results show that the maximum adsorption capacity of Pb2+, Cu2+, Zn2+ and Cd2+ increased with increasing birnessite Mn AOS. The adsorption capacity followed the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. The observations suggest that there exist two sites on the surface of birnessite, i. e., high-binding-energy site (HBE site) and low-binding-energy site (LBE site). With the increase of Mn AOS for birnessites, the amount of HBE sites for heavy metal ions adsorption remarkably increased. On the other hand, variation in the amount of LBE sites was insignificant. The amount of LBE sites is much more than those of HBE sites on the surface of birnessite with low Mn AOS. Nevertheless, both amounts on the surface of birnessite with high Mn AOS are very close to each other. Therefore, the heavy metal ions adsorption capacity on birnessite is largely determined by the amount of HBE sites. On birnessite surface, adsorption of Cu2+, Zn2+, and Cd2+ mostly occurred at HBE sites. In comparison with Zn2+ and Cd2+, more Cu2+ adsorbed on the LBW sites. Pb2+ adsorption maybe occupy at both LBE sites and HBE sites simultaneously.

  5. Heavy metal contamination of surface soil in electronic waste dismantling area: site investigation and source-apportionment analysis.

    Science.gov (United States)

    Jinhui Li; Huabo Duan; Pixing Shi

    2011-07-01

    The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.

  6. Site competition on metal surfaces: an electron spectroscopic study of sequential adsorption on W(110)

    International Nuclear Information System (INIS)

    Steinkilberg, M.; Menzel, D.

    1977-01-01

    Using UPS and XPS, the sequential adsorption of hydrogen + carbon monoxide, and of hydrogen + oxygen, on W(110) has been studied at room temperature. Adsorption of CO on a H-covered surface is rapid and leads to total displacement of hydrogen. The resulting CO layer however, is different from that formed on the clean surface under identical conditions, in that it consists of a higher percentage of virgin CO, while considerably more β-CO forms on the clean surface. Oxygen does not adsorb on a H-covered surface, nor displace hydrogen. It is concluded that hydrogen most probably occupies the same sites utilized by dissociative adsorption of CO and oxygen, while virgin CO can also occupy different sites; its adsorption can thus lead to interactional weakening of the H-surface bond. (Auth.)

  7. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    Science.gov (United States)

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Polymer grafting surface as templates for the site-selective metallization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fang [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Li, Peiyuan, E-mail: lipearpear@yahoo.cn [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Li, Xiangcheng [School of computer, electronics and information, Guangxi University, Nanning 530001 (China); Huo, Lini [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Chen, Jinhao [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Chen, Rui [College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530001 (China); Na, Wei; Tang, Wanning; Liang, Lifang [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China); Su, Wei, E-mail: aaasuwei@yahoo.com.cn [College of Chemistry and Life Science, Guangxi Teachers Education University, Nanning 530001 (China)

    2013-06-01

    We report a simple, low-cost and universal method for the fabrication of copper circuit patterns on a wide range of flexible polymeric substrates. This method relies on procedures to modify the polymeric substrates with grafted polymer template to form surface-bound N-containing groups, which can bind palladium catalysts that subsequently initiate the site-selective deposition of copper granular layer patterns. The fabrications of patterned copper films were demonstrated on three kinds of flexible polymeric films including poly(imide) (PI), poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) with minimum feature sizes of 200 μm. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM, SEM. Furthermore, the copper layered structure shows good adhesion with polymeric film. This method, which provides a promising strategy for the fabrication of copper circuit patterns on flexible polymeric substrates, has the potential in manufacturing conductive features adopted in various fields including modern electronics, opto-electronics and photovoltaic applications.

  9. Polymer grafting surface as templates for the site-selective metallization

    International Nuclear Information System (INIS)

    Yang, Fang; Li, Peiyuan; Li, Xiangcheng; Huo, Lini; Chen, Jinhao; Chen, Rui; Na, Wei; Tang, Wanning; Liang, Lifang; Su, Wei

    2013-01-01

    We report a simple, low-cost and universal method for the fabrication of copper circuit patterns on a wide range of flexible polymeric substrates. This method relies on procedures to modify the polymeric substrates with grafted polymer template to form surface-bound N-containing groups, which can bind palladium catalysts that subsequently initiate the site-selective deposition of copper granular layer patterns. The fabrications of patterned copper films were demonstrated on three kinds of flexible polymeric films including poly(imide) (PI), poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET) with minimum feature sizes of 200 μm. The films were characterized by ATR FT-IR, contact angle, XPS, XRD, TEM, SEM. Furthermore, the copper layered structure shows good adhesion with polymeric film. This method, which provides a promising strategy for the fabrication of copper circuit patterns on flexible polymeric substrates, has the potential in manufacturing conductive features adopted in various fields including modern electronics, opto-electronics and photovoltaic applications.

  10. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  11. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  12. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111)

    Science.gov (United States)

    Xin, Hongliang; Linic, Suljo

    2016-06-01

    Many commercial heterogeneous catalysts are complex structures that contain metal active sites promoted by multiple additives. Developing fundamental understanding about the impact of these perturbations on the local surface reactivity is crucial for catalyst development and optimization. In this contribution, we develop a general framework for identifying underlying mechanisms that control the changes in the surface reactivity of a metal site (more specifically the adsorbate-surface interactions) upon a perturbation in the local environment. This framework allows us to interpret fairly complex interactions on metal surfaces in terms of specific, physically transparent contributions that can be evaluated independently of each other. We use Cs-promoted dissociation of O2 as an example to illustrate our approach. We concluded that the Cs adsorbate affects the outcome of the chemical reaction through a strong alkali-induced electric field interacting with the static dipole moment of the O2/Ag(111) system.

  13. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  14. Organochlorines in surface soil at electronic-waste wire burning sites and metal contribution evaluated using quantitative X-ray speciation

    International Nuclear Information System (INIS)

    Fujimori, Takashi; Takigami, Hidetaka; Takaoka, Masaki

    2013-01-01

    Heavy metals and toxic chlorinated aromatic compounds (aromatic-Cls) such as dioxins and polychlorinated biphenyls (PCBs) are found at high concentrations and persist in surface soil at wire burning sites (WBSs) in developing countries in which various wire cables are recycled to yield pure metals. Chlorine K-edge near-edge X-ray absorption fine structure (NEXAFS) is used to detect the specific chemical form of Cl and estimate its amount using a spectrum jump in the solid phase. Quantitative X-ray speciation of Cl was applied to study the mechanisms of aromatic-Cls formation in surface soil at WBSs in Southeast Asia. Relationships between aromatic-Cls and chlorides of heavy metals were evaluated because heavy metals are promoters of the thermochemical solid-phase formation of aromatic-Cls.

  15. Organochlorines in surface soil at electronic-waste wire burning sites and metal contribution evaluated using quantitative X-ray speciation

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka; Takaoka, Masaki

    2013-04-01

    Heavy metals and toxic chlorinated aromatic compounds (aromatic-Cls) such as dioxins and polychlorinated biphenyls (PCBs) are found at high concentrations and persist in surface soil at wire burning sites (WBSs) in developing countries in which various wire cables are recycled to yield pure metals. Chlorine K-edge near-edge X-ray absorption fine structure (NEXAFS) is used to detect the specific chemical form of Cl and estimate its amount using a spectrum jump in the solid phase. Quantitative X-ray speciation of Cl was applied to study the mechanisms of aromatic-Cls formation in surface soil at WBSs in Southeast Asia. Relationships between aromatic-Cls and chlorides of heavy metals were evaluated because heavy metals are promoters of the thermochemical solid-phase formation of aromatic-Cls.

  16. Antibacterial Metallic Touch Surfaces

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2016-08-01

    Full Text Available Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field.

  17. The surface chemistry of divalent metal carbonate minerals; a critical assessment of surface charge and potential data using the charge distribution multi-site ion complexation model

    NARCIS (Netherlands)

    Wolthers, M.; Charlet, L.; Van Cappellen, P.

    2008-01-01

    The Charge Distribution MUltiSite Ion Complexation or CD–MUSIC modeling approach is used to describe the chemical structure of carbonate mineralaqueous solution interfaces. The new model extends existing surface complexation models of carbonate minerals, by including atomic scale information on

  18. Organometallic chemistry of metal surfaces

    International Nuclear Information System (INIS)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures

  19. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  20. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted...... instability of vicinal metal surfaces is at variance with the almost generally observed stability of these surfaces. We argue that the unstable orientations undergo a defaceting transition at relatively low temperatures, driven by the high vibrational entropy of steps....

  1. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...

  2. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Directory of Open Access Journals (Sweden)

    Tatjana Ladnorg

    2013-10-01

    Full Text Available Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE. The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy.

  3. Site-selective growth of surface-anchored metal-organic frameworks on self-assembled monolayer patterns prepared by AFM nanografting

    Science.gov (United States)

    Ladnorg, Tatjana; Welle, Alexander; Heißler, Stefan; Wöll, Christof

    2013-01-01

    Summary Surface anchored metal-organic frameworks, SURMOFs, are highly porous materials, which can be grown on modified substrates as highly oriented, crystalline coatings by a quasi-epitaxial layer-by-layer method (liquid-phase epitaxy, or LPE). The chemical termination of the supporting substrate is crucial, because the most convenient method for substrate modification is the formation of a suitable self-assembled monolayer. The choice of a particular SAM also allows for control over the orientation of the SURMOF. Here, we demonstrate for the first time the site-selective growth of the SURMOF HKUST-1 on thiol-based self-assembled monolayers patterned by the nanografting technique, with an atomic force microscope as a structuring tool. Two different approaches were applied: The first one is based on 3-mercaptopropionic acid molecules which are grafted in a 1-decanethiolate SAM, which serves as a matrix for this nanolithography. The second approach uses 16-mercaptohexadecanoic acid, which is grafted in a matrix of an 1-octadecanethiolate SAM. In both cases a site-selective growth of the SURMOF is observed. In the latter case the roughness of the HKUST-1 is found to be significantly higher than for the 1-mercaptopropionic acid. The successful grafting process was verified by time-of-flight secondary ion mass spectrometry and atomic force microscopy. The SURMOF structures grown via LPE were investigated and characterized by atomic force microscopy and Fourier-transform infrared microscopy. PMID:24205458

  4. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...... parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness...

  5. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  6. Hanford Site surface environmental surveillance

    International Nuclear Information System (INIS)

    Dirkes, R.L.

    1998-01-01

    Environmental surveillance of the Hanford Site and the surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to US Department of Energy (DOE) environmental protection policies, support DOE environmental management decisions, and provide information to the public. The Surface Environmental Surveillance Project (SESP) is a multimedia environmental monitoring program conducted to measure the concentrations of radionuclides and chemical contaminants in the environment and assess the integrated effects of these contaminants on the environment and the public. The monitoring program includes sampling air, surface water, sediments, soil, natural vegetation, agricultural products, fish, and wildlife. Functional elements inherent in the operation of the SESP include project management, quality assurance/control, training, records management, environmental sampling network design and implementation, sample collection, sample analysis, data management, data review and evaluation, exposure assessment, and reporting. The SESP focuses on those contaminant/media combinations calculated to have the highest potential for contributing to off-site exposure. Results of the SESP indicate that contaminant concentrations in the Hanford environs are very low, generally below environmental standards, at or below analytical detection levels, and indicative of environmental levels. However, areas of elevated contaminant concentrations have been identified at Hanford. The extent of these areas is generally limited to past operating areas and waste disposal sites

  7. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  8. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  9. The nature of the active site in heterogeneous metal catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Bligaard, Thomas; Larsen, Britt Hvolbæk

    2008-01-01

    This tutorial review, of relevance for the surface science and heterogeneous catalysis communities, provides a molecular-level discussion of the nature of the active sites in metal catalysis. Fundamental concepts such as "Bronsted-Evans-Polanyi relations'' and "volcano curves'' are introduced...

  10. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  11. Bioinspired surface functionalization of metallic biomaterials.

    Science.gov (United States)

    Su, Yingchao; Luo, Cheng; Zhang, Zhihui; Hermawan, Hendra; Zhu, Donghui; Huang, Jubin; Liang, Yunhong; Li, Guangyu; Ren, Luquan

    2018-01-01

    Metallic biomaterials are widely used for clinical applications because of their excellent mechanical properties and good durability. In order to provide essential biofunctionalities, surface functionalization is of particular interest and requirement in the development of high-performance metallic implants. Inspired by the functional surface of natural biological systems, many new designs and conceptions have recently emerged to create multifunctional surfaces with great potential for biomedical applications. This review firstly introduces the metallic biomaterials, important surface properties, and then elaborates some strategies on achieving the bioinspired surface functionalization for metallic biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  13. Metal Sorption to Dolomite Surfaces

    International Nuclear Information System (INIS)

    Brady, P.V.; Papenguth, H.W.; Kelly, J.W.

    1999-01-01

    Potential human intrusion into the Waste Isolation Pilot Plant (WIPP) might release actinides into the Culebra Dolomite where sorption reactions will affect of radiotoxicity from the repository. Using a limited residence time reactor the authors have measured Ca, Mg, Nd adsorption/exchange as a function of ionic strength, P CO2 , and pH at 25 C. By the same approach, but using as input radioactive tracers, adsorption/exchange of Am, Pu, U, and Np on dolomite were measured as a function of ionic strength, P CO2 , and pH at 25 C. Metal adsorption is typically favored at high pH. Calcium and Mg adsorb in near-stoichiometric proportions except at high pH. Adsorption of Ca and Mg is diminished at high ionic strengths (e.g., 0.5M NaCl) pointing to association of Na + with the dolomite surface, and the possibility that Ca and Mg sorb as hydrated, outer-sphere complexes. Sulfate amplifies sorption of Ca and Mg, and possibly Nd as well. Exchange of Nd for surface Ca is favored at high pH, and when Ca levels are low. Exchange for Ca appears to control attachment of actinides to dolomite as well, and high levels of Ca 2+ in solution will decrease Kds. At the same time, to the extent that high P CO2 increase Ca 2+ levels, JK d s will decrease with CO 2 levels as well, but only if sorbing actinide-carbonate complexes are not observed to form (Am-carbonate complexes appear to sorb; Pu-complexes might sorb as well; U-carbonate complexation leads to desorption). This indirect CO 2 effect is observed primarily at, and above, neutral pH. High NaCl levels do not appear to affect to actinide K d s

  14. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  15. Novel metal ion surface modification technique

    International Nuclear Information System (INIS)

    Brown, I.G.; Godechot, X.; Yu, K.M.

    1990-10-01

    We describe a method for applying metal ions to the near-surface region of solid materials. The added species can be energetically implanted below the surface or built up as a surface film with an atomically mixed interface with the substrate; the metal ion species can be the same as the substrate species or different from it, and more than one kind of metal species can be applied, either simultaneously or sequentially. Surface structures can be fabricated, including coatings and thin films of single metals, tailored alloys, or metallic multilayers, and they can be implanted or added onto the surface and ion beam mixed. We report two simple demonstrations of the method: implantation of yttrium into a silicon substrate at a mean energy of 70 keV and a dose of 1 x 10 16 atoms/cm 2 , and the formation of a titanium-yttrium multilayer structure with ion beam mixing to the substrate. 17 refs., 3 figs

  16. Refinement and cross-validation of nickel bioavailability in PNEC-Pro, a regulatory tool for site-specific risk assessment of metals in surface water.

    Science.gov (United States)

    Verschoor, Anja J; Vijver, Martina G; Vink, Jos P M

    2017-09-01

    The European Water Framework Directive prescribes that the environmental quality standards for nickel in surface waters should be based on bioavailable concentrations. Biotic ligand models (BLMs) are powerful tools to account for site-specific bioavailability within risk assessments. Several BLMs and simplified tools are available. For nickel, most of them are based on the same toxicity dataset and chemical speciation methodology as laid down in the 2008 European Union Environmental Risk Assessment Report (RAR). Since then, further insights into the toxic effects of nickel on aquatic species have been gained, and new data and methodologies have been generated and implemented using the predicted-no-effect-concentration (PNEC)-pro tool. The aim of the present study is to provide maximum transparency on data revisions and how this affects the derived environmental quality standards. A case study with 7 different ecoregions was used to determine differences in species sensitivity distributions and in hazardous concentrations for 5% of the species (HC5) values between the original Ni-RAR BLMs and the PNEC-pro BLMs. The BLM parameters used were pH dependent, which extended the applicability domain of PNEC-pro up to a pH of 8.7 for surface waters. After inclusion of additional species and adjustment for cross-species extrapolation, the HC5s were well within the prediction range of the RAR. Based on the latest data and scientific insights, transfer functions in the user-friendly PNEC-pro tool have been updated accordingly without compromising the original considerations of the Ni-RAR. Environ Toxicol Chem 2017;36:2367-2376. © 2017 SETAC. © 2017 SETAC.

  17. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  18. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  19. Surface modification of metals by ion implantation

    International Nuclear Information System (INIS)

    Iwaki, Masaya

    1988-01-01

    Ion implantation in metals has attracted the attention as a useful technology for the formation of new metastable alloys and compounds in metal surface layers without thermal equilibrium. Current studies of metal surface modification by ion implantation with high fluences have expanded from basic research areas and to industrial applications for the improvement of life time of tools. Many results suggest that the high fluence implantation produces the new surface layers with un-expected microscopic characteristics and macroscopic properties due to implant particles, radiation damage, sputtering, and knock-on doping. In this report, the composition, structure and chemical bonding state in surface layers of iron, iron-based alloy and aluminum sheets implanted with high fluences have been investigated by means of secondary ion mass spectroscopy (SIMS), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Tribological properties such as hardness, friction and wear are introduced. (author)

  20. Surface Catalytic Sites Prepared from [HRe(CO)5] and [H3Re3(CO)12]: Mononuclear, Trinuclear, and Metallic Rhenium Catalysts Supported on Magnesia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kirlin, P.S.; Zon, F.B.M. van; Gates, B.C.

    1990-01-01

    MgO-supported catalysts were prepared from [HRe(CO)5] and [H,Re3(CO),,] and characterized by extraction of surface organometallics, infrared and ultraviolet/visible spectroscopy, and extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS analysis and other data show that

  1. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    Science.gov (United States)

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  2. Polarizability of a metallic surface

    International Nuclear Information System (INIS)

    Moraga, L.A.; Esparza, C.

    1981-01-01

    The surface dielectric operator for a semi-infinite 'Jellium' in the random phase approximation is calculated in a semi-analytical form, utilizing as zero-order approximation the Green's function for the finite height well potential. From this one, the interaction potential is calculated with different additional approximations. (L.C.) [pt

  3. Hydrogen dissociation on metal surfaces

    OpenAIRE

    Wijzenbroek, M.

    2016-01-01

    Dissociative chemisorption is an important reaction step in many catalytic reactions. An example of such a reaction is the Haber-Bosch process, which is used commercially to produce ammonia, an important starting material in the production of fertilisers. In theoretical descriptions of such chemical processes often approximations need to be made in order to keep the computational cost feasible, such as fixing the surface atoms in place, rather than allowing them to vibrate. In this work, seve...

  4. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  5. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    Aery, N.C.; Panchal, Jayesh

    2007-01-01

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  6. Ab initio lattice dynamics of metal surfaces

    International Nuclear Information System (INIS)

    Heid, R.; Bohnen, K.-P.

    2003-01-01

    Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces

  7. Rigid multipodal platforms for metal surfaces

    Directory of Open Access Journals (Sweden)

    Michal Valášek

    2016-03-01

    Full Text Available In this review the recent progress in molecular platforms that form rigid and well-defined contact to a metal surface are discussed. Most of the presented examples have at least three anchoring units in order to control the spatial arrangement of the protruding molecular subunit. Another interesting feature is the lateral orientation of these foot structures which, depending on the particular application, is equally important as the spatial arrangement of the molecules. The numerous approaches towards assembling and organizing functional molecules into specific architectures on metal substrates are reviewed here. Particular attention is paid to variations of both, the core structures and the anchoring groups. Furthermore, the analytical methods enabling the investigation of individual molecules as well as monomolecular layers of ordered platform structures are summarized. The presented multipodal platforms bearing several anchoring groups form considerably more stable molecule–metal contacts than corresponding monopodal analogues and exhibit an enlarged separation of the functional molecules due to the increased footprint, as well as restrict tilting of the functional termini with respect to the metal surface. These platforms are thus ideally suited to tune important properties of the molecule–metal interface. On a single-molecule level, several of these platforms enable the control over the arrangement of the protruding rod-type molecular structures (e.g., molecular wires, switches, rotors, sensors with respect to the surface of the substrate.

  8. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  9. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  10. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...

  11. Electron-phonon coupling at metal surfaces

    International Nuclear Information System (INIS)

    Hellsing, B.; Eiguren, A.; Chulkov, E.V.

    2002-01-01

    Chemical reactions at metal surfaces are influenced by inherent dissipative processes which involve energy transfer between the conduction electrons and the nuclear motion. We shall discuss how it is possible to model this electron-phonon coupling in order to estimate its importance. A relevant quantity for this investigation is the lifetime of surface-localized electron states. A surface state, quantum well state or surface image state is located in a surface-projected bandgap and becomes relatively sharp in energy. This makes a comparison between calculations and experimental data most attractive, with a possibility of resolving the origin of the lifetime broadening of electron states. To achieve more than an order of magnitude estimate we point out the importance of taking into account the phonon spectrum, electron surface state wavefunctions and screening of the electron-ion potential. (author)

  12. Process of treating surfaces of metals

    International Nuclear Information System (INIS)

    Kimura, T.; Murao, A.; Kuwahara, T.

    1975-01-01

    Both higher corrosion resistance and paint adherence are given to films formed on the surfaces of metals by treating the surfaces with aqueous solutions of one or more materials selected from the group consisting of water soluble vinyl monomer or water soluble high polymer and then irradiating with ionizing radioactive rays on the nearly dried surface film. When a water soluble inorganic compound is mixed with the above mentioned aqueous solution, the film properties are greatly improved. The inorganic ionic material should contain a cation from the group consisting of Ca, Mg, Zn, Cr, Al, Fe, and Ni. Electron beams may be used. (U.S.)

  13. Modelling the appearance of heritage metallic surfaces

    Directory of Open Access Journals (Sweden)

    L. MacDonald

    2014-06-01

    Full Text Available Polished metallic surfaces exhibit a high degree of specularity, which makes them difficult to reproduce accurately. We have applied two different techniques for modelling a heritage object known as the Islamic handbag. Photogrammetric multi-view stereo enabled a dense point cloud to be extracted from a set of photographs with calibration targets, and a geometrically accurate 3D model produced. A new method based on photometric stereo from a set of images taken in an illumination dome enabled surface normals to be generated for each face of the object and its appearance to be rendered, to a high degree of visual realism, when illuminated by one or more light sources from any angles. The specularity of the reflection from the metal surface was modelled by a modified Lorentzian function.

  14. Ambient pressure photoemission spectroscopy of metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baikie, Iain D., E-mail: iain@kptechnology.ltd.uk; Grain, Angela C.; Sutherland, James; Law, Jamie

    2014-12-30

    Highlights: • Ambient pressure photoemission spectroscopy of metals. • Rastered photon energy scan overcomes inelastic scattering. • Relationship between photoemission threshold and contact potential difference. - Abstract: We describe a novel photoemission technique utilizing a traditional Kelvin probe as a detector of electrons/atmospheric ions ejected from metallic surfaces (Au, Ag, Cu, Fe, Ni, Ti, Zn, Al) illuminated by a deep ultra-violet (DUV) source under ambient pressure. To surmount the limitation of electron scattering in air the incident photon energy is rastered rather than applying a variable retarding electric field as is used with UPS. This arrangement can be applied in several operational modes: using the DUV source to determine the photoemission threshold (Φ) with 30–50 meV resolution and also the Kelvin probe, under dark conditions, to measure contact potential difference (CPD) between the Kelvin probe tip and the metallic sample with an accuracy of 1–3 meV. We have studied the relationship between the photoelectric threshold and CPD of metal surfaces cleaned in ambient conditions. Inclusion of a second spectroscopic visible source was used to confirm a semiconducting oxide, possibly Cu{sub 2}O, via surface photovoltage measurements with the KP. This dual detection system can be easily extended to controlled gas conditions, relative humidity control and sample heating/cooling.

  15. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction

    DEFF Research Database (Denmark)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia

    2017-01-01

    Currently, no catalysts are completely selective for the electrochemical CO2 Reduction Reaction (CO2RR). Based on trends in density functional theory calculations of reaction intermediates we find that the single metal site in a porphyrine-like structure has a simple advantage of limiting...... the competing Hydrogen Evolution Reaction (HER). The single metal site in a porphyrine-like structure requires an ontop site binding of hydrogen, compared to the hollow site binding of hydrogen on a metal catalyst surface. The difference in binding site structure gives a fundamental energy-shift in the scaling...... relation of ∼0.3eV between the COOH* vs. H* intermediate (CO2RR vs. HER). As a result, porphyrine-like catalysts have the advantage over metal catalyst of suppressing HER and enhancing CO2RR selectivity....

  16. Surface modifying method for metal member

    International Nuclear Information System (INIS)

    Amano, Kazuo; Enomoto, Kunio; Hirano, Akihiko; Hirano, Atsuya; Hattori, Shigeo; Hayashi, Eisaku; Ueyama, Toshiharu; Hayashi, Makoto

    1998-01-01

    A surface of a metal member such as carbon steel to be used in a corrosion circumstance such as in a nuclear power plant and a thermoelectric plant are polished. A printing method is conducted for removing obstacles on the surface of the member. Namely, a photographing printing paper immersed in a diluted sulfuric acid solution is appended tightly to the portion with its surface polished smoothly. Sulfur present in the form of an obstacle of MnS or present alone in the material reacts with the sulfuric acid to form a sulfuric acid gas, and reacts with Ag of the printing paper to discolor the printing paper to brown. When a peeled printing paper is discolored to brown, sulfur printing is repeated. After conforming that the peeled printing paper is white, the surface is washed. Subsequently, surface plasticization is conducted by water jet peening or shot peening. (I.N.)

  17. Surface studies of liquid metals and alloys

    International Nuclear Information System (INIS)

    Bastasz, Robert

    2003-01-01

    Liquid metals and alloys have been proposed for use in nuclear fusion reactors to serve as replaceable plasma-facing surfaces that remove particles and heat from reacting plasmas. Several materials are being considered for this purpose including lithium, gallium, and tin as well as some of the alloys made from these elements. In order to better understand the properties of liquid surfaces, the technique of low-energy ion scattering was used to examine the surface composition of several of these materials in vacuum as a function of temperature. Oxygen is found to rapidly segregate to the surface of several metallic liquids. The segregation process can be interpreted using a simple thermodynamic model based on Gibbs theory. In the case of an alloy of Sn and Li, Li also segregates to the liquid surface. This provides a means to produce a surface enriched in Li, which is more plasma compatible than Sn, without the need to handle large quantities of liquid Li. (author)

  18. Repository surface design site layout analysis

    International Nuclear Information System (INIS)

    Montalvo, H.R.

    1998-01-01

    The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond

  19. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  20. Metallic surface description in a localized representation

    International Nuclear Information System (INIS)

    Kirtman, B.; Melo, C.P. de

    1981-01-01

    Binding orders for a three-dimensional system (cubium) are obtained. The study of convergence of these values with the progressive interiorization in the solid gives an indication of the perturbation magnitude introduced with the surface creation. Following Goddard's hint in which the nickel reactivity is denominated by the 4s orbitals, such a model is applied to this metal. The base transformation of atomic orbitals for the correspondent Wannier functions is obtained. (L.C.) [pt

  1. Release of Radioactive Scrap Metal/Scrap Metal (RSM/SM) at Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    1993-01-01

    Reynolds Electrical and Engineering Company, Inc. (REECo) is the prime contractor to the US Department of Energy (DOE) in providing service and support for NTS operations. Mercury Base Camp is the main control point for the many forward areas at NTS, which covers 1,350 square miles. The forward areas are where above-ground and underground nuclear tests have been performed over the last 41 years. No metal (or other material) is returned to Mercury without first being tested for radioactivity. No radioactive metals are allowed to reenter Mercury from the forward areas, other than testing equipment. RAMATROL is the monitor check point. They check material in various ways, including swipe tests, and have a large assortment of equipment for testing. Scrap metal is also checked to address Resource Conservation and Recovery Act concerns. After addressing these issues, the scrap metals are categorized. Federal Property Management Regulations (FPMR) are followed by REECo. The nonradioactive scrap material is sold through the GSA on a scheduled basis. Radioactive scrap metal are presently held in forward areas where they were used. REECo has gained approval of their Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements, NVO-325 application, which will allow disposal on site, when RSM is declared a waste. The guideline that REECo uses for release limits is DOE Order 5480.11, Radiation Protection for Occupational Works, Attachment 2, Surface Radioactivity Guides, of this order, give release limits for radioactive materials. However, the removal of radioactive materials from NTS require approval by DOE Nevada Operations Office (DOE/NV) on a case-by-case basis. Requirements to consider before removal are found in DOE Order 5820.2A, Radioactive Waste Management

  2. Tritiated hydrogen conversion on heated metallic surfaces

    International Nuclear Information System (INIS)

    Ionita, G.; Mihaila, V.; Purghel, L.; Rebigan, F.

    1995-01-01

    This work reports investigations on tritiated hydrogen conversion to tritiated water on heated metallic surfaces. The HT conversion process has been revealed for copper, aluminium and stainless steel W4541 surfaces in the temperature range 150 to 300 o C, in case of the static regime and in the range 250 to 400 o C for the dynamic case. The most significant catalytic activity was shown by the copper sample. Studies on this subject are used as input information for different nuclear accident scenarios implying tritium leakage

  3. Surface barrier research at the Hanford Site

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Fayer, M.J.

    1997-01-01

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford

  4. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang

    2018-04-04

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  5. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation

    KAUST Repository

    Wang, Liang; Guan, Erjia; Zhang, Jian; Yang, Junhao; Zhu, Yihan; Han, Yu; Yang, Ming; Cen, Cheng; Fu, Gang; Gates, Bruce C.; Xiao, Feng-Shou

    2018-01-01

    Atomically dispersed supported metal catalysts are drawing wide attention because of the opportunities they offer for new catalytic properties combined with efficient use of the metals. We extend this class of materials to catalysts that incorporate atomically dispersed metal atoms as promoters. The catalysts are used for the challenging nitroarene hydrogenation and found to have both high activity and selectivity. The promoters are single-site Sn on TiO2 supports that incorporate metal nanoparticle catalysts. Represented as M/Sn-TiO2 (M = Au, Ru, Pt, Ni), these catalysts decidedly outperform the unpromoted supported metals, even for hydrogenation of nitroarenes substituted with various reducible groups. The high activity and selectivity of these catalysts result from the creation of oxygen vacancies on the TiO2 surface by single-site Sn, which leads to efficient, selective activation of the nitro group coupled with a reaction involving hydrogen atoms activated on metal nanoparticles.

  6. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Lindborg, Tobias

    2008-12-01

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  7. Ion neutralization at metal surfaces by surface-plasmon excitation

    International Nuclear Information System (INIS)

    Almulhem, A.A.

    1988-01-01

    Electron capture by ions scattered from metal surfaces is usually assumed to occur via resonance tunneling or Auger neutralization. A new mechanism is proposed, wherein a surface plasmon is excited during the electron capture. The Fock-Tani transformation is used to transform the Hamiltonian into a form which explicitly contains a term that corresponds to this process. Using this term, the matrix elements are calculated analytically and used to evaluate the transition rate as a function of distance from the surface. Since this is a rearrangement process, the matrix element contains an orthogonalization term. The theory is applied to the scattering of protons from an aluminum surface in which the proton captures an electron into the 1s state. From the results obtained for the transition rate and neutral fractions, it is concluded that this process is important, at least in the low energy region. When the calculations are done with the orthogonalization term in the matrix element neglected, the transition rate and neutral fraction increased appreciably. This shows the importance of this term, and implies that it cannot be neglected as was done in other theories of neutralization at metal surfaces

  8. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  9. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  10. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  11. Metallic surfaces decontamination by using laser light

    International Nuclear Information System (INIS)

    Moggia, Fabrice; Lecardonnel, Xavier

    2013-01-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  12. Surface system Forsmark. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Lindborg, Tobias [ed.

    2008-12-15

    SKB has undertaken site characterization of two different areas, Forsmark and Laxemar-Simpevarp, in order to find a suitable location for a geological repository for spent nuclear fuel. This report focuses on the site descriptive modelling of the surface system at Forsmark. The characterization of the surface system at the site was primarily made by identifying and describing important properties in different parts of the surface system, properties concerning e.g. hydrology and climate, Quaternary deposits and soils, hydrochemistry, vegetation, ecosystem functions, but also current and historical land use. The report presents available input data, methodology for data evaluation and modelling, and resulting models for each of the different disciplines. Results from the modelling of the surface system are also integrated with results from modelling of the deep bedrock system. The Forsmark site is located within the municipality of Oesthammar, about 120 km north of Stockholm. The investigated area is located along the shoreline of Oeregrundsgrepen, a funnel-shaped bay of the Baltic Sea. The area is characterized by small-scale topographic variations and is almost entirely located at altitudes lower than 20 metres above sea level. The Quaternary deposits in the area are dominated by till, characterized by a rich content of calcite which was transported by the glacier ice to the area from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. As a result, the surface waters and shallow groundwater at Forsmark are characterized by high pH values and high concentrations of certain major constituents, especially calcium and bicarbonate. The annual precipitation and runoff are 560 and 150 mm, respectively. The lakes are small and shallow, with mean and maximum depths ranging from approximately 0.1 to 1 m and 0.4 to 2 m. Sea water flows into the most low-lying lakes during events giving rise to very high sea levels. Wetlands are frequent and cover 25 to 35

  13. Metallization of DNA on silicon surface

    International Nuclear Information System (INIS)

    Puchkova, Anastasiya Olegovna; Sokolov, Petr; Petrov, Yuri Vladimirovich; Kasyanenko, Nina Anatolievna

    2011-01-01

    New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.

  14. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  15. Adsorption on metal surfaces: Final report

    International Nuclear Information System (INIS)

    Einstein, T.L.; Glover, R.E. III; Park, R.L.

    1987-01-01

    This report discusses the progress at the University of Maryland Department of Physics on the adsorption of atoms or molecules on the surfaces of metals. Also discussed are: Phase transformation studies; the use of transfer matrices to study the 2-d, 3-state chiral Potts model; electron-induced ionization of core electrons of atoms; the reflected electron energy loss fine structure above the M/sub 2,3/ core excitation edge of Cu; and other research in atomic and solid state physics

  16. Considering bioavailability in the remediation of heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Leita L.

    2013-04-01

    Full Text Available Many years of research have demonstrated that instead of the total concentration of metals in soil, bioavailability is the key to understand the environmental risk derived by metals, since adverse effects are related only to the biologically available forms of these elements. The knowledge of bioavailability can decrease the uncertainties in evaluating exposure in human and ecological risk assessment. At the same time, the efficiency of remediation treatments could be greatly influenced by availability of the contaminants. Consideration of the bioavailability processes at contaminated sites could be useful in site-specific risk assessment: the fraction of mobile metals, instead of total content should be provided as estimates of metal exposure. Moreover, knowledge of the chemical forms of heavy metals in soils is a critical component in the evaluation of applicability of different remediation technologies such as phytoremdiation or soil washing.

  17. Adsorption and migration of single metal atoms on the calcite (10.4) surface

    International Nuclear Information System (INIS)

    Pinto, H; Haapasilta, V; Lokhandwala, M; Foster, Adam S; Öberg, S

    2017-01-01

    Transition metal atoms are one of the key ingredients in the formation of functional 2D metal organic coordination networks. Additionally, the co-deposition of metal atoms can play an important role in anchoring the molecular structures to the surface at room temperature. To gain control of such processes requires the understanding of adsorption and diffusion properties of the different transition metals on the target surface. Here, we used density functional theory to investigate the adsorption of 3 d (Ti, Cr, Fe, Ni, Cu), 4 d (Zr, Nb, Mo, Pd, Ag) and 5 d (Hf, W, Ir, Pt, Au) transition metal adatoms on the insulating calcite (10.4) surface. We identified the most stable adsorption sites and calculated binding energies and corresponding ground state structures. We find that the preferential adsorption sites are the Ca–Ca bridge sites. Apart from the Cr, Mo, Cu, Ag and Au all the studied metals bind strongly to the calcite surface. The calculated migration barriers for the representative Ag and Fe atoms indicates that the metal adatoms are mobile on the calcite surface at room temperature. Bader analysis suggests that there is no significant charge transfer between the metal adatoms and the calcite surface. (paper)

  18. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  19. Ultralow contact resistance at an epitaxial metal/oxide heterojunction through interstitial site doping.

    Science.gov (United States)

    Chambers, Scott A; Gu, Meng; Sushko, Peter V; Yang, Hao; Wang, Chongmin; Browning, Nigel D

    2013-08-07

    Heteroepitaxial growth of Cr metal on Nb-doped SrTiO₃(001) is accompanied by Cr diffusion to interstitial sites within the first few atomic planes, an anchoring of the Cr film to the substrate, charge transfer from Cr to Ti, and metallization of the near-surface region, as depicted in the figure. The contact resistance of the resulting interface is exceedingly low. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  2. Worker exposures from recycling surface contaminated radioactive scrap metal

    International Nuclear Information System (INIS)

    Kluk, A.; Phillips, J.W.; Culp, J.

    1996-01-01

    Current DOE policy permits release from DOE control of real property with residual levels of surficial radioactive contamination if the contamination is below approved guidelines. If the material contains contamination that is evenly distributed throughout its volume (referred to as volumetric contamination), then Departmental approval for release must be obtained in advance. Several DOE sites presently recycle surface contaminated metal, although the quantities are small relative to the quantities of metal processed by typical mini-mills, hence the potential radiation exposures to mill workers from processing DOE metals and the public from the processed metal are at present also a very small fraction of their potential value. The exposures calculated in this analysis are based on 100% of the scrap metal being processed at the maximum contamination levels and are therefore assumed to be maximum values and not likely to occur in actual practice. This paper examines the relationship between the surface contamination limits established under DOE Order 5400.5, open-quotes Radiation Protection of the Public and the Environment,close quotes and radiation exposures to workers involved in the scrap metal recycling process. The analysis is limited to surficial contamination at or below the guideline levels established in DOE Order 5400.5 at the time of release. Workers involved in the melting and subsequent fabrication of products are not considered radiation workers (no requirements for monitoring) and must be considered members of the public. The majority of the exposures calculated in this analysis range from tenths of a millirem per year (mrem/yr) to less than 5 mrem/yr. The incremental risk of cancer associated with these exposures ranges from 10 -8 cancers per year to 10 -6 cancers per year

  3. Communication: Methane dissociation on Ni(111) surface: Importance of azimuth and surface impact site

    International Nuclear Information System (INIS)

    Shen, Xiangjian; Zhang, Zhaojun; Zhang, Dong H.

    2016-01-01

    Understanding the role of reactant ro-vibrational degrees of freedom (DOFs) in reaction dynamics of polyatomic molecular dissociation on metal surfaces is of great importance to explore the complex chemical reaction mechanism. Here, we present an expensive quantum dynamics study of the dissociative chemisorption of CH 4 on a rigid Ni(111) surface by developing an accurate nine-dimensional quantum dynamical model including the DOF of azimuth. Based on a highly accurate fifteen-dimensional potential energy surface built from first principles, our simulations elucidate that the dissociation probability of CH 4 has the strong dependence on azimuth and surface impact site. Some improvements are suggested to obtain the accurate dissociation probability from quantum dynamics simulations.

  4. The interaction of bacteria and metal surfaces

    International Nuclear Information System (INIS)

    Mansfeld, Florian

    2007-01-01

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E corr became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V)-current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions

  5. The interaction of bacteria and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), The Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)

    2007-10-10

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E{sub corr} became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V) - current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions. (author)

  6. Photocatalysis of Modified Transition Metal Oxide Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Batzill, Matthias [Univ. of South Florida, Tampa, FL (United States). Dept. of Physics

    2018-02-28

    The goal of this project has been to establish a cause-effect relationship for photocatalytic activity variations of different structures of the same material; and furthermore gain fundamental understanding on modification of photocatalysts by compositional or surface modifications. The reasoning is that gaining atomic scale understanding of how surface and bulk modifications alter the photo reactivity will lead to design principles for next generation photocatalysts. As a prototypical photocatalyst the research focused on TiO2 synthesized in well-defined single crystalline form to enable fundamental characterizations.We have obtained results in the following areas: (a) Preparation of epitaxial anatase TiO2 samples by pulsed laser deposition. (b) Comparison of hydrogen diffusion on different crystallographic surface. (c) Determining the stability of the TiO2(011)-2x1 reconstruction upon interactions with adsorbates. (d) Characterization of adsorption and (thermal and photo) reaction of molecules with nitro-endgroups, (e) Exploring the possibility of modifying planar model photocatalyst surfaces with graphene to enable fundamental studies on reported enhanced photocatalytic activities of graphene modified transition metal oxides, (f) gained fundamental understanding on the role of crystallographic polymorphs of the same material for their photocatalytic activities.

  7. Effect of Strain on the Reactivity of Metal Surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Self-consistent density functional calculations for the adsorption of O and CO, and the dissociation of CO on strained and unstrained Ru(0001) surfaces are used to show how strained metal surfaces have chemical properties that are significantly different from those of unstrained surfaces. Surface...... reactivity increases with lattice expansion, following a concurrent up-shift of the metal d states. Consequences for the catalytic activity of thin metal overlayers are discussed....

  8. Fluoride adsorption on goethite in relation to different types of surface sites

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.

    2000-01-01

    Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. We have studied the F− adsorption on goethite by measuring the F− and H interaction and F− adsorption isotherms. Fluoride ions exchange against singly coordinated

  9. Spectroscopic link between adsorption site occupation and local surface chemical reactivity

    DEFF Research Database (Denmark)

    Baraldi, A.; Lizzit, S.; Comelli, G.

    2004-01-01

    rules, from which adsorption sites are directly determined. Theoretical calculations rationalize the results for transition metal surfaces in terms of the energy shift of the d-band center of mass and this proves that adsorbate-induced SCL shifts provide a spectroscopic measure of local surface...

  10. Automatic visual inspection of metallic surfaces

    International Nuclear Information System (INIS)

    Pernkopf, F.

    2002-02-01

    This thesis is concerned with the objectives of automatic visual inspection of metallic surfaces and involves two major parts. The first part covers three different imaging techniques, gray-level intensity imaging, light sectioning, and photometric stereo. These imaging principles more or less strongly rely on the reflection property of the surface. Therefore, a reflection model for machine vision is introduced. The second part concentrates on the analysis of the gathered data in regard to the detection and classification of surface defects. Additionally, the evaluation of genetic algorithms with a novel encoding scheme and a large number of published sequential feature selection algorithms for selection of the subset of features achieving the best classification rate is included. The genetic algorithms and the adaptive sequential forward floating selection method achieve similar results in performance and computational efficiency. Finally, the results of feature selection and classification of 540 flaw images are presented, whereby different classification approaches such as parametric classifiers, the k-nearest-neighbor decision rule, the naive Bayes classifier, and the tree augmented naive Bayes classifier were compared. For learning the structure of the augmented naive Bayes network a new approach similar to the sequential floating algorithm is presented which achieves a higher classification accuracy than hill climbing search. Basically, the introduced techniques are applied to two fundamentally different applications, whereby the experimental results of both, inspection of high-precision surfaces such as bearing rolls and flaw detection on partially scale-covered steel blocks, are presented. For the inspection of bearing rolls, the surface reflectance properties are modeled and verified with optical experiments. The aim is to determine the optical arrangement for illumination and observation, where the contrast between errors and intact surface is maximized

  11. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  12. Measuring the surface inhomogeneity of metals on accreting white dwarfs

    International Nuclear Information System (INIS)

    Montgomery, M H; Hippel, T von; Thompson, S E

    2009-01-01

    Due to the short settling times of metals in DA white dwarf atmospheres, any white dwarfs with photospheric metals must be actively accreting. It is therefore natural to expect that the metals may not be deposited uniformly on the surface of the star. We present calculations showing how the temperature variations associated with white dwarf pulsations lead to an observable diagnostic of the surface metal distribution, and we show what constraints current data sets are able to provide.

  13. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  14. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  15. Microbial characterization of a radionuclide- and metal-contaminated waste site

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Lumppio, H.L.; Ainsworth, C.C.; Plymale, A.E.

    1993-04-01

    The operation of nuclear processing facilities and defense-related nuclear activities has resulted in contamination of near-surface and deep-subsurface sediments with both radionuclides and metals. The presence of mixed inorganic contaminants may result in undetectable microbial populations or microbial populations that are different from those present in uncontaminated sediments. To determine the impact of mixed radionuclide and metal contaminants on sediment microbial communities, we sampled a processing pond that was used from 1948 to 1975 for the disposal of radioactive and metal-contaminated wastewaters from laboratories and nuclear fuel fabrication facilities on the Hanford Site in Washington State. Because the Hanford Site is located in a semiarid environment with average rainfall of 159 mm/year, the pond dried and a settling basin remained after wastewater input into the pond ceased in 1975. This processing pond basin offered a unique opportunity to obtain near-surface sediments that had been contaminated with both radionuclides and metals for several decades. Our objectives were to determine the viable populations of microorganisms in the sediments and to test several hypotheses about how the addition of both radionuclides and metals influenced the microbial ecology of the sediments. Our first hypothesis was that viable populations of microorganisms would be lower in the more contaminated sediments. Second, we expected that long-term metal exposure would result in enhanced metal resistance. Finally, we hypothesized that microorganisms from the most radioactive sediments should have had enhanced radiation resistance

  16. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    Science.gov (United States)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    2017-12-05

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  17. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass.

    Science.gov (United States)

    Kalis, Erwin J J; Temminghoff, Erwin J M; Town, Raewyn M; Unsworth, Emily R; van Riemsdijk, Willem H

    2008-01-01

    The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts. The DGT device was also exposed directly to the (wetted) soil (soil-DGT). The metal concentrations measured with the speciation techniques are related to the metal adsorption at the root surface of ryegrass (Lolium perenne L.), to be able to subsequently predict metal uptake. In most cases the metal adsorption related pH-dependently to the metal concentrations measured by DMT, SCP, and DGT in the CaCl(2) extract. However, the relationship between metal adsorption at the root surface and the metal concentrations measured by the soil-DGT was not-or only slightly-pH dependent. The correlations between metal adsorption at the root surface and metal speciation detected by different speciation techniques allow discussion about rate limiting steps in biouptake and the contribution of metal complexes to metal bioavailability.

  18. Photoionization microscopy of hydrogen atom near a metal surface

    International Nuclear Information System (INIS)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterns of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom—surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy, the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields. (atomic and molecular physics)

  19. Effect of CO on surface oxidation of uranium metal

    International Nuclear Information System (INIS)

    Wang, X.; Fu, Y.; Xie, R.

    1997-01-01

    The surface reactions of uranium metal with carbon monoxide at 25 and 200 deg C have been studied by X-ray photoelectron spectroscopy (XPS);respectively. Adsorption of carbon monoxide on the surface layer of uranium metal leads to partial reduction of surface oxide and results in U4f photoelectron peak shifting to the lower binding energy. The content of oxygen in the surface oxide is decreased and O1s/O4f ratio decreases with increasing the exposure of carbon monoxide. The investigation indicates the surface layer of uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide. (author)

  20. Metal-in-metal localized surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G B; Earp, A A, E-mail: g.smith@uts.edu.au [Department of Physics and Advanced Materials and Institute of Nanoscale Technology, University of Technology, Sydney, PO Box 123, Broadway NSW 2007 (Australia)

    2010-01-08

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  1. Metal-in-metal localized surface plasmon resonance

    Science.gov (United States)

    Smith, G. B.; Earp, A. A.

    2010-01-01

    Anomalous strong resonances in silver and gold nanoporous thin films which conduct are found to arise from isolated metal nano-islands separated from the surrounding percolating metal network by a thin loop of insulator. This observed resonant optical response is modelled. The observed peak position is in agreement with the observed average dimensions of the silver core and insulator shell. As the insulating ring thickness shrinks, the resonance moves to longer wavelengths and strengthens. This structure is the Babinet's principle counterpart of dielectric core-metal shell nanoparticles embedded in dielectric. Like for the latter, tuning of resonant absorption is possible, but here the matrix reflects rather than transmits, and tuning to longer wavelengths is more practical. A new class of metal mirror occurring as a single thin layer is identified using the same resonances in dense metal mirrors. Narrow band deep localized dips in reflectance result.

  2. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor,...... as generic, pharmacologic tools to switch 7TM receptors with engineered metal-ion sites on or off at will.......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  3. Cesium ion bombardment of metal surfaces

    International Nuclear Information System (INIS)

    Tompa, G.S.

    1986-01-01

    The steady state cesium coverage due to cesium ion bombardment of molybdenum and tungsten was studied for the incident energy range below 500 eV. When a sample is exposed to a positive ion beam, the work function decreases until steady state is reached with a total dose of less than ≅10 16 ions/cm 2 , for both tungsten and molybdenum. A steady state minimum work function surface is produced at an incident energy of ≅100 eV for molybdenum and at an incident energy of ≅45 eV for tungsten. Increasing the incident energy results in an increase in the work function corresponding to a decrease in the surface coverage of cesium. At incident energies less than that giving the minimum work function, the work function approaches that of cesium metal. At a given bombarding energy the cesium coverage of tungsten is uniformly less than that of molybdenum. Effects of hydrogen gas coadsorption were also examined. Hydrogen coadsorption does not have a large effect on the steady state work functions. The largest shifts in the work function due to the coadsorption of hydrogen occur on the samples when there is no cesium present. A theory describing the steady-state coverage was developed is used to make predictions for other materials. A simple sticking and sputtering relationship, not including implantation, cannot account for the steady state coverage. At low concentrations, cesium coverage of a target is proportional to the ratio of (1 - β)/γ where β is the reflection coefficient and γ is the sputter yield. High coverages are produced on molybdenum due to implantation and low backscattering, because molybdenum is lighter than cesium. For tungsten the high backscattering and low implantation result in low coverages

  4. Surface Plasmon Waves on Thin Metal Films.

    Science.gov (United States)

    Craig, Alan Ellsworth

    Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.

  5. Dynamic interactions of Leidenfrost droplets on liquid metal surface

    Science.gov (United States)

    Ding, Yujie; Liu, Jing

    2016-09-01

    Leidenfrost dynamic interaction effects of the isopentane droplets on the surface of heated liquid metal were disclosed. Unlike conventional rigid metal, such conductive and deformable liquid metal surface enables the levitating droplets to demonstrate rather abundant and complex dynamics. The Leidenfrost droplets at different diameters present diverse morphologies and behaviors like rotation and oscillation. Depending on the distance between the evaporating droplets, they attract and repulse each other through the curved surfaces beneath them and their vapor flows. With high boiling point up to 2000 °C, liquid metal offers a unique platform for testing the evaporating properties of a wide variety of liquid even solid.

  6. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  7. Localization of polycyclic aromatic hydrocarbons and heavy metals in surface soil of Asia’s oldest oil and gas drilling site in Assam, north-east India: Implications for the bio-economy

    Directory of Open Access Journals (Sweden)

    Hemen Sarma

    2016-09-01

    Full Text Available The environmental influx of hazardous contaminants viz PAHs and HMs occurs due to oil and gas drilling, and processing of petroleum products in industrial facilities and refineries. This problem plagues crude oil drilling sites as PAHs are an essential component of and HMs coexist with crude oil. We analyzed the spatial distribution of 16 PAHs and 8 HMs in 10 contaminated sites of Assam, a state in India. These included Digboi, where crude oil was drilled in 1867 and the first oil well in Asia that was drilled. The Ʃ16 PAHs in soil were detected with a minimum of 13.48 and a maximum of 86.3 mgkg−1 and Ʃ 8 heavy metal concentrations in the soil ranged between 69.51 and 336.06 mgkg−1. A negative correlation was detected between the relative concentrations of PAHs and HMs. The results confirmed that the non-biodegradable nature of HMs made them stay in the soil for longer periods of time. In our study, we found that the levels of lead, copper, nickel, and chromium (total in soil were 73.62, 11.86, 58.97 and 158.66 mgkg−1. The recovery percentage for PAHs and HMs were in the range of 67–97% and 90–95% respectively. Spatial distribution indices for Phenanthrene/Anthracene, Naphthalene/Acenapthhylene, Chyrsene/Benzo (g, h, i perylene and Fluranthene/Pyrene calculated for soil samples indicated that the spatial distribution of PAHs in soil is uneven which might be due to variations in contaminates disseminated in soil. Such regionalized concentration has serious implications on the bio-economy both in terms of health and economy, especially since the proximity of crude oil sites to paddy fields and/or tea plantations uniquely marks the landscape of upper Assam.

  8. Interaction of hydrogen and oxygen with bulk defects and surfaces of metals

    International Nuclear Information System (INIS)

    Besenbacher, F.

    1994-05-01

    The thesis deals with the interaction of hydrogen with defects in metals and the interaction of hydrogen and oxygen with metal surfaces studied by ion-beam techniques and scanning tunneling microscopy (STM), respectively. The first part of the thesis discusses the interaction of hydrogen with simple defects in transition metals. The trap-binding enthalpies and the lattice location of hydrogen trapped to vacancies have been determined, and an extremely simple and versatile picture of the hydrogen-metal interaction has evolved, in which the trap strength is mainly determined by the local electron density. Any dilution of the lattice will lead to a trap, vacancies and voids being the strongest trap. It is found that hydrogen trapped to vacancies in fcc metals is quantum-mechanically delocalized, and the excitation energies for the hydrogen in the vacancy potential are a few MeV only. The interaction of hydrogen with metal surfaces is studied by the transmission channeling (TC) technique. It is found that hydrogen chemisorbs in the highest-coordinated sites on the surfaces, and that there is a direct relationship between the hydrogen-metal bond length and the coordination number for the hydrogen. In the final part of the thesis the dynamics of the chemisorption process for oxygen and hydrogen on metal surfaces is studied by STM, a fascinating and powerful technique for exploring the atomic-scale realm of surfaces. It is found that there is a strong coupling between the chemisorption process and the distortion of the metal surface. The adsorbates induce a surface reconstruction, i.e. metal-metal bond breaks and metal-adsorbate bounds form. Whereas hydrogen interacts weakly with the metals and induces reconstructions where only nnn metals bonds are broken, oxygen interacts strongly with the metal, and the driving force for the O-induced reconstructions appears to be the formation of low-coordinated metal-O rows, formed by breaking of nn metal bonds. Finally it is shown

  9. Heavy metals uptake by sonicated activated sludge: Relation with floc surface properties

    International Nuclear Information System (INIS)

    Laurent, Julien; Casellas, Magali; Dagot, Christophe

    2009-01-01

    The effects of sonication of activated sludge on heavy metal uptake were in a first time investigated in respect with potential modifications of floc surface properties. The treatment led to the simultaneous increase of specific surface area and of the availability of negative and/or hydrophilic sites. In parallel, organic matter was released in the soluble fraction. Sorption isotherms of cadmium and copper showed that uptake characteristics and mechanisms were highly dependent on both heavy metal species and specific energy supplied. The increase of both specific surface area and fixation sites availability led to the increase of Cd(II) uptake. For Cu(II), organic matter released in soluble phase during the treatment seemed to act as a ligand and to limit adsorption on flocs surface. Three different heavy metals uptake mechanisms have been identified: proton exchange, ion exchange and (co)precipitation

  10. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    International Nuclear Information System (INIS)

    1990-01-01

    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO

  11. Hydrogen absorption-desorption at metal surfaces

    International Nuclear Information System (INIS)

    Ward, C.A.; Pataki, L.

    1991-04-01

    On the basis of experimental studies, it has been proposed that when zirconium oxide (ZrO 2 ) is exposed to hydrogen at 300 degrees C or higher, a reaction occurs to produce metallic zirconium and water, thereby increasing the electrical conductivity of the oxide film and its permeability to hydrogen. A series of experiments has been performed in which specimens of zirconium and zirconium-2.5% niobium were either hydrided or deuterided in a furnace at a temperature between 300 degrees C and 800 degrees C and in an atmosphere that consisted primarily of either hydrogen (H 2 ) or deuterium (D 2 ). After cooling a specimen to room temperature, it was placed in a thermogravimetric analyzer that was equipped with a mass spectrometer, TGA-MS. Each specimen was then heated to 1200 degrees C at a controlled rate in a primarily helium atmosphere monitored with the mass spectrometer. Light water (H 2 O) evolved from the hydrided specimens and heavy water (D 2 0) from the deuterided ones and there was a weight loss of the specimens that accompanied the water evolution. The specimens having approximately the same amount of hydride but more oxide also evolved more H 2 O, and that the H 2 O did not come from reactions between impurity H 2 and oxygen (O 2 ) in the TGA-MS. Heating a zirconium or zirconium alloy specimen that contains a hydride or deuteride phase within and an oxide layer on its surface causes the hydrogen to diffuse toward the surface and when it encounters the oxide a reaction follows that produces water. The conventional mechanism for the dissipation of the imperviousness of ZrO 2 to H 2 that results from the oxide being exposed to a reducing atmosphere will not explain the water production observed in these experiments. However, the existence of the proposed reaction can account for the elevated hydrogen concentration in an oxide film that has been observed to accompany the aqueous corrosion of zirconium and the effects on both the electrical conductivity and

  12. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  13. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  14. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  15. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  16. Acidity of edge surface sites of montmorillonite and kaolinite

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  17. Methods for evaluating potential impacts to aquatic receptors at a metal-contaminated superfund site

    International Nuclear Information System (INIS)

    Hattemer-Frey, H.A.; Quinlan, R.E.; Krieger, G.R.

    1994-01-01

    An ecological risk assessment (ERA) was conducted for a metals mining site in the midwestern United States. Chemicals of potential concern were shown to be heavy metals associated with mine wastes and with base metal ore deposits that are characteristic of this area. Environmental receptors were identified by considering the relevant exposure pathways and the potential or known occurrence of species exposed via those pathways. Selection of key receptor species was designed to minimize the possibility that other species would be more exposed than the key species themselves and to include representation of sensitive organisms present at the subsites. In addition, an EPA-approved method was use to developed site-specific ambient water quality criteria. Ecological impacts were assessed using two complimentary approaches. First, potential chronic impacts were assessed by applying the toxicity quotient approach (i.e., a comparison of the measured concentration of site-related metals in surface water with available health-based criteria). Secondly, semi-quantitative comparative ecology data were used to obtain to provide a direct measure of impacts to key species. Results from these two approaches were used to provide a direct measure of impacts to key species. Results from these two approaches were used to obtain a realistic picture of actual and potential risks associated with exposure by key species to mining-related metals. This paper discusses the uncertainties associated with both methods and presents a method for interpreting disparate and sometimes confusing ecological data using the results from a case study

  18. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition...

  19. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    The objective of this thesis is to explore nucleation of recrystallization at selected sites in selected face-centered-cubic (FCC) metals, namely cold rolled columnar-grained nickel and high purity aluminum further deformed by indenting. Various techniques, including, optical microscopy, electron...... backscattered diffraction (EBSD), electron channeling contrast (ECC) and synchrotron X-ray technique, differential-aperture X-ray microscopy (DAXM), were used to characterize the microstructures, to explore nucleation sites, orientation relationships between nuclei and deformed microstructures, and nucleation...... mechanisms. In the cold rolled nickel samples, the preference of triple junctions (TJs) and grain boundaries (GBs) as nucleation sites is observed. The majorities of the nuclei have the same orientations as the surrounding matrix or are twin-related to a surrounding deformed grain. Only a few nuclei...

  20. High Density Periodic Metal Nanopyramids for Surface Enhanced Raman Spectroscopy

    NARCIS (Netherlands)

    Jin, Mingliang

    2012-01-01

    The work presented in this thesis is focused on two areas. First, a new type of nanotextured noble-metal surface has been developed. The new nanotextured surface is demonstrated to enhance inelastic (Raman) scattering, called surface enhanced Raman scattering (SERS), from molecules adsorbed on the

  1. Development of METAL-ACTIVE SITE and ZINCCLUSTER tool to predict active site pockets.

    Science.gov (United States)

    Ajitha, M; Sundar, K; Arul Mugilan, S; Arumugam, S

    2018-03-01

    The advent of whole genome sequencing leads to increasing number of proteins with known amino acid sequences. Despite many efforts, the number of proteins with resolved three dimensional structures is still low. One of the challenging tasks the structural biologists face is the prediction of the interaction of metal ion with any protein for which the structure is unknown. Based on the information available in Protein Data Bank, a site (METALACTIVE INTERACTION) has been generated which displays information for significant high preferential and low-preferential combination of endogenous ligands for 49 metal ions. User can also gain information about the residues present in the first and second coordination sphere as it plays a major role in maintaining the structure and function of metalloproteins in biological system. In this paper, a novel computational tool (ZINCCLUSTER) is developed, which can predict the zinc metal binding sites of proteins even if only the primary sequence is known. The purpose of this tool is to predict the active site cluster of an uncharacterized protein based on its primary sequence or a 3D structure. The tool can predict amino acids interacting with a metal or vice versa. This tool is based on the occurrence of significant triplets and it is tested to have higher prediction accuracy when compared to that of other available techniques. © 2017 Wiley Periodicals, Inc.

  2. State promotion and neutralization of ions near metal surface

    International Nuclear Information System (INIS)

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  3. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...

  4. Quasi-one-dimensional metals on semiconductor surfaces with defects

    International Nuclear Information System (INIS)

    Hasegawa, Shuji

    2010-01-01

    Several examples are known in which massive arrays of metal atomic chains are formed on semiconductor surfaces that show quasi-one-dimensional metallic electronic structures. In this review, Au chains on Si(557) and Si(553) surfaces, and In chains on Si(111) surfaces, are introduced and discussed with regard to the physical properties determined by experimental data from scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES) and electrical conductivity measurements. They show quasi-one-dimensional Fermi surfaces and parabolic band dispersion along the chains. All of them are known from STM and ARPES to exhibit metal-insulator transitions by cooling and charge-density-wave formation due to Peierls instability of the metallic chains. The electrical conductivity, however, reveals the metal-insulator transition only on the less-defective surfaces (Si(553)-Au and Si(111)-In), but not on a more-defective surface (Si(557)-Au). The latter shows an insulating character over the whole temperature range. Compared with the electronic structure (Fermi surfaces and band dispersions), the transport property is more sensitive to the defects. With an increase in defect density, the conductivity only along the metal atomic chains was significantly reduced, showing that atomic-scale point defects decisively interrupt the electrical transport along the atomic chains and hide the intrinsic property of transport in quasi-one-dimensional systems.

  5. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  6. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  7. Analysis of Terminal Metallic Armor Plate Free-Surface Bulging

    National Research Council Canada - National Science Library

    Rapacki, Jr, E. J

    2008-01-01

    An analysis of the bulge formed on the free-surface of the terminal metallic plate of an armor array is shown to lead to reasonable estimates of the armor array's remaining penetration/perforation resistance...

  8. Computational studies of experimentally observed structures of sulfur on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, Dominic

    2011-09-01

    First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close packed surfaces of a number of important metals - Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001) and Ru(0001). At low coverages ({le} 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of threefold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001) and Ru(0001) at higher coverages (> 1/3 ML) was provided. For the ({radical}7 x {radical}7) phase seen on Ag(111), the most preferred structure identified for adsorbed S trimer consists of an S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the ({radical}7 x {radical}7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5{radical}3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed.

  9. Radionuclides and trace metals in surface air

    International Nuclear Information System (INIS)

    Feely, H.W.; Toonkel, L.E.; Larsen, R.J.

    1979-01-01

    Samples are collected at 49 selected world-wide monitoring sites located between 71 0 N and 90 0 S longitude. The samples are composited for each station and subjected to gamma spectrometric, radiochemical, absorption spectrometric, and x-ray fluorescence analyses. The data are reported as composite monthly concentrations for each sampling site. The data are presented in tabular form

  10. Multilayer Relaxation and Surface Energies of Metallic Surfaces

    Science.gov (United States)

    Bozzolo, Guillermo; Rodriguez, Agustin M.; Ferrante, John

    1994-01-01

    The perpendicular and parallel multilayer relaxations of fcc (210) surfaces are studied using equivalent crystal theory (ECT). A comparison with experimental and theoretical results is made for AI(210). The effect of uncertainties in the input parameters on the magnitudes and ordering of surface relaxations for this semiempirical method is estimated. A new measure of surface roughness is proposed. Predictions for the multilayer relaxations and surface energies of the (210) face of Cu and Ni are also included.

  11. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  12. Surface energies of metals in both liquid and solid states

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2011-01-01

    Although during the last years one has seen a number of systematic studies of the surface energies of metals, the aim and the scientific meaning of this research is to establish a simple and a straightforward theoretical model to calculate accurately the mechanical and the thermodynamic properties of metal surfaces due to their important application in materials processes and in the understanding of a wide range of surface phenomena. Through extensive theoretical calculations of the surface tension of most of the liquid metals, we found that the fraction of broken bonds in liquid metals (f) is constant which is equal to 0.287. Using our estimated f value, the surface tension (γ m ), surface energy (γ SV ), surface excess entropy (-dγ/dT), surface excess enthalpy (H s ), coefficient of thermal expansion (α m and α b ), sound velocity (c m ) and its temperature coefficient (-dc/dT) have been calculated for more than sixty metals. The results of the calculated quantities agree well with available experimental data.

  13. The law of corresponding states and surface tension of metals

    International Nuclear Information System (INIS)

    Digilov, R.

    2001-01-01

    Full Text: Surface tension of liquid metals is one of fundamental and most important quantities in theory and practice of material processing and its temperature dependence leads to the well-known Marangoni convection. Although currently methods are sufficiently precise to measure the surface tension, there are uncertainties in experimental data and its temperature dependence mainly due to impurity, which even a trace of it strongly affects the results of measurements. The theoretical treatment from the first principles is unwieldy and not always permits one to calculate the surface tension with certainty. Another active research field deals with empirical correlation between the surface tension and bulk thermodynamic properties, which we interpret as a simple consequence of the law of corresponding states. In order to relate the surface tension and to bulk properties of liquid metals the reduced formula is derived by scaling with the melting point T m (0) at p = 0 and atomic volume Ω 0 2/3 at T = 0 K as macroscopic parameters for scaling ε and a characterizing the interatomic potential in metals. The reduced surface tension and the reduced surface entropy obtained in high temperature limit are discussed and compared with the experiment. The reduced temperature coefficient of the surface tension found is a universal constant for the metals of the same structure. It is shown that pressure dependence of the surface tension, so called baric coefficient of the surface tension, can be described by pressure dependence of scaling parameters T m (p) and Ω 0 (p). (author)

  14. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Crete (Greece); Ioakeimidis, Zisis [Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera, GR-50100 Kozani (Greece)

    2014-11-30

    Highlights: • The surface chemistry of Cu-based catalysts is adjusted by metal-support or metal–metal interactions. • Three series of catalysts, i.e., Cu/REOs, Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} and Cu–Co/CeO{sub 2} were prepared. • The local structure of Cu sites is remarkably affected by support or active phase modification. • Useful insights toward the fundamental understanding of Cu-catalyzed reactions are provided. - Abstract: Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal–metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO{sub 2}, La{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}), or (ii) ceria-based mixed oxides (Ce{sub 1−x}Sm{sub x}O{sub δ}) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu–Co/CeO{sub 2}). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal–metal interactions are provided, paving the way for real-life industrial applications.

  15. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  16. Versatile Surface Functionalization of Metal-Organic Frameworks through Direct Metal Coordination with a Phenolic Lipid Enables Diverse Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wei [Univ. of New Mexico, Albuquerque, NM (United States); Xiang, Guolei [Univ. of Cambridge (United Kingdom); Shang, Jin [Univ. of Hong Kong (China); Guo, Jimin [Univ. of New Mexico, Albuquerque, NM (United States); Motevalli, Benyamin [Monash Univ., Clayton, VIC (Australia); Durfee, Paul [Univ. of New Mexico, Albuquerque, NM (United States); Agola, Jacob Ongudi [Univ. of New Mexico, Albuquerque, NM (United States); Coker, Eric N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-22

    Here, a novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.

  17. Surface free energy of alkali and transition metal nanoparticles

    International Nuclear Information System (INIS)

    Aqra, Fathi; Ayyad, Ahmed

    2014-01-01

    Graphical abstract: Size dependent surface free energy of spherical, cubic and disk Au nanoparticles. - Highlights: • A model to account for the surface free energy of metallic nanoparticles is described. • The model requires only the cohesive energy of the nanoparticle. • The surface free energy of a number of metallic nanoparticles has been calculated, and the obtained values agree well with existing data. • Surface energy falls down very fast when the number of atoms is less than hundred. • The model is applicable to any metallic nanoparticle. - Abstract: This paper addresses an interesting issue on the surface free energy of metallic nanoparticles as compared to the bulk material. Starting from a previously reported equation, a theoretical model, that involves a specific term for calculating the cohesive energy of nanoparticle, is established in a view to describe the behavior of surface free energy of metallic nanoparticles (using different shapes of particle: sphere, cube and disc). The results indicate that the behavior of surface energy is very appropriate for spherical nanoparticle, and thus, it is the most realistic shape of a nanoparticle. The surface energy of copper, silver, gold, platinum, tungsten, molybdenum, tantalum, paladium and alkali metallic nanoparticles is only prominent in the nanoscale size, and it decreases with the decrease of nanoparticle size. Thus, the surface free energy plays a more important role in determining the properties of nanoparticles than in bulk materials. It differs from shape to another, and falls down as the number of atoms (nanoparticle size) decreases. In the case of spherical nanoparticles, the onset of the sharp decrease in surface energy is observed at about 110 atom. A decrease of 16% and 45% in surface energy is found by moving from bulk to 110 atom and from bulk to 5 atom, respectively. The predictions are consistent with the reported data

  18. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  19. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z.; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-01-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD Mn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  20. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  1. SITE demonstration of the Dynaphore/Forager Sponge technology to remove dissolved metals from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, C.R. [Environmental Protection Agency, Edison, NJ (United States); Vaccaro, G. [Science Applications International Corp., Hackensack, NJ (United States)

    1995-10-01

    A Superfund Innovative Technology Evaluation (SITE) demonstration was conducted of the Dynaphore/Forager Sponge technology during the week of April 3, 1994 at the N.L. Industries Superfund Site in Pedricktown, New Jersey. The Forager Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that selectively absorbs dissolved heavy metals in both cationic and anionic states. This technology is a volume reduction technology in which heavy metal contaminants from an aqueous medium are concentrated into a smaller volume for facilitated disposal. The developer states that the technology can be used to remove heavy metals from a wide variety of aqueous media, such as groundwater, surface waters and process waters. The sponge matrix can be directly disposed, or regenerated with chemical solutions. For this demonstration the sponge was set up as a mobile pump-and-treat system which treated groundwater contaminated with heavy metals. The demonstration focused on the system`s ability to remove lead, cadmium, chromium and copper from the contaminated groundwater over a continuous 72-hour test. The removal of heavy metals proceeded in the presence of significantly higher concentrations of innocuous cations such as calcium, magnesium, sodium, potassium and aluminum.

  2. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  3. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  4. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  5. Plasma immersion surface modification with metal ion plasma

    International Nuclear Information System (INIS)

    Brown, I.G.; Yu, K.M.; Godechot, X.

    1991-04-01

    We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs

  6. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  7. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    SEMOS is a joint project between Aalborg University, Danish Technological Institute and Danish Technical University in which micro temperature sensors and metal oxide-based gas sensors are developed and tested in a simulated fuel cell environment as well as in actual working fuel cells. Initially......, sensors for measuring the temperatures in an operating HT-PEM (High Temperature-Proton Exchange Membrane) fuel cell are developed for detecting in-plane temperature variations. 5 different tracks for embedded thermal sensors are investigated. The fuel cell MEA (Membrane Electrode Assembly) is quite...... complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  8. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  9. Electronic structure and dynamics of metal and metal-covered surfaces

    International Nuclear Information System (INIS)

    Yang, Shu.

    1992-01-01

    The unoccupied electronic states of;Ni(111) and Al(111) have been studied using angle-resolved inverse-photoemission (IPE) spectroscopy. We have characterized the n = 1 image potential state on Ni(111) measuring an effective mass of m * /m = 1, consistent with recent two-photon photoemission results as well as theoretical calculations using a phase-analysis model, but differing considerably from the earlier angle-resolved IPE measurements. The bulk related features on Ni(111) observed in our experiment agree very well with an empirical Ni band structure calculation. On Al(111), we have conducted an extensive study of the image potential resonance using both angle-resolved IPE spectroscopy and tunneling spectroscopy with the scanning tunneling microscope. We have used Al as a testing case for both nearly-free-electron model and first-principles calculations were needed to obtain a semi-quantitative account of the bulk features of Al, a simple metal. Improved quantitative agreement occurred when excitation effects were considered. In addition, several surface resonance features have been identified and characterized on Al(111). We have also conducted a geometric structural investigation of a metal overlayer system, Ni/Cu(111), using high-resolution electron energy loss spectroscopy with CO as a probe molecule. The results indicate island formation and two-dimensional mixing at the initial stage of bimetallic interface formation. A new adsorption site with CO bonded to both Ni and Cu has been discovered on the Ni-Cu intermixed surface. IPE results for the Cu-covered Ni(111) surface show an enhanced angular range for the Cu image state. Finally, the unique ability of Auger-photoelectron coincidence spectroscopy to probing local valence electronic structure has been tested in a case study of TaC(111). A novel Auger decay channel has also been observed

  10. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  11. Molecule scattering from insulator and metal surfaces

    International Nuclear Information System (INIS)

    Moroz, Iryna; Ambaye, Hailemariam; Manson, J R

    2004-01-01

    Calculations are carried out and compared with data for the scattering of CH 4 molecules from a LiF(001) surface and for O 2 scattering from Al(111). The theory is a mixed classical-quantum formalism that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translational and rotational degrees of freedom couple most strongly to multiphonon excitations of the surface and are treated with classical dynamics. Internal vibrational excitations of the molecules are treated with a semiclassical formalism with extension to arbitrary numbers of modes and arbitrary quantum numbers. Calculations show good agreement for the dependence on incident translational energy, incident beam angle and surface temperature when compared with data for energy-resolved intensity spectra and angular distributions

  12. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian; Namura, Kyoko; Duran Retamal, Jose Ramon; Ho, Chin-Hsiang; Minamitake, Haruhiko; Wei, Tzu-Chiao; Tsai, Dung-Sheng; Lin, Chun-Ho; Suzuki, Motofumi; He, Jr-Hau

    2015-01-01

    be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  13. Simulated BRDF based on measured surface topography of metal

    Science.gov (United States)

    Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.

  14. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  15. Optical transparency of graphene layers grown on metal surfaces

    International Nuclear Information System (INIS)

    Rut’kov, E. V.; Lavrovskaya, N. P.; Sheshenya, E. S.; Gall, N. R.

    2017-01-01

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  16. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  17. Optical transparency of graphene layers grown on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rut’kov, E. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Lavrovskaya, N. P. [State University of Aerospace Instrumentation (Russian Federation); Sheshenya, E. S., E-mail: sheshenayket@gmail.ru; Gall, N. R. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-04-15

    It is shown that, in contradiction with the fundamental results obtained for free graphene, graphene films grown on the Rh(111) surface to thicknesses from one to ~(12–15) single layers do not absorb visible electromagnetic radiation emitted from the surface and influence neither the brightness nor true temperature of the sample. At larger thicknesses, such absorption occurs. This effect is observed for the surfaces of other metals, specifically, Pt(111), Re(1010), and Ni(111) and, thus, can be considered as being universal. It is thought that the effect is due to changes in the electronic properties of thin graphene layers because of electron transfer between graphene and the metal substrate.

  18. Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands

    NARCIS (Netherlands)

    Neouze, M.A.; Schubert, U.S.

    2008-01-01

    Metal or metal oxide nanoparticles possess unique features compared to equivalent larger-scale materials. For applications, it is often necessary to stabilize or functionalize such nanoparticles. Thus, modification of the surface of nanoparticles is an important chemical challenge. In this survey,

  19. Colour interceptions, thermal stability and surface morphology of polyester metal complexes

    International Nuclear Information System (INIS)

    Zohdy, M.H.

    2005-01-01

    Chelating copolymers via grafting of acrylic acid (AAc) and acrylamide (AAm/AAc) comonomer mixture onto polyester micro fiber fabrics (PETMF) using gamma-radiation technique were prepared. The prepared graft chains (PETMF-g-AAc) and (PETMF-g-PAAc/PAAm) acted as chelating sites for some selected transition metal ions. The prepared graft copolymers and their metal complexes were characterized using thermogravimetric analysis (TGA), colour parameters and surface morphology measurements. The colour interception and strength measurements showed that the metal complexation is homogeneously distributed. The results showed that the thermal stability of PETMF was improved after graft copolymerization and metal complexes. Moreover, the degree of grafting enhanced the thermal stability values of the grafted and complexed copolymers up to 25% of magnitude, on the other hand the activation energy of the grafted-copolymer with acrylic acid increased up to 80%. The SEM observation gives further supports to the homogenous distribution of grafting and metal complexation

  20. Metal Recovery and Preconcentration by Edta and Dtpa Modified Silica Surfaces

    Directory of Open Access Journals (Sweden)

    Eveliina Repo

    2017-03-01

    Full Text Available This study focuses on the adsorption and preconcentration of various metals by silica gel surfaces modified with aminopolycarboxylic acids namely ethylenediaminetetraacetic acid or diethylenetriamine-pentaacetic acid. The adsorption performance of the studied materials was determined in mixed metal solutions and the adsorption isotherm studies were conducted for cobalt, nickel, cadmium, and lead. The results were modeled using various theoretical isotherm equations, which suggested that two different adsorption sites were involved in metal removal although lead showed clearly different adsorption behavior attributed to its lowest hydration tendency. Efficient regeneration of the adsorbents and preconcentration of metals was conducted with nitric acid. Results indicated that the metals under study could be analyzed rather accurately after preconcentration from both pure, saline and ground water samples.

  1. Corrosion and surface modification on biocompatible metals: A review.

    Science.gov (United States)

    Asri, R I M; Harun, W S W; Samykano, M; Lah, N A C; Ghani, S A C; Tarlochan, F; Raza, M R

    2017-08-01

    Corrosion prevention in biomaterials has become crucial particularly to overcome inflammation and allergic reactions caused by the biomaterials' implants towards the human body. When these metal implants contacted with fluidic environments such as bloodstream and tissue of the body, most of them became mutually highly antagonistic and subsequently promotes corrosion. Biocompatible implants are typically made up of metallic, ceramic, composite and polymers. The present paper specifically focuses on biocompatible metals which favorably used as implants such as 316L stainless steel, cobalt-chromium-molybdenum, pure titanium and titanium-based alloys. This article also takes a close look at the effect of corrosion towards the implant and human body and the mechanism to improve it. Due to this corrosion delinquent, several surface modification techniques have been used to improve the corrosion behavior of biocompatible metals such as deposition of the coating, development of passivation oxide layer and ion beam surface modification. Apart from that, surface texturing methods such as plasma spraying, chemical etching, blasting, electropolishing, and laser treatment which used to improve corrosion behavior are also discussed in detail. Introduction of surface modifications to biocompatible metals is considered as a "best solution" so far to enhanced corrosion resistance performance; besides achieving superior biocompatibility and promoting osseointegration of biocompatible metals and alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types...

  3. Entrapment of metal clusters in metal-organic framework channels by extended hooks anchored at open metal sites.

    Science.gov (United States)

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2013-07-17

    Reported here are the new concept of utilizing open metal sites (OMSs) for architectural pore design and its practical implementation. Specifically, it is shown here that OMSs can be used to run extended hooks (isonicotinates in this work) from the framework walls to the channel centers to effect the capture of single metal ions or clusters, with the concurrent partitioning of the large channel spaces into multiple domains, alteration of the host-guest charge relationship and associated guest-exchange properties, and transfer of OMSs from the walls to the channel centers. The concept of the extended hook, demonstrated here in the multicomponent dual-metal and dual-ligand system, should be generally applicable to a range of framework types.

  4. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  5. Site preference of metal atoms in Gd_5_-_xM_xTt_4 (M = Zr, Hf; Tt = Si, Ge)

    International Nuclear Information System (INIS)

    Yao, Jinlei; Mozharivskyj, Yurij

    2011-01-01

    Zirconium and hafnium were incorporated into the Gd_5Ge_4 and Gd_5Si_4 parent compounds in order to study the metal-site occupation in the M_5X_4 magnetocaloric phases (M = metals; X = p elements) family. The Gd_5_-_xZr_xGe_4 phases adopt the orthorhombic Sm_5Ge_4-type (space group Pnma) structure for x ≤ 1.49 and the tetragonal Zr_5Si_4-type (P4_12_12) structure for x ≥ 1.77. The Gd_5_-_xHf_xSi_4 compounds crystallize in the orthorhombic Gd_5Si_4-type (Pnma) structure for x ≤ 0.41 and the Zr_5Si_4-type structure for x ≥ 0.7. In both systems, single-crystal X-ray diffraction reveals that the Zr/Hf atoms preferentially occupy the slab-surface M2 and slab-center M3 sites, both of which have a significantly larger Zr/Hf population than the slab-surface M1 site. The metal-site preference, i.e. the coloring problem on the three metal sites, is discussed considering geometric and electronic effects of the local coordination environments. The analysis of the metal-site occupation in Gd_5_-_xZr_xGe_4 and Gd_5_-_xHf_xSi_4 as well as other metal-substituted M_5X_4 systems suggests that both geometric and electronic effects can be used to explain the metal-site occupation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    Science.gov (United States)

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  7. Improvements in or relating to surface treatment of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.; Hartley, N.E.W.

    1975-01-01

    A method is described for surface treating metals so as to reduce their coefficients of friction. The metal is subjected to bombardment by a beam of ions of dry lubricant material, or material that forms a dry lubricant. The ions should have energies sufficient to cause them to be implanted into the surface region of the metal. The metal may be heated to facilitate assimilation of the ions, and implantation may be enhanced by means of irradiation of the article with radiation of energy sufficient to enhance diffusion of the ions into the article. The dry lubricant ions may comprise Mo + , In + , or Sn + . Where the article is of steel suitable ions are Mo + and S + deposited in the ratio of 1:2. Examples of application of the method are given, using a 500 Kv Cockcroft-Walton accelerator for the implantation. (U.K.)

  8. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  9. Metal surface corrosion grade estimation from single image

    Science.gov (United States)

    Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu

    2018-04-01

    Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.

  10. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  11. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-07

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry.

  12. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  13. Polishing Metal Mirrors to 0,025 Micron Surface Finish

    DEFF Research Database (Denmark)

    Pedersen, P. E.

    1978-01-01

    A research program undertaken by the Danish Atomic Energy Commission required the fabrication of metal mirrors measuring 1 m long by 53 mm wide, which had to be finished to extremely tight tolerances on thickness, plane-parallelism and surface characteristics. Progressively finer diamond compound...... are employed to achieve a high gloss finish on the metal mirrors, which are used in polarized neutron experiments. This article describes the fabrication techniques developed at the Commission's Ris phi Central Workshop....

  14. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  15. Plasma cleaning and the removal of carbon from metal surfaces

    International Nuclear Information System (INIS)

    Baker, M.A.

    1980-01-01

    In an investigation of the plasma cleaning of metals and the plasma etching of carbon, a mass spectrometer was used as a sensitive process monitor. CO 2 produced by the plasma oxidation of carbon films or of organic contamination and occluded carbon at the surfaces of metals proved to be the most suitable gas to monitor. A good correlation was obtained between the measured etch rate of carbon and the resulting CO 2 partial pressure monitored continuously with the mass spectrometer. The rate of etching of carbon in an oxygen-argon plasma at 0.1 Torr was high when the carbon was at cathode potential and low when it was electrically isolated in the plasma, thus confirming the findings of previous workers and indicating the importance of ion bombardment in the etching process. Superficial organic contamination on the surfaces of the metals aluminium and copper and of the alloy Inconel 625 was quickly removed by the oxygen-argon plasma when the metal was electrically isolated and also when it was at cathode potential. Occluded carbon (or carbides) at or near the surfaces of the metals was removed slowly and only when the metal was at cathode potential, thus illustrating again the importance of ion bombardment. (Auth.)

  16. The Impact of Road Maintenance Substances on Metals Surface Corrosion

    OpenAIRE

    Jolita Petkuvienė; Dainius Paliulis

    2011-01-01

    The purpose of research is to assess changes in the visual metal surface due to the exposure of road maintenance salts and molasses (‘Safecote’). Chlorides of deicing salts (NaCl, CaCl2) are the main agents affecting soil and water resources as well as causing the corrosion of roadside metallic elements. Molasses (‘Safecote’) is offered as an alternative to deice road pavement by minimizing the corrosion of metal elements near the road. A laboratory experiment was carried out to immerse and s...

  17. RFID Label Tag Design for Metallic Surface Environments

    Directory of Open Access Journals (Sweden)

    Ki Hwan Eom

    2011-01-01

    Full Text Available This paper describes a metal mount RFID tag that works reliably on metallic surfaces. The method proposes the use of commercial label type RFID tags with 2.5 mm thick Styrofoam103.7 with a relative permittivity of 1.03 attached on the back of the tag. In order to verify the performance of the proposed method, we performed experiments on an electric transformer supply chain system. The experimental results showed that the proposed tags can communicate with readers from a distance of 2 m. The recognition rates are comparable to those of commercial metallic mountable tags.

  18. MetalS2: a tool for the structural alignment of minimal functional sites in metal-binding proteins and nucleic acids.

    Science.gov (United States)

    Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana

    2013-11-25

    We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).

  19. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  20. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  1. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-01-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al 2 O 3 and Fe 3 O 4 , on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  2. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  3. Control of Eolian soil erosion from waste site surface barriers

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1994-11-01

    Physical models were tested in a wind tunnel to determine optimum surface-ravel admixtures for protecting silt-loam soil from erosion by, wind and saltating, sand stresses. The tests were performed to support the development of a natural-material surface barrier for and waste sites. Plans call for a 2-m deep silt-loam soil reservoir to retain infiltrating water from rainfall and snowmelt. The objective of the study was to develop a gravel admixture that would produce an erosion-resistant surface layer during, periods of extended dry climatic stress. Thus, tests were performed using simulated surfaces representing dry, unvegetated conditions present just after construction, after a wildfire, or during an extended drought. Surfaces were prepared using silt-loam soil mixed with various grades of sand and Travel. Wind-induced surface shear stresses were controlled over the test surfaces, as were saltating, sand mass flow rates and intensities. Tests were performed at wind speeds that approximated and exceeded local 100-year peak gust intensities. Surface armors produced by pea gravel admixtures were shown to provide the best protection from wind and saltating sand stresses. Compared with unprotected silt-loam surfaces, armored surfaces reduced erosion rates by more than 96%. Based in part on wind tunnel results, a pea gravel admixture of 15% will be added to the top 1 in of soil in a prototype barrier under construction in 1994. Field tests are planned at the prototype site to provide data for comparison with wind tunnel results

  4. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  5. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    Science.gov (United States)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Surface passivation of high purity granular metals: zinc, cadmium, lead

    Directory of Open Access Journals (Sweden)

    Pirozhenko L. A.

    2017-10-01

    Full Text Available For the high purity metals (99.9999%, such as zinc, cadmium, and lead, which are widely used as initial components in growing semiconductor and scintillation crystals (CdTe, CdZnTe, ZnSe, (Cd, Zn, Pb WO4, (Cd, Zn, Pb MoO4 et al., it is very important to ensure reliable protection of the surface from oxidation and adsorption of impurities from the atmosphere. The specific features of surface passivation of high purity cadmium, lead and zinc are not sufficiently studied and require specific methodologies for further studies. The use of organic solutions in the schemes of chemical passivation of the investigated metals avoids hydrolysis of the obtained protective films. The use of organic solvents with pure cation and anion composition as the washing liquid prevents chemisorption of ions present in the conventionally used distilled water. This keeps the original purity of the granular metals. Novel compositions of etchants and etching scheme providing simultaneous polishing and passivation of high purity granular Zn, Cd and Pb are developed. Chemical passivation allows storing metals in the normal atmospheric conditions for more than half a year for Zn and Cd and up to 30 days for Pb without changing the state of the surface. The use of the glycerol-DMF solution in the processes for obtaining Pb granules provides self-passivation of metal surfaces and eliminates the additional chemical processing while maintaining the quality of corrosion protection.

  7. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    Science.gov (United States)

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  8. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  9. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  10. Surface Modification of Metals using Plasma Torch

    International Nuclear Information System (INIS)

    Hassan, A.

    2009-01-01

    Low temperature plasma nitriding of 304L stainless steel is performed using a home made low power direct-current plasma torch. Plasma nitriding is carried out in temperature range of 300-550 degree C for 1 to 4 hours, in various N 2 H 2 gas mixture ratios at about 5 Torr pressure and torch power 300 Watts. The effect of treatment time, temperature and working gas composition on the microstructure and mechanical properties of plasma nitrided surface layers is investigated. The microstructure, phase composition and micro hardness profile of the nitrided surface layers are characterized by optical microscopy, scanning electron microscope (SEM), X-ray diffraction (XRD) and Vickers micro hardness tester. The results show that plasma treatment for 14 h over a temperature range of 300 - 550 degree C yields nitride case depth of 20 - 50 μm and the hardness of the nitrided layer is in the range of 700-1250 HV. Plasma nitriding of stainless steel samples at about 475 degree C in 70 % of nitrogen admixed with hydrogen at 5 torr shows the maximum increase of hardness 1220 HV which is about four times that of untreated layers. The XRD pattern confirmed the formation of an expanded austenite .N phase, due to the nitrogen incorporation into original lattice and forms supersaturated face center cubic phase. In addition preliminary results for aluminum nitriding is also shown

  11. Factors influencing graphene growth on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loginova, E; Bartelt, N C; McCarty, K F [Sandia National Laboratories, Livermore, CA (United States); Feibelman, P J [Sandia National Laboratories, Albuquerque, NM (United States)], E-mail: mccarty@sandia.gov

    2009-06-15

    Graphene forms from a relatively dense, tightly bound C-adatom gas when elemental C is deposited on or segregates to the Ru(0001) surface. Nonlinearity of the graphene growth rate with C-adatom density suggests that growth proceeds by addition of C atom clusters to the graphene edge. The generality of this picture has now been studied by use of low-energy electron microscopy (LEEM) to observe graphene formation when Ru(0001) and Ir(111) surfaces are exposed to ethylene. The finding that graphene growth velocities and nucleation rates on Ru have precisely the same dependence on adatom concentration as for elemental C deposition implies that hydrocarbon decomposition only affects graphene growth through the rate of adatom formation. For ethylene, that rate decreases with increasing adatom concentration and graphene coverage. Initially, graphene growth on Ir(111) is like that on Ru: the growth velocity is the same nonlinear function of adatom concentration (albeit with much smaller equilibrium adatom concentrations, as we explain with DFT calculations of adatom formation energies). In the later stages of growth, graphene crystals that are rotated relative to the initial nuclei nucleate and grow. The rotated nuclei grow much faster. This difference suggests firstly, that the edge-orientation of the graphene sheets relative to the substrate plays an important role in the growth mechanism, and secondly, that attachment of the clusters to the graphene is the slowest step in cluster addition, rather than formation of clusters on the terraces.

  12. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar

    2016-06-16

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable of adsorbing dinitrogen (N2), however there is no dissociative adsorption of N2 on single transition metal dopant. When two TM atoms are doped on MgO(100) surface, dissociative adsorption of dinitrogen occurs in all the three cases. Whether the dissociation is spontaneous or is it associated with activation barrier depends on the orientation of N2 molecule approaching the dopant site.

  13. Assembly, Structure, and Functionality of Metal-Organic Networks and Organic Semiconductor Layers at Surfaces

    Science.gov (United States)

    Tempas, Christopher D.

    Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.

  14. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    Science.gov (United States)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  15. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  16. Applied surface analysis of metal materials

    International Nuclear Information System (INIS)

    Weiss, Z.

    1987-01-01

    The applications of surface analytical techniques in the solution of technological problems in metalurgy and engineering are reviewed. Some important application areas such as corrosion, grain boundary segregation and metallurgical coatings are presented together with specific requirements for the type of information which is necessary for solving particular problems. The techniques discussed include: electron spectroscopies (Auger Electron Spectroscopy, Electron Spectroscopy for Chemical Analysis), ion spectroscopies (Secondary Ion Mass Spectrometry, Ion Scattering Spectroscopy), Rutherford Back-Scattering, nuclear reaction analysis, optical methods (Glow Discharge Optical Emission Spectrometry), ellipsometry, infrared and Raman spectroscopy, the Moessbauer spectroscopy and methods of consumptive depth profile analysis. Principles and analytical features of these methods are demonstrated and examples of their applications to metallurgy are taken from recent literature. (author). 4 figs., 2 tabs., 112 refs

  17. Distance of the image plane from metal surfaces

    International Nuclear Information System (INIS)

    Smith, N.V.; Chen, C.T.; Weinert, M.

    1989-01-01

    The data base of surface-state energies on the metals Cu, Ag, Au, Ni, Pd, and Pt is assembled and, with the aid of a simple model, is used to estimate the distance of the image plane and its trends from surface to surface and metal to metal. The model combines a nearly-free-electron representation of the crystal with a Jones-Jennings-Jepsen ansatz for the saturated image barrier. The projected bulk-band gaps are taken from published determinations. Constraints are placed on the surface barrier parameters by appeal to the results of self-consistent first-principles slab calculations. The general experimental trend observed is for the image-plane distance z 0 to decrease in the sequence (111) to (001) to (110), in the same sense but not as rapidly as z J , the distance of the effective jellium edge. This trend is rationalized using a simple model of the tail of the surface charge density. Typical values for z 0 -z J fall in the range -0.2 to +0.5 a.u., with the larger values occurring for the 3d metals Cu and Ni

  18. Evaluation of Metal-Fueled Surface Reactor Concepts

    International Nuclear Information System (INIS)

    Poston, David I.; Marcille, Thomas F.; Kapernick, Richard J.; Hiatt, Matthew T.; Amiri, Benjamin W.

    2007-01-01

    Surface fission power systems for use on the Moon and Mars may provide the first use of near-term reactor technology in space. Most near-term surface reactor concepts specify reactor temperatures <1000 K to allow the use of established material and power conversion technology and minimize the impact of the in-situ environment. Metal alloy fuels (e.g. U-10Zr and U-10Mo) have not traditionally been considered for space reactors because of high-temperature requirements, but they might be an attractive option for these lower temperature surface power missions. In addition to temperature limitations, metal fuels are also known to swell significantly at rather low fuel burnups (∼1 a/o), but near-term surface missions can mitigate this concern as well, because power and lifetime requirements generally keep fuel burnups <1 a/o. If temperature and swelling issues are not a concern, then a surface reactor concept may be able to benefit from the high uranium density and relative ease of manufacture of metal fuels. This paper investigates two reactor concepts that utilize metal fuels. It is found that these concepts compare very well to concepts that utilize other fuels (UN, UO2, UZrH) on a mass basis, while also providing the potential to simplify material safeguards issues

  19. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  20. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Science.gov (United States)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  1. USDA soil classification system dictates site surface management

    International Nuclear Information System (INIS)

    Bowmer, W.J.

    1985-01-01

    Success or failure of site surface management practices greatly affects long-term site stability. The US Department of Agriculture (USDA) soil classification system best documents those parameters which control the success of installed practices for managing both erosion and surface drainage. The USDA system concentrates on soil characteristics in the upper three meters of the surface that support the associated flora both physically and physiologically. The USDA soil survey first identifies soil series based on detailed characteristics that are related to production potential. Using the production potential, land use capability classes are developed. Capability classes reveal the highest and best agronomic use for the site. Lower number classes are considered arable while higher number classes are best suited for grazing agriculture. Application of ecological principles based on the USDA soil survey reveals the current state of the site relative to its ecological potential. To assure success, site management practices must be chosen that are compatible with both production capability and current state of the site

  2. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  3. Surface plasmon—polaritons on ultrathin metal films

    International Nuclear Information System (INIS)

    Quan Jun; Zhang Jun; Shao Le-Xi; Tian Ying

    2011-01-01

    We discuss the surface plasmon—polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge) term in the Maxwell equation with the linear response expectation value. Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  5. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  6. Assessment of Water Quality Index and Heavy Metal Contamination in Active and Abandoned Iron Ore Mining Sites in Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Madzin Zafira

    2017-01-01

    Full Text Available The composition of heavy metals in water and surface soils of iron ore mining sites were investigated to evaluate on the potential occurrence of heavy metal contamination. Physico-chemical characteristics of the waters were also investigated to determine the current status of water quality index (WQI of the sites. Samples of water and surface soils of active mine (Kuala Lipis and abandoned mine (Bukit Ibam in Pahang were collected at four locations, respectively. The physico-chemical parameters measured for WQI were pH, dissolved oxygen, biological oxygen demand (BOD, chemical oxygen demand (COD, suspended solids (SS, and ammoniacal nitrogen (AN. The water quality parameters were classified according to the Department of Environment (DOE water quality classification. The study revealed that most of the sites in Bukit Ibam and Kuala Lipis were categorized as clean to slightly polluted. On the other hand, heavy metal analysis in water showed that aluminium and manganese level in both sites have exceeded the allowable limits for raw and treated water standards by the Ministry of Health. For heavy metal compositions in soils showed most of the heavy metal concentrations were below the recommended guideline values except for lead, arsenic, zinc and copper.

  7. The Impact of Road Maintenance Substances on Metals Surface Corrosion

    Directory of Open Access Journals (Sweden)

    Jolita Petkuvienė

    2011-04-01

    Full Text Available The purpose of research is to assess changes in the visual metal surface due to the exposure of road maintenance salts and molasses (‘Safecote’. Chlorides of deicing salts (NaCl, CaCl2 are the main agents affecting soil and water resources as well as causing the corrosion of roadside metallic elements. Molasses (‘Safecote’ is offered as an alternative to deice road pavement by minimizing the corrosion of metal elements near the road. A laboratory experiment was carried out to immerse and spray metals with NaCl, CaCl2, NaCl:CaCl2 and NaCl:Safecote solutions. The obtained results showed that NaCl:Safecote solution had the lowest coating with corrosion products (the average 17±4 % of the surface. The solutions of NaCl, CaCl2 and NaCl:CaCl2 had the highest percentage rate of the corrosion product on the metal surface reaching an average of 33±5 %. Article in English

  8. Application of Volta potential mapping to determine metal surface defects

    International Nuclear Information System (INIS)

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  9. Characterization of natural adsorbent material for heavy metal removal in a petrochemical site contamination

    Directory of Open Access Journals (Sweden)

    Bianchi F.

    2013-04-01

    Full Text Available Despite of over 25 years of intensive technological efforts, sub-surface environment cleanup still remains a challenge, especially in case of highly contaminated sites. In this context, ion exchanger technologies could provide simple and effective solutions for heavy metal removal in water treatment. The challenge is finding exchanger able to operate in extreme natural environments or in situations involving natural interfering species such as inorganic ions. In this paper we exam the use of natural zeolites as versatile exchanger for environmental protection of coastal refinery's groundwater against pollution of Ni, Cd, Pb. The influence of particle diameter on clinoptilolite performances toward heavy metal removal is studied. Also, we evaluate the exchanger activities in condition of high ionic strength, commonly present in groundwater located under coastal petrol industries. The obtained results confirmed that ion exchangers could provide an effective solutions for remediation in complex environmental conditions.

  10. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  11. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    International Nuclear Information System (INIS)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6- 3 H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces. (author)

  12. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  13. Hydrobiological constraints of trace metals in surface water, coastal ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... of Calabar River are presented in Tables 1, 2 and 3. Table 4, 5 and 6 present the correlation matrices for sediment, surface water and N. lotus samples respec- tively, showing values of Pearson's correlation coefficient. (p<0.05, n=4) for pairs of heavy metals at the four locations. The concentrations of As, Cd, ...

  14. Fracture Surface Morphology Under Ductile Tearing of Metal Plates

    DEFF Research Database (Denmark)

    Kacar, Muhammet F.; Tekoglu, Cihan; Nielsen, Kim Lau

    2017-01-01

    The present work takes as offset the hypothesis that microstructural parameters, related to particle size and distribution, govern the transition between crack surface morphologies observed in experiments. The key question is; why does tearing of a given metal plate leave a specific morphology...

  15. Origin of metallic surface core-level shifts

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Abrikosov, I. A.

    1995-01-01

    The unique property of the open 4f energy shell in the lanthanide metals is used to show that the initial-state energy shift gives an insufficient description of surface core-level shifts. Instead a treatment, which fully includes the final-state screening, account for the experimentally observed...

  16. Modification of metallic surfaces by positive ion bombardment

    International Nuclear Information System (INIS)

    Rickards C, J.

    1989-01-01

    Reported are the fundamentals and recent advances in the use of ion implantation techniques and gaseous emissions to modify metal surfaces. The physical phenomena involved, the necessary equipment and some applications which have been successful on an industrial scale are described. (Author). 13 refs, 1 fig

  17. Renormalization of Optical Excitations in Molecules near a Metal Surface

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Thygesen, Kristian Sommer

    2011-01-01

    consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional...

  18. Coordination to transition metal surfaces : a theoretical study

    NARCIS (Netherlands)

    Santen, van R.A.

    1985-01-01

    A theoretical framework is developed that describes the chemisorption of CO to transition metal surfaces analogous to the HOMO-LUMO concept of MO theory. An explanation is given for the exptl. observation that CO adsorbs on top at the (111), face of Pt, but bridge at the (111) face of Ni. One is due

  19. Ductile fracture surface morphology of amorphous metallic alloys

    NARCIS (Netherlands)

    Miskuf, J; Csach, K; Ocelik, [No Value; Bengus, VZ; Tabachnikova, ED; Duhaj, P; Ocelik, Vaclav

    1999-01-01

    Fracture surfaces of ductile failure of two types bulk amorphous metallic alloys were studied using quantitative and qualitative fractographic analysis. The observed fractographic behaviour of ductile failure in comparison with the ductile failure of amorphous alloy ribbons shows signs of the same

  20. Metal concentration at surface water using multivariate analysis and ...

    African Journals Online (AJOL)

    Metal concentration at surface water using multivariate analysis and human health risk assessment. F Azaman, H Juahir, K Yunus, A Azid, S.I. Khalit, A.D. Mustafa, M.A. Amran, C.N.C. Hasnam, M.Z.A.Z. Abidin, M.A.M. Yusri ...

  1. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  2. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    Directory of Open Access Journals (Sweden)

    Tammy M. Milillo

    2017-03-01

    Full Text Available The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision making framework that relies on maps generated from indicator kriging (IK and indicator co-kriging (ICK of samples from the contaminated site itself is shown to be a viable alternative to the traditional method of choosing a reference site for remediation planning. GIS based IK and ICK, and map based analysis are performed on lead and arsenic surface and subsurface datasets to determine site-specific background concentration levels were determined to be 50 μg/g for lead and 10 μg/g for arsenic. With these results, a remediation plan was proposed which identified regions of interest and maps were created to effectively communicate the results to the environmental agencies, residents and other interested parties.

  3. Surface Wind Gust Statistics at the Savannah River Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2001-01-01

    The Atmospheric Technologies Group (ATG) of the Savannah River Technology Center (SRTC) collects meteorological data for many purposes at the Savannah River Site (SRS) including weather forecasting. This study focuses on wind gusts and also, to a lesser degree, turbulence intensities that occur in fair weather conditions near the surface over time periods from 1 hour to one week (168 hours)

  4. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  5. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    Science.gov (United States)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  6. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  7. Voltammetric determination of metal impurities on semiconductor surface

    International Nuclear Information System (INIS)

    Knyazeva, E.P.; Mokrousov, G.M.; Volkova, V.N.

    1995-01-01

    A modification of voltamperometric method used for analysis of semiconductor surfaces which make it possible to exclude a contact between surface and background solution. This technique is based on solubility of elemental metal forms in low melting electroconductor systems (e.g., in mercury. The voltampere characteristics of amalgams formed are then studied. The suggested method is simple, rapid, and makes it possible to perform a nondestructive qualitative analysis of the sample surface area measuring about 10 -3 cm -2 and more. 4 refs.; 2 figs

  8. Surface core-level shifts for simple metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    screening, whereby a SCLS becomes equivalent to the surface segregation energy of a core-ionized atom, a quantity we obtain by separate bulk and surface impurity calculations. The results are in good agreement with experiment in most of those cases where the data originates from single-crystal measurements....... We discuss the surface shifts of the electrostatic potentials and the band centers in order to trace the microscopic origin of the SCLS in the simple metals and find that the anomalous subsurface core-level shifts in beryllium are caused by charge dipoles, which persist several layers into the bulk...

  9. Radionuclides and trace metals in surface air. Appendix C

    International Nuclear Information System (INIS)

    Feely, H.W.; Toonkel, L.E.; Larsen, R.J.

    1981-01-01

    Since January 1963, the Environmental Measurements Laboratory (EML), formerly the Health and Safety Laboratory (HASL), has been conducting the Surface Air Sampling Program. This study is a direct outgrowth of a program initiated by the US Naval Research Laboratory (NRL) in 1957 and continued through 1962. The primary objective of this program is to study the spatial and temporal distribution of specific natural and man-made radioisotopes, and of trace metals in the surface air. Other special studies of surface air contamination have been performed during the course of the program

  10. Asperity interaction in adhesive contact of metallic rough surfaces

    International Nuclear Information System (INIS)

    Sahoo, Prasanta; Banerjee, Atanu

    2005-01-01

    The analysis of adhesive contact of metallic rough surfaces considering the effect of asperity interaction is the subject of this investigation. The micro-contact model of asperity interactions developed by Zhao and Chang (2001 Trans. ASME: J. Tribol. 123 857-64) is combined with the elastic plastic adhesive contact model developed by Chang et al (1988 Trans. ASME: J. Tribol. 110 50-6) to consider the asperity interaction and elastic-plastic deformation in the presence of surface forces simultaneously. The well-established elastic adhesion index and plasticity index are used to consider the different contact conditions. Results show that asperity interaction influences the load-separation behaviour in elastic-plastic adhesive contact of metallic rough surfaces significantly and, in general, adhesion is reduced due to asperity interactions

  11. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  12. Recommended values of clean metal surface work functions

    Energy Technology Data Exchange (ETDEWEB)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H. [Department of Physics, Loyola University Maryland, 4501 N. Charles St., Baltimore, Maryland 21210 (United States)

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  13. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  14. Time-dependent image potential at a metal surface

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Transient effects in the image potential induced by a point charge suddenly created in front of a metal surface are studied. The time evolution of the image potential is calculated using linear response theory. Two different time scales are defined: (i) the time required for the creation of the image potential and (ii) the time it takes to converge to its stationary value. Their dependence on the distance of the charge to the surface is discussed. The effect of the electron gas damping is also analyzed. For a typical metallic density, the order of magnitude of the creation time is 0.1 fs, whereas for a charge created close to the surface the convergence time is around 1-2 fs

  15. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  16. Understanding the biological responses of nanostructured metals and surfaces

    International Nuclear Information System (INIS)

    Lowe, Terry C; A Reiss, Rebecca

    2014-01-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science

  17. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Jungsuttiwong, Siriporn, E-mail: siriporn.j@ubu.ac.th [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Wongnongwa, Yutthana [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190 (Thailand); Namuangruk, Supawadee [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand); Kungwan, Nawee [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Promarak, Vinich [Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210 (Thailand); Kunaseth, Manaschai, E-mail: manaschai@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathum Thani 12120 (Thailand)

    2016-01-30

    Graphical abstract: Decoration of Pd{sub 4}-A (square planar) on B-doped graphene significantly promotes Hg{sup 0} adsorption, a single site of Pd{sub 4} cluster on BDG could strongly adsorb up to six Hg atoms. - Highlights: • Transition metal atom and cluster binds strongly on B-doped graphene surface. • Decoration of transition metal on B-doped graphene significantly promotes Hg{sup 0} adsorption. • Adsorption strength of Hg{sup 0} atom on metal decorated B-doped graphene: Pd > Pt > Ru > W > Cu. • One site decorated Pd4 cluster adsorbed Hg{sup 0} strongly up to six atoms.

  18. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Science.gov (United States)

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  19. Nanotubular surface modification of metallic implants via electrochemical anodization technique.

    Science.gov (United States)

    Wang, Lu-Ning; Jin, Ming; Zheng, Yudong; Guan, Yueping; Lu, Xin; Luo, Jing-Li

    2014-01-01

    Due to increased awareness and interest in the biomedical implant field as a result of an aging population, research in the field of implantable devices has grown rapidly in the last few decades. Among the biomedical implants, metallic implant materials have been widely used to replace disordered bony tissues in orthopedic and orthodontic surgeries. The clinical success of implants is closely related to their early osseointegration (ie, the direct structural and functional connection between living bone and the surface of a load-bearing artificial implant), which relies heavily on the surface condition of the implant. Electrochemical techniques for modifying biomedical implants are relatively simple, cost-effective, and appropriate for implants with complex shapes. Recently, metal oxide nanotubular arrays via electrochemical anodization have become an attractive technique to build up on metallic implants to enhance the biocompatibility and bioactivity. This article will thoroughly review the relevance of electrochemical anodization techniques for the modification of metallic implant surfaces in nanoscale, and cover the electrochemical anodization techniques used in the development of the types of nanotubular/nanoporous modification achievable via electrochemical approaches, which hold tremendous potential for bio-implant applications. In vitro and in vivo studies using metallic oxide nanotubes are also presented, revealing the potential of nanotubes in biomedical applications. Finally, an outlook of future growth of research in metallic oxide nanotubular arrays is provided. This article will therefore provide researchers with an in-depth understanding of electrochemical anodization modification and provide guidance regarding the design and tuning of new materials to achieve a desired performance and reliable biocompatibility.

  20. Development of Surface-Modified Polyacrylonitrile Fibers and Their Selective Sorption Behavior of Precious Metals

    Directory of Open Access Journals (Sweden)

    Areum Lim

    2016-11-01

    Full Text Available The purpose of this study was to design a powerful fibrous sorbent for recovering precious metals such as Pd(II and Pt(IV, and moreover for identifying its selectivity toward Pd(II or Pt(IV from a binary metal solution. For the development of the sorbent, polyacrylonitrile (PAN was selected as a model textile because its morphological property (i.e., thin fiber form is suitable for fast adsorption processes, and a high amount of PAN has been discharged from industrial textile factories. The PAN fiber was prepared by spinning a PAN–dimethylsulfoxide mixture into distilled water, and then its surface was activated through amidoximation so that the fiber surface could possess binding sites for Pd(II and Pt(IV. Afterwards, by Fourier-transform infrared (FT-IR and scanning electron microscopy (SEM analyses, it was confirmed that the amidoximation reaction successfully occurred. The surface-activated fiber, designated as PAN–oxime fiber, was used to adsorb and recover precious metals. In the experiment results, it was clearly observed that adsorption capacity of PAN–oxime fiber was significantly enhanced compared to the raw material form. Actually, the raw material does not have sorption capacity for the metals. In a comparison study with commercial sorbent (Amberjet™ 4200, it was found that adsorption capacity of PAN–oxime was rather lower than that of Amberjet™ 4200, however, in the aspects of sorption kinetics and metal selectivity, the new sorbent has much faster and better selectivity.

  1. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.

    2012-01-01

    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study...... large systems inaccessible to RPA with H adsorbed on graphene on a selected strongly (Ni) and a selected weakly (Pt) interacting substrate. Very stable graphane-like clusters, where every other C atom binds to a H atom above and every other to a metal atom below, are found on both substrates...

  2. Development of surface relief on polycrystalline metals due to sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Voitsenya, V.S. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Balden, M. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching (Germany); Bardamid, A.F. [Taras Shevchenko National University, 01033 Kiev (Ukraine); Bondarenko, V.N. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Davis, J.W., E-mail: jwdavis@starfire.utias.utoronto.ca [University of Toronto Institute for Aerospace Studies, 4925 Dufferin St., Toronto, ON, Canada M3H5T6 (Canada); Konovalov, V.G.; Ryzhkov, I.V.; Skoryk, O.O.; Solodovchenko, S.I. [IPP NSC KIPT, 61108 Kharkov (Ukraine); Zhang-jian, Zhou [University of Science and Technology Beijing, Beijing 100 083 (China)

    2013-05-01

    The characteristics of surface microrelief that appear in sputtering experiments with polycrystalline metals of various grain sizes have been studied. Specimens with grain sizes varying from 30–70 nm in the case of crystallized amorphous alloys, to 1–3 μm for technical tungsten grade and 10–100 μm for recrystallized tungsten were investigated. A model is proposed for the development of roughness on polycrystalline metals which is based on the dependence of sputtering rate on crystal orientation. The results of the modeling are in good agreement with experiments showing that the length scale of roughness is much larger than the grain size.

  3. Electromagnetic Detection of Stress Gradients at the Surfaces of Metals

    International Nuclear Information System (INIS)

    Schmidt, William F.; Zinke, Otto H.

    2004-01-01

    A general, integral expression is developed which relates measurements of the variations of the imaginary component of complex- reluctance with frequency to stress profiles near the surfaces of metals. The technique should yield either applied or residual stress profiles produced, for example, by heat-treating, metal-working, fatigue, or peening. It may even be applicable to carburizing. The technique of measurement cancels out the effects of any pre-treatment residual-stress profile (subject to the assumption of superposition). The general, integral expression is induced from the results of measurements on a steel bar which is subjected to both tensile tests and bending tests

  4. Hydrogen collisions with transition metal surfaces: Universal electronically nonadiabatic adsorption

    Science.gov (United States)

    Dorenkamp, Yvonne; Jiang, Hongyan; Köckert, Hansjochen; Hertl, Nils; Kammler, Marvin; Janke, Svenja M.; Kandratsenka, Alexander; Wodtke, Alec M.; Bünermann, Oliver

    2018-01-01

    Inelastic scattering of H and D atoms from the (111) surfaces of six fcc transition metals (Au, Pt, Ag, Pd, Cu, and Ni) was investigated, and in each case, excitation of electron-hole pairs dominates the inelasticity. The results are very similar for all six metals. Differences in the average kinetic energy losses between metals can mainly be attributed to different efficiencies in the coupling to phonons due to the different masses of the metal atoms. The experimental observations can be reproduced by molecular dynamics simulations based on full-dimensional potential energy surfaces and including electronic excitations by using electronic friction in the local density friction approximation. The determining factors for the energy loss are the electron density at the surface, which is similar for all six metals, and the mass ratio between the impinging atoms and the surface atoms. Details of the electronic structure of the metal do not play a significant role. The experimentally validated simulations are used to explore sticking over a wide range of incidence conditions. We find that the sticking probability increases for H and D collisions near normal incidence—consistent with a previously reported penetration-resurfacing mechanism. The sticking probability for H or D on any of these metals may be represented as a simple function of the incidence energy, Ein, metal atom mass, M, and incidence angle, 𝜗i n. S =(S0+a ṡEi n+b ṡM ) *(1 -h (𝜗i n-c ) (1 -cos(𝜗 i n-c ) d ṡh (Ei n-e ) (Ei n-e ) ) ) , where h is the Heaviside step function and for H, S0 = 1.081, a = -0.125 eV-1, b =-8.40 ṡ1 0-4 u-1, c = 28.88°, d = 1.166 eV-1, and e = 0.442 eV; whereas for D, S0 = 1.120, a = -0.124 eV-1, b =-1.20 ṡ1 0-3 u-1, c = 28.62°, d = 1.196 eV-1, and e = 0.474 eV.

  5. Surface plasmons in metallic nanoparticles: fundamentals and applications

    International Nuclear Information System (INIS)

    Garcia, M A

    2011-01-01

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  6. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  7. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  8. Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, O.S. [Geochimie et Biogeochimie Experimentale, LMTG, Universite de Toulouse, CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France)], E-mail: oleg@lmtg.obs-mip.fr; Martinez, R.E.; Golubev, S.V. [Geochimie et Biogeochimie Experimentale, LMTG, Universite de Toulouse, CNRS-IRD-OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Kompantseva, E.I. [Winogradsky Institute of Microbiology, Russian Academy of Science, Moscow (Russian Federation); Shirokova, L.S. [Institute of Ecological Problems of the Northern Regions, Russian Academy of Science, 29 Naberezhnaja Sev. Dviny, Arkhangelsk (Russian Federation)

    2008-09-15

    The purpose of the present work is to extend our knowledge of metal-cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid-base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01-1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal-proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 deg. C in 0.01 M NaNO{sub 3} as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help

  9. Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach

    International Nuclear Information System (INIS)

    Pokrovsky, O.S.; Martinez, R.E.; Golubev, S.V.; Kompantseva, E.I.; Shirokova, L.S.

    2008-01-01

    The purpose of the present work is to extend our knowledge of metal-cyanobacteria interactions and to contribute to the database on adsorption parameters of aquatic microorganisms with respect to metal pollutants. To this end, the surface properties of the cyanobacteria (Gloeocapsa sp. f-6gl) were studied using potentiometric acid-base titration methods and ATR-FTIR (attenuated total reflection infrared) spectroscopy. The electrophoretic mobility of viable cells was measured as a function of pH and ionic strength (0.01 and 0.1 M). Surface titrations at 0.01-1.0 M NaCl were performed using limited residence time reactors (discontinuous titration) with analysis of Ca, Mg and dissolved organic C for each titration point in order to account for alkali-earth metal-proton exchange and cell degradation, respectively. Results demonstrate that the cell-wall bound Ca and Mg from the culture media contribute to the total proton uptake via surface ion-exchange reactions. This has been explicitly taken into account for net proton balance calculations. Adsorption of Zn, Cd, Pb and Cu was studied at 25 deg. C in 0.01 M NaNO 3 as a function of pH and metal concentration. The proportion of adsorbed metal increases as a function of culture age with cells of 44 days old having the largest adsorption capacities. A competitive Langmuir sorption isotherm in conjunction with a linear programming method (LPM) was used to fit experimental data and assess the number of surface sites and adsorption reaction constants involved in the binding of metals to the cyanobacteria surface. These observations allowed the determination of the identity and concentration of the major surface functional groups (carboxylate, amine, phosphoryl/phosphodiester and hydroxyl) responsible for the amphoteric behavior of cyanobacterial cell surfaces in aqueous solutions and for metal adsorption. Results of this work should allow better optimizing of metal bioremediation/biosequestration processes as they help to

  10. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  11. HEAVY METALS IN SURFACE MUD SEDIMENT IN EKATERINBURG (RUSSIA

    Directory of Open Access Journals (Sweden)

    A. A. Seleznev

    2018-03-01

    Full Text Available Problem Statement. Now the most part of the world’s population lives in cities, thus, it is relevant the search for universal, low-cost and express methods for environmental geochemical investigations of an urban environment. The objective of the study is the assessment of content and properties of surface mud sediment at the urban territory (on the example of Ekaterinburg, Russia. Methods of the study. The 30 samples of surface mud sediment, soils and ground were collected in the residential area of the city. Particle size composition, measurements of heavy metals content, correlation analysis was conducted for the samples. Results. Surface mud sediment at the residential territories can be classified as surface facie of the recent anthropogenic sediment. Samples of the environmental compartments were collected at the territories of six blocks of houses of various years of construction, located in various parts of the city and at the various geological units. Five samples were collected in each block: 3 samples within the block and 2 samples – outside. The content of Pb, Zn, Cu, Ni, Co, and Mn was measured in particle size fractions of the samples. Particle size composition of the surface mud sediment in Ekaterinburg is similar to the particle size composition of the grounds formed on the sediments of Holocene age in Urals region. The positive statistically significant correlation was found between the couples of metals: Zn and Pb, Zn and Cu, Co and Ni. The distribution of concentrations of Pb, Zn and Cu over particle size fractions of surface mud sediment is heterogeneous. Pollution of the ground and soil in urban areas is due to the transition of heavy metals with particles of dust and fine sand. Typical geochemical association of metals for particle size fraction of surface mud sediment 0.002–0.01 mm – Mn-Zn-Ni-Cu-Pb-Co, that is similar to the association for sediments of surface puddles in local zones of relief, soils and bottom

  12. Determination of heavy metals in soils from dump site of tanneries ...

    African Journals Online (AJOL)

    Heavy metals were determined in soil samples at the dump site, Challawa town, Karfi Irrigation site and farmlands near the dump site by flame Atomic Absorption Spectrophotometer (AAS). The results showed that soil at the dump site contains significant amount of toxic elements. Hence remediation processes were ...

  13. Direct instrumental identification of catalytically active surface sites

    Science.gov (United States)

    Pfisterer, Jonas H. K.; Liang, Yunchang; Schneider, Oliver; Bandarenka, Aliaksandr S.

    2017-09-01

    The activity of heterogeneous catalysts—which are involved in some 80 per cent of processes in the chemical and energy industries—is determined by the electronic structure of specific surface sites that offer optimal binding of reaction intermediates. Directly identifying and monitoring these sites during a reaction should therefore provide insight that might aid the targeted development of heterogeneous catalysts and electrocatalysts (those that participate in electrochemical reactions) for practical applications. The invention of the scanning tunnelling microscope (STM) and the electrochemical STM promised to deliver such imaging capabilities, and both have indeed contributed greatly to our atomistic understanding of heterogeneous catalysis. But although the STM has been used to probe and initiate surface reactions, and has even enabled local measurements of reactivity in some systems, it is not generally thought to be suited to the direct identification of catalytically active surface sites under reaction conditions. Here we demonstrate, however, that common STMs can readily map the catalytic activity of surfaces with high spatial resolution: we show that by monitoring relative changes in the tunnelling current noise, active sites can be distinguished in an almost quantitative fashion according to their ability to catalyse the hydrogen-evolution reaction or the oxygen-reduction reaction. These data allow us to evaluate directly the importance and relative contribution to overall catalyst activity of different defects and sites at the boundaries between two materials. With its ability to deliver such information and its ready applicability to different systems, we anticipate that our method will aid the rational design of heterogeneous catalysts.

  14. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  15. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  16. Encapsulant Adhesion to Surface Metallization on Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Jared; Bosco, Nick; Dauskardt, Reinhold

    2017-11-01

    Delamination of encapsulant materials from PV cell surfaces often appears to originate at regions with metallization. Using a fracture mechanics based metrology, the adhesion of ethylene vinyl acetate (EVA) encapsulant to screen-printed silver metallization was evaluated. At room temperature, the fracture energy Gc [J/m2] of the EVA/silver interface (952 J/m2) was ~70% lower than that of the EVA/antireflective (AR) coating (>2900 J/m2) and ~60% lower than that of the EVA to the surface of cell (2265 J/m2). After only 300 h of damp heat aging, the adhesion energy of the silver interface dropped to and plateaued at ~50-60 J/m2 while that of the EVA/AR coating and EVA/cell remained mostly unchanged. Elemental surface analysis showed that the EVA separates from the silver in a purely adhesive manner, indicating that bonds at the interface were likely displaced in the presence of humidity and chemical byproducts at elevated temperature, which in part accounts for the propensity of metalized surfaces to delaminate in the field.

  17. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  18. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  19. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  20. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  1. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  2. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  3. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  4. Nanostructure formation on refractory metal surfaces irradiated by helium plasmas

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Kajita, Shin; Ohno, Noriyasu

    2013-01-01

    Helium defects on plasma-facing refractory metals like tungsten have been studied in fusion sciences from the view point of the effects on metal surface properties, concentrating on the bubble formation. However, the surface morphology over the lower surface temperature range was found recently to be changed drastically, something like cotton down or arborescence, sometimes called as “fuzz”. The formation process, although still open problem, would be discussed in terms of viscoelastic model with the effect of surface tension, taking account of its thermal properties and nano-bubbles inside the thin fibers. Some physical surface characteristics like electron emission, radiation emissivity and sputtering are quite influenced by its forest-like structure. Unipolar arcing has been newly studied by using such a surface structure which makes its initiation controllable. In the present report, other examples of nanostructure formation in a variety of particle incident conditions have been introduced as well as the possibility of its industrial applications to enhance interdisciplinary interests. (author)

  5. Digitally Milled Metal Framework for Fixed Complete Denture with Metal Occlusal Surfaces: A Design Concept.

    Science.gov (United States)

    AlBader, Bader; AlHelal, Abdulaziz; Proussaefs, Periklis; Garbacea, Antonela; Kattadiyil, Mathew T; Lozada, Jaime

    Implant-supported fixed complete dentures, often referred to as hybrid prostheses, have been associated with high implant survival rates but also with a high incidence of mechanical prosthetic complications. The most frequent of these complications have been fracture and wear of the veneering material. The proposed design concept incorporates the occlusal surfaces of the posterior teeth as part of a digital milled metal framework by designing the posterior first molars in full contour as part of the framework. The framework can be designed, scanned, and milled from a titanium blank using a milling machine. Acrylic resin teeth can then be placed on the framework by conventional protocol. The metal occlusal surfaces of the titanium-countered molars will be at centric occlusion. It is hypothesized that metal occlusal surfaces in the posterior region may reduce occlusal wear in these types of prostheses. When the proposed design protocol is followed, the connection between the metal frame and the cantilever part of the prosthesis is reinforced, which may lead to fewer fractures of the metal framework.

  6. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    Science.gov (United States)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  7. Surface energy budget and turbulent fluxes at Arctic terrestrial sites

    Science.gov (United States)

    Grachev, Andrey; Persson, Ola; Uttal, Taneil; Konopleva-Akish, Elena; Crepinsek, Sara; Cox, Christopher; Fairall, Christopher; Makshtas, Alexander; Repina, Irina

    2017-04-01

    Determination of the surface energy budget (SEB) and all SEB components at the air-surface interface are required in a wide variety of applications including atmosphere-land/snow simulations and validation of the surface fluxes predicted by numerical models over different spatial and temporal scales. Here, comparisons of net surface energy budgets at two Arctic sites are made using long-term near-continuous measurements of hourly averaged surface fluxes (turbulent, radiation, and soil conduction). One site, Eureka (80.0 N; Nunavut, Canada), is located in complex topography near a fjord about 200 km from the Arctic Ocean. The other site, Tiksi (71.6 N; Russian East Siberia), is located on a relatively flat coastal plain less than 1 km from the shore of Tiksi Bay, a branch of the Arctic Ocean. We first analyzed diurnal and annual cycles of basic meteorological parameters and key SEB components at these locations. Although Eureka and Tiksi are located on different continents and at different latitudes, the annual course of the surface meteorology and SEB components are qualitatively similar. Surface energy balance closure is a formulation of the conservation of energy principle. Our direct measurements of energy balance for both Arctic sites show that the sum of the turbulent sensible and latent heat fluxes and the ground (conductive) heat flux systematically underestimate the net radiation by about 25-30%. This lack of energy balance closure is a fundamental and pervasive problem in micrometeorology. We discuss a variety of factors which may be responsible for the lack of SEB closure. In particular, various storage terms (e.g., air column energy storage due to radiative and/or sensible heat flux divergence, ground heat storage above the soil flux plate, energy used in photosynthesis, canopy biomass heat storage). For example, our observations show that the photosynthesis storage term is relatively small (about 1-2% of the net radiation), but about 8-12% of the

  8. Field emission and high voltage cleaning of particulate contaminants on extended metallic surfaces

    International Nuclear Information System (INIS)

    Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The vacuum insulation properties of extended metallic surfaces depends strongly on their cleanliness. The usual technique to reduce electronic field emission from such surfaces consists in exposing them to very high electric fields during limited periods of time. This kind of processing also reduces the occurrence of vacuum breakdown. The processing of the surface is generally believed to be due to a thermomechanical destruction of the emitting sites, initiated by the emission itself. Comparison of the electric forces vs adherence forces which act on dust particles lying on the surface shows that the processing could also be due simply to the mechanical removal of the dust particles, with a subsequent reduction of field emission from the contaminated surface. (author)

  9. Making metals transparency for white light by surface plasmons

    Science.gov (United States)

    Peng, Ru-Wen; Huang, Xian-Rong; Fan, Ren-Hao; Li, Jia; Hu, Qing; Wang, Mu

    2012-02-01

    We demonstrate both experimentally and theoretically that metallic gratings consisting of narrow slits become transparent for extremely broad bandwidths under oblique incidence. This phenomenon can be explained by a concrete picture in which the incident wave drives free electrons on the conducting surfaces and part of the slit walls to form surface plasmons (SPs). The SPs then propagate on the slit walls but are abruptly discontinued by the bottom edges to form oscillating charges that emit the transmitted wave. This picture explicitly demonstrates the conversion between light and SPs and indicates clear guidelines for enhancing SP excitation and propagation. Making structured metals transparent may lead to a variety of applications. References: Xian-Rong Huang, Ru-Wen Peng, and Ren-Hao Fan, Phys. Rev. Lett. (2010)105, 243901; and Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Jia Li, Qing Hu, and Mu Wang, manuscript prepared(2011).

  10. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  11. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  12. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    International Nuclear Information System (INIS)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-01-01

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field

  13. Impact of metals in surface matrices from formal and informal electronic-waste recycling around Metro Manila, the Philippines, and intra-Asian comparison

    International Nuclear Information System (INIS)

    Fujimori, Takashi; Takigami, Hidetaka; Agusa, Tetsuro; Eguchi, Akifumi; Bekki, Kanae; Yoshida, Aya; Terazono, Atsushi; Ballesteros, Florencio C.

    2012-01-01

    Highlights: ► We quantified 11 metals in surface matrices from e-waste recycling sites at the Philippines. ► Dust had statistical higher levels of metal contamination and health risk compared to soil. ► Formal and informal sites had different metal contaminations. ► Intra-Asian comparison provided common insight on metal contamination from e-waste recycling. - Abstract: We report concentrations, enrichment factors, and hazard indicators of 11 metals (Ag, As, Cd, Co, Cu, Fe, In, Mn, Ni, Pb, and Zn) in soil and dust surface matrices from formal and informal electronic waste (e-waste) recycling sites around Metro Manila, the Philippines, referring to soil guidelines and previous data from various e-waste recycling sites in Asia. Surface dust from e-waste recycling sites had higher levels of metal contamination than surface soil. Comparison of formal and informal e-waste recycling sites (hereafter, “formal” and “informal”) revealed differences in specific contaminants. Formal dust contained a mixture of serious pollutant metals (Ni, Cu, Pb, and Zn) and Cd (polluted modestly), quite high enrichment metals (Ag and In), and crust-derived metals (As, Co, Fe, and Mn). For informal soil, concentration levels of specific metals (Cd, Co, Cu, Mn, Ni, Pb, and Zn) were similar among Asian recycling sites. Formal dust had significantly higher hazardous risk than the other matrices (p < 0.005), excluding informal dust (p = 0.059, almost significant difference). Thus, workers exposed to formal dust should protect themselves from hazardous toxic metals (Pb and Cu). There is also a high health risk for children ingesting surface matrices from informal e-waste recycling sites.

  14. Removal and recovery of toxic metal ions from aqueous waste sites using polymer pendant ligands

    International Nuclear Information System (INIS)

    Fish, D.

    1996-01-01

    The purpose of this project is to investigate the use of polymer pendant ligand technology to remove and recover toxic metal ions from DOE aqueous waste sites. Polymer pendant lgiands are organic ligands, anchored to crosslinked, modified divinylbenzene-polystyrene beads, that can selectively complex metal ions. The metal ion removal step usually occurs through a complexation or ion exchange phenomena, thus recovery of the metal ions and reuse of the beads is readily accomplished

  15. Preserving half-metallic surface states in Cr O2 : Insights into surface reconstruction rules

    Science.gov (United States)

    Deng, Bei; Shi, X. Q.; Chen, L.; Tong, S. Y.

    2018-04-01

    The issue of whether the half-metallic (HM) nature of Cr O2 could be retained at its surface has been a standing problem under debate for a few decades, but until now is still controversial. Here, based on the density functional theory calculations we show, in startling contrast to the previous theoretical understandings, that the surfaces of Cr O2 favorably exhibit a half-metallic-semiconducting (SmC) transition driven by means of a surface electronic reconstruction largely attributed to the participation of the unexpected local charge carriers (LCCs), which convert the HM double exchange surface state into a SmC superexchange state and in turn, stabilize the surface as well. On the basis of the LCCs model, a new insight into the surface reconstruction rules is attained. Our novel finding not only provided an evident interpretation for the widely observed SmC character of Cr O2 surface, but also offered a novel means to improve the HM surface states for a variety of applications in spintronics and superconductors, and promote the experimental realization of the quantum anomalous Hall effect in half-metal based systems.

  16. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  17. Exchange energy of inhomogenous electron gas near a metal surface

    International Nuclear Information System (INIS)

    Miglio, L.; Tosi, M.P.; March, N.H.

    1980-12-01

    Using the first-order density matrix of an infinite-barrier model of a metal surface, the exchange energy density can be evaluated exactly as a function of distance z from the barrier. This result is compared with the local approximation -3/4e 2 (3/π)sup(1/3) rhosup(4/3)(z) where rho is the electron density in the model. The local approximation is demonstrated to be quantitatively accurate at all z. The integrated surface exchange energy is given to within 3% by the local theory. (author)

  18. Ion beam analysis of metal ion implanted surfaces

    International Nuclear Information System (INIS)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T.; Sood, D.K.

    1993-01-01

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs

  19. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P J; Chu, J W; Johnson, E P; Noorman, J T [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D K [Royal Melbourne Inst. of Tech., VIC (Australia)

    1994-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  20. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  1. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  2. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  3. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  4. Nonhazardous solvent composition and method for cleaning metal surfaces

    International Nuclear Information System (INIS)

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  5. Liquid metal actuator driven by electrochemical manipulation of surface tension

    Science.gov (United States)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  6. Preferred sensor sites for surface EMG signal decomposition

    International Nuclear Information System (INIS)

    Zaheer, Farah; Roy, Serge H; De Luca, Carlo J

    2012-01-01

    Technologies for decomposing the electromyographic (EMG) signal into its constituent motor unit action potential trains have become more practical by the advent of a non-invasive methodology using surface EMG (sEMG) sensors placed on the skin above the muscle of interest (De Luca et al 2006 J. Neurophysiol. 96 1646–57 and Nawab et al 2010 Clin. Neurophysiol. 121 1602–15). This advancement has widespread appeal among researchers and clinicians because of the ease of use, reduced risk of infection, and the greater number of motor unit action potential trains obtained compared to needle sensor techniques. In this study we investigated the influence of the sensor site on the number of identified motor unit action potential trains in six lower limb muscles and one upper limb muscle with the intent of locating preferred sensor sites that provided the greatest number of decomposed motor unit action potential trains, or motor unit yield. Sensor sites rendered varying motor unit yields throughout the surface of a muscle. The preferred sites were located between the center and the tendinous areas of the muscle. The motor unit yield was positively correlated with the signal-to-noise ratio of the detected sEMG. The signal-to-noise ratio was inversely related to the thickness of the tissue between the sensor and the muscle fibers. A signal-to-noise ratio of 3 was found to be the minimum required to obtain a reliable motor unit yield. (paper)

  7. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  8. Metal/metal-oxide interfaces: A surface science approach to the study of adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Peden, C.H.F.; Kidd, K.B.; Shinn, N.D. (Sandia National Laboratories, Albuquerque, New Mexico 87185-5800 (USA))

    1991-05-01

    Metal-oxide/metal interfaces play an important role, for example, in the joining of an oxide ceramic to a metal for sealing applications. In order to probe the chemical and physical properties of such an interface, we have performed Auger electron spectroscopic (AES) and temperature programed desorption (TPD) experiments on a model system composed of very thin films of Cr, Fe, Ni, or Cu evaporated onto a very thin thermally grown oxide on a W single crystal. Monolayer films of Fe and Cr were found (by AES) to completely wet the oxide surface upon deposition, and were stable up to temperatures at which the films desorbed ({approx}1300 K). In contrast, monolayer Ni and Cu films formed three-dimensional islands exposing the oxidized W surface either upon annealing (Ni) or even upon room-temperature deposition (Cu). The relative interfacial interaction between the overlayer metal and the oxide, as assessed by TPD, increases in the series Cu{lt}Ni{lt}Fe{lt}Cr. This trend follows the heats of formation of the various oxides of these metals.

  9. Biomonitoring for metal contamination near two Superfund sites in Woburn, Massachusetts, using phytochelatins

    International Nuclear Information System (INIS)

    Gawel, James E.; Hemond, Harold F.

    2004-01-01

    Characterizing the spatial extent of groundwater metal contamination traditionally requires installing sampling wells, an expensive and time-consuming process in urban areas. Moreover, extrapolating biotic effects from metal concentrations alone is problematic, making ecological risk assessment difficult. Our study is the first to examine the use of phytochelatin measurements in tree leaves for delimiting biological metal stress in shallow, metal-contaminated groundwater systems. Three tree species (Rhamnus frangula, Acer platanoides, and Betula populifolia) growing above the shallow groundwater aquifer of the Aberjona River watershed in Woburn, Massachusetts, display a pattern of phytochelatin production consistent with known sources of metal contamination and groundwater flow direction near the Industri-Plex Superfund site. Results also suggest the existence of a second area of contaminated groundwater and elevated metal stress near the Wells G and H Superfund site downstream, in agreement with a recent EPA ecological risk assessment. Possible contamination pathways at this site are discussed

  10. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    International Nuclear Information System (INIS)

    Salvadori, M.C.; Teixeira, F.S.; Sgubin, L.G.; Cattani, M.; Brown, I.G.

    2014-01-01

    Highlights: • Metal nanoparticles can be produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. • The nanoparticles nucleate near the maximum of the implantation depth profile, that can be estimated by computer simulation using the TRIDYN. • Nanocomposites, obtained by this way, can be produced in different insulator materials. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. • The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted, reaching the percolation threshold. • Excellent agreement was found between the experimental results and the predictions of the theory. - Abstract: There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in

  11. Site descriptive modeling as a part of site characterization in Sweden - Concluding the surface based investigations

    International Nuclear Information System (INIS)

    Andersson, Johan; Winberg, Anders; Skagius, Kristina; Stroem, Anders; Lindborg, Tobias

    2007-01-01

    The Swedish Nuclear Fuel and Waste Management Co., SKB, is currently finalizing its surface based site investigations for the final repository for spent nuclear fuel in the municipalities of Oestharmnar (the Forsmark area) and Oskarshamn (the Simpevar/Laxemar area). The investigation data are assessed into a Site Descriptive Model, constituting a synthesis of geology, rock mechanics, thermal properties, hydrogeology, hydro-geochemistry, transport properties and a surface system description. Site data constitute a wide range of different measurement results. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modeling. The three-dimensional modeling (i.e. estimating the distribution of parameter values in space) is made in a sequence where the geometrical framework is taken from the geological models and in turn used by the rock mechanics, thermal and hydrogeological modeling. These disciplines in turn are partly interrelated, and also provide feedback to the geological modeling, especially if the geological description appears unreasonable when assessed together with the other data. Procedures for assessing the uncertainties and the confidence in the modeling have been developed during the course of the site modeling. These assessments also provide key input to the completion of the site investigation program. (authors)

  12. Electron acceleration by surface plasma waves in double metal surface structure

    Science.gov (United States)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  13. Surface sites on carbon-supported Ru, Co and Ni nanoparticles as determined by microcalorimetry of CO adsorption

    International Nuclear Information System (INIS)

    Cerro-Alarcon, M.; Maroto-Valiente, A.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A.

    2005-01-01

    The adsorption of CO on carbon-supported metal (Ru, Co and Ni) catalysts was studied by microcalorimetry. A correlation of the results thus obtained with those reported for monocrystals or with other studies available in the scientific literature for supported metal catalysts, including infrared spectroscopy data, enables the determination of the type of exposed crystalline planes and/or of the different types of CO adsorbed species. The results obtained suggest that the energetic distribution of the surface sites depends on the carbon support material and on the applied reduction treatment. In this way, the use of a high surface area graphite (clean of surface oxygen groups) leads to an electron density enrichment on the small metal particles (Ru) and, in general, to a higher heterogeneity of the active surface sites. The elimination of surface oxygen functional groups (with the reduction treatment at the higher temperature) of the carbon molecular sieve support leads to changes in the surface structure of the metal particles and, consequently, to higher CO adsorption heats, particularly for Ru and Co

  14. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  15. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  16. Work functions and surface charges at metallic facet edges

    International Nuclear Information System (INIS)

    Fall, C.J.; Binggeli, N.; Baldereschi, A.

    2002-04-01

    The electronic charge densities and work functions at sharp metallic facet edges are determined from ab initio calculations, combined with macroscopic averaging techniques. In particular, we examine how two different work functions coexist at close range near edges between inequivalent facets. The surface ionic relaxation at facet edges is shown to influence appreciably the local electrostatic potential in the vacuum. Various edges between Al(100) and Al(111) facets are studied, as well as between Na(110) facets. We also develop a model of electronic surface dipoles, which accounts for the surface charge transfer between inequivalent facets, and which allows us to predict the influence of the shape and size of a macroscopic crystal on its work functions. (author)

  17. Decontamination of radioactive metal surfaces by plasma arc gouging

    International Nuclear Information System (INIS)

    Osamu, K.; Makoto, K.; Takao, K.

    1983-01-01

    Experiments have been carried out to develop a new decontamination method that applies plasma arc gouging for removal of a thin surface layer from radioactively contaminated metallic wastes. Plasma arc gouging has been carried out on stainless steel and carbon steel pipes. The torch nozzle and gouging angle have been optimized to increase the decontamination rate. A water film is formed on the pipe surface to reduce both dust concentration in the off-gas and prevent slag particles, which are splashed up by the plasma gas, from adhering to the gouged surface. Using chromium-electroplated carbon steel pipes as samples, a decontamination factor of >10 3 is obtained after gouging to a depth of about0.5 mm in combination with ultrasonic cleaning

  18. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments from a source water reservoir

    Directory of Open Access Journals (Sweden)

    Changming Yang

    2016-10-01

    Full Text Available Surface sediment samples were collected from a source water reservoir in Zhejiang Province, East of China to investigate pollution characteristics and potential ecological risk of heavy metals. The BCR sequential extraction method was used to determine the four chemical fractions of heavy metals such as acid soluble, easily reducible, easily oxidizable and residual fractions. The heavy metals pollution and potential ecological risk were evaluated systematically using geoaccumulation index (Igeo and Hakanson potential ecological risk index (H′. The results showed that the sampling sites from the estuaries of tributary flowing through downtowns and heavy industrial parks showed significantly (p < 0.05 higher average concentrations of heavy metals in the surface sediments, as compared to the other sampling sites. Chemical fractionation showed that Mn existed mainly in acid extractable fraction, Cu and Pb were mainly in reducible fraction, and As existed mainly in residual fraction in the surface sediments despite sampling sites. The sampling sites from the estuary of tributary flowing through downtown showed significantly (p < 0.05 higher proportions of acid extractable and reducible fractions than the other sampling sites, which would pose a potential toxic risk to aquatic organisms as well as a potential threat to drinking water safety. As, Pb, Ni and Cu were at relatively high potential ecological risk with high Igeo values for some sampling locations. Hakanson potential ecological risk index (H′ showed the surface sediments from the tributary estuaries with high population density and rapid industrial development showed significantly (p < 0.05 higher heavy metal pollution levels and potential ecological risk in the surface sediments, as compared to the other sampling sites.

  19. The development of surface barriers at the Hanford Site

    International Nuclear Information System (INIS)

    Wing, N.R.; Gee, G.W.

    1994-03-01

    Engineered barriers are being developed to isolate wastes disposed of near the earth's surface at the US Department of Energy's (DOE) Hanford Site near Richland, Washington. Much of the waste that would be disposed of by in-place stabilization currently is located in relatively shallow subsurface structures such as solid waste burial grounds, tanks, vaults, and cribs. Unless protected in some way, the wastes could be transported to the accessible environment via the following pathways: plant, animal, and human intrusion; water infiltration; erosion; and the exhalation of noxious gases. Permanent isolation surface barriers have been proposed to protect wastes disposed of ''in place'' from the transport pathways identified previously (Figure 1). The protective barrier consists of a variety of different materials (e.g., fine soil, sand, gravel, riprap, asphalt, etc.) placed in layers to form an above-grade mound directly over the waste zone. Surface markers are being considered for placement around the periphery of the waste sites to inform future generations of the nature and hazards of the buried wastes. In addition, throughout the protective barrier, subsurface markers could be placed to warn any inadvertent human intruders of the dangers of the buried wastes (Figure 2)

  20. Surface water management at a mixed waste remediation site

    International Nuclear Information System (INIS)

    Schlotzhauer, D.S.; Warbritton, K.R.

    1991-01-01

    The Weldon Spring Remedial Action Project (WSSRAP) deals with chemical and radiological contaminants. MK-Ferguson Company is managing the project under contract with the US Department of Energy. Remedial activities include demolishing buildings, constructing material storage and staging areas, excavating and consolidating waste materials, and treating and disposing of the materials in a land disposal facility. Due to the excavation and construction required during remediation, a well-planned surface water management system is essential. Planning involves characterization of source areas and surface water transport mechanisms and identification of applicable regulations. System components include: erosion control sediment control, flow attenuation, and management of contaminated water. Combinations of these components may be utilized during actual construction and remediation to obtain optimum control. Monitoring is performed during implementation in order to assess the effectiveness of control measures. This management scheme provides for comprehensive management of surface water at this site by providing control and/or treatment to appropriate standards. Although some treatment methodologies for contaminated water are specific to site contaminants, this comprehensive program provides a management approach which is applicable to many remedial projects in order to minimize contaminant release and meet Clean Water Act requirements

  1. Sedimentation and fouling of optical surfaces at the ANTARES site

    Science.gov (United States)

    ANTARES Collaboration; CAU CEFREM Collaboration; Amram, P.; Anghinolfi, M.; Anvar, S.; Ardellier-Desages, F. E.; Aslanides, E.; Aubert, J.-J.; Azoulay, R.; Bailey, D.; Basa, S.; Battaglieri, M.; Bellotti, R.; Beltramelli, J.; Benhammou, Y.; Berthier, R.; Bertin, V.; Billault, M.; Blaes, R.; Bland, R. W.; Blondeau, F.; de Botton, N.; Boulesteix, J.; Brooks, C. B.; Brunner, J.; Cafagna, F.; Calzas, A.; Capone, A.; Caponetto, L.; Cârloganu, C.; Carmona, E.; Carr, J.; Cartwright, S. L.; Cecchini, S.; Ciacio, F.; Circella, M.; Compère, C.; Cooper, S.; Coyle, P.; Cuneo, S.; Danilov, M.; van Dantzig, R.; de Marzo, C.; Destelle, J.-J.; de Vita, R.; Dispau, G.; Druillole, F.; Engelen, J.; Feinstein, F.; Ferdi, C.; Festy, D.; Fopma, J.; Gallone, J.-M.; Giacomelli, G.; Goret, P.; Gournay, J.-F.; Hallewell, G.; Heijboer, A.; Hernández-Rey, J. J.; Hubbard, J. R.; Jaquet, M.; de Jong, M.; Karolak, M.; Keller, P.; Kooijman, P.; Kouchner, A.; Kudryavtsev, V. A.; Lafoux, H.; Lagier, P.; Lamare, P.; Languillat, J.-C.; Laubier, L.; Laugier, J.-P.; Leilde, B.; Le Provost, H.; Le van Suu, A.; Lo Nigro, L.; Lo Presti, D.; Loucatos, S.; Louis, F.; Lyashuk, V.; Magnier, P.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazeau, B.; Mazure, A.; McMillan, J. E.; Migneco, E.; Millot, C.; Mols, P.; Montanet, F.; Montaruli, T.; Moscoso, L.; Musumeci, M.; Nezri, E.; Nooren, G. J.; Oberski, J. E. J.; Olivetto, C.; Oppelt-Pohl, A.; Palanque-Delabrouille, N.; Papaleo, R.; Payre, P.; Perrin, P.; Petruccetti, M.; Petta, C.; Piattelli, P.; Poinsignon, J.; Potheau, R.; Queinec, Y.; Racca, C.; Raia, G.; Randazzo, N.; Rethore, F.; Riccobene, G.; Ricol, J.-S.; Ripani, M.; Roca-Blay, V.; Romeyer, A.; Rostovstev, A.; Russo, G. V.; Sacquin, Y.; Salusti, E.; Schuller, J.-P.; Schuster, W.; Soirat, J.-P.; Souvorova, O.; Spooner, N. J. C.; Spurio, M.; Stolarczyk, T.; Stubert, D.; Taiuti, M.; Tao, C.; Thompson, L. F.; Tilav, S.; Triay, R.; Usik, A.; Valdy, P.; Valente, V.; Varlamov, I.; Vaudaine, G.; Vernin, P.; Vladimirsky, E.; Vorobiev, M.; de Witt Huberts, P.; de Wolf, E.; Zakharov, V.; Zavatarelli, S.; Zornoza, Juan de Dios; Zún~Iga, J.; Aloïsi, J.-C.; Kerhervé, Ph.; Monaco, A.

    2003-05-01

    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES Collaboration has performed a series of in situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the 210Pb activity profile in sediment cores and the study of biofouling on glass plates. Despite a significant sedimentation rate at the site, in the 0.02-0.05 cmyr-1 range, the sediments adhere loosely to the glass surfaces and can be washed off by water currents. Further, fouling by deposits of light-absorbing particulates is only significant for surfaces facing upwards.

  2. Surface treatments of metal supports for photocatalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Montecchio, Francesco, E-mail: fmon@kth.se [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Chinungi, Don [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden); Lanza, Roberto [Verdant Chemical Technologies AB, 114 28 Stockholm (Sweden); Engvall, Klas [KTH, Royal Institute of Technology, Dept. of Chemical Engineering and Technology, 100 44 Stockholm (Sweden)

    2017-04-15

    Highlights: • Treated metals can be used as photocatalyst support in full-scale applications. • Various electrochemical treatments were performed, checking the surface corrugation. • Stainless steel etched in DC and aqua regia shows the highest surface modification. • P25 coated on the DC etched sample has a high stability, with constant activity. • The support modification increases the UV irradiated area and the activity of P25. - Abstract: One of the most important challenges, for scaling up a photocatalytic system for VOCs abatement to full-scale, is the design of a suitable photocatalyst support. The support has to firmly immobilize the photocatalyst, without using an organic adhesive, and should also withstand relatively high mechanical stresses. Metals may be effectively implemented as a support material, after a corrugation of the surface with electrochemical treatments. In the present work, we treated stainless steel and aluminum supports, evaluating the surface modifications due to the electrochemical treatments, with scanning electron microscopy (SEM) and confocal microscopy. Five samples showing the highest degree of restructuring were selected and spray coated with P25, a TiO{sub 2} photocatalyst, evaluating the mechanical stability of the coating with a standard tape test method. One particular stainless steel sample presented a superior surface restructuring and coating stability. The photocatalytic activity of this sample, evaluated measuring the complete oxidation of acetaldehyde, was tested for 15 h, and compared with sample of TiO{sub 2}-P25 on a ceramic support. The stainless steel exhibited a constant performance after an initial stabilization period. The stainless steel sample showed a slightly higher activity, due to the surface restructuring, increasing the irradiated area available for the coated photocatalyst.

  3. Adsorption of metals on metal surfaces and the possibilities of its application in nuclear chemistry

    International Nuclear Information System (INIS)

    Roesch, F.; Eichler, B.

    1986-01-01

    Starting with values of differential enthalpies of adsorption ΔH-bar/sub a/ the desorption temperatures of 65 adsorptive metals as to 40 adsorbens metals have been obtained according to a model calculation. With regard to their potential separation by means of selective desorption from solid metal surfaces the desorption behaviour of combinations of radionuclides Me 1 (proton number Z)/Me 2 (proton number Z+1) and Me 1 (proton number Z)/Me 2 (proton number Z+2) was calculated. Basing on the parameters of the model assumptions, the results of the calculations allow estimations about the desorption temperatures of the adsorptive Me 1 as well as the temperature differences to the desorption of the adsorptive Me 2 and about the efficiency of the potential separation process. (author)

  4. [Heavy metals distribution characteristics and ecological risk evaluation in surface sediments of dammed Jinshan lake].

    Science.gov (United States)

    Zhou, Xiao-Hong; Liu, Long-Mei; Chen, Xi; Chen, Zhi-Gang; Zhang, Jin-Ping; Li, Yi-Min; Liu, Biao

    2014-11-01

    In order to reveal the pollution loading of heavy metals in Dammed Jinshan lake, six heavy metals (As, Cu, Pb, Cd, Zn, Cr) from 18 sediment samples were analyzed using ICP, and the distribution characteristics of heavy metals in the sediment were comprehensively evaluated through concentration coefficient, geo-acumulation indexes, potential ecological risk evaluation and traceability analysis. The results showed that (1) the average contents of As, Pb, Cu, Zn, Cr, Cd were 23.22, 26.20, 24.42, 143.12, 245.30 and 0.67 mg x kg(-1), respectively, in the surface sediments of dammed Jinshan Lake. The average contents of Pb and Cu were lower than the primary standard and secondary standards of soil environmental quality standards. The average contents of Zn and Cr were lower than the primary standard and higher than the secondary standards of soil environmental quality standards. The average contents of As and Cd were higher than the primary and secondary standards of soil environmental quality standards. From the spatial distribution, the contents of Pb and Zn were the highest at sampling site No. 1, which was located at the Beigushan Square. The contents of As,Cu, Cr, Cd were the highest at sampling sites Nos. 12, 3, 14, and 7, respectively; (2) The order of concentration coefficient was As > Cr > Cd > Pb > Zn > Cu, which indicated that the enrichment amount of As was the highest and that of Cu was the lowest; (3) Based on the geo-acumulation indexes, the Cu is clean and Pb, Zn, Cd is the light pollution and As, Cr moderate pollution; (4) The order of Potential ecological risk coefficient was Cd > As > Cr > Pb > Cu > Zn, Cr, Pb, Cu, Zn were of light ecological risk and As, Cd were of medium ecological risk. From the spatial distribution, the sampling sites Nos. 1, 6, 7 and 12 had medium potential ecological risk, and the rest sample points had slight potential ecological risk; (5) The principal component analysis (PCA) revealed that the main reason for the differences

  5. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.; Jayaswal, Gaurav; Gahaffar, F.A.; Shamim, Atif

    2017-01-01

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  6. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  7. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  8. INTERACTION OF IMPULSE ELECTROMAGNETIC FIELDS WITH SURFACES OF METAL SAMPLES

    Directory of Open Access Journals (Sweden)

    V. V. Pavliouchenko

    2006-01-01

    Full Text Available Measurements of maximum tangential component of magnetic intensity Hτm have been carried out in the paper. The measurements have been taken on the surface of metal samples according to time of single current pulse rise in the form of semi-sinusoid of a linear current wire. Measurements have been made with the purpose to determine a value of the component according to thickness of samples made of aluminium.Temporary resolution ranges of electric and magnetic properties and defects of sample continuity along the depth have been found.Empirical formulae of dependence Hτm on sample thickness have been derived and their relation with efficient depth penetration of magnetic field into metal has been found.

  9. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site

    International Nuclear Information System (INIS)

    Van Nevel, Lotte; Mertens, Jan; Demey, Andreas; De Schrijver, An; De Neve, Stefaan; Tack, Filip M.G.; Verheyen, Kris

    2014-01-01

    In a forest on sandy, metal polluted soil, we examined effects of six tree species on litter decomposition rates and accompanied changes in metal (Cd, Zn) and nutrient (base cations, N, C) amounts. Decomposition dynamics were studied by means of a litterbag experiment lasting for 30 months. The decomposition peak occurred within the first year for all tree species, except for aspen. During litter decomposition, high metal litter types released part of their accumulated metals, whereas low metal litter types were characterized by a metal enrichment. Base cations, N and C were released from all litter types. Metal release from contaminated litter might involve risks for metal dispersion towards the soil. On the other hand, metal enrichment of uncontaminated litter may be ecologically relevant as it can be easily transported or serve as food source. - Highlights: • Litter decomposition peak occurred within the first year for all tree species, except for aspen. • Base cations, N and C were released from all litter types during decomposition. • Cd and Zn were released from the high metal litter types. • Low metal litter types were characterized by a net Cd and Zn enrichment. • Metal and nutrient releases were reflected in topsoil characteristics. - Litter decomposition rates, as well as enrichment and release dynamics of metals and nutrients in decomposing litter were divergent under the different tree species

  10. Surface-enhanced Raman scattering from metal and transition metal nano-caped arrays

    Science.gov (United States)

    Sun, Huanhuan; Gao, Renxian; Zhu, Aonan; Hua, Zhong; Chen, Lei; Wang, Yaxin; Zhang, Yongjun

    2018-03-01

    The metal and transition metal cap-shaped arrays on polystyrene colloidal particle (PSCP) templates were fabricated to study the surface-enhanced Raman scattering (SERS) effect. We obtained the Ag and Fe complex film by a co-sputtering deposition method. The size of the deposited Fe particle was changed by the sputtering power. We also study the SERS enhancement mechanism by decorating the PATP probe molecule on the different films. The SERS signals increased firstly, and then decreased as the size of Fe particles grows gradually. The finite-difference time domain (FDTD) simulation and experimental Raman results manifest that SERS enhancement was mainly attributed to surface plasma resonance (SPR) between Ag and Ag nanoparticles. The SERS signals of PATP molecule were enhanced to reach a lowest detectable concentration of 10-8 mol/L. The research demonstrates that the SERS substrates with Ag-Fe cap-shaped arrays have a high sensitivity.

  11. Contaminants in surface water and sediments near the Tynagh silver mine site, County Galway, Ireland

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, A. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Phillips, D.H., E-mail: d.phillips@qub.ac.uk [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Bowen, J. [School of Planning, Architecture and Civil Engineering, Queen' s University of Belfast, Belfast, Northern Ireland (United Kingdom); Sen Gupta, B. [School of the Built Environment, Hariot-Watt University, Edinburgh, Scotland (United Kingdom)

    2015-04-15

    A former silver mine in Tynagh, Co. Galway, Ireland is one of the most contaminated mine sites in Europe with maximum concentrations of Zn, As, Pb, Mn, Ni, Cu, and Cd far exceeding guideline values for water and sediment. The aims of this research were to 1) further assess the contamination, particularly metals, in surface water and sediment around the site, and 2) determine if the contamination has increased 10 years after the Environmental Protection Agency Ireland (EPAI) identified off-site contamination. Site pH is alkaline to neutral because CaCO{sub 3}-rich sediment and rock material buffer the exposed acid generating sulphide-rich ore. When this study was compared to the previous EPAI study conducted 10 years earlier, it appeared that further weathering of exposed surface sediment had increased concentrations of As and other potentially toxic elements. Water samples from the tailings ponds and adjacent Barnacullia Stream had concentrations of Al, Cd, Mn, Zn and Pb above guideline values. Lead and Zn concentrations from the tailings pond sediment were 16 and 5 times higher, respectively, than concentrations reported 10 years earlier. Pb and Zn levels in most sediment samples exceeded the Expert Group (EGS) guidelines of 1000 and 5000 mg/kg, respectively. Arsenic concentrations were as high as 6238 mg/kg in the tailings ponds sediment, which is 62 and 862 times greater than the EGS and Canadian Soil Quality Guidelines (CSQG), respectively. Cadmium, Cu, Fe, Mn, Pb and Zn concentrations in water and sediment were above guideline values downstream of the site. Additionally, Fe, Mn and organic matter (OM) were strongly correlated and correlated to Zn, Pb, As, Cd, Cu and Ni in stream sediment. Therefore, the nearby Barnacullia Stream is also a significant pathway for contaminant transport to downstream areas. Further rehabilitation of the site may decrease the contamination around the area. - Highlights: • Tynagh silver mine in Co. Galway, Ireland is a source of

  12. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  13. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  14. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    International Nuclear Information System (INIS)

    Johansson, Per-Olof

    2008-12-01

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to the bedrock

  15. Description of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (Sweden))

    2008-12-15

    This report describes the modelling of the surface hydrology and near-surface hydrogeology that was performed for the final site descriptive model of Forsmark produced in the site investigation stage, SDM-Site Forsmark. The comprehensive investigation and monitoring programme forms a strong basis for the developed conceptual and descriptive model of the hydrological and near-surface hydrological system of the site investigation area. However, there are some remaining uncertainties regarding the interaction of deep and near-surface groundwater and surface water of importance for the understanding of the system: The groundwaters in till below Lake Eckarfjaerden, Lake Gaellbotraesket, Lake Fiskarfjaerden and Lake Bolundsfjaerden have high salinities. The hydrological and hydrochemical interpretations indicate that these waters are relict waters of mainly marine origin. From the perspective of the overall water balance, the water below the central parts of the lakes can be considered as stagnant. However, according to the hydrochemical interpretation, these waters also contain weak signatures of deep saline water. Rough chloride budget calculations for the Gaellbotraesket depression also raise the question of a possible upward flow of deep groundwater. No absolute conclusion can be drawn from the existing data analyses regarding the key question of whether there is a small ongoing upward flow of deep saline water. However, Lake Bolundsfjaerden is an exception where the clear downward flow gradient from the till to the bedrock excludes the possibility of an active deep saline source. The available data indicate that there are no discharge areas for flow systems involving deep bedrock groundwater in the northern part of the tectonic lens, where the repository is planned to be located (the so-called 'target area'). However, it can not be excluded that such discharge areas exist. Data indicate that the prevailing downward vertical flow gradients from the QD to

  16. Carbon monoxide adsorption studies on Ru:Mn bimetallic catalysts supported on alumina, silica and titania supported for the determination of metal surface area overview

    International Nuclear Information System (INIS)

    Hussain, S.T.

    1992-01-01

    Supported Ru: Mn bimetallic samples were studied using CO-chemisorption on alumina, silica and titania supports for the determination of active metal site/metal surface area. The data indicates the presence of Mn on the surface of Ru. With the increase of Mn loadings a decrease in the CO adsorption occurred indicating that presence of Mn masks the active sites responsible for Co-adsorption. On the titania supported system reduced at high and low temperature the CO-chemisorption data suggest the unusual behaviour. This behaviour is possibly caused due to creation of new active surface sites. (author)

  17. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  18. Distribution and Risk Assessment of Heavy Metals in Surface Water from Pristine Environments and Major Mining Areas in Ghana

    Directory of Open Access Journals (Sweden)

    George Yaw Hadzi

    2015-01-01

    Conclusions. The concentrations of heavy metals in the Nyam, Subri, Bonsa and Birim Rivers from the mining sites and the Atiwa Range, Oda, Ankasa and Bosomkese Rivers from the pristine sites were found to be either below or within the USEPA and WHO's recommended limits for surface water. The health risk assessment values for the hazard quotient for ingestion of water (HQing, dermal contact (HQderm and chronic daily intake (CDI indicated no adverse effects as a result of ingestion or dermal contact from the rivers. However, arsenic (As in both the pristine and mining sites and chromium (Cr in the pristine sites pose a carcinogenic threat to the local residents.

  19. Formation of negative ions on a metal surface

    International Nuclear Information System (INIS)

    Amersfoort, P.W. van.

    1987-01-01

    In this thesis a fundamental study of the charge exchange process of positive ions on the converter surface is presented. Beams of hydrogen ad cesium ions are scattered from a thoroughly cleaned W(110) surface, under ultra-high vacuum conditions. The cesium coverage of the surface is a controlled parameter. Ch. 2 deals with the negative-ion formation probability for hydrogen atoms. The influence of coabsorption of hydrogen is studied in Ch. 3. These measurements are important for understanding the formation process in plasma sources, because the converter surface is expected to be strongly contaminated with hydrogen. The charge state of scattered cesium particles is investigated in Ch. 4. Knowledge of this parameter is essential for Ch. 5, in which a model study of adsorption of cesium on a metal surface in contact with a plasma is presented. Finally, the negative-ion formation process in a plasma environment is studied in Ch. 6. Measurements done on a hollow-cathode discharge equipped with a novel type of converter, a porous tungsten button, are discussed. Liquid cesium diffuses through this button towards the side in contact with the plasma. (Auth.)

  20. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  1. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  2. Site-selective substitutional doping with atomic precision on stepped Al (111) surface by single-atom manipulation.

    Science.gov (United States)

    Chen, Chang; Zhang, Jinhu; Dong, Guofeng; Shao, Hezhu; Ning, Bo-Yuan; Zhao, Li; Ning, Xi-Jing; Zhuang, Jun

    2014-01-01

    In fabrication of nano- and quantum devices, it is sometimes critical to position individual dopants at certain sites precisely to obtain the specific or enhanced functionalities. With first-principles simulations, we propose a method for substitutional doping of individual atom at a certain position on a stepped metal surface by single-atom manipulation. A selected atom at the step of Al (111) surface could be extracted vertically with an Al trimer-apex tip, and then the dopant atom will be positioned to this site. The details of the entire process including potential energy curves are given, which suggests the reliability of the proposed single-atom doping method.

  3. Energetic Surface Smoothing of Complex Metal-Oxide Thin Films

    International Nuclear Information System (INIS)

    Willmott, P.R.; Herger, R.; Schlepuetz, C.M.; Martoccia, D.; Patterson, B.D.

    2006-01-01

    A novel energetic smoothing mechanism in the growth of complex metal-oxide thin films is reported from in situ kinetic studies of pulsed laser deposition of La 1-x Sr x MnO 3 on SrTiO 3 , using x-ray reflectivity. Below 50% monolayer coverage, prompt insertion of energetic impinging species into small-diameter islands causes them to break up to form daughter islands. This smoothing mechanism therefore inhibits the formation of large-diameter 2D islands and the seeding of 3D growth. Above 50% coverage, islands begin to coalesce and their breakup is thereby suppressed. The energy of the incident flux is instead rechanneled into enhanced surface diffusion, which leads to an increase in the effective surface temperature of ΔT≅500 K. These results have important implications on optimal conditions for nanoscale device fabrication using these materials

  4. Heavy metals fluxes and speciation in the surface layer of urban soils in the province of Brescia (Italy)

    Science.gov (United States)

    Peli, Marco; Raffelli, Giulia; Barontini, Stefano; Bostick, Benjamin C.; Donna, Filippo; Lucchini, Roberto G.; Ranzi, Roberto

    2017-04-01

    For the last forty years (1974-2015), a ferroalloy industry has been working in Bagnolo Mella, a municipality nearby the city of Brescia (Northern Italy), producing particulate emissions enriched in heavy metals: manganese (Mn) in particular, but also lead (Pb), iron (Fe), aluminum (Al) and arsenic (As). Although some of these metals are required trace elements for most living organisms and can be largely found in natural environments (e.g. Mn being the fifth most abundant metal in the Earth crust), they all lead to toxic effects when they contaminate work and life environments of the exposed population. Aiming at contributing to quantify the exposure of the population to environmental pollution near the factory, as well as the heavy metals possible tendency to migrate through the considered soil matrix, in this work we investigated metals speciation and fluxes within the Earth Critical Zone. The factory is located near residential areas in a plain characterised by little wind and shallow water table with a great number of water resurgences. Three test sites were identified among the pronest ones to particulate matter deposition, on the basis of data collected during a previous experimental field campaign and of the local wind rose. One more site was selected upwind to the factory as a reference site minimally prone to particulate matter deposition, on the basis of the previous investigations. Sites where lawns have been maintained at least for the last forty years where selected in order to avoid agriculture—induced effects on the metals movement. Total soil metal concentrations were measured by means of a portable X-Ray Fluorescence (XRF) device along the soil profiles, down to the depth of 40 cm from the soil surface. Four loose soil samples were collected at each site, at depths ranging from 5 to 30 cm, and they were later subjected to sequential extractions procedure and ICP—MS analyses, in order to investigate differences in heavy metals speciation along

  5. Linking interfacial chemistry of CO2 to surface structures of hydrated metal oxide nanoparticles: hematite.

    Science.gov (United States)

    Chernyshova, Irina V; Ponnurangam, Sathish; Somasundaran, Ponisseril

    2013-05-14

    A better understanding of interaction with dissolved CO2 is required to rationally design and model the (photo)catalytic and sorption processes on metal (hydr)oxide nanoparticles (NPs) in aqueous media. Using in situ FTIR spectroscopy, we address this problem for rhombohedral 38 nm hematite (α-Fe2O3) nanoparticles as a model. We not only resolve the structures of the adsorbed carbonate species, but also specify their adsorption sites and their location on the nanoparticle surface. The spectral relationships obtained present a basis for a new method of characterizing the microscopic structural and acid-base properties (related to individual adsorption sites) of hydrated metal (hydr)oxide NPs using atmospherically derived CO2 as a probe. Specifically, we distinguish two carbonate species suggesting two principally different adsorption mechanisms. One species, which is more weakly adsorbed, has an inner-sphere mononuclear monodentate structure which is formed by a conventional ligand-exchange mechanism. At natural levels of dissolved carbonate and pH from 3 to 11, this species is attached to the most acidic/reactive surface cations (surface states) associated with ferrihydrite-like surface defects. The second species, which is more strongly adsorbed, presents a mixed C and O coordination of bent CO2. This species uniquely recognizes the stoichiometric rhombohedral {104} facets in the NP texture. Like in gas phase, it is formed through the surface coordination of molecular CO2. We address how the adsorption sites hosting these two carbonate species are affected by the annealing and acid etching of the NPs. These results support the nanosize-induced phase transformation of hematite towards ferrihydrite under hydrous conditions, and additionally show that the process starts from the roughened areas of the facet intersections.

  6. [Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin' an City, Zhejiang Province of East China].

    Science.gov (United States)

    Zhang, Fen; Yang, Chang-Ming; Pan, Rui-Jie

    2013-09-01

    A total of 8 representative surface sediment sampling sites were collected from the Qingshan Reservoir in Lin'an City of Zhejiang Province to investigate the differences in the total concentrations of As, Cr, Cu, Ni, Mn, Pb, and Zn among the sampling sites. The different forms of the heavy metals, i. e., acid soluble, easily reducible, easily oxidizable, and residual, were determined by BCR sequential extraction method, and the pollution degrees and potential ecological risk, of the heavy metals in the surface sediments at different sampling sites of the Reservoir were assessed by using geo-accumulation index (I(geo)) and Hakanson potential ecological risk index. There existed obvious spatial differences in the total concentrations of the heavy metals in the surface sediments of the Reservoir. The sampling sites nearby the estuaries of the tributaries flowing through downtowns and heavy industrial parks to the Reservoir had obviously higher heavy metals concentrations in surface sediments, as compared to the other sampling sites. In the sediments, Mn was mainly in acid extractable form, Cu and Pb were mainly in reducible form, and As was mainly in residual form. The surface sediments at the sampling sites nearby the estuaries of the tributaries flowing through downtowns to the Reservoir had higher proportions of acid extractable and reducibles forms of the heavy metals, which would have definite potential toxic risk to aquatic organisms. Among the 7 heavy metals in the surface sediments, As showed the highest pollution degree, followed by Cu, Ni, Mn, Pb, and Zn, which were at moderate pollution degree, while Cr was at non-pollution degree, with relatively low potential ecological risk. Through the comparison of the sampling sites, it was observed that the surface sediments at the sites nearby the estuaries of Jinxi River and Hengxi River flowing through downtowns and heavy industrial parks to the Reservoir showed obviously higher heavy metals pollution degree and

  7. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was

  8. Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia.

    Science.gov (United States)

    Kadhum, Safaa A; Ishak, Mohd Yusoff; Zulkifli, Syaizwan Zahmir

    2016-04-01

    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.

  9. Reaction dynamics of small molecules at metal surfaces

    International Nuclear Information System (INIS)

    Samson, P.A.

    1999-09-01

    The dissociation-desorption dynamics of D 2 upon the Sn/Pt(111) surface alloy are dependent on the surface concentration of Sn. The p(2 x 2) Sn/Pt(111) alloy surface (Θ Sn = 0.25 ML), is initially ∼30 times less reactive towards D 2 adsorption than clean Pt(111). On the (√3 x √3) R30 deg Sn/Pt(111) alloy surface (Θ Sn = 0.33 ML), increased inhibition of D 2 adsorption is reported, with S o ∼ 10 -5 at low energy, coinciding with the loss of stable Pt 3 hollow sites and a significant reduction in the D atom binding energy. Sticking on the √3 alloy is activated with an increased energy threshold of ∼280 meV, with no evidence that vibration enhances dissociation. The barrier to dissociation remains in the entrance channel before the D 2 bond begins to stretch. Vibrational excitation is, however, observed in nitrogen desorption from the catalytic reaction of NO + H 2 over Pd(110). For a surface at 600 K, N 2 vibrational state population ratios of P(v=1/v=0) = 0.50 ± 0.05 and P(v=2/v=0) = 0.60 ± 0.20 are reported. Desorption occurs via the N(ad) + N(ad) recombination channel with little energy released into translation and rotation. The translational energy release observed is dependent on the N 2 vibrational state, with translational temperatures of 425 K, 315 K and 180 K reported for the v=0, 1 and 2 states respectively. Sub-thermal energy releases and normally directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d NN responsible for the product vibrational excitation. Although N 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (∼10 -6 to 10 -7 ). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe 4 N. Scanning tunnelling

  10. Surface nano-architecture of a metal-organic framework.

    Science.gov (United States)

    Makiura, Rie; Motoyama, Soichiro; Umemura, Yasushi; Yamanaka, Hiroaki; Sakata, Osami; Kitagawa, Hiroshi

    2010-07-01

    The rational assembly of ultrathin films of metal-organic frameworks (MOFs)--highly ordered microporous materials--with well-controlled growth direction and film thickness is a critical and as yet unrealized issue for enabling the use of MOFs in nanotechnological devices, such as sensors, catalysts and electrodes for fuel cells. Here we report the facile bottom-up fabrication at ambient temperature of such a perfect preferentially oriented MOF nanofilm on a solid surface (NAFS-1), consisting of metalloporphyrin building units. The construction of NAFS-1 was achieved by the unconventional integration in a modular fashion of a layer-by-layer growth technique coupled with the Langmuir-Blodgett method. NAFS-1 is endowed with highly crystalline order both in the out-of-plane and in-plane orientations to the substrate, as demonstrated by synchrotron X-ray surface crystallography. The proposed structural model incorporates metal-coordinated pyridine molecules projected from the two-dimensional sheets that allow each further layer to dock in a highly ordered interdigitated manner in the growth of NAFS-1. We expect that the versatility of the solution-based growth strategy presented here will allow the fabrication of various well-ordered MOF nanofilms, opening the way for their use in a range of important applications.

  11. The secondary electron yield of noble metal surfaces

    Directory of Open Access Journals (Sweden)

    L. A. Gonzalez

    2017-11-01

    Full Text Available Secondary electron yield (SEY curves in the 0-1000 eV range were measured on polycrystalline Ag, Au and Cu samples. The metals were examined as introduced in the ultra-high vacuum chamber and after having been cleaned by Ar+ ion sputtering. The comparison between the curves measured on the clean samples and in the presence of contaminants, due to the permanence in atmosphere, confirmed that the SEY behavior is strongly influenced by the chemical state of the metal surface. We show that when using very slow primary electrons the sample work function can be determined with high accuracy from the SEY curves. Moreover we prove that SEY is highly sensitive to the presence of adsorbates even at submonolayer coverage. Results showing the effect of small quantities of CO adsorbed on copper are presented. Our findings demonstrate that SEY, besides being an indispensable mean to qualify technical materials in many technological fields, can be also used as a flexible and advantageous diagnostics to probe surfaces and interfaces.

  12. Drawing of metals inclined to sticking to tools surfaces

    International Nuclear Information System (INIS)

    Vatrushin, L.S.; Osintsev, V.G.

    1975-01-01

    A technological process is described of coating metals and alloys which have a tendency to stick to tools during rolling and drawing of wires and pipes. For electrodeposition it is the best to use chlorides of tin, bismuth, zinc, copper and indium bromide or a combination of metal salts with nonmetallic salts. Such coatings are applied to such stock materials as stainless steel, Kh18N10T and titanium alloys, VT1-0, OT4, VT16, VT20. The speeds employed during wire drawing reach 8-15 m/min and during rolling- 1-3.6 m/min. When applying a mixture of zinc chloride and nonmetallic salt the surface of titanium and zirconium alloys is first coated with a metallic sublayer. In drawing and rolling pipes of T10 alloys, the degree of elongation between the intermediate annealings reach 6.34%, and for alloys 100, VT1-0 and VT22- 23, 10 and 2.3% respectively. The coating has a strong adhesion to base metal and good plasticity characteristics. Industrial-scale tests show that a preliminary zinc coating on zirconium semi-finished stock makes it possible to shorten the technological process 1.5 times and achieve a twofold decrease in labor intensiveness and the cost of the treatment, to obtain a 7% increase in the output of non-detective product and to exclude sandblasting and hand scouring. Preliminary estimates indicate that about 4.4 thousand rubles per ton of wire can be saved by using the coating procedure

  13. Pb, Cu, and Zn distributions at humic acid-coated metal-oxide surfaces

    Science.gov (United States)

    Wang, Yingge; Michel, F. Marc; Choi, Yongseong; Eng, Peter J.; Levard, Clement; Siebner, Hagar; Gu, Baohua; Bargar, John R.; Brown, Gordon E.

    2016-09-01

    Mineral surfaces are often coated by natural organic matter (NOM), which has a major influence on metal-ion sorption and sequestration because of the abundance of binding sites in such coatings and the changes they cause in local nanoscale environments. The effects of NOM coatings on mineral surfaces are, however, still poorly understood at the molecular level due to the complexity of these systems. In this study, we have applied long-period X-ray standing wave-fluorescence yield (LP-XSW-FY) spectroscopy to measure the partitioning of naturally present Cu(II) (0.0226%), Zn(II) (0.009%), and Pb(II) (∼0.0004%) between Elliott Soil Humic Acid (ESHA) coatings and three model single-crystal metal-oxide substrates: α-Al2O3 (0 0 0 1), α-Al2O3 (1 -1 0 2), and α-Fe2O3 (0 0 0 1). The competitive sorption effects among these metal ions for binding sites in the ESHA coatings and on the metal-oxide surfaces were investigated as a function of reaction time, calcium content, and solution pH. Pb(II) ions present in the ESHA coatings were found to redistribute to reactive α-Al2O3 (1 -1 0 2) and α-Fe2O3 (0 0 0 1) surfaces after 3 h of reaction (pH = 6.0, [Ca(II)] = 2 mM). Pb(II) partitioning onto these reactive metal-oxide surfaces increased with increasing reaction time (up to 7 d). In addition, the partitioning of Cu(II) and Zn(II) from the ESHA coating to the α-Fe2O3 (0 0 0 1) substrate increased slightly with reaction time (2.4% and 3.7% for Cu(II) and Zn(II), respectively, after 3 h and 6.4% and 7.7% for Cu(II) and Zn(II), respectively, after 72 h of reaction time). However, no changes in the partitioning of Cu(II) and Zn(II) onto the α-Al2O3 (1 -1 0 2) surface were observed with increasing reaction time, suggesting that these ions strongly complex with functional groups in the ESHA coatings. Similar results were obtained for Cu(II) and Zn(II) on the ESHA-coated α-Al2O3 (1 -1 0 2) surfaces in samples without the addition of calcium. However, the amounts of Pb

  14. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  15. Influence of surface effects on subsecond processes in liquid metals

    International Nuclear Information System (INIS)

    Tkachenko, S.I.; Vorob'ev, V.S.; Khishchenko, K.V.

    2001-01-01

    Full Text: We discuss a problem of experimental-data interpretation during subsecond measurements of thermophysical properties of matter at high temperatures and pressures. Peculiarity of these measurements is optical opaqueness of matter under interesting conditions (T∼1 eV, ρ∼10 4 kg m -3 ), so only at assuming of bulk specimen uniformity one can obtain a temperature dependencies of the specific properties of matter. Changing circuit current and changing sample geometry we can avoid a development of hydromagnetic instability and decrease a nonuniform heating due to skin effect. As temperature of wire surface reaches the boiling temperature under normal pressure so part of internal energy is lost because of evaporation and surface radiation at high temperature. So one can register a surface temperature and ascribe it to the whole sample bulk. Computer simulation of wire explosion taking into account surface radiation losses was carried out. Typical phase tracks for matter were obtained in both case as in consideration of radiation losses as without it. Comparison of the results with data concerning to isobaric-expansion experiments and semi-empirical multi-phase equation of state were carried out. It was proposed uniformity criterion for investigation of thermophysical properties of liquid metal by subsecond wire explosion. (author)

  16. Removal and treatment of radioactive, organochlorine, and heavy metal contaminants from solid surfaces

    International Nuclear Information System (INIS)

    Grieco, S.A.; Neubauer, E.D.

    1996-01-01

    The U.S. Department of Energy (DOE) is defining decontamination and decommissioning (D ampersand D) obligations at its sites. Current D ampersand D activities are generally labor intensive, use chemical reagents that are difficult to treat, and may expose workers to radioactive and hazardous chemicals. Therefore, new technologies are desired that minimize waste, allow much of the decommissioned materials to be reused rather than disposed of as waste, and produce wastes that will meet disposal criteria. The O'Brien ampersand Gere companies tested a scouring decontamination system on concrete and steel surfaces contaminated with radioactive and hazardous wastes under the sponsorship of Martin Marietta Energy Systems, Inc. (MMES) at DOE's K-25 former gaseous diffusion plant in Oak Ridge, Tennessee. The scouring system removes fixed radioactive and hazardous contamination yet leaves the surface intact. Blasting residuals are treated using physical/chemical processes. Bench- and pilot-scale testing of the system was conducted on surfaces contaminated with uranium, technetium, heavy metals, and PCBs. Areas of concrete and metal surfaces were blasted. Residuals were dissolved in tap water and treated for radioactive, hazardous, and organochlorine constituents. The treatment system comprised pH adjustment, aeration, solids settling, filtration, carbon adsorption, and ion exchange. This system produced treated water and residual solid waste. Testing demonstrated that the system is capable of removing greater than 95% of radioactive and PCB surface contamination to below DOE's unrestricted use release limits; aqueous radionuclides, heavy metals, and PCBs were below DOE and USEPA treatment objectives after treatment. Waste residuals volume was decreased by 71 %. Preliminary analyses suggest that this system provides significant waste volume reduction and is more economical than alternative surface decontamination techniques that are commercially available or under development

  17. The Lusi eruption site: insights from surface and subsurface investigations

    Science.gov (United States)

    Mazzini, A.

    2017-12-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km

  18. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  19. Proceedings of the symposium on chemistry and physics of surface of metals and their oxides

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Topics covered include: structure of crystalline surfaces; thermodynamic, electrostatic, and physicochemical considerations on defect structure and metal to metal interfaces; physical properties of metal surfaces; stress corrosion cracking; corrosion; passivation; mass transfer across interfaces; electrodeposition; Auger electron spectroscopy; electron microscopy; and catalysis. (GHT)

  20. Metals in bulk deposition and surface waters at two upland locations in northern England

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, A.J.; Tipping, E

    2003-02-01

    Surface water concentrations of potentially-toxic metals depend upon atmospheric deposition and catchment biogeochemical processes. - Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r{sup 2}{>=}0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) <1 mg l{sup -1}, were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l{sup -1}) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples, {mu}g l{sup -1}): Al 36-530, Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of

  1. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    Science.gov (United States)

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  2. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  3. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    Science.gov (United States)

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  4. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu

    2018-01-12

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  5. Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

    KAUST Repository

    Yuehong, Xu; Yanfeng, Li; Chunxiu, Tian; Jiaguang, Han; Quan, Xu; Xueqian, Zhang; Xixiang, Zhang; Ying, Zhang; Weili, Zhang

    2018-01-01

    In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 μm was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.

  6. Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites

    Science.gov (United States)

    Appel, E.; Rösler, W.; Ojha, G.

    2012-04-01

    Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence which aims at bringing new innovative techniques closer to the market. Our project combines in situ and laboratory MS measurements and HM analyses in order to demonstrate the efficiency of a stepwise approach for site assessment of HM pollution around point sources of fly-ash emission and deposition into soil. The following scenario is played through: We assume that the "true" spatial distribution of HM pollution (given by the pollution load index PLI comprising Fe, Zn, Pb, and Cu) is represented by our entire set of 85 measured samples (XRF analyses) from forest sites around the "Schwarze Pumpe". Surface MS data (collected with a Bartington MS2D) and in situ vertical MS sections (logged by an SM400 instrument) are used to determine a qualitative overview of potentially higher and lower polluted areas. A suite of spatial HM distribution maps obtained by random selections of 30 out of the 85 analysed sites is compared to the HM map obtained from a targeted 30-sites-selection based on pre-information from the MS results. The PLI distribution map obtained from the targeted 30-sites-selection shows all essential details of the "true" pollution map, while the different random 30-sites-selections miss important features. This comparison shows that, for the same cost

  7. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions....... This was the case for both of the systems studied; one based on the X-ray structure of the human methionine aminopeptidase type 2 (hMetAP-2) and the other based on the X-ray structure of the E. coli methionine aminopeptidase type 1 (eMetAP-1). Another important structural issue is the identity of the bridging...

  8. Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS

    Science.gov (United States)

    Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.

    2017-11-01

    In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  9. MONITORING METAL POLLUTION LEVELS IN MINE WASTES AROUND A COAL MINE SITE USING GIS

    Directory of Open Access Journals (Sweden)

    D. Sanliyuksel Yucel

    2017-11-01

    Full Text Available In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey are evaluated using geographical information system (GIS tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.

  10. Surface Characterization and Electrochemical Oxidation of Metal Doped Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeongmook; Kim, Jandee; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Trivalent element in UO{sub 2} matrix makes the oxygen vacancy from loss of oxygen for charge compensation. Tetravalent element alters lattice parameter of UO{sub 2} due to diameter difference between the tetravalent element and replaced U. These structural changes have significant effect on not only relevant fuel performance but also the kinetics of fuel oxidation. Park and Olander explained the stabilization of Ln (III)-doped UO{sub 2} against oxidation based on oxygen potential calculations. In this work, we have been investigated the effect of Gd{sup 3+} and Th{sup 4+} doping on the UO{sub 2} structure with Raman spectroscopy and X-ray diffraction to characterize the surface structure of nuclear fuel material. For Gd doped UO{sub 2}, its electrochemical oxidation behaviors are also investigated. The Gd and Th doped uranium dioxide solid solution pellets with various doping level were investigated by XRD, Raman spectroscopy, SEM, electrochemical experiments to investigate surface structure and electro chemical oxidation behaviors. The lattice parameter evaluated from XRD spectra indicated the formation of solid solutions. Raman spectra showed the existence of the oxygen vacancy. SEM images showed the grain structure on the surface of Gd doped uranium dioxide depending on doping level and oxygen-to-metal ratio.

  11. The assessment of metal surface cleanliness by XPS

    CERN Document Server

    Scheuerlein, C

    2006-01-01

    The most commonly used quantity to characterize surface cleanliness through X-ray photoemission spectroscopy (XPS) measurements is the so-called relative atomic surface concentration of carbon (at.% C). We have investigated the relationship between at.% C values and the C 1s peak area on Cu and we find a nearly linear behaviour in the range 15–80 at.% C. Correction factors for the measured at.% C values that enable a comparison of the cleanliness level of different materials, notably Cu, Al and stainless steel, have been determined experimentally. The influence of the storage time and method on the degree of re-contamination of initially clean Cu has been examined. The carbon contamination on clean metallic Cu increases abruptly to some 20 at.% C upon air exposure and continues to increase with storage time in air. Storage in polymer bags can lead to up to 70 at.% C after 1 month, whereas storage in aluminium foil can preserve an acceptable surface cleanliness for a similar storage time.

  12. Enhanced Electron-Phonon Coupling at Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Plummer, Ward E.

    2010-08-04

    The Born-Oppenheimer approximation (BOA) decouples electronic from nuclear motion, providing a focal point for most quantum mechanics textbooks. However, a multitude of important chemical, physical and biological phenomena are driven by violations of this approximation. Vibronic interactions are a necessary ingredient in any process that makes or breaks a covalent bond, for example, conventional catalysis or enzymatically delivered biological reactions. Metastable phenomena associated with defects and dopants in semiconductors, oxides, and glasses entail violation of the BOA. Charge exchange in inorganic polymers, organic slats and biological systems involves charge- induced distortions of the local structure. A classic example is conventional superconductivity, which is driven by the electron-lattice interaction. High-resolution angle-resolved photoemission experiments are yielding new insight into the microscopic origin of electron-phonon coupling (EPC) in anisotropic two-dimensional systems. Our recent surface phonon measurement on the surface of a high-Tc material clearly indicates an important momentum dependent EPC in these materials. In the last few years we have shifted our research focus from solely looking at electron phonon coupling to examining the structure/functionality relationship at the surface of complex transition metal compounds. The investigation on electron phonon coupling has allowed us to move to systems where there is coupling between the lattice, the electrons and the spin.

  13. Functionalization of silicon nanowire surfaces with metal-organic frameworks

    KAUST Repository

    Liu, Nian

    2011-12-28

    Metal-organic frameworks (MOFs) and silicon nanowires (SiNWs) have been extensively studied due to their unique properties; MOFs have high porosity and specific surface area with well-defined nanoporous structure, while SiNWs have valuable one-dimensional electronic properties. Integration of the two materials into one composite could synergistically combine the advantages of both materials and lead to new applications. We report the first example of a MOF synthesized on surface-modified SiNWs. The synthesis of polycrystalline MOF-199 (also known as HKUST-1) on SiNWs was performed at room temperature using a step-by-step (SBS) approach, and X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy elemental mapping were used to characterize the material. Matching of the SiNW surface functional groups with the MOF organic linker coordinating groups was found to be critical for the growth. Additionally, the MOF morphology can by tuned by changing the soaking time, synthesis temperature and precursor solution concentration. This SiNW/MOF hybrid structure opens new avenues for rational design of materials with novel functionalities. © 2011 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  14. Source effects on surface waves from Nevada Test Site explosions

    International Nuclear Information System (INIS)

    Patton, H.J.; Vergino, E.S.

    1981-11-01

    Surface waves recorded on the Lawrence Livermore National Laboratory (LLNL) digital network have been used to study five underground nuclear explosions detonated in Yucca Valley at the Nevada Test Site. The purpose of this study is to characterize the reduced displacement potential (RDP) at low frequencies and to test secondary source models of underground explosions. The observations consist of Rayleigh- and Love-wave amplitude and phase spectra in the frequency range 0.03 to 0.16 Hz. We have found that Rayleigh-wave spectral amplitudes are modeled well by a RDP with little or no overshoot for explosions detonated in alluvium and tuff. On the basis of comparisons between observed and predicted source phase, the spall closure source proposed by Viecelli does not appear to be a significant source of Rayleigh waves that reach the far field. We tested two other secondary source models, the strike-slip, tectonic strain release model proposed by Toksoez and Kehrer and the dip-slip thrust model of Masse. The surface-wave observations do not provide sufficient information to discriminate between these models at the low F-values (0.2 to 0.8) obtained for these explosions. In the case of the strike-slip model, the principal stress axes inferred from the fault slip angle and strike angle are in good agreement with the regional tectonic stress field for all but one explosion, Nessel. The results of the Nessel explosion suggest a mechanism other than tectonic strain release

  15. Assessment of potentially toxic metal contamination in the soils of a legacy mine site in Central Victoria, Australia.

    Science.gov (United States)

    Abraham, Joji; Dowling, Kim; Florentine, Singarayer

    2018-02-01

    The environmental impact of toxic metal contamination from legacy mining activities, many of which had operated and were closed prior to the enforcement of robust environmental legislation, is of growing concern to modern society. We have carried out analysis of As and potentially toxic metals (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) in the surface soil of a legacy gold mining site in Maldon, Victoria, Australia, to reveal the status of the current metal concentration. The results revealed the median concentrations of metals from highest to lowest, in the order: Mn > Zn > As > Cr > Cu > Pb > Ni > Co > Hg > Cd. The status of site was assessed directly by comparing the metal concentrations in the study area with known Australian and Victorian average top soil levels and the health investigation levels set by the National Environmental Protection Measures (NEPM) and the Department of Environment and Conservation (DEC) of the State of Western Australia. Although, median concentrations of As, Hg, Pb, Cu and Zn exceeded the average Australian and Victorian top soil concentrations, only As and Hg exceeded the ecological investigation levels (EIL) set by DEC and thus these metals are considered as risk to the human and aquatic ecosystems health due to their increase in concentration and toxicity. In an environment of climate fluctuation with increased storm events and forest fires may mobilize these toxic metals contaminants, pose a real threat to the environment and the community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  17. The use of tetragnathid spiders as bioindicators of metal exposure at a coal ash spill site.

    Science.gov (United States)

    Otter, Ryan R; Hayden, Mary; Mathews, Teresa; Fortner, Allison; Bailey, Frank C

    2013-09-01

    On 22 December 2008, a dike containing coal fly ash from the Tennessee Valley Authority Kingston Fossil Fuel Plant (TN, USA) failed, resulting in the largest coal ash spill in US history. The present study was designed to determine sediment metal concentrations at multiple site locations and to determine whether site-specific bioaccumulation of metals existed in tetragnathid spiders. Selenium and nickel were the only 2 metals to exceed the US Environmental Protection Agency sediment screening levels. Selenium concentrations in spiders were significantly higher at ash-affected sites than in those from reference sites. The ratio of methylmercury to total mercury in spiders was found to be similar to that in other organisms (65-75%), which highlights the potential use of tetragnathid spiders as an indicator species for tracing contaminant transfer between the aquatic and terrestrial ecosystems. Copyright © 2013 SETAC.

  18. Spectral and physical properties of metal in meteorite assemblages - implications of asteroid surface materials

    International Nuclear Information System (INIS)

    Gaffey, M.J.

    1986-01-01

    One of the objectives of the present paper is related to a definition of the spectral contribution of the nickel-iron metal component in meteoritic assemblages. Another objective is the elucidation of the chemical, physical, and petrographic properties of the metal grains which affect the spectral signature in asteroid surface materials. It is pointed out that an improved understanding of the spectral and physical properties of metal in asteroid regoliths should permit an improved characterization of these objects, and, in particular, a better evaluation of the differentiated or undifferentiated nature of the S-type and M-type asteroids. Attention is given to the spectra of iron and nickel-iron metals, the spectral effects of metal in chondritic assemblages, the spectral reflectance of metal grains in ordinary chondrites, the nature of the surfaces of chondritic metal grains, the origin of coats on chondritic metal grains, and the fragmentation of metal on asteroid surfaces. 57 references

  19. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hong-Bo [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yu, Shen, E-mail: syu@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Li, Gui-Lin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Liu, Yi; Yu, Guang-Bin [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Deng, Hong [Department of Environmental Sciences, Tiantong National Station of Forest Ecosystem, Key Laboratory of Urbanization and Ecological Restoration, East China Normal University, Shanghai 200062 (China); Wu, Sheng-Chun [State Key Laboratory in Marine Pollution, Biology and Chemistry Department, City University of Hong Kong, Hong Kong (China); Wong, Ming-Hung [Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong (China)

    2012-08-15

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 {mu}m) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: Black-Right-Pointing-Pointer Obvious

  20. Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks

    International Nuclear Information System (INIS)

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Liu, Yi; Yu, Guang-Bin; Deng, Hong; Wu, Sheng-Chun; Wong, Ming-Hung

    2012-01-01

    Lake surface sediment is mainly derived from topsoil in its catchment. We hypothesized that distribution of anthropogenic metals would be homogenous in lake surface sediment and the lake's catchment topsoil. Anthropogenic metal distributions (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) in fourteen waterscape parks were investigated in surface sediments and catchment topsoils and possible source homogeneity was tested using stable Pb isotopic ratio analysis. The parks were located along an urbanization gradient consisting of suburban (SU), developing urban (DIU), developed urban (DDU), and central urban core (CUC) areas in Shanghai, China. Results indicated that surface lake sediments and catchment topsoils in the CUC parks were highly contaminated by the investigated anthropogenic metals. Total metal contents in surface sediment and topsoil gradually increased along the urbanization gradient from the SU to CUC areas. Generally, the surface sediments had greater total metal contents than their catchment topsoils. These results suggest that urbanization drives the anthropogenic metal enrichment in both surface sediment and its catchment topsoil in the waterscape parks. Soil fine particles (< 63 μm) and surface sediments had similar enrichment ratios of metals, suggesting that surface runoff might act as a carrier for metals transporting from catchment to lake. Stable Pb isotope ratio analysis revealed that the major anthropogenic Pb source in surface sediment was coal combustion as in the catchment topsoil. Urbanization also correlated with chemical fractionation of metals in both surface sediment and catchment topsoil. From the SU to the CUC parks, amounts of labile metal fractions increased while the residual fraction of those metals remained rather constant. In short, urbanization in Shanghai drives anthropogenic metal distribution in environmental matrices and the sources were homogenous. -- Highlights: ► Obvious urbanization effect on metal

  1. Surface Properties of Titanium dioxide and its Structural Modifications by Reactions with Transition Metals

    Science.gov (United States)

    Halpegamage, Sandamali

    Surfaces of metal oxides play a vital role in many technologically important applications. The surfaces of titanium dioxide, in particular, show quite promising properties that can be utilized in solid-state gas sensing and photocatalysis applications. In the first part of this dissertation we investigate these properties of TiO2 surfaces through a vigorous surface scientific approach. In the second part, we investigate the possibilities of modifying the TiO2 surfaces by depositing multi-component transition metal oxide monolayers so that the properties of bare TiO2 surface can be influenced in a beneficial way. For instance, via formation of new surface sites or cations that have different valance states, the chemisorption and catalytic properties can be modified. We use sophisticated experimental surface science techniques that are compatible with ultra-high vacuum technology for surface characterization. All the experimental results, except for the photocatalysis experiments, were compared to and verified by supporting DFT-based theoretical results produced by our theory collaborators. TiO2 based solid-state gas sensors have been used before for detecting trace amounts of explosives such as 2,4-dinitrololuene (DNT), a toxic decomposition product of the explosive 2,4,6-trinitrotoluene (TNT) that have very low vapor pressure. However, the adsorption, desorption and reaction mechanism were not well- understood. Here, we investigate 2,4-DNT adsorption on rutile-TiO2(110) surface in order to gain insight about these mechanisms in an atomistic level and we propose an efficient way of desorbing DNT from the surface through UV-light induced photoreactions. TiO2 exists in different polymorphs and the photocatalytic activity differs from one polymorph to another. Rutile and anatase are the most famous forms of TiO2 in photocatalysis and anatase is known to show higher activity than rutile. The photoactivity also varies depending on the surface orientation for the same

  2. Determining site-specific background level with geostatistics for remediation of heavy metals in neighborhood soils

    OpenAIRE

    Tammy M. Milillo; Gaurav Sinha; Joseph A. Gardella Jr.

    2017-01-01

    The choice of a relevant, uncontaminated site for the determination of site-specific background concentrations for pollutants is critical for planning remediation of a contaminated site. The guidelines used to arrive at concentration levels vary from state to state, complicating this process. The residential neighborhood of Hickory Woods in Buffalo, NY is an area where heavy metal concentrations and spatial distributions were measured to plan remediation. A novel geostatistics based decision ...

  3. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...

  4. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  5. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    Science.gov (United States)

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Heavy metal migration through clay below a domestic waste site

    Energy Technology Data Exchange (ETDEWEB)

    Yanful, E K

    1986-01-01

    Migration of contaminants from a domestic waste landfill overlying a 30 m thick natural clay deposit is presented. Profiles for Na/sup +/, Mg/sup 2 +/, DOC and other soluble species indicate that, at 16 years, contaminants have migrated up to 130 cm from the waste. Profiles for conservative species suggest that Cl-, /sup 3/H, /sup 18/O and /sup 2/H fronts are ahead of those species such as Na/sup +/, K/sup +/ and DOC. In comparison, the heavy metals, Fe, Mn, Cu, Zn and Pb, have migrated only 10-20 cm. Batch equilibrium studies involving Fe/sup 2 +/, Cu/sup 2 +/, Zn/sup 2 +/ and Pb/sup 2 +/ result in classical adsorption-pH curves which show increasing adsorption at higher pH levels and vice versa. The presence of soil carbonates is shown to significantly increase the mass of Pb and Cu removed from domestic landfill leachate.

  7. Mechanical tearing of graphene on an oxidizing metal surface

    International Nuclear Information System (INIS)

    George, Lijin; Gupta, Aparna; Shaina, P R; Jaiswal, Manu; Gupta, Nandita Das

    2015-01-01

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3–0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp"3-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm. (paper)

  8. Mechanical tearing of graphene on an oxidizing metal surface.

    Science.gov (United States)

    George, Lijin; Gupta, Aparna; Shaina, P R; Das Gupta, Nandita; Jaiswal, Manu

    2015-12-11

    Graphene, the thinnest possible anticorrosion and gas-permeation barrier, is poised to transform the protective coatings industry for a variety of surface applications. In this work, we have studied the structural changes of graphene when the underlying copper surface undergoes oxidation upon heating. Single-layer graphene directly grown on a copper surface by chemical vapour deposition was annealed under ambient atmosphere conditions up to 400 °C. The onset temperature of the surface oxidation of copper is found to be higher for graphene-coated foils. Parallel arrays of graphene nanoripples are a ubiquitous feature of pristine graphene on copper, and we demonstrate that these form crucial sites for the onset of the oxidation of copper, particularly for ∼0.3-0.4 μm ripple widths. In these regions, the oxidation proceeds along the length of the nanoripples, resulting in the formation of parallel stripes of oxidized copper regions. We demonstrate from temperature-dependent Raman spectroscopy that the primary defect formation process in graphene involves boundary-type defects rather than vacancy or sp(3)-type defects. This observation is consistent with a mechanical tearing process that splits graphene into small polycrystalline domains. The size of these is estimated to be sub-50 nm.

  9. Substrate Vibrations as Promoters of Chemical Reactivity on Metal Surfaces.

    Science.gov (United States)

    Campbell, Victoria L; Chen, Nan; Guo, Han; Jackson, Bret; Utz, Arthur L

    2015-12-17

    Studies exploring how vibrational energy (Evib) promotes chemical reactivity most often focus on molecular reagents, leaving the role of substrate atom motion in heterogeneous interfacial chemistry underexplored. This combined theoretical and experimental study of methane dissociation on Ni(111) shows that lattice atom motion modulates the reaction barrier height during each surface atom's vibrational period, which leads to a strong variation in the reaction probability (S0) with surface temperature (Tsurf). State-resolved beam-surface scattering studies at Tsurf = 90 K show a sharp threshold in S0 at translational energy (Etrans) = 42 kJ/mol. When Etrans decreases from 42 kJ/mol to 34 kJ/mol, S0 decreases 1000-fold at Tsurf = 90 K, but only 2-fold at Tsurf = 475 K. Results highlight the mechanism for this effect, provide benchmarks for DFT calculations, and suggest the potential importance of surface atom induced barrier height modulation in heterogeneously catalyzed reactions, particularly on structurally labile nanoscale particles and defect sites.

  10. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  11. Surface-Emitting Distributed Feedback Terahertz Quantum-Cascade Lasers in Metal-Metal Waveguides

    Science.gov (United States)

    Kumar, Sushil; Williams, Benjamin S.; Qin, Qi; Lee, Alan W. M.; Hu, Qing; Reno, John L.

    2007-01-01

    Single-mode surface-emitting distributed feedback terahertz quantumcascade lasers operating around 2.9 THz are developed in metal-metal waveguides. A combination of techniques including precise control of phase of reflection at the facets, and u e of metal on the sidewalls to eliminate higher-order lateral modes allow robust single-mode operation over a range of approximately 0.35 THz. Single-lobed far-field radiation pattern is obtained using a pi phase-shift in center of the second-order Bragg grating. A grating device operating at 2.93 THz lased up to 149 K in pulsed mode and a temperature tuning of 19 .7 GHz was observed from 5 K to 147 K. The same device lased up to 78 K in continuous-wave (cw) mode emitting more than 6 m W of cw power at 5 K. ln general, maximum temperature of pulsed operation for grating devices was within a few Kelvin of that of multi-mode Fabry-Perot ridge lasers

  12. Speciation dynamics of metals in dispersion of nanoparticles with discrete distribution of charged binding sites.

    Science.gov (United States)

    Polyakov, Pavel D; Duval, Jérôme F L

    2014-02-07

    We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.

  13. Risks to humans and wildlife from metal contamination in soils/sediments at CERCLA sites

    International Nuclear Information System (INIS)

    Hitch, J.P.; Hovatter, P.S.; Opresko, D.M.; Sample, B.; Young, R.A.

    1994-01-01

    A common problem that occurs at DOD and DOE CERCLA sites is metal contamination in soils and aquatic sediments and the protection of humans and wildlife from potential exposure to this contamination. Consequently, the authors have developed a site-specific reference dose for mercury in sediments at the Oak Ridge Reservation and site-specific cleanup levels for certain metals, including arsenic and nickel, in soils at an Army ammunition plant. Another concern during remediation of these sites is that limited data are available to determine the direct risks to indigenous wildlife. Therefore, the authors have developed toxicological benchmarks for certain metals and metal compounds to be used as screening tools to determine the potential hazard of a contaminant to representative mammalian and avian wildlife species. These values should enable the Army and DOE to more accurately determine the risks to humans and wildlife associated with exposure to these contaminated media at their sites in order to achieve a more effective remediation. This effort is ongoing at ORNL with toxicological benchmarks also being developed for metal compounds and other chemicals of concern to DOD and DOE in order to address the potential hazard to

  14. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    Directory of Open Access Journals (Sweden)

    Cristina Yacoub

    2012-01-01

    Full Text Available This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL. The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES. The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  15. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    International Nuclear Information System (INIS)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-01-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime. (paper)

  16. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  17. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  18. Heavy metals in vegetables sampled from farm and market sites in Accra metropolis, Ghana

    International Nuclear Information System (INIS)

    Fordjour, Linda Addae

    2015-07-01

    This study reports for the first time in Ghana long-term monitoring of heavy metal contamination of vegetables. As reliable residue data analysis resulting from monitoring programs in foods is of great value to the general populace; this could address the possible risk of heavy metal exposure to human health. In this study, monitoring of heavy metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in consumable vegetables was assessed for a period of 2 years, 2013-2014. In all, a total of 479 vegetables (cabbage (Brassica oleracea), carrot (Daucus carota), cucumber (Cucumis sativus), green pepper (Capsicum annuum) and lettuce (Lactuca sativa)) were purchased from farm (production) and market sites within Accra Metropolis, Ghana. Samples were subjected to acid digestion and analyzed with atomic absorption spectrometer (AAS). All the vegetables studied contained at least two (2) or more metals; 18.99% of the samples had metal detections below the European Union (EU) guideline values, whereas 81% were above limits. Vegetables from Mallam Attah market and the Ghana Broadcasting Corporation (GBC) sites registered the highest percentage exceedances (100%) with the largest violation occurring in lettuce (97.41%). Elevated concentrations of these metals were also observed in vegetables from markets compared to the farms except As, Cd, Co and Fe. Ni and Cr were undetected in vegetables from farms, however their maximum concentrations (1.236 and 2.459 mg/kg) were recorded in lettuce at market sites. Additionally, the significant metal increases in vegetables from the markets could be due to atmospheric depositions and mode of handling by both farmers and buyers. On the other hand, studies of the soils from the various farm sites had varying mean concentrations of heavy metals, Fe (189.703), Mn (142.246) and As (9.145 mg/kg). However, all the metal levels in the soil were below EU limits, except As (24.2 mg/kg) found at Dzorwulu site, which exceeded the 20.0 mg/kg limit for As in

  19. Optical response of a flat metallic surface coated with a monolayer array of latex spheres

    International Nuclear Information System (INIS)

    Shi Lei; Liu Xiaohan; Yin Haiwei; Zi Jian

    2010-01-01

    We report on the fabrication, characterization and simulation of a structure consisting of a flat metallic surface coated with a monolayer array of latex spheres. This structure shows interesting optical response: over flat metallic surfaces a series of reflection minima appear in reflection spectra. Numerical simulations revealed that the structure can support two types of surface modes: surface plasmon-polaritons bound at the metallic surface and guided modes confined to the array of latex spheres, or their hybrids. Both experimental and theoretical results indicated that these surface modes show well-defined band structures due to the introduced periodicity by the monolayer array of latex spheres.

  20. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  1. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  2. Determination of heavy metal pollution in soils from selected potentially contaminated sites in Tema

    International Nuclear Information System (INIS)

    Nyaaba, A.K.L.

    2011-01-01

    The objective of the study was to assess the concentration and determine the level of pollution by harmful heavy metals in soils from selected potentially contaminated sites in Tema. The metals of interest include; mercury, lead, cadmium, cobalt zinc, arsenic, nickel, copper and chromium. A total of forty seven (47) samples comprising thirty eight sub-samples (38) and nine (9) composite samples were collected from nine (9) different locations. These included playgrounds, steel processing factories, used Lead Acid Battery (ULAB) recycling plant, mechanic workshops and the municipal waste disposal site. The samples were prepared after which the elemental concentrations were determined using energy dispersive X-ray fluorescence (EDXRF) with a secondary target excitation arrangement (5.9 keV). The analysis of the samples yielded the following mean heavy metal concentrations in mg/kg: 424.38 (Cr); 408.68 (Ni); 14427 (Cu); 4129.87 (Zn); 1580.68 (As); 647.48 (Hg); 73361.51 (Pb) and 1176.16 (Co). The mean concentrations of heavy metals in the soils were in the following order Pb>Zn>As>Co>Cu>Hg>Cr>Ni. Mercury was detected at only two of the sites. The average heavy metals in the soils from the sites were generally high since most of them exceeded the optimum and action values of the New Dutch List. The Enrichment Factor (EF) ratios show that the enrichment of the elements in the soils ranged from deficiently to extremely highly enriched. The contamination factor show that the contamination by the heavy metals were low at some of the sites and very high at others. The geoaccumulation indices indicated that the playground (PG) has not been contaminated by any of the metals, C8 is contaminated strongly by mercury only and the contamination at the remaining sites varied from moderately contaminated to extremely contaminated by the metals. The Igeo also indicated that the elements accounting for extreme contamination are lead, arsenic, copper, zinc mercury and chromium. Lead

  3. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  4. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    Energy Technology Data Exchange (ETDEWEB)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E. [Poeyry Environment Oy, Vantaa (Finland)

    2007-03-15

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  5. Surface 3-D reflection seismics - implementation at the Olkiluoto site

    International Nuclear Information System (INIS)

    Saksa, P.; Lehtimaeki, T.; Heikkinen, E.

    2007-03-01

    Posiva Oy takes care of the final disposal of spent nuclear fuel in Finland. In year 2001 Olkiluoto was selected for the site of final disposal. Construction of the underground research facility, ONKALO, is going on at the Olkiluoto site. The aim of this work was to study the possibilities for surface 3-D seismics and to review experiences for design before field work. The physical parameters and geometric properties of the site, as well as efficient survey layout and source arrangements, were considered in this work. Reflection seismics is most used geophysical investigation method in oil exploration and earth studies in sedimentary environment. Recently method has also been applied in crystalline bedrock for ore exploration and nuclear waste disposal site investigations. The advantage of the method is high accuracy combined with large depth of investigation. The principles of seismic 2-D and 3-D soundings are well known and advanced. 3-D sounding is a straightforward expansion of 2-D line based surveying. In investigation of crystalline bedrock, the high frequency wave sources and receivers, their right use in measurements and careful processing procedure (refraction static corrections in particular) are important. Using the site parameters in 2-D numerical modeling, two cases of faulted thin layer at depths of 200, 400 and 600 meters were studied. The first case was a layer with vertical dislocation (a ramp) and the other a layer having limited width of dislocated part. Central frequencies were 100, 200, 400 and 700 Hz. Results indicate that 10 - 20 m dislocation is recognizable, but for depths greater than 600 m, over 20 meters is required. Width of the dislocated part will affect the detectability of vertical displacement. At depths of 200 m and 400 m 10 - 50 m wide parts appear as point-like scatterers, wider areas have more continuity. Dislocations larger than 20 m can be seen. From depth of 600 m over 100 m wide parts are discernible, narrower are visible

  6. Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheide, Lommel, Belgium)

    Science.gov (United States)

    Horckmans, L.; Swennen, R.; Deckers, J.

    2006-07-01

    The former zinc smelter site ‘de Maatheide’ in Lommel (Belgium) was severely polluted with heavy metals and the pollution spread into the surroundings by rain water leaching and wind transportation. This study focuses on the processes of immobilization and natural attenuation that took place on the site. Three important factors were found. Firstly, the high pH values (pH 7-8) in the topsoil influence the mobility of heavy metals. Secondly, the spodic horizons below the polluted top layer seem to accumulate heavy metals, thereby slowing down their release into the environment. Finally, the glassy phases and iron oxi/hydroxides that are present can encapsulate heavy metals during their formation/recrystallization, thereby immobilizing them. An additional shielding effect results from the reaction rims of goethite around the contaminant phases, which partially inhibit the weathering process and release of contaminants. This shielding effect is an important factor to take into account when modelling contaminant release.

  7. Electron work function of metallic surfaces, covered with by metal adatoms, and two-dimensional structure of adlayer

    International Nuclear Information System (INIS)

    Rudnitskij, L.A.

    1986-01-01

    Change in electron work function during metal adatom (Ti, W, Ag, Au) adsorption on different tungsten surfaces in ''polycrystalline'' and epitaxial types of adsorpted layers is studied. Calculational and experimental dependences of work function change on coating thickness are built

  8. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.; Moser, Matthew L.; Tian, Xiaojuan; Zhang, Xixiang; Al-Hadeethi, Yas Fadel; Haddon, Robert C.

    2014-01-01

    , and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some

  9. Theoretical Studies of the Structure and the Dynamics on Clean and Chemisorbed Metal Surfaces

    Science.gov (United States)

    Yang, Liqiu

    Molecular dynamics (MD) and lattice dynamics (LD) techniques are employed to investigate several phenomena related to the structure and vibrations at metal surfaces. The MD simulations are performed with the many-body interaction potentials obtained using the Embedded-Atom Method (EAM). As specific examples, we present the results for Ag(100) at 300 K and Cu(100) at 150 K, 300 K, and 600 K. The calculated frequencies and polarizations of all surface modes and resonances at the high-symmetry points in the two-dimensional Brillouin zone are in good agreement with available data, as well as, existing lattice dynamics results with force constants obtained from first-principles calculations. Our calculated surface relaxation is also in reasonable agreement with the data. We also test a much simpler lattice dynamics model with nearest neighbor central force interactions, and conclude that it can reproduce the main features of the phonon modes, but only when adjustable surface parameters are used. Additionally, the temperature dependent studies of the phonon line-widths and the mean-square displacement (MSD) of surface atoms are indicative of enhanced surface anharmonicity. On several chemisorbed metal surfaces, for which force constants are not available from first-principles calculations or the EAM, we perform lattice dynamics studies of phonon dispersion curves using simple force-constant models. These studies provide reliable mean-square displacement of surface atoms and can distinguish between possible reconstruction patterns, the results being insensitive to the exact values of the surface parameters. On c(2 times 2)S-Ni(100), it is found that the parallel component of the mean-square displacement for sulfur is around 50% larger than the vertical component, but for the mean-square displacement of oxygen atoms in the system c(2 times 2)O-Ni(100), the opposite is the case. As regards surface reconstruction, for both p(2 times 1)O-Ag(110) and p(2 times 1)O-Ni(110

  10. SURFACE GEOPHYSICAL EXPLORATION OF B, BX, and BY TANK FARMS AT THE HANFORD SITE: RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    International Nuclear Information System (INIS)

    MYERS DA

    2007-01-01

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure

  11. Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces

    Science.gov (United States)

    Qian, Guo-Xin

    This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.

  12. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model Tr-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. 5 refs., 5 figs

  13. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  14. DFT studies of hydrocarbon combustion on metal surfaces.

    Science.gov (United States)

    Arya, Mina; Mirzaei, Ali Akbar; Davarpanah, Abdol Mahmood; Barakati, Seyed Masoud; Atashi, Hossein; Mohsenzadeh, Abas; Bolton, Kim

    2018-02-02

    Catalytic combustion of hydrocarbons is an important technology to produce energy. Compared to conventional flame combustion, the catalyst enables this process to operate at lower temperatures; hence, reducing the energy required for efficient combustion. The reaction and activation energies of direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces were investigated using density functional theory (DFT). The data obtained for the Ag, Au, Al, Cu, Rh, Pt, and Pd surfaces were used to investigate the validity of the Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) relations for this reaction on these surfaces. These relations were found to be valid (R 2  = 0.94 for the BEP correlation and R 2  = 1.0 for the TSS correlation) and were therefore used to estimate the energetics of the combustion reaction on Ni, Co, and Fe surfaces. It was found that the estimated transition state and activation energies (E TS  = -69.70 eV and E a  = 1.20 eV for Ni, E TS  = -87.93 eV and E a  = 1.08 eV for Co and E TS  = -92.45 eV and E a  = 0.83 eV for Fe) are in agreement with those obtained by DFT calculations (E TS  = -69.98 eV and E a  = 1.23 eV for Ni, E TS  = -87.88 eV and E a  = 1.08 eV for Co and E TS  = -92.57 eV and E a  = 0.79 eV for Fe). Therefore, these relations can be used to predict energetics of this reaction on these surfaces without doing the time consuming transition state calculations. Also, the calculations show that the activation barrier for CH dissociation decreases in the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe.

  15. An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb3O8 nanosheets for efficient thermo/photo-catalytic reduction.

    Science.gov (United States)

    Shen, Lijuan; Xia, Yuzhou; Lin, Sen; Liang, Shijing; Wu, Ling

    2017-10-05

    Creating two-dimensional (2D) crystal-metal heterostructures with an ultrathin thickness has spurred increasing research endeavors in catalysis because of its fascinating opportunities in tuning the electronic state at the surface and enhancing the chemical reactivity. Here we report a novel and facile Nb 4+ -assisted strategy for the in situ growth of highly dispersed Pd nanoparticles (NPs) on monolayer HNb 3 O 8 nanosheets (HNb 3 O 8 NS) constituting a 2D Pd/HNb 3 O 8 NS heterostructure composite without using extra reducing agents and stabilizing agents. The Pd NP formation is directed via a redox reaction between an oxidative Pd salt precursor (H 2 PdCl 4 ) and reductive unsaturated surface metal (Nb 4+ ) sites induced by light irradiation on monolayer HNb 3 O 8 NS. The periodic arrangement of metal Nb nodes on HNb 3 O 8 NS leads to a homogeneous distribution of Pd NPs. Density functional theory (DFT) calculations reveal that the direct redox reaction between the Nb 4+ and Pd 2+ ions leads to a strong chemical interaction between the formed Pd metal NPs and the monolayer HNb 3 O 8 support. Consequently, the as-obtained Pd/HNb 3 O 8 composite serves as a highly efficient bifunctional catalyst in both heterogeneous thermocatalytic and photocatalytic selective reduction of aromatic nitro compounds in water under ambient conditions. The achieved high activity originates from the unique 2D nanosheet configuration and in situ Pd incorporation, which leads to a large active surface area, strong metal-support interaction and enhanced charge transport capability. Moreover, this facile Nb 4+ -assisted synthetic route has demonstrated to be general, which can be applied to load other metals such as Au and Pt on monolayer HNb 3 O 8 NS. It is anticipated that this work can extend the facile preparation of noble metal/nanosheet 2D heterostructures, as well as promote the simultaneous capture of duple renewable thermal and photon energy sources to drive an energy efficient

  16. Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality.

    Science.gov (United States)

    Atanacković, Nebojša; Dragišić, Veselin; Stojković, Jana; Papić, Petar; Zivanović, Vladimir

    2013-11-01

    Upon completion of exploration and extraction of mineral resources, many mining sites have been abandoned without previously putting environmental protection measures in place. As a consequence, mine waters originating from such sites are discharged freely into surface water. Regional scale analyses were conducted to determine the hydrochemical characteristics of mine waters from abandoned sites featuring metal (Cu, Pb-Zn, Au, Fe, Sb, Mo, Bi, Hg) deposits, non-metallic minerals (coal, Mg, F, B) and uranium. The study included 80 mine water samples from 59 abandoned mining sites. Their cation composition was dominated by Ca2+, while the most common anions were found to be SO4(2-) and HCO3-. Strong correlations were established between the pH level and metal (Fe, Mn, Zn, Cu) concentrations in the mine waters. Hierarchical cluster analysis was applied to parameters generally indicative of pollution, such as pH, TDS, SO4(2-), Fe total, and As total. Following this approach, mine water samples were grouped into three main clusters and six subclusters, depending on their potential environmental impact. Principal component analysis was used to group together variables that share the same variance. The extracted principal components indicated that sulfide oxidation and weathering of silicate and carbonate rocks were the primary processes, while pH buffering, adsorption and ion exchange were secondary drivers of the chemical composition of the analyzed mine waters. Surface waters, which received the mine waters, were examined. Analysis showed increases of sulfate and metal concentrations and general degradation of surface water quality.

  17. Effects of site substitution and metal ion addition on doped manganites

    CERN Document Server

    Pradhan, A K; Roul, B K; Sahu, D R; Muralidhar, M

    2002-01-01

    We report transport, magnetization and transmission electron microscopy studies of the effects of A-and B-site substitution, and the addition of metal ions such as Pt, Ag and Sr, on doped ABO sub 3 perovskites, where A = La, Pr etc and B = Mn. Disorder induced by such substitution changes the behaviour of the charge-ordered (CO) state significantly. A-and B-site substitution suppresses the CO phase due to size mismatch and disorder produced by inhomogeneity. On the other hand, addition of metal ions such as Pt and Ag improves several colossal-magnetoresistance properties significantly due to microstructural effects and enhanced current percolation through grain boundaries.

  18. Metal levels in southern leopard frogs from the Savannah River Site: location and body compartment effects.

    Science.gov (United States)

    Burger, J; Snodgrass, J

    2001-06-01

    Tadpoles have been proposed as useful bioindicators of environmental contamination; yet, recently it has been shown that metal levels vary in different body compartments of tadpoles. Metals levels are higher in the digestive tract of bullfrog (Rana catesbeiana) tadpoles, which is usually not removed during such analysis. In this paper we examine the heavy metal levels in southern leopard frog (R. utricularia) tadpoles from several wetlands at the Savannah River Site and test the null hypotheses that (1) there are no differences in metal levels in different body compartments of the tadpoles, including the digestive tract; (2) there are no differences in heavy metal levels among different wetlands; and (3) there are no differences in the ratio of metals in the tail/body and in the digestive tract/body as a function of metal or developmental stage as indicated by body weight. Variations in heavy metal levels were explained by wetland and body compartment for all metals and by tadpole weight for selenium and manganese. In all cases, levels of metals were higher in the digestive tract than in the body or tail of tadpoles. Metal levels were highest in a wetland that had been remediated and lowest in a wetland that was never a pasture or remediated (i.e., was truly undisturbed). Although tadpoles are sometimes eaten by fish and other aquatic predators, leopard frogs usually avoid laying their eggs in ponds with such predators. However, avian predators will eat them. These data suggest that tadpoles can be used as bioindicators of differences in metal levels among wetlands and as indicators of potential exposure for higher-trophic-level organisms, but that to assess effects on the tadpoles themselves, digestive tracts should be removed before analysis. Copyright 2001 Academic Press.

  19. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (SE)); Soederbaeck, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (SE)); Johansson, Per-Olof (Artesia Grundvattenkonsult AB, Taeby (SE))

    2007-10-15

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  20. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Troejbom, Mats (Mopelikan, Norrtaelje (Sweden)); Soederbaeck, Bjoern; Kalinowski, Birgitta (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-10-15

    Based on a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry of the Laxemar-Simpevarp area, with the intention of providing an understanding of important processes and factors that affect the hydrochemistry of the surface systems. In order to widen the perspective, all data from Laxemar stage 2.3, including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to provide a general understanding of the site and to explain observed overall patterns and anomalies, and ultimately to present a conceptual model that explains the present hydrochemistry of the surface system in the light of the past. The report may also serve as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast Sicada database and specialised expert models. The topography in the Laxemar-Simpevarp area is characterised by elevated areas covered by thin or no Quaternary deposits, intersected by deep fissure valleys filled with thick sediments. This topography, in combination with the withdrawal of the Baltic Sea due to isostatic land uplift, are two important factors determining the hydrochemistry of the Laxemar-Simpevarp area. Furthermore, marine remnants in the Quaternary deposits influence the hydrochemistry in areas at low elevation close to the coast, whereas higher-lying areas are mostly influenced by atmospheric deposition and weathering processes. The vegetation cover has also great impact on the hydrochemistry of the surface system. Degradation of biogenic carbon generates large numbers of H+ ions, which drive weathering processes in the Quaternary deposits as well as in the upper parts of the bedrock. The present situation in the surface system is a consequence of the palaeohydrological past. In higher

  1. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Laxemar

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Kalinowski, Birgitta

    2008-10-01

    Based on a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry of the Laxemar-Simpevarp area, with the intention of providing an understanding of important processes and factors that affect the hydrochemistry of the surface systems. In order to widen the perspective, all data from Laxemar stage 2.3, including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to provide a general understanding of the site and to explain observed overall patterns and anomalies, and ultimately to present a conceptual model that explains the present hydrochemistry of the surface system in the light of the past. The report may also serve as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast Sicada database and specialised expert models. The topography in the Laxemar-Simpevarp area is characterised by elevated areas covered by thin or no Quaternary deposits, intersected by deep fissure valleys filled with thick sediments. This topography, in combination with the withdrawal of the Baltic Sea due to isostatic land uplift, are two important factors determining the hydrochemistry of the Laxemar-Simpevarp area. Furthermore, marine remnants in the Quaternary deposits influence the hydrochemistry in areas at low elevation close to the coast, whereas higher-lying areas are mostly influenced by atmospheric deposition and weathering processes. The vegetation cover has also great impact on the hydrochemistry of the surface system. Degradation of biogenic carbon generates large numbers of H + ions, which drive weathering processes in the Quaternary deposits as well as in the upper parts of the bedrock. The present situation in the surface system is a consequence of the palaeohydrological past. In higher

  2. Hydrochemistry in surface water and shallow groundwater. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Troejbom, Mats; Soederbaeck, Bjoern; Johansson, Per-Olof

    2007-10-01

    With a mathematical/statistical approach, a large number of visualisations and models reflect the hydrochemistry in the Forsmark area, with the intention to give an understanding of important processes and factors that affect the hydrochemistry in the surface systems. In order to widen the perspective, all data from the Forsmark 2.2 stage including observations from different levels of the bedrock, as well as hydrological measurements and characterisations of the Quaternary deposits, have been included in the analyses. The purpose of this report is to give a general understanding of the site and to explain observed overall patterns as well as anomalies, and, ultimately, to present a conceptual model that explains the present hydrochemistry in the surface system in the light of the past. The report may also function as a basis for further evaluation and testing of scenarios, and may be regarded as an intermediate step between raw data compilations from the vast SICADA database and specialised expert models. The flat topography and the recent withdrawal of the Baltic Sea due to the isostatic land-uplift are two important factors determining the hydrochemistry in the Forsmark area. Marine remnants in the Quaternary deposits, as well as modern sea water intrusions, are therefore strongly influencing the hydrochemistry, especially in areas at low altitude close to the coast. Large-scale marine gradients in the surface system are consistent with the conceptual model that describes the hydrochemical evolution in a paleo-hydrologic perspective. The Forsmark area is covered by glacial remnants, mostly in the form of a till layer, which was deposited during the Weichselian glaciation and deglaciation. When the ice cover retreated about 11,000 years ago, these deposits were exposed on the sea floor. This till layer is characterized by a rich content of calcite, originating from the sedimentary bedrock of Gaevlebukten about 100 km north of Forsmark. The dissolution of this

  3. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site

    International Nuclear Information System (INIS)

    Hofer, Charles; Gallagher, Frank J.; Holzapfel, Claus

    2010-01-01

    The use of passerine species as bioindicators of metal bioaccumulation is often underutilized when examining the wildlife habitat value of polluted sites. In this study we tested feathers of nestlings of two common bird species (house wren and American robin) for accumulation of Pb, Zn, As, Cr, Cu, Fe in comparison of a polluted, urban brownfield with a rural, unpolluted site. House wren nestlings at the study site accumulated significantly greater concentrations of all target metals except Zn. At the polluted site we found significant species differences of metal concentrations in feathers, with house wrens accumulating greater concentrations of Pb, Fe, and Zn but slightly lesser accumulations of Cr and Cu than American robins. Although house wren nestlings demonstrated significant accumulation of metals, these concentrations showed little effect on size metrics or fledge rates during the breeding season compared to nestlings from the control site. - Nestlings of birds in an urban brownfield accumulated soil contaminants but did not show signs of reduced breeding success or growth.

  4. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Charles; Gallagher, Frank J. [Department of Ecology, Evolution and Natural Resources, Rutgers, the State University of New Jersey, 14 College Farm Rd., New Brunswick, NJ 08901-8551 (United States); Holzapfel, Claus, E-mail: holzapfe@andromeda.rutgers.ed [Department of Biological Sciences, Rutgers, the State University of New Jersey, Newark, 195 University Ave., Newark, NJ 07102-1811 (United States)

    2010-05-15

    The use of passerine species as bioindicators of metal bioaccumulation is often underutilized when examining the wildlife habitat value of polluted sites. In this study we tested feathers of nestlings of two common bird species (house wren and American robin) for accumulation of Pb, Zn, As, Cr, Cu, Fe in comparison of a polluted, urban brownfield with a rural, unpolluted site. House wren nestlings at the study site accumulated significantly greater concentrations of all target metals except Zn. At the polluted site we found significant species differences of metal concentrations in feathers, with house wrens accumulating greater concentrations of Pb, Fe, and Zn but slightly lesser accumulations of Cr and Cu than American robins. Although house wren nestlings demonstrated significant accumulation of metals, these concentrations showed little effect on size metrics or fledge rates during the breeding season compared to nestlings from the control site. - Nestlings of birds in an urban brownfield accumulated soil contaminants but did not show signs of reduced breeding success or growth.

  5. SURFACE SITES AND MOBILITIES OF IN ATOMS ON A STEPPED CU(100) SURFACE STUDIED AT LOW COVERAGE

    NARCIS (Netherlands)

    BREEMAN, M; DORENBOS, G; BOERMA, DO

    The various surface sites of In atoms deposited to a coverage of 0.013 monolayer (ML) onto a stepped Cu(100) surface were determined with low-energy ion scattering (LEIS) as a function of deposition temperature. From the fractions of In atoms occupying different sites, observed in the temperature

  6. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    Science.gov (United States)

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  7. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    Science.gov (United States)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  8. Study on the surface oxidation resistance of uranium metal in the atmosphere of carbon monoxide

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1999-01-01

    The surface reactions of different layers on uranium metal with carbon monoxide at 25, 80 and 200 degree C are studied by X-ray photoelectron spectroscopy (XPS). The experimental results show that the carbon monoxide is adsorbed on the surface oxide layer of uranium and interacted each other. The content of oxygen in the surface oxide and O/U ratio are decreased with increasing the exposure of carbon monoxide to the surface layer. The effect of reduction on the metal surface is more obviously with a higher temperature and increasing of layer thickness. The investigation indicates the uranium metal has resistance to further oxidation in the atmosphere of carbon monoxide

  9. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  10. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    International Nuclear Information System (INIS)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O 3 treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar + -etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O 3 treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films

  11. Effect of metallic and hyperbolic metamaterial surface on electric and magnetic dipole emission

    DEFF Research Database (Denmark)

    Ni, Xingjie; Naik, Gururaj V.; Kildishev, Alexander V.

    2010-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.......Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces....

  12. Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces.

    Science.gov (United States)

    Mesnage, Alice; Lefèvre, Xavier; Jégou, Pascale; Deniau, Guy; Palacin, Serge

    2012-08-14

    The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

  13. Assessment of heavy metal pollution in surface water

    International Nuclear Information System (INIS)

    Kar, D.; Sur, P.; Mandal, S. K.; Saha, T.; Kole, R. K.

    2008-01-01

    A total of 96 surface water samples collected from river Ganga in West Bengal during 2004-05 was analyzed for p H, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The p H was found in the alkaline range (7.21-8.32), while conductance was obtained in the range of 0.225-0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025-5.49, 0.025-2.72, 0.012-0.370, 0.012-0.375, 0.001-0.044 and 0.001- 0.250 mg/L,respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001-0.003 and 0.0034.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 m a ) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 m a ) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity

  14. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  15. Land surface cleanup of plutonium at the Nevada Test Site

    International Nuclear Information System (INIS)

    Ebeling, L.L.; Evans, R.B.; Walsh, E.J.

    1991-01-01

    The Nevada Test Site (NTS) covers approximately 3300 km 2 of high desert and is located approximately 100 km northwest of Las Vegas, Nevada. Soil contaminated by plutonium exists on the NTS and surrounding areas from safety tests conducted in the 1950s and 1960s. About 150 curies of contamination have been measured over 1200 hectares of land surface. Most contamination is found in the top 5 cm of soil but may be found as deep as 25 cm. The cost of conventional removal and disposal of the full soil volume has been estimated at over $500,000,000. This study is directed toward minimizing the volume of waste which must be further processed and disposed of by precisely controlling soil removal depth. The following soil removal machines were demonstrated at the NTS: (1) a CMI Corporation Model PR-500FL pavement profiler, (2) a CMI Corporation Model TR-225B trimmer reclaimer, (3) a Caterpillar Model 623 elevating scraper equipped with laser depth control, (4) a Caterpillar Model 14G motor grader equipped with laser depth control, (5) a Caterpillar Model 637 auger scraper, and (6) a XCR Series Guzzler vacuum truck. The most effective removal technique tested was the pavement profiler, which provided for dust control and precisely removed thin layers of soil. Soil removal with the motor grader and paddle scraper generated unacceptable dust levels, even after the soil was extensively watered. The vacuum truck was ineffective because of its limited intake volume which is a function of its small intake size, its weak intake force, and the tendency of its filters to clog

  16. Decontamination of U-metal surface by an oxidation etching system

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B.; Kansa, E.J.; Shaffer, R.J.; Weed, H.C. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    A surface treatment to remove surface contamination from uranium (U) metal and/or hydrides of uranium and heavy metals (HM) from U-metal parts is described. In the case of heavy metal atomic contamination on a surface, and potentially several atomic layers beneath, the surface oxidation treatment combines both chemical and chemically driven mechanical processes. The chemical process is a controlled temperature-time oxidation process to create a thin film of uranium oxide (UO{sub 2} and higher oxides) on the U-metal surface. The chemically driven mechanical process is strain induced by the volume increase as the U-metal surface transforms to a UO{sub 2} surface film. These volume strains are significantly large to cause surface failure spalling/scale formation and thus, removal of a U-oxide film that contains the HM-contaminated surface. The case of a HM-hydride surface contamination layer can be treated similarly by using inert hot gas to decompose the U-hydrides and/or HM-hydrides that are contiguous with the surface. A preliminary analysis to design and to plan for a sequence of tests is developed. The tests will provide necessary and sufficient data to evaluate the effective implementation and operational characteristics of a safe and reliable system. The following description is limited to only a surface oxidation process for HM-decontamination. (authors)

  17. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    Laser induced selective activation (LISA) is a molded interconnected devices technique for selective metallization of polymers. On the working piece, only the laser-machined area can be metalized in the subsequent plating. The principle of the technology is introduced. Surface analysis was perfor...

  18. Distribution and temporal variation of trace metal enrichment in surface sediments of San Jorge Bay, Chile.

    Science.gov (United States)

    Valdés, Jorge; Román, Domingo; Guiñez, Marcos; Rivera, Lidia; Morales, Tatiana; Morales, Tomás; Avila, Juan; Cortés, Pedro

    2010-08-01

    Cu, Pb, and Hg concentrations were determined in surface sediment samples collected at three sites in San Jorge Bay, northern Chile. This study aims to evaluate differences in their spatial distribution and temporal variability. The highest metal concentrations were found at the site "Puerto", where minerals (Cu and Pb) have been loaded for more than 60 years. On the other hand, Hg does not pose a contamination problem in this bay. Cu and Pb concentrations showed significant variations from 1 year to another. These variations seem to be a consequence of the combination of several factors, including changes in the loading and/or storage of minerals in San Jorge Bay, the dredging of bottom sediments (especially at Puerto), and seasonal changes in physical-chemical properties of the water column that modify the exchange of metals at the sediment-water interface. Differences in the contamination factor and geoaccumulation index suggest that pre-industrial concentrations measured in marine sediments of this geographical zone, were better than geological values (average shale, continental crust average) for evaluating the degree of contamination in this coastal system. Based on these last two indexes, San Jorge Bay has a serious problem of Cu and Pb pollution at the three sampling locations. However, only Cu exceeds the national maximum values used to evaluate ecological risk and the health of marine environments. It is suggested that Chilean environmental legislation for marine sediment quality--presently under technical discussion--is not an efficient tool for protecting the marine ecosystem.

  19. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  20. 21 CFR 178.3910 - Surface lubricants used in the manufacture of metallic articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Surface lubricants used in the manufacture of... lubricants used in the manufacture of metallic articles. The substances listed in this section may be safely used in surface lubricants employed in the manufacture of metallic articles that contact food, subject...

  1. Identification of metal ion binding sites based on amino acid sequences.

    Science.gov (United States)

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  2. Some characteristics of metal migration in or on the surface of insulators

    International Nuclear Information System (INIS)

    Shields, R.B.

    1978-03-01

    This report reviews the migration of metals, principally silver, in or on the surface of insulating materials, by electrolytic processes. These processes are described for various metals, insulating materials and physical conditions, with numerous examples from the literature. While it is concluded that the only sure way to prevent degradation of insulation due to metal migration is to avoid the use of migration-prone metals, some other measures are mentioned which have been reported to reduce the extent of the growth. (author)

  3. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...

  4. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rein, Arno

    2014-01-01

    The main purpose of this study was to determine typical concentrations of heavy metals (HM) in wood from willows and poplars, in order to test the feasibility of phytoscreening and phytoextraction of HM. Samples were taken from one strongly, one moderately, and one slightly polluted site and from...

  5. Characterization of soil and plant-associated bacteria on a metal contaminated site

    International Nuclear Information System (INIS)

    Boulet, J.; Weyens, N.; Barac, T.; Dupae, J.; Lelie, D. van der; Taghavi, S.; Vaqngronsveld, J.

    2009-01-01

    Conventional methods for the remediation of heavy metal contaminated soils and ground water are very expensive and often damaging to the environment. Complementary to these traditional methods, especially for sites with a diffuse contamination in relatively low concentrations, phyto extraction is proposed as a promising technology for effective and inexpensive radiation. (Author)

  6. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole

    2006-01-01

    for monoamine binding in TM-III, was used as the starting point to engineer activating metal ion sites between the extracellular segments of the beta2-adrenergic receptor. Cu(II) and Zn(II) alone and in complex with aromatic chelators acted as potent (EC50 decreased to 0.5 microm) and efficacious agonists...

  7. Distribution and mobility of metals in contaminated sites. chemometric investigation of pollutant profiles.

    Science.gov (United States)

    Abollino, Ornella; Aceto, Maurizio; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado; Barberis, Renzo

    2002-01-01

    The distribution and mobility of heavy metals in the soils of two contaminated sites in Piedmont (Italy) was investigated, evaluating the horizontal and vertical profiles of 15 metals, namely Al, Cd, Cu, Cr, Fe. La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr. The concentrations in the most polluted areas of the sites were higher than the acceptable limits reported in Italian and Dutch legislations for soil reclamation. Chemometric elaboration of the results by pattern recognition techniques allowed us to identify groups of samples with similar characteristics and to find correlations among the variables. The pollutant mobility was studied by extraction with water, dilute acetic acid and EDTA and by applying Tessier's procedure. The fraction of mobile species, which potentially is the most harmful for the environment, was found to be higher than the one normally present in unpolluted soils, where heavy metals are, to a higher extent, strongly bound to the matrix.

  8. Heat of solution and site energies of hydrogen in disordered transition-metal alloys

    International Nuclear Information System (INIS)

    Brouwer, R.C.; Griessen, R.

    1989-01-01

    Site energies, long-range effective hydrogen-hydrogen interactions, and the enthalpy of solution in transition-metal alloys are calculated by means of an embedded-cluster model. The energy of a hydrogen atom is assumed to be predominantly determined by the first shell of neighboring metal atoms. The semiempirical local band-structure model is used to calculate the energy of the hydrogen atoms in the cluster, taking into account local deviations from the average lattice constant. The increase in the solubility limit and the weak dependence of the enthalpy of solution on hydrogen concentration in disordered alloys are discussed. Calculated site energies and enthalpies of solution in the alloys are compared with experimental data, and good agreement is found. Due to the strong interactions with the nearest-neighbor metal atoms, hydrogen atoms can be used to determine local lattice separations and the extent of short-range order in ''disordered'' alloys

  9. Photoemission studies of clean and adsorbate covered metal surfaces using synchrotron and uv radiation sources

    International Nuclear Information System (INIS)

    Apai, G.R. II.

    1977-09-01

    Photoemission energy distribution experiments on clean metal and adsorbate-covered surfaces were performed under ultrahigh vacuum conditions by using x-ray and ultraviolet photon sources in the laboratory as well as continuously-tunable, highly polarized synchrotron radiation obtainable at the Stanford Synchrotron Radiation Laboratory (SSRL). Studies focused on two general areas: cross-section modulation in the photoemission process was studied as a function of photon energy and orbital composition. Sharp decreases in intensity of the valence bands of several transition metals (i.e., Ag, Au, and Pt) are attributed to the radial nodes in the respective wave functions. Adsorbate photoemission studies of CO adsorbed on platinum single crystals have demonstrated a very high spectral sensitivity to the 4sigma and (1π + 5sigma) peaks of CO at photon energies of 150 eV. Angle-resolved photoemission allowed determination of the orientation of CO chemisorbed on a Pt (111) or Ni(111) surface. Prelinimary results at high photon energies (approximately 150 eV) indicated scattering from the substrate which could yield chemisorption site geometries

  10. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  11. Site-selective electroless nickel plating on patterned thin films of macromolecular metal complexes.

    Science.gov (United States)

    Kimura, Mutsumi; Yamagiwa, Hiroki; Asakawa, Daisuke; Noguchi, Makoto; Kurashina, Tadashi; Fukawa, Tadashi; Shirai, Hirofusa

    2010-12-01

    We demonstrate a simple route to depositing nickel layer patterns using photocross-linked polymer thin films containing palladium catalysts, which can be used as adhesive interlayers for fabrication of nickel patterns on glass and plastic substrates. Electroless nickel patterns can be obtained in three steps: (i) the pattern formation of partially quaterized poly(vinyl pyridine) by UV irradiation, (ii) the formation of macromolecular metal complex with palladium, and (iii) the nickel metallization using electroless plating bath. Metallization is site-selective and allows for a high resolution. And the resulting nickel layered structure shows good adhesion with glass and plastic substrates. The direct patterning of metallic layers onto insulating substrates indicates a great potential for fabricating micro/nano devices.

  12. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  13. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  14. Can standard sequential extraction determinations effectively define heavy metal species in superfund site soils?

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, Cheryl L.; Williamson, Connie A.; Collins, Wesley K.; Dahlin, David C.

    2001-01-01

    Speciation and distribution of heavy metals in soils controls the degree to which metals and their compounds are mobile, extractable, and plant-available. Consequently, speciation impacts the success of remediation efforts both by defining the relationship of the contaminants with their environment and by guiding development and evaluation of workable remediation strategies. The U.S. Department of Energy, Albany Research Center (Albany, OR), under a two-year interagency project with the U.S. Environmental Protection Agency (EPA), examined the suitability of sequential extraction as a definitive means to determine species of heavy metals in soil samples. Representative soil samples, contaminated with lead, arsenic, and/or chromium, were collected by EPA personnel from two Superfund sites, the National Lead Company site in Pedricktown, NJ, and the Roebling Steel, Inc., site in Florence, NJ. Data derived from Tessier=s standard three-stage sequential-extraction procedure were compared to data from a comprehensive characterization study that combined optical- and scanning-electron microscopy (with energy-dispersive x-ray and wavelength-dispersive x-ray analyses), x-ray diffraction, and chemical analyses. The results show that standard sequential-extraction procedures that were developed for characterizing species of contaminants in river sediments may be unsuitable for sole evaluation of contaminant species in industrial-site materials (particularly those that contain larger particles of the contaminants, encapsulated contaminants, and/or man-made materials such as slags, metals, and plastics). However, each sequential extraction or comprehensive characterization procedure has it=s own strengths and weaknesses. Findings of this study indicate that the use of both approaches, during the early stages of site studies, would be a best practice. The investigation also highlights the fact that an effective speciation study does not simply identify metal contaminants as

  15. Influence of carbon monoxide to the surface layer of uranium metal and its oxides

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-09-01

    The surface structures of uranium metal and triuranium octaoxide (U 3 O 8 ) and the influence of carbon monoxide to the surface layers have been studied by X-ray photoelectron spectroscopy (XPS). After exposure to carbon monoxide, contents of oxygen in the surface oxides of uranium metal and U 3 O 8 are decreased and O/U ratios decrease 7.2%, 8.0% respectively. The investigation indicated the surface layers of uranium metal and its oxides were forbidden to further oxidation in the atmosphere of carbon monoxide. (11 refs., 9 figs., 2 tabs.)

  16. Study of highly functionalized metal surface treated by plasma ion implantation

    International Nuclear Information System (INIS)

    Ikeyama, Masami; Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Masuda, Haruho; Saito, Kazuo; Ono, Taizou; Hayashi, Eiji

    2004-01-01

    Technology for processing metal surfaces with hardness, low friction and free from foreign substances was developed with plasma ion implantation. Diamond-like carbon (DLC) coating is a most promising method for realization of hard and smooth metal surface. DLC coating was tested in a metal pipe with 10 mm diameter and 10 cm length by a newly developed plasma ion implantation instrument. The surface coated by DLC was proved to have characteristics equivalent to those prepared with other methods. A computer program simulating a formation process of DLC coating was developed. Experiments for fluorinating the DLC coating surface was performed. (Y. Kazumata)

  17. Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.

    Science.gov (United States)

    Tantemsapya, N; Naksakul, Y; Wirojanagud, W

    2011-01-01

    Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants.

  18. Trace metal contamination of water at a solid waste disposal site at ...

    African Journals Online (AJOL)

    , and close to, a solid waste disposal site at Kariba, Zimbabwe, and in water flowing from the area during 1996 and 1997. Soil samples were collected from the surface inside the disposal site and at distances of 3m, 25m and 50m (from the ...

  19. Application of the B.F.S. Method to Metallic Surfaces: Surface Alloys and Alloy Surfaces

    International Nuclear Information System (INIS)

    Bozzolo, Gullermo

    1997-01-01

    These notes introduce the BFS (Bozzolo-Ferrante-Smith) method for alloys, in the framework of what is available today in terms of computationally efficient and physically sound techniques for modeling of atomic systems. The BFS method belongs to the family of semi-empirical methods, which aim to balance scientific rigour with practical applications. The goal is to provide a tool that aids in the process of material analysis and development, supplementing the experimental work which by itself has limitations in terms of time, money, technology and human resources. One of the main advantages of the BFS method, basically tailored to assist in the problem of alloy design, is that it is easily applicable to the analysis of surface structure, with a satisfactory degree of accuracy. In these notes, first the role of semiempirical methods among the available tools for atomistic simulations is reviewed, followed by a description of the BFS method and a simple application in order to understand the operational procedure, and conclude reviewing some of the topics of current interest where techniques such as the BFS method play an important role in furthering the understanding os fundamental issues

  20. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  1. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  2. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  3. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  4. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  5. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  6. Metal concentrations in intertidal water and surface sediment along ...

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... The higher metal concentrations reported in sediment suggested that both ... the condition of the water column and health of benthic marine ... and fish processing facilities are situated on the western side of ... ated approximately 20 km north of Cape Town. .... caused such levels of metal input to the system.

  7. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  8. ''In-situ'' spectro-electrochemical studies of radionuclide-contaminated surface films on metals

    International Nuclear Information System (INIS)

    Melendres, C.A.; Mini, S.; Mansour, A.N.

    2000-01-01

    The incorporation of heavy metal ions and radioactive contaminants into hydrous oxide films has been investigated in order to provide fundamental knowledge that could lead to the technological development of cost-effective processes and techniques for the decontamination of storage tanks, piping systems, surfaces, etc., in DOE nuclear facilities. The formation of oxide/hydroxide films was simulated by electrodeposition onto a graphite substrate from solutions of the appropriate metal salt. Synchrotron X-ray Absorption Spectroscopy (XAS), supplemented by Laser Raman Spectroscopy (LRS), was used to determine the structure and composition of the host oxide film, as well as the impurity ion. Results have been obtained for the incorporation of Ce, Sr, Cr, Fe, and U into hydrous nickel oxide films. Ce and Sr oxides/hydroxides are co-precipitated with the nickel oxides in separate phase domains. Cr and Fe, on the other hand, are able to substitute into Ni lattice sites or intercalate in the interlamellar positions of the brucite structure of Ni(OH) 2 . U was found to co-deposit as a U(VI) hydroxide. The mode of incorporation of metal ions depends both on the size and charge of the metal ion. The structure of iron oxide (hydroxide) films prepared by both anodic and cathodic deposition has also been extensively studied. The structure of Fe(OH) 2 was determined to be similar to that of α-Ni(OH) 2 . Anodic deposition from solutions containing Fe 2+ results in a film with a structure similar to γ-FeOOH. From the knowledge gained from the present studies, principles and methods for decontamination have become apparent. Contaminants sorbed on oxide surfaces or co-precipitated may be removed by acid wash and selective dissolution or complexation. Ions incorporated into lattice sites and interlamellar layers will require more drastic cleaning procedures. Electropolishing and the use of an electrochemical brush are among concepts that should be considered seriously for the latter

  9. Design surface covers: an approach to long-term waste site stabilization

    International Nuclear Information System (INIS)

    Beedlow, P.A.; Cadwell, L.L.; McShane, M.C.

    1983-02-01

    The wide range of existing environmental conditions, potential contaminants and available cover materials at waste disposal sites necessitates site-specific designing of surface covers for effective long-term erosion resistance. This paper presents a systematic approach to designing surface covers for hazardous waste repositories that can be tailored to conditions at any site. The approach consists of three phases: (1) an assessment, during which the degree of required surface protection (erosion potential) is determined; (2) a preliminary design that integrates surface cover design with the need to minimize transport of contaminants; and (3) a final design, where the cost and effectiveness of the surface cover are determined. 1 figure

  10. Observation of the adsorption and desorption of vibrationally excited molecules on a metal surface

    Science.gov (United States)

    Shirhatti, Pranav R.; Rahinov, Igor; Golibrzuch, Kai; Werdecker, Jörn; Geweke, Jan; Altschäffel, Jan; Kumar, Sumit; Auerbach, Daniel J.; Bartels, Christof; Wodtke, Alec M.

    2018-06-01

    The most common mechanism of catalytic surface chemistry is that of Langmuir and Hinshelwood (LH). In the LH mechanism, reactants adsorb, become thermalized with the surface, and subsequently react. The measured vibrational (relaxation) lifetimes of molecules adsorbed at metal surfaces are in the range of a few picoseconds. As a consequence, vibrational promotion of LH chemistry is rarely observed, with the exception of LH reactions occurring via a molecular physisorbed intermediate. Here, we directly detect adsorption and subsequent desorption of vibrationally excited CO molecules from a Au(111) surface. Our results show that CO (v = 1) survives on a Au(111) surface for 1 × 10-10 s. Such long vibrational lifetimes for adsorbates on metal surfaces are unexpected and pose an interesting challenge to the current understanding of vibrational energy dissipation on metal surfaces. They also suggest that vibrational promotion of surface chemistry might be more common than is generally believed.

  11. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Heavy metal pollution of surface soil in Thrace region (Turkey)

    International Nuclear Information System (INIS)

    Goskun, Mahmut; Goskun, Munevver; Steinnes, E.; Eidhammer Sjobakk, T.; Frontas'eva, M.V.; Demkina, S.V.

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. Spatial distributions of Cu, Zn, Ni, Cd, Cr, Pb, and As were plotted in relation to the concentration values in soil using Geographic Information System (GIS) technology

  13. Heavy Metal Pollution of Surface Soil in Thrace Region (Turkey)

    CERN Document Server

    Cocskun, M; Frontasyeva, M V; Munevver, C; Eidhammer Sjobakk, T; Demkina, S V

    2004-01-01

    Samples of surface soil were collected at 73 sites in the Thrace region, northwest part of Turkey. Two complementary analytical techniques, epithermal neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS) with flame and graphite furnace atomization were used to determine 37 elements in the soil samples. Concentrations of Cu, Zn, Ni, Cd, Mn, Co, Pb, and As were determined using AAS and GF AAS and ENAA was used for the remaining 29 elements. Results for As, Ba, Br, Ca, Cd, Ce, Cr, Cs, Eu, Fe, Hf, I, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Sm, Sr, Ta, Tb, Th, Ti, U, and V are reported for the first time for soils from this region. The results show that concentrations of the most elements were little affected by the industrial and other anthropogenic activities performed in the region. Except for distinctly higher levels of Pb, Cu, Cd, and Zn in Istanbul district than the median values for the Thrace region, the observed distributions seem to be mainly associated with lithogenic variations. S...

  14. Comparison of reactivity on step and terrace sites of Pd (3 3 2) surface for the dissociative adsorption of hydrogen: A quantum chemical molecular dynamics study

    International Nuclear Information System (INIS)

    Ahmed, Farouq; Nagumo, Ryo; Miura, Ryuji; Ai, Suzuki; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Miyamoto, Akira

    2011-01-01

    The notion of 'active sites' is fundamental to heterogeneous catalysis. However, the exact nature of the active sites, and hence the mechanism by which they act, are still largely a matter of speculation. In this study, we have presented a systematic quantum chemical molecular dynamics (QCMD) calculations for the interaction of hydrogen on different step and terrace sites of the Pd (3 3 2) surface. Finally the dissociative adsorption of hydrogen on step and terrace as well as the influence of surface hydrogen vacancy for the dissociative adsorption of hydrogen has been investigated through QCMD. This is a state-of-the-art method for calculating the interaction of atoms and molecules with metal surfaces. It is found that fully hydrogen covered (saturated) step sites can dissociate hydrogen moderately and that a monovacancy surface is suitable for significant dissociative adsorption of hydrogen. However in terrace site of the surface we have found that dissociation of hydrogen takes place only on Pd sites where the metal atom is not bound to any pre-adsorbed hydrogen atoms. Furthermore, from the molecular dynamics and electronic structure calculations, we identify a number of consequences for the interpretation and modeling of diffusion experiments demonstrating the coverage and directional dependence of atomic hydrogen diffusion on stepped palladium surface.

  15. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data....

  16. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    OpenAIRE

    MILAN S. TRTICA; SCEPAN S. MILJANIC; NATASA N. STJEPANOVIC

    2000-01-01

    There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lase...

  17. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    Science.gov (United States)

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reactivity of a reduced metal oxide surface: hydrogen, water and carbon monoxide adsorption on oxygen defective rutile TiO 2( 1 1 0 )

    Science.gov (United States)

    Menetrey, M.; Markovits, A.; Minot, C.

    2003-02-01

    The reactivity at reduced surface differs from that on the stoichiometric perfect surfaces. This does not originate uniquely from the modification of the coordination; electron count also is determining. The general trend is a decrease of the heat of adsorption on the metal cations. The reactivity decreases at sites in the vicinity of the defects due to the reduction induced by the O vacancies. At the defect site the decrease is less pronounced for H, H 2, CO and molecular H 2O. In the case of H 2O dissociative adsorption, the defect site is more reactive than the perfect surface. Thus, a hydration converting the defective-reduced TiO 2 to the hydrogenated non-defective-reduced surface is easy. The resulting structure possesses surface hydroxyl groups. It is probably the easiest way to form the hydrogenated non-defective surface. On TiO 2, the defective surface requires very anhydrous conditions.

  19. Metal contamination in environmental media in residential areas around Romanian mining sites

    Science.gov (United States)

    Hard-rock mining for metals, such as gold, silver, copper, zinc, iron and others, is recognized to have a significant impact on the environmental media, soil and water, in particular. Toxic contaminants released from mine waste to surface water and groundwater is the primary co...

  20. Relationship between metal speciation in soil solution and metal adsorption at the root surface of ryegrass

    NARCIS (Netherlands)

    Kalis, E.J.J.; Temminghoff, E.J.M.; Town, R.M.; Unsworth, E.R.; Riemsdijk, van W.H.

    2008-01-01

    Received for publication October 12, 2007. The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total

  1. Ecological risk, source and preliminary assessment of metals in the surface sediments of Chabahar Bay, Oman Sea

    International Nuclear Information System (INIS)

    Agah, Homira; Saleh, Abolfazl; Bastami, Kazem Darvish; Fumani, Neda Sheijooni

    2016-01-01

    In this study, concentrations of Aluminum (Al), Iron (Fe), Chromium (Cr), Copper (Cu), Nickel (Ni), Vanadium (V), Zinc (Zn), Arsenic (As), Cobalt (Co) and lead (Pb) in the surface sediments from Chabahar Bay were studied to assess the degree of heavy metal pollution as a consequence of natural and anthropogenic sources. Metal contents in the sediments were observed in the order of: Al > Fe > Cr > V > Ni > Zn > Cu > > As > Pb > Co. According to enrichment factor (EF), Arsenic was higher than 1.5 at some sites, indicating anthropogenic inputs. Contents of Ni, As and Cr in the some sampling sites were higher than sediment quality guideline implying adverse impacts of these metals. Based on potential ecological risk (PER), the Chabahar Bay had low ecological risk. - Highlights: •Metals and major elements were determined in surface sediments from Chabahar Bay, Oman Sea. •EF values indicated non-enriched to moderate-enriched. •Ni, As and Cr were above ERL values.

  2. Metals on graphene and carbon nanotube surfaces: From mobile atoms to atomtronics to bulk metals to clusters and catalysts

    KAUST Repository

    Sarkar, Santanu C.

    2014-01-14

    In this Perspective, we present an overview of recent fundamental studies on the nature of the interaction between individual metal atoms and metal clusters and the conjugated surfaces of graphene and carbon nanotube with a particular focus on the electronic structure and chemical bonding at the metal-graphene interface. We discuss the relevance of organometallic complexes of graphitic materials to the development of a fundamental understanding of these interactions and their application in atomtronics as atomic interconnects, high mobility organometallic transistor devices, high-frequency electronic devices, organometallic catalysis (hydrogen fuel generation by photocatalytic water splitting, fuel cells, hydrogenation), spintronics, memory devices, and the next generation energy devices. We touch on chemical vapor deposition (CVD) graphene grown on metals, the reactivity of its surface, and its use as a template for asymmetric graphene functionalization chemistry (ultrathin Janus discs). We highlight some of the latest advances in understanding the nature of interactions between metals and graphene surfaces from the standpoint of metal overlayers deposited on graphene and SWNT thin films. Finally, we comment on the major challenges facing the field and the opportunities for technological applications. © 2013 American Chemical Society.

  3. Surface metal standards produced by ion implantation through a removable layer

    International Nuclear Information System (INIS)

    Schueler, B.W.; Granger, C.N.; McCaig, L.; McKinley, J.M.; Metz, J.; Mowat, I.; Reich, D.F.; Smith, S.; Stevie, F.A.; Yang, M.H.

    2003-01-01

    Surface metal concentration standards were produced by ion implantation and investigated for their suitability to calibrate surface metal measurements by secondary ion mass spectrometry (SIMS). Single isotope implants were made through a 100 nm oxide layer on silicon. The implant energies were chosen to place the peak of the implanted species at a depth of 100 nm. Subsequent removal of the oxide layer was used to expose the implant peak and to produce controlled surface metal concentrations. Surface metal concentration measurements by time-of-flight SIMS (TOF-SIMS) with an analysis depth of 1 nm agreed with the expected surface concentrations of the implant standards with a relative mean standard deviation of 20%. Since the TOF-SIMS relative sensitivity factors (RSFs) were originally derived from surface metal measurements of surface contaminated silicon wafers, the agreement implies that the implant standards can be used to measure RSF values. The homogeneity of the surface metal concentration was typically <10%. The dopant dose remaining in silicon after oxide removal was measured using the surface-SIMS protocol. The measured implant dose agreed with the expected dose with a mean relative standard deviation of 25%

  4. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface

  5. Investigations of thin p-GaN light-emitting diodes with surface plasmon compatible metallization

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke

    2016-01-01

    We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of InGaN light-emitting diodes with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  6. Tolerance to Cadmium of Agave lechuguilla (Agavaceae Seeds and Seedlings from Sites Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Alejandra Méndez-Hurtado

    2013-01-01

    Full Text Available We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz and from a noncontaminated site (Villa de Zaragoza were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  7. High surface area graphene-supported metal chalcogenide assembly

    Science.gov (United States)

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  8. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  9. Electronic structure at metal-smiconductor surfaces and interfaces: effects of disorder

    International Nuclear Information System (INIS)

    Rodrigues, D.E.

    1988-01-01

    The main concern of this work is the study of the electronic structure at metal and semiconductor surfaces or interfaces, with special emphasis in the effects of disorder and local microstructure upon them. Various factors which determine this structure are presented and those of central importance are identified. A model that allows the efficient and exact calculation of the local density of states at disordered interfaces is described. This model is based on a tight-binding hamiltonian that has enough flexibility so as to allow an adequate description of real solids. The disorder is taken into account by including stochastic perturbations in the diagonal elements of the hamiltonian in a site orbital basis. These perturbations are taken at each layer from a lorentzian probability distribution. An exact expression for the calculation of the local density of states is derived and applied to a model surface built up from a type orbitals arranged in a simple cubic lattice. The effects of disorder on the local densities of states and on the existence of surface Tamm states are studied. The properties of the electronic states with this kind of model of disorder are considered. The self-consistent calculation of the electronic structure of the Si(111) - (1x1) surface is presented. The effects of disorder on the electronic properties such as the work function or the position of surface states within the gap are evaluated. The surface of the metallic compound NiSi 2 is also treated. The first self-consistent calculation of the electronic structure of its (111) surface is presented. The electronic structure of the Si/NiSi 2 (111) interfaces is calculated for the two types of junctions that can be grown experimentally. The origin of the difference between the Schottky barrier heights at both interfaces is discussed. The results are compared with available experimental data. The implications of this calculation on existing theories about the microscopic mechanism that causes

  10. Pollution assessment and source apportionment of heavy metals in contaminated site soils

    Science.gov (United States)

    Zheng, Hongbo; Ma, Yan

    2018-03-01

    Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).

  11. Assessment of Heavy and Trace Metals in Surface Soil Nearby an Oil Refinery, Saudi Arabia, Using Geoaccumulation and Pollution Indices.

    Science.gov (United States)

    Alshahri, Fatimh; El-Taher, A

    2018-04-30

    The present study deals with the measurement of heavy and trace metals in the soils of Ras Tanura city nearby one of the oldest and largest oil refineries located on Arabian Gulf, eastern Saudi Arabia. Metals were analyzed in 34 surface soil samples using plasma atomic emission spectrometer (ICPE-9820). The result showed that the mean values of the metals concentrations were in the order: Cd > Mo > Tb > Ce > Hf > Eu > Yb > U > Sm > Rb > Cr > Ni > Pb > Sc > Cs > Zn > Lu > Co. The mean values of Cd (39.9 mg/kg), Mo (13.2 mg/kg), Eu (4.01 mg/kg), Hf (6.09 mg/kg), Tb (8.23 mg/kg), and Yb (3.88) in soil samples were higher than the background values in soil and the world average. The obtained results indicated to elevated levels of Cd and Mo in most samples, with mean concentrations exceeded the background levels by 113 times for Cd and 5 times for Mo. Pollution index (PI) and Geoaccumulation (I geo ) for each metal were calculated to assess the metal contamination level of surface soil in the study area. The assessment results of PI and I geo revealed a significant pollution by Cd, Mo, Eu, Hf, Tb, and Yb in most of sampling sites nearby Ras Tanura refinery.

  12. Surface science of single-site heterogeneous olefin polymerization catalysts

    OpenAIRE

    Kim, Seong H.; Somorjai, Gabor A.

    2006-01-01

    This article reviews the surface science of the heterogeneous olefin polymerization catalysts. The specific focus is on how to prepare and characterize stereochemically specific heterogeneous model catalysts for the Ziegler–Natta polymerization. Under clean, ultra-high vacuum conditions, low-energy electron irradiation during the chemical vapor deposition of model Ziegler–Natta catalysts can be used to create a “single-site” catalyst film with a surface structure that produces only isotactic ...

  13. Photodetachment of negative ion in a gradient electric field near a metal surface

    International Nuclear Information System (INIS)

    Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng

    2012-01-01

    Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)

  14. Numerical simulation on the explosive boiling phenomena on the surface of molten metal

    International Nuclear Information System (INIS)

    Chen Deqi; Peng Cheng; Wang Qinghua; Pan Liangming

    2014-01-01

    In this paper, numerical simulation was carried out to investigate the explosive boiling phenomenon on high temperature surface also the influence of vapor growth rate during explosive boiling, vapor condensation in sub-cooled water and the subsequent effect on flowing and heat transfer. The simulation result indicates that the steam on the molten metal surface grows with very high speed, and it pushes away the sub-cooled water around and causes severe flowing. The steam clusters which block the sub-cooled water to rewet the molten metal surface are appearing at the same time. During the growth, lifting off as well as condensation of the steam clusters, the sub-cooled water around is strongly disturbed, and obvious vortexes appear. Conversely, the vortex will influence the steam cluster detachment and cub-cooled water rewetting the metal surface. This simulation visually displays the complex explosive boiling phenomena on the molten metal surface with high temperature. (authors)

  15. Fractionation and risk assessment of Fe and Mn in surface sediments from coastal sites of Sonora, Mexico (Gulf of California).

    Science.gov (United States)

    Jara-Marini, Martín E; García-Camarena, Raúl; Gómez-Álvarez, Agustín; García-Rico, Leticia

    2015-07-01

    The aim of this study was to evaluate Fe and Mn distribution in geochemical fractions of the surface sediment of four oyster culture sites in the Sonora coast, Mexico. A selective fractionation scheme to obtain five fractions was adapted for the microwave system. Surface sediments were analyzed for carbonates, organic matter contents, and Fe and Mn in geochemical fractions. The bulk concentrations of Fe ranged from 10,506 to 21,918 mg/kg (dry weight, dry wt), and the bulk concentrations of Mn ranged from 185.1 to 315.9 mg/kg (dry wt) in sediments, which was low and considered as non-polluted in all of the sites. The fractionation study indicated that the major geochemical phases for the metals were the residual, as well as the Fe and Mn oxide fractions. The concentrations of metals in the geochemical fractions had the following order: residual > Fe and Mn oxides > organic matter > carbonates > interchangeable. Most of the Fe and Mn were linked to the residual fraction. Among non-residual fractions, high percentages of Fe and Mn were linked to Fe and Mn oxides. The enrichment factors (EFs) for the two metals were similar in the four studied coasts, and the levels of Fe and Mn are interpreted as non-enrichment (EF < 1) because the metals concentrations were within the baseline concentrations. According to the environmental risk assessment codes, Fe and Mn posed no risk and low risk, respectively. Although the concentrations of Fe and Mn were linked to the residual fraction, the levels in non-residual fractions may significantly result in the transference of other metals, depending on several physico-chemical and biological factors.

  16. Preparation of surface conductive and highly reflective silvered polyimide films by surface modification and in situ self-metallization technique

    International Nuclear Information System (INIS)

    Wu Zhanpeng; Wu Dezhen; Qi Shengli; Zhang Teng; Jin Riguang

    2005-01-01

    Double surface conductive and reflective flexible silvered polyimide films have been prepared by alkali hydroxylation of polyimide film surface and incorporation of silver ions through subsequent ion exchange. Thermal curing of silver(I) polyamate precursor leads to re-cycloimidization of modified surface with concomitant silver reduction, yielding a reflective and conductive silver surface approaching that of native metal. The reflective and conductive surface evolves only when the cure temperature rises to 300 deg. C. The metallized films usually retain the essential mechanical properties of the parent films. Films were characterized by transmission electron microscopy (TEM), scanning electron microscopy and tapping mode atomic force microscopy (AFM). AFM demonstrates that the diameter of close-packed silver particles of the silver layers was about 50-150 nm. TEM shows that thickness of silver layer on the polyimide film surface is about 400-600 nm

  17. Influence of refraction of p-polarized light on photoemission from metallic surface states

    International Nuclear Information System (INIS)

    Bagchi, A.; Barrera, R.G.

    1979-01-01

    The refraction of p-polarized light at a metal surface leads, under certain circumstances, to a large peak in the spatial distribution of the normal component of the electric field near the surface. The origin of this peak is explained both in terms of a classical correspondence and in terms of a theory based on the non-local dielectric response of the metal surface. The significance of the large magnitude and rapid variation of the surface electric field in exciting photoelectrons from surface states is discussed [pt

  18. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  19. Bioavailability of particulate metal to zebra mussels: Biodynamic modelling shows that assimilation efficiencies are site-specific

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeault, Adeline, E-mail: bourgeault@ensil.unilim.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Gourlay-France, Catherine, E-mail: catherine.gourlay@cemagref.fr [Cemagref, Unite de Recherche Hydrosystemes et Bioprocedes, 1 rue Pierre-Gilles de Gennes, 92761 Antony (France); FIRE, FR-3020, 4 place Jussieu, 75005 Paris (France); Priadi, Cindy, E-mail: cindy.priadi@eng.ui.ac.id [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Ayrault, Sophie, E-mail: Sophie.Ayrault@lsce.ipsl.fr [LSCE/IPSL CEA-CNRS-UVSQ, Avenue de la Terrasse, 91198 Gif-sur-Yvette (France); Tusseau-Vuillemin, Marie-Helene, E-mail: Marie-helene.tusseau@ifremer.fr [IFREMER Technopolis 40, 155 rue Jean-Jacques Rousseau, 92138 Issy-Les-Moulineaux (France)

    2011-12-15

    This study investigates the ability of the biodynamic model to predict the trophic bioaccumulation of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) in a freshwater bivalve. Zebra mussels were transplanted to three sites along the Seine River (France) and collected monthly for 11 months. Measurements of the metal body burdens in mussels were compared with the predictions from the biodynamic model. The exchangeable fraction of metal particles did not account for the bioavailability of particulate metals, since it did not capture the differences between sites. The assimilation efficiency (AE) parameter is necessary to take into account biotic factors influencing particulate metal bioavailability. The biodynamic model, applied with AEs from the literature, overestimated the measured concentrations in zebra mussels, the extent of overestimation being site-specific. Therefore, an original methodology was proposed for in situ AE measurements for each site and metal. - Highlights: > Exchangeable fraction of metal particles did not account for the bioavailability of particulate metals. > Need for site-specific biodynamic parameters. > Field-determined AE provide a good fit between the biodynamic model predictions and bioaccumulation measurements. - The interpretation of metal bioaccumulation in transplanted zebra mussels with biodynamic modelling highlights the need for site-specific assimilation efficiencies of particulate metals.

  20. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien

    2015-10-29

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  1. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien; Duran Retamal, Jose Ramon; Ke, Jr Jian; Kang, Chen Fang; He, Jr-Hau

    2015-01-01

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  2. Status of siting studies for a near surface repository site for radioactive wastes in the Philippines

    International Nuclear Information System (INIS)

    Valdezco, E.M.; Palattao, M.V.B.; Marcelo, E.A.; Caseria, E.S.; Venida, L.L.; Cruz, J.M. dela

    2002-01-01

    The Philippines, through the Philippine Nuclear Research Institute (PNRI), decided to conduct a study on siting a low level radioactive waste disposal facility. The infrastructure set up for this purpose, the radioactive waste disposal concept, the overall siting process, the methodology applied and preliminary results obtained are described in this paper. (author)

  3. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    Science.gov (United States)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  4. Management of post-gastrectomy anastomosis site obstruction with a self-expandable metallic stent.

    Science.gov (United States)

    Cha, Ra Ri; Lee, Sang Soo; Kim, Hyunjin; Kim, Hong Jun; Kim, Tae-Hyo; Jung, Woon Tae; Lee, Ok Jae; Bae, Kyung Soo; Jeong, Sang-Ho; Ha, Chang Yoon

    2015-04-28

    Post-gastrectomy anastomosis site obstruction is a relatively rare complication after a subtotal gastrectomy. We present a case of a 75-year-old man who underwent a truncal vagotomy, omental patch, gastrojejunostomy, and Braun anastomosis for duodenal ulcer perforation and a gastric outlet obstruction. Following the 10(th) postoperative day, the patient complained of abdominal discomfort and vomiting. We diagnosed post-gastrectomy anastomosis site obstruction by an upper gastrointestinal series and an upper endoscopic examination. We inserted a self-expandable metallic stent (SEMS) at the anastomosis site. The stent was fully expanded after deployment. On the day following the stent insertion, the patient began to eat, and his abdominal discomfort was resolved. This paper describes the successful management of post-gastrectomy anastomosis site obstruction with temporary placement of a SEMS.

  5. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Directory of Open Access Journals (Sweden)

    Zueng-Sang Chen

    2010-10-01

    Full Text Available Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1 food safety risk assessment for brown rice growing in a HMs-contaminated site; (2 a tiered approach to health risk assessment for a contaminated site; (3 risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4 soil remediation cost analysis for contaminated sites in Taiwan.

  6. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    Science.gov (United States)

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851