WorldWideScience

Sample records for surface melted titanium

  1. Electron beam-melted, free-form-fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits.

    Science.gov (United States)

    Thomsen, Peter; Malmström, Johan; Emanuelsson, Lena; René, Magnus; Snis, Anders

    2009-07-01

    Titanium-6aluminum-4vanadium implants (Ti6Al4V) were prepared by free-form-fabrication (FFF) and were used either as produced or after machining and compared with wrought machined Ti6Al4V. Auger electron spectroscopy (AES), depth profiles, and interferometry were used to analyze the surface properties. The tissue response after 6-weeks in rabbit femur and tibia was evaluated using light microscopy and histomorphometry. The results revealed that the bulk chemical and mechanical properties of the reference material and the electron beam-melted (EBM) material were within the ASTM F136 specifications. The as-produced EBM Ti6Al4V implants had increased surface roughness, thicker surface oxide and, with the exception of a higher content of Fe, a similar surface chemical composition compared with machined EBM Ti6Al4V and machined, wrought Ti6Al4V implants. The two latter implants did not differ with respect to surface properties. The general tissue response was similar for all three implant types. Histomorphometry revealed a high degree of bone-to-implant contact (no statistically significant differences) for all the three implant types. The present results show that the surface properties of EBM Ti6Al4V display biological short-term behavior in bone equal to that of conventional wrought titanium alloy. The opportunity to engineer geometric properties provides new and additional benefits which justify further studies. (c) 2008 Wiley Periodicals, Inc.

  2. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Directory of Open Access Journals (Sweden)

    Suzan Bsat

    2015-04-01

    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  3. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  4. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    NARCIS (Netherlands)

    Bsat, S.; Yavari, S.; Munsch, M.; Valstar, E.R.; Zadpoor, A.A.

    2015-01-01

    Advanced additive manufacturing techniques such as electron beam melting (EBM), can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be

  5. Improved bioactivity of selective laser melting titanium: Surface modification with micro-/nano-textured hierarchical topography and bone regeneration performance evaluation.

    Science.gov (United States)

    Xu, Jia-Yun; Chen, Xian-Shuai; Zhang, Chun-Yu; Liu, Yun; Wang, Jing; Deng, Fei-Long

    2016-11-01

    Selective laser melting (SLM) titanium requires surface modification to improve its bioactivity. The microrough surface of it can be utilized as the micro primary substrate to create a micro-/nano-textured topography for improved bone regeneration. In this study, the microrough SLM titanium substrate was optimized by sandblasting, and nano-porous features of orderly arranged nanotubes and disorderly arranged nanonet were produced by anodization (SAN) and alkali-heat treatment (SAH), respectively. The results were compared with the control group of an untreated surface (native-SLM) and a microtopography only surface treated by acid etching (SLA). The effects of the different topographies on cell functions and bone formation performance were evaluated in vitro and in vivo. It was found that micro-/nano-textured topographies of SAN and SAH showed enhanced cell behaviour relative to the microtopography of SLA with significantly higher proliferation on the 1st, 3rd, 5th and 7th day (P<0.05) and higher total protein contents on the 14th day (P<0.05). In vivo, SAN and SAH formed more successively regenerated bone, which resulted in higher bone-implant contact (BIC%) and bone-bonding force than native-SLM and SLA. In addition, the three-dimensional nanonet of SAH was expected to be more similar to native extracellular matrix (ECM) and thus led to better bone formation. The alkaline phosphatase activity of SAH was significantly higher than the other three groups at an earlier stage of the 7th day (P<0.05) and the BIC% was nearly double that of native-SLM and SLA in the 8th week. In conclusion, the addition of nano-porous features on the microrough SLM titanium surface is effective in improving the bioactivity and bone regeneration performance, in which the ECM-like nanonet with a disorderly arranged biomimetic feature is suggested to be more efficient than nanotubes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Antibacterial Titanium Produced Using Selective Laser Melting

    Science.gov (United States)

    Macpherson, Andrew; Li, Xiaopeng; McCormick, Paul; Ren, Ling; Yang, Ke; Sercombe, Timothy B.

    2017-12-01

    Titanium and titanium alloys used in current medical and dental applications do not possess antibacterial properties, and therefore, postoperative infection remains a significant risk. Recently, the addition of silver and copper to conventional biomaterials has been shown to produce a material with good antibacterial properties. In this article, we investigate selective laser melting as a method of producing antibacterial Ti-6Al-4V containing elemental additions of Cu or Ag. The addition of Ag had no effect on the microstructure or strength, but it did result in a 300% increase in the ductility of the alloy. In contrast, the addition of Cu resulted in an increase in strength but in a decrease in ductility, along with a change in the structure of the material. The Cu-containing alloy also showed moderate antibacterial properties and was superior to the Ag-containing alloy.

  7. Surface modification of titanium and titanium alloys by ion implantation.

    Science.gov (United States)

    Rautray, Tapash R; Narayanan, R; Kwon, Tae-Yub; Kim, Kyo-Han

    2010-05-01

    Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements as well as in cardiac and cardiovascular applications, because of their desirable properties, such as relatively low modulus, good fatigue strength, formability, machinability, corrosion resistance, and biocompatibility. However, titanium and its alloys cannot meet all of the clinical requirements. Therefore, to improve the biological, chemical, and mechanical properties, surface modification is often performed. In view of this, the current review casts new light on surface modification of titanium and titanium alloys by ion beam implantation. (c) 2010 Wiley Periodicals, Inc.

  8. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  9. Gamma titanium aluminide production using the Induction Skull Melting (ISM) process

    International Nuclear Information System (INIS)

    Reed, S.

    1995-01-01

    Since 1985, more than 2,000 titanium aluminide heats have been produced using the Induction Skull Melting (ISM) process. The history of ISM/Gamma production will be discussed in this paper. Gamma titanium aluminide processing with Induction Skull Melting offers many advantages over other types of reactive alloy melting methods. These advantages will be discussed as well as drawbacks. Also, potential markets and applications for ISM/Gamma will be presented

  10. Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum

    Science.gov (United States)

    Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki

    2018-04-01

    The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.

  11. Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace

    Energy Technology Data Exchange (ETDEWEB)

    Morita, A. [Fuji Electric Furnace Co., Ltd., Suzuka, Mie (Japan); Fukui, H. [Depart of Dental Materials, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya (Japan); Tadano, H.; Hayashi, S. [Fuji Electric Furnace Co., Ltd., 5520, Minami tamagaki-cho, Suzuka, Mie (Japan); Hasegawa, J. [Depart of Dental Materials, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya (Japan); Niinomi, M. [Department of Production Systems Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi (Japan)

    2000-03-15

    Recently, titanium alloys have been studied as implant materials for dental and orthopedic surgery. Titanium alloys have distinguished characteristics of biocompatibility, corrosion resistance and mechanical properties. Having non-poisonous character to a living body, Ta, Zr and Nb have been used for addition to titanium alloys, which are free of vanadium and aluminum. It is well-known that titanium and tantalum are difficult metals to alloy in usual furnaces as these are very reactive metals, having great differences in melting point and specific gravity. To produce an alloy of titanium and tantalum, cold crucible levitation melting (CCLM) is effective in obtaining a uniform composition. Notable features of CCLM are that it can (1) melt metals with a high melting point, (2) create an alloy of uniform composition with a strong stirring effect by an electromagnetic force and (3) allow metals to be melted without contamination. We have melted 850 g of titanium and 150 g of tantalum by a CCLM furnace and have successfully made 1.0 kg of uniform composite Ti-15wt.% Ta alloy. It is noteworthy that the alloy was produced from pure base metals which were not alloyed beforehand and was made by a single melting (no re-melting) process. (orig.)

  12. Surface melting of deuterium hydride thick films

    OpenAIRE

    Zeppenfeld, P.; Bienfait, M.; Feng Chuan Liu,; Vilches, O.E.; Coddens, G.

    1990-01-01

    Quasi-elastic neutron scattering has been used to measure, below the bulk melting temperature, the thickness and the diffusion coefficient of the mobile surface layer of 8 and 10 layer thick films of deuterium hydride (HD) condensed on MgO(100). The measurements show that the close-packed surface of solid HD surface melts gradually, with the thickness of the melted layer increasing from 0.5 to 6 molecular layers as the temperature rises from 4 K to 0.05 K below the bulk melting temperature. T...

  13. Disordering and Melting of Aluminum Surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  14. Osseointegration of three-dimensional designed titanium implants manufactured by selective laser melting.

    Science.gov (United States)

    Shaoki, Algabri; Xu, Jia-Yun; Sun, Haipeng; Chen, Xian-Shuai; Ouyang, Jianglin; Zhuang, Xiu-Mei; Deng, Fei-Long

    2016-10-27

    The selective laser melting (SLM) technique is a recent additive manufacturing (AM) technique. Several studies have reported success in the SLM-based production of biocompatible orthopaedic implants and three-dimensional bone defect constructs. In this study, we evaluated the surface properties and biocompatibility of an SLM titanium implant in vitro and compared them with those of a machined (MA) titanium control surface. In addition, we evaluated the osseointegration capability of the SLM implants in vivo and compared it with those of MA and Nobel-speedy (Nobel-S) implants. SLM microtopographical surface analysis revealed porous and high roughness with varied geometry compared with a smooth surface in MA Ti samples but with similar favourable wettability. Osteoblast proliferation and alkaline phosphatase activity were significantly enhanced on the SLM surface. Histological analysis of the bone-implant contact ratio revealed no significant difference among SLM, MA, and Nobel-S implants. Micro-CT assessment indicated that there was no significant difference in bone volume fraction around the implant among SLM implants and other types of surface modification implants. The removal torque value measurement of SLM implants was significantly lower that of than Nobel-S implants P < 0.001 and higher than that of MA implants. The study demonstrates the capability of SLM implants to integrate with living bone. The SLM technique holds promise as a new dental implant manufacturing technique.

  15. [Design and fabrication of the custom-made titanium condyle by selective laser melting technology].

    Science.gov (United States)

    Chen, Jianyu; Luo, Chongdai; Zhang, Chunyu; Zhang, Gong; Qiu, Weiqian; Zhang, Zhiguang

    2014-10-01

    To design and fabricate the custom-made titanium mandibular condyle by the reverse engineering technology combined with selective laser melting (SLM) technology and to explore the mechanical properties of the SLM-processed samples and the application of the custom-made condyle in the temporomandibular joint (TMJ) reconstruction. The three-dimensional model of the mandibular condyle was obtained from a series of CT databases. The custom-made condyle model was designed by the reverse engineering software. The mandibular condyle was made of titanium powder with a particle size of 20-65 µm as the basic material and the processing was carried out in an argon atmosphere by the SLM machine. The yield strength, ultimate strength, bending strength, hardness, surface morphology and roughness were tested and analyzed. The finite element analysis (FEA) was used to analyze the stress distribution. The complex geometry and the surface of the custom-made condyle can be reproduced precisely by the SLM. The mechanical results showed that the yield strength, ultimate strength, bending strength and hardness were (559±14) MPa, (659±32) MPa, (1 067±42) MPa, and (212±4)HV, respectively. The surface roughness was reduced by sandblast treatment. The custom-made titanium condyle can be fabricated by SLM technology which is time-saving and highly digitized. The mechanical properties of the SLM sample can meet the requirements of surgical implant material in the clinic. The possibility of fabricating custom-made titanium mandibular condyle combined with the FEA opens new interesting perspectives for TMJ reconstruction.

  16. Surface treatment for inducing nanotopography on titanium

    International Nuclear Information System (INIS)

    Oliveira, S.V. de; Ribeiro, A.A.; Oliveira, M.V. de

    2014-01-01

    The titanium implant surface plays extremely important role in the biological response. Therefore, the objective of this research was to study the titanium surface nanotopography modified by chemical treatment, in order to improve its bioactivity. Commercially pure titanium samples, ASTM F67 grade 2, were immersed in H 2 SO 4 /H 2 O 2 solution for 2 or 4 hours. The samples were characterized by Scanning Electron Microscopy, Scanning Confocal Optical Microscopy, X-ray Photoelectron Spectroscopy and Diffuse Reflectance Infrared Fourier Transform Spectroscopy. The results revealed nanostructured surfaces with TiO 2 layer, average roughness of 0.86 ± 0.06 μm and 1.07 ± 0.05 μm for 2 or 4 hours, respectively and nanopores with 18 ± 6.82 nm average diameter. (author)

  17. Enhancing osseointegration using surface-modified titanium implants

    Science.gov (United States)

    Yang, Y.; Oh, N.; Liu, Y.; Chen, W.; Oh, S.; Appleford, M.; Kim, S.; Kim, K.; Park, S.; Bumgardner, J.; Haggard, W.; Ong, J.

    2006-07-01

    Osseointegrated dental implants are used to replace missing teeth. The success of implants is due to osseointegration or the direct contact of the implant surface and bone without a fibrous connective tissue interface. This review discusses the enhancement of osseointegration by means of anodized microporous titanium surfaces, functionally macroporous graded titanium coatings, nanoscale titanium surfaces, and different bioactive factors.

  18. Osteoblastic cell behaviour on modified titanium surfaces.

    Science.gov (United States)

    Lukaszewska-Kuska, Magdalena; Wirstlein, Przemysław; Majchrowski, Radomir; Dorocka-Bobkowska, Barbara

    2018-02-01

    The surfaces of endoosseous dental implants have been subjected to numerous modifications in order to create a surface which can provide rapid bone healing and fast implant loading. Each modification has involved changes to the chemical composition and topography of the surfaces which have resulted in various biological reactions to the implanted material. The aim of this study was to evaluate the surface topography and chemistry of various modified titanium surfaces: (1) machined surface (MA), (2) alumina-blasted (Al2O3), (3) alumina-blasted and acid-etched (Al2O3 DE), (4) hydroxyapatite/tricalcium phosphate grit-blasted (HA/TCP) and (5) hydroxyapatite/tricalcium phosphate grit-blasted and acid-etched (HA/TCP DE) and to analyse the effects of surface roughness, and chemical composition on human osteoblast vitality, differentiation, morphology and orientation. The modified surfaces were subjected to topographic analysis using Scanning Electron Microscopy (SEM), optical profilometry, roughness analysis and chemical composition evaluation using Energy Dispersion Spectroscopy (EDS) analysis. The biological effects of the titanium modifications was analysed using human osteoblasts cell culture where the cell morphology, vitality (MTS assay) and differentiation (ALP activity) was analysed. The machined surfaces were classified as anisotropic, smooth and composed of titanium and oxygen. The blasted surface samples along with the blasted and etched samples were found to be isotropic and rough. The grit-blasting procedure resulted in the incorporation of components from the blasting material. In the case of the blasted and etched samples, etching decreased the surface development as indicated by the Sdr and also reduced the amount of chemical compounds incorporated into the surfaces during the blasting procedure. The attached NHOst cells, proliferated the surfaces. With regard to the MA samples, the cells spread close to the titanium surface, with expanded cytoplasmic

  19. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    NARCIS (Netherlands)

    J. van der Stok (Johan); O.P. van der Jagt (Olav); S. Amin Yavari (Saber); M.F.P. de Haas (Mirthe); J.H. Waarsing (Jan); H. Jahr (Holger); E.M.M. van Lieshout (Esther); P. Patka (Peter); J.A.N. Verhaar (Jan); A.A. Zadpoor (Amir Abbas); H.H. Weinans (Harrie)

    2013-01-01

    textabstractPorous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut

  20. Selective Laser Sintering And Melting Of Pristine Titanium And Titanium Ti6Al4V Alloy Powders And Selection Of Chemical Environment For Etching Of Such Materials

    Directory of Open Access Journals (Sweden)

    Dobrzański L.A.

    2015-09-01

    Full Text Available The aim of the investigations described in this article is to present a selective laser sintering and melting technology to fabricate metallic scaffolds made of pristine titanium and titanium Ti6Al4V alloy powders. Titanium scaffolds with different properties and structure were manufactured with this technique using appropriate conditions, notably laser power and laser beam size. The purpose of such elements is to replace the missing pieces of bones, mainly cranial and facial bones in the implantation treatment process. All the samples for the investigations were designed in CAD/CAM (3D MARCARM ENGINEERING AutoFab (Software for Manufacturing Applications software suitably integrated with an SLS/SLM system. Cube-shaped test samples dimensioned 10×10×10 mm were designed for the investigations using a hexagon-shaped base cell. The so designed 3D models were transferred to the machine software and the actual rapid manufacturing process was commenced. The samples produced according to the laser sintering technology were subjected to chemical processing consisting of etching the scaffolds’ surface in different chemical mediums. Etching was carried out to remove the loosely bound powder from the surface of scaffolds, which might detach from their surface during implantation treatment and travel elsewhere in an organism. The scaffolds created were subjected to micro- and spectroscopic examinations

  1. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  2. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  3. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  4. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  5. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  6. Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects.

    Science.gov (United States)

    Van der Stok, Johan; Van der Jagt, Olav P; Amin Yavari, Saber; De Haas, Mirthe F P; Waarsing, Jan H; Jahr, Holger; Van Lieshout, Esther M M; Patka, Peter; Verhaar, Jan A N; Zadpoor, Amir A; Weinans, Harrie

    2013-05-01

    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-µm (titanium-120) or 230-µm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm(3) (titanium-120, p = 0.015) and 18.7 ± 8.0 mm(3) (titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm(3) ). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyright © 2012 Orthopaedic Research Society.

  7. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting.

    Science.gov (United States)

    Kanazawa, Manabu; Iwaki, Maiko; Minakuchi, Shunsuke; Nomura, Naoyuki

    2014-12-01

    Casting difficulties have led to the limited use of titanium in dental prostheses. The selective laser melting system was recently developed to fabricate biomedical components from titanium alloys. However, the fabrication of a titanium alloy framework for a maxillary complete denture by selective laser melting has not yet been investigated. The purpose of the study was to fabricate thin titanium alloy frameworks for a maxillary complete denture with a selective laser melting system and to evaluate their hardness and microstructure. A cast of an edentulous maxilla was scanned with a dental 3-dimensional cone-beam computed tomography system, and standard triangulation language data were produced with the DICOM Viewer (Digital Imaging and Communications in Medicine). Two types of metal frameworks for complete dentures were designed with 3-dimensional computer-aided design software. Two titanium alloy frameworks, SLM-1 and SLM-2, were fabricated from these designs with the selective laser melting system. Plate-shaped specimens were cut from the central flat region of SLM-1, SLM-2, and as-cast Ti-6Al-4V (As-cast). Vickers hardness testing, optical microscopy, and x-ray diffraction measurements were performed. Thin titanium alloy frameworks for maxillary complete dentures could be fabricated by selective laser melting. The hardness values for SLM-1 and SLM-2 were higher than that for the as-cast specimen. Optical microscopy images of the SLM-1 and SLM-2 microstructure showed that the specimens did not exhibit pores, indicating that dense frameworks were successfully obtained with the selective laser melting process. In the x-ray diffraction patterns, only peaks associated with the α phase were observed for SLM-1 and SLM-2. In addition, the lattice parameters for SLM-1 and SLM-2 were slightly larger than those for the as-cast specimen. The mechanical properties and microstructure of the denture frameworks prepared by selective laser melting indicate that these dentures

  8. Microstructure of selective laser melted nickel–titanium

    International Nuclear Information System (INIS)

    Bormann, Therese; Müller, Bert; Schinhammer, Michael; Kessler, Anja; Thalmann, Peter; Wild, Michael de

    2014-01-01

    In selective laser melting, the layer-wise local melting of metallic powder by means of a scanning focused laser beam leads to anisotropic microstructures, which reflect the pathway of the laser beam. We studied the impact of laser power, scanning speed, and laser path onto the microstructure of NiTi cylinders. Here, we varied the laser power from 56 to 100 W and the scanning speed from about 100 to 300 mm/s. In increasing the laser power, the grain width and length increased from (33 ± 7) to (90 ± 15) μm and from (60 ± 20) to (600 ± 200) μm, respectively. Also, the grain size distribution changed from uni- to bimodal. Ostwald-ripening of the crystallites explains the distinct bimodal size distributions. Decreasing the scanning speed did not alter the microstructure but led to increased phase transformation temperatures of up to 40 K. This was experimentally determined using differential scanning calorimetry and explained as a result of preferential nickel evaporation during the fabrication process. During selective laser melting of the NiTi shape memory alloy, the control of scanning speed allows restricted changes of the transformation temperatures, whereas controlling the laser power and scanning path enables us to tailor the microstructure, i.e. the crystallite shapes and arrangement, the extent of the preferred crystallographic orientation and the grain size distribution. - Highlights: • Higher laser powers during selective laser melting of NiTi lead to larger grains. • Selective laser melting of NiTi gives rise to preferred <111> orientation. • The observed Ni/Ti ratio depends on the exposure time. • Ostwald ripening explains the bimodal grain size distribution

  9. [A preliminary study on the forming quality of titanium alloy removable partial denture frameworks fabricated by selective laser melting].

    Science.gov (United States)

    Liu, Y F; Yu, H; Wang, W N; Gao, B

    2017-06-09

    Objective: To evaluate the processing accuracy, internal quality and suitability of the titanium alloy frameworks of removable partial denture (RPD) fabricated by selective laser melting (SLM) technique, and to provide reference for clinical application. Methods: The plaster model of one clinical patient was used as the working model, and was scanned and reconstructed into a digital working model. A RPD framework was designed on it. Then, eight corresponding RPD frameworks were fabricated using SLM technique. Three-dimensional (3D) optical scanner was used to scan and obtain the 3D data of the frameworks and the data was compared with the original computer aided design (CAD) model to evaluate their processing precision. The traditional casting pure titanium frameworks was used as the control group, and the internal quality was analyzed by X-ray examination. Finally, the fitness of the frameworks was examined on the plaster model. Results: The overall average deviation of the titanium alloy RPD framework fabricated by SLM technology was (0.089±0.076) mm, the root mean square error was 0.103 mm. No visible pores, cracks and other internal defects was detected in the frameworks. The framework fits on the plaster model completely, and its tissue surface fitted on the plaster model well. There was no obvious movement. Conclusions: The titanium alloy RPD framework fabricated by SLM technology is of good quality.

  10. Ion Implantation Studies of Titanium Metal Surfaces.

    Science.gov (United States)

    1981-01-01

    this peak for both titanium and vanadium . It cannot be associated with an inter-band excitation of any of the oxygen states since it appears in the...Half inch diameter polycrystalline rods of titanium monoxide (TiO), titanium dioxide (TiO 2 and titanium sesquioxide (Ti2 03 ) were obtained from

  11. Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting

    International Nuclear Information System (INIS)

    Vrancken, B.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J.

    2014-01-01

    Selective laser melting (SLM) is an additive manufacturing process in which functional, complex parts are produced by selectively melting consecutive layers of powder with a laser beam. This flexibility enables the exploration of a wide spectrum of possibilities in creating novel alloys or even metal–metal composites with unique microstructures. In this research, Ti6Al4V-ELI powder was mixed with 10 wt.% Mo powder. In contrast to the fully α′ microstructure of Ti6Al4V after SLM, the novel microstructure consists of a β titanium matrix with randomly dispersed pure Mo particles, as observed by light optical microscopy, scanning electron microscopy and X-ray diffraction. Most importantly, the solidification mechanism changes from planar to cellular mode. Microstructures after heat treatment indicate that the β phase is metastable and locate the β transus at ∼900 °C, and tensile properties are equal to or better than conventional β titanium alloys

  12. Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Dirscherl, Kai; Yihua, Yu

    2013-01-01

    The titanium implant surface plays a crucial role for implant incorporation into bone. A new strategy to improve implant integration in a bone is to develop surface nanocoatings with plant-derived polysaccharides able to increase adhesion of bone cells to the implant surface. The aim of the present...... study was to physically characterize and compare polystyrene and titanium surfaces nanocoated with different Rhamnogalacturonan-Is (RG-I) and to visualize RG-I nanocoatings. RG-Is from potato and apple were coated on aminated surfaces of polystyrene, titianium discs and titanium implants...... wettability, without any major effect on surface roughness (Sa, Sdr). Furthermore, we demonstrated that it is possible to visualize the pectin RG-Is molecules and even the nanocoatings on titanium surfaces, which have not been presented before. The comparison between polystyrene and titanium surface showed...

  13. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting.

    Science.gov (United States)

    Habijan, T; Haberland, C; Meier, H; Frenzel, J; Wittsiepe, J; Wuwer, C; Greulich, C; Schildhauer, T A; Köller, M

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Structural Integrity of an Electron Beam Melted Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Robert Lancaster

    2016-06-01

    Full Text Available Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM, a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.

  15. Osteoblastic response to pectin nanocoating on titanium surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Svava, Rikke; Yihua, Yu

    2014-01-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple...... with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell...... galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating...

  16. Surface Modifications and Their Effects on Titanium Dental Implants

    Science.gov (United States)

    Jemat, A.; Ghazali, M. J.; Razali, M.; Otsuka, Y.

    2015-01-01

    This review covers several basic methodologies of surface treatment and their effects on titanium (Ti) implants. The importance of each treatment and its effects will be discussed in detail in order to compare their effectiveness in promoting osseointegration. Published literature for the last 18 years was selected with the use of keywords like titanium dental implant, surface roughness, coating, and osseointegration. Significant surface roughness played an important role in providing effective surface for bone implant contact, cell proliferation, and removal torque, despite having good mechanical properties. Overall, published studies indicated that an acid etched surface-modified and a coating application on commercial pure titanium implant was most preferable in producing the good surface roughness. Thus, a combination of a good surface roughness and mechanical properties of titanium could lead to successful dental implants. PMID:26436097

  17. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  18. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Habijan, T., E-mail: Tim.Habijan@rub.de [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany); Haberland, C.; Meier, H. [Institute Product and Service Engineering, Ruhr-University Bochum (Germany); Frenzel, J. [Institute for Materials, Ruhr-University Bochum (Germany); Wittsiepe, J. [Department of Hygiene, Social and Environmental Medicine, Ruhr-University Bochum (Germany); Wuwer, C.; Greulich, C.; Schildhauer, T.A.; Koeller, M. [Surgical Research, Department of Surgery, BG Kliniken Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum (Germany)

    2013-01-01

    Nickel-Titanium shape memory alloys (NiTi-SMA) are of biomedical interest due to their unusual range of pure elastic deformability and their elastic modulus, which is closer to that of bone than any other metallic or ceramic material. Newly developed porous NiTi, produced by Selective Laser Melting (SLM), is currently under investigation as a potential carrier material for human mesenchymal stem cells (hMSC). SLM enables the production of highly complex and tailor-made implants for patients on the basis of CT data. Such implants could be used for the reconstruction of the skull, face, or pelvis. hMSC are a promising cell type for regenerative medicine and tissue engineering due to their ability to support the regeneration of critical size bone defects. Loading porous SLM-NiTi implants with autologous hMSC may enhance bone growth and healing for critical bone defects. The purpose of this study was to assess whether porous SLM-NiTi is a suitable carrier for hMSC. Specimens of varying porosity and surface structure were fabricated via SLM. hMSC were cultured for 8 days on NiTi specimens, and cell viability was analyzed using two-color fluorescence staining. Viable cells were detected on all specimens after 8 days of cell culture. Cell morphology and surface topography were analyzed by scanning electron microscopy (SEM). Cell morphology and surface topology were dependent on the orientation of the specimens during SLM production. The Nickel ion release can be reduced significantly by aligned laser processing conditions. The presented results clearly attest that both dense SLM-NiTi and porous SLM-NiTi are suitable carriers for hMSC. Nevertheless, before carrying out in vivo studies, some work on optimization of the manufacturing process and post-processing is required. - Highlights: Black-Right-Pointing-Pointer Specimens, varying in porosity and surface structure were produced via SLM. Black-Right-Pointing-Pointer Biocompatibility of these specimens was analyzed. Black

  19. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  20. Ultrasonic Surface Treatment of Titanium Alloys. The Submicrocrystalline State

    Science.gov (United States)

    Klimenov, V. A.; Vlasov, V. A.; Borozna, V. Y.; Klopotov, A. A.

    2015-09-01

    The paper presents the results of the research on improvement of physical-and- mechanical properties of titanium alloys VT1-0 and VT6 by modification of surfaces using ultrasonic treatment, and a comprehensive study of the microstructure and mechanical properties of modified surface layers. It has been established that exposure to ultrasonic treatment leads to formation in the surface layer of a structure with an average size of elements 50 - 100 nm, depending on the brand of titanium alloy.

  1. Laser surface alloying of commercially pure titanium with boron and carbon

    Science.gov (United States)

    Makuch, N.; Kulka, M.; Dziarski, P.; Przestacki, D.

    2014-06-01

    Laser surface alloying with boron and carbon was applied to produce the composite layers, reinforced by the hard ceramic phases (titanium borides and titanium carbides), on commercially pure titanium. The external cylindrical surface of substrate material was coated by paste containing boron, boron and graphite, or graphite. Then, the laser re-melting was carried out with using the continuous-wave CO2 laser. This enabled the formation of laser-borided, laser-borocarburized, and laser-carburized layers. The microstructure or the re-melted zone consisted of the hard ceramic phases (TiB+TiB2, TiB+TiB2+TiC, or TiC) located in the eutectic mixture of Tiα'-phase with borides, borides and carbides, or carbides, respectively. All the composite layers were characterized by the sufficient cohesion. The significant increase in microhardness and in wear resistance of all the laser-alloyed layers was observed in comparison with commercially pure titanium. The percentage of hard ceramic phases in more plastic eutectic mixture influenced the measured microhardness values. The dominant wear mechanism (abrasive or adhesive) depended on the method of laser alloying, and the type of test used. The wear tests for longer duration, without the change in the counter specimen, created the favourable conditions for adhesive wear, while during the shorter tests the abrasive wear dominated, as a rule.

  2. The surface science of titanium dioxide

    Science.gov (United States)

    Diebold, Ulrike

    2003-01-01

    Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1 1 0), (1 0 0), (0 0 1), and anatase surfaces is reviewed. This paper starts with a summary of the wide variety of technical fields where TiO 2 is of importance. The bulk structure and bulk defects (as far as relevant to the surface properties) are briefly reviewed. Rules to predict stable oxide surfaces are exemplified on rutile (1 1 0). The surface structure of rutile (1 1 0) is discussed in some detail. Theoretically predicted and experimentally determined relaxations of surface geometries are compared, and defects (step edge orientations, point and line defects, impurities, surface manifestations of crystallographic shear planes—CSPs) are discussed, as well as the image contrast in scanning tunneling microscopy (STM). The controversy about the correct model for the (1×2) reconstruction appears to be settled. Different surface preparation methods, such as reoxidation of reduced crystals, can cause a drastic effect on surface geometries and morphology, and recommendations for preparing different TiO 2(1 1 0) surfaces are given. The structure of the TiO 2(1 0 0)-(1×1) surface is discussed and the proposed models for the (1×3) reconstruction are critically reviewed. Very recent results on anatase (1 0 0) and (1 0 1) surfaces are included. The electronic structure of stoichiometric TiO 2 surfaces is now well understood. Surface defects can be detected with a variety of surface spectroscopies. The vibrational structure is dominated by strong Fuchs-Kliewer phonons, and high-resolution electron energy loss spectra often need to be deconvoluted in order to render useful information about adsorbed molecules. The growth of metals (Li, Na, K, Cs, Ca, Al, Ti, V, Nb, Cr, Mo, Mn, Fe, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) as well as some metal oxides on TiO 2 is reviewed. The tendency to 'wet' the overlayer, the growth morphology, the

  3. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  4. Additive manufacturing of a high niobium-containing titanium aluminide alloy by selective electron beam melting

    International Nuclear Information System (INIS)

    Tang, H.P.; Yang, G.Y.; Jia, W.P.; He, W.W.; Lu, S.L.; Qian, M.

    2015-01-01

    Additive manufacturing (AM) offers a radical net-shape manufacturing approach for titanium aluminide alloys but significant challenges still remain. A study has been made of the AM of a high niobium-containing titanium aluminide alloy (Ti–45Al–7Nb–0.3W, in at% throughout the paper) using selective electron beam melting (SEBM). The formation of various types of microstructural defects, including banded structures caused by the vaporization of aluminum, was investigated with respect to different processing parameters. To avoid both micro- and macro-cracks, the use of higher preheating temperatures and an intermediate reheating process (to reheat each solidified layer during SEBM) was assessed in detail. These measures enabled effective release of the thermal stress that developed during SEBM and therefore the avoidance of cracks. In addition, the processing conditions for the production of a fine full lamellar microstructure were identified. As a result, the Ti–45Al–7Nb–0.3W alloy fabricated showed outstanding properties (compression strength: 2750 MPa; strain-to-fracture: 37%). SEBM can be used to fabricate high performance titanium aluminide alloys with appropriate processing parameters and pathways

  5. Observation of a prewetting transition during surface melting of caprolactam

    Science.gov (United States)

    Chandavarkar, Sumant; Geertman, Rob M.; de Jeu, Wim H.

    1992-10-01

    The surface-induced melting of the closed-packed (100) face of the anisotropic molecular crystal caprolactam has been studied using x-ray reflectivity. A thin-to-thick film prewetting transition is observed at about 13 K below the bulk melting point. Only above this transition does the thickness of the quasiliquid layer increase continuously with temperature. We speculate that initially the surface melting proceeds via layering transitions.

  6. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  7. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  8. Nanotexturing of surfaces to reduce melting point.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  9. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein.

    Directory of Open Access Journals (Sweden)

    Andreas Baranowski

    Full Text Available Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES, and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants

  10. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  11. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  12. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Directory of Open Access Journals (Sweden)

    Julia Matena

    2015-06-01

    Full Text Available Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL, intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating.

  13. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  14. Evidence of antibacterial activity on titanium surfaces through nanotextures

    Science.gov (United States)

    Seddiki, O.; Harnagea, C.; Levesque, L.; Mantovani, D.; Rosei, F.

    2014-07-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO2. Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  15. Evidence of antibacterial activity on titanium surfaces through nanotextures

    International Nuclear Information System (INIS)

    Seddiki, O.; Harnagea, C.; Levesque, L.; Mantovani, D.; Rosei, F.

    2014-01-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO 2 . Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  16. Evidence of antibacterial activity on titanium surfaces through nanotextures

    Energy Technology Data Exchange (ETDEWEB)

    Seddiki, O.; Harnagea, C. [INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Levesque, L.; Mantovani, D. [Laboratory for Biomaterials and Bioengineering (CRC-I), Dept Min-Met-Materials Engineering and Research Center CHU-Quebec, Laval University, Quebec City (Canada); Rosei, F., E-mail: rosei@emt.inrs.ca [INRS – Centre Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, H3A 2K6 Montreal, Quebec (Canada)

    2014-07-01

    Nosocomial infections (Nis) are a major concern for public health. As more and more of the pathogens responsible for these infections are antibiotic resistant, finding new ways to overcome them is a major challenge for biomedical research. We present a method to reduce Nis spreading by hindering bacterial adhesion in its very early stage. This is achieved by reducing the contact interface area between the bacterium and the surface by nanoengineering the surface topography. In particular, we studied the Escheria Coli adhesion on titanium surfaces exhibiting different morphologies, that were obtained by a combination of mechanical polishing and chemical etching. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) characterization revealed that the titanium surface is modified at both micro- and nano-scale. X-ray Photoelectron Spectroscopy (XPS) revealed that the surfaces have the same composition before and after piranha treatment, consisting mainly of TiO{sub 2}. Adhesion tests showed a significant reduction in bacterial accumulation on nanostructured surfaces that had the lowest roughness over large areas. SEM images acquired after bacterial culture on different titanium substrates confirmed that the polished titanium surface treated one hour in a piranha solution at a temperature of 25 °C has the lowest bacterial accumulation among all the surfaces tested. This suggests that the difference observed in bacterial adhesion between the different surfaces is due primarily to surface topography.

  17. Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres - Comparative study

    Science.gov (United States)

    Ciganovic, J.; Stasic, J.; Gakovic, B.; Momcilovic, M.; Milovanovic, D.; Bokorov, M.; Trtica, M.

    2012-01-01

    Interaction of a TEA CO2 laser, operating at 10.6 μm wavelength and pulse duration of 100 ns (FWHM), with a titanium implant in various gas atmospheres was studied. The Ti implant surface modification was typically studied at the moderate laser beam energy density/fluence of 28 J/cm2 in the surrounding of air, N2, O2 or He. The energy absorbed from the TEA CO2 laser beam is partially converted to thermal energy, which generates a series of effects, such as melting, vaporization of the molten material, shock waves, etc. The following titanium implant surface changes and phenomena were observed, depending on the gas used: (i) creation of cone-like surface structures in the atmospheres of air, N2 and O2, and dominant micro-holes/pores in He ambient; (ii) hydrodynamic features, most prominent in air; (iii) formation of titanium nitride and titanium oxide layers, and (iv) occurrence of plasma in front of the implant. It can be concluded from this study that the reported laser fluence and gas ambiences can effectively be applied for enhancing the titanium implant roughness and creation of titanium oxides and nitrides on the strictly localized surface area. The appearance of plasma in front of the implants indicates relatively high temperatures created above the surface. This offers a sterilizing effect, facilitating contaminant-free conditions.

  18. Antibacterial and bioactive nanostructured titanium surfaces for bone integration

    Science.gov (United States)

    Ferraris, S.; Venturello, A.; Miola, M.; Cochis, A.; Rimondini, L.; Spriano, S.

    2014-08-01

    An effective and physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant. A titanium surface able to actively promote bone bonding and avoid microbial colonization represents an extremely interesting challenge for these purposes. An innovative and patented surface treatment focused on these issues is described in the present paper. It is based on acid etching and subsequent controlled oxidation in hydrogen peroxide, enriched with silver ions. It has been applied to commercially pure titanium (Ti-cp) and alloy Ti6Al4V. The chemistry and morphology of the surfaces are modified by the treatment on a nanoscale: they show a thin oxide layer with porosity on the nanoscale and silver particles (few nanometers in diameter), embedded in it. These features are effective in order to obtain antibacterial and bioactive titanium surfaces.

  19. Hardness, microstructure and surface characterization of laser gas nitrided commercially pure titanium using high power CO{sub 2} laser

    Energy Technology Data Exchange (ETDEWEB)

    Selvan, J.S.; Subramanian, K. [Anna Univ., Chennai (India). Dept. of Physics; Nath, A.K. [Center for Advanced Technology, Madya Pradesh (India); Gogia, A.K. [DMRL, Hyderabad (India); Balamurugan, A.K.; Rajagopal, S. [Indira Gandhi Centre for Atomic Research, Tamil Nadu (India). Materials Science Div.

    1998-10-01

    Surface nitriding of commercially pure (CP) titanium was carried out using high power CO{sub 2} laser at pure nitrogen and dilute nitrogen (N{sub 2} + Ar) environment. The hardness, microstructure, and melt pool configuration of the laser melted titanium in helium and argon atmosphere was compared with laser melting at pure and dilute nitrogen environment. The hardness of the nitrided layer was of the order of 1000 to 1600 HV. The hardness of the laser melted titanium in the argon and helium atmosphere was 500 to 1000 HV. Using x-ray analysis of the formation of TiN and Ti{sub 2}N phase was identified in the laser nitrided titanium. The presence of nitrogen in the nitrided zone was confirmed using secondary ion mass spectroscopy (SIMS) analysis. The microstructures revealed densely populated dendrites in the sample nitrided at 100% N{sub 2} environment and thinly populated dendrites in dilute environment. The crack intensity was large in the nitrided sample at pure nitrogen, and few cracks were observed in the 50% N{sub 2} + 50% Ar environment.

  20. Processing of a metastable titanium alloy (Ti-5553 by selective laser melting

    Directory of Open Access Journals (Sweden)

    C. Zopp

    2017-09-01

    Material densities above 99.93% were achieved by optimisation of energy input during selective laser melting process. However, the use of reference fraction (10–63 μm allowed the highest material density. Regarding to surface quality, an impact of coarse grain (53–63 μm was identified and an optimised grain size distribution derived. An optimum averaged surface roughness could be calculated, using a grain size between 25–32 μm.

  1. Osteoblastic response to pectin nanocoating on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gurzawska, Katarzyna, E-mail: kagu@sund.ku.dk [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); Institute of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen N (Denmark); Svava, Rikke [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Yihua, Yu; Haugshøj, Kenneth Brian [Microtechnology and Surface Analysis, Danish Technological Institute, Gregersensvej 8, 2630 Taastrup (Denmark); Dirscherl, Kai [Dansk Fundamental Metrologi A/S, Matematiktorvet 307, 2800 Lyngby (Denmark); Levery, Steven B. [Copenhagen Center for Glycomics, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N (Denmark); Byg, Inge [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Damager, Iben [Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd (Denmark); Nielsen, Martin W. [Department of Systems Biology, Technical University of Denmark, Matematiktorvet, Building 301, Kgs. Lyngby DK-2800 (Denmark); Jørgensen, Bodil [Department of Plant Environment Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Jørgensen, Niklas Rye [Research Center for Ageing and Osteoporosis, Departments of Medicine and Diagnostics, Copenhagen University Hospital Glostrup, Ndr. Ringvej 57, 2600 Glostrup (Denmark); and others

    2014-10-01

    Osseointegration of titanium implants can be improved by organic and inorganic nanocoating of the surface. The aim of our study was to evaluate the effect of organic nanocoating of titanium surface with unmodified and modified pectin Rhamnogalacturonan-Is (RG-Is) isolated from potato and apple with respect to surface properties and osteogenic response in osteoblastic cells. Nanocoatings on titanium surfaces were evaluated by scanning electron microscopy, contact angle measurements, atomic force microscopy, and X-ray photoelectron spectroscopy. The effect of coated RG-Is on cell adhesion, cell viability, bone matrix formation and mineralization was tested using SaOS-2 cells. Nanocoating with pectin RG-Is affected surface properties and in consequence changed the environment for cellular response. The cells cultured on surfaces coated with RG-Is from potato with high content of linear 1.4-linked galactose produced higher level of mineralized matrix compared with control surfaces and surfaces coated with RG-I with low content of linear 1.4-linked galactose. The study showed that the pectin RG-Is nanocoating not only changed chemical and physical titanium surface properties, but also specific coating with RG-Is containing high amount of galactan increased mineralized matrix formation of osteoblastic cells in vitro. - Highlights: • Surface nanocoating with plant-derived Rhamnogalacturonan-I (RG-I) is proposed. • Titanium surface became more hydrophilic after RG-Is nanocoating. • RG-Is with high galactose content resulted in high level of mineralized matrix. • RG-I is a new candidate for improvement of bone healing and osseointegration.

  2. The influence of melting processes and parameters on the structure and homogeneity of titanium-tantalum alloys

    International Nuclear Information System (INIS)

    Dunn, P.S.; Korzekwa, D.; Garcia, F.; Damkroger, B.K.; Avyle, J.A. Van Den; Tissot, R.G.

    1996-01-01

    Alloys of titanium with refractory metals are attractive materials for applications requiring high temperature strength and corrosion resistance. However, the widely different characteristics of the component elements have made it difficult to produce sound, compositionally homogeneous ingots using traditional melting techniques. This is particularly critical because the compositional ranges spanned by the micro- and macrosegregation in theses systems can easily encompass a number of microconstituents which are detrimental to mechanical properties. This paper presents the results of a study of plasma (PAM) and vacuum-arc (VAR) melting of a 60 wt% tantalum, 40 wt% titanium binary alloy. The structural and compositional homogeneity of PAM consolidated +PAM remelted, and PAM consolidated +VAR remelted ingots were characterized and compared using optical and electron microscopy and x-ray fluorescence microanalysis. Additionally, the effect of melting parameter, including melt rate and magnetic stirring, was studied. The results indicated the PAM remelting achieves more complete dissolution of the starting electrode, due to greater local superheat, than does VAR remelting. PAM remelting also produces a finer as solidified grain structure, due to the smaller molten pool and lower local solidification times. Conversely, VAR remelting produces an ingot with a more uniform macrostructure, due to the more stable movement of the solidification interface and more uniform material feed rate. Based on these results, a three-step process of PAM consolidation, followed by a PAM intermediate melt and a VAR final melt, has been selected for further development of the alloy and processing sequence

  3. Surface treatment of screw shaped titanium dental implants by high intensity laser pulses

    Science.gov (United States)

    Pető, G.; Karacs, A.; Pászti, Z.; Guczi, L.; Divinyi, T.; Joób, A.

    2002-01-01

    Machined and Al 2O 3 blasted surfaces of screw shaped Ti dental implants were irradiated by 30 ns pulses of Nd:glass laser at 1064 nm wavelength with 0.5-3 J pulse energy. The laser treatment increased the temperature of the Ti surface well above the melting temperature. The resulting ablation of some surface layers was followed by a very rapid solidification. These thermal processes strongly modified the original morphology of the surface and removed the contaminations. The new morphology was characterized by features mostly in ten micron and partly in submicron ranges. The surface composition was the same as the bulk titanium without any segregation. Animal experiments demonstrated that this surface treatment seems to be promising for the improvement of the osseointegration of dental implants.

  4. Surface treatment of titanium by a polydimethylsiloxane coating on bond strength of resin to titanium.

    Science.gov (United States)

    Lung, Christie Ying Kei; Liu, Dan; Matinlinna, Jukka Pekka

    2015-01-01

    To evaluate the in vitro effect of titanium surface treatment by a polydimethylsiloxane coating on the shear bond strength of a resin composite cement to titanium. The titanium samples (40×30mm) were divided into 4 groups (n=12). A control group was surface treated by sandblasting using 110µm silica-coated alumina powder at a constant pressure of 300kPa for 15s/1cm(2). For other three test groups, a polydimethylsiloxane silicone grease was applied onto the surface. The samples were subjected to thermal treatment in air at temperatures of 800°C, 1000°C, and 1100°C for 2h. A silane coupling agent was then applied and a resin composite stub was bonded using a polyethylene mold. The samples were submitted to three different storage conditions: dry storage, water storage in deionized water at 37°C for 30 days and thermo-cycled for 6000 cycles between 5.0 and 55.0°C. The shear bond strengths of all test groups were determined using a universal testing machine. Data were analyzed by two-way ANOVA and Tukey HSD (psurface morphology of titanium and elemental composition were examined with SEM and EDAX. The results showed that there was a significant difference for different surface treatments (psurface after thermal treatment of the coating. Surface treatment of titanium with a polydimethylsiloxane coating at 1000°C and 1100°C curing provides sufficient resin bonding for clinical services. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. RhoA Controls Wnt Upregulation on Microstructured Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Simone Lumetti

    2014-01-01

    Full Text Available Rough topography enhances the activation of Wnt canonical signaling in vitro, and this mediates its effects on cell differentiation. However, the molecular mechanisms underlying topography-dependent control of Wnt signaling are still poorly understood. As the small GTPase RhoA controls cytoskeletal reorganization and actomyosin-induced tensional forces, we hypothesized that RhoA could affect the activation of Wnt signaling in cells on micropatterned titanium surfaces. G-LISA assay revealed that RhoA activation was higher in C2C12 cells on rough (SLA surfaces under basal conditions than on smooth (Polished titanium. Transfection with dominant negative RhoA decreased Wnt activation by normalized TCF-Luc activity on SLA, whilst transfection with constitutively active RhoA increased TCF-Luc activation on Polished titanium. One mM Myosin II inhibitor Blebbistatin increased RhoA activation but decreased Wnt activation on SLA surfaces, indicating that tension-generating structures are required for canonical Wnt modulation on titanium surfaces. Actin inhibitor Cytochalasin markedly enhanced RhoA and TCF-Luc activation on both surfaces and increased the expression of differentiation markers in murine osteoblastic MC3T3 cells. Taken together, these data show that RhoA is upregulated in cells on rough surfaces and it affects the activation of Wnt canonical signaling through Myosin II modulation.

  6. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films

    Science.gov (United States)

    Zorn, Gilad; Migonney, Véronique; Castner, David G.

    2014-01-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm2. PMID:25280842

  7. Hydrogen interactions with polycrystalline and with deposited titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, A. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Shamir, N. [Nuclear Research Center-Negev, PO Box 9001, Beer Sheva (Israel); Fromm, E. [Max-Planck Institute fuer Metallforschung, Stuttgart (Germany); Szokefalvi-Nagy, A. [Max-Planck Institute fuer Metallforschung, Stuttgart (Germany); Mintz, M.H. [Ben-Gurion Univ. of the Negev, Beersheba (Israel)]|[Nuclear Research Center-Negev, PO Box 9001, Beer Sheva (Israel)

    1997-02-15

    The room temperature kinetics of hydrogen chemisorption and adsorption on polycrystalline and on deposited (sputter-deposited and evaporation-deposited) titanium surfaces were studied. Measurements of hydrogen surface accumulation were performed in a combined surface analyses system incorporating direct recoils spectrometry and Auger electron spectroscopy (AES). There, three different types of surface cleaning procedure were applied: heat-flashing, sputtering and sputter-deposition of titanium on a polycrystalline titanium substrate. The surface chemisorption kinetics obtained for the deposited samples were compared with the total kinetics of the gas phase consumption, performed in a volumetric Wagener system. From this comparison it was possible to distinguish between topmost surface chemisorption and subsurface (or bulk) absorption kinetics. It was concluded that, for all types of surface studied, hydrogen chemisorbed according to a Langmuir-type random two-sites chemisorption model, with high (close to unity) zero-coverage sticking probabilities. The only difference between these surfaces was in their roughness factors, which increased going from the heat-flashed, through the sputtered, to the deposited surfaces. Following the initial stage of a chemisorbed surface layer formation, constant-rate absorption of hydrogen proceeded over a very wide range of exposures (greater than 10{sup 4} Langmuirs). The accommodation probability of hydrogen during this linear stage was about 10{sup -2}. It is possible that this absorption process is controlled by the chemisorption of the H{sub 2} on the surface hydride phase, formed by the earlier hydrogen chemisorption. (orig.)

  8. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.

    Science.gov (United States)

    Han, Changjun; Li, Yan; Wang, Qian; Wen, Shifeng; Wei, Qingsong; Yan, Chunze; Hao, Liang; Liu, Jie; Shi, Yusheng

    2018-04-01

    A significant requirement for a bone implant is to replicate the functional gradient across the bone to mimic the localization change in stiffness. In this work, continuous functionally graded porous scaffolds (FGPSs) based on the Schwartz diamond unit cell with a wide range of graded volume fraction were manufactured by selective laser melting (SLM). The micro-topology, strut dimension characterization and effect of graded volume fraction on the mechanical properties of SLM-processed FGPSs were systematically investigated. The micro-topology observations indicate that diamond FGPSs with a wide range of graded volume fraction from 7.97% to 19.99% were fabricated without any defects, showing a good geometric reproduction of the original designs. The dimensional characterization demonstrates the capability of SLM in manufacturing titanium diamond FGPSs with the strut size of 483-905µm. The elastic modulus and yield strength of the titanium diamond FGPSs can be tailored in the range of 0.28-0.59GPa and 3.79-17.75MPa respectively by adjusting the graded volume fraction, which are comparable to those of the cancellous bone. The mathematical relationship between the graded porosity and compression properties of a FGPS was revealed. Furthermore, two equations based on the Gibson and Ashby model have been established to predict the modulus and yield strength of SLM-processed diamond FGPSs. Compared to homogeneous diamond porous scaffolds, FGPSs provide a wide range of mutative pore size and porosity, which are potential to be tailored to optimize the pore space for bone tissue growth. The findings provide a basis of new methodologies to design and manufacture superior graded scaffolds for bone implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Selective laser melting of titanium alloy enables osseointegration of porous multi-rooted implants in a rabbit model.

    Science.gov (United States)

    Peng, Wei; Xu, Liangwei; You, Jia; Fang, Lihua; Zhang, Qing

    2016-07-21

    Osseointegration refers to the direct connection between living bone and the surface of a load-bearing artificial implant. Porous implants with well-controlled porosity and pore size can enhance osseointegration. However, until recently implants were produced by machining solid core titanium rods. The aim of this study was to develop a multi-rooted dental implant (MRI) with a connected porous surface structure to facilitate osseointegration. MRIs manufactured by selective laser melting (SLM) and commercial implants with resorbable blasting media (RBM)-treated surfaces were inserted into the hind limbs of New Zealand white rabbits. Osseointegration was evaluated periodically over 12 weeks by micro-computerized tomography (CT) scanning, histological analysis, mechanical push-out tests, and torque tests. Bone volume densities were consistently higher in the MRI group than in the RBM group throughout the study period, ultimately resulting in a peak value of 48.41 % for the MRI group. Histological analysis revealed denser surrounding bone growth in the MRIs; after 4 and 8 weeks, bone tissue had grown into the pore structures and root bifurcation areas, respectively. Biomechanics tests indicated binding of the porous MRIs to the neobone tissues, as push-out forces strengthened from 294.7 to 446.5 N and maximum mean torque forces improved from 81.15 to 289.57 N (MRI), versus 34.79 to 87.8 N in the RBM group. MRIs manufactured by SLM possess a connected porous surface structure that improves the osteogenic characteristics of the implant surface.

  10. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.

    Science.gov (United States)

    Lipinski, P; Barbas, A; Bonnet, A-S

    2013-12-01

    Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity.

  11. Evaluation of surface characteristics of rotary nickel‑titanium ...

    African Journals Online (AJOL)

    Background: Instrument fracture is a serious concern in endodontic practice. Objective: The aim of this study was to investigate the surface quality of new and used rotary nickel‑titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Materials and Methods: Total 16 instruments of ...

  12. Electrochemical and surface characterization of a nickel-titanium alloy

    NARCIS (Netherlands)

    Wever, Dirk; Veldhuizen, AG; de Vries, J; Busscher, HJ; Uges, DRA; van Horn, James

    1998-01-01

    For clinical implantation purposes of shape memory metals the nearly equiatomic nickel-titanium (NiTi) alloy is generally used. In this study, the corrosion properties and surface characteristics of this alloy were investigated and compared with two reference controls, AISI 316 LVM stainless steel

  13. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    ing blood; however, direct contact between the oxide layer of the implant and neutrophils has not been completely described. The aim of the present study is to compare ... Titanium surfaces; neutrophil morphology; adhesion molecules; inflammatory response; flow cytome- try; scanning electron microscopy. 1. Introduction.

  14. Evaluation of surface characteristics of rotary nickel‑titanium ...

    African Journals Online (AJOL)

    2015-05-26

    May 26, 2015 ... Background: Instrument fracture is a serious concern in endodontic practice. Objective: The aim of this study was to investigate the surface quality of new and used rotary nickel‑titanium (NiTi) instruments manufactured by the traditional grinding process and twisting methods. Materials and Methods: Total 16 ...

  15. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  16. Effects of calcium ions on titanium surfaces for bone regeneration.

    Science.gov (United States)

    Anitua, Eduardo; Piñas, Laura; Murias, Alia; Prado, Roberto; Tejero, Ricardo

    2015-06-01

    The chemistry and topography of implant surfaces are of paramount importance for the successful tissue integration of load-bearing dental and orthopedic implants. Here we evaluate in vitro and in vivo titanium implant surfaces modified with calcium ions (Ca(2+) surfaces). Calcium ions produce a durable chemical and nano-topographical modification of the titanium oxide interface. Time of flight secondary ion mass spectrometry examination of the outermost surface composition, shows that calcium ions in Ca(2+) surfaces effectively prevent adventitious hydrocarbon passivation of the oxide layer. In aqueous solutions Ca(2+) surfaces release within the first minute, 2/3 of the total measured Ca(2+), the rest is released over the following 85 days. Additionally, Ca(2+) surfaces significantly increase human fetal osteoblasts-like cell adhesion, proliferation and differentiation, as measured by the autocrine synthesis of osteopontin. Relevant for clinical application, after 12 weeks of healing in sheep tibia, microcomputer tomography and histomorphometric analysis show that Ca(2+) surfaces develop significantly more bone contacts and higher bone density in the 1mm region around the implant. Consequently, titanium implants modified with calcium ions represent a valuable tool to improve endosseous integration in the clinical practice. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. An integrated approach of topology optimized design and selective laser melting process for titanium implants materials.

    Science.gov (United States)

    Xiao, Dongming; Yang, Yongqiang; Su, Xubin; Wang, Di; Sun, Jianfeng

    2013-01-01

    The load-bearing bone implants materials should have sufficient stiffness and large porosity, which are interacted since larger porosity causes lower mechanical properties. This paper is to seek the maximum stiffness architecture with the constraint of specific volume fraction by topology optimization approach, that is, maximum porosity can be achieved with predefine stiffness properties. The effective elastic modulus of conventional cubic and topology optimized scaffolds were calculated using finite element analysis (FEA) method; also, some specimens with different porosities of 41.1%, 50.3%, 60.2% and 70.7% respectively were fabricated by Selective Laser Melting (SLM) process and were tested by compression test. Results showed that the computational effective elastic modulus of optimized scaffolds was approximately 13% higher than cubic scaffolds, the experimental stiffness values were reduced by 76% than the computational ones. The combination of topology optimization approach and SLM process would be available for development of titanium implants materials in consideration of both porosity and mechanical stiffness.

  18. [Bond strengths of customized titanium brackets manufactured by selective laser melting].

    Science.gov (United States)

    Zou, Dao-xing; Wang, Ze-min; Guo, Hong-ming; Li, Song; Bai, Yu-xing

    2013-07-01

    To investigate the bond strengths of customized titanium bracket manufactured by selective laser melting. Eighty human premolars which had been extracted for orthodontic purpose were collected and divided randomly (by random table) into two groups (customized bracket group and 3M bracket group, 40 molars in each group). The 35% phosphoric acid was used for etching and the brackets were bonded with 3M Unitek bonding adhesive. All bonded specimens were placed in saline for 24 hours at room temperature and were tested on DWD3050 electronic testing machine to determine the shear bond strength and tensile bond strength. After debonding, the adhesive remnant indexes (ARI) were recorded. The shear bond strengths of customized brackets was 6.80 (6.20, 8.32) MPa, which was significantly lower than that of the 3M brackets [10.46 (9.72, 11.48) MPa] (Z = -3.463, P < 0.05). And the tensile bond strengths of customized brackets was (6.93 ± 1.21) MPa, which was significantly higher than that of the 3M brackets [(5.88 ± 1.23) MPa] (t = 2.81, P < 0.05). No significant difference was found in the ARI between two different kinds of the brackets. The shear bond strength and tensile bond strength of both kinds of brackets were enough for clinic application.

  19. Titanium

    Science.gov (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  20. Laser controlled melting of pre-treated zirconia surface

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, KFUPM, Dhahran 31261, (Saudi Arabia); Akhtar, S.S. [ME Department, KFUPM, Dhahran 31261, (Saudi Arabia); Karatas, C. [Engineering College, Hacettepe University, (Turkey)

    2011-05-15

    Laser treatment of pre-prepared zirconia surface is carried out. The pre-prepared surface, prior to laser treatment, consists of 50 {mu}m carbon film and 7% titanium carbide particles, which are imbedded in the carbon film. The microstructural and morphological changes in the laser treated surface layer are examined using optical and scanning electron microscopes, energy dispersive spectroscopy, and X-ray diffraction. The fracture toughness of the laser treated surface is measured and the residual stress formed at the surface vicinity is determined from the X-ray diffraction technique. It is found that the microhardness of the laser treated surface increased slightly due to the dense layer formed at the surface vicinity. However, the laser treatment process reduces the fracture toughness of the surface due to improved surface hardness and the residual stress formed in the surface vicinity.

  1. Cloud-Induced Stabilization of Greenland Surface Melt

    Science.gov (United States)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M. R.

    2016-12-01

    Surface melt and mass loss of the Greenland ice sheet (GrIS) may play crucial roles in global climate change due to its large fresh water storage and positive feedbacks. Complemented by clear-sky simulations from a radiative transfer model, we use measurements from 30+ automatic weather stations (AWSs) to estimate the strong and most variable contribution to Greenland's surface energy budget: the cloud radiative effects (CREs). AWSs are the only in-situ data source for long term surface energy budget studies across the GrIS. The primary bias in its radiation measurements stem from station tilt caused by spatially heterogeneous snow melt, snow compaction, and glacier dynamics. Over all AWSs on GrIS, hourly absolute biases in insolation can reach up to 200 W/m2, and insolation on fewer than 40% of clear days peaks within ±0.5 hr of the true solar noon time. We developed and used the Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method to identify and remove per-station mean-absolute biases that average 18 W/m2 over GrIS during melt seasons. We demonstrate using the tilt-adjusted radiation that surface albedo, among other environmental factors and cloud properties, determines the net CRE, a competition between shortwave shading and longwave heating. At stations where surface albedo is high and close to cloud albedo, shortwave shading is suppressed and longwave heating dominates. At stations where albedo is low (e.g., due to temperature-induced snow metamorphism and/or melt), shading effect increases faster than greenhouse effect, driving net CRE toward cooling. We found that a 0.57 albedo threshold distinguishes areas of positive from negative CREs with 99% accuracy. The cooling effect intensifies at lower albedo. During the extensive surface melt across GrIS in 2012, clouds exerted anomalously strong cooling in the southern ablation zone, and only climatological-mean warming in the accumulation zone. Clouds reduced more than promoted surface melt

  2. Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response.

    Science.gov (United States)

    Alfarsi, Mohammed A; Hamlet, Stephen M; Ivanovski, Saso

    2014-01-01

    Increased titanium surface hydrophilicity has been shown to accelerate dental implant osseointegration. Macrophages are important in the early inflammatory response to surgical implant placement and influence the subsequent healing response. This study investigated the modulatory effect of a hydrophilic titanium surface on the inflammatory cytokine expression profile in a human macrophage cell line (THP-1). Genes for 84 cytokines, chemokines, and their receptors were analyzed following exposure to (1) polished (SMO), (2) micro-rough sand blasted, acid etched (SLA), and (3) hydrophilic-modified SLA (modSLA) titanium surfaces for 1 and 3 days. By day 3, the SLA surface elicited a pro-inflammatory response compared to the SMO surface with statistically significant up-regulation of 16 genes [Tumor necrosis factor (TNF) Interleukin (IL)-1β, Chemokine (C-C motif) ligand (CCL)-1, 2, 3, 4, 18, 19, and 20, Chemokine (C-X-C motif) ligand (CXCL)-1, 5, 8 and 12, Chemokine (C-C motif) receptor (CCR)-7, Lymphotoxin-beta (LTB), and Leukotriene B4 receptor (LTB4R)]. This effect was countered by the modSLA surface, which down-regulated the expression of 10 genes (TNF, IL-1α and β, CCL-1, 3, 19 and 20, CXCL-1 and 8, and IL-1 receptor type 1), while two were up-regulated (osteopontin and CCR5) compared to the SLA surface. These cytokine gene expression changes were confirmed by decreased levels of corresponding protein secretion in response to modSLA compared to SLA. These results show that a hydrophilic titanium surface can modulate human macrophage pro-inflammatory cytokine gene expression and protein secretion. An attenuated pro-inflammatory response may be an important molecular mechanism for faster and/or improved wound healing. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  3. Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

    OpenAIRE

    Elias, Carlos Nelson; Gravina, Patricia Abdo; Silva Filho, Costa e; Nascente, Pedro Augusto de Paula

    2012-01-01

    Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification) wer...

  4. Surface modification of titanium with lasers

    NARCIS (Netherlands)

    Kloosterman, Annejan Bernard

    1998-01-01

    In engineering applications the material demands often differ between bulk and surface. As a matter of fact, it is beneficial to select two different materials with the appropriate properties, for the bulk and the surface, respectively. Therefore, substantial effort has been devoted to the surface

  5. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  6. Pheochromocytoma (PC12 Cell Response on Mechanobactericidal Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Jason V. Wandiyanto

    2018-04-01

    Full Text Available Titanium is a biocompatible material that is frequently used for making implantable medical devices. Nanoengineering of the surface is the common method for increasing material biocompatibility, and while the nanostructured materials are well-known to represent attractive substrata for eukaryotic cells, very little information has been documented about the interaction between mammalian cells and bactericidal nanostructured surfaces. In this study, we investigated the effect of bactericidal titanium nanostructures on PC12 cell attachment and differentiation—a cell line which has become a widely used in vitro model to study neuronal differentiation. The effects of the nanostructures on the cells were then compared to effects observed when the cells were placed in contact with non-structured titanium. It was found that bactericidal nanostructured surfaces enhanced the attachment of neuron-like cells. In addition, the PC12 cells were able to differentiate on nanostructured surfaces, while the cells on non-structured surfaces were not able to do so. These promising results demonstrate the potential application of bactericidal nanostructured surfaces in biomedical applications such as cochlear and neuronal implants.

  7. Monitoring Antarctic ice sheet surface melting with TIMESAT algorithm

    Science.gov (United States)

    Ye, Y.; Cheng, X.; Li, X.; Liang, L.

    2011-12-01

    Antarctic ice sheet contributes significantly to the global heat budget by controlling the exchange of heat, moisture, and momentum at the surface-atmosphere interface, which directly influence the global atmospheric circulation and climate change. Ice sheet melting will cause snow humidity increase, which will accelerate the disintegration and movement of ice sheet. As a result, detecting Antarctic ice sheet melting is essential for global climate change research. In the past decades, various methods have been proposed for extracting snowmelt information from multi-channel satellite passive microwave data. Some methods are based on brightness temperature values or a composite index of them, and others are based on edge detection. TIMESAT (Time-series of Satellite sensor data) is an algorithm for extracting seasonality information from time-series of satellite sensor data. With TIMESAT long-time series brightness temperature (SSM/I 19H) is simulated by Double Logistic function. Snow is classified to wet and dry snow with generalized Gaussian model. The results were compared with those from a wavelet algorithm. On this basis, Antarctic automatic weather station data were used for ground verification. It shows that this algorithm is effective in ice sheet melting detection. The spatial distribution of melting areas(Fig.1) shows that, the majority of melting areas are located on the edge of Antarctic ice shelf region. It is affected by land cover type, surface elevation and geographic location (latitude). In addition, the Antarctic ice sheet melting varies with seasons. It is particularly acute in summer, peaking at December and January, staying low in March. In summary, from 1988 to 2008, Ross Ice Shelf and Ronnie Ice Shelf have the greatest interannual variability in amount of melting, which largely determines the overall interannual variability in Antarctica. Other regions, especially Larsen Ice Shelf and Wilkins Ice Shelf, which is in the Antarctic Peninsula

  8. Optical detections from worn and unworn titanium compound surfaces

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Martin, J.-M.

    2010-01-01

    Wear-induced roughness in terms of grooves, sharp ridges, and edges leads to scattering of the reflected light and leads unavoidably to a reduction of the optical signals in a standard specular geometry. However, by using a double-layer system consisting of titanium aluminum nitride (TiAlN) on top...... of a titanium nitride (TiN) layer we obtain an increase in the reflected light as a result of wear. The relative change of reflectance of light from the tribological TiAlN coated surface to the underlying layer of TiN is similar for non-worn surfaces and for surfaces exposed to an abrasive wear process...

  9. In Vitro Analysis of Fibronectin-Modified Titanium Surfaces

    Science.gov (United States)

    Chang, Yu-Chi; Lee, Wei-Fang; Feng, Sheng-Wei; Huang, Haw-Ming; Lin, Che-Tong; Teng, Nai-Chia; Chang, Wei Jen

    2016-01-01

    Background Glow discharge plasma (GDP) procedure is an effective method for grafting various proteins, including albumin, type I collagen, and fibronectin, onto a titanium surface. However, the behavior and impact of titanium (Ti) surface modification is yet to be unraveled. Purpose The purpose of this study is to evaluate and analyze the biological properties of fibronectin-grafted Ti surfaces treated by GDP. Materials and Methods Grade II Ti discs were initially cleaned and autoclaved to obtain original specimens. Subsequently, the specimens were GDP treated and grafted with fibronectin to form Ar-GDP (Argon GDP treatment only) and GDP-fib (fibronectin coating following GDP treatment) groups. Blood coagulation test and MG-63 cell culture were performed to evaluate the biological effects on the specimen. Results There was no significant difference between Ar-GDP and GDP-fib groups in blood compatibility analysis. While in the MTT test, cellular proliferation was benefited from the presence of fibronectin coating. The numbers of cells on Ar-GDP and GDP-fib specimens were greater than those in the original specimens after 24 h of culturing. Conclusions GDP treatment combined with fibronectin grafting favored MG-63 cell adhesion, migration, and proliferation on titanium surfaces, which could be attributed to the improved surface properties. PMID:26731536

  10. Focal Adhesion of Osteoblastic Cells on Titanium Surface with Amine Functionalities Formed by Plasma Polymerization

    Science.gov (United States)

    Song, Heesang; Jung, Sang Chul; Kim, Byung Hoon

    2012-08-01

    To enhance the focal adhesion of osteoblastic cells on a titanium surface, plasma polymerized allyl amine (AAm) thin films were deposited by plasma polymerization. This plasma polymer functionalization of titanium is advantageous for osteoblastic focal adhesion formation. Such Ti surfaces are useful for the fabrication of titanium-based dental implants for enhancement of osseointegration.

  11. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  12. A Novel Heat Treatment Process for Surface Hardening of Steel: Metal Melt Surface Hardening

    Science.gov (United States)

    Fu, Yong-sheng; Zhang, Wei; Xu, Xiaowei; Li, Jiehua; Li, Jun; Xia, Mingxu; Li, Jianguo

    2017-09-01

    A novel heat treatment process for surface hardening of steel has been demonstrated and named as "metal melt surface hardening (MMSH)." A surface layer with a thickness of about 400 μm and a hardness of about 700 HV has been achieved by ejecting AISI 304 stainless steel melt at a temperature of about 1783 K (1510 °C) onto the 40Cr steel surface. This proposed MMSH provides a very promising application for surface hardening of steel.

  13. A theoretical investigation of water adsorption on titanium dioxide surfaces

    Science.gov (United States)

    Fahmi, Adil; Minot, Christian

    1994-03-01

    Water adsorption on various crystallographic faces of TiO 2 (anatase and rutile) are calculated using a periodic Hartree-Fock method. Titanium oxide is an amphoteric compound. Water adsorbs on the acidic site, the titanium atom, and then dissociates to give hydroxyl groups. The adsorption energy is larger on the (110) face of the rutile structure than on other faces and is correlated with its very acidic sites. The OH groups are oriented to maximize hydrogen bonding. Hydrogen bonding is particularly important for molecular adsorption on the (100) face of the rutile structure; in this case, the molecular adsorption becomes competitive with the dissociative one. The thermodynamics of water adsorption strongly favor dissociation when singly-coordinated oxygen atoms are present on the surface as it is in a perfectly truncated anatase surface.

  14. Antibacterial and Bioactive Coatings on Titanium Implant Surfaces

    OpenAIRE

    Aranya, Anupama Kulkarni; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z.; Zhang, Yu; Saxena, Deepak

    2017-01-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP and FZn-CaP and incubated f...

  15. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Energy Technology Data Exchange (ETDEWEB)

    Delle Side, D., E-mail: domenico.delleside@le.infn.it [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Nassisi, V.; Giuffreda, E.; Velardi, L. [LEAS, Dipartimento di Matematica e Fisica “Ennio de Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare – Sezione di Lecce, Lecce (Italy); Alifano, P.; Talà, A.; Tredici, S.M. [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy)

    2014-07-15

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  16. Highly antibacterial UHMWPE surfaces by implantation of titanium ions

    Science.gov (United States)

    Delle Side, D.; Nassisi, V.; Giuffreda, E.; Velardi, L.; Alifano, P.; Talà, A.; Tredici, S. M.

    2014-07-01

    The spreading of pathogens represents a serious threat for human beings. Consequently, efficient antimicrobial surfaces are needed in order to reduce risks of contracting severe diseases. In this work we present the first evidences of a new technique to obtain a highly antibacterial Ultra High Molecular Weight Polyethylene (UHMWPE) based on a non-stoichiometric titanium oxide coating, visible-light responsive, obtained through ion implantation.

  17. Gibbs free energy, surface stress and melting point of nanoparticle

    International Nuclear Information System (INIS)

    Luo, Wenhua; Hu, Wangyu

    2013-01-01

    Two approaches to calculating Gibbs free energy of nanoparticle are compared. It is found that the contribution from the vibrational entropy of surface atoms of nanoparticle to its Gibbs free energy can be ignored, and Jiang et al.'s formula [J. Phys. Chem. B 105 (2001) 6275] [27] for calculating surface stress is only valid around room temperature. Furthermore, an approximate relationship between surface stress and surface free energy of nanoparticles is revealed. Finally, the reason why effect of size dependent surface energy on melting point of nanoparticle was neglected is clarified

  18. Surface characterization and wear behaviour of laser surface melted AISI 316L stainless steel

    CSIR Research Space (South Africa)

    Kumar, A

    2010-01-01

    Full Text Available The present study concerns an in depth investigation of the influence of laser surface melting of AISI 316L stainless steel using Ar and N2 as shrouding atmosphere. Laser surface melting has been carried out using a 5 kW continuous wave (CW) fibre...

  19. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  20. Streptococcus mutans attachment on a cast titanium surface

    Directory of Open Access Journals (Sweden)

    Sicknan Soares da Rocha

    2009-03-01

    Full Text Available This study examined by means of scanning electron microscopy (SEM, the attachment of Streptococcus mutans and the corrosion of cast commercially pure titanium, used in dental dentures. The sample discs were cast in commercially pure titanium using the vacuum-pressure machine (Rematitan System. The surfaces of each metal were ground and polished with sandpaper (#300-4000 and alumina paste (0.3 µm. The roughness of the surface (Ra was measured using the Surfcorder rugosimeter SE 1700. Four coupons were inserted separately into Falcon tubes contained Mueller Hinton broth inoculated with S. mutans ATCC 25175 (10(9 cuf and incubated at 37 °C. The culture medium was changed every three days during a 365-day period, after which the falcons were prepared for observations by SEM. The mean Ra value of CP Ti was 0.1527 µm. After S. mutans biofilm removal, pits of corrosion were observed. Despite the low roughness, S. mutans attachment and biofilm formation was observed, which induced a surface corrosion of the cast pure titanium.

  1. Natural bone-like biomimetic surface modification of titanium

    Science.gov (United States)

    Yoon, Il-Kyu; Hwang, Ji-Young; Jang, Won-Cheoul; Kim, Hae-Won; Shin, Ueon Sang

    2014-05-01

    An implantable metallic surface consisting of titanium (Ti) was modified with natural bone-mimicking CNT-Gelatin-HA nanohybrids to create a new surface with similar properties to the surrounding bone tissue in terms of the chemical constitution, nanotopography, wettability, and biocompatibility. The biomimetic surface modification was achieved through the covalent immobilization of carbon nanotubes (CNTs) onto the Ti surface, the covalent tethering of gelatin molecules onto the CNT surface, and then the deposition of hydroxyl apatite (HA) crystals onto the gelatin-tethered CNTs in SBF solution. The SEM microscopic images demonstrated that the modified Ti surface continually maintained a fibrous structure of CNTs, but that the CNT fibers were hybridized with gelatin and HA in a multi-core-shell structure of similar constitution to that of the collagen fibers of natural bone. The new surface of the Ti substrates showed significantly higher mechanical properties and favorable wettability and biocompatibility.

  2. Microstructure and property evolutions of titanium/nano-hydroxyapatite composites in-situ prepared by selective laser melting.

    Science.gov (United States)

    Han, Changjun; Wang, Qian; Song, Bo; Li, Wei; Wei, Qingsong; Wen, Shifeng; Liu, Jie; Shi, Yusheng

    2017-07-01

    Titanium (Ti)-hydroxyapatite (HA) composites have the potential for orthopedic applications due to their favorable mechanical properties, excellent biocompatibility and bioactivity. In this work, the pure Ti and nano-scale HA (Ti-nHA) composites were in-situ prepared by selective laser melting (SLM) for the first time. The phase, microstructure, surface characteristic and mechanical properties of the SLM-processed Ti-nHA composites were studied by X-ray diffraction, transmission electron microscope, atomic force microscope and tensile tests, respectively. Results show that SLM is a suitable method for fabricating the Ti-nHA composites with refined microstructure, low modulus and high strength. A novel microstructure evolution can be illustrated as: Relatively long lath-shaped grains of pure Ti evolved into short acicular-shaped and quasi-continuous circle-shaped grains with the varying contents of nHA. The elastic modulus of the Ti-nHA composites is 3.7% higher than that of pure Ti due to the effect of grain refinement. With the addition of 2% nHA, the ultimate tensile strength significantly reduces to 289MPa but still meets the application requirement of bone implants. The Ti-nHA composites exhibit a remarkable improvement of microhardness from 336.2 to 600.8 HV and nanohardness from 5.6 to 8.3GPa, compared to those of pure Ti. Moreover, the microstructure and property evolution mechanisms of the composites with the addition of HA were discussed and analyzed. It provides some new knowledge to the design and fabrication of biomedical material composites for bone implant applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Preparation of Bioactive Titanium Surfaces via Fluoride and Fibronectin Retention

    Directory of Open Access Journals (Sweden)

    Carlos Nelson Elias

    2012-01-01

    Full Text Available Statement of Problem. The chemical or topographic modification of the dental implant surface can affect bone healing, promote accelerated osteogenesis, and increase bone-implant contact and bonding strength. Objective. In this work, the effects of dental implant surface treatment and fibronectin adsorption on the adhesion of osteoblasts were analyzed. Materials and Methods. Two titanium dental implants (Porous-acid etching and PorousNano-acid etching followed by fluoride ion modification were characterized by high-resolution scanning electron microscopy, atomic force microscopy, and X-ray diffraction before and after the incorporation of human plasma fibronectin (FN. The objective was to investigate the biofunctionalization of these surfaces and examine their effects on the interaction with osteoblastic cells. Results. The evaluation techniques used showed that the Porous and PorousNano implants have similar microstructural characteristics. Spectrophotometry demonstrated similar levels of fibronectin adsorption on both surfaces (80%. The association indexes of osteoblastic cells in FN-treated samples were significantly higher than those in samples without FN. The radioactivity values associated with the same samples, expressed as counts per minute (cpm, suggested that FN incorporation is an important determinant of the in vitro cytocompatibility of the surfaces. Conclusion. The preparation of bioactive titanium surfaces via fluoride and FN retention proved to be a useful treatment to optimize and to accelerate the osseointegration process for dental implants.

  4. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    Science.gov (United States)

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  5. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  6. Centuries of intense surface melt on Larsen C Ice Shelf

    Science.gov (United States)

    Bevan, Suzanne L.; Luckman, Adrian; Hubbard, Bryn; Kulessa, Bernd; Ashmore, David; Kuipers Munneke, Peter; O'Leary, Martin; Booth, Adam; Sevestre, Heidi; McGrath, Daniel

    2017-12-01

    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula (AP), Larsen C Ice Shelf (LCIS) has become the focus of ongoing investigation regarding its future stability. The ice shelf experiences surface melt and commonly features surface meltwater ponds. Here, we use a flow-line model and a firn density model (FDM) to date and interpret observations of melt-affected ice layers found within five 90 m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal dry compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice measured in two boreholes in Cabinet Inlet, which is close to the Antarctic Peninsula mountains - a region affected by föhn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flow-line model shows that, whilst preconditioning of the snow began in the late 1960s, it was probably not until the early 1990s that the modern period of ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, at 61 m in one of our Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, at 69 m in a mid-shelf borehole, formed at the same time on the edge of the pond area. Further south, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west-east and north-south gradient in the past melt distribution resembles current spatial patterns of surface melt intensity.

  7. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    Science.gov (United States)

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  8. Critical examination of prewetting and surface melting on caprolactam

    Science.gov (United States)

    Wong, Gerard C. L.; de Jeu, Wim H.; Böautgels, Gertjan; van den Berg, Erwin P. G.; Bennema, Piet

    1997-01-01

    In a previous study, surface melting on the (001) surface of caprolactam (C6 H11 ON) was reported to proceed in a series of layering transitions, followed by a prewetting transition. We have reproduced the original results and shown that they can be better explained by the wetting of hydrated caprolactam (with H2 O molecules at bridging sites between the caprolactam dimers) on caprolactam, and that such hydration is most likely caused by H2 O microinclusions in the crystals grown from solution. In agreement with this interpretation, we have also shown that the reported effects are absent on 'dry' surfaces.

  9. Surface-Induced Hybridization between Graphene and Titanium

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Allen L. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Koch, Roland J. [Technische Universitat, Chemnitz (Germany); Ong, Mitchell T. [Stanford Univ., CA (United States); Fang, Wenjing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Hofmann, Mario [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kim, Ki Kang [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Seyller, Thomas [Technische Universitat, Chemnitz (Germany); Dresselhaus, Mildred S. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Reed, Evan J. [Stanford Univ., CA (United States); Kong, Jing [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Palacios, Tomás [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States)

    2014-08-26

    Carbon-based materials such as graphene sheets and carbon nanotubes have inspired a broad range of applications ranging from high-speed flexible electronics all the way to ultrastrong membranes. However, many of these applications are limited by the complex interactions between carbon-based materials and metals. In this work, we experimentally investigate the structural interactions between graphene and transition metals such as palladium (Pd) and titanium (Ti), which have been confirmed by density functional simulations. We find that the adsorption of titanium on graphene is more energetically favorable than in the case of most metals, and density functional theory shows that a surface induced p-d hybridization occurs between atomic carbon and titanium orbitals. This strong affinity between the two materials results in a short-range ordered crystalline deposition on top of graphene as well as chemical modifications to graphene as seen by Raman and X-ray photoemission spectroscopy (XPS). This induced hybridization is interface-specific and has major consequences for contacting graphene nanoelectronic devices as well as applications toward metal-induced chemical functionalization of graphene.

  10. Enhanced compatibility of chemically modified titanium surface with periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Kado, T.; Hidaka, T. [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Aita, H. [Division of Occlusion and Removable Prosthodontics, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Endo, K. [Division of Biomaterials and Bioengineering, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Furuichi, Y., E-mail: furuichi@hoku-iryo-u.ac.jp [Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Cell-adhesive molecules were covalently immobilized on a Ti surface. Black-Right-Pointing-Pointer Immobilized cell-adhesive molecules maintained native function on the Ti surface. Black-Right-Pointing-Pointer Immobilized collagen enhanced adhesion of periodontal ligament cells to the Ti. - Abstract: A simple chemical modification method was developed to immobilize cell-adhesive molecules on a titanium surface to improve its compatibility with human periodontal ligament cells (HPDLCs).The polished titanium disk was immersed in 1% (v/v) p-vinylbenzoic acid solution for 2 h to introduce carboxyl groups onto the surface. After rinsing with distilled deionized water, the titanium disk was dipped into 1.47% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide solution containing 0.1 mg/ml Gly-Arg-Gly-Asp-Ser (GRGDS), human plasma fibronectin (pFN), or type I collagen from calf skin (Col) to covalently immobilize the cell-adhesive molecules on the titanium surface via formation of peptide bonds. X-ray photoelectron spectroscopy analyses revealed that cell-adhesive molecules were successfully immobilized on the titanium surfaces. The Col-immobilized titanium surface revealed higher values regarding nano rough characteristics than the as-polished titanium surface under scanning probe microscopy. The number of HPDLCs attached to both the pFN- and Col-immobilized titanium surfaces was twice that attached to the as-polished titanium surfaces. The cells were larger with the cellular processes that stretched to a greater extent on the pFN- and Col-immobilized titanium surfaces than on the as-polished titanium surface (p < 0.05). HPDLCs on the Col-immobilized titanium surfaces showed more extensive expression of vinculin at the tips of cell projections and more contiguously along the cell outline than on the as-polished, GRGDS-immobilized and pFN-immobilized titanium surfaces. It was concluded that cell-adhesive molecules successfully

  11. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    Science.gov (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  13. Report of discussions on test melts of N10 steel with addition of titanium and other changes

    Energy Technology Data Exchange (ETDEWEB)

    Class, J.

    1943-03-22

    This memorandum detailed several conversations held on the general topic of changes in the composition of N10 steel, since its performance in high-pressure, high-temperature apparatus did not seem to be completely adequate because of its susceptibility to hydrogen attack and subsequent bursting. Among other things was discussed the question of whether it would be helpful to add titanium to the steel, in particular to allow a reduction in the use of the very scarce metals molybdenum and tungsten. After experiments at various steel works, most of the steel companies seemed to be of the opinion that current metallurgical and tempering techniques on an industrial scale were not quite adequate to handle the problems of introducing titanium, such as the tendency of the melt to scorify (turn to slag) and other difficulties in annealing and obtaining desired toughness in the steel. On the other hand, the author and most of the steel companies agreed that it was worthwhile to try changing the composition of N10 without adding titanium. The steel works had had difficulties with the high vanadium content of N10, with the necessary air-tempering, and with high annealing temperatures. The report mentioned several possible compositions for N10-like alloys. One which seemed to the steel companies to be worth experimenting with for hairpin tubes in preheaters was an austenite chromium--manganese steel.

  14. Surface modification of titanium for load-bearing applications.

    Science.gov (United States)

    Bose, Susmita; Roy, Mangal; Das, Kakoli; Bandyopadhyay, Amit

    2009-12-01

    Titanium and its alloys are extensively used in load-bearing metallic devices. They are bioinert material and, therefore, get encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. Here we report modification of titanium surface using bioactive tricalcium phosphates (TCP) and nanoscale TiO2 to enhance cell-materials interaction. We have introduced bioactivity in Ti using laser-assisted coating of TCP and by anodization to grow surface TiO2 at room temperature using a mixed aqueous solution of sodium fluoride, citric acid and sulfuric acid as electrolyte. TCP coating showed a columnar Ti grains at the substrate side of the coating and transitioned to an equiaxed grains at the outside. Coating hardness increased from 882 +/- 67 to 1029 +/- 112 Hv as the volume fraction of TCP increased in the coating. For TiO2 nanotubes, microscopic analysis showed tubes of 50 nm in diameter with wall thickness of 15 nm and typical length between 200 nm and 1 micron based on anodization times. Effects of TCP and nanoscale TiO2 coating on bone cell-material interaction were examined by culturing osteoprecursor cells (OPC1) on coated surfaces. Antibacterial activity analysis using metallic Ag via electrodeposition showed over 99% antibacterial activity against the growth of colonies of Pseudomonas aeruginosa.

  15. Fibroblast adhesion and activation onto micro-machined titanium surfaces.

    Science.gov (United States)

    Guillem-Marti, J; Delgado, L; Godoy-Gallardo, M; Pegueroles, M; Herrero, M; Gil, F J

    2013-07-01

    Surface modifications performed at the neck of dental implants, in the manner of micro-grooved surfaces, can reduce fibrous tissue encapsulation and prevent bacterial colonization, thereby improving fibrointegration and the formation of a biological seal. However, the applied procedures are technically complex and/or time consuming methods. The aim of this study was to analyse the fibroblast behaviour on modified titanium surfaces obtained, applying a simple and low-cost method. An array of titanium surfaces was obtained using a commercial computerized numerical control lathe, modifying the feed rate and the cutting depth. To elucidate the potential ability of the generated surfaces to activate connective tissue cells, a thorough gene (by real time - qPCR) and protein (by western blot or zymography) expression and cellular response characterization (cell morphology, cell adhesion and cell activation by secreting extracellular matrix (ECM) components and their enzyme regulators) was performed. Micro-grooved surfaces have statistically significant differences in the groove's width (approximately 10, 50 and 100 μm) depending on the applied advancing fixed speed. Field emission scanning electron microscopy images showed that fibroblasts oriented along the generated grooves, but they were only entirely accommodated on the wider grooves (≥50 μm). Micro-grooved surfaces exhibited an earlier cell attachment and activation, as seen by collagen Iα1 and fibronectin deposition and activation of ECM remodelling enzymes, compared with the other surfaces. However, fibroblasts could remain in an activated state on narrower surfaces (micro-grooved surfaces could improve implant integration at the gingival site with respect to polished surfaces. Micro-grooved surfaces enhance early fibroblast adhesion and activation, which could be critical for the formation of a biological seal and finally promote tissue integration. Surfaces with wider grooves (≥50 μm) seem to be more

  16. Antimicrobial design of titanium surface that kill sessile bacteria but support stem cells adhesion

    Science.gov (United States)

    Zhu, Chen; Bao, Ni-Rong; Chen, Shuo; Zhao, Jian-Ning

    2016-12-01

    Implant-related bacterial infection is one of the most severe postoperative complications in orthopedic or dental surgery. In this context, from the perspective of surface modification, increasing efforts have been made to enhance the antibacterial capability of titanium surface. In this work, a hierarchical hybrid surface architecture was firstly constructed on titanium surface by two-step strategy of acid etching and H2O2 aging. Then silver nanoparticles were firmly immobilized on the hierarchical surface by ion implantation, showing no detectable release of silver ions from surface. The designed titanium surface showed good bioactivity. More importantly, this elaborately designed titanium surface can effectively inactivate the adherent S. aureus on surface by virtue of a contact-killing mode. Meanwhile, the designed titanium surface can significantly facilitate the initial adhesion and spreading behaviors of bone marrow mesenchymal stem cells (MSCs) on titanium. The results suggested that, the elaborately designed titanium surface might own a cell-favoring ability that can help mammalian cells win the initial adhesion race against bacteria. We hope the present study can provide a new insight for the better understanding and designing of antimicrobial titanium surface, and pave the way to satisfying clinical requirements.

  17. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting.

    Science.gov (United States)

    Wang, Hong; Zhao, Bingjing; Liu, Changkui; Wang, Chao; Tan, Xinying; Hu, Min

    2016-01-01

    Electron beam melting (EBM) and selective laser melting (SLM) are two advanced rapid prototyping manufacturing technologies capable of fabricating complex structures and geometric shapes from metallic materials using computer tomography (CT) and Computer-aided Design (CAD) data. Compared to traditional technologies used for metallic products, EBM and SLM alter the mechanical, physical and chemical properties, which are closely related to the biocompatibility of metallic products. In this study, we evaluate and compare the biocompatibility, including cytocompatibility, haemocompatibility, skin irritation and skin sensitivity of Ti6Al4V fabricated by EBM and SLM. The results were analysed using one-way ANOVA and Tukey's multiple comparison test. Both the EBM and SLM Ti6Al4V exhibited good cytobiocompatibility. The haemolytic ratios of the SLM and EBM were 2.24% and 2.46%, respectively, which demonstrated good haemocompatibility. The EBM and SLM Ti6Al4V samples showed no dermal irritation when exposed to rabbits. In a delayed hypersensitivity test, no skin allergic reaction from the EBM or the SLM Ti6Al4V was observed in guinea pigs. Based on these results, Ti6Al4V fabricated by EBM and SLM were good cytobiocompatible, haemocompatible, non-irritant and non-sensitizing materials. Although the data for cell adhesion, proliferation, ALP activity and the haemolytic ratio was higher for the SLM group, there were no significant differences between the different manufacturing methods.

  18. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    Science.gov (United States)

    Xu, Xiaofen; Wang, Ling; Guo, Shengrong; Lei, Lei; Tang, Tingting

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm -1 (-OH vibration), 1664 cm -1 (Amide I), 1165 cm -1 ( νas, C-O-C bridge), and the broad absorption bands between 958 cm -1 and 1155 cm -1 (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  19. Surface chemical study on the covalent attachment of hydroxypropyltrimethyl ammonium chloride chitosan to titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaofen; Wang Ling [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Guo Shengrong, E-mail: srguo@sjtu.edu.cn [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Lei Lei [School of Pharmacy, Shanghai Jiao Tong University, 800 Dong-chuan Road, Shanghai 200240 (China); Tang Tingting, E-mail: tingtingtang@hotmail.com [Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People' s Hospital, Shanghai Jiaotong University School of Medicine (China)

    2011-10-01

    An anti-microbial and bioactive coating could not only reduce the probability of infection related to titanium implants but also support the growth of surrounding osteogenic cells. Our previous study has showed that hydroxypropyltrimethyl ammonium chloride chitosan (HACC) with a DS (degrees of substitution) of 18% had improved solubility and significantly higher antibacterial activities against three bacteria which were usually associated with infections in orthopaedics. In the current study, HACC with a DS of 18% coating was bonded to titanium surface by a three-step process. The titanium surface after each individual reaction step was analyzed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection (ATR) of Fourier-transformed infrared (FT-IR) spectroscopy. The XPS results demonstrated that there were great changes in the atomic ratios of C/Ti, O/Ti, and N/Ti after each reaction step. The XPS high resolution and corresponding devolution spectra of carbon, oxygen, nitrogen, and titanium were also in good coordination with the anticipated reaction steps. Additionally, the absorption bands around 3365 cm{sup -1} (-OH vibration), 1664 cm{sup -1} (Amide I), 1165 cm{sup -1} ({nu}{sub as}, C-O-C bridge), and the broad absorption bands between 958 cm{sup -1} and 1155 cm{sup -1} (skeletal vibrations involving the C-O stretching of saccharide structure of HACC) verified that HACC was successfully attached to titanium surface.

  20. In Vitro Evaluation of PCL and P(3HB) as Coating Materials for Selective Laser Melted Porous Titanium Implants.

    Science.gov (United States)

    Grau, Michael; Matena, Julia; Teske, Michael; Petersen, Svea; Aliuos, Pooyan; Roland, Laura; Grabow, Niels; Murua Escobar, Hugo; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2017-11-23

    Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young's modulus differs from bone tissue, the resulting "stress shielding" could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young's modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL) and the biopolymer poly(3-hydroxybutyrate) (P(3HB)) were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM) and coated with PCL or P(3HB) via dip coating. To test the biocompatibility, Live Cell Imaging (LCI) as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray (EDX) analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB). Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB) in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL coating ensured the

  1. Corrosion resistance of surface modified nickel titanium archwires.

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Kumar, A Vinod; Varthini, N Parvatha; Sukumaran, Kalathil; Pawar, Vasant R; Arora, Vimal

    2014-03-01

    To compare the corrosion behavior of commercially available surface modified nickel titanium (NiTi) arch wires with respect to a conventional NiTi and to evaluate its association with surface characteristics. Five types of surface modified arch wires and a conventional NiTi arch wire, all from different manufacturers, were evaluated for their corrosion resistance from breakdown potential in an anodic polarization scan in Ringer's solution. Surface characteristics were determined from scanning electron microscopy, atomic force microscopy, and energy dispersive analysis. One-way analysis of variance and post hoc Duncan's multiple range tests were used to evaluate statistical significance. Surface modified NiTi wires showed significant improvement in corrosion resistance and reduction in surface roughness values. Breakdown potentials increased in the order of group 6 (conventional; 204 mV) corrosion resistance and decreasing surface roughness. However, neither factor could maintain a direct, one-to-one relationship. It meant that the type and nature of coating material can effectively influence the anticorrosive features of NiTi wires, compared with its surface roughness values.

  2. How does the surface treatment change the cytocompatibility of implants made by selective laser melting?

    Science.gov (United States)

    Matouskova, Lucie; Ackermann, Michal; Horakova, Jana; Capek, Lukas; Henys, Petr; Safka, Jiri

    2018-04-01

    The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.

  3. Investigation of the crystallization process of titanium alloy ingots produced by vacuum arc melting method

    International Nuclear Information System (INIS)

    Tetyukhin, V.V.; Kurapov, V.N.; Trubin, A.N.; Demchenko, M.V.; Lazarev, V.G.; Ponedilko, S.V.; Dubrovina, N.T.; Kurapova, L.A.

    1978-01-01

    The process of crystallization and hardening of the VT3-1 and VT9 titanium alloys ingots during the vacuum-arc remelting (VAR) has been studied. In order to investigate the kinetics of the hole shape changing and the peculiarities of the ingot formation during the VAR, the radiography method has been used. It is established that the VAR of the titanium alloy ingots is basically a continuous process. An intense heating of the liquid bath mirror and the availability of high temperature gradients in the hole are the typical features of the VAR process

  4. Water boiling on the corium melt surface under VVER severe accident conditions

    International Nuclear Information System (INIS)

    Bechta, S.V.; Vitol, S.A.; Krushinov, E.V.

    1999-01-01

    Experimental results are presented on the interaction between corium melt and water supplied onto its surface. The tests were conducted on the Rasplav-2' experimental facility. Induction melting in a cold crucible was used to produce the melt. The following data have been obtained: heat transfer at water boiling on the melt surface, aerosol release, structure of the post-interaction solidified corium. The corium melt had the following composition, mass %: 60%UO 2 - 16%ZrO 2 - 15%Fe 2 O 3 - 6%Cr 2 O 3 -3%Ni 2 O 3 . The melt surface temperature was 1650-1700degC. (author)

  5. Function of Platelet-Induced Epithelial Attachment at Titanium Surfaces Inhibits Microbial Colonization.

    Science.gov (United States)

    Maeno, M; Lee, C; Kim, D M; Da Silva, J; Nagai, S; Sugawara, S; Nara, Y; Kihara, H; Nagai, M

    2017-06-01

    The aim of this study was to evaluate the barrier function of platelet-induced epithelial sheets on titanium surfaces. The lack of functional peri-implant epithelial sealing with basal lamina (BL) attachment at the interface of the implant and the adjacent epithelium allows for bacterial invasion, which may lead to peri-implantitis. Although various approaches have been reported to combat bacterial infection by surface modifications to titanium, none of these have been successful in a clinical application. In our previous study, surface modification with protease-activated receptor 4-activating peptide (PAR4-AP), which induced platelet activation and aggregation, was successful in demonstrating epithelial attachment via BL and epithelial sheet formation on the titanium surface. We hypothesized that the platelet-induced epithelial sheet on PAR4-AP-modified titanium surfaces would reduce bacterial attachment, penetration, and invasion. Titanium surface was modified with PAR4-AP and incubated with platelet-rich plasma (PRP). The aggregated platelets released collagen IV, a critical BL component, onto the PAR4-AP-modified titanium surface. Then, human gingival epithelial cells were seeded on the modified titanium surface and formed epithelial sheets. Green fluorescent protein (GFP)-expressing Escherichia coli was cultured onto PAR4-AP-modified titanium with and without epithelial sheet formation. While Escherichia coli accumulated densely onto the PAR4-AP titanium lacking epithelial sheet, few Escherichia coli were observed on the epithelial sheet on the PAR4-AP surface. No bacterial invasion into the interface of the epithelial sheet and the titanium surface was observed. These in vitro results indicate the efficacy of a platelet-induced epithelial barrier that functions to prevent bacterial attachment, penetration, and invasion on PAR4-AP-modified titanium.

  6. [Comparison of adaptation and microstructure of titanium upper complete denture base fabricated by selecting laser melting and electron beam melting].

    Science.gov (United States)

    Ye, Y; Xiong, Y Y; Zhu, J R; Sun, J

    2017-06-09

    Objective: To fabricate Ti alloy frameworks for a maxillary complete denture with three-dimensional printing (3DP) technique, such as selective laser melting (SLM) and electron beam melting (EBM), and to evaluate the microstructure of these frameworks and their adaptation to the die stone models. Methods: Thirty pairs of edentulous casts were divided into 3 groups randomly and equally. In each group, one of the three techniques (SLM, EBM, conventional technique) was used to fabricate Ti alloy frameworks. The base-cast sets were transversally sectioned into 3 sections at the distal of canines, mesial of first molars, and the posterior palatal zone. The gap between the metal base and cast was measured in the 3 sections. Stereoscopic microscope was used to measure the gap. Three pieces of specimens of 5 mm diameter were fabricated with Ti alloy by SLM, EBM and the traditional casting technology (as mentioned above). Scanning electron microscope (SEM) was used to evaluate the differences of microstructure among these specimens. Results: The gaps between the metal base and cast were (99.4±17.0), (98.2±26.1), and (99.6± 16.1) μm in conventional method; (99.4 ± 22.8), (83.1 ± 19.3), and (103.3 ± 13.8) μm in SLM technique; (248.3±70.3), (279.1±71.9), and (189.1±31.6) μm in EBM technique. There was no statistical difference in the value of gaps between SLM Ti alloy and conventional method Ti alloy group ( P> 0.05). There was statistical difference among EBM Ti alloy, conventional method Ti alloy and SLM Ti alloy group ( Palloy showed more uniform and compact microstructure than the cast Ti alloy and EBM Ti alloy did. Conclusions: SLM technique showed initial feasibility to manufacture the dental base of complete denture. The mechanical properties and microstructure of the denture frameworks prepared by SLM indicate that these dentures are appropriate for clinical use. EBM technique is inadequate to make a complete denture now.

  7. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding

    NARCIS (Netherlands)

    Akram, M.; Jansen, K.M.B.; Ernst, L.J.; Bhowmik, S.

    2011-01-01

    In this investigation surface treatment of titanium is carried out by plasma ion implantation under atmospheric pressure plasma in order to increase the adhesive bond strength. Prior to the plasma treatment, titanium surfaces were mechanically treated by sand blasting. It is observed that the

  8. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide.

    Directory of Open Access Journals (Sweden)

    Shiho Sugawara

    Full Text Available The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM. BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP. PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β and growth factors (EGF, VEGF on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface.

  9. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  10. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.

    Science.gov (United States)

    Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance

    2017-08-01

    Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.

  11. Antiseptics and microcosm biofilm formation on titanium surfaces

    Directory of Open Access Journals (Sweden)

    Georgia VERARDI

    2016-01-01

    Full Text Available Abstract Oral rehabilitation with osseointegrated implants is a way to restore esthetics and masticatory function in edentulous patients, but bacterial colonization around the implants may lead to mucositis or peri-implantitis and consequent implant loss. Peri-implantitis is the main complication of oral rehabilitation with dental implants and, therefore, it is necessary to take into account the potential effects of antiseptics such as chlorhexidine (CHX, chloramine T (CHT, triclosan (TRI, and essential oils (EO on bacterial adhesion and on biofilm formation. To assess the action of these substances, we used the microcosm technique, in which the oral environment and periodontal conditions are simulated in vitro on titanium discs with different surface treatments (smooth surface - SS, acid-etched smooth surface - AESS, sand-blasted surface - SBS, and sand-blasted and acid-etched surface - SBAES. Roughness measurements yielded the following results: SS: 0.47 µm, AESS: 0.43 µm, SB: 0.79 µm, and SBAES: 0.72 µm. There was statistical difference only between SBS and AESS. There was no statistical difference among antiseptic treatments. However, EO and CHT showed lower bacterial counts compared with the saline solution treatment (control group. Thus, the current gold standard (CHX did not outperform CHT and EO, which were efficient in reducing the biofilm biomass compared with saline solution.

  12. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    Science.gov (United States)

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  13. The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthijn; Grouve, Wouter; Akkerman, Remko

    2017-01-01

    Co-consolidated titanium – carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the interface between the titanium and the thermoplastic composite is crucial for the strength of the entire hybrid joint. Application of a

  14. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  15. Characterization of surface roughness of laser deposited titanium alloy and copper using AFM

    Science.gov (United States)

    Erinosho, M. F.; Akinlabi, E. T.; Johnson, O. T.

    2018-03-01

    Laser Metal Deposition (LMD) is the process of using the laser beam of a nozzle to produce a melt pool on a metal surface usually the substrate and metal powder is been deposited into it thereby creating a fusion bond with the substrate to form a new material layer against the force gravity. A good metal laminate is formed when the wettability between the dropping metal powder and the substrate adheres. This paper reports the surface roughness of laser deposited titanium alloy and copper (Ti6Al4V + Cu) using the Atomic Force Microscopy (AFM). This AFM is employed in order to sense the surface and produce different manipulated images using the micro-fabricated mechanical tip under a probe cartridge of high resolution. The process parameters employed during the deposition routine determines the output of the deposit. A careful attention is given to the laser deposited Ti6Al4V + Cu samples under the AFM probe because of their single tracked layers with semi-circular pattern of deposition. This research work can be applicable in the surface modification of laser deposited samples for the marine industry.

  16. Surface grain coarsening and surface softening during machining of ultra-fine grained titanium

    Directory of Open Access Journals (Sweden)

    Symonova A.A.

    2012-01-01

    Full Text Available Experiments are run to show that different machining conditions applied to ultra-fine grained pure titanium lead to different levels of grain coarsening and softening near the machined surface. Under “hard” machining conditions the upper 40 microns of the machined surface are altered with a decreased microhardness. The experimental results are reasonably reproduced by model calculations. Expanding the parameter field of the model calculations, the surface coarsening diagram and the surface softening diagram due to machining are presented, showing the region of technological parameters, under which neither grain coarsening nor softening takes place along the machined surface.

  17. The effects of pulsed electromagnetic field (PEMF) on osteoblast-like cells cultured on titanium and titanium-zirconium surfaces.

    Science.gov (United States)

    Atalay, Belir; Aybar, Buket; Ergüven, Mine; Emes, Yusuf; Bultan, Özgür; Akça, Kivanç; Yalçin, Serhat; Baysal, Uğur; Işsever, Halim; Çehreli, Murat Cavit; Bilir, Ayhan

    2013-11-01

    Commercially pure Ti, together with Ti Ni, Ti-6Al-4V, and Ti-6Al-7Nb alloys, are among the materials currently being used for this purpose. Titanium-zirconium (TiZr) has been developed that allows SLActive surface modification and that has comparable or better mechanical strength and improved biocompatibility compared with existing Ti alloys. Furthermore, approaches have targeted making the implant surface more hydrophilic, as with the Straumann SLActive surface, a modification of the SLA surface. The aim of this study is to evaluate the effects of pulsed electromagnetic field (PEMF) to the behavior of neonatal rat calvarial osteoblast-like cells cultured on commercially pure titanium (cpTi) and titanium-zirconium alloy (TiZr) discs with hydrophilic surface properties. Osteoblast cells were cultured on titanium and TiZr discs, and PEMF was applied. Cell proliferation rates, cell numbers, cell viability rates, alkaline phosphatase, and midkine (MK) levels were measured at 24 and 72 hours. At 24 hours, the number of cells was significantly higher in the TiZr group. At 72 hours, TiZr had a significantly higher number of cells when compared to SLActive, SLActive + PEMF, and machine surface + PEMF groups. At 24 hours, cell proliferation was significantly higher in the TiZr group than SLActive and TiZr + PEMF group. At 72 hours, TiZr group had higher proliferation rate than machine surface and TiZr + PEMF. Cell proliferation in the machine surface group was lower than both SLActive + PEMF and machine surface + PEMF. MK levels of PEMF-treated groups were lower than untreated groups for 72 hours. Our findings conclude that TiZr surfaces are similar to cpTi surfaces in terms of biocompatibility. However, PEMF application has a higher stimulative effect on cells cultured on cpTi surfaces when compared to TiZr.

  18. Vanadium Contribution to the Surface Modification of Titanium Silicalite for Conversion of Benzene to Phenol

    Directory of Open Access Journals (Sweden)

    Didik Prasetyoko

    2011-05-01

    Full Text Available Vanadium oxide supported on the surface of titanium silicalite was investigated in benzene hydroxylation to determine its activity as heterogeneous catalyst. Effect of vanadium loading on structure and activity of titanium silicalite was investigated. On the basis of X-ray diffraction and infrared spectroscopy techniques, it was found that the titanium structure was remained on the modified catalyst. The catalytic activity of the modified catalyst was observed to be higher than that of parent catalyst.

  19. Molecular dynamics simulations on surface properties of silicon dioxide melts

    CERN Document Server

    Röder, A

    2000-01-01

    In the present thesis the surface properties of a silicon dioxide melt were studied. As first systems drops (i.e. sytems without periodic boundary conditions) of N=432, 1536, as well as 4608 atoms were considered. The second analyzed geometry corresponds to that of a thin film, i. e. periodic boundary conditions in x- and y-direction were present, while in z-direction one had a free surface. In this case a system of N=1152 atoms was considered. As model potential the two-body potential proposed by Beest, Kramer, and van Santen was applied. For both geometries five temperatures were considered, which lied in the range of 3000 K

  20. Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions

    NARCIS (Netherlands)

    Amin Yavari, S.; Loozen, L.; Paganelli, F. L.; Bakhshandeh, S.; Lietaert, K.; Groot, J. A.; Fluit, A. C.; Boel, C. H E; Alblas, J.; Vogely, H. C.; Weinans, H.; Zadpoor, A. A.

    2016-01-01

    Additive manufacturing (3D printing) has enabled fabrication of geometrically complex and fully interconnected porous biomaterials with huge surface areas that could be used for biofunctionalization to achieve multifunctional biomaterials. Covering the huge surface area of such porous titanium with

  1. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  2. Behaviour of iron and titanium species in cryolite-alumina melts

    OpenAIRE

    Jentoftsen, Trond Eirik

    2000-01-01

    The solubility of divalent iron oxide in cryolite-based melts was studied. Both electrochemical and chemical techniques were employed. To ensure that only divalent iron was present in solution, the melt was contained in an iron crucible under an atmosphere of argon. The experimental work included investigation of the solubility as a function of alumina concentration, temperature and cryolite ratio (CR = NaF/AlF3 molar ratio). The solubility at 1020 ºC was found to decrease from 4.17 wt% Fe in...

  3. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    Science.gov (United States)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  4. Bone regeneration by the osteoconductivity of porous titanium implants manufactured by selective laser melting: a histological and micro computed tomography study in the rabbit.

    Science.gov (United States)

    de Wild, Michael; Schumacher, Ralf; Mayer, Kyrill; Schkommodau, Erik; Thoma, Daniel; Bredell, Marius; Kruse Gujer, Astrid; Grätz, Klaus W; Weber, Franz E

    2013-12-01

    The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (μCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone

  5. Review: the potential impact of surface crystalline states of titanium for biomedical applications.

    Science.gov (United States)

    Barthes, Julien; Ciftci, Sait; Ponzio, Florian; Knopf-Marques, Helena; Pelyhe, Liza; Gudima, Alexandru; Kientzl, Imre; Bognár, Eszter; Weszl, Miklós; Kzhyshkowska, Julia; Vrana, Nihal Engin

    2018-05-01

    In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.

  6. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting.

    Science.gov (United States)

    Otawa, Naruto; Sumida, Tomoki; Kitagaki, Hisashi; Sasaki, Kiyoyuki; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Nakamura, Takashi; Yamada, Tomohiro; Mori, Yoshihide; Matsushita, Tomiharu

    2015-09-01

    The purpose of this study was to verify the modeling accuracy of various products, and to produce custom-made devices for bone augmentation in individual patients requiring implantation. Two-(2D) and three-dimensional (3D) specimens and custom-made devices that were designed as membranes for guided bone regeneration (GBR) were produced using a computer-aided design (CAD) and rapid prototyping (RP) method. The CAD design was produced using a 3D printing machine and selective laser melting (SLM) with pure titanium (Ti) powder. The modeling accuracy was evaluated with regard to: the dimensional accuracy of the 2D and 3D specimens; the accuracy of pore structure of the 2D specimens; the accuracy of porosity of the 3D specimens; and the error between CAD design and the scanned real product by overlapped images. The accuracy of the 2D and 3D specimens indicated precise results in various parameters, which were tolerant in ISO 2768-1. The error of overlapped images between the CAD and scanned data indicated that accuracy was sufficient for GBR. In integrating area of all devices, the maximum and average error were 292 and 139 μm, respectively. High modeling accuracy can be achieved in various products using the CAD/RP-SLM method. These results suggest the possibility of clinical applications. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. In Vitro Evaluation of PCL and P(3HB as Coating Materials for Selective Laser Melted Porous Titanium Implants

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-11-01

    Full Text Available Titanium is widely used as a bone implant material due to its biocompatibility and high resilience. Since its Young’s modulus differs from bone tissue, the resulting “stress shielding” could lead to scaffold loosening. However, by using a scaffold-shaped geometry, the Young’s modulus can be adjusted. Also, a porous geometry enables vascularisation and bone ingrowth inside the implant itself. Additionally, growth factors can improve these effects. In order to create a deposit and release system for these factors, the titanium scaffolds could be coated with degradable polymers. Therefore, in the present study, synthetic poly-ε-caprolactone (PCL and the biopolymer poly(3-hydroxybutyrate (P(3HB were tested for coating efficiency, cell adhesion, and biocompatibility to find a suitable coating material. The underlying scaffold was created from titanium by Selective Laser Melting (SLM and coated with PCL or P(3HB via dip coating. To test the biocompatibility, Live Cell Imaging (LCI as well as vitality and proliferation assays were performed. In addition, cell adhesion forces were detected via Single Cell Force Spectroscopy, while the coating efficiency was observed using environmental scanning electron microscopy (ESEM and energy-dispersive X-ray (EDX analyses. Regarding the coating efficiency, PCL showed higher values in comparison to P(3HB. Vitality assays revealed decent vitality values for both polymers, while values for PCL were significantly lower than those for blank titanium. No significant differences could be observed between PCL and P(3HB in proliferation and cell adhesion studies. Although LCI observations revealed decreasing values in cell number and populated area over time on both polymer-coated scaffolds, these outcomes could be explained by the possibility of coating diluent residues accumulating in the culture medium. Overall, both polymers fulfill the requirements regarding biocompatibility. Nonetheless, since only PCL

  8. Antibacterial and bioactive coatings on titanium implant surfaces.

    Science.gov (United States)

    Kulkarni Aranya, Anupama; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z; Zhang, Yu; Saxena, Deepak

    2017-08-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP, and FZn-CaP and incubated for 24 h. Negative control was uncoated Ti discs. Coated surfaces were characterized using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Antibacterial properties were tested using Porphyromonas gingivalis because of its strong association with periodontal and peri-implant infections. Bacterial adhesion and colonization were studied at different timepoints. The coated surfaces had compositional characteristics similar to that of bone mineral and they inhibited the growth, colonization and adherence of P. gingivalis, resulted in reduced thickness of biofilms and bacterial inhibition in the culture medium as compared to the positive and negative controls (p  0.05). It has been previously demonstrated that these coatings have excellent in vitro bioactivity (formed carbonate hydroxyapatite when immersed in a simulated body fluid). Such coatings can enhance osseointegration and prevent infection in implants, thereby improving the success rates of implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2218-2227, 2017. © 2017 Wiley Periodicals, Inc.

  9. Effect of Surface Nanotopography on Bone Response to Titanium Implant.

    Science.gov (United States)

    Freitas, Gileade P; Lopes, Helena B; Martins-Neto, Evandro C; de Oliveira, Paulo T; Beloti, Marcio M; Rosa, Adalberto L

    2016-06-01

    Clinical success of implant therapy is directly related to titanium (Ti) surface properties and the quality of bone tissue. The treatment of Ti implants with H2SO4/H2O2 is a feasible, reproducible, and low-cost technique to create surface nanotopography (Ti-Nano). As this nanotopography induces osteoblast differentiation, we hypothesized that it may affect bone response to Ti. Thus, this study was designed to evaluate the bone response to a machined Ti implant treated with H2SO4/H2O2 to generate Ti-Nano and to compare it with a commercially available microtopographic Ti implant (Ti-Porous). Implants were placed in rabbit tibias and evaluated after 2 and 6 weeks, and the bone tissue formed around them was assessed by microtomography to record bone volume, bone surface, specific bone surface, trabecular number, trabecular thickness, and trabecular separation. Undecalcified histological sections were used to determine the percentages of bone-to-implant contact, bone area formed between threads, and bone area formed in the mirror area. At the end of 6 weeks, the removal torque was evaluated using a digital torque gauge. The results showed bone formation in close contact with both Ti-Nano and Ti-Porous implants without relevant morphological and morphometric differences, in addition to a similar removal torque irrespective of surface topography. In conclusion, our results have shown that a simple and low-cost method using H2SO4/H2O2 is highly efficient for creating nanotopography on Ti surfaces, which elicits a similar bone response compared with microtopography presented in a commercially available Ti implant.

  10. Wetting and surface tension of bismate glass melt

    International Nuclear Information System (INIS)

    Shim, Seung-Bo; Kim, Dong-Sun; Hwang, Seongjin; Kim, Hyungsun

    2009-01-01

    Lead oxide glass frits are used widely in the electronics industry for low-temperature firing. On the other hand, one of the low-sintering and low-melting lead-free glass systems available, the bismate glass system, is considered to be an alternative to lead oxide glass. In order to extend the applications of Bi 2 O 3 glasses, this study examined the thermophysical properties of low-melting Bi 2 O 3 -B 2 O 3 -ZnO-BaO-Al 2 O 3 -SiO 2 glass frits with various ZnO/B 2 O 3 ratios. The fundamental thermal properties, such as glass transition temperature and softening point, were examined by differential thermal analysis and a glass softening point determination system. The wetting angles, viscosities and surface tension of the various bismate glasses on an alumina substrate were measured using hot-stage microscopy and the sessile drop method. These thermophysical properties will be helpful in understanding the work of adhesion and the liquid spread kinetics of glass frits.

  11. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    Science.gov (United States)

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  12. Electrical signals guided entrapment and controlled release of antibiotics on titanium surface.

    Science.gov (United States)

    Shi, Xiaowen; Wu, Huiping; Li, Yuanyuan; Wei, Xiaoquan; Du, Yumin

    2013-05-01

    Electrical signals are used to trigger the entrapment and release of antibiotics on the surface of titanium plate. The entrapment of antibiotics relies on the electrochemically induced pH gradient generated at the titanium surface that allows the gelation of an aminopolysaccharide chitosan and codeposition of vancomycin, a common antibiotic, within chitosan gel. The release of vancomycin is controlled by an anodic signal imposed to the titanium plate that causes a pH decrease and erosion of chitosan gel. We show that the on demand entrapment and release of vancomycin at the surface of titanium plate is fundamentally altered and controlled by voltage. We expect that this rapid, mild and facile electrochemical process for antibiotics loading and release will find applications in controlled drug release from titanium implants. Copyright © 2012 Wiley Periodicals, Inc.

  13. Effects of surface shape on the geometry and surface topography of the melt pool in low-power density laser melting

    KAUST Repository

    Kim, Youngdeuk

    2011-04-15

    The quantitative correlations between workpiece volume and melt pool geometry, as well as the flow and thermal features of the melt pool are established. Thermocapillary convections in melt pool with a deformable free surface are investigated with respect to surface shape and laser intensity. When the contact angle between the tangent to the top surface and the vertical wall at the hot center is acute, the free surface flattens, compared with that of the initial free surface. Otherwise, the free surface forms a bowl-like shape with a deep crater and a low peripheral rim when the contact angle at the hot center is obtuse. Increasing the workpiece volume at a fixed laser intensity and a negative radial height gradient cause linear decreases in the geometric size and magnitude of flow and temperature of the melt pool. Conversely, linear increases are observed with a positive radial height gradient. © 2011 American Institute of Chemical Engineers (AIChE).

  14. Characterization of Thermochemically Surface-Hardened Titanium by Light Optical Microscopy

    DEFF Research Database (Denmark)

    Gammeltoft-Hansen, Niklas; Munch, Steffen S.; Jellesen, Morten Stendahl

    2017-01-01

    Thermochemically treated titanium grades 2 and 5 were investigated by light optical microscopy and hardness indentation. Gaseous oxidation in oxygen and N2O containing atmospheres resulted in a diffusion zone of oxygen in solid solution in titanium with a hardness up to 1000 HV. A surface scale...

  15. Effects of laser surface melting on the pitting resistance of sensitized nitrogen-bearing type 316L stainless steel

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Pujar, M.G.; Dayal, R.K.

    1998-01-01

    Austenitic stainless steels (SS) form a major part of the structural materials for fast reactors because of their excellent mechanical properties at high temperatures and good corrosion resistance in general. Here, laser surface melting of sensitized nitrogen-bearing type 316L austenitic stainless steel was carried out using a pulsed ruby laser. The sensitization heat treatment was carried out at 923 K for 50, 200, 1,000, and 2,500 h, and the sensitized microstructure was classified according to ASTM A 262 practice A. The degree of sensitization was assessed by the electrochemical potentiokinetic reactivation (EPR) test. The critical pitting potentials of as-sensitized as well as sensitized-laser melted specimens were determined by potentiodynamic anodic polarization method in a medium containing 0.5 M NaCl and 0.5 M H 2 SO 4 at room temperature. Results indicated that upon laser melting the pitting resistance increased significantly. This increase was attributed to the elimination of the sensitized heterogeneous microstructure by laser melting. The microscopic examination of the pitted specimens showed only micropits that developed at the interfaces of oxide/sulfide inclusions of titanium and matrix

  16. Surface Charge and Ion Sorption Properties of Titanium Dioxide

    Science.gov (United States)

    Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Finnegan, M. P.; Palmer, D. A.

    2001-12-01

    The interaction of submicron metal oxide particles with natural aqueous solutions results in the hydroxylation of surface sites, which impart a pH-dependent surface charge. The charged submicron particles influence processes such as nanoparticle assembly and alteration, crystal growth rates and morphologies, colloid flocculation, and contaminant transport. The surface charge and ion sorption properties of metal-oxide particles may be studied by potentiometric titrations, using hydrogen-electrode concentration-cells or traditional glass electrodes and an autotitrator. These techniques have been used to quantify the adsorption of various ions (Na+, Rb+, Ca2+, Sr2+, Cl-) on rutile, at ionic strengths up to 1.0 molality and temperatures to 250° C. The crystalline rutile used in these studies is less than 400 nm in diameter, has a BET surface area of 17 m2/g, and the 110 and 100 faces predominate. The negative surface charge of the rutile was enhanced by increasing temperature, increasing ionic strength, and decreasing the ionic radii of the electrolyte cation. Moreover, the addition of a divalent cation significantly enhances the negative charge of the rutile surface. These data have been rationalized with the MUSIC model of Hiemestra and van Riemsdijk, and a Basic Stern layer description of the electric double layer (EDL). Model fitting of the experimental data provides binding constants for the adsorbed counterions and divalent cations, and capacitance values as well as corresponding electrical potential values of the binding planes. Recently, new studies have been initiated to determine particle size affects on the proton induced surface charge and ion sorption properties of titanium dioxide. In these studies, anatase with a BET surface area of 40 and 100 m2/g (primary particle sizes of 40 and 10 nm, respectively) is being investigated. The complexity of both the experimental and modeling procedures increases with decreasing particle size. For example, the fine

  17. Snow cover as a source of technogenic pollution of surface water during the snow melting period

    OpenAIRE

    Labuzova Olga; Noskova Tatyana; Lysenko Maria; Ovcharenko Elena; Papina Tatyana

    2016-01-01

    The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period...

  18. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    Science.gov (United States)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  19. Difference in surface reactions between titanium and zirconium in Hanks' solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization

    International Nuclear Information System (INIS)

    Tsutsumi, Y.; Nishimura, D.; Doi, H.; Nomura, N.; Hanawa, T.

    2009-01-01

    Titanium and zirconium were immersed in Hanks' solution with and without calcium and phosphate ions, and the surfaces were characterized with X-ray photoelectron spectroscopy (XPS) to determine the mechanism of calcium phosphate formation on titanium in simulated body fluids and in a living body. In addition, they were cathodically polarized in the above solutions. XPS characterization and cathodic polarization revealed differences in the surface properties in the ability of calcium phosphate formation between titanium and zirconium. The surface oxide film on titanium is not completely oxidized and is relatively reactive; that on zirconium is more passive and protective than that on titanium. Neither calcium nor phosphate stably exists alone on titanium, and calcium phosphate is naturally formed on it; calcium phosphate formed on titanium is stable and protective. On the other hand, calcium is never incorporated on zirconium, while zirconium phosphate, which is easily formed on zirconium, is highly stable and protective. Our study presents new information regarding the surface property of titanium and demonstrates that the characteristics of titanium and zirconium may be applied to various medical devices and new surface modification techniques.

  20. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  1. Microstructural changes due to laser surface melting of an AISI 304 stainless steel

    Directory of Open Access Journals (Sweden)

    d?Oliveira A.S.C.M.

    2001-01-01

    Full Text Available Several techniques can be used to improve surface properties. These can involve changes on the surface chemical composition (such as alloying and surface welding processes or on the surface microstructure, such as hardening and melting. In the present work surface melting with a 3kW CO2 cw laser was done to alter surface features of an AISI 304 stainless steel. Microstructure characterisation was done by optical and scanning electron microscopy. Vickers and Knoop microhardness tests evaluated mechanical features after surface melting. Phase transformation during rapid solidification is analysed and discussed.

  2. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    Science.gov (United States)

    Langhoff, J D; Mayer, J; Faber, L; Kaestner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. The new surfaces were referenced to a stainless steel implant and a standard titanium implant surface (TiMAX). In a sheep limb model, healing period was 3 months. Bone-implant bonding was evaluated either biomechanically or histologically. The new surface anodized screws demonstrated similar or slightly higher bone-implant-contact (BIC) and torque release forces than the titanium reference. The BIC of the stainless steel implants was significant lower than two of the anodized surfaces (p = 0.04), but differences between stainless steel and all titanium implants in torque release forces were not significant (p = 0.06). The new anodized titanium surfaces showed good bone-implant bonding despite a smooth surface and increased nanohardness. However, they failed to facilitate implant removal at 3 months.

  3. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng [Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute (BAMTRI), Beijing 100024 (China); State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Xian; Yao, Yao; Wei, Yehui [Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Han, Changjun; Shi, Yusheng [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Qingsong, E-mail: wqs_xn@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Zhen, E-mail: zhangzhentitanium@163.com [State Key Lab of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China)

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392 ± 37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co–Cr, and other traditional biomedical materials without wasting raw materials. - Highlights: • Porous Nb coating was firstly fabricated on Ti substrate by SLM technique. • Morphology, microstructure and hardness of the coating were characterized. • In vitro test of the coating showed good cell attachment, morphology and growth.

  4. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    Science.gov (United States)

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Detonation nanodiamonds biofunctionalization and immobilization to titanium alloy surfaces as first steps towards medical application

    Directory of Open Access Journals (Sweden)

    Juliana P. L. Gonçalves

    2014-11-01

    Full Text Available Due to their outstanding properties nanodiamonds are a promising nanoscale material in various applications such as microelectronics, polishing, optical monitoring, medicine and biotechnology. Beyond the typical diamond characteristics like extreme hardness or high thermal conductivity, they have additional benefits as intrinsic fluorescence due to lattice defects without photobleaching, obtained during the high pressure high temperature process. Further the carbon surface and its various functional groups in consequence of the synthesis, facilitate additional chemical and biological modification. In this work we present our recent results on chemical modification of the nanodiamond surface with phosphate groups and their electrochemically assisted immobilization on titanium-based materials to increase adhesion at biomaterial surfaces. The starting material is detonation nanodiamond, which exhibits a heterogeneous surface due to the functional groups resulting from the nitrogen-rich explosives and the subsequent purification steps after detonation synthesis. Nanodiamond surfaces are chemically homogenized before proceeding with further functionalization. Suspensions of resulting surface-modified nanodiamonds are applied to the titanium alloy surfaces and the nanodiamonds subsequently fixed by electrochemical immobilization. Titanium and its alloys have been widely used in bone and dental implants for being a metal that is biocompatible with body tissues and able to bind with adjacent bone during healing. In order to improve titanium material properties towards biomedical applications the authors aim to increase adhesion to bone material by incorporating nanodiamonds into the implant surface, namely the anodically grown titanium dioxide layer. Differently functionalized nanodiamonds are characterized by infrared spectroscopy and the modified titanium alloys surfaces by scanning and transmission electron microscopy. The process described shows an

  6. Enhancement of Biocompatibility on Bioactive Titanium Surface by Low-Temperature Plasma Treatment

    Science.gov (United States)

    Lin, Chia-Cheng; Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Che-Tong; Lee, Sheng-Yang; Chen, Chin-Sung; Ou, Keng-Liang

    2005-12-01

    The surface of implantable biomaterials directly contacts the host tissue and is critical in determining biocompatibility. To improve implant integration, interfacial reactions must be controlled to minimize nonspecific adsorption of proteins, and tissue-healing phenomena can be controlled. The purpose of this study was to develop a new method of functionalizing titanium surfaces by plasma treatment. The covalent immobilization of bioactive organic molecules and the bioactivities in vitro were assessed by transmission electron microscopy (TEM), atomic force spectroscopy (AFM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as indices of cellular cytotoxicity. Argon plasma removed all of the adsorbed contaminants and impurities. Plasma-cleaned titanium surfaces showed better bioactive performances than untreated titanium surfaces. The analytical results reveal that plasma-cleaned titanium surfaces provide a clean and reproducible starting condition for further plasma treatments to create well-controlled surface layers. Allylamine was ionized by plasma treatment, and acted as a medium to link albumin. Cells demonstrated a good spread, and a wide attachment was attained on the Albu-Ti plate. Cell attachment and growth were shown to be influenced by the surface properties. The plasma treatment process plays an important role in facilitating tissue healing. This process not only provides a clean titanium surface, but also leads to surface amination on plasma-treated titanium surfaces. Surface cleaning by ion bombardment and surface modification by plasma polymerization are believed to remove contamination on titanium surfaces and thus promote tissue healing.

  7. Can Nano-Particle Melt below the Melting Temperature of Its Free Surface Partner?

    International Nuclear Information System (INIS)

    Sui Xiao-Hong; Qin Shao-Jing; Wang Zong-Guo; Kang Kai; Wang Chui-Lin

    2015-01-01

    The phonon thermal contribution to the melting temperature of nano-particles is inspected. The discrete summation of phonon states and its corresponding integration form as an approximation for a nano-particle or for a bulk system have been analyzed. The discrete phonon energy levels of pure size effect and the wave-vector shifts of boundary conditions are investigated in detail. Unlike in macroscopic thermodynamics, the integration volume of zero-mode of phonon for a nano-particle is not zero, and it plays an important role in pure size effect and boundary condition effect. We find that a nano-particle will have a rising melting temperature due to purely finite size effect; a lower melting temperature bound exists for a nano-particle in various environments, and the melting temperature of a nano-particle with free boundary condition reaches this lower bound. We suggest an easy procedure to estimation the melting temperature, in which the zero-mode contribution will be excluded, and only several bulk quantities will be used as input. We would like to emphasize that the quantum effect of discrete energy levels in nano-particles, which is not present in early thermodynamic studies on finite size corrections to melting temperature in small systems, should be included in future researches. (condensed matter: structural, mechanical, and thermal properties)

  8. Microstructural evolution and mechanical properties of Ti–Zr beta titanium alloy after laser surface remelting

    International Nuclear Information System (INIS)

    Yao, Y.; Li, X.; Wang, Y.Y.; Zhao, W.; Li, G.; Liu, R.P.

    2014-01-01

    Highlights: • The surface mechanical properties of the alloy have been greatly improved. • Its grain size was decreased from 100 μm to 10 μm. • The metastable ω with the size of 20–50 nm was observed in the alloy after LSR. • The strengthening effect is mainly due to fine microstructure and strengthened phase. -- Abstract: The effects of laser surface remelting (LSR) on the microstructural evolution and surface mechanical properties of Ti–Zr beta titanium alloy were investigated. The surfaces of the Ti–Zr alloy was re-melted using a CO 2 laser. X-ray diffraction, Scanning electron microscope, Transmission electron microscope, nanoindentation, and microhardness analyses were performed to evaluate the microstructural and mechanical properties of the alloy. The results showed that the alloy microstructure in the remelting region was greatly refined and homogeneous compared with that in the base material because of the rapid remelting and resolidifying. Meanwhile, the metastable hexagonal ω phases with the size of 20–50 nm was found and uniformly distributed throughout the β matrix after LSR. Phase transformation and microstructural refinement were the major microstructural changes in the alloys after LSR. The microhardness and elastic modulus in the remelted region clearly increased by 92.9% and 21.78%, respectively, compared with those in the region without laser processing. The strengthening effect of LSR on the mechanical properties of the Ti–Zr alloy was also addressed. Our results indicated that LSR was an effective method of improving the surface mechanical properties of alloys

  9. Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Jørgensen, Niklas Rye

    2012-01-01

    Long-term stability of titanium implants are dependent on a variety of factors. Nanocoating with organic molecules is one of the method used to improve osseointegration. Nanoscale modification of titanium implants affects surface properties, such as hydrophilicity, biochemical bonding capacity...... with focus on polysaccharides including glycosaminoglycans, and how these molecules change surface properties, cell reactions and affect on osseointegartion. The included in vitro studies demonstrated increased cell adhesion, proliferation and mineralization of a number of the tested polysaccharide...

  10. Does surface anodisation of titanium implants change osseointegration and make their extraction from bone any easier?

    OpenAIRE

    Langhoff, J; Mayer, J; Faber, L; Kästner, S B; Guibert, G; Zlinszky, K; Auer, J A; von Rechenberg, B

    2008-01-01

    Objectives: Titanium implants have a tendency for high bone-implant bonding, and, in comparison to stainless steel implants are more difficult to remove. The current study was carried out to evaluate, i) the release strength of three selected anodized titanium surfaces with increased nanohardness and low roughness, and ii) bone-implant bonding in vivo. These modified surfaces were intended to give improved anchorage while facilitating easier removal of temporary implants. Material and methods...

  11. Microstructural characterization of laser surface melted AISI M2 tool steel.

    Science.gov (United States)

    Arias, J; Cabeza, M; Castro, G; Feijoo, I; Merino, P; Pena, G

    2010-09-01

    We describe the microstructure of Nd:YAG continuous wave laser surface melted high-speed steel, namely AISI M2, treated with different laser scanning speeds and beam diameters on its surface. Microstructural characterization of the remelted surface layer was performed using light optical and scanning electron microscopy and X-ray diffraction. The combination of the three techniques provided new insights into the substantial changes induced by laser surface melting of the steel surface layer. The advantage of the method is that it avoids the difficult and tedious work of preparing samples of this hard material for transmission electron microscopy, which is the technique normally used to study these fine microstructures. A melted zone with a dendritic structure and a partially melted zone with a heterogeneous cellular structure were observed. M(2)C carbides with different morphologies were identified in the resolidified surface layer after laser melting.

  12. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  13. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Hee; Bhattarai, Govinda [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Aryal, Santosh [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Nan-Hee [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Lee, Min-Ho [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Tae-Gun [Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju (Korea, Republic of); Jhee, Eun-Chung [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hak-Yong [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju (Korea, Republic of); Yi, Ho-Keun, E-mail: yihokn@chonbuk.ac.kr [Department of Oral Biochemistry, School of Dentistry and Institute of Oral Bioscience, BK21 program, Chonbuk National University, Jeonju (Korea, Republic of)

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH{sub 4}). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  14. Modified titanium surface with gelatin nano gold composite increases osteoblast cell biocompatibility

    Science.gov (United States)

    Lee, Young-Hee; Bhattarai, Govinda; Aryal, Santosh; Lee, Nan-Hee; Lee, Min-Ho; Kim, Tae-Gun; Jhee, Eun-Chung; Kim, Hak-Yong; Yi, Ho-Keun

    2010-08-01

    This study examined the gelatin nano gold (GnG) composite for surface modification of titanium in addition to insure biocompatibility on dental implants or biomaterials. The GnG composite was constructed by gelatin and hydrogen tetrachloroaurate in presence of reducing agent, sodium borohydrate (NabH 4). The GnG composite was confirmed by UV-VIS spectroscopy and transmission electron microscopy (TEM). A dipping method was used to modify the titanium surface by GnG composite. Surface was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The MC-3T3 E1 cell viability was assessed by trypan blue and the expression of proteins to biocompatibility were analyzed by Western blotting. The GnG composite showed well dispersed character, the strong absorption at 530 nm, roughness, regular crystal and clear C, Na, Cl, P, and Au signals onto titanium. Further, this composite allowed MC-3T3 E1 growth and viability compared to gelatin and pure titanium. It induced ERK activation and the expression of cell adherent molecules, FAK and SPARC, and growth factor, VEGF. However, GnG decreased the level of SAPK/JNK. This shows that GnG composite coated titanium surfaces have a good biocompatibility for osteoblast growth and attachment than in intact by simple and versatile dipping method. Furthermore, it offers good communication between cell and implant surfaces by regulating cell signaling and adherent molecules, which are useful to enhance the biocompatibility of titanium surfaces.

  15. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  16. Use of an Electron Beam Melting Manufactured Titanium Collared Cementless Femoral Stem to Resist Subsidence After Canine Total Hip Replacement.

    Science.gov (United States)

    Liska, William D; Doyle, Nancy D

    2015-10-01

    To evaluate the effect of a collared electron beam melting (EBM)-manufactured titanium cementless femoral stem on implant subsidence after total hip replacement (THR). Prospective study Dogs (n = 26); 33 THR. Records were maintained on the first 110 consecutive THR using an EBM collared femoral stem. Radiographs on the first 33 THR that had 6-months follow-up were evaluated for implant subsidence. These results were compared to 27 dogs with subsidence after THR with a Co Cr collarless stem. Dogs that had EBM collared stem THR had a mean body weight of 35.4 kg, body condition score (BCS) of 6.21, and mean canal flare index (CFI) of 1.56. EBM stem sizes used (number implanted) were #7 (13), #8 (10), #9 (8), and #10 (2). Subsidence of collared stems did not occur if the collar was in contact with cortical bone during surgery. Subsidence of 1-3 mm occurred closing a gap between the collar and bone if contact was not made during surgery, but subsidence stopped once contact was made. No major complications directly related to the EBM collared stem were encountered. A collar on a cementless femoral stem in contact with cortical bone resists subsidence. © Copyright 2015 by The American College of Veterinary Surgeons.

  17. The Wear behavior of UHMWPE against Surface Modified CP-Titanium by Thermal Oxidation

    Directory of Open Access Journals (Sweden)

    B.T. Prayoga

    2016-12-01

    Full Text Available The effects of thermal oxidation duration on hardness, roughness, and wettability of the CP-titanium surfaces were investigated in this paper. The thermal oxidation treatment was done at 700 oC for 12-36 hours in an air atmosphere. The wear behavior of the UHMWPE sliding against treated thermal oxidation of the CP-titanium was tested by a pin-on-plate tribometer under lubrication of the solution of 75 % distilled water and 25 % bovine serum. The results showed that the layer of the oxide titanium was formed on the surface after being treated by the thermal oxidation for 12-36 hours. The oxide titanium layer was dominated by rutile form of TiO2, that offers an improvement of hardness and wettability of the CP-titanium surfaces. The average wear factor of the UHMWPE reduced significantly when the sliding against of the CP-titanium was modified by the thermal oxidation, and the lowest average wear factor was reached when the sliding against the 12 hour oxidized CP-titanium counterfaces.

  18. In vitro osteoinduction of human mesenchymal stem cells in biomimetic surface modified titanium alloy implants.

    Science.gov (United States)

    Santander, Sonia; Alcaine, Clara; Lyahyai, Jaber; Pérez, Maria Angeles; Rodellar, Clementina; Doblaré, Manuel; Ochoa, Ignacio

    2014-01-01

    Interaction between cells and implant surface is crucial for clinical success. This interaction and the associated surface treatment are essential for achieving a fast osseointegration process. Several studies of different topographical or chemical surface modifications have been proposed previously in literature. The Biomimetic Advanced Surface (BAS) topography is a combination of a shot blasting and anodizing procedure. Macroroughness, microporosity of titanium oxide and Calcium/Phosphate ion deposition is obtained. Human mesenchymal stem cells (hMCSs) response in vitro to this treatment has been evaluated. The results obtained show an improved adhesion capacity and a higher proliferation rate when hMSCs are cultured on treated surfaces. This biomimetic modification of the titanium surface induces the expression of osteblastic differentiation markers (RUNX2 and Osteopontin) in the absence of any externally provided differentiation factor. As a main conclusion, our biomimetic surface modification could lead to a substantial improvement in osteoinduction in titanium alloy implants.

  19. Electrochemical Characteristics of Titanium for Dental Implants in Case of the Electroless Surface Modification

    Directory of Open Access Journals (Sweden)

    Klimecka-Tatar D.

    2016-06-01

    Full Text Available In the paper the results of research under effect of electroless phosphate coating of titanium dental implants on potentiokinetic polarization characteristic obtained in artificial saliva were presented. On the basis of electrochemical studies it was concluded that the electroless process of phosphating beneficialy effect on corrosion characteristic of titanium determined in solution simulating the oral cavity. Furthermore, the proposed technique of chemical treatment of titanium surface is conducive to the homogeneous development of the surface, which is extremely important from the point of view of titanium implants biointegration. Phosphating treatment affect on the development of surface geometry, resulting in a slight increase in roughness parameters (Ra, Rz and Rmax. The temperature increase of electroless phosphating treatment promotes the rate of conversion layer formation, whereas the effect of temperature of the chemical treatment efficiency is secondary important at longer exposure times (e.g. 45 minutes.

  20. Strategies For Immobilization Of Bioactive Organic Molecules On Titanium Implant Surfaces – A Review

    Directory of Open Access Journals (Sweden)

    Panayotov Ivan V.

    2015-03-01

    Full Text Available Numerous approaches have been used to improve the tissue-implant interface of titanium (Ti and titanium alloy (Ti6Al4V. They all aim at increasing cell migration and attachment to the metal, preventing unspecific protein adsorption and improving post-implantation healing process. Promising methods for titanium and titanium alloy surface modification are based on the immobilization of biologically active organic molecules. New and interesting biochemical approaches to such surface modification include layer-by-layer deposition of polyelectrolyte films, phage display-selected surface binding peptides and self-assembled DNA monolayer systems. The present review summarizes the scientific information about these methods, which are at in vitro or in vivo development stages, and hopes to promote their future application in dental implantology and in oral and maxillofacial surgery.

  1. Effects of decontamination solutions on the surface of titanium: investigation of surface morphology, composition, and roughness.

    Science.gov (United States)

    Wheelis, Sutton E; Gindri, Izabelle M; Valderrama, Pilar; Wilson, Thomas G; Huang, Jessica; Rodrigues, Danieli C

    2016-03-01

    To investigate the impact of treatments used to detoxify dental implants on the oxide layer morphology and to infer how changes in morphology created by these treatments may impact re-osseointegration of an implant. Pure titanium (cpTi) and the alloy Ti6Al4V were subjected to a series of chemical treatments and mechanical abrasion simulating surface decontamination of dental implants. The morphology and roughness of the surface layer before and after treatment with these solutions were investigated with optical and atomic force microscopy (OM, AFM). The solutions employed are typically used for detoxification of dental implants. These included citric acid, 15% hydrogen peroxide, chlorhexidine gluconate, tetracycline, doxycycline, sodium fluoride, peroxyacetic acid, and treatment with carbon dioxide laser. The treatments consisted of both immersions of samples in solution and rubbing with cotton swabs soaked in solution for 1, 2, and 5 min. Cotton swabs used were analyzed with energy dispersive spectroscopy (EDS). The microscopy investigation showed that corrosion and pitting of the samples were present in both metal grades with immersion and rubbing methods when employing more acidic solutions, which had pH acidic solutions caused surface discoloration when coupled with rubbing but did not cause corrosion with immersion. Neutral or basic treatments resulted in no signs of corrosion with both methods. EDS results revealed the presence of titanium particles on all rubbing samples. It was demonstrated in this study that acidic environments coupled with rubbing are able to introduce noticeable morphological changes and corrosion on the surface of both titanium grades. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  3. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  4. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly

    Directory of Open Access Journals (Sweden)

    Quan Shi

    2017-08-01

    Full Text Available In vivo implants that are composed of titanium and titanium alloys as raw materials are widely used in the fields of biology and medicine. In the field of dental medicine, titanium is considered to be an ideal dental implant material. Good osseointegration and soft tissue closure are the foundation for the success of dental implants. Therefore, the enhancement of the osseointegration and antibacterial abilities of titanium and its alloys has been the focus of much research. With its many advantages, layer-by-layer (LbL assembly is a self-assembly technique that is used to develop multilayer films based on complementary interactions between differently charged polyelectrolytes. The LbL approach provides new methods and applications for the surface modification of dental titanium implant. In this review, the application of the LbL technique to surface modification of titanium including promoting osteogenesis and osseointegration, promoting the formation and healing of soft tissues, improving the antibacterial properties of titanium implant, achieving local drug delivery and sustained release is summarized.

  5. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, S. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Specht, U., E-mail: uwe.specht@ifam.fraunhofer.de [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany); Spiess, L.; Romanus, H.; Krischok, S.; Himmerlich, M. [Institut fuer Mikro- und Nanotechnologien, Technische Universitaet Ilmenau, PF 100565, 98684 Ilmenau (Germany); Ihde, J. [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, 28359 Bremen (Germany)

    2012-12-15

    Commercial titanium was treated in ambient atmosphere using pulsed Nd:YAG ({lambda}=1064nm) laser irradiation. Repeated laser treatments induce a removal of surface contaminants as well as the formation of a nanostructured top layer exhibiting a large effective surface and nanometer roughness. The laser induced oxidation leads to the presence of a surface layer with strongly improved, hydrothermally stable adhesion when joined to a one-component, hot-curing epoxy-based adhesive. Changes in the material properties have been characterized with respect to the topography, the chemical composition and the crystal structure using SEM, cross-beam FIB, XPS and XRD analyses in order to correlate the adhesion behavior with the structural and chemical characteristics of the surface.

  6. A comparison of titanium alloy orthodontic wires for surface roughness using a confocal optical microscope

    OpenAIRE

    Hirokazu, Nakano; Akihide, Yoshida; Kazushi, Ogasawara; Akira, Sanjo; Shigeru, Tanaka; Takuya, Kamegai; Kazuro, Satoh; Hiroyuki, Miura; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University; Department of Orthodontics, School of Dentistry, Iwate Medical University

    2001-01-01

    The purpose of this study was to clarify the surface roughness of 31 brands of titanium alloy orthodontic wires from 13 manufacturers using a confocal optical microscope. Cobalt-chrome and stainless steel wire were also examined as a reference of comparison. The following results were obtained ; (1) Mean Ra, as determined from the lengthway axis of titanium alloy wires, was 0.296μm, and that determined from the widthway axis was 0.440μm. The modulus of Ra was 0.368μm. (2) For titanium alloy o...

  7. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility

    International Nuclear Information System (INIS)

    Lee, Myung Jin; Kim, Ji Ho; Park, Young Tae

    2010-01-01

    We have carried out the surface modification of photocatalytic TiO 2 with triethoxysilane through dehydrogenation reaction and characterized the modified photocatalyst by spectroscopic methods, such as FT-IR, solid-state 29 Si MAS NMR, XPS, and XRF, etc. We also examined photocatalytic activity of the immobilized photocatalytic titanium dioxide with triethoxysilane by decolorization reaction of dyes such as cong red and methylene blue under visible light. Dispersion test showed that the photocatalytic titanium dioxide immobilized with triethoxysilane group has kept higher dispersibility than titanium dioxide itself. No appreciable precipitation takes place even after standing for 24 h in the 4:6 mixture ratio of ethanol and water

  8. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    Science.gov (United States)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  9. Decreased fibrous encapsulation and enhanced osseointegration in vitro by decorin-modified titanium surface.

    Science.gov (United States)

    He, Ronghan; Lu, Yunxiang; Ren, Jianhua; Wang, Zhe; Huang, Junqi; Zhu, Lei; Wang, Kun

    2017-07-01

    Orthopedic implants, using materials such as titanium, are extensively used in clinical surgeries. Despite its popularity, titanium is still inadequate to reliable osseointegration due to aseptic loosing. Fibrous encapsulation on the titanium implant interface prevents osseointegration and leads to the loosing of orthopedic implant. In this study, decorin was loaded on titanium surface by polydopamine film to examine fibrous encapsulation inhibition and bone growth acceleration. The coating of decorin was evaluated by X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. Quantitative analysis showed increased decorin coating on titanium surface when decorin in the loading solution increases. To test the effect of decorin modification, fibroblast and osteoblast cultures were utilized in vitro. The results showed that the functions of fibroblasts (proliferation, migration and collagen synthesis) were significantly attenuated on the decorin-modified surfaces and this anti-fibrous effect could be due to fibrotic gene suppression by decorin. In contrast, osteoblastic activities, such as calcium deposition and alkaline phosphatase (ALP) activity, were enhanced by the modified decorin. These results suggest that decorin coating on titanium surface inhibited proliferation and function of fibroblasts and improved that of osteoblasts. Therefore, this study is potentially useful for enhancing orthopedic implant. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  11. Effect of chemical surface treatment of titanium on its bond with dental ceramics.

    Science.gov (United States)

    Parchańska-Kowalik, Monika; Wołowiec-Korecka, Emilia; Klimek, Leszek

    2018-04-05

    Airborne-particle abrasion of titanium is a clinically accepted method of surface preparation. As a side effect of airborne-particle abrasion, particles of the abrasive material get embedded into the surface. How particle presence or removal from the titanium surface affects the strength of the titanium-ceramic bond is unclear. The purpose of this in vitro study was to determine the effect of removing Al 2 O 3 particles embedded into the surface by means of chemical surface treatment on the strength of the titanium-ceramic bond. Titanium (TritanCpTi 1, Dentaurum, 99.5% Ti) disks were airborne-particle abraded with 110 μm Al 2 O 3 at a pressure of 0.4 MPa and an angle of approximately 45 degrees. The surface was etched chemically using 1 of 8 reagents, and the veneering ceramic applied and fired. The strength of the metal-ceramic bond was determined using the shear strength test. Further, the effect of thermal fatigue on the bond strength was evaluated. The results were analyzed with 2-way ANOVA and the Tukey honest significant difference (HSD) test (α=.05). Fractographic investigations and microscopic tests were also performed to determine the quality of the titanium-ceramic bond. Effective etching of the titanium surface and removal of Al 2 O 3 particles included a 30% water solution of HNO 3  + 3% HF, a mixture of HNO 3  + HF + glycerin, a 4% solution of HF in H 2 O 2 , and a 4% solution of HF in H 2 O. A statistically significant difference (of about 50%) in bond strength was found between the groups subjected to chemical etching and the control group (P<.05). Additionally, a statistically significant difference (about 25%) was found after thermocycling (P<.05). Removing the Al 2 O 3 particles embedded into the titanium surface after airborne-particle abrasion lowers the strength of the titanium-ceramic bond (P<.05). Thermocycling also weakens the strength of the titanium-ceramic bond, regardless of the surface preparation (P<.05). Copyright © 2018

  12. Surface treatment of a titanium implant using low temperature atmospheric pressure plasmas

    Science.gov (United States)

    Lee, Hyun-Young; Tang, Tianyu; Ok, Jung-Woo; Kim, Dong-Hyun; Lee, Ho-Jun; Lee, Hae June

    2015-09-01

    During the last two decades, atmospheric pressure plasmas(APP) are widely used in diverse fields of biomedical applications, reduction of pollutants, and surface treatment of materials. Applications of APP to titanium surface of dental implants is steadily increasing as it renders surfaces wettability and modifies the oxide layer of titanium that hinders the interaction with cells and proteins. In this study, we have treated the titanium surfaces of screw-shaped implant samples using a plasma jet which is composed of a ceramic coaxial tube of dielectrics, a stainless steel inner electrode, and a coper tube outer electrode. The plasma ignition occurred with Ar gas flow between two coaxial metal electrodes and a sinusoidal bias voltage of 3 kV with a frequency of 20 kHz. Titanium materials used in this study are screw-shaped implants of which diameter and length are 5 mm and 13 mm, respectively. Samples were mounted at a distance of 5 mm below the plasma source, and the plasma treatment time was set to 3 min. The wettability of titanium surface was measured by the moving speed of water on its surface, which is enhanced by plasma treatment. The surface roughness was also measured by atomic force microscopy. The optimal condition for wettability change is discussed.

  13. The combined action of UV irradiation and chemical treatment on the titanium surface of dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Spriano, Silvia [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Ferraris, Sara, E-mail: sara.ferraris@polito.it [Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi, 24-10129 Torino (Italy); Bollati, Daniele; Morra, Marco; Cassinelli, Clara [Nobil Bio Ricerche, Portacomaro (Italy); Lorenzon, Giorgio [Centro Chirurgico, Via Mallonetto, 47, 10032, Brandizzo Torino (Italy)

    2015-09-15

    Highlights: • A combined UV irradiation and H{sub 2}O{sub 2} treatment was applied to titanium surfaces. • A thin, homogeneous, not porous, crack-free and bioactive oxide layer was obtained. • The process significantly improves the biological response of titanium surfaces. • A clinical case demonstrates the effectiveness of the proposed treatment. - Abstract: The purpose of this paper is to describe an innovative treatment for titanium dental implants, aimed at faster and more effective osteointegration. The treatment has been performed with the use of hydrogen peroxide, whose action was enhanced by concomitant exposure to a source of ultraviolet light. The developed surface oxide layer was characterized from the physical and chemical points of view. Moreover osteoblast-like SaOS2 cells were cultured on treated and control titanium surfaces and cell behavior investigated by scanning electron microscope observation and gene expression measurements. The described process produces, in only 6 min, a thin, homogeneous, not porous, free of cracks and bioactive (in vitro apatite precipitation) oxide layer. High cell density, peculiar morphology and overexpression of several genes involved with osteogenesis have been observed on modified surfaces. The proposed process significantly improves the biological response of titanium surfaces, and is an interesting solution for the improvement of bone integration of dental implants. A clinical application of the described surfaces, with a 5 years follow-up, is reported in the paper, as an example of the effectiveness of the proposed treatment.

  14. Assessment of modified gold surfaced titanium implants on skeletal fixation

    DEFF Research Database (Denmark)

    Zainali, Kasra; Danscher, Gorm; Jakobsen, Thomas

    2013-01-01

    shown to liberate gold ions through the process termed dissolucytosis. Furthermore, gold ions are known to act in an anti-inflammatory manner by inhibiting cellular NF-κB-DNA binding. The present study investigated whether partial coating of titanium implants could augment early osseointegration...... osseointegration compared to control titanium implants in a similar model. Since sufficient early mechanical fixation is achieved with this new coating, it is reasonable to investigate the implant further in long-term studies. © 2012 Wiley Periodicals, Inc....

  15. Studies of the surface of titanium dioxide. IV. The hydrogen-deuterium equilibration reaction

    International Nuclear Information System (INIS)

    Iwaki, T.; Katsuta, K.; Miura, M.

    1981-01-01

    The interaction of hydrogen with the surface of titanium dioxide has been studied in connection with the hydrogen-reduction mechanism of titanium dioxide, by means of such measurements as weight decrease, magnetic susceptibility, hydrogen uptake, and electrical conductance. It was postulated in the previous study that the rate-determining step of the hydrogen-reduction reaction may be the formation of surface hydroxyl groups, followed by the rapid removal of water molecules from the surface. In this study, the interactions between hydrogen and the surface of titanium dioxide were investigated by measuring the hydrogen-deuterium equilibration reaction, H 2 + D 2 = 2HD, at temperatures above 200 0 C on both surfaces before and after hydrogen reduction to compare the differences in the reactivities

  16. On the role of melt flow into the surface structure and porosity development during selective laser melting

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Panwisawas, Chinnapat; Ward, Mark; Basoalto, Hector C.; Brooks, Jeffery W.; Attallah, Moataz M.

    2015-01-01

    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

  17. Effect of surface treatment on cell responses to grades 4 and 5 titanium for orthodontic mini-implants.

    Science.gov (United States)

    Galli, Carlo; Piemontese, Marilina; Ravanetti, Francesca; Lumetti, Simone; Passeri, Giovanni; Gandolfini, Mauro; Macaluso, Guido M

    2012-06-01

    Mini-implants are used to improve orthodontic anchorage, but optimal composition and surface characteristics have yet to be determined. We investigated the behavior of osteoblast-like cells on grade 4 commercially pure titanium and grade 5 titanium alloy with different surface treatments for mini-implants. MC3T3 cells were plated on machined, acid-etched, or acid-etched grade 4 titanium enriched with calcium phosphate, or machined, anodized, or anodized and calcium phosphate-enriched grade 5 titanium disks. Surface and cell morphologies were assessed by scanning electron microscopy. Cell viability was measured by chemiluminescence, cytoskeletal organization was investigated by immunofluorescence, and real-time polymerase chain reaction for osteoblast-specific genes was performed to measure cell differentiation. Flattened shapes and strong stress fibers were observed on the machined surfaces; cells on the rough surfaces had a spindle shape, with lower cytoskeletal polarization. Cell proliferation was highest on smooth grade 4 titanium surfaces, whereas cells quickly reached a plateau on rough grade 4 titanium; no difference was observed after 72 hours in the grade 5 titanium groups. Calcium phosphate enrichment on grade 4 titanium significantly increased the messenger RNA levels for alkaline phosphatase and osteocalcin. Osteoblastic markers were higher on the grade 5 titanium machined surfaces than on the rough surfaces, and comparable with acid-etched grade 4 titanium. Although the grade 4 titanium enriched with calcium phosphate had the highest level of differentiation in vitro, the grade 5 titanium machined surfaces supported cell proliferation and matrix synthesis, and induced high expression of early differentiation markers. Increased mechanical resistance of grade 5 titanium makes it a potential candidate for orthodontic mini-implants. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Comparison of biological characteristics of mesenchymal stem cells grown on two different titanium implant surfaces

    International Nuclear Information System (INIS)

    Wang Chengyue; Zhao Baohong; Ai Hongjun; Wang Yiwei

    2008-01-01

    This study examined the biological characteristics of mesenchymal stem cells (MSCs) grown on sand-blasted, large-grit, acid-etched (SLA) surface and hydroxyapatite (HA) coating on the SLA (HA/SLA) surface of titanium dental implants. The HA/SLA surfaces of titanium dental implants were formed by the ion beam assisted deposition (IBAD) method. Rabbit bone marrow derived mesenchymal stem cells cultured in vitro were seeded onto the surface of SLA and HA/SLA; the growth states of MSCs on the two samples were observed by a scanning electron microscope; the proliferation index, alkaline phosphatase (ALP) activity, osteocalcin (OCN) content of MSCs and mRNA relative expression level of osteopontin (opn) were compared between two groups. MSCs were found to be easier to adhere to the HA/SLA surface compared to the SLA surface. At the same time, the ALP activity and the OCN content of MSCs grown on the HA/SLA surface were obviously higher, and the relative expression level of opn mRNA was 4.78 times higher than that on the SLA surface. The HA coating formed by the IBAD method on the SLA surface of titanium dental implants significantly improves proliferation and well-differentiated osteoblastic phenotype of MSCs, which indicates a promising method for the surface modification of titanium dental implants

  19. Reciprocating Sliding Behaviour of Solid Lubricant Coating over Modified Titanium Alloy Surfaces

    Science.gov (United States)

    Jothi Prakash, V. M.; Sathish, S.; Gopalakrishnan, T.; Venugopal, S.

    2017-03-01

    Tribological behaviour of contacting surfaces rigid sphere is using flat plate the with influence of normal and tangential loading (shear traction) is analysed using FEA model and surfaces being coated on flat plate by Titanium Alloy, Aluminium Alloy Molybdenum Di-sulphide. The finite element model facilitates to Evaluating the surface variables like contact stress distribution with the surface level and surface, contact pressure, shear stress and displacement. The finite element solution is validated through the hertz solution and on the successful verification.

  20. In vivo evaluation of defined polished titanium surfaces to prevent soft tissue adhesion.

    Science.gov (United States)

    Hayes, Jessica S; Welton, Joanne L; Wieling, Ronald; Richards, R Geoff

    2012-04-01

    Soft tissue-implant adhesion is often required for implant integration into the body; however, in some situations, the tissue is required to glide freely over an implant. In the case of distal radius fracture treatment, current literature describes how titanium and its alloys tend to lead to more intra-tendon inflammatory reactions compared with stainless steel. This leads to tendon-implant adhesion and damage possibly causing limited palmar flexion and even tendon rupture. The goal of this study was to analyze the effect of different surface polishings of titanium and titanium molybdenum implants on soft tissue reactions in vivo, with the aim to prevent direct soft tissue adhesion. Using a nonfracture model, to allow for study of the soft-tissue-implant surface interactions only, six surface variants of the same plate design were implanted onto the tibia of 24 New Zealand white rabbits and left in situ for 12 weeks. Results indicate that paste polished commercially pure titanium and titanium molybdenum alloy had the least soft tissue adhesion, with the concomitant development of a soft tissue capsule. Surface topography did not appear influence the thickness of the connective tissue surrounding the plate. Therefore, suitable surface polishing could be applied to plates for clinical use, where free gliding of tissues is required. Copyright © 2012 Wiley Periodicals, Inc.

  1. Rapid prototyped porous nickel–titanium scaffolds as bone substitutes

    Directory of Open Access Journals (Sweden)

    Waldemar Hoffmann

    2014-06-01

    Full Text Available While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used

  2. Non-Destructive Analysis of Basic Surface Characteristics of Titanium Dental Implants Made by Miniature Machining

    Science.gov (United States)

    Babík, Ondrej; Czán, Andrej; Holubják, Jozef; Kameník, Roman; Pilc, Jozef

    2016-12-01

    One of the most best-known characteristic and important requirement of dental implant is made of biomaterials ability to create correct interaction between implant and human body. The most implemented material in manufacturing of dental implants is titanium of different grades of pureness. Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on the successful osseointegration. Among other characteristics of titanium that predetermine ideal biomaterial, it shows a high mechanical strength making precise machining miniature Increasingly difficult. The article is focused on evaluation of the resulting quality, integrity and characteristics of dental implants surface after machining.

  3. Snow cover as a source of technogenic pollution of surface water during the snow melting period

    Directory of Open Access Journals (Sweden)

    Labuzova Olga

    2016-10-01

    Full Text Available The study of pollutants in melt water of snow cover and snow disposal sites in the city of Barnaul showed that during the snow melting period the surface water is not subjected to significant technogenic impact according to a number of studied indices. The oils content is an exception: it can exceed MAC more than 20 times in river- water due to the melting of city disposal sites. Environmental damage due to an oils input into water resources during the snow melting period can be more than 300000 thousand rubles.

  4. Influence of surface modification on friction coefficient of the titanium-elastomer couple.

    Science.gov (United States)

    Chladek, Wiesław; Hadasik, Eugeniusz; Chladek, Grzegorz

    2007-01-01

    This paper presents the results of a study of the friction coefficient of titanium-elastomer couple. The study was carried out with a view to potential future utilization of its results for constructing retentive elements of implanted prostheses. Changes in the friction force were recorded while removing titanium specimens placed between two silicone counter specimens made of Ufi Gel. The influence of the titanium specimen movement speed in relation that of to the counter specimens and the influence of clamping force on the friction force were assessed. Additionally, the surface roughness of titanium specimens differed; in one case, titanium was coated with polyethylene. The effect of introducing artificial saliva between the cooperating surfaces on the friction force and friction coefficient was analyzed as well. Based on the characteristics recorded, the possibilities of shaping the friction coefficient have been assessed, since it is the friction coefficient that determines effective operation of a friction couple through increasing the titanium specimen roughness. The artificial saliva being introduced between the specimens reduces considerably the friction coefficient through a change of the phenomenon model. An increase in the pressure force for the specimens of high roughness entails a reduction of the friction coefficient. The study carried out allows us to identify the roughness parameters, which in turn will enable obtaining the prescribed retention force for friction/membrane couplings.

  5. Comparative Analysis of the Oxygen Supply and Viability of Human Osteoblasts in Three-Dimensional Titanium Scaffolds Produced by Laser-Beam or Electron-Beam Melting

    Directory of Open Access Journals (Sweden)

    Anika Jonitz-Heincke

    2013-11-01

    Full Text Available Synthetic materials for bone replacement must ensure a sufficient mechanical stability and an adequate cell proliferation within the structures. Hereby, titanium materials are suitable for producing patient-individual porous bone scaffolds by using generative techniques. In this in vitro study, the viability of human osteoblasts was investigated in porous 3D Ti6Al4V scaffolds, which were produced by electron-beam (EBM or laser-beam melting (LBM. For each examination, two cylindrical scaffolds (30 mm × 10 mm in size, 700 µm × 700 µm macropores were placed on each other and seeded with cells. The oxygen consumption and the acidification in the center of the structures were investigated by means of microsensors. Additionally, the synthesis of pro-collagen type 1 was analyzed. On the LBM titanium scaffolds, vital bone cells were detected in the center and in the periphery after 8 days of cultivation. In the EBM titanium constructs, however, vital cells were only visible in the center. During the cultivation period, the cells increasingly produced procollagen type 1 in both scaffolds. In comparison to the periphery, the oxygen content in the center of the scaffolds slightly decreased. Furthermore, a slight acidification of the medium was detectable. Compared to LBM, the EBM titanium scaffolds showed a less favorable behavior with regard to cell seeding.

  6. Immediate mandibular reconstruction via patient-specific titanium mesh tray using electron beam melting/CAD/rapid prototyping techniques: One-year follow-up.

    Science.gov (United States)

    Farid Shehab, Mohamed; Hamid, Nabila Mohammed Abdel; Askar, Nevien Abdullatif; Elmardenly, Ahmed Mokhtar

    2018-02-21

    Immediate mandibular reconstruction was performed using a patient-specific titanium mesh tray fabricated by electron beam melting (EBM) /rapid prototyping techniques. Patient-specific titanium trays were virtually designed and fabricated using EBM technology/rapid prototyping for patients requiring mandibular resection and immediate reconstruction using an iliac crest bone graft. Dental implants were placed in the grafted sites and the patients received prosthetic rehabilitation with a follow-up of one year. Clinical data, postoperative bone formation and complications were evaluated. A symmetric appearance of facial contours was achieved. The titanium tray incorporated the particulate iliac crest bone graft that provided significant bone formation (mean 18.97 ± 1.45 mm) and predictable results. Stability of the dental implants was achieved. The patient-specific titanium meshes and immediate particulate autogenous bone graft showed satisfactory clinical and surgical results in improving patients' quality of life and decreasing the overall treatment time with adequate functional rehabilitation. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Surface characteristics and in vitro biocompatibility of a manganese-containing titanium oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo, E-mail: jinwoo@knu.ac.kr [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of); Kim, Youn-Jeong; Jang, Je-Hee [Department of Periodontology, School of Dentistry, Kyungpook National University, 188-1, Samduk 2Ga, Jung-Gu, Daegu 700-412 (Korea, Republic of)

    2011-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of a titanium (Ti) oxide layer incorporating the manganese ions (Mn) obtained by hydrothermal treatment with the expectation of utilizing potent integrin-ligand binding enhancement effect of Mn for future applications as an endosseous implant surface. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The in vitro biocompatibility of the Mn-containing Ti oxide surface was evaluated in comparison with untreated bare Ti using a mouse calvaria-derived osteoblastic cell line (MC3T3-E1). The hydrothermal treatment produced a nanostructured Mn-incorporated Ti oxide layer approximately 0.6 {mu}m thick. ICP-AES analysis demonstrated that the Mn ions were released from the hydrothermally treated surface into the solution. Mn incorporation notably decreased cellular attachment, spreading, proliferation, alkaline phosphatase activity, and osteoblast phenotype gene expression compared with the bare Ti surface (p < 0.05). The results indicate that the Mn-incorporation into the surface Ti oxide layer has no evident beneficial effects on osteoblastic cell function, but instead, actually impaired cell behavior.

  8. Laser surface treatment for enhanced titanium to carbon fiber-reinforced polymer adhesion

    NARCIS (Netherlands)

    Palavra, Armin; Coelho, Bruno N.; de Hosson, Jeff Th. M.; Lima, Milton S. F.; Carvalho, Sheila M.; Costa, Adilson R.

    The adhesion between carbon fiber-reinforced polymer (CFRP) and titanium parts can be improved by laser surface texturing before gluing them together. Here, a pulsed Nd:YAG laser was employed before bonding of the textured surfaces using an epoxy paste adhesive. To investigate the influence of the

  9. Effect of ion-implantation on surface characteristics of nickel titanium and titanium molybdenum alloy arch wires

    Directory of Open Access Journals (Sweden)

    Manu Krishnan

    2013-01-01

    Full Text Available Aim: To evaluate the changes in surface roughness and frictional features of ′ion-implanted nickel titanium (NiTi and titanium molybdenum alloy (TMA arch wires′ from its conventional types in an in-vitro laboratory set up. Materials and Methods: ′Ion-implanted NiTi and low friction TMA arch wires′ were assessed for surface roughness with scanning electron microscopy (SEM and 3 dimensional (3D optical profilometry. Frictional forces were studied in a universal testing machine. Surface roughness of arch wires were determined as Root Mean Square (RMS values in nanometers and Frictional Forces (FF in grams. Statistical Analysis Used: Mean values of RMS and FF were compared by Student′s ′t′ test and one way analysis of variance (ANOVA. Results: SEM images showed a smooth topography for ion-implanted versions. 3D optical profilometry demonstrated reduction of RMS values by 58.43% for ion-implanted NiTi (795.95 to 330.87 nm and 48.90% for TMA groups (463.28 to 236.35 nm from controls. Nonetheless, the corresponding decrease in FF was only 29.18% for NiTi and 22.04% for TMA, suggesting partial correction of surface roughness and disproportionate reduction in frictional forces with ion-implantation. Though the reductions were highly significant at P < 0.001, relations between surface roughness and frictional forces remained non conclusive even after ion-implantation. Conclusion: The study proved that ion-implantation can significantly reduce the surface roughness of NiTi and TMA wires but could not make a similar reduction in frictional forces. This can be attributed to the inherent differences in stiffness and surface reactivity of NiTi and TMA wires when used in combination with stainless steel brackets, which needs further investigations.

  10. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  11. Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.

    2016-01-01

    Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.

  12. Future projections of the Greenland ice sheet energy balance driving the surface melt

    Directory of Open Access Journals (Sweden)

    B. Franco

    2013-01-01

    Full Text Available In this study, simulations at 25 km resolution are performed over the Greenland ice sheet (GrIS throughout the 20th and 21st centuries, using the regional climate model MAR forced by four RCP scenarios from three CMIP5 global circulation models (GCMs, in order to investigate the projected changes of the surface energy balance (SEB components driving the surface melt. Analysis of 2000–2100 melt anomalies compared to melt results over 1980–1999 reveals an exponential relationship of the GrIS surface melt rate simulated by MAR to the near-surface air temperature (TAS anomalies, mainly due to the surface albedo positive feedback associated with the extension of bare ice areas in summer. On the GrIS margins, the future melt anomalies are preferentially driven by stronger sensible heat fluxes, induced by enhanced warm air advection over the ice sheet. Over the central dry snow zone, the surface albedo positive feedback induced by the increase in summer melt exceeds the negative feedback of heavier snowfall for TAS anomalies higher than 4 °C. In addition to the incoming longwave flux increase associated with the atmosphere warming, GCM-forced MAR simulations project an increase of the cloud cover decreasing the ratio of the incoming shortwave versus longwave radiation and dampening the albedo feedback. However, it should be noted that this trend in the cloud cover is contrary to that simulated by ERA-Interim–forced MAR for recent climate conditions, where the observed melt increase since the 1990s seems mainly to be a consequence of more anticyclonic atmospheric conditions. Finally, no significant change is projected in the length of the melt season, which highlights the importance of solar radiation absorbed by the ice sheet surface in the melt SEB.

  13. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    aCell Biology Department, University of Brasília, Brasília – DF, Brazil. bDepartment of Biology, Federal University of Juiz de Fora, Juiz de Fora – MG, Brazil. cEmbrapa Recursos Genéticos e Biotecnologia, ... the pure metal titanium (Ti) was well tolerated when implanted into bone tissue and that the bone tended to grow.

  14. Surface melt on Antarctic ice shelves driven by wind-albedo interactions

    Science.gov (United States)

    Lhermitte, Stef; Lenaerts, Jan

    2017-04-01

    Surface melt and subsequent firn air depletion is considered an important precursor for disintegration of Antarctic ice shelves, causing grounded glaciers to accelerate and sea level to rise. Recent studies have highlighted the impact of surface winds on Antarctic ice shelf melt, both on the Antarctic Peninsula and in East Antarctica. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. On the East Antarctic ice shelves, on the other hand, meltwater-induced firn air depletion is found in the grounding zone as result of persistent katabatic winds, regionally warming the atmosphere and inducing a melt-albedo feedback. Here, we use a combination multi-source satellite imagery, snow modelling, climate model output and in-situ observations to highlight the importance of this wind-induced melt and to show its widespread occurrence across Antarctica. The satellite imagery gives insight in the meltwater drainage systems, showing spatio-temporal changes in both supraglacial and englacial water throughout the melt season and during the subsequent winter. Although the wind-induced melt is a regional phenomenon with strong inter-annual variability, it is strongly correlated to larger scale climate parameters, such as summer surface temperature. Based on these correlations and snow model output driven by future climate scenarios, we can constrain the future changes to this local melt near the grounding line.

  15. Sediment plume response to surface melting and supraglacial lake drainages on the Greenland ice sheet

    DEFF Research Database (Denmark)

    Chu, Vena W.; Smith, Laurence C; Rennermalm, Asa K.

    2009-01-01

    of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3......) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided...... the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume...

  16. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    Science.gov (United States)

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  17. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  18. Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Gulzar, A. [Materials Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Akhter, J.I. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ahmad, M., E-mail: maqomer@yahoo.com [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Ali, G. [Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad (Pakistan); Mahmood, M. [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); Ajmal, M. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, Lahore (Pakistan)

    2009-07-30

    Alloying and microstructural modification of surfaces by electron beam has become popular to tailor the surface properties of materials. Surface modification of as-received ductile iron, Ni-plated ductile iron and Ni-plated austempered ductile iron was carried out by electron beam melting to improve the surface properties. Martensitic structure evolved in the heat affected zone and ledeburite structure was produced in the molten zone of the ductile iron. Microhardness of the melted specimens enhanced considerably as compared to the as-received samples. However the microhardness of melted Ni-plated samples is lower than that of the unplated specimens. X-ray diffraction clearly revealed the formation of an austenite and Fe{sub 3}C phases in the electron beam molten zone. The broadening of peaks suggests refinement of the microstructure as well as internal stresses generated during electron beam melting.

  19. Study of inter-annual variations in surface melting over Amery Ice ...

    Indian Academy of Sciences (India)

    Lambert Glacier ... Thus, monitoring surface melt conditions is critical for evaluating the stability of Antarctic ice shelves (Kunz and. Long 2006). Davis. Station. Site-1. Lambert. Glacier ..... P A, Jones J and Bitz C 2006 Antarctic temperature over.

  20. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    Science.gov (United States)

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Evaluation of the safety and efficiency of novel metallic ultrasonic scaler tip on titanium surfaces.

    Science.gov (United States)

    Baek, Seung-Ho; Shon, Won-Jun; Bae, Kwang-Shik; Kum, Kee-Yeon; Lee, Woo-Cheol; Park, Young-Seok

    2012-11-01

    To evaluate the safety and efficiency of novel ultrasonic scaler tips, conventional stainless-steel tips, and plastic tips on titanium surfaces. Mechanical instrumentation was carried out using conventional ultrasonic scalers (EMS, Nyon, Switzerland) with novel metallic implant tip (BS), a plastic-headed tip (ES), a plastic tip (PS) and a conventional stainless-steel tip (CS) on 10 polished commercially pure titanium disks (Grade II) per group. Arithmetic mean roughness (R(a) ) and maximum height roughness (R(y) ) of titanium samples were measured and dissipated power of the scaler tip in the tip-surface junction was estimated to investigate the scaling efficiency. The instrumented surface morphology of samples was viewed with a scanning electron microscope (SEM) and surface profile of the each sample was investigated using contact mode with a commercial atomic force microscope (AFM). There were no significant differences in surface roughness (R(a) and R(y) ) among BS, ES, and PS group. However, CS group showed significant higher surface roughness (R(a) and R(y) ). The efficiency of CS tip is twice as much higher than that of BS tip, the efficiency of BS tip is 20 times higher than that of PS tip, and the efficiency of BS tip is 90 times higher than that of ES tip. Novel metallic copper alloy ultrasonic scaler tips may minimally influence the titanium surface, similar to plastic tip. Therefore, they can be a suitable instrument for implant maintenance therapy. © 2011 John Wiley & Sons A/S.

  2. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  3. Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity

    OpenAIRE

    Yusuke Tsutsumi; Mitsuo Niinomi; Masaaki Nakai; Masaya Shimabukuro; Maki Ashida; Peng Chen; Hisashi Doi; Takao Hanawa

    2016-01-01

    In this study, micro-arc oxidation (MAO) was performed on a β-type titanium alloy, namely, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), to improve not only its antibacterial property but also bioactivity in body fluids. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate, calcium acetate, and silver nitrate was characterized using surface analyses. The resulting porous oxide layer was mainly composed of titanium oxide, and it also contained calcium, phosphorus...

  4. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya

    2017-01-01

    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL......, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  5. Synoptic and mesoscale climate forcing on Antarctic ice shelf surface melt dynamics

    Science.gov (United States)

    Karmosky, Christopher

    Given that the polar regions, especially the Antarctic Peninsula, have experienced one of the largest temperature increases on Earth over the last few decades, an understanding of Antarctic climate has become more urgent. Ice shelves themselves are located at the intersection of the atmosphere, hydrosphere and the cryosphere---the air-ice-ocean boundary, and are sensitive to changes in any of these media. In addition to being particularly sensitive to changes in climate, ice shelves play an important role in controlling the flow of glaciers into the ocean, which has important implications for sea level changes. In a warming world, an increased understanding of how climate change is affecting Antarctic ice shelves is valuable for assessing vulnerable regions of the Antarctic that may be prone to further instability. This work focuses on determining the underlying climatic processes controlling energy and mass balance responsible for driving melting over ice shelves. A novel melt-magnitude retrieval method is presented that uses Moderate Resolution Imaging Spectroradiometer (MODIS)-derived near-IR reflectance coupled with ice surface temperature as a proxy for surface melt magnitude. This method has a higher spatial resolution than passive microwave melt detection, has the added benefit of retrieving melt magnitude rather than a binary melt occurrence or non-occurrence, but has a lower temporal resolution than either passive-microwave or microwave-scatterometry melt detection. This limitation is a result of the opacity of cloud cover to both visible and IR radiation, requiring more satellite overpasses to obtain spatially contiguous imagery. This work also examines several weather variables associated with a large-extent, long-duration surface melt event on the Ross Ice Shelf. It is shown that cloudy conditions coupled with increased sensible and latent heat flux to the surface were present during the event, and these conditions are consistent with those that induce

  6. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

    Science.gov (United States)

    McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-17

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  7. Inflammatory response to titanium surfaces with fibrinogen and catalase coatings: an in vitro study.

    Science.gov (United States)

    Göransson, A; Gretzer, C; Tengvall, P; Wennerberg, A

    2007-03-01

    The aim of the present study was to evaluate the possibility to modulate the early inflammatory response in vitro by coating titanium surfaces with candidate proinflammatory (fibrinogen coated turned titanium "Fib") and antiinflammatory proteins (catalase on top of fibrinogen coated turned titanium "Cat"). Additionally, turned titanium surfaces (Ti) were used as controls. The discs were incubated with human mononuclear cells. Adhered cells were investigated with respect to number, viability, differentiation (acute marker 27E10 vs. chronic marker RM3/1), and cytokine production (TNF-alpha and IL-10), after 24 and 72 h. The results indicated that it is possible to modulate the inflammatory response with protein coatings. However, the strongest inflammatory response, indicated by increased number of adhered cells and release of pro and antiinflammatory mediators, was induced by Cat. Furthermore, the cytokine production on this surface was not sensitive to LPS stimulation. Differentiation measured as the expression of the chronic cell surface marker, dominated after 72 h for all surface modifications and Cat displayed an increased number compared to the others. A decrease in the total number of adhered cells and amounts of TNF-alpha were observed on all surfaces over time. The cell viability was, in general, high for all tested surfaces. In conclusion, the study proved it possible to influence the early inflammatory response in vitro by immobilizing protein coatings to titanium surfaces. However, the catalase surface demonstrated the strongest inflammatory response, and the possibility to selectively use the potent antiinflammatory capacity of catalase needs to be further evaluated.

  8. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Science.gov (United States)

    Chaudhari, Amol; Duyck, Joke; Braem, Annabel; Vleugels, Jozef; Petite, Hervé; Logeart-Avramoglou, Delphine; Naert, Ignace; Martens, Johan A.; Vandamme, Katleen

    2013-01-01

    Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS), bone morphogenetic protein-2 immobilized on AMS (AMS + BMP), bio-active glass (BAG) and two titanium coatings with different porosity (T1; T2). Four surfaces served as controls: uncoated Ti (Ti), Ti functionalized with BMP-2 (Ti + BMP), Ti surface with a thickened titanium oxide layer (TiO2) and a tissue culture polystyrene surface (TCPS). The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase) transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP); osteocalcin (OC); osteoprotegerin (OPG); vascular endothelial growth factor-A (VEGF-A)]. Unrestrained cell proliferation was observed on (un)functionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery. PMID:28788407

  9. Modified Titanium Surface-Mediated Effects on Human Bone Marrow Stromal Cell Response

    Directory of Open Access Journals (Sweden)

    Amol Chaudhari

    2013-11-01

    Full Text Available Surface modification of titanium implants is used to enhance osseointegration. The study objective was to evaluate five modified titanium surfaces in terms of cytocompatibility and pro-osteogenic/pro-angiogenic properties for human mesenchymal stromal cells: amorphous microporous silica (AMS, bone morphogenetic protein-2 immobilized on AMS (AMS + BMP, bio-active glass (BAG and two titanium coatings with different porosity (T1; T2. Four surfaces served as controls: uncoated Ti (Ti, Ti functionalized with BMP-2 (Ti + BMP, Ti surface with a thickened titanium oxide layer (TiO2 and a tissue culture polystyrene surface (TCPS. The proliferation of eGFP-fLuc (enhanced green fluorescence protein-firefly luciferase transfected cells was tracked non-invasively by fluorescence microscopy and bio-luminescence imaging. The implant surface-mediated effects on cell differentiation potential was tracked by determination of osteogenic and angiogenic parameters [alkaline phosphatase (ALP; osteocalcin (OC; osteoprotegerin (OPG; vascular endothelial growth factor-A (VEGF-A]. Unrestrained cell proliferation was observed on (unfunctionalized Ti and AMS surfaces, whereas BAG and porous titanium coatings T1 and T2 did not support cell proliferation. An important pro-osteogenic and pro-angiogenic potential of the AMS + BMP surface was observed. In contrast, coating the Ti surface with BMP did not affect the osteogenic differentiation of the progenitor cells. A significantly slower BMP-2 release from AMS compared to Ti supports these findings. In the unfunctionalized state, Ti was found to be superior to AMS in terms of OPG and VEGF-A production. AMS is suggested to be a promising implant coating material for bioactive agents delivery.

  10. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    Science.gov (United States)

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting.

  11. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  12. Meteorological Drivers of West Antarctic Ice Sheet and Ice Shelf Surface Melt

    Science.gov (United States)

    Scott, R. C.; Nicolas, J. P.; Bromwich, D. H.; Norris, J. R.; Lubin, D.

    2017-12-01

    We identify synoptic patterns and surface energy balance components driving warming and surface melting on the West Antarctic Ice Sheet (WAIS) and ice shelves using reanalysis and satellite remote sensing data from 1973-present. We have developed a synoptic climatology of atmospheric circulation patterns during the summer melt season using k-means cluster and composite analysis of daily 700-mb geopotential height and near-surface air temperature and wind fields from the ECMWF ERA-Interim reanalysis. Surface melt occurrence is detected in satellite passive microwave brightness temperature observations (K-band, horizontal polarization) beginning with the NASA Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) and continuing with its more familiar descendants SMMR, SSM/I and SSMIS. To diagnose synoptic precursors and physical processes driving surface melt we combine the circulation climatology and multi-decadal records of cloud cover with surface radiative fluxes from the Extended AVHRR Polar Pathfinder (APP-x) project. We identify three distinct modes of regional summer West Antarctic warming since 1979 involving anomalous ridging over West Antarctica (WA) and the Amundsen Sea (AS). During the 1970s, ESMR data reveal four extensive melt events on the Ross Sea sector of the WAIS also linked to AS blocking. We therefore define an Amundsen Sea Blocking Index (ASBI). The ASBI and synoptic circulation pattern occurrence frequencies are correlated with the tropical Pacific (ENSO) and high latitude Southern Annular Mode (SAM) indices and the West Antarctic melt index. Surface melt in WA is favored by enhanced downwelling infrared and turbulent sensible heat fluxes associated with intrusions of warm, moist marine air. Consistent with recent findings from the Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE), marine advection to the Ross sector is favored by El Niño conditions in the tropical Pacific and a negative SAM. We also find

  13. An investigation of adhesive/adherend and fiber/matrix interactions. Part A: Surface characterization of titanium dioxide, titantium and titanium 6% Al to 4% V powders: Interaction with water, hydrogen chloride and polymers

    Science.gov (United States)

    Siriwardane, R. V.; Wightman, J. P.

    1982-01-01

    The titanium dioxide surface is discussed. Polymer adhesive are also discussed. Titanium powders are considered. Characterization techniques are also considered. Interactions with polymers, water vapor, and HCl are reported. Adsorbents are characterized.

  14. Ellipso-Microscopic Observation of Titanium Surface under UV-Light Irradiation

    International Nuclear Information System (INIS)

    Fushimi, K.; Kurauchi, K.; Nakanishi, T.; Hasegawa, Y.; Ueda, M.; Ohtsuka, T.

    2016-01-01

    The ellipso-microscopic observation of a titanium surface undergoing anodization in 0.05 mol dm -3 of H 2 SO 4 was conducted. During irradiation by ultra-violet (UV) light with a wavelength of 325 nm, the titanium surface allowed for the flow of a photo-induced current and showed up as a bright, patch-like image on an ellipso-microscopic view. The brightness and patch-pattern in the image changed with flowing photo-induced current. The changes in the brightness and the image corresponded to the formation and/or degradation of titanium oxide due to the photo-electrochemical reaction of the oxide. An in situ monitoring using the ellipso-microscope revealed that the film change was dependent on the irradiation light power, by UV-light increases the anodic current and results in the initiation of pitting at lower potentials as compared with the non-irradiated condition.

  15. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    Science.gov (United States)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  16. Effect of titanium surface characteristics on the behavior and function of oral fibroblasts.

    Science.gov (United States)

    Att, Wael; Yamada, Masahiro; Ogawa, Takahiro

    2009-01-01

    The purpose of this study was to evaluate the effect of different titanium surface characteristics on the behavior and function of oral fibroblasts as well as the deposition pattern of collagen within the extracellular matrix. Titanium surfaces created by machining, acid etching with sulfuric acid (AE1), or acid etching with hydrofluoric acid (AE2) were analyzed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy. Rat oral fibroblasts were cultured on different surfaces. Cell spread and morphology of extracellular matrix were evaluated using SEM. Attachment and proliferation of cells were examined by comparing the numbers of attached to detached cells and cell count, respectively. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Collagen production and deposition were examined via a Sirius red-based stain assay and confocal laser scanning microscopy. The machined surface showed a flat profile with isotropic grooves, the AE1 surface showed a uniformly microscale roughened surface, and the AE2 surface had a grooved profile with intermediate surface roughness. The AE2 surface contained fluoride atoms (2.45%+/-0.44% as F/Ti atomic ratio). Cell attachment was significantly weaker on the machined surface than on the AE1 and AE2 surfaces, whereas no differences were observed between the AE1 and AE2 surfaces. The cell counts on the machined and AE2 surfaces were higher, with a parallel orientation, whereas the cell count was lower and randomly distributed on the AE1 surface. The expression level of fibroblastic genes was similar among surfaces for all time points tested. Collagen production was highest on the machined surface, followed by AE2 and AE1 surfaces. Collagen deposition displayed a parallel pattern on the machined surface, while it was multidirectional on the AE1 and AE2 surfaces. The surface characteristics of titanium affect attachment, spread, and proliferative activity of oral fibroblasts as well

  17. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    Science.gov (United States)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  18. Evaluation of the Cutting Force Components and the Surface Roughness in the Milling Process of Micro- and Nanocrystalline Titanium

    Directory of Open Access Journals (Sweden)

    Habrat W.

    2016-09-01

    Full Text Available Nanocristalline pure titanium in comparison to microcrystalline titanium is characterized by better mechanical properties which influence its wider usability. The aim of the research was to evaluate whether the grain size of pure titanium (micro- and nanocrystalline has influence on the cutting force components and the surface roughness in the milling process. Models of cutting force components for both materials were prepared and differences between the results were examined. The feed rate effect on selected parameters of surface roughness after milling of micro- and nanocrystalline pure titanium was determined.

  19. In vitro behavior of human osteoblast-like cells (SaOS2) cultured on surface modified titanium and titanium-zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xiaobo [Centre for Material and Fibre Innovation, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3217 (Australia); CAST CRC, Department of Materials Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 (Australia); Li Yuncang; Hodgson, Peter D. [Centre for Material and Fibre Innovation, Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria 3217 (Australia); Wen Cuie, E-mail: cwen@swin.edu.au [IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, ATC Building Burwood Road, Hawthorn, Victoria 3122 (Australia)

    2011-10-10

    In this study, titanium (Ti) and titanium-zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement. Highlights: {yields} Titanium (Ti) and titanium-zirconium (TiZr) alloy for load-bearing implant applications. {yields} Implant applications. {yields} Alkali-heat treatment and calcium (Ca)-ion-deposition as surface modification methods. {yields} Surface modified Ti and TiZr exhibited excellent biocompatibility and bioactivity.

  20. The influence of surface modification on bacterial adhesion to titanium-based substrates.

    Science.gov (United States)

    Lorenzetti, Martina; Dogša, Iztok; Stošicki, Tjaša; Stopar, David; Kalin, Mitjan; Kobe, Spomenka; Novak, Saša

    2015-01-28

    This study examines bacterial adhesion on titanium-substrates used for bone implants. Adhesion is the most critical phase of bacterial colonization on medical devices. The surface of titanium was modified by hydrothermal treatment (HT) to synthesize nanostructured TiO2-anatase coatings, which were previously proven to improve corrosion resistance, affect the plasma protein adsorption, and enhance osteogenesis. The affinity of the anatase coatings toward bacterial attachment was studied by using a green fluorescent protein-expressing Escherichia coli (gfp-E. coli) strain in connection with surface photoactivation by UV irradiation. We also analyzed the effects of surface topography, roughness, charge, and wettability. The results suggested the dominant effects of the macroscopic surface topography, as well as microasperity at the surface roughness scale, which were produced during titanium machining, HT treatment, or both. Macroscopic grooves provided a preferential site for bacteria deposit within the valleys, while the microscopic roughness of the valleys determined the actual interaction surface between bacterium and substrate, resulting in an "interlocking" effect and undesired high bacterial adhesion on nontreated titanium. In the case of TiO2-coated samples, the nanocrystals reduced the width between the microasperities and thus added nanoroughness features. These factors decreased the contact area between the bacterium and the coating, with consequent lower bacterial adhesion (up to 50% less) in comparison to the nontreated titanium. On the other hand, the pronounced hydrophilicity of one of the HT-coated discs after pre-irradiation seemed to enhance the attachment of bacteria, although the increase was not statistically significant (p > 0.05). This observation may be explained by the acquired similar degree of wetting between gfp-E. coli and the coating. No correlation was found between the bacterial adhesion and the ζ-values of the samples in PBS, so the

  1. Effective removal of calcified deposits on microstructured titanium fixture surfaces of dental implants with erbium lasers.

    Science.gov (United States)

    Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi

    2018-03-13

    Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. The influence of cooling techniques on cutting forces and surface roughness during cryogenic machining of titanium alloys

    Directory of Open Access Journals (Sweden)

    Wstawska Iwona

    2016-12-01

    Full Text Available Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.

  3. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells.

    Science.gov (United States)

    Cai, Kaiyong; Lai, Min; Yang, Weihu; Hu, Ran; Xin, Renlong; Liu, Qing; Sung, K L Paul

    2010-06-01

    To improve the corrosion resistance and biological performance of commercially pure titanium (cp-Ti) substrates, potassium hydroxide was employed to modify the surfaces of titanium substrates, followed by biomimetic deposition of apatite on the substrates in a simulated body fluid. The morphologies of native and treated titanium substrates were characterized by field emission scanning electron microscopy (FE-SEM). Treatment with potassium hydroxide led to the formation of intermediate layers of potassium titanate on the surfaces of titanium substrates, while apatite was subsequently deposited onto the intermediate layer. The formation of potassium titanate and apatite was confirmed by thin-film X-ray diffraction and FE-SEM equipped with energy dispersive spectroscopy, respectively. Electrochemical impedance spectroscopy showed that the formed potassium titanate layer improved the corrosion-resistance properties of titanium substrates. The influence of modified titanium substrates on the biological behavior of mesenchymal stem cells (MSCs), including osteogenic differentiation, was investigated in vitro. Compared with cp-Ti substrates, MSCs cultured onto alkali- and heat-treated titanium substrates and apatite-deposited titanium substrates displayed significantly higher (P<0.05 or P<0.01) proliferation and differentiation levels of alkaline phosphatase and osteocalcin in 7 and 14day cultures, respectively. More importantly, our results suggest that the modified titanium substrates have great potential for inducing MSCs to differentiate into osteoblasts. The approach presented here may be exploited to fabricate titanium-based implants. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Surface characterization of titanium based dental implants; Caracterizacao de implantes odontologicos a base de titanio

    Energy Technology Data Exchange (ETDEWEB)

    Castilho, Guilherme Augusto Alcaraz

    2006-07-01

    Dental implantology uses metallic devices made of commercially pure titanium in order to replace lost teeth. Titanium presents favorable characteristics as bio material and modern implants are capable of integrate, witch is the union between bone and implant without fibrous tissue development. Three of the major Brazilian implant manufacturers were chosen to join the study. A foreign manufacturer participated as standard. The manufacturers had three specimens of each implant with two different surface finishing, as machined and porous, submitted to analysis. Surface chemical composition and implant morphology were analyzed by X-ray photoelectron spectroscopy (XP S), scanning electron microscopy (SEM) and microprobe. Implant surface is mainly composed of titanium, oxygen and carbon. Few contaminants commonly present on implant surface were found on samples. Superficial oxide layer is basically composed of titanium dioxide (TiO{sub 2}), another oxides as Ti O and Ti{sub 2}O{sub 3} were also found in small amount. Carbon on implant surface was attributed to manufacturing process. Nitrogen, Phosphorous and Silicon appeared in smaller concentration on surface. There was no surface discrepancy among foreign and Brazilian made implants. SEM images were made on different magnification, 35 X to 3500 X, and showed similarity among as machined implants. Porous surface finishing implants presented distinct morphology. This result was attributed to differences on manufacturing process. Implant bioactivity was accessed through immersion on simulated body solution (SBF) in order to verify formation of an hydroxyapatite (HA) layer on surface. Samples were divided on three groups according to immersion time: G1 (7 days), G2 (14 days), G3 (21 days), and deep in SBF solution at 37 deg C. After being removed from solution, XPS analyses were made and then implants have been submitted to microprobe analysis. XPS showed some components of SBF solution on sample surface but microprobe

  5. Formation of Titanium Carbide in the Surface Layer of Cavityless-Cast Iron-Carbon Alloys

    Science.gov (United States)

    Ovcharenko, P. G.; Leshchev, A. Yu.; Makhneva, T. M.

    2018-01-01

    Special features of formation of titanium carbide in the surface layer of castings of iron-carbon alloys obtained with the use of investment patterns and "Ti - C" and "FeTi - C" alloying compositions are considered. The phase composition, the structure, and the hardness of the alloyed layers are determined.

  6. Physico-chemical properties and healing capacity of potentially bioactive titanium surface

    Czech Academy of Sciences Publication Activity Database

    Strnad, J.; Strnad, Z.; Šesták, Jaroslav

    2007-01-01

    Roč. 88, č. 3 (2007), s. 775-779 ISSN 1388-6150 R&D Projects: GA AV ČR IAA100100639 Institutional research plan: CEZ:AV0Z10100521 Keywords : implants * surface * titanium * bioactivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2007

  7. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces

    DEFF Research Database (Denmark)

    Stiehler, Maik; Lind, M.; Mygind, Tina

    2007-01-01

    the interactions between human mesenchymal stem cells (MSCs) and smooth surfaces of titanium (Ti), tantalum (Ta), and chromium (Cr). Mean cellular area was quantified using fluorescence microscopy (4 h). Cellular proliferation was assessed by (3)H-thymidine incorporation and methylene blue cell counting assays (4...

  8. Effect of surface treatment of titanium posts on the tensile bond strength

    NARCIS (Netherlands)

    Schmage, P; Sohn, J; Ozcan, M; Nergiz, [No Value

    Objectives. Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium

  9. Structure fragmentation of a surface layer of commercial purity titanium during ultrasonic impact treatment

    International Nuclear Information System (INIS)

    Kozelskaya, Anna; Kazachenok, Marina; Sinyakova, Elena; Pochivalov, Yurii; Perevalova, Olga; Panin, Alexey; Hairullin, Rustam

    2015-01-01

    The mechanisms of surface layer fragmentation of titanium specimens subjected to ultrasonic impact treatment is investigated by atomic force microscopy, transmission electron microscopy and electron backscatter diffraction. It is shown that the twin boundaries Σ7b and Σ11b are unable to be strong obstacles for propagation of dislocations and other twins

  10. Skull Bone Defects Reconstruction with Custom-Made Titanium Graft shaped with Electron Beam Melting Technology: Preliminary Experience in a Series of Ten Patients.

    Science.gov (United States)

    Francaviglia, Natale; Maugeri, Rosario; Odierna Contino, Antonino; Meli, Francesco; Fiorenza, Vito; Costantino, Gabriele; Giammalva, Roberto Giuseppe; Iacopino, Domenico Gerardo

    2017-01-01

    Cranioplasty represents a challenge in neurosurgery. Its goal is not only plastic reconstruction of the skull but also to restore and preserve cranial function, to improve cerebral hemodynamics, and to provide mechanical protection of the neural structures. The ideal material for the reconstructive procedures and the surgical timing are still controversial. Many alloplastic materials are available for performing cranioplasty and among these, titanium still represents a widely proven and accepted choice. The aim of our study was to present our preliminary experience with a "custom-made" cranioplasty, using electron beam melting (EBM) technology, in a series of ten patients. EBM is a new sintering method for shaping titanium powder directly in three-dimensional (3D) implants. To the best of our knowledge this is the first report of a skull reconstruction performed by this technique. In a 1-year follow-up no postoperative complications have been observed and good clinical and esthetic outcomes were achieved. Costs higher than those for other types of titanium mesh, a longer production process, and the greater expertise needed for this technique are compensated by the achievement of most complex skull reconstructions with a shorter operative time.

  11. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    George, R.P.; Anandkumar, B.; Vanithakumari, S.C.; Kamachi Mudali, U.

    2016-01-01

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  12. In vitro characterization of bioactive titanium dioxide/hydroxyapatite surfaces functionalized with BMP-2.

    Science.gov (United States)

    Piskounova, Sonya; Forsgren, Johan; Brohede, Ulrika; Engqvist, Håkan; Strømme, Maria

    2009-11-01

    Poor implant fixation and bone resorption are two of the major challenges in modern orthopedics and are caused by poor bone/implant integration. In this work, bioactive crystalline titanium dioxide (TiO(2))/hydroxyapatite (HA) surfaces, functionalized with bone morphogenetic protein 2 (BMP-2), were evaluated as potential implant coatings for improved osseointegration. The outer layer consisted of HA, which is known to be osteoconductive, and may promote improved initial bone attachment when functionalized with active molecules such as BMP-2 in a soaking process. The inner layer of crystalline TiO(2) is bioactive and ensures long-term fixation of the implant, once the hydroxyapatite has been resorbed. The in vitro response of mesenchymal stem cells on bioactive crystalline TiO(2)/HA surfaces functionalized with BMP-2 was examined and compared with the cell behavior on nonfunctionalized HA layers, crystalline TiO(2) surfaces, and native titanium oxide surfaces. The crystalline TiO(2) and the HA surfaces showed to be more favorable than the native titanium oxide surface in terms of cell viability and cell morphology as well as initial cell differentiation. Furthermore, cell differentiation on BMP-2-functionalized HA surfaces was found to be significantly higher than on the other surfaces indicating that the simple soaking process can be used for incorporating active molecules, promoting fast bone osseointegration to HA layers.

  13. Template-stripped, ultraflat gold surfaces with coplanar, embedded titanium micropatterns.

    Science.gov (United States)

    Venkataraman, Nagaiyanallur V; Pei, Jia; Cremmel, Clément V M; Rossi, Antonella; Spencer, Nicholas D

    2013-08-06

    Ultraflat gold surfaces with coplanar, embedded titanium micropatterns, exhibiting extremely low roughness over the entire surface, have been obtained by a modified template-stripping procedure. Titanium is deposited onto photolithographically predefined regions of a silicon template. Following photoresist lift-off, the entire surface is backfilled with gold, template stripping is conducted, and an ultraflat micropatterned surface is revealed. Atomic force microscopy confirms a roughness of gold-titanium interface. Detailed surface-chemical maps of the patterned surfaces have been obtained by means of imaging X-ray photoelectron spectroscopy (i-XPS) as well as time-of-flight secondary-ion mass spectrometry (ToF-SIMS). They confirm the presence of well-separated Ti and Au regions, with a chemical contrast that is sharp (as determined by ToF-SIMS) and complete (as determined by i-XPS) across the Ti-Au interface. Thus, a surface has been fabricated that is physically homogeneous down to the nanoscale incorporating chemically distinct micropatterns consisting of two different metals, with totally contrasting surface chemistries.

  14. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces

    Science.gov (United States)

    Depprich, Rita; Ommerborn, Michelle; Zipprich, Holger; Naujoks, Christian; Handschel, Jörg; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-01-01

    Background Osseointegration is crucial for the long-term success of dental implants and depends on the tissue reaction at the tissue-implant interface. Mechanical properties and biocompatibility make zirconia a suitable material for dental implants, although surface processings are still problematic. The aim of the present study was to compare osteoblast behavior on structured zirconia and titanium surfaces under standardized conditions. Methods The surface characteristics were determined by scanning electron microscopy (SEM). In primary bovine osteoblasts attachment kinetics, proliferation rate and synthesis of bone-associated proteins were tested on different surfaces. Results The results demonstrated that the proliferation rate of cells was significantly higher on zirconia surfaces than on titanium surfaces (p zirconia and titanium surfaces. Conclusion The study demonstrates distinct effects of the surface composition on osteoblasts in culture. Zirconia improves cell proliferation significantly during the first days of culture, but it does not improve attachment and adhesion strength. Both materials do not differ with respect to protein synthesis or ultrastructural appearance of osteoblasts. Zirconium oxide may therefore be a suitable material for dental implants. PMID:19063728

  15. Titanium Surfaces with Nanostructures Influence on Osteoblasts Proliferation: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Maxim

    2014-10-01

    Full Text Available Objectives: Nanothechnology found to be increasingly implemented in implantology sphere over the recent years and it shows encouraging effect in this field. The aim of present review is to compare, based on the recent evidence, the influence of various nanostructure surface modifications of titanium for implants, on osteoblasts proliferation. Material and Methods: A literature review of English articles was conducted by using MEDLINE database restricted to 2009 - 2014 and constructed according PRISMA guidelines. Search terms included “Titanium implant”, “Titanium surface with nanostructure”, “Osteoblast”. Additional studies were identified in bibliographies. Only in vitro and/or in vivo studies on nano structured implant surfaces plus control sample, with specific evaluation method for osteoblasts proliferation and at least one Ti sample with nanostructure, were included in the review. Results: 32 studies with 122 groups of examined samples were selected for present review. Each study conducted in vitro experiment, two studies conducted additional in vivo experiments. All studies were dispensed by type of surface modification into two major groups; “Direct ablative titanium implant surface nano-modifications” with 19 studies and ”Nanocomposite additive implant surface modifications” with 13 studies. Overall 24 studies reporting on positive effect of nanostructured surface, 2 studies found no significant advantage and 6 studies reported on negative effect compared to other structure scales. Conclusions: From examination of selected articles we can notice marked advantage in implementation of various nanostructures onto implant surface. Yet for discovering the ultimate implant surface nanostructure, further comparable investigations of Ti surface nanostructures need to be done.

  16. Improving the antimicrobial properties of titanium condenser material by surface modification using nanotechnology

    International Nuclear Information System (INIS)

    George, Rani P.; Dash, S.; Krishnan, R.; Kamruddin, M.; Kalavathi, S.; Tyagi, A.K.; Manoharan, N.; Dayal, R.K.; Vishwakarma, Vinita; Theresa, Josephine

    2008-01-01

    Biofouling is one of the major problems faced by condenser materials of power plants using seawater for cooling. Fouling control strategies in condensers include a combination of mechanical and chemical treatments like sponge ball cleaning, back washing and chlorination. In general, numerous studies have shown that no routine treatment regime can successfully keep the condenser tube clean over a period extending to years. Surface properties of the substratum influence initial adhesion and growth of bacterial cells on materials, modification of the surface for mitigating microbial attachment is the need of the hour. Metal nanoparticles are known to exhibit enhanced physical and chemical properties when compared to their bulk counter parts because of their high surface to volume ratios. Metals like copper are very toxic to microorganisms and effectively kill most of the microbes by blocking the respiratory enzyme. Copper alloys with their excellent resistance to biofouling are used extensively for marine applications. However, they are prone to localized corrosion initiation and consequently are getting replaced by extremely corrosion resistant titanium. Still, the inertness and biocompatibility of titanium makes it very susceptible to biofouling. Hence, this study attempts to use nano technology methods of surface modification of titanium using thin film of copper and also multilayers and bilayers of copper and nickel. This is aimed at improving the antimicrobial properties of this condenser pipe material. These nano structured thin films have been grown on titanium substrate using pulsed DC magnetron-sputtering and pulsed laser deposition. The thin films were characterized using Atomic Force Microscopy (AFM), Glancing Incidence X-ray Diffraction (GIXRD) and scanning electron microscopy (SEM with EDAX analysis). Antimicrobial properties were evaluated by exposure studies in seawater and bacterial cultures and by post exposure analysis using culture and

  17. Surface Modification of Titanium with Heparin-Chitosan Multilayers via Layer-by-Layer Self-Assembly Technique

    Directory of Open Access Journals (Sweden)

    Yao Shu

    2011-01-01

    Full Text Available Extracellular matrix (ECM, like biomimetic surface modification of titanium implants, is a promising method for improving its biocompatibility. In this paper chitosan (Chi and heparin (Hep multilayer was coated on pure titanium using a layer-by-layer (LbL self-assembly technique. The Hep-Chi multilayer growth was carried out by first depositing a single layer of positively charged poly-L-lysine (PLL on the NaOH-treated titanium substrate (negatively charged surface, followed by alternate deposition of negatively charged Hep and positively charged Chi, and terminated by an outermost layer of Chi. The multilayer was characterized by DR-FTIR, SEM, and AFM, and osteoblasts were cocultured with the modified titanium and untreated titanium surfaces, respectively, to evaluate their cytocompatibility in vitro. The results confirmed that Hep-Chi multilayer was fabricated gradually on the titanium surface. The Hep-Chi multilayer-coated titanium improved the adhesion, proliferation and differentiation of osteoblasts. Thus, the approach described here may provide a basis for the preparation of modified titanium surfaces for use in dental or orthopedic implants.

  18. The effect of enamel matrix proteins on the spreading, proliferation and differentiation of osteoblasts cultured on titanium surfaces.

    Science.gov (United States)

    Miron, Richard J; Oates, Christine J; Molenberg, Aart; Dard, Michel; Hamilton, Douglas W

    2010-01-01

    Modifications of implant surface topography and chemistry have proven a means to enhance osseointegration, a process that ensures the stability of bone-contacting devices, including titanium dental implants. The commercial product Emdogain is an enamel matrix derivative (EMD) extracted from porcine teeth commonly used in periodontal surgery, where it has been shown to potentiate regeneration of bone. The aim of the present study was to evaluate the effect of EMD on the attachment, proliferation and differentiation of osteoblasts on titanium surfaces in vitro. Pickled (smooth) and SLA (roughened) titanium discs were coated with EMD or left uncoated. Primary rat calvarial osteoblasts were cultured on each surface from 1h to 4 weeks. EMD significantly increased cell spreading and proliferation at time points ranging from 3 to 7 days on both topographies. Alkaline phosphatase activity was significantly increased on EMD-coated titanium compared with titanium alone. Moreover, there was a 6 fold increase in levels of mRNA encoding bone sialoprotein and osteocalcin in osteoblasts cultured on EMD-coated titanium surfaces compared with uncoated surfaces. We conclude that coating of titanium with EMD enhances the proliferation and differentiation of osteoblasts irrespective of the titanium substratum topography.

  19. Study on the influence of helical milling parameters on surface roughness of titanium alloy

    Directory of Open Access Journals (Sweden)

    Chunhui JI

    2015-06-01

    Full Text Available As a new technology, helical milling has been widely used in hole-making of titanium alloy, and the surface roughness is an important indicator for evaluating the quality of titanium alloy hole. In this paper, the helical milling experiments are carried out to study the effect of machining parameters on the surface roughness with the model established in Matlab. It is proved that the model can well predict the influence of the helical milling parameters on surface roughness. With screw pitch increasing, the surface roughness of titanium hole firstly decreases and then increases in the range of 0.15~0.25 mm/rev. However, the surface roughness increases gradually at first and then decreases with the increasing of the feed per tooth in the range of 0.03~0.05 mm/tooth. Similarly, with the increasing of spindle speed, the surface roughness firstly increases, then decreases, and again gradually increases smoothly in the range of 2 500~3 500 r/min. The results in the work can provide experimental basis for optimizing cutting parameters and decreasing surface roughness in helical milling process.

  20. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations.

    Directory of Open Access Journals (Sweden)

    Willian F Zambuzzi

    Full Text Available It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations.Four engineered titanium surfaces were used for the study: machined (M, dual acid-etched (DAA, resorbable media microblasted and acid-etched (MBAA, and acid-etch microblasted (AAMB. Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites.The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption.It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces.

  1. Fabrication of biomimetic resorption lacunae-like structure on titanium surface and its osteoblast responses

    Science.gov (United States)

    Huo, Fangjun; Guo, Weihua; Wu, Hao; Wang, Yueting; He, Gang; Xie, Li; Tian, Weidong

    2018-04-01

    Biomimetic specific surface structure could improve biological behaviors of specific cells and eventual tissue integration. Featuring titanium surface with structures resembling bone resorption lacunae (RL) can be a promising approach to improve the osteoblast responses and osseointegration of implants. As a most common used dental implant surface, sandblasting and acid etching (SLA) surface has micro-sized structures with dimensions similar to RL, but great differences exist when it comes to shape and contour. In this work, by anodizing titanium substrate in a novel HCOONa/CH3COONa electrolyte, RL-like crater structures were fabricated with highly similar size, shape and contour. Compared with SLA, it was much more similar to RL structure in shape and contour. Furthermore, through subsequent alkali-heat treatment, nano-sized structures that overlaid the whole surface were obtained, which further mimic undercuts features inside the RL. The as-prepared surface was consisted of crystalline titania and exhibited super-hydrophilicity with good stability. In vitro evaluation results showed that the surface could significantly improve adhesion, proliferation and differentiation of MG63 cells in comparison with SLA. This new method may be a promising candidate for biomimetic modification of titanium implant to promote osseointegration.

  2. Texturing in titanium grade 2 surface irradiate with ultrashort pulse laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro Francelino

    2015-01-01

    The texturing laser micromachining is an important alternative to improve the bonding adhesion between composites and titanium, which are applied to structural components in the aerospace industry. The texturing running on titanium plates is due to the fact that the preferred joining technique for many composite materials is the adhesive bonding. In this work, titanium plates were texturized using laser ultrashort pulses temporal widths of femtoseconds. This process resulted in minimal heat transfer to the material, avoiding deformation of the titanium plate surface as well as the formation of resolidified material in the ablated region. These drawbacks have occurred with the use of nanoseconds pulses. Were performed three types of texturing using laser with femtosecond pulses, with variations in the distances between the machined lines. The analysis of the obtained surfaces found that the wettability increases when there is the increased distance between the texturing lines. Advancing in the analysis by optical profilometry of textured surfaces was observed that there is substantial increase in the volume available for penetration of structural adhesive when the distances between the textured lines are diminished. In tensile tests conducted it was observed that there is an increase in shear strength of the adhesive joint by reducing the distance between the textured lines. (author)

  3. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.

    2004-01-01

    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  4. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon

    International Nuclear Information System (INIS)

    Lenivtseva, O.G.; Bataev, I.A.; Golkovskii, M.G.; Bataev, A.A.; Samoilenko, V.V.; Plotnikova, N.V.

    2015-01-01

    Highlights: • Wear resistant coatings up to 2 mm thick were clad on titanium by an electron beam in air. • The microhardness of the alloys was increased from 2 to 8 GPa due to the formation of TiC particles. • Alloying of titanium increased the abrasive wear resistance of the alloy by a factor of 9.3. - Abstract: The structure and tribological properties of commercially pure titanium (cp-Ti) samples after non-vacuum electron beam surface alloying with carbon were studied. Two types of powders were used to introduce carbon in surface layer of cp-Ti: titanium carbide (TiC) and mixture of pure titanium and graphite (“Ti + C”). Single layer and multilayer coatings were studied. Application of electron beam for alloying provided cladding rate of 4.5 m 2 /h. The thickness of the clad coatings was 1.6–2.0 mm. The main phases received after “Ti + C” powder cladding were α-titanium, TiC, and retained graphite. In the samples obtained by cladding of TiC, graphite was not observed. A factor determining the microhardness and tribological properties of the cladded layer was the volume fraction of TiC. Maximum coating microhardness of 8 GPa was obtained by cladding of single layer of TiC powder or two layers of the “Ti + C” mixture. Two types of tests were carried out to evaluate the wear resistance of the samples. In friction tests against loose abrasive particles, the wear rate of the best samples was 9.3 times lower than that of cp-Ti. In wear tests using fixed abrasive particles, the relative wear resistance of the best samples was 2.3 times higher than that of cp-Ti.

  5. Evaluation of Surface and Near-Surface Melt Characteristics on the Greenland Ice Sheet using MODIS and QuikSCAT Data

    Science.gov (United States)

    Hall, Dorothy K.; Nghiem, Son V.; Schaaf, Crystal B.; DiGirolamo, Nicolo E.

    2009-01-01

    The Greenland Ice Sheet has been the focus of much attention recently because of increasing melt in response to regional climate warming. To improve our ability to measure surface melt, we use remote-sensing data products to study surface and near-surface melt characteristics of the Greenland Ice Sheet for the 2007 melt season when record melt extent and runoff occurred. Moderate Resolution Imaging Spectroradiometer (MODIS) daily land-surface temperature (LST), MODIS daily snow albedo, and a special diurnal melt product derived from QuikSCAT (QS) scatterometer data, are all effective in measuring the evolution of melt on the ice sheet. These daily products, produced from different parts of the electromagnetic spectrum, are sensitive to different geophysical features, though QS- and MODIS-derived melt generally show excellent correspondence when surface melt is present on the ice sheet. Values derived from the daily MODIS snow albedo product drop in response to melt, and change with apparent grain-size changes. For the 2007 melt season, the QS and MODIS LST products detect 862,769 square kilometers and 766,184 square kilometers of melt, respectively. The QS product detects about 11% greater melt extent than is detected by the MODIS LST product probably because QS is more sensitive to surface melt, and can detect subsurface melt. The consistency of the response of the different products demonstrates unequivocally that physically-meaningful melt/freeze boundaries can be detected. We have demonstrated that these products, used together, can improve the precision in mapping surface and near-surface melt extent on the Greenland Ice Sheet.

  6. Surface tension of polymer melts - experimental investigations of its effect on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEl, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  7. Surface tension of polymer melts - experimental investigations of its effects on polymer-polymer adhesion

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Jankova Atanasova, Katja; Hansen, Hans Nørgaard

    -polymer bond strength during two component polymer processing. Polymer materials PS, POM, ABS, PEI, PEEK and PC are chosen for the investigation. Pendant drop method showed that in case of PS and POM, the melt surface tension was decreased with increasing temperature. The substrate surface energies...

  8. Candida albicans aspects of novel silane system-coated titanium and zirconia implant surfaces.

    Science.gov (United States)

    Villard, Nicolas; Seneviratne, Chaminda; Tsoi, James Kit Hon; Heinonen, Markku; Matinlinna, Jukka

    2015-03-01

    The aim of the present study was to evaluate the effect of novel silane system coatings on zirconia and titanium implant surfaces and the attachment of the fungal pathogen Candida albicans. Titanium and zirconia specimens were silica-coated and silanized either with a commercial silane primer (RelyX Ceramic Primer™, 3M ESPE) or a novel silane system primer. The novel silane system primer was a blend of 1.0 vol% 3-acryloxypropyltrimethoxysilane and 0.3 vol% bis-1,2-(triethoxysilyl)ethane diluted in acidified ethanol-water solvent. The surface roughness (Ra ), the surface free energy and the chemical composition of substrate surfaces after treatments were evaluated. C. albcans biofilms were developed on silica-coated + silanized surfaces during 48 h of incubation time. Colony forming units (CFU) and real-time PCR (RT-PCR) quantified the cells on the material surfaces. Statistical analyses were carried out by 1-way ANOVA, Tukey post hoc and Games Howell post hoc test at 5% significance level (p). On zirconia and titanium surfaces, the Ra and the chemical composition of the specimens were equal (P silanization. CFU of C. albicans was significantly lower on zirconia coated with RelyX Ceramic Primer™, (P silanes (P = 0.002). RT-PCR revealed no differences between the mean quantities of C. albicans (P ≥ 0.067). Silica-coating and silanization had modified the titanium and zirconia surfaces significantly. Both the control and experimental silane primers might inhibit the biofilm formation of C. albicans. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Sum-frequency spectroscopic studies: I. Surface melting of ice, II. Surface alignment of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Surface vibrational spectroscopy via infrared-visible sum-frequency generation (SFG) has been established as a useful tool to study the structures of different kinds of surfaces and interfaces. This technique was used to study the (0001) face of hexagonal ice (Ih). SFG spectra in the O-H stretch frequency range were obtained at various sample temperatures. For the vapor(air)/ice interface, the degree of orientational order of the dangling OH bonds at the surface was measured as a function of temperature. Disordering sets in around 200 K and increases dramatically with temperature, which is strong evidence of surface melting of ice. For the other ice interfaces (silica/OTS/ice and silica/ice), a similar temperature dependence of the hydrogen bonded OH stretch peak was observed; the free OH stretch mode, however, appears to be different from that of the vapor (air)/ice interface due to interactions at the interfaces. The technique was also used to measure the orientational distributions of the polymer chains on a rubbed polyvinyl alcohol surface. Results show that the polymer chains at the surface appear to be well aligned by rubbing, and the adsorbed liquid crystal molecules are aligned, in turn, by the surface polymer chains. A strong correlation exists between the orientational distributions of the polymer chains and the liquid crystal molecules, indicating that the surface-induced bulk alignment of a liquid crystal film by rubbed polymer surfaces is via an orientational epitaxy-like mechanism. This thesis also contains studies on some related issues that are crucial to the above applications. An experiment was designed to measure SFG spectra in both reflection and transmission. The result confirms that SFG in reflection is generally dominated by the surface contribution. Another issue is the motional effect due to fast orientational motion of molecules at a surface or interface. Calculations show that the effect is significant if the molecular orientation varies

  10. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  11. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    Topographic roughness was demonstrated as higher for SLA treated surfaces, measured by atomic force microscopy and elemental analysis was performed by energy dispersive X-ray, showing a similar composition for both surfaces. The adhesion of neutrophils to the `rough' Ti surface was initially stronger than adhesion ...

  12. Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications

    Science.gov (United States)

    Bonse, J.; Kirner, S. V.; Koter, R.; Pentzien, S.; Spaltmann, D.; Krüger, J.

    2017-10-01

    Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces.

  13. Early interactions between leukocytes and three different potentially bioactive titanium surface modifications.

    Science.gov (United States)

    Arvidsson, Anna; Malmberg, Per; Kjellin, Per; Currie, Fredrik; Arvidsson, Martin; Franke Stenport, Victoria

    2011-05-01

    The aim of the present study was to compare the early interactions between leukocytes and three different surface modifications, suggested as bioactive. Blasted titanium discs were modified by alkali and heat treatment, sodium fluoride treatment, or hydroxyapatite coating. A number of these discs were also immersed in simulated body fluid (SBF) for a week, a treatment which yielded high levels of calcium and phosphate on each surface type. The specimens were exposed for human venous blood for 32 minutes and the respiratory burst response was measured in terms of reactive oxygen species with a luminometer, and coverage of viable cells with a fluorescence microscope after staining steps. The topography, morphology, and chemistry of the surfaces were evaluated with optical interferometry and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX). A high respiratory burst response was found for HA coated titanium in comparison with the other surface groups (p burst response (p < 0.0005) and removed statistically significant differences between the surface groups. Thus, the results in the present study indicate that different titanium surface modifications influence the early inflammatory response differently, and that calcium phosphate compounds increase the inflammatory response. Copyright © 2011 Wiley Periodicals, Inc.

  14. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were...

  15. Electropolished Titanium Implants with a Mirror-Like Surface Support Osseointegration and Bone Remodelling

    Directory of Open Access Journals (Sweden)

    Cecilia Larsson Wexell

    2016-01-01

    Full Text Available This work characterises the ultrastructural composition of the interfacial tissue adjacent to electropolished, commercially pure titanium implants with and without subsequent anodisation, and it investigates whether a smooth electropolished surface can support bone formation in a manner similar to surfaces with a considerably thicker surface oxide layer. Screw-shaped implants were electropolished to remove all topographical remnants of the machining process, resulting in a thin spontaneously formed surface oxide layer and a smooth surface. Half of the implants were subsequently anodically oxidised to develop a thickened surface oxide layer and increased surface roughness. Despite substantial differences in the surface physicochemical properties, the microarchitecture and the composition of the newly formed bone were similar for both implant surfaces after 12 weeks of healing in rabbit tibia. A close spatial relationship was observed between osteocyte canaliculi and both implant surfaces. On the ultrastructural level, the merely electropolished surface showed the various stages of bone formation, for example, matrix deposition and mineralisation, entrapment of osteoblasts within the mineralised matrix, and their morphological transformation into osteocytes. The results demonstrate that titanium implants with a mirror-like surface and a thin, spontaneously formed oxide layer are able to support bone formation and remodelling.

  16. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  17. Variability of Surface Temperature and Melt on the Greenland Ice Sheet, 2000-2011

    Science.gov (United States)

    Hall, Dorothy K.; Comiso, Josefino, C.; Shuman, Christopher A.; Koenig, Lora S.; DiGirolamo, Nicolo E.

    2012-01-01

    Enhanced melting along with surface-temperature increases measured using infrared satellite data, have been documented for the Greenland Ice Sheet. Recently we developed a climate-quality data record of ice-surface temperature (IST) of the Greenland Ice Sheet using the Moderate-Resolution Imaging Spectroradiometer (MODIS) 1ST product -- http://modis-snow-ice.gsfc.nasa.gov. Using daily and mean monthly MODIS 1ST maps from the data record we show maximum extent of melt for the ice sheet and its six major drainage basins for a 12-year period extending from March of 2000 through December of 2011. The duration of the melt season on the ice sheet varies in different drainage basins with some basins melting progressively earlier over the study period. Some (but not all) of the basins also show a progressively-longer duration of melt. The short time of the study period (approximately 12 years) precludes an evaluation of statistically-significant trends. However the dataset provides valuable information on natural variability of IST, and on the ability of the MODIS instrument to capture changes in IST and melt conditions indifferent drainage basins of the ice sheet.

  18. Observation of melt surface depressions during electron beam evaporation

    International Nuclear Information System (INIS)

    Ohba, Hironori; Shibata, Takemasa

    2000-08-01

    Depths of depressed surface of liquid gadolinium, cerium and copper during electron beam evaporation were measured by triangulation method using a CCD camera. The depression depths estimated from the balance of the vapor pressure and the hydrostatic pressure at the evaporation surface agreed with the measured values. The periodic fluctuation of atomic beam was observed when the depression of 3∼4 mm in depth was formed at the evaporation spot. (author)

  19. Elemental segregation in titanium alloys induced by plasma-surface interaction

    International Nuclear Information System (INIS)

    Raveh, A.

    1990-07-01

    The microstructure and surface composition of nitrided titanium alloys (Ti-6Al-4V and Ti-8Al-1V-Mo) were investigated after plasma nitriding with nitrogen, hydrogen and argon. The composition of the plasma, near the surface of the sample (plasma layer) was examined by optical emission spectroscopy and mass spectrometry, while the composition of the surface of the alloy after the process, the structure and microstructure of the layers were studied by auger electron spectrometry, scanning auger microprobe, x-ray difraction, scanning electron microscope,transmission electron microscope and high resolution transmission electron microscope. It was observed that elemental segregation occurs in titanium alloys at the interface between compound layer and diffusion layer. Based on the present results, a mechanism for the formation of the nitrided layers in the plasma was suggested

  20. Low dose effect of bisphosphonates on hMSCs osteogenic response to titanium surface in vitro

    Directory of Open Access Journals (Sweden)

    N.R. Alqhtani

    2017-06-01

    Full Text Available Since the 1980s, titanium (Ti implants have been routinely used to replace missing teeth. This success is mainly due to the good biocompatibility of Ti and the phenomenon of osseointegration, with very early events at implant placement being important in determining good osseointegration. However, enhancing implant performance with coatings such as hydroxyapatite (HA and calcium phosphate has proved largely unsuccessful. Human mesenchymal stem cells (hMSCs are the first osteogenic cells to colonise implant surfaces and offer a target for enhancing osseointegration. We previously reported that small doses of bisphosphonate (BP may play an integral role in enhancing hMSC proliferation and osteogenic differentiation. The aim of this study is to investigate whether small doses of bisphosphonates enhance proliferation and osteogenic differentiation of hMSCs on Ti surfaces, to enhance bone osseointegration and to accelerate wound healing around the implant surface. Our data suggests that treating cells with small doses of BP (100 nM & 10 nM induces significant hMSC stimulation of osteogenic markers including calcium, collagen type I and ALP compared to control group on titanium surfaces (P < 0.05. In addition, cell proliferation and migration were significantly enhanced on titanium surfaces (P < 0.05.

  1. Laser Surface Pattering of Titanium for Improving the Biological Performance of Dental Implants.

    Science.gov (United States)

    Zwahr, Christoph; Günther, Denise; Brinkmann, Tina; Gulow, Nikolai; Oswald, Steffen; Grosse Holthaus, Marzellus; Lasagni, Andrés Fabián

    2017-02-01

    Direct laser interference patterning (DLIP) is used to produce periodic line-like patterns on titanium surfaces. An Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns is used for the laser patterning process. The generated periodic patterns with spatial periods of 5, 10, and 20 µm are produced with energy densities between 0.44 and 2.6 J cm - 2 with a single laser pulse. With variation of energy density, different shapes of the arising topography are observed due to the development of the solidification front of the molten material at the maxima positions. Characterization of the surface chemistry shows that the DLIP treatment enhances the content of nitrogen of the titanium reactive layer from 3.9% up to 23.4%. The structural analysis near the titanium surface shows no changes in microstructure after the laser treatment. Contact angles between 65° and 79° are measured on both structured and turned reference surfaces. Cell viability of human osteoblasts on line-like patterned surfaces after 7 d in cultivation medium is 16% higher compared to the grit-blasted and acid-etched references. Finally, the possibility of patterning complex 3D dental implants is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings.

    Science.gov (United States)

    Besinis, A; Hadi, S D; Le, H R; Tredwin, C; Handy, R D

    2017-04-01

    One of the most common causes of implant failure is peri-implantitis, which is caused by bacterial biofilm formation on the surfaces of dental implants. Modification of the surface nanotopography has been suggested to affect bacterial adherence to implants. Silver nanoparticles are also known for their antibacterial properties. In this study, titanium alloy implants were surface modified following silver plating, anodisation and sintering techniques to create a combination of silver, titanium dioxide and hydroxyapatite (HA) nanocoatings. Their antibacterial performance was quantitatively assessed by measuring the growth of Streptococcus sanguinis, proportion of live/dead cells and lactate production by the microbes over 24 h. Application of a dual layered silver-HA nanocoating to the surface of implants successfully inhibited bacterial growth in the surrounding media (100% mortality), whereas the formation of bacterial biofilm on the implant surfaces was reduced by 97.5%. Uncoated controls and titanium dioxide nanocoatings showed no antibacterial effect. Both silver and HA nanocoatings were found to be very stable in biological fluids with material loss, as a result of dissolution, to be less than 0.07% for the silver nanocoatings after 24 h in a modified Krebs-Ringer bicarbonate buffer. No dissolution was detected for the HA nanocoatings. Thus, application of a dual layered silver-HA nanocoating to titanium alloy implants creates a surface with antibiofilm properties without compromising the HA biocompatibility required for successful osseointegration and accelerated bone healing.

  3. Contact Angles and Surface Tension of Germanium-Silicon Melts

    Science.gov (United States)

    Croell, A.; Kaiser, N.; Cobb, S.; Szofran, F. R.; Volz, M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Precise knowledge of material parameters is more and more important for improving crystal growth processes. Two important parameters are the contact (wetting) angle and the surface tension, determining meniscus shapes and surface-tension driven flows in a variety of methods (Czochralski, EFG, floating-zone, detached Bridgman growth). The sessile drop technique allows the measurement of both parameters simultaneously and has been used to measure the contact angles and the surface tension of Ge(1-x)Si(x) (0 less than or equal to x less than or equal to 1.3) alloys on various substrate materials. Fused quartz, Sapphire, glassy carbon, graphite, SiC, carbon-based aerogel, pyrolytic boron nitride (pBN), AIN, Si3N4, and polycrystalline CVD diamond were used as substrate materials. In addition, the effect of different cleaning procedures and surface treatments on the wetting behavior were investigated. Measurements were performed both under dynamic vacuum and gas atmospheres (argon or forming gas), with temperatures up to 1100 C. In some experiments, the sample was processed for longer times, up to a week, to investigate any changes of the contact angle and/or surface tension due to slow reactions with the substrate. For pure Ge, stable contact angles were found for carbon-based substrates and for pBN, for Ge(1-x)Si(x) only for pBN. The highest wetting angles were found for pBN substrates with angles around 170deg. For the surface tension of Ge, the most reliable values resulted in gamma(T) = (591- 0.077 (T-T(sub m)) 10(exp -3)N/m. The temperature dependence of the surface tension showed similar values for Ge(1-x)Si(x), around -0.08 x 10(exp -3)N/m K, and a compositional dependence of 2.2 x 10(exp -3)N/m at%Si.

  4. The Origin of the Compositional Diversity of Mercury's Surface Constrained From Experimental Melting of Enstatite Chondrites

    Science.gov (United States)

    Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.

    2015-01-01

    Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.

  5. Roughened titanium surfaces with silane and further RGD peptide modification in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan, ROC (China); Ko, Chia-Ling [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, ROC (China)

    2013-07-01

    The strategy to achieve osteoregeneration of dental implants during early-stage regeneration is strongly related to surface conditions for achieving highly successful effects after implantation. Surface modifications, namely, mechanical ground, silanization, bonded and sandblasted with pentasequence Gly-Arg-Gly-Asp-Ser (GRGDS) peptide, and acid-etched with Arg-Gly-Asp (RGD) peptide, were compared for their ability to support cell attachment, proliferation, and differentiation on titanium surfaces. The characteristics and comparative in vitro bio-interactions toward osteoprogenitor cells were tested in the four groups with various surface modifications. Compared with the other groups, the sandblasted and acid-etched, and silane with subsequent RGD peptide modified surfaces had the smallest wetting angle, absence of a significant cell viability difference, and largest quantity of alkaline phosphatase production during the expressions of early-stage cell differentiation. The method of synthesizing GRGDS peptides on roughened titanium surfaces has the potential to provide a combination of early bone regeneration and implant of long-term anchored capabilities. Highlights: • The osteoregeneration during early-stage is strongly related to surface conditions. • The wettability with RGD peptide treated surfaces can be enhanced. • Rougher surface binding with RGD peptide can achieve better osseogeneration. • Surfaces with RGD peptide accelerate the progenitor bone cell mineralization.

  6. Biocompatibility of surface treated pure titanium and titanium alloy by in vivo and in vitro test

    Science.gov (United States)

    Lee, Min-Ho; Yoon, Dong-Joo; Won, Dae-Hee; Bae, Tae-Sung; Watari, Fumio

    2003-02-01

    In the present study, commercial pure Ti and Ti-6Al-4V alloy specimens with and without alkali and heat treatments were implanted in the abdominal connective tissue of mice. Conventional stainless steel 316L was also implanted for comparison. After three months, their biocompatibility was evaluated by in vitro and in vivo experiments. Surface structural changes of specimens due to the alkali treatment and soaking in Hank's solution were analyzed by XRD, SEM, XPS and AES. An apatite layer, which accelerates the connection with bone, was formed more easily on the alkali treated specimens than the non-treated specimens. The number of macrophages, which is known to increase as the inflammatory reaction proceeds, was much lower for the alkali and heat treated specimens than for the others. The average thickness of the fibrous capsule formed around the implant was much thinner for the alkali and heat treated specimens than for the others.

  7. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Directory of Open Access Journals (Sweden)

    Chundong Liu

    Full Text Available To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti surfaces modified with strontium (Sr for bone implant applications.Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts.The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes.These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  8. A Strontium-Modified Titanium Surface Produced by a New Method and Its Biocompatibility In Vitro.

    Science.gov (United States)

    Liu, Chundong; Zhang, Yanli; Wang, Lichao; Zhang, Xinhua; Chen, Qiuyue; Wu, Buling

    2015-01-01

    To present a new and effective method of producing titanium surfaces modified with strontium and to investigate the surface characteristics and in vitro biocompatibility of titanium (Ti) surfaces modified with strontium (Sr) for bone implant applications. Sr-modified Ti surfaces were produced by sequential treatments with NaOH, strontium acetate, heat and water. The surface characteristics and the concentration of the Sr ions released from the samples were examined. Cell adhesion, morphology and growth were investigated using osteoblasts isolated from the calvaria of neonatal Sprague-Dawley rats. Expression of osteogenesis-related genes and proteins was examined to assess the effect of the Sr-modified Ti surfaces on osteoblasts. The modified titanium surface had a mesh structure with significantly greater porosity, and approximately5.37±0.35at.% of Sr was incorporated into the surface. The hydrophilicity was enhanced by the incorporation of Sr ions and water treatment. The average amounts of Sr released from the Sr-modified plates subjected to water treatment were slight higher than the plates without water treatment. Sr promoted cellular adhesion, spreading and growth compared with untreated Ti surfaces. The Sr-modified Ti plates also promoted expression of osteogenesis-related genes,and expression of OPN and COL-І by osteoblasts. Ti plates heat treated at 700°C showed increased bioactivity in comparison with those treated at 600°C. Water treatment upregulated the expression of osteogenesis-related genes. These results show that Sr-modification of Ti surfaces may improve bioactivity in vitro. Water treatment has enhanced the response of osteoblasts. The Sr-modified Ti heat-treated at 700°C exhibited better bioactivity compared with that heated at 600°C.

  9. Development of titanium alloys and surface treatments to increase the implants lifetime

    Directory of Open Access Journals (Sweden)

    Joan Lario-Femenía

    2016-12-01

    Full Text Available The population aging together with increase of life expectancy forces the development of new prosthesis which may present a higher useful life. The clinical success of implants is based on the osseointegration achievement. Therefore, metal implants must have a mechanical compatibility with the substituted bone, which is achieved through a combination of low elastic modulus, high flexural and fatigue strength. The improvement, in the short and long term, of the osseointegration depends on several factors, where the macroscopic design and dimensional, material and implant surface topography are of great importance. This article is focused on summarizing the advantages that present the titanium and its alloys to be used as biomaterials, and the development that they have suffered in recent decades to improve their biocompatibility. Consequently, the implants evolution has been recapitulated and summarized through three generations. In the recent years the interest on the surface treatments for metallic prostheses has been increased, the main objective is achieve a lasting integration between implant and bone tissue, in the shortest time possible. On this article various surface treatments currently used to modify the surface roughness or to obtain coatings are described it; it is worthy to mention the electrochemical oxidation with post-heat treated to modify the titanium oxide crystalline structure. After the literature review conducted for prepare this article, the ? titanium alloys, with a nanotubes surface of obtained by electrochemical oxidation and a subsequent step of heat treatment to obtain a crystalline structure are the future option to improve long term biocompatibility of titanium prostheses.

  10. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    Science.gov (United States)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  11. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  12. Dependence of capillary forces on relative humidity and the surface properties of femtosecond laser micromachined titanium.

    Science.gov (United States)

    Lehr, Jorge; Kietzig, Anne-Marie

    2015-06-15

    Capillary forces were measured with colloidal atomic force microscopy at different levels of relative humidity on femtosecond laser micromachined titanium surfaces. After laser machining at different intensity levels, the titanium surfaces show a nanoscale ripple topology or microscopic bumpy structures. Different machining environments were chosen to influence the surface chemistry in addition to topology: while machining in pure oxygen and water resulted in surfaces consisting of TiO2, a composite surface of TiO2 and TiN was obtained after machining in pure nitrogen. All samples were subsequently exposed to pure oxygen, carbon dioxide or water, and showed different levels of wettability and capillary force. We have introduced the concept of humidity sensitivity as the relative increase of the capillary force with respect to the measured force at 0% humidity. We report that samples with a nanoscale ripple topology machined in pure oxygen exhibit the lowest level of capillary force and the lowest sensitivity towards humidity in the environment. Surfaces with low sensitivity towards changes of the relative humidity are good candidates for technical applications, where capillary forces have to be controlled. This study contributes to the development of such surfaces, to a better understanding of how capillary bridges are formed on rough surfaces and ultimately to the exploration of the relationship between surface wettability and capillary forces. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Titanium implants with modified surfaces: Meta-analysis of in vivo osteointegration

    Energy Technology Data Exchange (ETDEWEB)

    Gasik, Michael, E-mail: michael.gasik@aalto.fi [Aalto University Foundation, School of Chemical Technology, P.O. Box 16200, FIN-00076 AALTO (Finland); Braem, Annabel [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Chaudhari, Amol; Duyck, Joke [Department of Prosthetic Dentistry, BIOMAT Research Cluster, KU Leuven, Kapucijnenvoer 7a, B-3000 Leuven (Belgium); Vleugels, Jozef [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium)

    2015-04-01

    Titanium-based implants are widely used in modern clinical practice, but their “optimal” properties in terms of porosity and topology, roughness and hydrophilic parameters are being a subject of intensive discussions. Recent in vitro results have shown a possibility to optimize the surface of an implant with maximal repelling of bacteria (Staphylococcus aureus, Staphylococcus epidermidis) and improvement in human osteogenic and endothelial cell adhesion, proliferation and differentiation. In this work, these different grades titanium implants were tested in vivo using the same analytical methodology. In addition to material parameters, key histomorphometrical parameters such a regeneration area, bone adaptation area and bone-to-implant contact were determined after 2 and 4 weeks of implantation in rabbit animal model. Porous implants have more clear differences than non-porous ones, with the best optimum values obtained on hydrothermally treated electrophoretically deposited titanium. These in vivo data correlate well with the optimal prediction made by in vitro tests. - Highlights: • Various titanium specimens were studied in vivo on osteointegration vs their properties. • Non-porous implants had a better performance when coated with bioactive glass. • Porous implants have shown the best results for hydrothermally treated specimens. • Good correlation was found with the previous in vitro tests. • New analysis of the in vivo data has shown benefits to assess biomaterials performance.

  14. Effects of radiation on osteoblast. Primary calcification on the surface of pure titanium

    International Nuclear Information System (INIS)

    Itoh, Sozo; Takebe, Jun; Kudo, Tsutomu; Shioyama, Tsukasa; Ishibashi, Kanji

    2003-01-01

    Although there have been several reports concerning the use of osseointegration implants for maxillofacial prostheses, little is understood about the effects of radiation on the bone/titanium interface. Since it is important to know this relationship when dealing with cases where implants have been inserted into the bone after radiotherapy, we began observing the primary calcification on the titanium surface where osteoblasts were irradiated in vitro. Pure titanium discs were employed. Bone marrow cells were obtained from young adult rats. For primary cultures, the femora was removed and washed with α-Minimal Essential Medium. Aliquots of the rat bone marrow cell suspension were cultured for 5 days and irradiated. Cultures were fixed, with Karnovsky's method and osmium tetroxide, dehydrated, and freeze dried with t-butyl alcohol. Some parts of the cell layer were removed and specimens were coated with Au-Pt. Specimens were observed either under scanning electron microscope (SEM) or an electron probe microanalyzer to observe the elemental composition. Furthermore, some specimens were used for quantitative analyses. The results showed that irradiation doses under 400 mGy induced no significant changes of the primary stage of calcification on the bone/titanium interface. The values for 4000 mGy were significantly different from the control and those under 400 mGy. (author)

  15. Analysis and optimisation of vertical surface roughness in micro selective laser melting

    International Nuclear Information System (INIS)

    Abele, Eberhard; Kniepkamp, Michael

    2015-01-01

    Surface roughness is a major disadvantage of many additive manufacturing technologies like selective laser melting (SLM) compared to established processes like milling or drilling. With recent advancements the resolution of the SLM process could be increased to layer heights of less than 10 μm leading to a new process called micro selective laser melting (μSLM). The purpose of this paper is to analyze the influence of the μSLM process parameters and exposure strategies on the morphology of vertical surfaces. Contour scanning using varying process parameters was used to increase the surface quality. It is shown that it is possible to achieve average surface roughness of less than 1.7 μm using low scan speeds compared to 8–10 μm without contour scanning. Furthermore it is shown that a contour exposure prior to the core exposure leads to surface defects and thus increased roughness. (paper)

  16. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  17. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  18. Enhancement of the implant integration: activation of model and real titanium surfaces

    Czech Academy of Sciences Publication Activity Database

    Pop-Georgievski, Ognen; Kubies, Dana; Zemek, Josef; Šlouf, Miroslav; Rypáček, František

    2013-01-01

    Roč. 8, 6s (2013), s. 219-220 ISSN 1746-0751. [World Conference on Regenerative Medicine 2013 /WCRM 2013/. 23.10.2013-25.10.2013, Leipzig] R&D Projects: GA MZd(CZ) NT13297; GA MŠk EE2.3.30.0029 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : titanium * implant * surface modification Subject RIV: CE - Biochemistry

  19. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

  20. Recommendations and Requirements for Welding and Inspection of Titanium Piping for U.S. Navy Surface Ship Applications

    National Research Council Canada - National Science Library

    Wells, Michael

    1999-01-01

    The information contained in this report is intended to assist both Navy and shipyard/contractor personnel engaged in the welding and inspection of commercially pure titanium seawater piping systems for U.S. Navy surface ships...

  1. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-01-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  2. Influence of repetitive pulsed laser irradiation on the surface characteristics of an aluminum alloy in the melting regime

    International Nuclear Information System (INIS)

    Choi, Sung Ho; Jhang, Kyung Young

    2015-01-01

    We have investigated the influence of repetitive near-infrared (NIR) pulsed laser shots in the melting regime on the surface characteristics of an aluminum 6061-T6 alloy. Characteristics of interest include surface morphology, surface roughness, and surface hardness in the melted zone as well as the size of the melted zone. For this study, the proper pulse energy for inducing surface melting at one shot is selected using numerical simulations that calculate the variation in temperature at the laser beam spot for various input pulse energies in order to find the proper pulse energy for raising the temperature to the melting point. In this study, 130 mJ was selected as the input energy for a Nd:YAG laser pulse with a duration of 5 ns. The size of the melted zone measured using optical microscopy (OM) increased logarithmically with an increasing shot number. The surface morphology observed by scanning electron microscopy (SEM) clearly showed a re-solidified microstructure evolution after surface melting. The surface roughness and hardness were measured by atomic force microscopy (AFM) and nano-indentation, respectively. The surface roughness showed almost no variation due to the surface texturing after laser shots over 10. The hardness inside the melted zone was lower than that outside the zone because the β'' phase was transformed to a β phase or dissolved into a matrix.

  3. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  4. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  5. Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity

    Directory of Open Access Journals (Sweden)

    Yusuke Tsutsumi

    2016-03-01

    Full Text Available In this study, micro-arc oxidation (MAO was performed on a β-type titanium alloy, namely, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ, to improve not only its antibacterial property but also bioactivity in body fluids. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate, calcium acetate, and silver nitrate was characterized using surface analyses. The resulting porous oxide layer was mainly composed of titanium oxide, and it also contained calcium, phosphorus, and a small amount of silver, all of which were incorporated from the electrolyte during the treatment. The MAO-treated TNTZ showed a strong inhibition effect on anaerobic Gram-negative bacteria when the electrolyte contained more than 0.5 mM silver ions. The formation of calcium phosphate on the surface of the specimens after immersion in Hanks’ solution was evaluated to determine the bioactivity of TNTZ with sufficient antibacterial property. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas no precipitate was observed on TNTZ without treatment. Thus, the MAO treatment of titanium-based alloys is confirmed to be effective in realizing both antibacterial and bioactive properties.

  6. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Rong [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Chen, Ding, E-mail: ma97chen@hotmail.com [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Zhang, Qianxia [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Bian, Zhibing; Dai, Haixiong; Zhang, Chi [Jiangsu Jinling Special Paint Co., Ltd., Yangzhou 225212 (China)

    2014-10-15

    Highlights: • TiH{sub 2} was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH{sub 2} with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process.

  7. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  8. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  9. Surface Quality Research for Selective Laser Melting of Ti-6Al-4V Alloy

    Directory of Open Access Journals (Sweden)

    Król M.

    2016-09-01

    Full Text Available One of the innovative technology of producing the components is Selective Laser Melting (SLM belongs to additive manufacturing techniques. SLM technology has already been successfully applied in the automotive, aerospace and medical industries. Despite progress in material flexibility and mechanical performances, relatively poor surface finish still presents a significant weakness in the SLM process.

  10. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel.

    Science.gov (United States)

    Alavi, S Habib; Harimkar, Sandip P

    2015-05-01

    Simultaneous application of ultrasonic vibrations during conventional materials processing (casting, welding) and material removal processes (machining) has recently been gaining widespread attention due to improvement in metallurgical quality and efficient material removal, respectively. In this paper, ultrasonic vibration-assisted laser surface melting of austenitic stainless steel (AISI 316) is reported. While the application of ultrasonic vibrations during laser processing delays the laser interaction with material due to enhancement of surface convection, it resulted in expulsion of melt from the irradiated region (forming craters) and transition from columnar to equiaxed dendritic grain structure in the resolidified melt films. Systematic investigations on the effect of ultrasonic vibrations (with vibrations frequency of 20 kHz and power output in the range of 20-40%) on the development of microstructure during laser surface melting (with laser power of 900 W and irradiation time in the range of 0.30-0.45 s) are reported. The results indicate that the proposed ultrasonic vibration-assisted laser processing can be designed for efficient material removal (laser machining) and improved equiaxed microstructure (laser surface modifications) during materials processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Surface energy balance of seasonal snow cover for snow-melt ...

    Indian Academy of Sciences (India)

    This study describes time series analysis of snow-melt, radiation data and energy balance for a seasonal snow cover at Dhundi field station of SASE, which lies in Pir Panjal range of the. N–W Himalaya, for a winter season from 13 January to 12 April 2005. The analysis shows that mean snow surface temperature remains ...

  12. The 1958-2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation

    NARCIS (Netherlands)

    Fettweis, X.; Mabille, G.; Erpicum, M.; Nicolay, S.; van den Broeke, M.R.

    2010-01-01

    In order to assess the impact of the mid-tropospheric circulation over the Greenland ice sheet (GrIS) on surface melt, as simulated by the regional climate model MAR, an automatic Circulation type classification (CTC) based on 500 hPa geopotential height from reanalyses is developed. General

  13. Characterization of novel silane coatings on titanium implant surfaces

    NARCIS (Netherlands)

    Matinlinna, Jukka P; Tsoi, James Kit‐Hon; de Vries, Jacob; Busscher, Hendrik

    Objectives This in vitro study describes and characterizes a developed novel method to produce coatings on Ti. Hydrophobic coatings on substrates are needed in prosthetic dentistry to promote durable adhesion between luting resin cements and coated Ti surfaces. In implant dentistry the hydrophobic

  14. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    International Nuclear Information System (INIS)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara; Marques, Isabella S.V.; Sukotjo, Cortino; Mathew, Mathew T.; Rangel, Elidiane C.; Cruz, Nilson C.; Mesquita, Marcelo F.; Consani, Rafael X.

    2016-01-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H 2 O 2 (Cl), H 2 SO 4 + H 2 O 2 (S); sandblasted with Al 2 O 3 (Sb), Al 2 O 3 followed by HCl + H 2 O 2 (SbCl), and Al 2 O 3 followed by H 2 SO 4 + H 2 O 2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R p ) and the lowest capacitance (Q) and corrosion current density (I corr ) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R p values of cp-Ti surfaces and produced the highest I corr values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp-Ti. • Acid etching is a promising dental implants surface treatment.

  15. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Aguirre, Robinson; Robledo, Sara; Castaño, Juan Guillermo; Echeverría, Félix

    2017-09-27

    Surface characteristics can mediate biological interaction improving or affecting the tissue integration after implantation of a biomaterial. Features such as topography, wettability, surface energy and chemistry can be key determinants for interactions between cells and materials. Plasma electrolytic oxidation (PEO) is a technique used to control this kind of parameters by the addition of chemical species and the production of different morphologies on the surfaces of titanium and its alloys. With the purpose to improve the biological response, surfaces of c.p titanium and Ti6Al4V were modified by using PEO. Different electrolytes, voltages, current densities and anodizing times were tested in order to obtain surfaces with different characteristics. The obtained materials were characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES). Wettability of the obtained surfaces were measured and the corresponding surface energies were calculated. Superhydrophilic surfaces with contact angles of about 0 degrees were obtained without any other treatment but PEO and this condition in some cases remains stable after several weeks of anodizing; crystal phase composition (anatase-rutile) of the anodic surface appears to be critical for obtaining this property. Finally, in order to verify the biological effect of these surfaces, osteoblast were seeded on the samples. It was found that cell behavior improves as SFE (surface free energy) and coating porosity increases whereas it is affected negatively by roughness. Techniques for surface modification allow changes in the coatings such as surface energy, roughness and porosity. As a consequence of this, biological response can be altered. In this paper, surfaces of c.p Ti and Ti6Al4V were modified by using plasma electrolytic oxidation (PEO) in order to accelerate the cell adhesion process.

  16. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    International Nuclear Information System (INIS)

    Steele, Adam; Davis, Alexander; Loth, Eric; Nayak, Barada K; Gupta, Mool C

    2013-01-01

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium. (paper)

  17. Surface defects in PMD-EDM of titanium alloy, Ti-6246

    International Nuclear Information System (INIS)

    Sharif, S.; Rival; Noordin, M.Y.

    2007-01-01

    Titanium alloys which are categorized as lightweight materials, poses greater strength and toughness are usually known to create major challenges during machining. Electrical discharge machining (EDM) which is very prominent amongst the non-conventional machining methods is expected to be used quite extensively in machining titanium alloys. EDM process is known to cause surface damaged layers which consists of three types of surfaces; spattered, recast and heat affected zone. This project was undertaken to study the machining performance of EDM and powder mixed dielectric-electrical discharge machining (PMD E DM) in machining Ti-6246 with respect to the surface integrity of machined surface by using copper tungsten (CuW) electrode. The machining parameters considered are voltage (V), current (I), pulse on time(T on ), interval time (T off ) and concentration of the SiC powder (C) in dielectric fluid. The respected responses investigated include surface alteration and overcut. It was found that PMD-EDM process produced less damaging effect on the surface layer of the machined surface and widened the overcut. (author)

  18. Pulsed melting of silicon (111) and (100) surfaces simulated by molecular dynamics

    International Nuclear Information System (INIS)

    Abraham, F.F.; Broughton, J.Q.

    1986-01-01

    The pulsed heating of Si (100) and (111) surfaces has been simulated by molecular dynamics. The (111) crystal-melt interface propagates by layer-by-layer growth whereas the (100) interface grows in a continuous fashion. The equilibrium crystal-melt interface is sharp for the (111) orientation and broad for the (100) orientation. These simulations are the first use of nonpairwise potentials to study interfaces between condensed phases, and the results support models of interfaces which heretofore had to be deduced from indirect experimental information

  19. Linear and nonlinear characterization of surfaces from a laser beam melt ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Bube, Kevin [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Neto, Camilo Rodrigues [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); University of Sao Paulo, Av. Arlindo Bettio 1000, EACH, 03828-000 Sao Paulo (Brazil); Donner, Reik [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Schwarz, Udo [Department of Physics, University of Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany); Feudel, Ulrike [Institut fuer Chemie und Biologie des Meeres, Carl-von-Ossietzky Universitaet Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany)

    2006-04-07

    We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data.

  20. Quantifying the surface energy fluxes in South Greenland during the 2012 high melt episodes using in-situ observations

    Directory of Open Access Journals (Sweden)

    Robert S. Fausto

    2016-09-01

    Full Text Available Two high melt episodes occurred on the Greenland ice sheet in July 2012, during which nearly the entire ice sheet surface experienced melting. Observations from an automatic weather station (AWS in the lower ablation area in South Greenland reveal the largest daily melt rates (up to 28 cm d-1 ice equivalent ever recorded on the ice sheet. The two melt episodes lasted 6 days, equivalent to 6% of the June-August melt period, but contributed 14 % to the total annual ablation of 8.5 m ice equivalent. We employ a surface energy balance model driven by AWS data to quantify the relative importance of the energy budget components contributing to melt through the melt season. During the days with largest daily melt rates, surface turbulent heat input peaked at 552 Wm-2, 77 % of the surface melt energy, which is otherwise typically dominated by absorbed solar radiation. We find that rain contributed ca. 7 % to melt during these episodes.

  1. TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

    Science.gov (United States)

    Iwasa, Fuminori; Tsukimura, Naoki; Sugita, Yoshihiko; Kanuru, Rajita Kodali; Kubo, Katsutoshi; Hasnain, Hafiz; Att, Wael; Ogawa, Takahiro

    2011-01-01

    Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl−anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium

  2. Surface modification of austenitic stainless steel by titanium ion implantation

    International Nuclear Information System (INIS)

    Evans, P.J.; Hyvarinen, J.; Samandi, M.

    1995-01-01

    The wear properties of AISI 316 austenitic stainless steel implanted with Ti were investigated for ion doses in the range (2.3-5.4)x10 16 ionscm -2 and average ion energies of 60 and 90keV. The implanted layer was examined by Rutherford backscattering, from which the retained doses were determined, and glow discharge optical emission spectroscopy. Following implantation, the surface microhardness was observed to increase with the greatest change occurring at higher ion energy. Pin-on-disc wear tests and associated friction measurements were also performed under both dry and lubricated conditions using applied loads of 2N and 10N. In the absence of lubrication, breakthrough of the implanted layer occurred after a short sliding time; only for a dose of 5.1x10 16 ionscm -2 implanted at an average energy of 90keV was the onset of breakthrough appreciably delayed. In contrast, the results of tests with lubrication showed a more gradual variation, with the extent of wear decreasing with implant dose at both 2N and 10N loads. Finally, the influence of Ti implantation on possible wear mechanisms is discussed in the light of information provided by several surface characterization techniques. ((orig.))

  3. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers.

    Science.gov (United States)

    Behr, Michael; Rosentritt, Martin; Gröger, Gerhard; Handel, Gerhard

    2003-01-01

    This study compared the shear bond strength (SBS) between veneering composites and titanium (grade 1), a cobalt-chromium-alloy and a high precious-alloy, which were pretreated using silicoating systems, functional monomers or an experimental titanium-dioxide coating system. The specimens were sized to rectangular plates of 20 x10 x 2mm(3) (l,w,h) and a composite cylinder (height of 4mm, diameter 5mm) was axially polymerized to the middle of the plates. After aging (24h or 150 d storage in distilled water at 37 degrees C, or thermal-cycling: 6000 x 5 degrees /55 degrees C) the SBS was determined. Independent of the type of metal and the conditioning/coating techniques the lowest SBSs were found after thermal-cycling. Titanium. The SBS of the silica coating systems and the functional monomers did not differ statistically on titanium. However, the titanium-dioxide coating method had significantly higher values than the other methods. Cobalt-chromium. The highest mean values were observed with the titanium-dioxide coating system and the phosphate acid ester. Precious alloy. No statistical significant different SBS was found for the silicoating and the titanium-dioxide coating methods, while the functional monomers were statistically significant (lower) different to both systems. Generally, the titanium-dioxide coating system achieved the highest SBS under different aging conditions and on all three different metal-surfaces.

  4. Apatite deposition on titanium surfaces--the role of albumin adsorption.

    Science.gov (United States)

    Serro, A P; Fernandes, A C; Saramago, B; Lima, J; Barbosa, M A

    1997-07-01

    Titanium implant surfaces are known to spontaneously nucleate apatite layers when in contact with simulated body fluids. However, adsorption of proteins may influence the process of apatite layer formation. In this study the role of bovine serum albumin (BSA) adsorption in the process of apatite deposition on titanium substrates is investigated. Deposition of calcium phosphate was induced by immersing titanium substrates in a Hank's balanced salt solution (HBSS) for times ranging from 1 to 23 days. The resulting substrates were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), wettability measurements and electrochemical impedance determinations. All these methods indicate the presence of a calcium phosphate layer. The same procedure was repeated substituting HBSS with a solution of BSA in HBSS. Although SEM, EDS and electrochemical impedance spectra do not reveal the presence of an apatite layer, XPS analysis strongly indicates that the inhibition of apatite formation by BSA is only partial. The competition between BSA adsorption and apatite deposition seems to lead to a mixed film where the protein co-exists with calcium phosphate. Wettability studies suggest that this surface film is heterogeneous and porous, similar to the thicker films formed in albumin-free HBSS.

  5. Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface

    Directory of Open Access Journals (Sweden)

    Panit Sherdshoopongse

    2005-09-01

    Full Text Available Titanium dioxide was prepared from titanium tetrachloride and diluted ammonia solution at low temperature. The product obtained was characterized by XRD, EDXRF, TGA, DSC, and FT-IR techniques. It was found that the product was in the form of hydrated amorphous titanium dioxide, TiO2·1.6H2O (ha- TiO2. Ha-TiO2 exhibits high BET surface area at 449 m2/g. Adsorptions of metal ions onto the ha-TiO2 surface were investigated in the batch equilibrium experiments, using Mn(II, Fe(III, Cu(II, and Pb(II solutions. The concentrations of metal ions were determined by atomic absorption spectrometer. The adsorption isotherms of all metal ions were studied at pH 7. The adsorption of Mn(II, Cu(II, and Pb(II ions on ha-TiO2 conformed to the Langmuir isotherm while that of Fe(III fit equally well to both Langmuir and Freundlich isotherms.

  6. Recent research and development in titanium alloys for biomedical applications and healthcare goods

    Directory of Open Access Journals (Sweden)

    Mitsuo Niinomi

    2003-01-01

    Full Text Available Nb, Ta and Zr are the favorable non-toxic alloying elements for titanium alloys for biomedical applications. Low rigidity titanium alloys composed of non-toxic elements are getting much attention. The advantage of low rigidity titanium alloy for the healing of bone fracture and the remodeling of bone is successfully proved by fracture model made in tibia of rabbit. Ni-free super elastic and shape memory titanium alloys for biomedical applications are energetically developed. Titanium alloys for not only implants, but also dental products like crowns, dentures, etc. are also getting much attention in dentistry. Development of investment materials suitable for titanium alloys with high melting point is desired in dental precision castings. Bioactive surface modifications of titanium alloys for biomedical applications are very important for achieving further developed biocompatibility. Low cost titanium alloys for healthcare goods, like general wheel chairs, etc. has been recently proposed.

  7. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Science.gov (United States)

    Mussano, F.; Genova, T.; Verga Falzacappa, E.; Scopece, P.; Munaron, L.; Rivolo, P.; Mandracci, P.; Benedetti, A.; Carossa, S.; Patelli, A.

    2017-07-01

    Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH2-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH2-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH2-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH2-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation between early cell morphology and later differentiation stages. Taken together, these data encourage the use of the functionalization procedures here reported in further studies.

  8. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sarycheva, Asia [Drexel Univ., Philadelphia, PA (United States); Makaryan, Taron [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Satheeshkumar, Elumalai [National Cheng Kung Univ., Tainan (Taiwan); National Institute of Technology-Trichy, Tamil Nadu (India); Melikyan, Armen [Russian-Armenian (Slavonic) State Univ., Yerevan (Armenia); Minassian, Hayk [A. Alikhanian National Science Lab., Yerevan (Armenia); Yoshimura, Masahiro [National Cheng Kung Univ., Tainan (Taiwan); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-08-22

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti3C2Tx, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factors reaching ~106. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.

  9. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  10. Behind the Nature of Titanium Oxide Excellent Surface Passivation and Carrier Selectivity of c-Si

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Crovetto, Andrea; Hansen, Ole

    We present an expanded study of the passivation properties of titanium dioxide (TiO2) on p-type crystalline silicon (c-Si). We report a low surface recombination velocity (16 cm/s) for TiO2 passivation layers with a thin tunnelling oxide interlayer (SiO2 or Al2O3) on p-type crystalline silicon (c......-Si). The TiO2 films were deposited by thermal atomic layer deposition (ALD) at temperatures in the range of 80-300  ̊C using titanium tetrachloride (TiCl4) as Ti precursor and water as the oxidant. The influence of TiO2 thickness (5, 10, 20 nm), presence of additional tunneling interlayer (SiO2 or Al2O3...

  11. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties.

    Science.gov (United States)

    Ravanetti, F; Chiesa, R; Ossiprandi, M C; Gazza, F; Farina, V; Martini, F M; Di Lecce, R; Gnudi, G; Della Valle, C; Gavini, J; Cacchioli, A

    2016-03-01

    In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point.

  12. SURFACE FINISH WHEN THREADING TITANIUM-BASED ALLOY UNDER DRY MACHINING

    Directory of Open Access Journals (Sweden)

    Siti Hartini Hamdan

    2014-12-01

    Full Text Available This paper discusses the quality of surface finish when threading titanium-based alloy under dry condition. The quality of surface finish was studied at various cutting parameters and at the two extreme stages of the machining process, i.e. at the beginning and end of the process. The objective is to evaluate the effect of a worn-out tool on the quality of surface finish. PVD-coated carbide tools were used in this study. Experiments were conducted at two cutting speeds, 35 and 55 m/min, two depths of cut, 0.2 and 0.25 mm, and a constant pitch of 2.0 mm. The tool wear and the quality of surface finish were inspected visually by microscope. The tool’s flank wear was measured gradually and machining was stopped when the flank wear reached the rejection criterion of0.3 mm. The microstructure beneath the machined surface was also evaluated. It was found that, at the beginning of machining, there was only a feed mark on the surface finish. When the machining was prolonged until the tools reached the rejection criterion, a bad surface finish was produced. Metal debris, surface cavities and a boundary crack were observed. Results show that machining with a worn-out tool can cause microstructure alteration beneath the machined surface. The selection of cutting parameters and monitoring of tool wear are crucial in order to obtain a good surface finish. Characterization of the surface finish with respect to the threading process under a dry condition would ultimately help in the development of suitable parameters for machining titanium-based alloys. Surface finish, microstructure, dry machining

  13. [Modern methods for studying the surface of titanium implants (literature review)].

    Science.gov (United States)

    Suba, Csongor; Velich, Norbert; Vörös, János; Turi, Csaba; Szabó, György

    2004-02-01

    Studies of the coatings found on the surface of titanium implants employed in oral surgery are indispensable for understanding the interactions between the organism and the implant. This paper surveys the theory and practical applicability of the methods most frequently applied to study the surface structure and composition of the material. Detailed accounts are given of various structure investigation methods: scanning electron microscopy, stereo scanning electron microscopy, X-ray diffraction, atomic force microscopy and interference microscopy; and of various composition investigation methods: secondary ion mass spectroscopy, X-ray photoelectron spectroscopy, Auger electron spectroscopy; and also of the corrosion procedures for the study of electrochemical behaviour.

  14. Foehn-induced surface melting of the Larsen C ice shelf, Antarctica

    Science.gov (United States)

    Turton, Jenny; Kirchgaessner, Amelie; Ross, Andrew; King, John; Kuipers Munneke, Peter

    2017-04-01

    The Antarctic Peninsula (AP) is a steep, narrow, elongated mountain range, stretching ˜1500km from Drake's Passage in the north, to Ellsworth Land in the south. A number of ice shelves extend from both the west and east coast, and provide a stark contrast to the ˜2000m high mountains. The AP was the fastest warming region on Earth in the late 20th century. The disintegration of two east coast ice shelves, Larsen A and B, in 1995 and 2002 respectively, became a symbol for climate change in the Polar Regions. A proposed theory for ice shelf destabilisation is surface melting induced by föhn winds. The föhn winds which flow down the eastern slopes of the AP, are a feature of the interaction of the steep mountain range with the prevailing circumpolar westerlies. This work uses near-surface observations and numerical simulations to study the impacts of the föhn winds on the surface energy balance and surface melt across the Larsen C ice shelf. Observations from an automatic weather station on Larsen C ice shelf (67.02˚ S, 61.5˚ W) were ingested into a SEB model to estimate values of the energy balance components, prior to this study. Daily averaged values of all SEB components from 2009-2012 were provided for the project. Annual and seasonal analysis of these components has highlighted the impact of föhn winds on the ice shelf. The residual energy available for melt is largely due to the increased downwelling shortwave radiation from the cloud-clearing effect during föhn events, and the increased (positive) sensible heat flux. Surface melt is observed up to 100km from the foot of the AP. The frequency and duration of föhn events significantly increases the annual average melt energy. Föhn conditions during austral spring (SON) can lengthen the duration of the melt season, increase the number of melt days, and increase the intensity of surface melt. Surface melt from föhn events is greatest in years with multiple consecutive föhn events in late spring

  15. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2016-06-30

    Graphical abstract: - Highlights: • Large areas covered with sub-100 nm LIPSS (HSFL) were manufactured by fs-laser irradiation on titanium surfaces. • Tribological performance of HSFL covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • HSFL on titanium do not endure the tribological tests. • For a beneficial tribological performance, the tribological sample deformation must be smaller than the LIPSS modulation depth. - Abstract: Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  16. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  17. Atmospheric river impacts on Greenland Ice Sheet surface melt and mass balance

    Science.gov (United States)

    Mattingly, K.; Mote, T. L.

    2017-12-01

    Mass loss from the Greenland Ice Sheet (GrIS) has accelerated during the early part of the 21st Century. Several episodes of widespread GrIS melt in recent years have coincided with intense poleward moisture transport by atmospheric rivers (ARs), suggesting that variability in the frequency and intensity of these events may be an important driver of the surface mass balance (SMB) of the GrIS. ARs may contribute to GrIS surface melt through the greenhouse effect of water vapor, the radiative effects of clouds, condensational latent heating within poleward-advected air masses, and the energy provided by liquid precipitation. However, ARs may also provide significant positive contributions to GrIS SMB through enhanced snow accumulation. Prior research on the role of ARs in Arctic climate has consisted of case studies of ARs associated with major GrIS melt events or examined the effects of poleward moisture flux on Arctic sea ice. In this study, a long-term (1979-2016) record of intense moisture transport events affecting Greenland is compiled using a conventional AR identification algorithm as well as a self-organizing map (SOM) classification applied to integrated water vapor transport (IVT) data from several atmospheric reanalysis datasets. An analysis of AR effects on GrIS melt and SMB is then performed with GrIS surface melt data from passive microwave satellite observations and the Modèle Atmosphérique Régional (MAR) regional climate model. Results show that meltwater production is above normal during and after AR impact days throughout the GrIS during all seasons, with surface melt enhanced most by strong (> 85th percentile IVT) and extreme (> 95th percentile IVT) ARs. This relationship holds at the seasonal scale, as the total amount of water vapor transported to the GrIS by ARs is significantly greater during above-normal melt seasons. ARs exert a more complex influence on SMB. Normal (< 85th percentile IVT) ARs generally do not have a substantial impact on

  18. Laser controlled melting of HSLA steel surface with presence of B{sub 4}C particles

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Patel, F., E-mail: faheemmp@kfupm.edu.sa [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Karatas, C., E-mail: doc_cihan@hotmail.com [Engineering College, Hacettepe University (Turkey)

    2013-10-01

    Laser gas assisted melting of high strength low alloy steel surface is carried out. The alloy surface is pre-prepared to contain 5% B{sub 4}C particles in a 40 μm thick carbon film prior to laser treatment process. Metallurgical and morphological changes in the laser treated layer are examined by using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. The residual stress developed and the microhardness of the resulting surface is measured. It is found that B{sub 4}C particles remain in solid phase in the surface region due to their high melting temperature. The dense layer consisting of fine grains are formed at the surface and the feathery like structure is observed below the surface vicinity, which consists of martensite and nitride precipitations. The use of nitrogen at high pressure causes the formation of nitride compounds at the surface, which contributes to the volume shrinkage in the dense layer. Surface microhardness increases considerably because of attainment of high cooling rates, formation of nitride compounds, and presence of B{sub 4}C particles at the surface. .

  19. Effect of a cordless retraction paste on titanium surface: a topographic, chemical and biocompatibility evaluation

    Directory of Open Access Journals (Sweden)

    Katherine Cooper

    2013-06-01

    Full Text Available Good exposure of the preparation margins and haemostasis in the sulcular gingiva are necessary for accurate impressions to produce precise restorations. The use of cordless retraction paste material in implant dentistry is a relatively novel application. However, few studies have been conducted on the use of retraction pastes and their possible interaction with implant surfaces. Recent literature has described remnants on titanium implant surfaces and expressed the need for an assessment of the biocompatibility of the exposed surface (Chang et al.. This in vitro study evaluated the effect of a cordless gingival retraction paste on sterile titanium disks. Surface chemistry was determined using energy-dispersive X-ray spectroscopy (EDS, and further investigated using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS. After exposure to retraction paste, surface chemistry alterations were identified. A fibroblast cell line (L929 was exposed to the disks and the live/dead viability/cytotoxicity assay was used to determine any effects on the proliferation and health of cells. The disks exposed to the retraction paste showed fewer dead cells compared to the unexposed disks. This was statistically significant.

  20. Bioengineered titanium surfaces affect the gene-expression and phenotypic response of osteoprogenitor cells derived from mouse calvarial bones

    Directory of Open Access Journals (Sweden)

    J Isaac

    2010-09-01

    Full Text Available This study investigated the in vitro effects of bioactive titanium surfaces on osteoblast differentiation. Three titanium substrates were tested: a commercially pure titanium (Cp Ti, an alkali- and heat-treated titanium (AH Ti, and an apatite-formed titanium (Ap Ti generated by soaking AH Ti in a simulated body fluid. Chemical evaluation of the surface reactivity was analysed at nanometre scale by X-ray photoelectron spectroscopy (XPS, and at micrometre scale by energy dispersive X-ray microanalysis (EDX. It showed that the estimated proportion of the surface covered by adsorbed serum proteins differed between the three substrates and confirmed the bioactivity of AH Ti, illustrated by surface calcium and phosphate deposition when immersed in biological fluids. Mouse calvaria osteoblasts were cultured on the substrates for 15 days with no sign of cytotoxicity. Enzyme immunoassay and Real-Time RT-PCR were used to follow osteoblast differentiation through the production of osteocalcin (OC and expression of several bone markers. At day 15, a significant up-regulation of Runx2, Osx, Dlx5, ALP, BSP, OC and DMP1 mRNA levels associated with an increase of OC production were observed on AH Ti and Ap Ti when compared to Cp Ti. These results suggest that bioengineered titanium has a great potential for dental applications in enhancing osseointegration.

  1. The Impact Of Snow Melt On Surface Runoff Of Sava River In Slovenia

    Science.gov (United States)

    Horvat, A.; Brilly, M.; Vidmar, A.; Kobold, M.

    2009-04-01

    Snow is a type of precipitation in the form of crystalline water ice, consisting of a multitude of snowflakes that fall from clouds. Snow remains on the ground until it melts or sublimates. Spring snow melt is a major source of water supply to areas in temperate zones near mountains that catch and hold winter snow, especially those with a prolonged dry summer. In such places, water equivalent is of great interest to water managers wishing to predict spring runoff and the water supply of cities downstream. In temperate zone like in Slovenia the snow melts in the spring and contributes certain amount of water to surface flow. This amount of water can be great and can cause serious floods in case of fast snow melt. For this reason we tried to determine the influence of snow melt on the largest river basin in Slovenia - Sava River basin, on surface runoff. We would like to find out if snow melt in Slovenian Alps can cause spring floods and how serious it can be. First of all we studied the caracteristics of Sava River basin - geology, hydrology, clima, relief and snow conditions in details for each subbasin. Furtermore we focused on snow and described the snow phenomenom in Slovenia, detailed on Sava River basin. We collected all available data on snow - snow water equivalent and snow depth. Snow water equivalent is a much more useful measurement to hydrologists than snow depth, as the density of cool freshly fallen snow widely varies. New snow commonly has a density of between 5% and 15% of water. But unfortunately there is not a lot of available data of SWE available for Slovenia. Later on we compared the data of snow depth and river runoff for some of the 40 winter seasons. Finally we analyzed the use of satellite images for Slovenia to determine the snow cover for hydrology reason. We concluded that snow melt in Slovenia does not have a greater influence on Sava River flow. The snow cover in Alps can melt fast due to higher temperatures but the water distributes

  2. Influence of an Increasing Surface Melt Over Decadal Timescales on Land Terminating Outlet Glaciers

    Science.gov (United States)

    Gagliardini, O.; Werder, M. A.; Durand, G.

    2015-12-01

    During the last decades, Greenland surface melt has shown an increase both in intensity and spatial extent. Part of this water probably reaches the bedrock and enhances the glacier speed, advecting larger volume of ice into the ablation area. In the context of a warming climate, this mechanism will contribute to the future rate of retreat and thinning of the land-terminating glaciers of Greenland. Complex couplings, implying both positive and negative feedbacks, prevail between surface mass balance, ice flow, basal hydrology and the evolution of the glacier geometry. Larger amount of melt water might increase or decrease the mean ice flow of a glacier, depending on the capacity of the basal hydrology network to evacuate this surplus of water, which in turn will influence the surface crevassing and the ability of water to reach the bedrock at higher elevations. Here, using a coupled basal hydrology and prognostic ice flow model, the evolution of a Greenland-type glacier subject to an increasing surface melt is studied over few decades. The basal hydrology model, based on the GlaDS model, includes an inefficient cavity-type water sheet and a network of efficient discrete channels. Both systems are connected and evolve in time in response to the water inputs. The prognostic equations for ice flow and the hydrology model are implemented in the open source, finite element, ice sheet / ice flow model Elmer/Ice. Assuming a surface melt increase over the next decades, the evolution of crevassed areas and the ability of water to reach the bedrock is inferred. Our results indicate that the currently observed crevasse distribution is likely to extend upstream, leading to an increase in ice flow which, in turn, accelerates the retreat and thinning of land-terminating glaciers.

  3. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Prof. dr. docent Dimitrie Mangeron Rd., no. 63, zip: 700050, Iasi (Romania); Ciobanu, Octavian [“Grigore T. Popa” University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Universitatii Str., no. 16, zip: 700115, Iasi (Romania)

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D{sub 3}, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm.

  4. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces

    International Nuclear Information System (INIS)

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-01-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D 3 , and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. - Highlights: ► Hydroxyapatite was grown on Ti using a modified supersaturated calcification solution (M-SCS). ► Vitamins (A and D3) and collagen in M-SCS have a significant effect on apatite precipitation. ► M-SCS stimulates a biomimetic apatite deposition with 0.5–1 μm thickness in a short time. ► Hydroxyapatite crystallites have thin plate morphologies and size below 1 μm

  5. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  6. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Directory of Open Access Journals (Sweden)

    Xiaohua Yu

    2013-01-01

    Full Text Available The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8 on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT and biomimetic calcium phosphate coated ATT (CaP. The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.

  7. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Science.gov (United States)

    Wei, Mei

    2013-01-01

    The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation. PMID:24455730

  8. Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide.

    Science.gov (United States)

    Gehrke, Sergio Alexandre; Taschieri, Silvio; Del Fabbro, Massimo; Coelho, Paulo Guilherme

    2015-10-01

    The aim of this study was to evaluate the physico-chemical properties and the in vivo host response of a surface sandblasted with particles of titanium oxide (TiO2) followed by acid etching as an alternative to aluminium oxide. Thirty titanium disks manufactured in the same conditions as the implants and 24 conventional cylindrical implants were used. Half of the implants had a machined surface (Gcon) while in the other half; the surface was treated with particles of TiO2 followed by acid etching (Gexp). Surface characterization was assessed by scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), profilometry, and wettability. For the in vivo test, 12 implants of each group were implanted in the tibia of 6 rabbits, and were reverse torque tested after periods of 30 or 60 days after implantation. Following torque, SEM was utilized to assess residual bone-implant contact. The surface characterization by SEM showed a very homogeneous surface with uniform irregularities for Gexp and a small amount of residues of the blasting procedure, while Gcon presented a surface with minimal irregularities from the machining tools. Wettability test showed decreased contact angle for the Gcon relative to the Gexp. The Gexp removal torque at 30 and 60 days was 28.7%, and 33.2% higher relative to the Gcon, respectively. Blasting the surface with particles of TiO2 represents an adequate option for the surface treatment of dental implants, with minimal risk of contamination by the residual debris from the blasting procedure.

  9. Evaluation of Fibrin Clot Attachment on Titanium Laser-Conditioned Surface Using Scanning Electron Microscopy.

    Science.gov (United States)

    Sinjari, Bruna; Traini, Tonino; Caputi, Sergio; Mortellaro, Carmen; Scarano, Antonio

    2018-03-22

    The study aimed to evaluate the effects of different titanium surface treatments on blood clot extension (bce). A total of 54 titanium disks with machined surface (M), laser-conditioned surface (L), and grit-blasted surface (S) were used in the present study. The surface characteristics such as contact angles and the microroughness were determined on each group (n = 4). To evaluate the bce, 0.1 mL of human blood was dropped onto the surface of each specimen and left for 7 minutes at room temperature. After fixation, dehydration, and gold sputtering treatments, the specimens were observed under scanning electron microscope. The bce values were expressed as percentage of specimen surface covered by blood clot. The surface roughness (Ra ± standard deviation [SD]) was 0.75 ± 0.02 μm for M, 0.25 ± 0.02 μm for L, and 1.30 ± 0.03 μm for S. The contact angles measured in static conditions (WCA ± SD) were 71 ± 5.4° for M, 107 ± 6.6° for L, and 91 ± 7.2° for S. Regarding the bce (bce ± SD) of M samples (65.5 ± 4.3%) was statistically lower compared with both L (83.4 ± 5.1%) and S samples (72.4 ± 4.7%) (P < 0.05). Meanwhile, the L group showed the higher bce value. The present results suggest that the laser-conditioned surface may increase the wettability and bce.

  10. Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces

    Directory of Open Access Journals (Sweden)

    Andreas Winkel

    2015-02-01

    Full Text Available Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1 to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2 to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl phosphonate (VP:DMMEP 30:70 on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications.

  11. Introducing a Semi-Coated Model to Investigate Antibacterial Effects of Biocompatible Polymers on Titanium Surfaces

    Science.gov (United States)

    Winkel, Andreas; Dempwolf, Wibke; Gellermann, Eva; Sluszniak, Magdalena; Grade, Sebastian; Heuer, Wieland; Eisenburger, Michael; Menzel, Henning; Stiesch, Meike

    2015-01-01

    Peri-implant infections from bacterial biofilms on artificial surfaces are a common threat to all medical implants. They are a handicap for the patient and can lead to implant failure or even life-threatening complications. New implant surfaces have to be developed to reduce biofilm formation and to improve the long-term prognosis of medical implants. The aim of this study was (1) to develop a new method to test the antibacterial efficacy of implant surfaces by direct surface contact and (2) to elucidate whether an innovative antimicrobial copolymer coating of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate (VP:DMMEP 30:70) on titanium is able to reduce the attachment of bacteria prevalent in peri-implant infections. With a new in vitro model with semi-coated titanium discs, we were able to show a dramatic reduction in the adhesion of various pathogenic bacteria (Streptococcus sanguinis, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis), completely independently of effects caused by soluble materials. In contrast, soft tissue cells (human gingival or dermis fibroblasts) were less affected by the same coating, despite a moderate reduction in initial adhesion of gingival fibroblasts. These data confirm the hypothesis that VP:DMMEP 30:70 is a promising antibacterial copolymer that may be of use in several clinical applications. PMID:25690041

  12. The surface quasiliquid melt acceleration and the role of thermodynamic phase in the thermal decomposition of crystalline organic explosives

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2010-01-01

    We show that melt acceleration in the thermal decomposition of crystalline organic solids is a manifestation of the surface quasiliquid phase. We derive a single universal rate law for melt acceleration that is a simple function of the metastable liquid activity below the melting point, and has a zero order term proportional to the quasiliquid thickness. We argue that the underlying mechanisms of this model will provide a molecular definition for the stability of the class of secondary explosives.

  13. Effect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting

    Directory of Open Access Journals (Sweden)

    Ashfaq Mohammad

    2017-02-01

    Full Text Available Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM, an Additive Manufacturing Method, can build complex shaped solid parts from a given feedstock powder, thus overcoming the shortcomings of the conventional processing techniques such as machining and forging. The amount of energy supplied by the electron beam has considerable influence on the final build quality in the EBM process. Energy input is decided by the beam voltage, beam scan speed, beam current, and track offset distance. In the current work, beam current and track offset were varied to reflect three levels of energy input. Microstructural and mechanical properties were evaluated for these samples. The microstructure gradually coarsened from top to bottom along the build direction. Whereas higher energy favored lath microstructure, lower energy tended toward equiaxed grains. Computed tomography analysis revealed a greater amount of porosity in low energy samples. In addition, the lack of bonding defects led to premature failure in the tension test of low energy samples. Increase in energy to a medium level largely cancelled out the porosity, thereby increasing the strength. However, this trend did not continue with the high energy samples. Electron microscopy and X-ray diffraction investigations were carried out to understand this non-linear behavior of the strength in the three samples. Overall, the results of this work suggest that the input energy should be considered primarily whenever any new alloy system has to be processed through the EBM route.

  14. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    Science.gov (United States)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity

  15. On-Site Surface Functionalization for Titanium Dental Implant with Nanotopography: Review and Outlook

    Directory of Open Access Journals (Sweden)

    Byung Gyu Kim

    2016-01-01

    Full Text Available Titanium (Ti has been the first choice of material for dental implant due to bonding ability to natural bone and great biocompatibility. Various types of surface roughness modification in nanoscale have been made as promising strategy for accelerating osseointegration of Ti dental implant. To have synergetic effect with nanotopography oriented favors in cell attachment, on-site surface functionalization with reproducibility of nanotopography is introduced as next strategy to further enhance cellular bioactivity. Extensive research has been conducted to investigate the potential of nanotopography preserved on-site surface functionalization for Ti dental implant. This review will discuss nonthermal atmospheric pressure plasma, ultraviolet, and low level of laser therapy on Ti dental implant with nanotopography as next generation of surface functionalization due to its abilities to induce superhydrophilicity or biofunctionality without change of nanotopography.

  16. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  17. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    Xu Juan; Ding Gang; Li Jinlu; Yang Shenhui; Fang Bisong; Sun Hongchen; Zhou Yanmin

    2010-01-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  18. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  19. Laser surface melting of 304 stainless steel for pitting corrosion resistance improvement

    CSIR Research Space (South Africa)

    Seleka, TS

    2006-11-01

    Full Text Available are prone to pitting corrosion when exposed to halide ions, particularly chloride ions. This is in fact reducing their applicability in variety of engineering industries. The corrosion properties of steels depend primarily on the microstructure, surface... processing parameters. Argon gas was applied into the melt pool to minimize oxidation. Samples of interest were subjected for further studies. After laser treatment, the samples were sectioned, polished and electrochemically etched with oxalic acid...

  20. Surface Modification of Silica Nanoparticles with Titanium Tetraisopropoxide and Evaluation of their Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Leila Mazaheri

    2012-12-01

    Full Text Available Silica nanoparticles were modified with titanium tetraisopropoxide (TTIP via atwo-step sol-gel route. The modified silica nanoparticles were characterized using FTIR spectroscopy, thermal gravimetric analysis (TGA and EDAX elemental analysis. Photocatalytic activity of the modified nanocomposites was evaluated by photo-activated degradation of Rhodamine B (Rh.B dyestuff, as a colorant model, in distilled water. Reduction in Rh.B concentration in aqueous solution was evaluated by UV-visible spectroscopy and with the aid of visual observations. The FTIR spectroscopy results confirmed the formation of Ti-O-Si chemical bond on the surfaceof silica nanoparticles. TGA test results showed that the weight loss of the modified sample is due to deterioration of the alkoxy groups of the SiO2 surface. According to the results of EDAX elemental analysis, the presence of carbon and titanium in the structure of the modified samples and also reduction in oxygen levels are attributed to the chemical interactions due to surface chemical modification. Carbon detection in the composition can be attributed to the presence of isopropoxide in titanium tetraisopropoxide compound. The results also revealed that, with TiO2 grafting on the silica nanoparticles surface, absorption in UV region is increased and that the silica nanoparticles modified with titanate compound show photocatalytic characteristics and degradation ability of Rh.B dyestuff under UV light irradiation. It became also evident that the photocatalytic activity of the modified nanoparticles is less than TiO2 nanoparticles. However, by inclusion of modified silica nanoparticles into the polymeric coating, the photocatalytic properties of the coating can be established. Although modified silica nanoparticles have less photocatalytic activity compared to TiO2 nanoparticles, but they cause less damage to the polymer matrix.

  1. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Han, Guang [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Müller, Werner E.G.; Wang, Xiaohong [ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz (Germany); Lilja, Louise [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden); Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Shen, Zhijian, E-mail: shen@mmk.su.se [Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm (Sweden)

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100–200 nm thickness and with a pore diameter of 10 nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. - Highlights: • We developed a hierarchical macro- and mesoporous surface layer on titanium. • New surface layer was strong enough to sustain on implant surface. • New surface owned better surface wettability. • New surface can promote SaOS-2 cell adhesion, proliferation and mineralization. • Synergistic effects on cell responses occur when two porous structures coexist.

  2. Study on hot melt pressure sensitive coil material for removing surface nuclear pollution dust

    Science.gov (United States)

    Wang, Jing; Li, Jiao; Wang, Jianhui; Zheng, Li; Li, Jian; Lv, Linmei

    2018-02-01

    A new method for removing surface nuclear pollution by using hot melt pressure sensitive membrane was presented. The hot melt pressure sensitive membrane was designed and prepared by screening hot melt pressure sensitive adhesive and substrate. The simulated decontamination test of the hot melt pressure sensitive membrane was performed by using 100 mesh and 20 mesh standard sieve dust for simulation of nuclear explosion fall ash and radioactive contaminated particles, respectively. It was found that the single decontamination rate of simulated fall ash and contaminated particles were both above 80% under pressure conditions of 25kPa or more at 140°C. And the maximum single decontamination rate was 92.5%. The influence of heating temperature and pressure on the decontamination rate of the membrane was investigated at the same time. The results showed that higher heating temperature could increase the decontamination rate by increasing the viscosity of the adhesive. When the adhesive amount of the adhesive layer reached saturation, a higher pressure could increase the single decontamination rate also.

  3. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  4. Application of nitrogen plasma immersion ion implantation to titanium nasal implants with nanonetwork surface structure

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui; Yang, Wei-En [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Zhu, Hongqin [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Lan, Ming-Ying [Division of Rhinology, Department of Otolaryngology Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan and School of Medicine, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Sheng-Wei [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung 407, Taiwan (China); Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China)

    2016-07-15

    In nasal reconstruction, the response of cells to titanium (Ti) implants is mainly determined by surface features of the implant. In a pilot study, the authors applied electrochemical anodization to Ti surfaces in an alkaline solution to create a network of nanoscale surface structures. This nanonetwork was intended to enhance the responses of primary human nasal epithelial cell (HNEpC) to the Ti surface. In this study, the authors then treated the anodized, nanonetwork-structured Ti surface using nitrogen plasma immersion ion implantation (NPIII) in order to further improve the HNEpC response to the Ti surface. Subsequently, surface characterization was performed to elucidate morphology, roughness, wettability, and chemistry of specimens. Cytotoxicity, blood, and HNEpC responses were also evaluated. Our results demonstrate that NPIII treatment led to the formation of a noncytotoxic TiN-containing thin film (thickness <100 nm) on the electrochemically anodized Ti surface with a nanonetwork-structure. NPIII treatment was shown to improve blood clotting and the adhesion of platelets to the anodized Ti surface as well as the adhesion and proliferation of hNEpC. This research spreads our understanding of the fact that a TiN-containing thin film, produced using NPIII treatment, could be used to improve blood and HNEpC responses to anodized, nanonetwork-structured Ti surfaces in nasal implant applications.

  5. Titanium oxide modeling and design for innovative biomedical surfaces: a concise review.

    Science.gov (United States)

    De Nardo, Luigi; Raffaini, Giuseppina; Ebramzadeh, Edward; Ganazzoli, Fabio

    2012-09-01

    The natural oxide layer on implantable alloys insulates the reactive underlying metal from the physiological environment, preventing substrate corrosion and device failure. This type of oxide film has had a major role in the minimization of functional failure and toxic response after implantation in the first generation biomaterials. Recent advances in theoretical, computational, and experimental surface engineering tools provide the foundation for the design of novel devices with improved performances in this regard based on conventional implantable metal alloys. An increasing number of technologies provide the possibility of tailoring chemico-physical and morphological parameters of the surface oxide layers. For some applications, such as dental implants, surface modifications result in substantial innovation and economic success. However, the selection of novel surfaces is in general based on experimental studies and has a limited theoretical and computational foundation. In this review, we offer a perspective analysis of the correlation between theoretical studies and chemical surface modification technologies, with a special emphasis on titanium oxide on Ti alloys. Theoretical approaches for the surface behavior at an atomistic level of description are presented, together with some adsorption studies on a rutile surface. The role of chemical and electrochemical surface modification technologies in modifying the TiO(2) structure, morphology, and chemistry to tailor in vivo biological response is then briefly reviewed. Finally, we discuss the role of surface modeling as a powerful design tool for a new generation of implantable devices in which metal oxide surface can be tuned to yield specific biological response.

  6. Effect of High-Speed Milling Parameters on Surface Metamorphic Layer of TC17 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    TAN Liang

    2017-12-01

    Full Text Available In order to provide the relatively accurate experimental basis for optimizing parameters and controlling surface metamorphic layer, ball end high-speed milling experiments of TC17 titanium alloy were carried out utilizing one of experimental design techniques based on the response surface methodology. The surface roughness prediction model was built, variance analyses were applied to check the significances of surface roughness model and input parameters, the effect of parameters on surface roughness was analyzed. Meanwhile, the residual stress, microhardness and microstructure under the condition of high, medium and low level of parameters were investigated. Results indicate that the model can predict the surface roughness effectively and feed per tooth and radial depth of cut have an obvious effect on surface roughness. Compressive residual stresses are detected on all milled surfaces and surface residual stresses are increased with the increase of the level of the milling parameters. The compressive residual stress layer is approximately 20 μm regardless of milling parameters level used. The process of thermal softening, then work hardening, and finally tending to stabilize are observed in the microhardness profiles. Grains of the surface layer are broken and bent, the thickness of plastic deformation layer is approximately 10 μm.

  7. Plasma surface tantalum alloying on titanium and its corrosion behavior in sulfuric acid and hydrochloric acid

    Science.gov (United States)

    Wei, D. B.; Chen, X. H.; Zhang, P. Z.; Ding, F.; Li, F. K.; Yao, Z. J.

    2018-05-01

    An anti-corrosion Ti-Ta alloy coating was prepared on pure titanium surface by double glow plasma surface alloying technology. Electrochemical corrosion test was applied to test the anti-corrosion property of Ti-Ta alloy layer. The microstructure and the phase composition of Ti-Ta alloy coating were detected before and after corrosion process by means of scanning electron microscope (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The results showed that the Ta-Ti alloy layer has a thickness of about 13-15 μm, which is very dense without obvious defects such as pores or cracks. The alloy layer is composed mainly of β-Ta and α-Ti. The Ta alloy layer improves the anti-corrosion property of pure titanium. A denser and more durable TiO2 formed on the surface Ta-Ti alloy layer after immersing in strong corrosive media may account for the excellent corrosion resistant.

  8. Response to antiseptic agents of periodontal pathogens in in vitro biofilms on titanium and zirconium surfaces.

    Science.gov (United States)

    Sánchez, M C; Fernández, E; Llama-Palacios, A; Figuero, E; Herrera, D; Sanz, M

    2017-04-01

    The aim of this study was to develop in vitro biofilms on SLA titanium (Ti-SLA) and zirconium oxide (ZrO 2 ) surfaces and to evaluate the effect of antiseptic agents on the number of putative periodontal pathogenic species. An in vitro biofilm model was developed on sterile discs of Ti-SLA and ZrO 2 . Three antiseptic agents [chlorhexidine and cetyl-pyridinium-chloride (CHX/CPC), essential oils (EEOOs) and cetyl-peridinium-chloride (CPC)] were applied to 72-h biofilms, immersing discs during 1min in the antiseptic solution, either with or without mechanical disruption. Viable bacteria [colony forming units (CFU/mL)] were measured by quantitative polymerase chain reaction (qPCR) combined with propidium monoazide. A generalized lineal model was constructed to determine the effect of the agents on the viable bacterial counts of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum on each surface. The exposure to each antiseptic solution resulted in a statistically significant reductions in the number of viable target species included in the in vitro multi-species biofilm, on both Ti-SLA and ZrO 2 (pantiseptics when grown in multispecies biofilms on titanium and zirconium surfaces, in spite of the described structural differences between these bacterial communities. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Improved antibacterial behavior of titanium surface with torularhodin–polypyrrole film

    Energy Technology Data Exchange (ETDEWEB)

    Ungureanu, Camelia; Popescu, Simona; Purcel, Gabriela [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); Tofan, Vlad [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Popescu, Marian [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania); National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest (Romania); Sălăgeanu, Aurora [“Cantacuzino” National Institute of Research-Development for Microbiology and Immunology, 103 Splaiul Independentei, Sector 5, 050096 Bucharest (Romania); Pîrvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University POLITEHNICA of Bucharest, 1-7 Polizu, 011061 Bucharest (Romania)

    2014-09-01

    The problem of microorganisms attaching and proliferating on implants and medical devices surfaces is still attracting interest in developing research on different coatings based on antibacterial agents. The aim of this work is centered on modifying titanium (Ti) based implants surfaces through incorporation of a natural compound with antimicrobial effect, torularhodin (T), by means of a polypyrrole (PPy) film. This study tested the potential antimicrobial activity of the new coating against a range of standard bacterial strains: Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and Pseudomonas aeruginosa. The morphology, physical and electrochemical properties of the synthesized films were assessed by SEM, AFM, UV–Vis, FTIR and cyclic voltammetry. In addition, biocompatibility of this new coating was evaluated using L929 mouse fibroblast cells. The results showed that PPy–torularhodin composite film acts as a corrosion protective coating with antibacterial activity and it has no harmful effect on cell viability. - Highlights: • Modification of titanium surfaces by incorporating a natural compound • new PPy - torularhodin corrosion protective composite coatings • antibacterial activity for the new PPy - torularhodin coating • cytocompatibility of new coating was demonstrated using mouse fibroblast cells.

  10. Bone response to immediate loading through titanium implants with different surface roughness in rats.

    Science.gov (United States)

    Sato, Naoko; Kuwana, Toshie; Yamamoto, Miou; Suenaga, Hanako; Anada, Takahisa; Koyama, Shigeto; Suzuki, Osamu; Sasaki, Keiichi

    2014-07-01

    Because of its high predictability of success, implant therapy is a reliable treatment for replacement of missing teeth. The concept of immediate implant loading has been widely accepted in terms of early esthetic and functional recovery. However, there is little biological evidence to support this concept. The objective of this study was to examine the interactive effects of mechanical loading and surface roughness of immediately loaded titanium implants on bone formation in rats. Screw-shaped anodized titanium implants were either untreated (smooth) or acid-etched. Two implants were inserted parallel to each other in the tibiae of rats, and a closed coil spring (2.0 N) was immediately applied. Trabecular and cortical bone around both implants was analyzed using microtomographic images, and a removal torque test was performed at weeks 1, 2, and 4. Immediate loading of acid-etched implants resulted in significant decreases in bone mineral density, contact surface area, and cortical bone thickness. These effects were not observed after immediate loading of smooth implants. Conversely, loading did not influence acid-etched implant fixation; however, smooth implant fixation at week 1 was significantly reduced. These results imply that surface roughness regulates bone response to mechanical stress and that immediate loading might not inhibit osseointegration for smooth and rough implants in the late healing stages.

  11. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  12. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  13. A contribution to the electron-beam surface-melting process of metallic materials. Numerical simulation and experimental verification

    International Nuclear Information System (INIS)

    Bruckner, A.

    1996-08-01

    For the optimization of the surface melting process it is necessary to make many different experiments. Therefore, the simulation of the surface melting process becomes a major role for the optimization. Most of the simulations, developed for the laser surface melting process, are not usable for the electron-beam surface melting process, because of the different energy input and the possibility of high frequent movement of the electron-beam. In this thesis, a calculation model for electron-beam surface melting is presented. For this numerical simulation a variable volume source is used, which moves in axial direction with the same velocity as the vapor cavity into the material. With this calculation model also the high frequent movement of the electron-beam may be taken into account. The electron-beam diameter is measured with a method of drilling holes with short electron-beam pulses in thin foils. The diameter of the holes depends on the pulse length and reaches a maximal value, which is used for the diameter of the volume source in the calculation. The crack-formation, seen in many treated surfaces, is examined with the Acoustic-Emission Testing. The possibilities of the electron-beam surface melting process are shown with some experiments for different requirements of the treated surfaces, like increasing the hardness, reducing the porosity of a sintered material and the alloying of tin in an aluminium-silicon surface. (author)

  14. Characterization of ion distributions near the surface of sodium-containing and sodium-depleted calcium aluminosilicate glass melts

    International Nuclear Information System (INIS)

    Corrales, Louis R.; Du, Jincheng

    2006-01-01

    The distribution of cation and anion components of sodium containing calcium aluminosilicate glass was studied by classical molecular dynamics simulations in a high temperature melt in the bulk and at the vacuum-melt interface. A significant redistribution of the sodium and non-bridging oxygen ions was observed. Subsequently, a sodium depleted calcium aluminosilicate glass melt was simulated to determine the sensitivity of the redistribution of ions near the vacuum-melt interface to the presence of sodium ions. It is found that the thermodynamic equilibrium condition near a surface favors the enrichment of non-bridging oxygen ions that is closely associated with enrichment of the sodium ions

  15. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  16. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  17. Antibacterial and microstructure properties of titanium surfaces modified with Ag-incorporated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guangzhong; Cheng, Li [State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research (China); Yang, Hui-lin [Department of Orthopaedics, Wuxi People' s Hospital, Nanjing Medical University, Jiangsu Province (China); Zhao, Quan-ming, E-mail: abc8385@163.com [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2016-07-15

    Although titanium (Ti) and its alloys have been widely used as implants in clinical settings, failures still occur mainly due to poor bioactivity and implant-associated infections. Here, we coated Ti implants with TiO{sub 2} nanotubes (TNTs) incorporated with the antibacterial agent Ag to produce Ag-TNTs, through anodization in AgNO{sub 3} and xenon light irradiation. We characterized surface morphology and composition of the coating with scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. We investigated surface topography of the coatings by atomic force microscopy (AFM) operated in the tapping mode. The results indicate that Ag was successfully doped onto the TNTs, and that the nanoparticles were mainly distributed on the surface of TNTs. Finally, our antibacterial experiments reveal that Ag-TNTs on Ti implants exhibit excellent antibacterial activities, which promises to have significant clinical applications as implants. (author)

  18. Characterization of an Amorphous Titanium Oxide Film Deposited onto a Nano-Textured Fluorination Surface

    Directory of Open Access Journals (Sweden)

    Pei-Yu Li

    2016-05-01

    Full Text Available The photocatalytic activity of an amorphous titanium oxide (a-TiOx film was modified using a two-step deposition. The fluorinated base layer with a nano-textured surface prepared by a selective fluorination etching process acted as growth seeds in the subsequent a-TiOx deposition. A nanorod-like microstructure was achievable from the resulting a-TiOx film due to the self-assembled deposition. Compared to the a-TiOx film directly deposited onto the untreated base layer, the rate constant of this fluorinate-free a-TiOx film surface for decomposing methylene blue (MB solution that was employed to assess the film’s photocatalytic activity was markedly increased from 0.0076 min−1 to 0.0267 min−1 as a mechanism for the marked increase in the specific surface area.

  19. Diagnosing the extreme surface melt event over southwestern Greenland in 2007

    Directory of Open Access Journals (Sweden)

    M. Tedesco

    2008-11-01

    Full Text Available Analysis of passive microwave brightness temperatures from the space-borne Special Sensor Microwave Imager (SSM/I documents a record surface snowmelt over high elevations (above 2000 m of the Greenland ice sheet during summer of 2007. To interpret this record, results from the SSM/I are examined in conjunction with fields from the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis and output from a regional climate model. The record surface melt reflects unusually warm conditions, seen in positive summertime anomalies of surface air temperatures, downwelling longwave radiation, 1000–500 hPa atmospheric thickness, and the net surface energy flux, linked in turn to southerly airflow over the ice sheet. Low snow accumulation may have contributed to the record through promoting anomalously low surface albedo.

  20. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  1. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  2. In vitro characterization of two different atmospheric plasma jet chemical functionalizations of titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mussano, F., E-mail: federico.mussano@unito.it [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Genova, T. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Verga Falzacappa, E. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Nadir srl, Via Torino 155, 30170 Venezia (Italy); Scopece, P. [Nadir srl, Via Torino 155, 30170 Venezia (Italy); Munaron, L. [Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123, Turin (Italy); Centre for Nanostructured Interfaces and Surfaces (NIS) (Italy); Rivolo, P.; Mandracci, P. [Politecnico di Torino, Department of Applied Science and Technology, Materials and Microsoystems Laboratory (ChiLab), Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Benedetti, A. [Department of Molecular Science and Nanosystems, UNIVE, Via Torino 155, 30170, Venezia (Italy); Carossa, S. [CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126, Turin (Italy); Patelli, A. [Department of Physics and Astronomy, UNIPD, via Marzolo 8, 35122 Padova (Italy)

    2017-07-01

    Highlights: • NH{sub 2}-Ti and COOH/R-Ti obtained via atmospheric plasma jet RF-APPJ portable equipment. • Higher quantity of adsorbed proteins and improved cell adhesion on treated surfaces. • More tapered and elongated cells on NH{sub 2}-Ti compared to COOH/R-Ti. • Higher osteocalcin expression on NH{sub 2}-Ti. - Abstract: Plasma surface activation and plasma polymers deposition are promising technologies capable to modulate biologically relevant surface features of biomaterials. The purpose of this study was to evaluate the biological effects of two different surface modifications, i.e. amine (NH{sub 2}-Ti) and carboxylic/esteric (COOH/R-Ti) functionalities obtained from 3-aminopropyltriethoxysilane (3-APTES) and methylmethacrylate (MMA) precursors, respectively, through an atmospheric plasma jet RF-APPJ portable equipment. The coatings were characterized by Scanning Electron Microscopy, FT-IR spectroscopy, XPS and surface energy calculations. Stability in water and after UV sterilization were also verified. The pre-osteoblastic murine cell line MC3T3-E1 was used to perform the in-vitro tests. The treated samples showed a higher quantity of adsorbed proteins and improved osteoblast cells adhesion on the surfaces compared to the pristine titanium, in particular the COOH/R-Ti led to a nearly two-fold improvement. Cell proliferation on coated samples was initially (at 24 h) lower than on titanium control, while, at 48 h, COOH/R-Ti reached the proliferation rate of pristine titanium. Cells grown on NH{sub 2}-Ti were more tapered and elongated in shape with lower areas than on COOH/R-Ti enriched surfaces. Finally, NH{sub 2}-Ti significantly enhanced osteocalcin production, starting from 14 days, while COOH/R-Ti had this effect only from 21 days. Notably, NH{sub 2}-Ti was more efficient than COOH/R-Ti at 21 days. The amine functionality elicited the most relevant osteogenic effect in terms of osteocalcin expression, thus establishing an interesting correlation

  3. Laser control melting of alumina surfaces with presence of B{sub 4}C particles

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [Mechanical Engineering Dept., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran (Saudi Arabia); Al-Aqeeli, N. [Mechanical Engineering Dept., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran (Saudi Arabia); Karatas, C. [Engineering faculty, Hacettepe University, Ankara (Turkey)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer Dense and fine grains are formed in the surface region and columnar structures are formed underneath. Black-Right-Pointing-Pointer The presence of carbon film enables to form AlN, AlON, and Al(C, N) compounds at surface. Black-Right-Pointing-Pointer Presence of B{sub 4}C particles and nitride species increases surface microhardness notably. Black-Right-Pointing-Pointer The residual stress formed at the surface is compressive. - Abstract: Laser gas assisted controlled melting of alumina tile surface is carried out in this work. A carbon coating containing 5% of B{sub 4}C particles is formed at the tile surface prior to laser treatment process. The morphological and microstructural changes in the treated layer are examined using X-ray diffraction, energy dispersive spectroscopy, and scanning electron microscope. The surface microhardness is measured and the residual stress formed at the surface vicinity is obtained from the X-ray diffractograms. It was found that microhardness of the surface increases significantly after the laser treatment process, which is attributed to high cooling rates and the formation of nitride species at the surface. The residual stress formed at the surface is compressive and no micro- or major-cracks are observed at the laser treated surface.

  4. The osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces in rats.

    Science.gov (United States)

    Kung, S; Devlin, H; Fu, E; Ho, K-Y; Liang, S-Y; Hsieh, Y-D

    2011-02-01

    The enhancing effects of chitosan on activation of platelets and differentiation of osteoprogenitor cells have been demonstrated in vitro. The purpose of this study was to evaluate the in vivo osteoinductive effect of chitosan-collagen composites around pure titanium implant surfaces. Chitosan-collagen composites containing chitosan of different molecular weights (450 and 750 kDa) were wrapped onto titanium implants and embedded into the subcutaneous area on the back of 15 Sprague-Dawley rats. The control consisted of implants wrapped with plain collagen type I membranes. Implants and surrounding tissues were retrieved 6 wks after surgery and identified by Alizarin red and Alcian blue whole mount staining. The newly formed structures in the test groups were further analyzed by Toluidine blue and Masson-Goldner trichrome staining, and immunohistochemical staining with osteopontin and alkaline phosphotase. The bone formation parameters of the new bone in the two test groups were measured and compared. New bone formed ectopically in both chitosan-collagen groups, whereas no bone induction occurred in the negative control group. These newly formed bone-like structures were further confirmed by immunohistochemical staining. Comparison of bone parameters of the newly induced bone revealed no statistically significant differences between the 450 and 750 kDa chitosan-collagen groups. Our results demonstrated that chitosan-collagen composites might induce in vivo new bone formation around pure titanium implant surfaces. Different molecular weights of chitosan did not show significantly different effects on the osteoinductive potential of the test materials. © 2010 John Wiley & Sons A/S.

  5. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2surface treatment.

    Science.gov (United States)

    Bhardwaj, Garima; Webster, Thomas J

    2017-01-01

    The attachment and initial growth of bacteria on an implant surface dictates the progression of infection. Treatment often requires aggressive antibiotic use, which does not always work. To overcome the difficulties faced in systemic and local antibiotic delivery, scientists have forayed into using alternative techniques, which includes implant surface modifications that prevent initial bacterial adhesion, foreign body formation, and may offer a controlled inflammatory response. The current study focused on using electrophoretic deposition to treat titanium with a nanophase titanium dioxide surface texture to reduce bacterial adhesion and growth. Two distinct nanotopographies were analyzed, Ti-160, an antimicrobial surface designed to greatly reduce bacterial colonization, and Ti-120, an antimicrobial surface with a topography that upregulates osteoblast activity while reducing bacterial colonization; the number following Ti in the nomenclature represents the atomic force microscopy root-mean-square roughness value in nanometers. There was a 95.6% reduction in Staphylococcus aureus (gram-positive bacteria) for the Ti-160-treated surfaces compared to the untreated titanium alloy controls. There was a 90.2% reduction in Pseudomonas aeruginosa (gram-negative bacteria) on Ti-160-treated surfaces compared to controls. For ampicillin-resistant Escherichia coli , there was an 81.1% reduction on the Ti-160-treated surfaces compared to controls. Similarly for surfaces treated with Ti-120, there was an 86.8% reduction in S. aureus , an 82.1% reduction in P. aeruginosa , and a 48.6% reduction in ampicillin-resistant E. coli . The Ti-120 also displayed a 120.7% increase at day 3 and a 168.7% increase at day 5 of osteoblast proliferation over standard titanium alloy control surfaces. Compared to untreated surfaces, Ti-160-treated titanium surfaces demonstrated a statistically significant 1 log reduction in S. aureus and P. aeruginosa , whereas Ti-120 provided an additional

  6. Porous titania surfaces on titanium with hierarchical macro- and mesoporosities for enhancing cell adhesion, proliferation and mineralization.

    Science.gov (United States)

    Han, Guang; Müller, Werner E G; Wang, Xiaohong; Lilja, Louise; Shen, Zhijian

    2015-02-01

    Titanium received a macroporous titania surface layer by anodization, which contains open pores with average pore diameter around 5 μm. An additional mesoporous titania top layer following the contour of the macropores, of 100-200 nm thickness and with a pore diameter of 10nm, was formed by using the evaporation-induced self-assembly (EISA) method with titanium (IV) tetraethoxide as the precursor. A coherent laminar titania surface layer was thus obtained, creating a hierarchical macro- and mesoporous surface that was characterized by high-resolution electron microscopy. The interfacial bonding between the surface layers and the titanium matrix was characterized by the scratch test that confirmed a stable and strong bonding of titania surface layers on titanium. The wettability to water and the effects on the osteosarcoma cell line (SaOS-2) proliferation and mineralization of the formed titania surface layers were studied systematically by cell culture and scanning electron microscopy. The results proved that the porous titania surface with hierarchical macro- and mesoporosities was hydrophilic that significantly promoted cell attachment and spreading. A synergistic role of the hierarchical macro- and mesoporosities was revealed in terms of enhancing cell adhesion, proliferation and mineralization, compared with the titania surface with solo scale topography. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The effect of different cleaning methods on the surface and temperature of failed titanium implants: an in vitro study.

    Science.gov (United States)

    Hakki, Sema S; Tatar, Gulsah; Dundar, Niyazi; Demiralp, Burak

    2017-04-01

    The aims of this in vitro study are to compare the efficacy of different cleaning methods in removing debris of failed implants and to detect thermal changes of the implants treated by various scaling instruments. Twenty-seven failed implants and two unused implants as control were included to this study-group 1: plastic curette (P), group 2: titanium curette (T), group 3: carbon curette (C), group 4: titanium brush (TB), group 5: Er:YAG laser (laser 1 (L1) 100 mJ/pulse at 10 Hz), group 6: Er:YAG laser (laser 2 (L2) 150 mJ/pulse at 10 Hz), group 7: Er:YAG laser (laser 3 (L3) 200 mJ/pulse at 10 Hz), group 8: ultrasonic scaler appropriate for titanium (US), group 9: air abrasive method (AA) + citric acid, and group 10: implantoplasty (I). The changes on the treated/untreated titanium surfaces and remnant debris were observed by scanning electron microscopy (SEM). Temperature of the implants before and after treatment was detected using a thermocouple. The use of air abrasive and citric acid combination and Er:YAG laser groups was found as the best methods for the decontamination of titanium surfaces of failed implant. When the hand instruments were compared, titanium curette was found better than both the plastic and the carbon curettes which leave plastics and carbon remnants on the titanium surface. The temperature was higher after hand instrumentation when compared to other experimental groups (p < 0.05). Within the limitations of the present in vitro model, it can be concluded that the best method for decontamination of the implant surface is the use of air abrasives and Er:YAG laser.

  8. Development of a Passive Microwave Surface Melt Record for Antarctica and Antarctic Ice Shelves

    Science.gov (United States)

    Karmosky, C. C.; Reasons, J.; Morgan, N. J.

    2015-12-01

    Antarctica contains the largest mass of ice in the world and much time and energy has gone into researching the ice-ocean-atmosphere-land dynamics that, in a warming climate, have the potential to significantly affect sea levels throughout the world. While there are many datasets currently available to researchers examining sea ice extent and volume, glacier thickness, ice shelf retreat and expansion, and atmospheric variables such as temperature and wind speeds, there is not currently a dataset that offers surface melt extent of land ice in the southern hemisphere. The database outlined here uses the Cross-Polarized Gradient Ratio (XPGR) to show surface melt extent on a daily basis for all of Antarctica. XPGR utilizes passive microwave satellite imagery in the 19 GHz and 37GHz frequencies to determine the presence or absence of greater than 1% liquid water in the top layers of ice. Daily XPGR melt occurrence (1987-2014) was calculated for both the ice sheet as well as ice shelves on Antarctica, and is available as a GIS shapefile or asci text file.

  9. Surface Modification of Titanium Using Anodization to Enhance Antimicrobial Properties and Osseointegration

    Science.gov (United States)

    Jain, Sakshi

    Titanium and its alloys are frequently used in dental and orthopedic implants because they have good mechanical strength, chemical stability and biocompatibility. These properties can be further improved by surface treatments such as anodization that are able to grow thicker and produce crystalline oxide layers with controlled morphological and physico-chemical properties. Both anatase (A) and rutile (R) crystalline phases of titanium oxide have been shown to promote bioactivity and antimicrobial effects. In a previous study in our laboratories, four electrolyte mixtures were optimized to produce anodized layers on commercially pure titanium consisting of specific anatase and rutile oxide ratios at an endpoint forming voltage of 180 V. In the present study, changes that occurred in the anodized layers with increasing forming voltage including crystallinity, thickness, surface morphology, surface roughness, surface chemistry, fractal dimension, shear strength, and corrosion resistance were determined for each of these electrolytes. The results showed the crystallinity, thickness, surface pore sizes, and surface roughness increased with increasing forming voltage. Incorporation of phosphorus into the anodized layers was shown in phosphoric acid containing electrolytes at higher forming voltages. Decreases in corrosion resistance were also shown at higher forming voltages in each electrolyte due to increased pore interconnectivity within the anodized layers. In addition, the apatite inducing ability of anodized layers in SBF was examined for selected forming voltages in each electrolyte. Anodization in phosphoric acid containing electrolytes was shown to be more favorable for apatite formation. The streptococcal and MRSA bacterial attachment before and after UV treatments was determined for selected forming voltages in each electrolyte. Additionally, the killing efficacy after 10-minute pre-irradiation with UVA or UVC treatments was determined. UVA treatments showed

  10. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  11. Chemical and topographic analysis of treated surfaces of five different commercial dental titanium implants

    Directory of Open Access Journals (Sweden)

    Bruno Ramos Chrcanovic

    2012-06-01

    Full Text Available We present a detailed investigation of the surface characteristics of five commercial titanium implants with different surface finishing (double acid etching, anodization and incorporation of Ca/P, acid etching and deposition of Ca/P, hydroxyapatite-blasting, acid etching and Ca/P-blasting produced by five different manufacturers. A set of experimental techniques were employed to study the surface chemical composition and morphology: XPS, XRD, SEM, EDS, and AFM. According to the implat manufacturers, the addition of Ca and P at the implant surface is a main feature of these implants (except the double acid etched implant, which was included for comparative purpose. However, the results showed a great discrepancy on the final amount of these elements on the implant surface, which suggests a different effectiveness of the employed surface finishing methods to fix those elements on the implant surface. Our results show that only the method used by the manufacturer of hydroxyapatite-blasting surface finished implants was efficient to produce a hydroxyapatite coating. This group also showed the highest roughness parameters.

  12. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Chun-Ju Chen

    2016-07-01

    Full Text Available Chemotherapeutic agents have been used as an adjunct to mechanical debridement for peri-implantitis treatment. The present in vitro study evaluated and compared the effectiveness of hypochlorous acid (HOCl, sodium hypochlorite (NaOCl, and chlorhexidine (CHX at eliminating Gram-negative (E. coli and P. gingivalis and Gram-positive (E. faecalis and S. sanguinis bacteria. The effect of irrigating volume and exposure time on the antimicrobial efficacy of HOCl was evaluated, and a durability analysis was completed. Live/dead staining, morphology observation, alamarBlue assay, and lipopolysaccharide (LPS detection were examined on grit-blasted and biofilm-contaminated titanium alloy discs after treatment with the three chemotherapeutic agents. The results indicated that HOCl exhibited better antibacterial efficacy with increasing irrigating volumes. HOCl achieved greater antibacterial efficacy as treatment time was increased. A decrease in antimicrobial effectiveness was observed when HOCl was unsealed and left in contact with the air. All the irrigants showed antibacterial activity and killed the majority of bacteria on the titanium alloy surfaces of biofilm-contaminated implants. Moreover, HOCl significantly lowered the LPS concentration of P. gingivalis when compared with NaOCl and CHX. Thus, a HOCl antiseptic may be effective for cleaning biofilm-contaminated implant surfaces.

  13. Electrochemical & osteoblast adhesion study of engineered TiO{sub 2} nanotubular surfaces on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia Ur [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI (United States); Pompa, Luis [Department of Mechanical Engineering, University of Texas–Pan American, Edinburg, TX (United States); Deen, K.M. [Department of Metallurgy & Materials Engineering, CEET, University of the Punjab, 54590 Lahore (Pakistan); Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada)

    2016-01-01

    TiO{sub 2} nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO{sub 2} nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO{sub 2} nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO{sub 2} nanotubes have a positive impact on the osteoblast cell viability.

  14. Surface and microstructure modifications of Ti-6Al-4V titanium alloy cutting by a water jet/high power laser converging coupling

    Science.gov (United States)

    Weiss, Laurent; Tazibt, Abdel; Aillerie, Michel; Tidu, Albert

    2018-01-01

    The metallurgical evolution of the Ti-6Al-4V samples is analyzed after an appropriate cutting using a converging water jet/high power laser system. New surface microstructures are obtained on the cutting edge as a result of thermo-mechanical effects of such hybrid fluid-jet-laser tool on the targeted material. The laser beam allows to melt and the water-jet to cool down and to evacuate the material upstream according to a controlled cutting process. The experimental results have shown that a rutile layer can be generated on the surface near the cutting zone. The recorded metallurgical effect is attributed to the chemical reaction between water molecules and titanium, where the laser thermal energy brought onto the surface plays the role of reaction activator. The width of the oxidized zone was found proportional to the cutting speed. During the reaction, hydrogen gas H2 is formed and is absorbed by the metal. The hydrogen atoms trapped into the alloy change the metastable phase formation developing pure β circular grains as a skin at the kerf surface. This result is original so it would lead to innovative converging laser water jet process that could be used to increase the material properties especially for surface treatment, a key value of surface engineering and manufacturing chains.

  15. High-performance scaffolds on titanium surfaces: Osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling

    International Nuclear Information System (INIS)

    Horasawa, Noriko; Yamashita, Teruhito; Uehara, Shunsuke; Udagawa, Nobuyuki

    2015-01-01

    Titanium has been widely used as a dental implant material. However, it takes several months for the implant body to bind with the jawbone. To develop new bioactive modification on titanium surfaces to achieve full osseointegration expeditiously, we used fibrinogen and fibronectin as bioactive scaffolds on the titanium plate, which are common extracellular matrix (ECM) proteins. We analyzed the features of the surface of ECM-modified titanium plates by atomic force microscopy and Fourier transform infrared spectrophotometry. We also evaluated the effect of ECM modification on promoting the differentiation and mineralization of osteoblasts on these surfaces. Fibrinogen had excellent adsorption on titanium surfaces even at low concentrations, due to the binding ability of fibrinogen via its RGD motif. The surface was composed of a fibrinogen monolayer, in which the ratio of β-sheets was decreased. Osteoblast proliferation on ECM-modified titanium surface was significantly promoted compared with titanium alone. Calcification on the modified surface was also accelerated. These ECM-promoting effects correlated with increased expression of bone morphogenetic proteins (BMPs) by the osteoblasts themselves and were inhibited by Noggin, a BMP inhibitor. These results suggest that the fibrinogen monolayer-modified titanium surface is recognized as bioactive scaffolds and promotes bone formation, resulting in the acceleration of osseointegration. - Highlights: • Fibrinogen had an excellent adsorption on titanium at low concentrations. • Fibrinogen on titanium formed composite layer with a decrease in β-sheet structure. • Osteoblast proliferation and calcification on the ECM-modified titanium plates were significant. • These effects of fibrinogen were increased of BMPs by osteoblasts themselves. • The scaffolds of fibrinogen on titanium might accelerate osseointegration

  16. High-performance scaffolds on titanium surfaces: Osteoblast differentiation and mineralization promoted by a globular fibrinogen layer through cell-autonomous BMP signaling

    Energy Technology Data Exchange (ETDEWEB)

    Horasawa, Noriko, E-mail: horasawa@po.mdu.ac.jp [Department of Dental Materials, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan); Yamashita, Teruhito [Institute for Oral Science, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan); Uehara, Shunsuke; Udagawa, Nobuyuki [Department of Biochemistry, Matsumoto Dental University, 1780 Hiro-oka Gobara, Shiojiri, Nagano 399-0781 (Japan)

    2015-01-01

    Titanium has been widely used as a dental implant material. However, it takes several months for the implant body to bind with the jawbone. To develop new bioactive modification on titanium surfaces to achieve full osseointegration expeditiously, we used fibrinogen and fibronectin as bioactive scaffolds on the titanium plate, which are common extracellular matrix (ECM) proteins. We analyzed the features of the surface of ECM-modified titanium plates by atomic force microscopy and Fourier transform infrared spectrophotometry. We also evaluated the effect of ECM modification on promoting the differentiation and mineralization of osteoblasts on these surfaces. Fibrinogen had excellent adsorption on titanium surfaces even at low concentrations, due to the binding ability of fibrinogen via its RGD motif. The surface was composed of a fibrinogen monolayer, in which the ratio of β-sheets was decreased. Osteoblast proliferation on ECM-modified titanium surface was significantly promoted compared with titanium alone. Calcification on the modified surface was also accelerated. These ECM-promoting effects correlated with increased expression of bone morphogenetic proteins (BMPs) by the osteoblasts themselves and were inhibited by Noggin, a BMP inhibitor. These results suggest that the fibrinogen monolayer-modified titanium surface is recognized as bioactive scaffolds and promotes bone formation, resulting in the acceleration of osseointegration. - Highlights: • Fibrinogen had an excellent adsorption on titanium at low concentrations. • Fibrinogen on titanium formed composite layer with a decrease in β-sheet structure. • Osteoblast proliferation and calcification on the ECM-modified titanium plates were significant. • These effects of fibrinogen were increased of BMPs by osteoblasts themselves. • The scaffolds of fibrinogen on titanium might accelerate osseointegration.

  17. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  18. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  19. Characterization of structure of flaws in silicate glass surfaces by ion-exchange in lithium salt melts

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.

    1978-03-01

    A method for characterization of flaws structure in silicate glass surfaces by ion-exchange in lithium salt melts is demonstrated. The possibilities and limits of the method are shown and several applications are discussed. (author)

  20. Nano hydroxyapatite-blasted titanium surface affects pre-osteoblast morphology by modulating critical intracellular pathways.

    Science.gov (United States)

    Bezerra, Fábio; Ferreira, Marcel R; Fontes, Giselle N; da Costa Fernandes, Célio Jr; Andia, Denise C; Cruz, Nilson C; da Silva, Rodrigo A; Zambuzzi, Willian F

    2017-08-01

    Although, intracellular signaling pathways are proposed to predict the quality of cell-surface relationship, this study addressed pre-osteoblast behavior in response to nano hydroxyapatite (HA)-blasted titanium (Ti) surface by exploring critical intracellular pathways and pre-osteoblast morphological change. Physicochemical properties were evaluated by atomic force microscopy (AFM) and wettability considering water contact angle of three differently texturized Ti surfaces: Machined (Mac), Dual acid-etching (DAE), and nano hydroxyapatite-blasted (nHA). The results revealed critical differences in surface topography, impacting the water contact angle and later the osteoblast performance. In order to evaluate the effect of those topographical characteristics on biological responses, we have seeded pre-osteoblast cells on the Ti discs for up to 4 h and subjected the cultures to biological analysis. First, we have observed pre-osteoblasts morphological changes resulting from the interaction with the Ti texturized surfaces whereas the cells cultured on nHA presented a more advanced spreading process when compared with the cells cultured on the other surfaces. These results argued us for analyzing the molecular machinery and thus, we have shown that nHA promoted a lower Bax/Bcl2 ratio, suggesting an interesting anti-apoptotic effect, maybe explained by the fact that HA is a natural element present in bone composition. Thereafter, we investigated the potential effect of those surfaces on promoting pre-osteoblast adhesion and survival signaling by performing crystal violet and immunoblotting approaches, respectively. Our results showed that nHA promoted a higher pre-osteoblast adhesion supported by up-modulating FAK and Src activations, both signaling transducers involved during eukaryotic cell adhesion. Also, we have shown Ras-Erk stimulation by the all evaluated surfaces. Finally, we showed that all Ti-texturing surfaces were able to promote osteoblast differentiation

  1. Titanium Surface Coating with a Laminin-Derived Functional Peptide Promotes Bone Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Seung-Ki Min

    2013-01-01

    Full Text Available Laminin-derived peptide coatings can enhance epithelial cell adhesion to implants, and the positive effect of these peptides on bone cell adhesion has been anticipated. The purpose of this study was to evaluate the improvement in bone cell attachment to and activity on titanium (Ti scaffolds coated with a laminin-derived functional peptide, Ln2-P3 (the DLTIDDSYWYRI motif. Four Ti disc surfaces were prepared, and a human osteosarcoma (HOS cell attachment test was performed to select two candidate surfaces for peptide coating. These two candidates were then coated with Ln2-P3 peptide, a scrambled peptide, or left uncoated to measure cell attachment to each surface, following which one surface was chosen to assess alkaline phosphatase (ALP activity and osteogenic marker gene expression with quantitative real-time PCR. On the commercially pure Ti surface, the Ln2-P3 coating significantly increased cellular ALP activity and the expression levels of ALP and bone sialoprotein mRNA as compared with the scrambled peptide-coated and uncoated surfaces. In conclusion, although further in vivo studies are needed, the findings of this in vitro study indicate that the Ln2-P3-coated implant surface promotes bone cell adhesion, which has clinical implications for reducing the overall treatment time of dental implant therapy.

  2. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  3. Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2000-01-01

    ) TiO2-blasted with particles of grain size 10 to 53 microns; (3) TiO2-blasted, grain size 63 to 90 microns; (4) TiO2-blasted, grain size 90 to 125 microns; (5) titanium plasma-sprayed (TPS). The surface topography was determined by the use of an optical instrument. Twelve rabbits, divided into two...... groups, had a total of 120 implants inserted in the tibiae. One implant from each of the five surface categories was placed within the left tibia of each rabbit. By a second operation, implants were installed in the right tibia, after 2 weeks in group A and after 3 weeks in group B. Fluorochrome labeling...

  4. Influence of the Cutting Conditions in the Surface Finishing of Turned Pieces of Titanium Alloys

    Science.gov (United States)

    Huerta, M.; Arroyo, P.; Sánchez Carrilero, M.; Álvarez, M.; Salguero, J.; Marcos, M.

    2009-11-01

    Titanium is a material that, despite its high cost, is increasingly being introduced in the aerospace industry due to both, its weight, its mechanical properties and its corrosion potential, very close to that of carbon fiber based composite material. This fact allows using Ti to form Fiber Metal Laminates Machining operations are usually used in the manufacturing processes of Ti based aerospace structural elements. These elements must be machined under high surface finish requirements. Previous works have shown the relationship between the surface roughness and the tool changes in the first instants of turning processes. From these results, new tests have been performed in an aeronautical factory, in order to analyse roughness in final pieces.

  5. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    Science.gov (United States)

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  6. Electric and magnetic properties of titanium-cobalt-oxide single crystals produced by floating zone melting with light heating

    Science.gov (United States)

    Balbashov, A. M.; Mukhin, A. A.; Ivanov, V. Yu.; Iskhakova, L. D.; Voronchikhina, M. E.

    2017-08-01

    Single crystals of spinel Co2TiO4, CoTiO3 of ilmenite structure and pseudobrookite CoTi2O5 were grown by means of zone melting equipment URN-2-ZM. The growth processes were performed in an air atmosphere with a speed ˜10 mm/h and a final annealing of the crystal at temperature of 1250 °C. Co2TiO4 and CoTi2O5 crystals were obtained with a diameter of 12-15 mm and length up to 60 mm, being free of any other phase inclusions and cracks. However, in the CoTiO3 crystals some controversial features were found: x-ray Laue analysis indicated high-structure perfection while an electronic microscopy revealed small amount of second phase inclusions in contradiction to known phase diagram of this system. Electrical and magnetic properties of grown Co2TiO4 and CoTiO3 single crystals were studied. Semiconducting behavior of the Co2TiO4 was established with the energy gap of ˜1.3 eV. No magnetic anisotropy was found in the cubic Co2TiO4 single crystals showing a magnetic behavior similar to polycrystals. The rhombohedral CoTiO3 crystals revealed a magnetic behavior of an easy plane antiferromagnet with a significant anisotropy of the transverse magnetic susceptibilities along and perpendicular to the trigonal c axis.

  7. Biological responses to M13 bacteriophage modified titanium surfaces in vitro.

    Science.gov (United States)

    Sun, Yuhua; Li, Yiting; Wu, Baohua; Wang, Jianxin; Lu, Xiong; Qu, Shuxin; Weng, Jie; Feng, Bo

    2017-08-01

    Phage-based materials have showed great potential in tissue engineering application. However, it is unknown what inflammation response will happen to this kind of materials. This work is to explore the biological responses to M13 bacteriophage (phage) modified titanium surfaces in vitro from the aspects of their interaction with macrophages, osteoblasts and mineralization behavior. Pretreated Ti surface, Ti surfaces with noncrosslinked phage film (APP) and crosslinked phage film (APPG) were compared. Phage films could limit the macrophage adhesion and activity due to inducing adherent-cell apoptosis. The initial inflammatory activity (24h) caused by phage films was relatively high with more production of TNF-α, but in the later stage (7-10days) inflammatory response was reduced with lower TNF-α, IL-6 and higher IL-10. In addition, phage films improved osteoblast adhesion, differentiation, and hydroapatite (HA)-forming via a combination of topographical and biochemcial cues. The noncrosslinked phage film displayed the best immunomodulatory property, osteogenic activity and HA mineralization ability. This work provides better understanding of inflammatory and osteogenetic activity of phage-based materials and contributes to their future application in tissue engineering. In vivo, the bone and immune cells share a common microenvironment, and are being affected by similar cytokines, signaling molecules, transcription factors and membrane receptors. Ideal implants should cause positive biological response, including adequate and appropriate inflammatory reaction, well-balanced bone formation and absorption. Phage-based materials have showed great potential in tissue engineering application. However, at present it is unknown what inflammation response will happen to this kind of materials. A good understanding of the immune response possibly induced by phage-based materials is needed. This work studied the osteoimmunomodulation property of phage films on titanium

  8. The COMET-L3 experiment on long-term melt. Concrete interaction and cooling by surface flooding

    International Nuclear Information System (INIS)

    Alsmeyer, H.; Cron, T.; Fluhrer, B.; Messemer, G.; Miassoedov, A.; Schmidt-Stiefel, S.; Wenz, T.

    2007-02-01

    The COMET-L3 experiment considers the long-term situation of corium/concrete interaction in an anticipated core melt accident of a light-water-reactor, after the metal melt is layered beneath the oxide melt. The experimental focus is on cavity formation in the basemat and the risk of long term basemat penetration. The experiment investigates the two-dimensional concrete erosion in a cylindrical crucible fabricated from siliceous concrete in the first phase of the test, and the influence of surface flooding in the second phase. Decay heating in the two-component metal and oxide melt is simulated by sustained induction heating of the metal phase that is overlaid by the oxide melt. The inner diameter of the concrete crucible was 60 cm, the initial mass of the melt was 425 kg steel and 211 kg oxide at 1665 C, resulting in a melt height of 450 mm. The net power to the metal melt was about 220 kW from 0 s to 1880 s, when the maximum erosion limit of the crucible was reached and heating was terminated. In the initial phase of the test (less than 100 s), the overheated, highly agitated metal melt causes intense interaction with the concrete, which leads to fast decrease of the initial melt overheat and reduction of the initially high concrete erosion rate. Thereafter, under quasistationary conditions until about 800 s, the erosion by the metal melt slows down to some 0.07 mm/s into the axial direction. Lateral erosion is a factor 3 smaller. Video observation of the melt surface shows an agitated melt with ongoing gas release from the decomposing concrete. Several periods of more intense gas release, gas driven splashing, and release of crusts from the concrete interface indicate the existence and iterative break-up of crusts that probably form at the steel/concrete interface. Surface flooding of the melt is initiated at 800 s by a shower from the crucible head with 0.375 litre water/s. Flooding does not lead to strong melt/water interactions, and no entrapment reactions or

  9. Surface melt effects on Cryosat-2 elevation retrievals in the ablation zone of the Greenland ice sheet

    Science.gov (United States)

    Slater, T.; McMillan, M.; Shepherd, A.; Leeson, A.; Cornford, S. L.; Hogg, A.; Gilbert, L.; Muir, A. S.; Briggs, K.

    2017-12-01

    Over the past two decades, there has been an acceleration in the rate of mass losses from the Greenland ice sheet. This acceleration is, in part, attributed to an increasingly negative surface mass balance (SMB), linked to increasing melt water runoff rates due to enhanced surface melting. Understanding the past, present and future evolution in surface melting is central to ongoing monitoring of ice sheet mass balance and, in turn, to building realistic future projections. Currently, regional climate models are commonly used for this purpose, because direct in-situ observations are spatially and temporally sparse due to the logistics and resources required to collect such data. In particular, modelled SMB is used to estimate the extent and magnitude of surface melting, which influences (1) many geodetic mass balance estimates, and (2) snowpack microwave scattering properties. The latter is poorly understood and introduces uncertainty into radar altimeter estimates of ice sheet evolution. Here, we investigate the changes in CryoSat-2 waveforms and elevation measurements caused by the onset of surface melt in the summer months over the ablation zone of the Greenland ice sheet. Specifically, we use CryoSat-2 SARIn mode data acquired between 2011 and 2016, to characterise the effect of high variability in surface melt during this period, and to assess the associated impact on estimates of ice mass balance.

  10. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    Science.gov (United States)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-10-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  11. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  12. Effect of surface treatments on the fatigue life of titanium for biomedical applications.

    Science.gov (United States)

    Pazos, L; Corengia, P; Svoboda, H

    2010-08-01

    Many surface treatments that are used in cementless and endosseous implants modify the topography and the roughness to increase the implant-bone contact area and thus favor bio-mechanical anchorage, shortening the period of osseointegration. Nevertheless, the effects that the surface treatments can have on the fatigue life of the material are not generally considered. In this sense, the superficial condition of the component is one of the features that affect the fatigue strength, specially the fatigue crack nucleation. The fatigue behaviour of annealed commercially pure titanium grade 4 was studied. The surface treatments used were acid etching, shot blasting and a dual treatment of blasting + acid etching. An as-machined surface condition was used as a reference. Topography, roughness, surface defects, microstructural changes and residual stresses were characterized in each case. Rotating-bending fatigue tests of each surface condition were conducted at room temperature with a frequency of 33 Hz. S-N curves and Basquin equations were obtained based on the results of these tests. Tested samples were also characterized to evaluate fatigue damage. The acid etching decreases the fatigue endurance, while the blasting and blasting + acid etching treatments showed a similar behaviour with respect to the reference condition. For acid etching, the modifications introduced (stress raisers) contributed to accelerate the nucleation of cracks. On the other hand, the treatments with a blasting stage besides generating stress raisers, introduced compressive residual stresses and superficial plastic deformation that tend to improve the fatigue endurance of the material.

  13. Temperature-Induced Switchable Adhesion using Nickel-Titanium-Polydimethylsiloxane Hybrid Surfaces.

    Science.gov (United States)

    Frensemeier, Mareike; Kaiser, Jessica S; Frick, Carl P; Schneider, Andreas S; Arzt, Eduard; Fertig, Ray S; Kroner, Elmar

    2015-05-01

    A switchable dry adhesive based on a nickel-titanium (NiTi) shape-memory alloy with an adhesive silicone rubber surface has been developed. Although several studies investigate micropatterned, bioinspired adhesive surfaces, very few focus on reversible adhesion. The system here is based on the indentation-induced two-way shape-memory effect in NiTi alloys. NiTi is trained by mechanical deformation through indentation and grinding to elicit a temperature-induced switchable topography with protrusions at high temperature and a flat surface at low temperature. The trained surfaces are coated with either a smooth or a patterned adhesive polydimethylsiloxane (PDMS) layer, resulting in a temperature-induced switchable surface, used for dry adhesion. Adhesion tests show that the temperature-induced topographical change of the NiTi influences the adhesive performance of the hybrid system. For samples with a smooth PDMS layer the transition from flat to structured state reduces adhesion by 56%, and for samples with a micropatterned PDMS layer adhesion is switchable by nearly 100%. Both hybrid systems reveal strong reversibility related to the NiTi martensitic phase transformation, allowing repeated switching between an adhesive and a nonadhesive state. These effects have been discussed in terms of reversible changes in contact area and varying tilt angles of the pillars with respect to the substrate surface.

  14. A characterization of Greenland Ice Sheet surface melt and runoff in contemporary reanalyses and a regional climate model

    Science.gov (United States)

    Cullather, Richard; Nowicki, Sophie; Zhao, Bin; Koenig, Lora

    2016-02-01

    For the Greenland Ice Sheet (GrIS), large-scale melt area has increased in recent years and is detectable via remote sensing, but its relation to runoff is not known. Historical, modeled melt area and runoff from Modern-Era Retrospective Analysis for Research and Applications (MERRA-Replay), the Interim Re-Analysis of the European Centre for Medium Range Weather Forecasts (ERA-I), the Climate Forecast System Reanalysis (CFSR), the Modèle Atmosphérique Régional (MAR), and the Arctic System Reanalysis (ASR) are examined. These sources compare favorably with satellite-derived estimates of surface melt area for the period 2000-2012. Spatially, the models markedly disagree on the number of melt days in the interior of the southern part of the ice sheet, and on the extent of persistent melt areas in the northeastern GrIS. Temporally, the models agree on the mean seasonality of daily surface melt and on the timing of large-scale melt events in 2012. In contrast, the models disagree on the amount, seasonality, spatial distribution, and temporal variability of runoff. As compared to global reanalyses, time series from MAR indicate a lower correlation between runoff and melt area (r2 = 0.805). Runoff in MAR is much larger in the second half of the melt season for all drainage basins, while the ASR indicates larger runoff in the first half of the year. This difference in seasonality for the MAR and to an extent for the ASR provide a hysteresis in the relation between runoff and melt area, which is not found in the other models. The comparison points to a need for reliable observations of surface runoff.

  15. Electroless Ni–B Coating of Pure Titanium Surface for Enhanced Tribocorrosion Performance in Artificial Saliva and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    F. Mindivan

    2017-05-01

    Full Text Available In the present study, the surface of commercial pure (Grade 2 titanium was coated with electroless Ni–B. The surface morphology, microstructure and phase identification were analysed by X-Ray Diffraction (XRD and Field Emission Gun Scanning Electron Microscope (FEG-SEM equipped with Energy Dispersive X-ray Spectroscopy (EDS. The tribocorrosion performance in a laboratory simulated artificial saliva was investigated using a reciprocating ball-on-plate tribometer coupled to an electrochemical cell. The antibacterial property of the electroless Ni–B film coated on pure titanium was basically investigated. From this study, it may be concluded that this electroless Ni–B coating process cannot only improve the hardness and tribocorrosion performance of the pure titanium, but can also provide antimicrobial activity.

  16. Retention Forces between Titanium and Zirconia Components of Two-Part Implant Abutments with Different Techniques of Surface Modification.

    Science.gov (United States)

    von Maltzahn, Nadine Freifrau; Holstermann, Jan; Kohorst, Philipp

    2016-08-01

    The adhesive connection between titanium base and zirconia coping of two-part abutments may be responsible for the failure rate. A high mechanical stability between both components is essential for the long-term success. The aim of the present in-vitro study was to evaluate the influence of different surface modification techniques and resin-based luting agents on the retention forces between titanium and zirconia components in two-part implant abutments. A total of 120 abutments with a titanium base bonded to a zirconia coping were investigated. Two different resin-based luting agents (Panavia F 2.0 and RelyX Unicem) and six different surface modifications were used to fix these components, resulting in 12 test groups (n = 10). The surface of the test specimens was mechanically pretreated with aluminium oxide blasting in combination with application of two surface activating primers (Alloy Primer, Clearfil Ceramic Primer) or a tribological conditioning (Rocatec), respectively. All specimens underwent 10,000 thermal cycles between 5°C and 55°C in a moist environment. A pull-off test was then conducted to determine retention forces between the titanium and zirconia components, and statistical analysis was performed (two-way anova). Finally, fracture surfaces were analyzed by light and scanning electron microscopy. No significant differences were found between Panavia F 2.0 and RelyX Unicem. However, the retention forces were significantly influenced by the surface modification technique used (p zirconia copings were pretreated with aluminium oxide blasting, and with the application of Clearfil Ceramic Primer. Surface modification techniques crucially influence the retention forces between titanium and zirconia components in two-part implant abutments. All adhesion surfaces should be pretreated by sandblasting. Moreover, a phosphate-based primer serves to enhance long-term retention of the components. © 2015 Wiley Periodicals, Inc.

  17. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  18. Torque Analysis of a Triple Acid-Etched Titanium Implant Surface

    Science.gov (United States)

    Pontes, Ana Emília Farias; de Toledo, Cássio Torres; Garcia, Valdir Gouveia; Ribeiro, Fernando Salimon; Sakakura, Celso Eduardo

    2015-01-01

    The present study aimed to evaluate the removal torque of titanium implants treated with triple acid etching. Twenty-one rats were used in this study. For all animals, the tibia was prepared with a 2 mm drill, and a titanium implant (2 × 4 mm) was inserted after treatment using the subtraction method of triple acid etching. The flaps were sutured. Seven animals were killed 14, 28, and 63 days after implant installation, and the load necessary for removing the implant from the bone was evaluated by using a torque meter. The torque values were as follows: 3.3 ± 1.7 Ncm (14 days), 2.2 ± 1.3 Ncm (28 days), and 6.7 ± 1.4 Ncm (63 days). The torque value at the final healing period (63 days) was statistically significantly different from that at other time points tested (ANOVA, p = 0.0002). This preliminary study revealed that treatment with triple acid etching can create a promising and efficient surface for the process of osseointegration. PMID:26543898

  19. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  20. Nucleation of carbon nanotubes and their bundles at the surface of catalyst melt

    Science.gov (United States)

    Alekseev, N. I.; Charykov, N. A.

    2008-12-01

    The kinetics of nanotube nucleation from a carbon-supersaturated nanodrop of a catalytic metal was considered. The problem of nucleation of the solid phase from a supersaturated melt was considered with allowance for the particular boundary conditions and the specificity of carbon structure. The solutions are obtained for the cases of extended and surface substrate nanopores, in which the carbon-supersaturated nanodrops are located. The threshold nucleation temperatures were determined for the single-and multiwall nanotubes and their bundles. The dependences of the nanotube size and the required supersaturation level on the temperature and nanodrop size are determined.

  1. Physicochemical state of the nanotopographic surface of commercially pure titanium following anodization-hydrothermal treatment reveals significantly improved hydrophilicity and surface energy profiles.

    Science.gov (United States)

    Takebe, Jun; Ito, Shigeki; Miura, Shingo; Miyata, Kyohei; Ishibashi, Kanji

    2012-01-01

    A method of coating commercially pure titanium (cpTi) implants with a highly crystalline, thin hydroxyapatite (HA) layer using discharge anodic oxidation followed by hydrothermal treatment (Spark discharged Anodic oxidation treatment ; SA-treated cpTi) has been reported for use in clinical dentistry. We hypothesized that a thin HA layer with high crystallinity and nanostructured anodic titanium oxide film on such SA-treated cpTi implant surfaces might be a crucial function of their surface-specific potential energy. To test this, we analyzed anodic oxide (AO) cpTi and SA-treated cpTi disks by SEM and AFM. Contact angles and surface free energy of each disk surface was measured using FAMAS software. High-magnification SEM and AFM revealed the nanotopographic structure of the anodic titanium oxide film on SA-treated cpTi; however, this was not observed on the AO cpTi surface. The contact angle and surface free energy measurements were also significantly different between AO cpTi and SA-treated cpTi surfaces (Tukey's, P<0.05). These data indicated that the change of physicochemical properties of an anodic titanium oxide film with HA crystals on an SA-treated cpTi surface may play a key role in the phenomenon of osteoconduction during the process of osseointegration. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation.

    Science.gov (United States)

    Yamada, Masahiro; Ueno, Takeshi; Minamikawa, Hajime; Ikeda, Takayuki; Nakagawa, Kaori; Ogawa, Takahiro

    2013-09-01

    The role of nanoscale/submicron morphological features in the process of osseointegration is largely unknown. This study reports the creation of a unique submicrofeatured titanium surface by a combination of anodic oxidation and sandblasting and determines how the addition of this submicrofeature to a microroughened surface affects the early-stage process of osseointegration. Nonmicroroughened implants were prepared by machining Ti-6Al-4V alloy in a cylindrical form (1 mm diameter and 2 mm long). Microroughened implants were prepared by sandblasting machined implants, while submicrofeatured implants were created by anodic oxidation of the sandblasted implants. Implants were placed into rat femurs and subjected to biomechanical, interfacial, and histological analyses at 1 and 2 weeks post-implantation (n = 6). The submicrotopography was characterized by 50-300 nm nodules and pits in addition to other submicron-level irregularities formed entirely within the sandblast-created microstructures. The biomechanical strength of osseointegration increased continuously from week 1 to 2 for the submicrofeatured implants but not for the microroughened implants. A significant increase in bone-implant contact and bone volume, as well as a reduction in soft tissue intervention, were commonly found for the microroughened surface and the submicrofeatured surface compared with the nonmicroroughened surface. However, there were no differences in these parameters between the microroughened surface and the submicrofeatured surface. An extensive area of bone tissue at the submicrofeatured implant interface was retained intact after biomechanical shear testing, while the microroughened implant-tissue interface showed a gap along the entire axis of the implant, leading to clear separation of the tissue during the shear procedure. This study demonstrates that a submicrofeatured titanium surface created by a combination of sandblasting and anodic oxidation enhances the strength of

  3. Effect of liquid environment on the titanium surface modification by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nisar, E-mail: chnisarali@gmail.com [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad (Pakistan); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Bashir, Shazia [Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Umm-i-Kalsoom [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Kala Shah Kaku Campus, Lahore (Pakistan); Begum, Narjis [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria)

    2017-05-31

    Highlights: • Liquid assisted ablation effects on the titanium under varying number of laser pulses is investigated. • SEM analysis reveals the growth of various features like ripples, dendritic structures, pores, grains and craters. • Raman and XRD analyses shows the presence of TiO{sub 2} & TiH in both media whereas, TiC, TiCxOy are only identified in propanol. • Hardness of ablated Ti explored by Nano indentation is found to decrease with increasing number of pulses in both media. • Relationship between surface, structural and mechanical modifications is established. - Abstract: The effect of liquid environment (de-ionized water and propanol) on surface, structural and mechanical properties of femtosecond laser ablated titanium has been investigated. For this purpose, Ti: sapphire laser (800 nm, 30 fs, 1 kHz) has been employed, at a fluence of 3.6 J/cm{sup 2} in ambient environments of de-ionized water, and propanol for various number of laser pulses i.e. 500, 1000, 1500 and 2000. The surface features, chemical composition, structural analysis and mechanical properties of irradiated targets have been evaluated by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X -ray Diffraction (XRD), Raman Spectroscopy and Nano-hardness tester. Various features like dendritic structures, globules, porous granular morphology, cones, crater, circular ripples and thermal stress cracking are observed at the ablated area after irradiation. These features are instigated by various thermal and chemical phenomena induced by laser heating at the solid–liquid interface. Decrease in nano-hardness observed in both ambient environments is attributable to the formation of hydrides after irradiation in both media.

  4. Surface and Bulk Electronic Structure and Chemisorption Properties of Titanium and Vanadium Oxides

    Science.gov (United States)

    Smith, Kevin Eugene

    The unusual electronic properties of Ti _2O_3 and V _2O_3, in particular the metal-insulator transitions which they undergo, have produced widespread interest in the physics of these materials, while the use of titanium and vanadium oxides as catalysts and catalyst supports makes a detailed understanding of their surface properties of great importance. The electronic structure and gas adsorption properties of single crystal titanium and vanadium oxides have been studied here using ultraviolet and x-ray photoemission spectroscopy, synchrotron radiation, Auger electron spectroscopy and low energy electron diffraction. Spatially anisotropic resonant photoemission from 3d states in Ti_2O_3 and V_2O_3 was observed and shown to originate from localised molecular orbitals. This contrasts with an energy analysis of the photoemission data which revealed dispersing, delocalised d-bands in both oxides. A large resonance was observed in the O 2p emission at the cation 3p to 3d absorption edge in Ti_2O _3 which is inconsistent with hybridisation, indicating the possible existence of inter-atomic resonances. The first detailed photoemission observation of metal-insulator transitions in Cr-doped V_2O _3 is reported; large changes in the density of states at the Fermi level are seen at these transitions. The surface electronic structure of single crystal TiO_2, Ti_2O _3 and V_2O _3 was found to be indistinguishable from that of the bulk. The interaction of SO_2 with these oxides was extensively studied since sulfur is a notorious catalyst poison. SO_2 reacts vigorously with the titanium oxides, dissociating in the presence of Ti^{3+} cations to form TiO_2 and TiS _2; in their absence no reaction occurs. Surprisingly, SO_2 reacts very weakly with V _2O_3, adsorbing in both dissociated and molecular form. Additionally, only a weak reaction of H_2S and TiO _2 was found. The electronic structure of these oxides is shown to be extremely complex, displaying both localised and

  5. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    Science.gov (United States)

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  6. Surface energy budget of landfast sea ice during the transitions from winter to snowmelt and melt pond onset

    DEFF Research Database (Denmark)

    Else, B.G.T.; Papakyriakou, T.N.; Raddatz, R.

    2014-01-01

    Relatively few sea ice energy balance studies have successfully captured the transition season of warming, snowmelt, and melt pond formation. In this paper, we report a surface energy budget for landfast sea ice that captures this important period. The study was conducted in the Canadian Arctic......) combined with the seasonal increase in incoming shortwave radiation then triggered snowmelt onset. Melt progressed with a rapid reduction in albedo and attendant increases in shortwave energy absorption, resulting in melt pond formation 8 days later. The key role of longwave radiation in initiating melt...... onset supports past findings, and confirms the importance of clouds and water vapor associated with synoptic weather systems. However, we also observed a period of strong turbulent energy exchange associated with the passage of a cyclone. The cyclone event occurred shortly after melt pond formation...

  7. Dry phase titanium dioxide-mediated photocatalysis: Basis for in situ surface destruction of hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.P.; Watts, R.J. [Washington State Univ., Pullman, WA (United States). Dept. of Civil and Environmental Engineering

    1997-10-01

    The photocatalytic oxidation of 2,4,6-trichlorophenol (TCP) on the surface of titanium dioxide (TiO{sub 2}) at varying water contents was investigated to provide fundamental data for incorporating photocatalysts into the surface of pavements to promote the destruction of spilled organic chemicals. 2,4,6-Trichlorophenol, spiked onto a thin layer of TiO{sub 2}, was degraded to 20% of its original concentration over 24 h; the release of chloride confirmed the degradation of the parent compound on the surface of the dry TiO{sub 2}. Addition of water ({ge}25% by weight) to the TiO{sub 2} increased the rate of photocatalysis resulting in degradation of TCP to below detectable levels after 20 h. Based on competition studies using the hydroxyl radical scavengers, bicarbonate and 1-octanol, the proposed mechanisms for the dry phase photocatalytic degradation of TCP was oxidation by the valence band hole on the surface of the TiO{sub 2} particle or dehalogenation by superoxide radical anions. Competition studies also confirmed that the more rapid TCP oxidation on wet TiO{sub 2} was primarily the result of generation of hydroxyl radicals through oxidation of water by the valence band hole. The results show that dry phase TiO{sub 2}-mediated photocatalysis may be a potential system for the in situ surface destruction of chemicals that can be oxidized by nonhydroxyl radical mechanisms, such as valence band electron holes and dehalogenation processes.

  8. Surface characteristics of hydroxyapatite films deposited on anodized titanium by an electrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang [Research Institute, Kuwotech, 970–88, Wolchul-dong, Buk-ku, Gwangju (Korea, Republic of); Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon; Brantley, William A. [Division of Restorative, Prosthetic and Primary Care Dentistry, College of Dentistry, The Ohio State, University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials and Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2013-11-01

    The biocompatibility of anodized titanium (Ti) was improved by an electrochemically deposited calcium phosphate (CaP) layer. The CaP layer was grown on the anodized Ti surface in modified simulated body fluid (M-SBF) at 85 °C. The phases and morphologies for the CaP layers were influenced by the electrolyte concentration. Nano flake-like precipitates that formed under low M-SBF concentrations were identified as hydroxyapatite (HAp) crystals orientated in the c-axis direction. In high M-SBF concentrations, the CaP layer formed micro plate-like precipitates on anodized Ti, and micropores were covered with HAp. Proliferation of murine preosteoblast cell (MC3T3-E1) on the HAp/anodized Ti surfaces was significantly higher than for untreated Ti and anodized Ti surfaces. - Highlights: • CaP layers were grown on anodized Ti surfaces by an electrochemical deposition process. • Phases and morphologies of layers were influenced by the electrolyte concentration. • Superior cell proliferation was observed on hydroxyapatite-coated anodized surfaces.

  9. Melt flow and mechanical properties of silica/perfluoropolymer nanocomposites Fabricated by direct melt-compounding without surface modification on nano-silica.

    Science.gov (United States)

    Tanahashi, Mitsuru; Watanabe, Yusuke; Lee, Jeong-Chang; Takeda, Kunihiko; Fujisawa, Toshiharu

    2009-01-01

    The authors have previously developed a novel method for the fabrication of silica/perfluoropolymer nanocomposites, wherein nano-sized silica particles without surface modification were dispersed uniformly through breakdown of loosely packed agglomerates of silica nanoparticles with low fracture strength in a polymer melt during direct melt-compounding. The method consists of two stages; the first stage involves preparation of the loose silica agglomerate, and the second stage involves melt-compounding of a completely hydrophobic perfluoropolymer, PFA (poly(tetrafluoroethylene-co-perfluoropropylvinylether)), with the loose silica agglomerates. By using this simple method without any lipophilic treatment of the silica surfaces, silica nanoparticles with a primary diameter of 190 nm could be dispersed uniformly into the PFA matrix. The main purpose of the present study is to evaluate the melt flow and tensile properties of silica/PFA nanocomposites fabricated by the above method. In order to elucidate the effects of the size of the dispersed silica in the PFA matrix on the properties of the composites, silica/PFA composite samples exhibiting the dispersion of larger-sized silica particle-clusters were fabricated as negative controls of the silica dispersion state. The results obtained under the present experimental conditions showed that the size of the dispersed silica in the PFA matrix exerts a strong influence on the ultimate tensile properties, such as tensile strength and elongation at break, and the melt flow rate (MFR) of the composite materials. The MFR of the silica/PFA nanocomposite became higher than that of the pure PFA without silica addition, although the MFR of the PFA composites containing larger silica particle-clusters became much lower than that of the pure PFA. Furthermore, uniform dispersion of isolated silica nanoparticles was found to improve not only the Young's modulus but also the ultimate tensile properties of the composite.

  10. Non-Isothermal Gas-Based Direct Reduction Behavior of High Chromium Vanadium-Titanium Magnetite Pellets and the Melting Separation of Metallized Pellets

    Directory of Open Access Journals (Sweden)

    Jue Tang

    2017-04-01

    Full Text Available The non-isothermal reduction behavior of high chromium vanadium-titanium magnetite (HCVTM pellets by gas mixtures was investigated using different heating rates (4, 8, and 12 K/min and varied gas compositions (H2/CO = 2/5, H2/CO = 1/1, and H2/CO = 5/2 volume ratios; the pellets were then used for melting separation. It was observed that the temperature corresponding to the maximum reduction ratio increased with the increasing heating rate. The HCVTM pellets reached the same final reduction ratio under a given reducing gas composition, although the heating rates were different. Under the same heating rate, the gas mixture with more H2 was conducive for obtaining a higher reduction ratio. The phase transformations during the non-isothermal reduction were ordered as follows: Fe2O3 → Fe3O4 → FeO → Fe; Fe9TiO15 + Fe2Ti3O9 → Fe2.75Ti0.25O4 → FeTiO3 → TiO2; V1.7Cr0.3O3 → V2O3 → Fe2VO4; Fe1.2Cr0.8O3 → Cr2O3 → FeCr2O4. The non-isothermal reduction kinetic model was established based on the unreacted core model with multiple reaction interfaces. The correlation coefficients were greater than 0.99, revealing that this kinetic model could properly describe the non-isothermal reduction of the HCVTM pellets by gas mixtures. Iron containing V and Cr along with the Ti-rich slag was obtained through the melting separation of the metallized HCVTM pellets. The mass fractions and recovery rates of Fe, V, and Cr in the iron were 93.87% and 99.45%, 0.91% and 98.83%, and 0.72% and 95.02%, respectively. The mass fraction and recovery rate of TiO2 in the slag were 38.12% and 95.08%, respectively.

  11. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces

    Directory of Open Access Journals (Sweden)

    Gbureck Uwe

    2007-07-01

    Full Text Available Abstract Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl-propylamine (APMS, N- [3-(Trimethoxysilylpropyl]ethylenediamine (Diamino-APMS and N1- [3-(Trimethoxy-silyl-propyl]diethylenetriamine (Triamino-APMS. The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV shifted into the positive range (> + 40 mV after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug

  12. Modification of the surfaces of stainless steel during titanium nitride deposition by a dynamic mixing method

    Science.gov (United States)

    Yokota, Katsuhiro; Tamura, Susumu; Nakamura, Kazuhiro; Horiguchi, Motohiro; Nakaiwa, Hiroki; Sugimoto, Takashi; Akamatsu, Katsuya; Nakao, Kazuyoshi

    2000-05-01

    Surfaces of stainless steel SUS304 were coated with titanium nitride (TiN) at temperatures ranging from 400°C to 770°C using a dynamic mixing technique. The N+ ions were accelerated at energies of 0.5-2.0 keV, and were implanted into the stainless steel. The composition of the prepared TiN films was measured using Rutherford backscattering spectrometry with He ions at an energy of 2.0 MeV. Intermediate layers containing compounds such as FesNq, Cr2N, and CrFe were formed between the TiN films and substrates at substrate temperatures higher than 700°C. The thickness of the TiN films decreased significantly when the intermediate layers were formed.

  13. Surface morphology of titanium dioxide (TiO2) nanoparticles on aluminum interdigitated device electrodes (IDEs)

    International Nuclear Information System (INIS)

    Azizah, N.; Gopinath, Subash C. B.; Nadzirah, Sh.; Farehanim, M. A.; Fatin, M. F.; Ruslinda, A. R.; Hashim, U.; Arshad, M. K. Md.; Ayub, R. M.

    2016-01-01

    Titanium dioxide (TiO 2 ) nanoparticles based Interdigitated Device Electrodes (IDEs) Nanobiosensor device was developed for intracellular biochemical detection. Fabrication and characterization of Scanning Electron Microscopy (SEM) using IDE nanocoated with TiO 2 was studied in this paper. SEM analysis was carried out at 10 kV acceleration volatege and a 9.8 mA emission current to compare IDE with and without TiO 2 on the surface area. The simple fabrication process, high sensitivity, and fast response of the TiO 2 based IDEs facilitate their applications in a wide range of areas. The small size of semiconductor TiO 2 based IDE for sensitive, label-free, real time detection of a wide range of biological species could be explored in vivo diagnostics and array-based screening.

  14. Research on depositing Ni45 alloy on titanium alloy surface by electrospark deposition

    Directory of Open Access Journals (Sweden)

    Su Guiqiao

    2008-11-01

    Full Text Available Taking Ni45 bar as electrode, a strengthened layer of thickness up to 50 μm was built up on BT20 titanium alloy matrix by means of electrospark deposition. Results of phase analysis by using of X-ray diffraction confirmed that the deposition layer was composed mostly of three phases, NiTi, NiTi2 and Ti. The surface microhardness of the deposition layer was up to 910 HV0.05, about 2.7 times as high as that of the matrix. The hardness at the cross-section of the entire deposition layer showed a gradient distribution. The effects of capacitance and deposition time on thickness of deposition layer were also studied, and results showed that with relatively low capacity and short deposition time the deposition layer without cracks can be obtained.

  15. Nanopore formation on the surface oxide of commercially pure titanium grade 4 using a pulsed anodization method in sulfuric acid.

    Science.gov (United States)

    Williamson, R S; Disegi, J; Griggs, J A; Roach, M D

    2013-10-01

    Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm(2). The pore size distributions produced may be beneficial for bone cell attachment and proliferation.

  16. In vitro and in vivo anticancer activity of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    Science.gov (United States)

    Venkatasubbu, G Devanand; Ramasamy, S; Reddy, G Pramod; Kumar, J

    2013-08-01

    Targeted drug delivery using nanocrystalline materials delivers the drug at the diseased site. This increases the efficacy of the drug in killing the cancer cells. Surface modifications were done to target the drug to a particular receptor on the cell surface. This paper reports synthesis of hydroxyapatite and titanium dioxide nanoparticles and modification of their surface with polyethylene glycol (PEG) followed by folic acid (FA). Paclitaxel, an anticancer drug, is attached to functionalized hydroxyapatite and titanium dioxide nanoparticles. The pure and functionalised nanoparticles are characterised with XRD, TEM and UV spectroscopy. Anticancer analysis was carried out in DEN induced hepatocarcinoma animals. Biochemical, hematological and histopathological analysis show that the surface modified paclitaxel attached nanoparticles have an higher anticancer activity than the pure paclitaxel and surface modified nanoparticles without paclitaxel. This is due to the targeting of the drug to the folate receptor in the cancer cells.

  17. A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface

    NARCIS (Netherlands)

    Cochran, D.L.; Jackson, J.M.; Bernard, J.P.; ten Bruggenkate, C.M.; Buser, D.; Taylor, T.D.; Weingart, D.; Schoolfield, J.D.; Jones, A.A.; Oates, T.W

    2011-01-01

    PURPOSE: For dental implants to be successful, osseointegration must occur, but it is unknown how much time must pass for osseointegration to be established. Preclinical studies suggested that titanium implants with a sandblasted and acid-etched (SLA) surface were more osteoconductive and allowed

  18. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  19. Early Healing Events around Titanium Implant Devices with Different Surface Microtopography: A Pilot Study in an In Vivo Rabbit Model

    Directory of Open Access Journals (Sweden)

    Ester Orsini

    2012-01-01

    Full Text Available In the present pilot study, the authors morphologically investigated sandblasted, acid-etched surfaces (SLA at very early experimental times. The tested devices were titanium plate-like implants with flattened wide lateral sides and jagged narrow sides. Because of these implant shape and placement site, the device gained a firm mechanical stability but the largest portion of the implant surface lacked direct contact with host bone and faced a wide peri-implant space rich in marrow tissue, intentionally created in order to study the interfacial interaction between metal surface and biological microenvironment. The insertion of titanium devices into the proximal tibia elicited a sequence of healing events. Newly formed bone proceeded through an early distance osteogenesis, common to both surfaces, and a delayed contact osteogenesis which seemed to follow different patterns at the two surfaces. In fact, SLA devices showed a more osteoconductive behavior retaining a less dense blood clot, which might be earlier and more easily replaced, and leading to a surface-conditioning layer which promotes osteogenic cell differentiation and appositional new bone deposition at the titanium surface. This model system is expected to provide a starting point for further investigations which clarify the early cellular and biomolecular events occurring at the metal surface.

  20. Radiation-induced erosion of titanium alloy surface and hydrogen adsorption under H+ and He+ ion bombardment

    International Nuclear Information System (INIS)

    Guseva, M.I.; Vinogradova, N.K.; Lemke, N.G.; Mansurova, A.N.; Martynenko, Yu.V.; Smirnov, V.N.; Starshin, E.P.; Syshchikov, V.I.; Chelnokov, O.I.; Fefelov, P.A.

    1982-01-01

    Results of studying hydrogen absorption by titanium alloys (Ti-Al-V and Ti-Al-Zr) and the effect of helium ion- and hydrogen ion bombardment on the character and degree of alloy surface erosion are given. The published data on permeability, solubility and diffusion of hydrogen isotopes into metals are systematized in the Appendix. Results of studying tritium permeability and solubility in a number of scantily studied alloys, titanium alloys included, that can be promising construction materials for different thermonuclear reactor units are presented

  1. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    International Nuclear Information System (INIS)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-01-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO x ) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO x films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO x films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO x films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO x has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO x in the field of high-efficiency silicon wafer solar cells.

  2. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    Science.gov (United States)

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Science.gov (United States)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  4. Permeability Study of Austenitic Stainless Steel Surfaces Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Emmanuel Segura-Cardenas

    2017-11-01

    Full Text Available Selective laser melting (SLM is emerging as a versatile process for fabricating different metal components with acceptable mechanical properties and geometrical accuracy. The process has been used in the manufacturing of several parts (e.g., aerospace or biomedical components, and offers the capability to tailor the performance of several surface and mechanical properties. In this work, permeability properties and surface roughness of stainless steel (SS316L surfaces were evaluated through experimentation with three different laser scanning patterns (chessboard, meander, and stripe, and different sloping angles between the fabricated surface and the laser beam incident on the process. Results showed that for each scanning pattern, the roughness decreased as the sloping angle increased consistently in all experimental trials. Furthermore, in the case of the permeability evaluation, the manufactured surfaces showed changes in properties for each series of experiments performed with different scanning patterns. The chessboard pattern showed a change of 67° to 107° in contact angle, while the meander and stripe patterns showed a variation in contact