WorldWideScience

Sample records for surface mapping system

  1. Waste-surface mapping of the Fernald K-65 silos using a structured light measurement system

    International Nuclear Information System (INIS)

    Burks, B.L.; DePiero, F.W.; Dinkins, M.A.; Rowe, J.C.; Selleck, C.B.; Jacoboski, D.L.

    1992-10-01

    A remotely operated surface-mapping measurement system was developed by the Robotics ampersand Process Systems Division at Oak Ridge National Laboratory for use in the K-65 waste-storage silos at Fernald, Ohio. The mapping system used three infrared line-generating laser diodes as illumination sources and three high-resolution, low-lux, calibrated, black-and-white, charge-coupled-device video cameras as receivers. These components were combined to form structured light source range and direction sensors with six different possible emitter-receiver pairs. A technology demonstration and predeployment tests were performed at Fernald using the empty Silo 4 into which was placed rectangular objects of known dimensions. These objects were scanned by the structured light sources to demonstrate functionality and verify that the system was giving sufficiently accurate range data in three dimensions. The structured light sources were deployed in Silos 1 and 2 to scan the waste surfaces. The resulting data were merged to create three-dimensional maps of those surfaces. A bentonite clay cap was placed over the waste surfaces and surface maps were obtained. The change in surface height before and after bentonite addition was utilized as a measure of clay cap thickness

  2. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  3. EVALUATION MODEL FOR PAVEMENT SURFACE DISTRESS ON 3D POINT CLOUDS FROM MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Aoki

    2012-07-01

    Full Text Available This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS. The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments’ specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  4. Surface Relief of Mapping

    Science.gov (United States)

    Costa, Manuel F.; Almeida, Jose B.

    1989-02-01

    We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.

  5. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    Science.gov (United States)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  6. Map projections cartographic information systems

    CERN Document Server

    Grafarend, Erik W

    2006-01-01

    In the context of Geographical Information Systems (GIS) the book offers a timely review of map projections (sphere, ellipsoid, rotational surfaces) and geodetic datum transformations. For the needs of photogrammetry, computer vision, and remote sensing space projective mappings are reviewed.

  7. Computerized mappings of the cerebral cortex: a multiresolution flattening method and a surface-based coordinate system

    Science.gov (United States)

    Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.

    1996-01-01

    We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.

  8. CosmoQuest - Mapping Surface Features Across the Inner Solar System

    Science.gov (United States)

    Grier, Jennifer A.; Richardson, Matthew; Gay, Pamela L.; Lehan, Cory; Owens, Ryan; Robbins, Stuart J.; DellaGiustina, Daniella; Bennett, Carina; Runco, Susan; Graff, Paige

    2017-10-01

    The CosmoQuest Virtual Research Facility allows research scientists to work together with citizen scientists in ‘big data’ investigations. Some research requires the examination of vast numbers of images - partnering with engaged and trained citizen scientists allows for that research to be completed in a thorough and timely manner. The techniques used by CosmoQuest to collect impact crater data have been validated to ensure robustness (Robbins et al., 2014), and include software tools that accurately identify crater clusters, and multiple crater identifications. CosmoQuest has current or up-and-coming projects that span much of the inner solar system. “Moon Mappers” gives the public a chance to learn about the importance of cratered surfaces, and investigate factors that effect the identification and measurement of impact craters such as incidence angle. In the “Mars Mappers” program citizens map small craters in valley networks. These will be used to estimate times of ancient water flow. In “Mercury Mappers” the public learns about other issues related to crater counting, such as secondaries. On Mercury, secondaries appear to dominate counts up to 10km. By mapping these craters, we will be able to better understand the maximum diameter of secondaries relative to the parent primary. The public encounters Vesta in “Vesta Mappers,” a project that contributes data to the overall crater counting efforts on that body. Asteroid investigations do not end there - the OSIRIS-REx team is collaborating with CosmoQuest to create a science campaign to generate boulder and crater counting datasets of the asteroid Bennu. This “Bennu Mappers” project will inform the final selection of the sample return site. The Earth is the target for the “Image Detective” project, which uses the 2 million images returned from crewed space flight. These images are rich in information about our changing Earth, as well as phenomena like aurora. Citizens tag these images

  9. Accuracy Analysis of a Robotic Radionuclide Inspection and Mapping System for Surface Contamination

    International Nuclear Information System (INIS)

    Mauer, Georg F.; Kawa, Chris

    2008-01-01

    The mapping of localized regions of radionuclide contamination in a building can be a time consuming and costly task. Humans moving hand-held radiation detectors over the target areas are subject to fatigue. A contamination map based on manual surveys can contain significant operator-induced inaccuracies. A Fanuc M16i light industrial robot has been configured for installation on a mobile aerial work platform, such as a tall forklift. When positioned in front of a wall or floor surface, the robot can map the radiation levels over a surface area of up to 3 m by 3 m. The robot's end effector is a commercial alpha-beta radiation sensor, augmented with range and collision avoidance sensors to ensure operational safety as well as to maintain a constant gap between surface and radiation sensors. The accuracy and repeatability of the robotically conducted contamination surveys is directly influenced by the sensors and other hardware employed. This paper presents an in-depth analysis of various non-contact sensors for gap measurement, and the means to compensate for predicted systematic errors that arise during the area survey scans. The range sensor should maintain a constant gap between the radiation counter and the surface being inspected. The inspection robot scans the wall surface horizontally, moving down at predefined vertical intervals after each scan in a meandering pattern. A number of non-contact range sensors can be employed for the measurement of the gap between the robot end effector and the wall. The nominal gap width was specified as 10 mm, with variations during a single scan not to exceed ± 2 mm. Unfinished masonry or concrete walls typically exhibit irregularities, such as holes, gaps, or indentations in mortar joints. These irregularities can be sufficiently large to indicate a change of the wall contour. The responses of different sensor types to the wall irregularities vary, depending on their underlying principles of operation. We explored

  10. Scanning Electron Microscope Mapping System Developed for Detecting Surface Defects in Fatigue Specimens

    Science.gov (United States)

    Bonacuse, Peter J.; Kantzos, Peter T.

    2002-01-01

    An automated two-degree-of-freedom specimen positioning stage has been developed at the NASA Glenn Research Center to map and monitor defects in fatigue specimens. This system expedites the examination of the entire gauge section of fatigue specimens so that defects can be found using scanning electron microscopy (SEM). Translation and rotation stages are driven by microprocessor-based controllers that are, in turn, interfaced to a computer running custom-designed software. This system is currently being used to find and record the location of ceramic inclusions in powder metallurgy materials. The mapped inclusions are periodically examined during interrupted fatigue experiments. The number of cycles to initiate cracks from these inclusions and the rate of growth of initiated cracks can then be quantified. This information is necessary to quantify the effect of this type of defect on the durability of powder metallurgy materials. This system was developed with support of the Ultra Safe program.

  11. Mapping stellar surface features

    International Nuclear Information System (INIS)

    Noah, P.V.

    1987-01-01

    New photometric and spectroscopic observations of the RS Canum Venaticorum binaries Sigma Geminorum and UX Arietis are reported along with details of the Doppler-imaging program SPOTPROF. The observations suggest that the starspot activity on Sigma Gem has decreased to 0.05 magnitude in two years. A photometric spot model for September 1984 to January 1985 found that a single spot covering 2% of the surface and 1000 K cooler than the surrounding photosphere could model the light variations. Equivalent-width observations contemporaneous with the photometric observations did not show any significant variations. Line-profile models from SPOTPROF predict that the variation of the equivalent width of the 6393 A Fe I line should be ∼ 1mA. Photometric observations of UX Ari from January 1984 to March 1985 show an 0.3 magnitude variation indicating a large spot group must cover the surface. Contemporaneous spectroscopic observations show asymmetric line profiles. The Doppler imaging and the photometric light-curve models were used in an iterative method to describe the stellar surface-spot distribution and successfully model both the photometric and the spectroscopic variations

  12. Corrected body surface potential mapping.

    Science.gov (United States)

    Krenzke, Gerhard; Kindt, Carsten; Hetzer, Roland

    2007-02-01

    In the method for body surface potential mapping described here, the influence of thorax shape on measured ECG values is corrected. The distances of the ECG electrodes from the electrical heart midpoint are determined using a special device for ECG recording. These distances are used to correct the ECG values as if they had been measured on the surface of a sphere with a radius of 10 cm with its midpoint localized at the electrical heart midpoint. The equipotential lines of the electrical heart field are represented on the virtual surface of such a sphere. It is demonstrated that the character of a dipole field is better represented if the influence of the thorax shape is reduced. The site of the virtual reference electrode is also important for the dipole character of the representation of the electrical heart field.

  13. An imaging system for quantitive surface temperature mapping using two-color thermographic phosphors

    Science.gov (United States)

    Buck, Gregory M.

    1988-01-01

    A technique for obtaining detailed quantitative temperature distributions on test models in hypersonic wind tunnels is presented. This technique is based on the ratio of blue to green (450, 520 nm) emission from an UV (365 nm) excited phosphor coating. Separately filtered images are recorded from a three-tube color camera, utilizing off-the-shelf front-end video optics to discriminate wavelengths. Two demonstration studies in a 31-inch Mach 10 tunnel are discussed. One study presents the windward surface temperature-time history for a transatmospheric vehicle, and the other illustrates nosetip heating on a spherically blunted slender cone.

  14. Integrable mappings via rational elliptic surfaces

    International Nuclear Information System (INIS)

    Tsuda, Teruhisa

    2004-01-01

    We present a geometric description of the QRT map (which is an integrable mapping introduced by Quispel, Roberts and Thompson) in terms of the addition formula of a rational elliptic surface. By this formulation, we classify all the cases when the QRT map is periodic; and show that its period is 2, 3, 4, 5 or 6. A generalization of the QRT map which acts birationally on a pencil of K3 surfaces, or Calabi-Yau manifolds, is also presented

  15. Map projections cartographic information systems

    CERN Document Server

    Grafarend, Erik W; Syffus, Rainer

    2014-01-01

    This book offers a timely review of map projections including sphere, ellipsoid, rotational surfaces, and geodetic datum transformations. Coverage includes computer vision, and remote sensing space projective mappings in photogrammetry.

  16. [The design and implementation of the web typical surface object spectral information system in arid areas based on .NET and SuperMap].

    Science.gov (United States)

    Xia, Jun; Tashpolat, Tiyip; Zhang, Fei; Ji, Hong-jiang

    2011-07-01

    The characteristic of object spectrum is not only the base of the quantification analysis of remote sensing, but also the main content of the basic research of remote sensing. The typical surface object spectral database in arid areas oasis is of great significance for applied research on remote sensing in soil salinization. In the present paper, the authors took the Ugan-Kuqa River Delta Oasis as an example, unified .NET and the SuperMap platform with SQL Server database stored data, used the B/S pattern and the C# language to design and develop the typical surface object spectral information system, and established the typical surface object spectral database according to the characteristics of arid areas oasis. The system implemented the classified storage and the management of typical surface object spectral information and the related attribute data of the study areas; this system also implemented visualized two-way query between the maps and attribute data, the drawings of the surface object spectral response curves and the processing of the derivative spectral data and its drawings. In addition, the system initially possessed a simple spectral data mining and analysis capabilities, and this advantage provided an efficient, reliable and convenient data management and application platform for the Ugan-Kuqa River Delta Oasis's follow-up study in soil salinization. Finally, It's easy to maintain, convinient for secondary development and practically operating in good condition.

  17. Conformal mapping on Riemann surfaces

    CERN Document Server

    Cohn, Harvey

    2010-01-01

    The subject matter loosely called ""Riemann surface theory"" has been the starting point for the development of topology, functional analysis, modern algebra, and any one of a dozen recent branches of mathematics; it is one of the most valuable bodies of knowledge within mathematics for a student to learn.Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five pans. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in

  18. Filtering Color Mapped Textures and Surfaces

    OpenAIRE

    Heitz , Eric; Nowrouzezahrai , Derek; Poulin , Pierre; Neyret , Fabrice

    2013-01-01

    International audience; Color map textures applied directly to surfaces, to geometric microsurface details, or to procedural functions (such as noise), are commonly used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient color map filt...

  19. Complete Surface Mapping of ICF Shells

    International Nuclear Information System (INIS)

    Stephens, R.B.; Olson, D.; Huang, H.; Gibson, J.B.

    2004-01-01

    Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. We have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ, φ) surface map for accurate 3-D modeling of a shot

  20. COMPLETE SURFACE MAPPING OF ICF SHELLS

    International Nuclear Information System (INIS)

    STEPHENS, R.B.; OLSON, D.; HUANG, H.; GIBSON, J.B.

    2003-09-01

    OAK-B135 Inertial confinement fusion shells have previously been evaluated on the basis of microscopic examination for local defects and limited surface profiling to represent their average fluctuation power. Since defects are local, and don't always have visible edges, this approach both misses some important fluctuations and doesn't properly represent the spatially dependent surface fluctuation power. they have taken the first step toward correcting this problem by demonstrating the capability to completely map the surface of a NIF shell with the resolution to account for all modes. This allows complete accounting of all the surface fluctuations. In the future this capability could be used for valuable shells to generate a complete r(θ,ψ) surface map for accurate 3-D modeling of a shot

  1. System of automated map design

    International Nuclear Information System (INIS)

    Ponomarjov, S.Yu.; Rybalko, S.I.; Proskura, N.I.

    1992-01-01

    Preprint 'System of automated map design' contains information about the program shell for construction of territory map, performing level line drawing of arbitrary two-dimension field (in particular, the radionuclide concentration field). The work schedule and data structures are supplied, as well as data on system performance. The preprint can become useful for experts in radioecology and for all persons involved in territory pollution mapping or multi-purpose geochemical mapping. (author)

  2. National Pipeline Mapping System

    Data.gov (United States)

    Department of Transportation — The NPMS Public Map Viewer allows the general public to view maps of transmission pipelines, LNG plants, and breakout tanks in one selected county. Distribution and...

  3. Raman chemical mapping of magnesium stearate delivered by a punch-face lubrication system on the surface of placebo and active tablets.

    Science.gov (United States)

    Šašiċ, Slobodan; Ojakovo, Peter; Warman, Martin; Sanghvi, Tapan

    2013-09-01

    Raman chemical mapping was used to determine the distribution of magnesium stearate, a lubricant, on the surface of tablets. The lubrication was carried out via a punch-face lubrication system with different spraying rates applied on placebo and active-containing tablets. Principal component analysis was used for decomposing the matrix of Raman mapping spectra. Some of the loadings associated with minuscule variation in the data significantly overlap with the Raman spectrum of magnesium stearate in placebo tablets and allow for imaging the domains of magnesium stearate via corresponding scores. Despite the negligible variation accounted for by respective principal components, the score images seem reliable as demonstrated through thresholding the one-dimensional representation and the spectra of the hot pixels that show a weak but perceivable magnesium stearate band at 1295 cm(-1). The same approach was applied on the active formulation, but no magnesium stearate was identified, presumably due to overwhelming concentration and spectral contribution of the active pharmaceutical ingredient.

  4. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen

    2016-10-25

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  5. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Al-Mashhawari, Samir K.; Rosas, Jorge

    2016-01-01

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  6. Fermi surface mapping: Techniques and visualization

    International Nuclear Information System (INIS)

    Rotenberg, E.; Denlinger, J.D.; Kevan, S.D.

    1997-01-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS's. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS's, both bulk and surface

  7. The CPD Maps System

    Data.gov (United States)

    Department of Housing and Urban Development — CPD Maps includes data on the locations of existing CDBG, HOME, public housing and other HUD-funded community assets, so that users can view past investments...

  8. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    The Surface Habitat Systems (SHS) Focused Investment Group (FIG) is part of the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) effort to provide a focused direction and funding to the various projects that are working on human surface habitat designs and technologies for the planetary exploration missions. The overall SHS-FIG effort focuses on directing and guiding those projects that: 1) develop and demonstrate new surface habitat system concepts, innovations, and technologies to support human exploration missions, 2) improve environmental systems that interact with human habitats, 3) handle and emplace human surface habitats, and 4) focus on supporting humans living and working in habitats on planetary surfaces. The activity areas of the SHS FIG described herein are focused on the surface habitat project near-term objectives as described in this document. The SHS-FIG effort focuses on mitigating surface habitat risks (as identified by the Lunar Surface Systems Project Office (LSSPO) Surface Habitat Element Team; and concentrates on developing surface habitat technologies as identified in the FY08 gap analysis. The surface habitat gap assessment will be updated annually as the surface architecture and surface habitat definition continues to mature. These technologies are mapped to the SHS-FIG Strategic Development Roadmap. The Roadmap will bring to light the areas where additional innovative efforts are needed to support the development of habitat concepts and designs and the development of new technologies to support of the LSSPO Habitation Element development plan. Three specific areas of development that address Lunar Architecture Team (LAT)-2 and Constellation Architecture Team (CxAT) Lunar habitat design issues or risks will be focused on by the SHS-FIG. The SHS-FIG will establish four areas of development that will help the projects prepare in their planning for surface habitat systems development. Those development areas are

  9. Highly accurate surface maps from profilometer measurements

    Science.gov (United States)

    Medicus, Kate M.; Nelson, Jessica D.; Mandina, Mike P.

    2013-04-01

    Many aspheres and free-form optical surfaces are measured using a single line trace profilometer which is limiting because accurate 3D corrections are not possible with the single trace. We show a method to produce an accurate fully 2.5D surface height map when measuring a surface with a profilometer using only 6 traces and without expensive hardware. The 6 traces are taken at varying angular positions of the lens, rotating the part between each trace. The output height map contains low form error only, the first 36 Zernikes. The accuracy of the height map is ±10% of the actual Zernike values and within ±3% of the actual peak to valley number. The calculated Zernike values are affected by errors in the angular positioning, by the centering of the lens, and to a small effect, choices made in the processing algorithm. We have found that the angular positioning of the part should be better than 1?, which is achievable with typical hardware. The centering of the lens is essential to achieving accurate measurements. The part must be centered to within 0.5% of the diameter to achieve accurate results. This value is achievable with care, with an indicator, but the part must be edged to a clean diameter.

  10. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  11. ThermoMap. Interactive analysis and information system for the area-selected evaluation of the near-surface geothermal potential; ThermoMap. Interaktives Analyse- und Auskunftssystem zur flaechenhaften Abschaetzung des oberflaechennahen geothermischen Potenzials

    Energy Technology Data Exchange (ETDEWEB)

    Bertemann, David [Erlangen-Nuernberg Univ., Erlangen (DE). Lehrstuhl fuer Geologie (Exogene Dynamik); Psyk, Mario [REHAU AG and CO, Erlangen-Eltersdorf (Germany)

    2012-07-01

    The project ThermoMap funded by the European Commission enables a comprehensive assessment of the near-surface geothermal energy potential from already existing geoscientific data sets. Currently, twelve partners from nine EU Member States are involved.

  12. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  13. Smartphones Based Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    A. Al-Hamad

    2014-06-01

    Full Text Available The past 20 years have witnessed an explosive growth in the demand for geo-spatial data. This demand has numerous sources and takes many forms; however, the net effect is an ever-increasing thirst for data that is more accurate, has higher density, is produced more rapidly, and is acquired less expensively. For mapping and Geographic Information Systems (GIS projects, this has been achieved through the major development of Mobile Mapping Systems (MMS. MMS integrate various navigation and remote sensing technologies which allow mapping from moving platforms (e.g. cars, airplanes, boats, etc. to obtain the 3D coordinates of the points of interest. Such systems obtain accuracies that are suitable for all but the most demanding mapping and engineering applications. However, this accuracy doesn't come cheaply. As a consequence of the platform and navigation and mapping technologies used, even an "inexpensive" system costs well over 200 000 USD. Today's mobile phones are getting ever more sophisticated. Phone makers are determined to reduce the gap between computers and mobile phones. Smartphones, in addition to becoming status symbols, are increasingly being equipped with extended Global Positioning System (GPS capabilities, Micro Electro Mechanical System (MEMS inertial sensors, extremely powerful computing power and very high resolution cameras. Using all of these components, smartphones have the potential to replace the traditional land MMS and portable GPS/GIS equipment. This paper introduces an innovative application of smartphones as a very low cost portable MMS for mapping and GIS applications.

  14. Smartphones Based Mobile Mapping Systems

    Science.gov (United States)

    Al-Hamad, A.; El-Sheimy, N.

    2014-06-01

    The past 20 years have witnessed an explosive growth in the demand for geo-spatial data. This demand has numerous sources and takes many forms; however, the net effect is an ever-increasing thirst for data that is more accurate, has higher density, is produced more rapidly, and is acquired less expensively. For mapping and Geographic Information Systems (GIS) projects, this has been achieved through the major development of Mobile Mapping Systems (MMS). MMS integrate various navigation and remote sensing technologies which allow mapping from moving platforms (e.g. cars, airplanes, boats, etc.) to obtain the 3D coordinates of the points of interest. Such systems obtain accuracies that are suitable for all but the most demanding mapping and engineering applications. However, this accuracy doesn't come cheaply. As a consequence of the platform and navigation and mapping technologies used, even an "inexpensive" system costs well over 200 000 USD. Today's mobile phones are getting ever more sophisticated. Phone makers are determined to reduce the gap between computers and mobile phones. Smartphones, in addition to becoming status symbols, are increasingly being equipped with extended Global Positioning System (GPS) capabilities, Micro Electro Mechanical System (MEMS) inertial sensors, extremely powerful computing power and very high resolution cameras. Using all of these components, smartphones have the potential to replace the traditional land MMS and portable GPS/GIS equipment. This paper introduces an innovative application of smartphones as a very low cost portable MMS for mapping and GIS applications.

  15. Holonomic systems for period mappings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingyue, E-mail: jychen@brandeis.edu [Department of Mathematics, Brandeis University, Waltham, MA 02454 (United States); Huang, An, E-mail: anhuang@math.harvard.edu [Department of Mathematics, Harvard University, Cambridge, MA 02138 (United States); Lian, Bong H., E-mail: lian@brandeis.edu [Department of Mathematics, Brandeis University, Waltham, MA 02454 (United States)

    2015-09-15

    Period mappings were introduced in the sixties [4] to study variation of complex structures of families of algebraic varieties. The theory of tautological systems was introduced recently [7,8] to understand period integrals of algebraic manifolds. In this paper, we give an explicit construction of a tautological system for each component of a period mapping. We also show that the D-module associated with the tautological system gives rise to many interesting vanishing conditions for period integrals at certain special points of the parameter space.

  16. Use of high-resolution imagery acquired from an unmanned aircraft system for fluvial mapping and estimating water-surface velocity in rivers

    Science.gov (United States)

    Kinzel, P. J.; Bauer, M.; Feller, M.; Holmquist-Johnson, C.; Preston, T.

    2013-12-01

    The use of unmanned aircraft systems (UAS) for environmental monitoring in the United States is anticipated to increase in the coming years as the Federal Aviation Administration (FAA) further develops guidelines to permit their integration into the National Airspace System. The U.S. Geological Survey's (USGS) National Unmanned Aircraft Systems Project Office routinely obtains Certificates of Authorization from the FAA for utilizing UAS technology for a variety of natural resource applications for the U.S. Department of the Interior (DOI). We evaluated the use of a small UAS along two reaches of the Platte River near Overton Nebraska, USA, to determine the accuracy of the system for mapping the extent and elevation of emergent sandbars and to test the ability of a hovering UAS to identify and track tracers to estimate water-surface velocity. The UAS used in our study is the Honeywell Tarantula Hawk RQ16 (T-Hawk), developed for the U.S. Army as a reconnaissance and surveillance platform. The T-Hawk has been recently modified by USGS, and certified for airworthiness by the DOI - Office of Aviation Services, to accommodate a higher-resolution imaging payload than was originally deployed with the system. The T-Hawk is currently outfitted with a Canon PowerShot SX230 HS with a 12.1 megapixel resolution and intervalometer to record images at a user defined time step. To increase the accuracy of photogrammetric products, orthoimagery and DEMs using structure-from-motion (SFM) software, we utilized ground control points in the study reaches and acquired imagery using flight lines at various altitudes (200-400 feet above ground level) and oriented both parallel and perpendicular to the river. Our results show that the mean error in the elevations derived from SFM in the upstream reach was 17 centimeters and horizontal accuracy was 6 centimeters when compared to 4 randomly distributed targets surveyed on emergent sandbars. In addition to the targets, multiple transects were

  17. Dynamic Corneal Surface Mapping with Electronic Speckle Pattern Interferometry

    Science.gov (United States)

    Iqbal, S.; Gualini, M. M. S.

    2013-06-01

    In view of the fast advancement in ophthalmic technology and corneal surgery, there is a strong need for the comprehensive mapping and characterization techniques for corneal surface. Optical methods with precision non-contact approaches have been found to be very useful for such bio measurements. Along with the normal mapping approaches, elasticity of corneal surface has an important role in its characterization and needs to be appropriately measured or estimated for broader diagnostics and better prospective surgical results, as it has important role in the post-op corneal surface reconstruction process. Use of normal corneal topographic devices is insufficient for any intricate analysis since these devices operate at relatively moderate resolution. In the given experiment, Pulsed Electronic Speckle Pattern Interferometry has been utilized along with an excitation mechanism to measure the dynamic response of the sample cornea. A Pulsed ESPI device has been chosen for the study because of its micron-level resolution and other advantages in real-time deformation analysis. A bovine cornea has been used as a sample in the subject experiment. The dynamic response has been taken on a chart recorder and it is observed that it does show a marked deformation at a specific excitation frequency, which may be taken as a characteristic elasticity parameter for the surface of that corneal sample. It was seen that outside resonance conditions the bovine cornea was not that much deformed. Through this study, the resonance frequency and the corresponding corneal deformations are mapped and plotted in real time. In these experiments, data was acquired and processed by FRAMES plus computer analysis system. With some analysis of the results, this technique can help us to refine a more detailed corneal surface mathematical model and some preliminary work was done on this. Such modelling enhancements may be useful for finer ablative surgery planning. After further experimentation

  18. Calibration and Industrial Application of Instrument for Surface Mapping based on AFM

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Kofod, Niels; De Chiffre, Leonardo

    2002-01-01

    The paper describes the calibration and application of an integrated system for topographic characterisation of fine surfaces on large workpieces. The system, consisting of an atomic force microscope mounted on a coordinate measuring machine, was especially designed for surface mapping, i.e., mea...... consisting of a steel sphere with a polished surface having 3 nm roughness....

  19. A Vein Map Biometric System

    Directory of Open Access Journals (Sweden)

    Felix Fuentes

    2013-08-01

    Full Text Available There is increasing demand world-wide, from government agencies and the private sector for cutting-edge biometric security technology that is difficult to breach but userfriendly at the same time. Some of the older tools, such as fingerprint, retina and iris scanning, and facial recognition software have all been found to have flaws and often viewed negatively because of many cultural and hygienic issues associated with them. Comparatively, mapping veins as a human barcode, a new technology, has many advantages over older technologies. Specifically, reproducing a three-dimensional model of a human vein system is impossible to replicate. Vein map technology is distinctive because of its state-of-the-art sensors are only able to recognize vein patterns if hemoglobin is actively flowing through the person

  20. CRESST Human Performance Knowledge Mapping System

    National Research Council Canada - National Science Library

    Chung, Gregory K; Michiuye, Joanne K; Brill, David G; Sinha, Ravi; Saadat, Farzad; de Vries, Linda F; Delacruz, Girlie C; Bewley, William L; Baker, Eva L

    2002-01-01

    .... While several tools exist that are available to construct knowledge maps, CRESST's knowledge mapping tool is one of the only systems designed specifically for assessment purposes, the only system...

  1. CRESST Human Performance Knowledge Mapping System

    National Research Council Canada - National Science Library

    Chung, Gregory K; Michiuye, Joanne K; Brill, David G; Sinha, Ravi; Saadat, Farzad; de Vries, Linda F; Delacruz, Girlie C; Bewley, William L; Baker, Eva L

    2002-01-01

    .... This report presents a review of knowledge mapping scoring methods and current online mapping systems, and the overall design, functionality, scoring, usability testing, and authoring capabilities of the CRESST system...

  2. Control system for mapping contaminated areas

    International Nuclear Information System (INIS)

    Milton, Soares; Becker, Paulo H. B.

    2006-01-01

    Some Member states reported to the IAEA an interest in developing a system to be applied in the control of a detector for mapping a surface and defining the distribution of the radioactive material over this area. One of the possible applications would be refurbishment of Rectilinear Scanners (the predecessor of Gamma Cameras) that are old machines but might be still useful for some countries. The IAEA supported this development and a control system for this type of application was designed. in cooperation with the Instituto de Engenharia Nuclear (IEN), Brazil. The system is based on a board developed by the Forschungszentrum Julich in Germany (also in cooperation with the IAEA) and which is based on a Xilinx FPGA SPARTAN XC25150. It contains an MCA (1024 channels based on a fast ADC with software controlled peek detection) and two stepper motor controllers. The human-machine interface developed using Lab View is able to control two stepper motors in order to map an area with a radiation detector. During the mapping the pulse height distributions are collected and an intensity graph for the scanned area is presented on a PC screen. The system was successfully tested using a commercial X-Y table and two commercial stepper motors drivers.. In the next step this system will be used in real applications in the IAEA Member States

  3. 3D silicon breast surface mapping via structured light profilometry

    Science.gov (United States)

    Vairavan, R.; Ong, N. R.; Sauli, Z.; Kirtsaeng, S.; Sakuntasathien, S.; Shahimin, M. M.; Alcain, J. B.; Lai, S. L.; Paitong, P.; Retnasamy, V.

    2017-09-01

    Digital fringe projection technique is one of the promising optical methods for 3D surface imaging as it demonstrates non contact and non invasive characteristics. The potential of this technique matches the requirement for human body evaluation, as it is vital for disease diagnosis and for treatment option selection. Thus, the digital fringe projection has addressed this requirement with its wide clinical related application and studies. However, the application of this technique for 3D surface mapping of the breast is very minimal. Hence, in this work, the application of digital fringe projection for 3D breast surface mapping is reported. Phase shift fringe projection technique was utilized to perform the 3D breast surface mapping. Maiden results have confirmed the feasibility of using the digital fringe projection method for 3D surface mapping of the breast and it can be extended for breast cancer detection.

  4. Molecular surface mesh generation by filtering electron density map.

    Science.gov (United States)

    Giard, Joachim; Macq, Benoît

    2010-01-01

    Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  5. Molecular Surface Mesh Generation by Filtering Electron Density Map

    Directory of Open Access Journals (Sweden)

    Joachim Giard

    2010-01-01

    Full Text Available Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.

  6. Air transport pilots' information priorities for surface moving maps

    Science.gov (United States)

    2003-10-13

    The use of a surface map display for operations on or near the airport surface (taxi out, takeoff, final approach and landing, taxi in) is expected to enhance safety. There is a lack of research, however, detailing how the airport surface should be d...

  7. [Ocular surface system integrity].

    Science.gov (United States)

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  8. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  9. Mapping biological systems to network systems

    CERN Document Server

    Rathore, Heena

    2016-01-01

    The book presents the challenges inherent in the paradigm shift of network systems from static to highly dynamic distributed systems – it proposes solutions that the symbiotic nature of biological systems can provide into altering networking systems to adapt to these changes. The author discuss how biological systems – which have the inherent capabilities of evolving, self-organizing, self-repairing and flourishing with time – are inspiring researchers to take opportunities from the biology domain and map them with the problems faced in network domain. The book revolves around the central idea of bio-inspired systems -- it begins by exploring why biology and computer network research are such a natural match. This is followed by presenting a broad overview of biologically inspired research in network systems -- it is classified by the biological field that inspired each topic and by the area of networking in which that topic lies. Each case elucidates how biological concepts have been most successfully ...

  10. Pseudo-periodic maps and degeneration of Riemann surfaces

    CERN Document Server

    Matsumoto, Yukio

    2011-01-01

    The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.

  11. A system for mapping radioactive specimens

    International Nuclear Information System (INIS)

    Britten, R.J.; Davidson, E.H.

    1988-01-01

    A system for mapping radioactive specimens comprises an avalanche counter, an encoder, pre-amplifier circuits, sample and hold circuits and a programmed computer. The parallel plate counter utilizes avalanche event counting over a large area with the ability to locate radioactive sources in two dimensions. When a beta ray, for example, enters a chamber, an ionization event occurs and the avalanche effect multiplies the event and results in charge collection on the anode surface for a limited period of time before the charge leaks away. The encoder comprises a symmetrical array of planar conductive surfaces separated from the anode by a dielectric material. The encoder couples charge currents, the amlitudes of which define the relative position of the ionization event. The amplitude of coupled current, delivered to pre-amplifiers, defines the location of the event. (author) 12 figs

  12. GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments

    KAUST Repository

    Agus, Marco; Boges, Daniya; Gagnon, Nicolas; Magistretti, Pierre J.; Hadwiger, Markus; Cali, Corrado

    2018-01-01

    Human brain accounts for about one hundred billion neurons, but they cannot work properly without ultrastructural and metabolic support. For this reason, mammalian brains host another type of cells called “glial cells”, whose role is to maintain proper conditions for efficient neuronal function. One type of glial cell, astrocytes, are involved in particular in the metabolic support of neurons, by feeding them with lactate, one byproduct of glucose metabolism that they can take up from blood vessels, and store it under another form, glycogen granules. These energy-storage molecules, whose morphology resembles to spheres with a diameter ranging 10–80 nanometers roughly, can be easily recognized using electron microscopy, the only technique whose resolution is high enough to resolve them. Understanding and quantifying their distribution is of particular relevance for neuroscientists, in order to understand where and when neurons use energy under this form. To answer this question, we developed a visualization technique, dubbed GLAM (Glycogen-derived Lactate Absorption Map), and customized for the analysis of the interaction of astrocytic glycogen on surrounding neurites in order to formulate hypotheses on the energy absorption mechanisms. The method integrates high-resolution surface reconstruction of neurites, astrocytes, and the energy sources in form of glycogen granules from different automated serial electron microscopy methods, like focused ion beam scanning electron microscopy (FIB-SEM) or serial block face electron microscopy (SBEM), together with an absorption map computed as a radiance transfer mechanism. The resulting visual representation provides an immediate and comprehensible illustration of the areas in which the probability of lactate shuttling is higher. The computed dataset can be then explored and quantified in a 3D space, either using 3D modeling software or virtual reality environments. Domain scientists have evaluated the technique by

  13. GLAM: Glycogen-derived Lactate Absorption Map for visual analysis of dense and sparse surface reconstructions of rodent brain structures on desktop systems and virtual environments

    KAUST Repository

    Agus, Marco

    2018-05-21

    Human brain accounts for about one hundred billion neurons, but they cannot work properly without ultrastructural and metabolic support. For this reason, mammalian brains host another type of cells called “glial cells”, whose role is to maintain proper conditions for efficient neuronal function. One type of glial cell, astrocytes, are involved in particular in the metabolic support of neurons, by feeding them with lactate, one byproduct of glucose metabolism that they can take up from blood vessels, and store it under another form, glycogen granules. These energy-storage molecules, whose morphology resembles to spheres with a diameter ranging 10–80 nanometers roughly, can be easily recognized using electron microscopy, the only technique whose resolution is high enough to resolve them. Understanding and quantifying their distribution is of particular relevance for neuroscientists, in order to understand where and when neurons use energy under this form. To answer this question, we developed a visualization technique, dubbed GLAM (Glycogen-derived Lactate Absorption Map), and customized for the analysis of the interaction of astrocytic glycogen on surrounding neurites in order to formulate hypotheses on the energy absorption mechanisms. The method integrates high-resolution surface reconstruction of neurites, astrocytes, and the energy sources in form of glycogen granules from different automated serial electron microscopy methods, like focused ion beam scanning electron microscopy (FIB-SEM) or serial block face electron microscopy (SBEM), together with an absorption map computed as a radiance transfer mechanism. The resulting visual representation provides an immediate and comprehensible illustration of the areas in which the probability of lactate shuttling is higher. The computed dataset can be then explored and quantified in a 3D space, either using 3D modeling software or virtual reality environments. Domain scientists have evaluated the technique by

  14. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing

    2016-08-25

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common-shot gather should abruptly change near the surface projection of the fault. We present ray-map imaging method that migrates transmitted surface waves to the fault plane, and therefore it roughly estimates the orientation, depth, and location of the near-surface fault. The main benefits of this method are that it is computationally inexpensive and robust in the presence of noise.

  15. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  16. Mapping Social Ecological Systems Archetypes

    Science.gov (United States)

    Rocha, J. C.; Malmborg, K.; Gordon, L.

    2016-12-01

    Achieving sustainable development goals requires targeting and monitoring sustainable solutions tailored to different social and ecological contexts. Elinor Ostrom stressed that there is no panaceas or universal solutions to environmental problems, and developed a social-ecological systems' (SES) framework -a nested multi tier set of variables- to help diagnose problems, identify complex interactions, and solutions tailored to each SES arena. However, to our knowledge, the SES framework has only been applied to over a hundred cases, and typically reflect the analysis of local case studies with relatively small coverage in space and time. While case studies are context rich and necessary, their conclusions might not reach policy making instances. Here we develop a data driven method for upscaling Ostrom's SES framework and applied to a context where we expect data is scarce, incomplete, but also where sustainable solutions are badly needed. The purpose of upscaling the framework is to create a tool that facilitates decision making on data scarce environments such as developing countries. We mapped SES by applying the SES framework to poverty alleviation and food security issues in the Volta River basin in Ghana and Burkina Faso. We found archetypical configurations of SES in space given data availability, we study their change over time, and discuss where agricultural innovations such as water reservoirs might have a stronger impact at increasing food security and therefore alleviating poverty and hunger. We conclude outlining how the method can be used in other SES comparative studies.

  17. Coordinate systems and map projections

    CERN Document Server

    Maling, DH

    1992-01-01

    A revised and expanded new edition of the definitive English work on map projections. The revisions take into account the huge advances in geometrical geodesy which have occurred since the early years of satellite geodesy. The detailed configuration of the geoid resulting from the GEOS and SEASAT altimetry measurements are now taken into consideration. Additionally, the chapter on computation of map projections is updated bearing in mind the availability of pocket calculators and microcomputers. Analytical derivation of some map projections including examples of pseudocylindrical and polyconic

  18. Automated dispersion mapping of surface waves

    NARCIS (Netherlands)

    Westerhoff, R.S.; Noorlandt, R.P.

    2008-01-01

    With the increasing amount of innovative geophysical sensors and sensor networks there is a need for faster and more controlled data processing and interpretation in order to cope with the abundance of data coming from monitoring systems. In this article, we are presenting a possible method to deal

  19. Revised potentiometric-surface map, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Ervin, E.M.; Luckey, R.R.; Burkhardt, D.J.

    1994-01-01

    The revised potentiometric-surface map presented in this report updates earlier maps of the Yucca Mountain area using mainly 1988 average water levels. Because of refinements in the corrections to the water-level measurements, these water levels have increased accuracy and precision over older values. The small-gradient area to the southeast of Yucca Mountain is contoured with a 0.25-meter interval and ranges in water-level altitude from 728.5 to 73 1.0 meters. Other areas with different water levels, to the north and west of Yucca Mountain, are illustrated with shaded patterns. The potentiometric surface can be divided into three regions: (1) A small-gradient area to the southeast of Yucca Mountain, which may be explained by flow through high-transmissivity rocks or low ground-water flux through the area; (2) A moderate-gradient area, on the western side of Yucca Mountain, where the water-level altitude ranges from 775 to 780 meters, and appears to be impeded by the Solitario Canyon Fault and a splay of that fault; and (3) A large-gradient area, to the north-northeast of Yucca Mountain, where water level altitude ranges from 738 to 1,035 meters, possibly as a result of a semi-perched groundwater system. Water levels from wells at Yucca Mountain were examined for yearly trends using linear least-squares regression. Data from five wells exhibited trends which were statistically significant, but some of those may be a result of slow equilibration of the water level from drilling in less permeable rocks. Adjustments for temperature and density changes in the deep wells with long fluid columns were attempted, but some of the adjusted data did not fit the surrounding data and, thus, were not used

  20. Multi-Beam Surface Lidar for Lunar and Planetary Mapping

    Science.gov (United States)

    Bufton, Jack L.; Garvin, James B.

    1998-01-01

    Surface lidar techniques are now being demonstrated in low Earth orbit with a single beam of pulsed laser radiation at 1064 nm that profiles the vertical structure of Earth surface landforms along the nadir track of a spacecraft. In addition, a profiling laser altimeter, called MOLA, is operating in elliptical Martian orbit and returning surface topography data. These instruments form the basis for suggesting an improved lidar instrument that employs multiple beams for extension of sensor capabilities toward the goal of true, 3-dimensional mapping of the Moon or other similar planetary surfaces. In general the lidar waveform acquired with digitization of a laser echo can be used for laser distance measurement (i.e. range-to-the-surface) by time-of-flight measurement and for surface slope and shape measurements by examining the detailed lidar waveform. This is particularly effective when the intended target is the lunar surface or another planetary body free of any atmosphere. The width of the distorted return pulse is a first order measure of the surface incidence angle, a combination of surface slope and laser beam pointing. Assuming an independent and absolute (with respect to inertial space) measurement of laser beam pointing on the spacecraft, it is possible to derive a surface slope with-respect-to the mean planetary surface or its equipotential gravity surface. Higher-order laser pulse distortions can be interpreted in terms of the vertical relief of the surface or reflectivity variations within the area of the laser beam footprint on the surface.

  1. A mobile mapping system for hazardous facilities

    International Nuclear Information System (INIS)

    Barry, R.E.; Jones, J.P.; Little, C.Q.; Wilson, C.W.

    1997-01-01

    The Mobile Mapping System (MMS) is a completely self-contained vehicle with omnidirectional capability and extremely good odometry, capable of operation up to 12 hours between battery charges. The platform itself is based on a dual differential drive system with a compliant linkage between the two drive systems. This compliant linkage allows for low-level controller errors to be absorbed by the system and their navigational effects to be compensated for, yielding an extremely accurate navigational capability. Vehicle design also allows for a considerable payload (250 lb) and a large surface area for auxiliary equipment mounting (2 by 6 ft). The vehicle supports remote operation by reading commands and writing replies through its serial communications port. Use of a radio-ethernet and a radio-video channel allow for remote video and communications links to be maintained with the vehicle in many remote operation environments. The MMS uses a structured light system to quickly acquire coarse range images of the environment and a coherent laser radar (CLR) to acquire finer resolution range images. The coherent laser radar can also be used to determine platform position and orientation to millimeter accuracies if targets of known. Sensor range image data as well as video are off loaded to a remote computer for postprocessing, display, and archiving. Diagrams and images below include an image of the MMS vehicle before addition of sensors, diagram of vehicle with sensors, and computer system connections

  2. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  3. Sea surface temperature mapping using a thermal infrared scanner

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R; Pandya, R; Mathur, K.M.; Charyulu, R; Rao, L.V.G.

    1 metre water column below the sea surface. A thermal infrared scanner developed by the Space Applications Centre (ISRO), Ahmedabad was operated on board R.V. Gaveshani in April/May 1984 for mapping SST over the eastern Arabian Sea. SST values...

  4. Groupoid extensions of mapping class representations for bordered surfaces

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Bene, Alex; Penner, Robert

    2009-01-01

    by explicit formulae depending upon six essential cases, and the kernel and image of the groupoid representation are computed. Furthermore, this provides groupoid extensions of any representation of the mapping class group that factors through its action on the fundamental group of the surface including...

  5. Use of roughness maps in visualisation of surfaces

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Rantanen, Jukka; Yliruusi, Jouko

    2005-01-01

    monohydrate, theophylline anhydrate, sodium chloride and potassium chloride. The roughness determinations were made by a laser profilometer. The new matrix method gives detailed roughness maps, which are able to show local variations in surface roughness values and provide an illustrative picture...

  6. New Map Symbol System for Disaster Management

    Science.gov (United States)

    Marinova, Silvia T.

    2018-05-01

    In the last 10 years Bulgaria was frequently affected by natural and man-made disasters that caused considerable losses. According to the Bulgarian Disaster Management Act (2006) disaster management should be planned at local, regional and national level. Disaster protection is based on plans that include maps such as hazard maps, maps for protection, maps for evacuation planning, etc. Decision-making and cooperation between two or more neighboring municipalities or regions in crisis situation are still rendered difficult because the maps included in the plans differ in scale, colors, map symbols and cartographic design. To improve decision-making process in case of emergency and to reduce the number of human loss and property damages disaster management plans at local and regional level should be supported by detailed thematic maps created in accordance with uniform contents, map symbol system and design. The paper proposes a new symbol system for disaster management that includes a four level hierarchical classification of objects and phenomena according to their type and origin. All objects and phenomena of this classification are divided into five categories: disasters; infrastructure; protection services and infrastructure for protection; affected people and affected infrastructure; operational sites and activities. The symbols of these categories are shown with different background colors and shapes so that they are identifiable. All the symbols have simple but associative design. The new symbol system is used in the design of a series of maps for disaster management at local and regional level.

  7. A coastal surface seawater analyzer for nitrogenous nutrient mapping

    Science.gov (United States)

    Masserini, Robert T.; Fanning, Kent A.; Hendrix, Steven A.; Kleiman, Brittany M.

    2017-11-01

    Satellite-data-based modeling of chlorophyll indicates that ocean waters in the mesosphere category are responsible for the majority of oceanic net primary productivity. Coastal waters, which frequently have surface chlorophyll values in the mesosphere range and have strong horizontal chlorophyll gradients and large temporal variations. Thus programs of detailed coastal nutrient surveys are essential to the study of the dynamics of oceanic net primary productivity, along with land use impacts on estuarine and coastal ecosystems. The degree of variability in these regions necessitates flexible instrumentation capable of near real-time analysis to detect and monitor analytes of interest. This work describes the development of a portable coastal surface seawater analyzer for nutrient mapping that can simultaneously elucidate with high resolution the distribution of nitrate, nitrite, and ammonium - the three principal nitrogenous inorganic nutrients in coastal systems. The approach focuses on the use of pulsed xenon flash lamps to construct an analyzer which can be adapted to any automated chemistry with fluorescence detection. The system has two heaters, on-the-fly standardization, on-board data logging, an independent 24 volt direct current power supply, internal local operating network, a 12 channel peristaltic pump, four rotary injection/selection valves, and an intuitive graphical user interface. Using the methodology of Masserini and Fanning (2000) the detection limits for ammonium, nitrite, and nitrate plus nitrite were 11, 10, and 22 nM, respectively. A field test of the analyzer in Gulf of Mexico coastal waters demonstrated its ability to monitor and delineate the complexity of inorganic nitrogen nutrient enrichments within a coastal system.

  8. Interactive Mapping on Virtual Terrain Models Using RIMS (Real-time, Interactive Mapping System)

    Science.gov (United States)

    Bernardin, T.; Cowgill, E.; Gold, R. D.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-12-01

    Recent and ongoing space missions are yielding new multispectral data for the surfaces of Earth and other planets at unprecedented rates and spatial resolution. With their high spatial resolution and widespread coverage, these data have opened new frontiers in observational Earth and planetary science. But they have also precipitated an acute need for new analytical techniques. To address this problem, we have developed RIMS, a Real-time, Interactive Mapping System that allows scientists to visualize, interact with, and map directly on, three-dimensional (3D) displays of georeferenced texture data, such as multispectral satellite imagery, that is draped over a surface representation derived from digital elevation data. The system uses a quadtree-based multiresolution method to render in real time high-resolution (3 to 10 m/pixel) data over large (800 km by 800 km) spatial areas. It allows users to map inside this interactive environment by generating georeferenced and attributed vector-based elements that are draped over the topography. We explain the technique using 15 m ASTER stereo-data from Iraq, P.R. China, and other remote locations because our particular motivation is to develop a technique that permits the detailed (10 m to 1000 m) neotectonic mapping over large (100 km to 1000 km long) active fault systems that is needed to better understand active continental deformation on Earth. RIMS also includes a virtual geologic compass that allows users to fit a plane to geologic surfaces and thereby measure their orientations. It also includes tools that allow 3D surface reconstruction of deformed and partially eroded surfaces such as folded bedding planes. These georeferenced map and measurement data can be exported to, or imported from, a standard GIS (geographic information systems) file format. Our interactive, 3D visualization and analysis system is designed for those who study planetary surfaces, including neotectonic geologists, geomorphologists, marine

  9. Photogrammetry, Digital mapping and Land Informations Systems

    DEFF Research Database (Denmark)

    Frederiksen, Poul

    1998-01-01

    Monitoring activities on photogrammetry, digital mapping and land information systems in State Land Service in Latvia in relation to the EU Phare Project Phase II, Technical Assistance to land Privatisation and registration in Latvia.......Monitoring activities on photogrammetry, digital mapping and land information systems in State Land Service in Latvia in relation to the EU Phare Project Phase II, Technical Assistance to land Privatisation and registration in Latvia....

  10. Topographical mapping system for hazardous and radiological environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Bernacki, B.E.; Pardini, A.

    1995-01-01

    This report focuses on the results of the acceptance test of the Topographical Mapping System (TMS) delivered to the Hanford site. The TMS was tested for accuracy over the specified range of 45 feet. The TMS was also tested to ensure that the unit could be deployed through multiple risers and maintain accuracy and registration of the surface mapping data. In addition, the TMS was disassembled and reassembled and redeployed to test field replacement of modules that make up the sensor head that is deployed in the vapor space of Underground Storage Tanks such as those located at the Hanford site in southeastern Washington State. The results from these tests along with temperature testing on the complete system and radiation testing of selected susceptible components are covered in this report. The primary purpose of the TMS is to generate reliable and accurate three-dimensional maps of the internal surfaces of storage tank. One use for these mapping systems is in creating and maintaining a current map of the tank interior as input to a robotic ''world model'' that is used to test remediation strategies or plan robot trajectories. Another use is tracking the movement of the waste surface as it responds to expanding bubbles of trapped Gas. A third use of the TMS is to perform a volumetric analysis of the amount of waste removed from the tanks during remediation

  11. Multi-channel Analysis of Passive Surface Waves (MAPS)

    Science.gov (United States)

    Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.

    2017-12-01

    Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be

  12. Contribution of body surface mapping to clinical outcome after surgical ablation of postinfarction ventricular tachycardia

    NARCIS (Netherlands)

    van Dessel, Pascal F.; van Hemel, Norbert M.; Groenewegen, Arne Sippens; de Bakker, Jacques M.; Linnebank, André C.; Defauw, Jo J.

    2002-01-01

    This article investigates the influence of body surface mapping on outcome of ventricular antiarrhythmic surgery. Preoperative mapping is advocated to optimize map-guided antiarrhythmic surgery of postinfarction ventricular tachycardia. We sequentially analyzed the results of catheter activation

  13. Surface Mineralogy Mapping of Ceres from the Dawn Mission

    Science.gov (United States)

    McCord, T. B.; Zambon, F.

    2017-12-01

    Ceres' surface composition is of special interest because it is a window into the interior state and the past evolution of this dwarf planet. Disk-integrated telescopic spectral observations indicated that Ceres' surface is hydroxylated, similar to but not exactly the same as some of the carbonaceous chondrite classes of meteorites. Furthermore, Ceres' bulk density is low, indicating significant water content. The Dawn mission in orbit around Ceres, provided a new and larger set of observations on the mineralogy, molecular and elemental composition, and their distributions in association with surface features and geology. A set of articles was prepared, from which this presentation is derived, that is the first treatment of the entire surface composition of Ceres using the complete High Altitude Mapping Orbit (HAMO) Dawn Ceres data set and the calibrations from all the Dawn instruments. This report provides a current and comprehensive view of Ceres' surface composition and integrates them into general conclusions. Ceres' surface composition shows a fairly uniform distribution of NH4- and Mg-phyllosilicates, carbonates, mixed with a dark component. The widespread presence of phyllosilicates, and salts on Ceres' surface is indicative of the presence of aqueous alteration processes, which involved the whole dwarf planet. There is also likely some contamination by low velocity infall, as seen on Vesta, but it is more difficult to distinguish this infall from native Ceres material, unlike for the Vesta case.

  14. Approximate systems with confluent bonding mappings

    OpenAIRE

    Lončar, Ivan

    2001-01-01

    If X = {Xn, pnm, N} is a usual inverse system with confluent (monotone) bonding mappings, then the projections are confluent (monotone). This is not true for approximate inverse system. The main purpose of this paper is to show that the property of Kelley (smoothness) of the space Xn is a sufficient condition for the confluence (monotonicity) of the projections.

  15. Nasugbu Malunggay Information And Mapping System

    Directory of Open Access Journals (Sweden)

    RENZ MERVIN A. SALAC

    2014-02-01

    Full Text Available “First Impression, Last” all web based systems are judged by that quote. In modern age technology, people are interested in an eye-catching website, information system, mapping system, etc. It gives more meaning to people when it comes to technology. An information system basically handles the flows and maintenance of information that supports a business or some other operation. It contains information about significant people, places and things within the organisation or in the environment surrounding it. It is any combination of information technology people’s activities that support operations, management and decision making. Moringa or Malunggay, also known as the Miracle Tree, is a multipurpose plant, as the leaves, pods, fruits, flowers, roots and barks of the tree can be utilized. These humble leaves ate a powerhouse of nutritional value. Moringa have a great contribution to our health it gives may health benefits which human beings need for their daily operations. From the statement, the researchers proposed a web based system entitled that can help moringa lovers and citizens of Nasugbu to map it all over Nasugbu together with its species, address, and the date planted and it is uploaded to the internet. The researchers used Waterfall Model as its development process model. The programming language used in the study was PHP, HTML, CSS and Google Map API for the mapping system and MySQL in managing the database. The study have three users; the admin, viewer, and feeder. The feeder will feed additional moringa information to the map that the admin will confirm and at the same time the admin can be a feeder. After getting the overall understanding of the respondents the Nasugbu Malunggay Information and Mapping System was rated Very Good.

  16. Riemannian metric optimization on surfaces (RMOS) for intrinsic brain mapping in the Laplace-Beltrami embedding space.

    Science.gov (United States)

    Gahm, Jin Kyu; Shi, Yonggang

    2018-05-01

    Surface mapping methods play an important role in various brain imaging studies from tracking the maturation of adolescent brains to mapping gray matter atrophy patterns in Alzheimer's disease. Popular surface mapping approaches based on spherical registration, however, have inherent numerical limitations when severe metric distortions are present during the spherical parameterization step. In this paper, we propose a novel computational framework for intrinsic surface mapping in the Laplace-Beltrami (LB) embedding space based on Riemannian metric optimization on surfaces (RMOS). Given a diffeomorphism between two surfaces, an isometry can be defined using the pullback metric, which in turn results in identical LB embeddings from the two surfaces. The proposed RMOS approach builds upon this mathematical foundation and achieves general feature-driven surface mapping in the LB embedding space by iteratively optimizing the Riemannian metric defined on the edges of triangular meshes. At the core of our framework is an optimization engine that converts an energy function for surface mapping into a distance measure in the LB embedding space, which can be effectively optimized using gradients of the LB eigen-system with respect to the Riemannian metrics. In the experimental results, we compare the RMOS algorithm with spherical registration using large-scale brain imaging data, and show that RMOS achieves superior performance in the prediction of hippocampal subfields and cortical gyral labels, and the holistic mapping of striatal surfaces for the construction of a striatal connectivity atlas from substantia nigra. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Mapping the global land surface using 1 km AVHRR data

    Science.gov (United States)

    Lauer, D.T.; Eidenshink, J.C.

    1998-01-01

    The scientific requirements for mapping the global land surface using 1 km advanced very high resolution radiometer (AVHRR) data have been set forth by the U.S. Global Change Research Program; the International Geosphere Biosphere Programme (IGBP); The United Nations; the National Oceanic and Atmospheric Administration (NOAA); the Committee on Earth Observations Satellites; and the National Aeronautics and Space Administration (NASA) mission to planet Earth (MTPE) program. Mapping the global land surface using 1 km AVHRR data is an international effort to acquire, archive, process, and distribute 1 km AVHRR data to meet the needs of the international science community. A network of AVHRR receiving stations, along with data recorded by NOAA, has been acquiring daily global land coverage since April 1, 1992. A data set of over 70,000 AVHRR images is archived and distributed by the United States Geological Survey (USGS) EROS Data Center, and the European Space Agency. Under the guidance of the IGBP, processing standards have been developed for calibration, atmospheric correction, geometric registration, and the production of global 10-day maximum normalized difference vegetation index (NDVI) composites. The major uses of the composites are for the study of surface vegetation condition, mapping land cover, and deriving biophysical characteristics of terrestrial ecosystems. A time-series of 54 10-day global vegetation index composites for the period of April 1, 1992 through September 1993 has been produced. The production of a time-series of 33 10-day global vegetation index composites using NOAA-14 data for the period of February 1, 1995 through December 31, 1995 is underway. The data products are available from the USGS, in cooperation with NASA's MTPE program and other international organizations.

  18. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  19. Explorations in topology map coloring, surfaces and knots

    CERN Document Server

    Gay, David

    2013-01-01

    Explorations in Topology, Second Edition, provides students a rich experience with low-dimensional topology (map coloring, surfaces, and knots), enhances their geometrical and topological intuition, empowers them with new approaches to solving problems, and provides them with experiences that will help them make sense of future, more formal topology courses. The book's innovative story-line style models the problem-solving process, presents the development of concepts in a natural way, and engages students in meaningful encounters with the material. The updated end-of-chapter investigation

  20. A road map for implementing systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dean, F.F. [Sandia National Labs., Albuquerque, NM (United States). New Mexico Weapons Systems Engineering Center; Bentz, B.; Bahill, A.T. [Univ. of Arizona, Tucson, AZ (United States)

    1997-02-01

    Studies by academia, industry, and government indicate that applying a sound systems engineering process to development programs is an important tool for preventing cost and schedule overruns and performance deficiencies. There is an enormous body of systems engineering knowledge. Where does one start? How can the principles of systems engineering be applied in the Sandia environment? This road map is intended to be an aid to answering these questions.

  1. Wide-Baseline Stereo-Based Obstacle Mapping for Unmanned Surface Vehicles

    Science.gov (United States)

    Mou, Xiaozheng; Wang, Han

    2018-01-01

    This paper proposes a wide-baseline stereo-based static obstacle mapping approach for unmanned surface vehicles (USVs). The proposed approach eliminates the complicated calibration work and the bulky rig in our previous binocular stereo system, and raises the ranging ability from 500 to 1000 m with a even larger baseline obtained from the motion of USVs. Integrating a monocular camera with GPS and compass information in this proposed system, the world locations of the detected static obstacles are reconstructed while the USV is traveling, and an obstacle map is then built. To achieve more accurate and robust performance, multiple pairs of frames are leveraged to synthesize the final reconstruction results in a weighting model. Experimental results based on our own dataset demonstrate the high efficiency of our system. To the best of our knowledge, we are the first to address the task of wide-baseline stereo-based obstacle mapping in a maritime environment. PMID:29617293

  2. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  3. Portable radiation detector and mapping system

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1995-01-01

    A portable radiation detector and mapping system (RADMAPS) has been developed to detect, locate and plot nuclear radiation intensities on commercially available digital maps and other images. The field unit records gamma-ray spectra or neutron signals together with positions from a Global Positioning System (GPS) on flash memory cards. The recorded information is then transferred to a lap-top computer for spectral data analyses and then georegistered graphically on maps, photographs, etc. RADMAPS integrates several existing technologies to produce a preprogrammable field unit uniquely suited for each survey, as required. The system presently records spectra from a Nal(Tl) gamma-ray detector or an enriched Li-6 doped glass neutron scintillator. Standard Geographic Information System software installed in a lap-top, complete with CD-ROM supporting digitally imaged maps, permits the characterization of nuclear material in the field when the presence of such material is not otherwise documented. This paper gives the results of a typical site survey of the Savannah River Site (SRS) using RADMAPS

  4. Mapping surface properties of sinusoidal roughness standards by TPM

    International Nuclear Information System (INIS)

    Liu, X; Rubert, P

    2005-01-01

    We report our investigation on the surface properties of sinusoidal roughness standards made from pure electroformed nickel. Two specimens having a sinusoidal profile with nominal R a of 0.36 μm and a peak spacing of 25 μm are chosen for this investigation. One specimen is further treated with a hard protective coating of nickel-boron. The surface topography, friction, hardness and Young's modulus of the specimens were measured by a novel instrument, the multi-function Tribological Probe Microscope (TPM). The results show that hardness of these two specimens is 14.1 GPa for uncoated specimen and 25.7 GPa for the coated one, while the Young's modulus is 188 GPa and 225 GPa, respectively. The ramping force was set to 3mN for both the specimens and the effect of the tip penetration was investigated by comparing the topography measurements before and after hardness mapping. It has been found out that there is no significant change in the averaged profiles over the scanned area, which indicates the topography distortion seen in the multi-function mapping, is recoverable. Cross correlation between topography and its corresponding hardness/Young's modulus has been carried out and the result will be discussed in the paper

  5. Potentiometric-surface map, 1993, Yucca Mountain and vicinity, Nevada

    International Nuclear Information System (INIS)

    Tucci, P.; Burkhardt, D.J.

    1995-01-01

    The revised potentiometric surface map here, using mainly 1993 average water levels, updates earlier maps of this area. Water levels are contoured with 20-m intervals, with additional 0.5-m contours in the small-gradient area SE of Yucca Mountain. Water levels range from 728 m above sea level SE of Yucca to 1,034 m above sea level north of Yucca. Potentiometric levels in the deeper parts of the volcanic rock aquifer range from 730 to 785 m above sea level. The potentiometric surface can be divided into 3 regions: A small gradient area E and SE of Yucca, a moderate-gradient area on the west side of Yucca, and a large-gradient area to the N-NE of Yucca. Water levels from wells at Yucca were examined for yearly trends (1986-93) using linear least-squares regression. Of the 22 wells, three had significant positive trends. The trend in well UE-25 WT-3 may be influenced by monitoring equipment problems. Tends in USW WT-7 and USW WTS-10 are similar; both are located near a fault west of Yucca; however another well near that fault exhibited no significant trend

  6. Surface registration technique for close-range mapping applications

    Science.gov (United States)

    Habib, Ayman F.; Cheng, Rita W. T.

    2006-08-01

    Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.

  7. Outcome mapping for health system integration

    Directory of Open Access Journals (Sweden)

    Tsasis P

    2013-03-01

    Full Text Available Peter Tsasis,1 Jenna M Evans,2 David Forrest,3 Richard Keith Jones4 1School of Health Policy and Management, Faculty of Health, York University, Toronto, Canada; 2Institute of Health Policy, Management and Evaluation, Faculty of Medicine, University of Toronto, Canada; 3Global Vision Consulting Ltd, Victoria, Canada; 4R Keith Jones and Associates, Victoria, Canada Abstract: Health systems around the world are implementing integrated care strategies to improve quality, reduce or maintain costs, and improve the patient experience. Yet few practical tools exist to aid leaders and managers in building the prerequisites to integrated care, namely a shared vision, clear roles and responsibilities, and a common understanding of how the vision will be realized. Outcome mapping may facilitate stakeholder alignment on the vision, roles, and processes of integrated care delivery via participative and focused dialogue among diverse stakeholders on desired outcomes and enabling actions. In this paper, we describe an outcome-mapping exercise we conducted at a Local Health Integration Network in Ontario, Canada, using consensus development conferences. Our preliminary findings suggest that outcome mapping may help stakeholders make sense of a complex system and foster collaborative capital, a resource that can support information sharing, trust, and coordinated change toward integration across organizational and professional boundaries. Drawing from the theoretical perspectives of complex adaptive systems and collaborative capital, we also outline recommendations for future outcome-mapping exercises. In particular, we emphasize the potential for outcome mapping to be used as a tool not only for identifying and linking strategic outcomes and actions, but also for studying the boundaries, gaps, and ties that characterize social networks across the continuum of care. Keywords: integrated care, integrated delivery systems, complex adaptive systems, social capital

  8. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  9. Application of Volta potential mapping to determine metal surface defects

    International Nuclear Information System (INIS)

    Nazarov, A.; Thierry, D.

    2007-01-01

    As a rule, stress or fatigue cracks originate from various surface imperfections, such as pits, inclusions or locations showing a residual stress. It would be very helpful for material selection to be able to predict the likelihood of environment-assisted cracking or pitting corrosion. By using Scanning Kelvin Probe (the vibrating capacitor with a spatial resolution of 80 μm) the profiling of metal electron work function (Volta potential) in air is applied to the metal surfaces showing residual stress, MnS inclusions and wearing. The Volta potential is influenced by the energy of electrons at the Fermi level and drops generally across the metal/oxide/air interfaces. Inclusions (e.g. MnS) impair continuity of the passive film that locally decreases Volta potential. The stress applied gives rise to dislocations, microcracks and vacancies in the metal and the surface oxide. The defects decrease Volta and corrosion potentials; reduce the overvoltage for processes of passivity breakdown and anodic metal dissolution. These 'anodic' defects can be visualized in potential mapping that can help us to predict locations with higher risk of pitting corrosion or cracking

  10. Biomass energy inventory and mapping system

    Energy Technology Data Exchange (ETDEWEB)

    Kasile, J.D. [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    A four-stage biomass energy inventory and mapping system was conducted for the entire State of Ohio. The product is a set of maps and an inventory of the State of Ohio. The set of amps and an inventory of the State`s energy biomass resource are to a one kilometer grid square basis on the Universal Transverse Mercator (UTM) system. Each square kilometer is identified and mapped showing total British Thermal Unit (BTU) energy availability. Land cover percentages and BTU values are provided for each of nine biomass strata types for each one kilometer grid square. LANDSAT satellite data was used as the primary stratifier. The second stage sampling was the photointerpretation of randomly selected one kilometer grid squares that exactly corresponded to the LANDSAT one kilometer grid square classification orientation. Field sampling comprised the third stage of the energy biomass inventory system and was combined with the fourth stage sample of laboratory biomass energy analysis using a Bomb calorimeter and was then used to assign BTU values to the photointerpretation and to adjust the LANDSAT classification. The sampling error for the whole system was 3.91%.

  11. Method and system for a network mapping service

    Science.gov (United States)

    Bynum, Leo

    2017-10-17

    A method and system of publishing a map includes providing access to a plurality of map data files or mapping services between at least one publisher and at least one subscriber; defining a map in a map context comprising parameters and descriptors to substantially duplicate a map by reference to mutually accessible data or mapping services, publishing a map to a channel in a table file on server; accessing the channel by at least one subscriber, transmitting the mapping context from the server to the at least one subscriber, executing the map context by the at least one subscriber, and generating the map on a display software associated with the at least one subscriber by reconstituting the map from the references and other data in the mapping context.

  12. Photoinduced surface voltage mapping study for large perovskite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaojing; Liu, Yucheng; Gao, Fei; Yang, Zhou [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Liu, Shengzhong, E-mail: liusz@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi' an 710062 (China); Dalian Institute of Chemical Physics, iChEM, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-02

    Using a series of illumination sources, including white light (tungsten-halogen lamp), 445-nm, 532-nm, 635-nm, and 730-nm lasers, the surface photovoltage (SPV) images were mapped for centimeter-sized CH{sub 3}NH{sub 3}PbX{sub 3} (X = Cl, Br, I) perovskite single crystals using Kelvin probe force microscopy. The significant SPV signals were observed to be wavelength-dependent. We attribute the appreciable SPV to the built-in electric field in the space charge region. This study shines light into the understanding of photoinduced charge generation and separation processes at nanoscale to help advance the development of perovskite solar cells, optoelectronics, laser, photodetector, and light-emitting diode (LED).

  13. Interchanging parameters and integrals in dynamical systems: the mapping case

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, John A.G. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia) and School of Mathematics, University of New South Wales, Sydney, NSW (Australia)]. E-mail: jagr@maths.unsw.edu.au; Apostolos, Iatrou; Quispel, G.R.W. [Department of Mathematics, La Trobe University, Bundoora, VIC (Australia)]. E-mails: A.Iatrou@latrobe.edu.au; R.Quispel@latrobe.edu.au

    2002-03-08

    We consider dynamical systems with discrete time (maps) that possess one or more integrals depending upon parameters. We show that integrals can be used to replace parameters in the original map so as to construct a different map with different integrals. We also highlight a process of reparametrization that can be used to increase the number of parameters in the original map prior to using integrals to replace them. Properties of the original map and the new map are compared. The theory is motivated by, and illustrated with, examples of a three-dimensional trace map and some four-dimensional maps previously shown to be integrable. (author)

  14. A real-time radiation mapping system

    International Nuclear Information System (INIS)

    Scoggins, W.A.; VanEtten, D.M.

    1988-01-01

    A prototype of a real-time radiation mapping system, Ranger, was developed to respond to an accident involving the release of plutonium for the Department of Energy's Accident Response Group. In 1987 Ranger demonstrated that it can provide an efficient method of monitoring large areas of land for radioactive contamination. With the experience gained from the operation of the prototype, the external computer and software are being upgraded in order to obtain a fully operational system. The new system uses the prototype's commercially available line-of-sight microwave system for determining position and the same radiation detection instruments. The data obtained from the radiation detection instrument(s) are linked back to the external computer along with the relative position of the measurement through the ranging system. The data are displayed on a gridded map as colored circles and permanently stored in real-time. The different colors represent different contamination levels. Contours can be drawn using the permanently stored data. 4 figs

  15. Band mapping of surface states vs. adsorbate coverage

    International Nuclear Information System (INIS)

    Rotenberg, E.; Kevan, S.D.; Denlinger, J.D.; Chung, Jin-Wook

    1997-01-01

    The theory of electron bands, which arises from basic quantum mechanical principles, has been the cornerstone of solid state physics for over 60 years. Simply put, an energy band is an electron state in a solid whose energy varies with its momentum (similar to, but with a more complicated dependence than, how a free electron's energy is proportional to its momentum squared). Much attention over the last 15 years has been given to the study of band structure of surfaces and interfaces, especially as the applications of these two-dimensional systems have become increasingly important to industry and science. The ultraESCA endstation at beamline 7.01 at the Advanced Light Source was developed for very high-energy - (∼50 meV) and angular - ( 12 photons/sec) makes the detailed study of the evolution of bands possible. The authors are interested in learning how, when one forms a chemical bond between a metal and an overlaying atom or molecule, the resulting charge transfer to or from the adsorbate affects the surface bands. In some cases of interest, intermediate coverages lead to different band structure than at the extremes of clean and saturated surfaces. Surfaces of tungsten are particularly interesting, as their atomic geometry has been shown to be exquisitely sensitive to both the surface vibrational and electronic properties. In this study, the authors looked at the surface bands of tungsten ((110) surface), as a function both of coverage and mass of overlaying atoms. The adsorbed atoms were hydrogen and the alkali atoms lithium and cesium

  16. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the water surface response was not diluted by land areas, the temperature difference recorded by HCMM corresponds to in situ readings with rsme on the order of 1 C

  17. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products

    Directory of Open Access Journals (Sweden)

    Ying Qu

    2015-01-01

    Full Text Available Surface albedo is one of the key controlling geophysical parameters in the surface energy budget studies, and its temporal and spatial variation is closely related to the global climate change and regional weather system due to the albedo feedback mechanism. As an efficient tool for monitoring the surfaces of the Earth, remote sensing is widely used for deriving long-term surface broadband albedo with various geostationary and polar-orbit satellite platforms in recent decades. Moreover, the algorithms for estimating surface broadband albedo from satellite observations, including narrow-to-broadband conversions, bidirectional reflectance distribution function (BRDF angular modeling, direct-estimation algorithm and the algorithms for estimating albedo from geostationary satellite data, are developed and improved. In this paper, we present a comprehensive literature review on algorithms and products for mapping surface broadband albedo with satellite observations and provide a discussion of different algorithms and products in a historical perspective based on citation analysis of the published literature. This paper shows that the observation technologies and accuracy requirement of applications are important, and long-term, global fully-covered (including land, ocean, and sea-ice surfaces, gap-free, surface broadband albedo products with higher spatial and temporal resolution are required for climate change, surface energy budget, and hydrological studies.

  18. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    Energy Technology Data Exchange (ETDEWEB)

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  19. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    International Nuclear Information System (INIS)

    Buice, E.S.; Alger, E.T.; Antipa, N.A.; Bhandarkar, S.D.; Biesiada, T.A.; Conder, A.D.; Dzenitis, E.G.; Flegel, M.S.; Hamza, A.V.; Heinbockel, C.L.; Horner, J.; Johnson, M.A.; Kegelmeyer, L.M.; Meyer, J.S.; Montesanti, R.C.; Reynolds, J.L.; Taylor, J.S.; Wegner, P.J.

    2011-01-01

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 (micro)m diameter glass-core fill-tube that tapers down to a 10(micro) diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1σ), which corresponds to approximately 5 (micro)m linear error on the capsule surface.

  20. Cancer Risk Map for the Surface of Mars

    Science.gov (United States)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2011-01-01

    We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.

  1. IRAS surface brightness maps of reflection nebulae in the Pleiades

    Science.gov (United States)

    Castelaz, Michael W.; Werner, M. W.; Sellgren, K.

    1987-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.

  2. Face recognition based on depth maps and surface curvature

    Science.gov (United States)

    Gordon, Gaile G.

    1991-09-01

    This paper explores the representation of the human face by features based on the curvature of the face surface. Curature captures many features necessary to accurately describe the face, such as the shape of the forehead, jawline, and cheeks, which are not easily detected from standard intensity images. Moreover, the value of curvature at a point on the surface is also viewpoint invariant. Until recently range data of high enough resolution and accuracy to perform useful curvature calculations on the scale of the human face had been unavailable. Although several researchers have worked on the problem of interpreting range data from curved (although usually highly geometrically structured) surfaces, the main approaches have centered on segmentation by signs of mean and Gaussian curvature which have not proved sufficient in themselves for the case of the human face. This paper details the calculation of principal curvature for a particular data set, the calculation of general surface descriptors based on curvature, and the calculation of face specific descriptors based both on curvature features and a priori knowledge about the structure of the face. These face specific descriptors can be incorporated into many different recognition strategies. A system that implements one such strategy, depth template comparison, giving recognition rates between 80% and 90% is described.

  3. Modelling and analysis of flux surface mapping experiments on W7-X

    Science.gov (United States)

    Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team

    2015-11-01

    The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.

  4. Testing geoscience data visualization systems for geological mapping and training

    Science.gov (United States)

    Head, J. W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Senthil Kumar, P.

    2008-09-01

    desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment", or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks. There is still much to learn and understand, however, about how the varying degrees of immersive displays affect task performance. For example, in using a 1280x1024 desktop monitor to explore an image, the mapper wastes a lot of time in image zooming/panning to balance the analysis-driven need for both detail as well as context. Therefore, we have spent a considerable amount of time exploring higher-resolution media, such as an IBM Bertha display 3840x2400 or a tiled wall with multiple projectors. We have found through over a year of weekly meetings and assessment that they definitely improve the efficiency of analysis and mapping. Here we outline briefly the nature of the major systems and our initial assessment of these in 1:5M Scale NASA-USGS Venus Geological Mapping Program (http://astrogeology.usgs. gov/Projects/PlanetaryMapping/MapStatus/VenusStatus/V enus_Status.html). 1. Immersive Virtual Reality (Cave): ADVISER System Description: Our Cave system is an 8'x8'x8' cube with four projection surfaces (three walls and the floor). Four linux machines (identical in performance to the desktop machine) provide data for the Cave. Users utilize a handheld 3D tracked input device to navigate. Our 3D input device has a joystick and is simple to use. To navigate, the user simply points in the direction he/she wants to fly and pushes the joystick forward or backward to move relative to that direction. The user can push the joystick to the left and right to rotate his/her position in the virtual world. A collision detection algorithm is used to prevent the user from going underneath the surface. We have developed

  5. Simultaneous Localization and Mapping for Planetary Surface Mobility, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ProtoInnovations, LLC and Carnegie Mellon University have formed a partnership to commercially develop localization and mapping technologies for planetary rovers....

  6. Radioactive contamination mapping system detailed design report

    International Nuclear Information System (INIS)

    Bauer, R.G.; O'Callaghan, P.B.

    1996-08-01

    The Hanford Site's 100 Area production reactors released radioactively and chemically contaminated liquids into the soil column. The primary source of the contaminated liquids was reactor coolant and various waste waters released from planned liquid discharges, as well as pipelines, pipe junctions, and retention basins leaking into the disposal sites. Site remediation involves excavating the contaminated soils using conventional earthmoving techniques and equipment, treating as appropriate, transporting the soils, and disposing the soils at ERDF. To support remediation excavation, disposal, and documentation requirements, an automated radiological monitoring system was deemed necessary. The RCMS (Radioactive Contamination Mapping System) was designed to fulfill this need. This Detailed Design Report provides design information for the RCMS in accordance with Bechtel Hanford, Inc. Engineering Design Project Instructions

  7. Minefield Mapping Using Cooperative Multirobot Systems

    Directory of Open Access Journals (Sweden)

    Alaa Khamis

    2012-01-01

    Full Text Available This paper presents a team-theoretic approach to cooperative multirobot systems. The individual actions of the robots are controlled by the Belief-Desire-Intention model to endow the robots with the know-how needed to execute these actions deliberately. The cooperative behaviors between the heterogeneous robots are governed by the Team-Log theory to endow all the robots in the team with the know-how-to-cooperate and determine the team members’ commitments to each other despite their different types, properties, and goals. The proposed approach is tested for validity with the real life problem of minefield mapping. Different minefield sweeping strategies are studied to control the mobility of the mobile sweepers within the minefield in order to maximize the area coverage and improve picture compilation capability of the multirobot system.

  8. Differential Measurement Periodontal Structures Mapping System

    Science.gov (United States)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  9. Electrocardiographic markers of ischemia during mental stress testing in postinfarction patients. Role of body surface mapping

    International Nuclear Information System (INIS)

    Bosimini, E.; Galli, M.; Guagliumi, G.; Giubbini, R.; Tavazzi, L.

    1991-01-01

    In patients with coronary artery disease, radionuclide investigations have documented a high incidence of mental stress-induced myocardial ischemia in the absence of significant electrocardiographic changes and/or angina. To investigate the causes of the low electrocardiographic sensitivity, we recorded body surface maps during mental arithmetic in 22 normal volunteers and 37 postinfarction patients with residual exercise ischemia. Myocardial perfusion was studied with thallium-201 or technetium-99 (SESTAMIBI) planar scans. In 14 patients, body surface maps were also recorded during atrial pacing at the heart rate values achieved during mental stress. While taking the body surface maps, the area from J point to 80 msec after this point (ST-80) was analyzed by integral maps, difference maps, and departure maps. The body surface mapping criteria for ischemia were a new negative area on the integral maps, a negative potential of more than 2 SD from mean normal values on the difference maps, and a negative departure index of more than 2. Scintigraphy showed asymptomatic myocardial hypoperfusion in 33 patients. Eight patients had significant ST segment depression. The ST-80 integral and difference maps identified 17 ischemic patients. Twenty-four patients presented abnormal departure maps. One patient presented ST depression and abnormal body surface maps without reversible tracer defect. In 14 of 14 patients, atrial pacing did not reproduce the body surface map abnormalities. The analyses of the other electrocardiographic variables showed that in patients with mental stress-induced perfusion defects, only changes of T apex-T offset (aT-eT) interval in Frank leads and changes of maximum negative potential value of aT-eT integral maps significantly differed from those of normal subjects

  10. Digital map and situation surface: a team-oriented multidisplay workspace for network enabled situation analysis

    Science.gov (United States)

    Peinsipp-Byma, E.; Geisler, Jürgen; Bader, Thomas

    2009-05-01

    System concepts for network enabled image-based ISR (intelligence, surveillance, reconnaissance) is the major mission of Fraunhofer IITB's applied research in the area of defence and security solutions. For the TechDemo08 as part of the NATO CNAD POW Defence against terrorism Fraunhofer IITB advanced a new multi display concept to handle the shear amount and high complexity of ISR data acquired by networked, distributed surveillance systems with the objective to support the generation of a common situation picture. Amount and Complexity of ISR data demands an innovative man-machine interface concept for humans to deal with it. The IITB's concept is the Digital Map & Situation Surface. This concept offers to the user a coherent multi display environment combining a horizontal surface for the situation overview from the bird's eye view, an attached vertical display for collateral information and so-called foveatablets as personalized magic lenses in order to obtain high resolved and role-specific information about a focused areaof- interest and to interact with it. In the context of TechDemo08 the Digital Map & Situation Surface served as workspace for team-based situation visualization and analysis. Multiple sea- and landside surveillance components were connected to the system.

  11. Airport surface moving map displays: OpEval-2 evaluation results and future plans

    Science.gov (United States)

    Livack, Garret; McDaniel, James I.; Battiste, Vernol

    2001-08-01

    The Federal Aviation Administration (FAA), in cooperation with the Cargo Airline Association (CAA) and three of its member airlines (Airborne Express, Federal Express, and United Parcel Service), have embarked upon an aggressive yet phased approach to introduce new Free Flight-enabling technologies into the U.S. National Airspace System (NAS). General aviation is also actively involved, represented primarily by the Aircraft Owners and Pilots Association (AOPA). These new technologies being evaluated include advanced cockpit avionics and a complimentary ground infrastructure. In support of this initiative, a series of operational evaluations (OpEvals) have been conducted or are planned. The OpEvals have evaluated in-flight as well as airport surface movement applications. Results from the second OpEval, conducted at Louisville, Kentucky in October 2000, indicated that runway incursions might be significantly reduced with the introduction of a cockpit-based moving map system derived from emerging technologies. An additional OpEval is planned to evaluate the utility of an integrated cockpit and airport surface architecture that provides enhanced pilot and controller awareness of airport surface operations. It is believed that the combination of such an airborne and a ground-based system best addresses many of the safety issues surrounding airport surface operations. Such a combined system would provide both flight crews and controllers with a common awareness, or shared picture of airport surface operations.

  12. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  13. Remote compositional mapping of lunar titanium and surface maturity

    Science.gov (United States)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1991-01-01

    Lunar ilmenite (FeTiO3) is a potential resource capable of providing oxygen for life support and spacecraft propellant for future lunar bases. Estimates of TiO2 content in mature mare soils can be made using an empirical relation between the 400/500 nm reflectance ratio and TiO2 wt percent. A TiO2 abundance map was constructed for the entire near-side lunar maria accurate to + or - 2 wt percent TiO2 using CCD images obtained at the Tumamoc Hill 0.5 m telescope in Tucson, employing bandpass filters centered at 400 and 560 nm. Highest TiO2 regions in the maria are located in western Mare Tranquillitatis. Greater contrast differences between regions on the lunar surface can be obtained using 400/730 nm ratio images. The relation might well be refined to accommodate this possibly more sensitive indicator of TiO2 content. Another potential lunar resource is solar wind-implanted He-3 which may be used as a fuel for fusion reactors. Relative soil maturity, as determined by agglutinate content, can be estimated from 950/560 nm ration images. Immature soils appear darker in this ratio since such soils contain abundant pyroxene grains which cause strong absorption centered near 950 nm due Fe(2+) crystal field transitions. A positive correlation exists between the amount of He-3 and TiO2 content in lunar soils, suggesting that regions high in TiO2 should also be high in He-3. Reflectance spectrophotometry in the region 320 to 870 nm was also obtained for several regions. Below about 340 nm, these spectra show variations in relative reflectance that are caused by as yet unassigned near-UV absorptions due to compositional differences.

  14. Raman mapping of intact biofilms on stainless steel surfaces

    Science.gov (United States)

    Each slide under the Raman Microscope was mapped for approximately 18.5 hours with a dimension of 36x36 that provides a greater result compared to doing a smaller dimension scan. The results from the Raman Mapping show the location and position of how the bacteria are growing scattered or straight a...

  15. Mapping Surface Heat Fluxes by Assimilating SMAP Soil Moisture and GOES Land Surface Temperature Data

    Science.gov (United States)

    Lu, Yang; Steele-Dunne, Susan C.; Farhadi, Leila; van de Giesen, Nick

    2017-12-01

    Surface heat fluxes play a crucial role in the surface energy and water balance. In situ measurements are costly and difficult, and large-scale flux mapping is hindered by surface heterogeneity. Previous studies have demonstrated that surface heat fluxes can be estimated by assimilating land surface temperature (LST) and soil moisture to determine two key parameters: a neutral bulk heat transfer coefficient (CHN) and an evaporative fraction (EF). Here a methodology is proposed to estimate surface heat fluxes by assimilating Soil Moisture Active Passive (SMAP) soil moisture data and Geostationary Operational Environmental Satellite (GOES) LST data into a dual-source (DS) model using a hybrid particle assimilation strategy. SMAP soil moisture data are assimilated using a particle filter (PF), and GOES LST data are assimilated using an adaptive particle batch smoother (APBS) to account for the large gap in the spatial and temporal resolution. The methodology is implemented in an area in the U.S. Southern Great Plains. Assessment against in situ observations suggests that soil moisture and LST estimates are in better agreement with observations after assimilation. The RMSD for 30 min (daytime) flux estimates is reduced by 6.3% (8.7%) and 31.6% (37%) for H and LE on average. Comparison against a LST-only and a soil moisture-only assimilation case suggests that despite the coarse resolution, assimilating SMAP soil moisture data is not only beneficial but also crucial for successful and robust flux estimation, particularly when the uncertainties in the model estimates are large.

  16. Performance analysis of different database in new internet mapping system

    Science.gov (United States)

    Yao, Xing; Su, Wei; Gao, Shuai

    2017-03-01

    In the Mapping System of New Internet, Massive mapping entries between AID and RID need to be stored, added, updated, and deleted. In order to better deal with the problem when facing a large number of mapping entries update and query request, the Mapping System of New Internet must use high-performance database. In this paper, we focus on the performance of Redis, SQLite, and MySQL these three typical databases, and the results show that the Mapping System based on different databases can adapt to different needs according to the actual situation.

  17. Intelligence, mapping, and geospatial exploitation system (IMAGES)

    Science.gov (United States)

    Moellman, Dennis E.; Cain, Joel M.

    1998-08-01

    This paper provides further detail to one facet of the battlespace visualization concept described in last year's paper Battlespace Situation Awareness for Force XXI. It focuses on the National Imagery and Mapping Agency (NIMA) goal to 'provide customers seamless access to tailorable imagery, imagery intelligence, and geospatial information.' This paper describes Intelligence, Mapping, and Geospatial Exploitation System (IMAGES), an exploitation element capable of CONUS baseplant operations or field deployment to provide NIMA geospatial information collaboratively into a reconnaissance, surveillance, and target acquisition (RSTA) environment through the United States Imagery and Geospatial Information System (USIGS). In a baseplant CONUS setting IMAGES could be used to produce foundation data to support mission planning. In the field it could be directly associated with a tactical sensor receiver or ground station (e.g. UAV or UGV) to provide near real-time and mission specific RSTA to support mission execution. This paper provides IMAGES functional level design; describes the technologies, their interactions and interdependencies; and presents a notional operational scenario to illustrate the system flexibility. Using as a system backbone an intelligent software agent technology, called Open Agent ArchitectureTM (OAATM), IMAGES combines multimodal data entry, natural language understanding, and perceptual and evidential reasoning for system management. Configured to be DII COE compliant, it would utilize, to the extent possible, COTS applications software for data management, processing, fusion, exploitation, and reporting. It would also be modular, scaleable, and reconfigurable. This paper describes how the OAATM achieves data synchronization and enables the necessary level of information to be rapidly available to various command echelons for making informed decisions. The reasoning component will provide for the best information to be developed in the timeline

  18. Systems mapping of HIV-1 infection

    Directory of Open Access Journals (Sweden)

    Hou Wei

    2012-10-01

    Full Text Available Abstract Mathematical models of viral dynamics in vivo provide incredible insights into the mechanisms for the nonlinear interaction between virus and host cell populations, the dynamics of viral drug resistance, and the way to eliminate virus infection from individual patients by drug treatment. The integration of these mathematical models with high-throughput genetic and genomic data within a statistical framework will raise a hope for effective treatment of infections with HIV virus through developing potent antiviral drugs based on individual patients’ genetic makeup. In this opinion article, we will show a conceptual model for mapping and dictating a comprehensive picture of genetic control mechanisms for viral dynamics through incorporating a group of differential equations that quantify the emergent properties of a system.

  19. The problems of mapping in quantum systems

    International Nuclear Information System (INIS)

    Xu Gongou; Wang Wenge; Yang Yadian; Fu Deji

    1992-01-01

    The mapping from the state of Hamiltonian H(0) to that of H(λ) = H(0) + λ(H-H(0)) is established by means of Wigner-Brillion perturbation formula. An iterative perturbation calculation can be carried out to find the stable points set and to show that under what condition the iterative calculation is divergent(non convergent). Avoided crossing point is really a singularity-point showed clearly in such procedure. The topological invariant subspace endowed by corresponding Hamiltonian H(0) is destroyed after such avoided crossing point. It is similar to the classical invariant tori destruction. A quantum KAM theorem can be established in this manner. Numerical results of certain schematic systems are given as illustration

  20. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Antero Kukko

    2008-09-01

    Full Text Available Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  1. Preliminary Correlation Map of Geomorphic Surfaces in North-Central Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This correlation map (scale = 1:12,000) presents the results of a mapping initiative that was part of the comprehensive site characterization required to operate the Area 5 Radioactive Waste Management Site, a low-level radioactive waste disposal facility located in northern Frenchman Flat at the Nevada Test Site. Eight primary map units are recognized for Quaternary surfaces: remnants of six alluvial fan or terrace surfaces, one unit that includes colluvial aprons associated with hill slopes, and one unit for anthropogenically disturbed surfaces. This surficial geology map provides fundamental data on natural processes for reconstruction of the Quaternary history of northern Frenchman Flat, which in turn will aid in the understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. The bedrock units identified on this map were derived from previous published mapping efforts and are included for completeness

  2. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  3. Efficient characterization of phase space mapping in axially symmetric optical systems

    Science.gov (United States)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  4. An Advanced Radiological Survey and Mapping System

    International Nuclear Information System (INIS)

    McCown, J.; Rogers, D.; Waggoner, Ch.

    2009-01-01

    A variety of radiological surveying systems have been described in the literature. This paper describes relative performances of a system that can employ a variety of radiological sensors including NaI, LiI, and LaBr 3 units of various sizes. The system includes navigation and data collection software that facilitates surveying without the use of survey grid-lines. Parameters presented to the operator via a graphical user interface (GUI) for monitoring system performance and navigation are described. Radiological spectra are logged along with position data from three differential GPS sensors to enhance position accuracy by taking into account the pitch and roll as the survey vehicle moves over uneven terrain. Accuracy of position data increases the potential for, and value of, data fusion with other survey data such as electromagnetic induction images. The survey system described has been developed around a zero turn radius lawn mower equipped with on-board generator/inverter for powering electronic and data communication equipment to maximize surveying effectiveness. Detection limits for U-238 will be discussed for the NaI (FIDLER, 75x75 mm, and 100x100x400 mm) and LaBr 3 (75x75 mm) detectors. These parameters will be reported for a variety of survey speeds (stationary, 1, 2, and 3 m/s), with and without the use of advanced signal processing to increase detection sensitivity. A background subtraction algorithm evaluating each spectrum for the presence of naturally occurring radiological materials will also be described for correcting each datum prior to mapping using Geosoft Oasis montaj. (authors)

  5. Four-dimensional maps of the human somatosensory system.

    Science.gov (United States)

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  6. Landing Site Selection and Surface Traverse Planning using the Lunar Mapping & Modeling Portal

    Science.gov (United States)

    Law, E.; Chang, G.; Bui, B.; Sadaqathullah, S.; Kim, R.; Dodge, K.; Malhotra, S.

    2013-12-01

    Introduction: The Lunar Mapping and Modeling Portal (LMMP), is a web-based Portal and a suite of interactive visualization and analysis tools for users to access mapped lunar data products (including image mosaics, digital elevation models, etc.) from past and current lunar missions (e.g., Lunar Reconnaissance Orbiter, Apollo, etc.), and to perform in-depth analyses to support lunar surface mission planning and system design for future lunar exploration and science missions. It has been widely used by many scientists mission planners, as well as educators and public outreach (e.g., Google Lunar XPRICE teams, RESOLVE project, museums etc.) This year, LMMP was used by the Lunar and Planetary Institute (LPI)'s Lunar Exploration internship program to perform lighting analysis and local hazard assessments, such as, slope, surface roughness and crater/boulder distribution to research landing sites and surface pathfinding and traversal. Our talk will include an overview of LMMP, a demonstration of the tools as well as a summary of the LPI Lunar Exploration summer interns' experience in using those tools.

  7. Pure Surface Texture Mapping Technology and it's Application for Mirror Image

    Directory of Open Access Journals (Sweden)

    Wei Feng Wang

    2013-02-01

    Full Text Available Based on the study of pure surface texture mapping technology, pure texture surface rendering method is proposed. The method is combined pure surface texture rendering and view mirror, real-time rendering has an index of refraction, reflection, and the flow of water ripple effect. Through the experimental verification of the validity of the algorithm.

  8. Geomorphic Surface Maps of Northern Frenchman Flat, Nevada Test Site, Southern Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    Large-scale (1:6000) surficial geology maps of northern Frenchman Flat were developed in 1995 as part of comprehensive site characterization required to operate a low-level radioactive waste disposal facility in that area. Seven surficial geology maps provide fundamental data on natural processes and are the platform needed to reconstruct the Quaternary history of northern Frenchman Flat. Reconstruction of the Quaternary history provides an understanding of the natural processes that act to develop the landscape, and the time-frames involved in landscape development. The mapping was conducted using color and color-infrared aerial photographs and field verification of map unit composition and boundaries. Criteria for defining the map unit composition of geomorphic surface units are based on relative geomorphic position, landform morphology, and degree of preservation of surface morphology. Seven geomorphic surfaces (Units 1 through 7) are recognized, spanning from the early Quaternary to present time

  9. Surface Geophysical Measurements for Locating and Mapping Ice-Wedges

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Larsen, S.H.

    2012-01-01

    to test the applicability of DC electrical resistivity tomography (ERT) and Ground Penetrating Radar (GPR) to identifying and mapping ice-wedge occurrences. The site is located in Central West Greenland, and the ice-wedges are found in a permafrozen peat soil with an active layer of about 30 cm. ERT...

  10. Alignment of mapping system for magnet cyclotron DECY-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik; Kurnia Wibowo

    2016-01-01

    A cyclotron is composed of some main and specific components, such as magnet system, ion source, RF system and extractor. A magnet is one of important component in a cyclotron that serves as ion beam bending so the ion beam trajectory is circular. Magnet design should with the requirement of cyclotron that proton energy is 13 MeV. In the construction of the cyclotron magnet, a mapping tool of the magnetic field is required for analysis in shimming process in order to optimize the magnetic field. The magnetic field mapping process is carried out in the median plane of the magnet poles. The magnetic field mapping is carried out repeatedly during the shimming process. During this process, the mapping tool is possible to experience a shift or change in position, for that it is necessary to alignment in order to make sure that the probe is in the median plane of magnet poles and to ensure their positions are always the same on each repetition mapping. During this process, it is possible to experience a shift mapping tool or change the position, for this it is needed to process alignment to ensure the position of the probe is in the median plane magnetic poles and ensure their positions are always the same on each repetition mapping. Alignment on the mapping tool are the height position, zeroing tesla meter and two hall probe mapping. The parameters form the basis for magnetic field measurements based on the three elements: an alignment system on the engine mapping, mapping tool reference point and stage movement of x-y coordinates. Shifts occur due to change in elevation mapping tool table and center coordinates x and y in the mapping process. Changes made to shift mapping coordinates can be shifted as far as 1 to 2 mm for each hall probe in the x and y coordinates with altitude changes 0.05° mapping table and measurement of tesla meter changes in 0.002 T. (author)

  11. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  12. In core system mapping reactor power distribution

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Moreira, J.M.L.

    1989-01-01

    Based on the signals of SPND'S (Self Powered Neutron Detectors) distributed inside of a core, the spatial power distribution is obtained using the MAP program, developed in this work. The methodology applied in MAP program uses a least mean square technique to calculate expansion coefficients that depend on the SPND'S signals. The final power or neutron flux distribution is obtained by a combination of certains functions or expansion modes that are provided from diffusion calculation with the CITATION code. The MAP program is written in PASCAL language and will be used in IEA-R1 reactor for assisting its operation. (author) [pt

  13. Advanced Space Surface Systems Operations

    Science.gov (United States)

    Huffaker, Zachary Lynn; Mueller, Robert P.

    2014-01-01

    The importance of advanced surface systems is becoming increasingly relevant in the modern age of space technology. Specifically, projects pursued by the Granular Mechanics and Regolith Operations (GMRO) Lab are unparalleled in the field of planetary resourcefulness. This internship opportunity involved projects that support properly utilizing natural resources from other celestial bodies. Beginning with the tele-robotic workstation, mechanical upgrades were necessary to consider for specific portions of the workstation consoles and successfully designed in concept. This would provide more means for innovation and creativity concerning advanced robotic operations. Project RASSOR is a regolith excavator robot whose primary objective is to mine, store, and dump regolith efficiently on other planetary surfaces. Mechanical adjustments were made to improve this robot's functionality, although there were some minor system changes left to perform before the opportunity ended. On the topic of excavator robots, the notes taken by the GMRO staff during the 2013 and 2014 Robotic Mining Competitions were effectively organized and analyzed for logistical purposes. Lessons learned from these annual competitions at Kennedy Space Center are greatly influential to the GMRO engineers and roboticists. Another project that GMRO staff support is Project Morpheus. Support for this project included successfully producing mathematical models of the eroded landing pad surface for the vertical testbed vehicle to predict a timeline for pad reparation. And finally, the last project this opportunity made contribution to was Project Neo, a project exterior to GMRO Lab projects, which focuses on rocket propulsion systems. Additions were successfully installed to the support structure of an original vertical testbed rocket engine, thus making progress towards futuristic test firings in which data will be analyzed by students affiliated with Rocket University. Each project will be explained in

  14. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8 degrees S and...

  15. Pre-LBA CABARE Mapped Land Surface and Vegetation Characteristics, Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Surface parameter digital maps of vegetation, soil, and topography were obtained for Rondonia, Brazil, covering the 5x5 degree region bounded by 13-8...

  16. Isointegral analysis of body surface maps for the assessment of location and size of myocardial infarction

    International Nuclear Information System (INIS)

    Tonooka, I.; Kubota, I.; Watanabe, Y.; Tsuiki, K.; Yasui, S.

    1983-01-01

    To estimate the location and size of myocardial infarction (MI), an isointegral mapping technique was adopted from among various body surface electrocardiographic mapping techniques. QRS isointegral and departure maps were made in 35 patients with MI. These patients were separated into 3 groups, based on the location of MI: anterior, inferior, and anterior plus inferior. The severity and location of MI were estimated by thallium-201 myocardial perfusion imaging and the degree of scintigraphic defect was represented by a defect score. The extent of MI was expected to be reflected on the QRS isointegral maps as a distribution of negative QRS complex time-integral values. However, the extent and the location of MI were hardly detectable by the original maps. A departure mapping technique was then devised to observe the distribution of departure index on the body surface. Particular attention was given to the area where the departure index was less than -2, and this area was expected to reflect the location and size of specific abnormality of isointegral map due to MI. There were strong correlations between departure area and defect score in the anterior and inferior MI cases (r . 0.88 and r . 0.79, respectively). However, patients with anterior MI plus inferior MI showed no such correlation. Q-wave mapping was compared with QRS isointegral mapping, and QRS isointegral mapping was found to be more accurate in the estimation of the location and size of MI than Q wave mapping. Thus, QRS isointegral mapping, especially departure mapping, is more useful and convenient for detecting the location and size of MI than methods such as isopotential and Q wave mapping

  17. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  18. Event maps in a stick-slip system

    DEFF Research Database (Denmark)

    Galvanetto, Ugo; Knudsen, Carsten

    1997-01-01

    This paper describes a one-dimensional map generated by a two degree-of-freedom mechanical system that undergoes self-sustained oscillations induced by dry friction. The iterated map allows a much simpler representation and a better understanding of some dynamic features of the system. Some appli...

  19. Ray-map migration of transmitted surface waves

    KAUST Repository

    Li, Jing; Schuster, Gerard T.

    2016-01-01

    Near-surface normal faults can sometimes separate two distinct zones of velocity heterogeneity, where the medium on one side of the fault has a faster velocity than on the other side. Therefore, the slope of surface-wave arrivals in a common

  20. Surface kinetic temperature mapping using satellite spectral data in ...

    African Journals Online (AJOL)

    The result revealed that despite the limited topographic differences of the rift lakes and their proximity, the surface kinetic temperature difference is high, mainly due to groundwater and surface water fluxes. From thermal signature analysis two hot springs below the lake bed of Ziway were discovered. The various hot springs ...

  1. LSNR Airborne LIDAR Mapping System Design and Early Results (Invited)

    Science.gov (United States)

    Shrestha, K.; Carter, W. E.; Slatton, K. C.

    2009-12-01

    Low signal-to-noise ratio (LSNR) detection techniques allow for implementation of airborne light detection and range (LIDAR) instrumentation aboard platforms with prohibitive power, size, and weight restrictions. The University of Florida has developed the Coastal Area Tactical-mapping System (CATS), a prototype LSNR LIDAR system capable of single photon laser ranging. CATS is designed to operate in a fixed-wing aircraft flying 600 m above ground level, producing 532 nm, 480 ps, 3 μJ output pulses at 8 kHz. To achieve continuous coverage of the terrain with 20 cm spatial resolution in a single pass, a 10x10 array of laser beamlets is scanned. A Risley prism scanner (two rotating V-coated optical wedges) allows the array of laser beamlets to be deflected in a variety of patterns, including conical, spiral, and lines at selected angles to the direction of flight. Backscattered laser photons are imaged onto a 100 channel (10x10 segmented-anode) photomultiplier tube (PMT) with a micro-channel plate (MCP) amplifier. Each channel of the PMT is connected to a multi-stop 2 GHz event timer. Here we report on tests in which ranges for known targets were accumulated for repeated laser shots and statistical analyses were applied to evaluate range accuracy, minimum separation distance, bathymetric mapping depth, and atmospheric scattering. Ground-based field test results have yielded 10 cm range accuracy and sub-meter feature identification at variable scan settings. These experiments also show that a secondary surface can be detected at a distance of 15 cm from the first. Range errors in secondary surface identification for six separate trials were within 7.5 cm, or within the timing resolution limit of the system. Operating at multi-photon sensitivity may have value for situations in which high ambient noise precludes single-photon sensitivity. Low reflectivity targets submerged in highly turbid waters can cause detection issues. CATS offers the capability to adjust the

  2. Boson mapping in systems with non-degenerate shells

    International Nuclear Information System (INIS)

    Nakada, Hitoshi; Arima, Akito

    1988-01-01

    A new boson mapping, which has some aspects similar to the OAI mapping and can be applied also to a non-degenerate system, is presented in order to give a microscopic foundation of the interacting boson model. Numerical calculations of the E2 operator in a two-j system show that this mapping gives a good approximation for the seniority-changing part, and that it stays at least within the accuracy of the OAI mapping, even for the seniority-conserving part. (orig.)

  3. A new capture fraction method to map how pumpage affects surface water flow

    Science.gov (United States)

    Leake, S.A.; Reeves, H.W.; Dickinson, J.E.

    2010-01-01

    All groundwater pumped is balanced by removal of water somewhere, initially from storage in the aquifer and later from capture in the form of increase in recharge and decrease in discharge. Capture that results in a loss of water in streams, rivers, and wetlands now is a concern in many parts of the United States. Hydrologists commonly use analytical and numerical approaches to study temporal variations in sources of water to wells for select points of interest. Much can be learned about coupled surface/groundwater systems, however, by looking at the spatial distribution of theoretical capture for select times of interest. Development of maps of capture requires (1) a reasonably well-constructed transient or steady state model of an aquifer with head-dependent flow boundaries representing surface water features or evapotranspiration and (2) an automated procedure to run the model repeatedly and extract results, each time with a well in a different location. This paper presents new methods for simulating and mapping capture using three-dimensional groundwater flow models and presents examples from Arizona, Oregon, and Michigan. Journal compilation ?? 2010 National Ground Water Association. No claim to original US government works.

  4. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines

    Directory of Open Access Journals (Sweden)

    A. Turiel

    2009-10-01

    Full Text Available Nowadays Earth observation satellites provide information about many relevant variables of the ocean-climate system, such as temperature, moisture, aerosols, etc. However, to retrieve the velocity field, which is the most relevant dynamical variable, is still a technological challenge, specially in the case of oceans. New processing techniques, emerged from the theory of turbulent flows, have come to assist us in this task. In this paper, we show that multifractal techniques applied to new Sea Surface Temperature satellite products opens the way to build maps of ocean currents with unprecedented accuracy. With the application of singularity analysis, we show that global ocean circulation patterns can be retrieved in a daily basis. We compare these results with high-quality altimetry-derived geostrophic velocities, finding a quite good correspondence of the observed patterns both qualitatively and quantitatively; and this is done for the first time on a global basis, even for less active areas. The implications of this findings from the perspective both of theory and of operational applications are discussed.

  5. Research note: Mapping spatial patterns in sewer age, material, and proximity to surface waterways to infer sewer leakage hotspots

    Science.gov (United States)

    Hopkins, Kristina G.; Bain, Daniel J.

    2018-01-01

    Identifying areas where deteriorating sewer infrastructure is in close proximity to surface waterways is needed to map likely connections between sewers and streams. We present a method to estimate sewer installation year and deterioration status using historical maps of the sewer network, parcel-scale property assessment data, and pipe material. Areas where streams were likely buried into the sewer system were mapped by intersecting the historical stream network derived from a 10-m resolution digital elevation model with sewer pipe locations. Potential sewer leakage hotspots were mapped by identifying where aging sewer pipes are in close proximity (50-m) to surface waterways. Results from Pittsburgh, Pennsylvania (USA), indicated 41% of the historical stream length was lost or buried and the potential interface between sewers and streams is great. The co-location of aging sewer infrastructure (>75 years old) near stream channels suggests that 42% of existing streams are located in areas with a high potential for sewer leakage if sewer infrastructure fails. Mapping the sewer-stream interface provides an approach to better understand areas were failing sewers may contribute a disproportional amount of nutrients and other pathogens to surface waterways.

  6. Classifying the Diversity of Bus Mapping Systems

    Science.gov (United States)

    Said, Mohd Shahmy Mohd; Forrest, David

    2018-05-01

    This study represents the first stage of an investigation into understanding the nature of different approaches to mapping bus routes and bus network, and how they may best be applied in different public transport situations. In many cities, bus services represent an important facet of easing traffic congestion and reducing pollution. However, with the entrenched car culture in many countries, persuading people to change their mode of transport is a major challenge. To promote this modal shift, people need to know what services are available and where (and when) they go. Bus service maps provide an invaluable element of providing suitable public transport information, but are often overlooked by transport planners, and are under-researched by cartographers. The method here consists of the creation of a map evaluation form and performing assessment of published bus networks maps. The analyses were completed by a combination of quantitative and qualitative data analysis of various aspects of cartographic design and classification. This paper focuses on the resulting classification, which is illustrated by a series of examples. This classification will facilitate more in depth investigations into the details of cartographic design for such maps and help direct areas for user evaluation.

  7. An atlas of the smaller maps in orientable and nonorientable surfaces

    CERN Document Server

    Jackson, David

    2000-01-01

    Maps are beguilingly simple structures with deep and ubiquitous properties. They arise in an essential way in many areas of mathematics and mathematical physics, but require considerable time and computational effort to generate. Few collected drawings are available for reference, and little has been written, in book form, about their enumerative aspects. An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces is the first book to provide complete collections of maps along with their vertex and face partitions, number of rootings, and an index number for cross referencing. It provides an explanation of axiomatization and encoding, and serves as an introduction to maps as a combinatorial structure. The Atlas lists the maps first by genus and number of edges, and gives the embeddings of all graphs with at most five edges in orientable surfaces, thus presenting the genus distribution for each graph. Exemplifying the use of the Atlas, the authors explore two substantial conjectures with origins in ...

  8. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  9. Crime Mapping and Geographical Information Systems in Crime Analysis

    OpenAIRE

    Dağlar, Murat; Argun, Uğur

    2016-01-01

    As essential apparatus in crime analysis, crime mapping and Geographical Information Systems (GIS) are being progressively more accepted by police agencies. Development in technology and the accessibility of geographic data sources make it feasible for police departments to use GIS and crime mapping. GIS and crime mapping can be utilized as devices to discover reasons contributing to crime, and hence let law enforcement agencies proactively take action against the crime problems before they b...

  10. Large area optical mapping of surface contact angle.

    Science.gov (United States)

    Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana

    2017-09-04

    Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.

  11. a Man-Portable Imu-Free Mobile Mapping System

    Science.gov (United States)

    Nüchter, A.; Borrmann, D.; Koch, P.; Kühn, M.; May, S.

    2015-08-01

    Mobile mapping systems are commonly mounted on cars, ships and robots. The data is directly geo-referenced using GPS data and expensive IMU (inertial measurement systems). Driven by the need for flexible, indoor mapping systems we present an inexpensive mobile mapping solution that can be mounted on a backpack. It combines a horizontally mounted 2D profiler with a constantly spinning 3D laser scanner. The initial system featuring a low-cost MEMS IMU was revealed and demonstrated at MoLaS: Technology Workshop Mobile Laser Scanning at Fraunhofer IPM in Freiburg in November 2014. In this paper, we present an IMU-free solution.

  12. Options for Affordable Fission Surface Power Systems

    International Nuclear Information System (INIS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; Van Dyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Fission surface power systems could provide abundant power anywhere on the surface of the moon or Mars. Locations could include permanently shaded regions on the moon and high latitudes on Mars. To be fully utilized, however, fission surface power systems must be safe, have adequate performance, and be affordable. This paper discusses options for the design and development of such systems. (authors)

  13. Mapping physicochemical surface modifications of flame-treated polypropylene

    Directory of Open Access Journals (Sweden)

    S. Farris

    2014-04-01

    Full Text Available The aim of this work was to investigate how the surface morphology of polypropylene (PP is influenced by the surface activation mediated by a flame obtained using a mixture of air and propane under fuel-lean (equivalence ratio φ = 0.98 conditions. Morphological changes observed on flamed samples with smooth (S, medium (M, and high (H degree of surface roughness were attributed to the combined effect of a chemical mechanism (agglomeration and ordering of partially oxidized intermediate-molecular-weight material with a physical mechanism (flattening of the original roughness by the flame’s high temperature. After two treatments, the different behavior of the samples in terms of wettability was totally reset, which made an impressive surface energy of ~43 mJ•m–2 possible, which is typical of more hydrophilic polymers (e.g., polyethylene terephthalate – PET. In particular, the polar component was increased from 1.21, 0.08, and 0.32 mJ•m–2 (untreated samples to 10.95, 11.20, and 11.17 mJ•m–2 for the flamed samples S, M, and H, respectively, an increase attributed to the insertion of polar functional groups (hydroxyl and carbonyl on the C–C backbone, as demonstrated by the X-ray photoelectron spectroscopy results.

  14. Titan's Surface Temperatures Maps from Cassini - CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, C. A.; Jennings, D. E.; Anderson, C. M.; Samuelson, R. E.; Irwin, P. G. J.; Flasar, F. M.

    2009-09-01

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 μm (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the instrument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature profile by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). In future, application of our methodology over wide areas should greatly increase the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp. 1136-1150, 2008. Rodgers, C. D.: "Inverse Methods For Atmospheric Sounding: Theory and Practice". World Scientific, Singapore, 2000. Jennings, D.E., et al.: "Titan's Surface Brightness Temperatures." Ap. J. L., Vol. 691, pp. L103-L

  15. Cyber-Physical Systems Security: a Systematic Mapping Study

    OpenAIRE

    Lun, Yuriy Zacchia; D'Innocenzo, Alessandro; Malavolta, Ivano; Di Benedetto, Maria Domenica

    2016-01-01

    Cyber-physical systems are integrations of computation, networking, and physical processes. Due to the tight cyber-physical coupling and to the potentially disrupting consequences of failures, security here is one of the primary concerns. Our systematic mapping study sheds some light on how security is actually addressed when dealing with cyber-physical systems. The provided systematic map of 118 selected studies is based on, for instance, application fields, various system components, relate...

  16. SU-E-J-193: Application of Surface Mapping in Detecting Swallowing for Head-&-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D; Xie, X; Mehta, V; Shepard, D [Swedish Cancer Institute, Seattle, WA (United States)

    2015-06-15

    Purpose: Recent evidence is emerging that long term swallowing function may be improved after radiotherapy for head-&-neck cancer if doses are limited to certain swallowing structures. Immobilization of patients with head-&-neck cancer is typically done with a mask. This mask, however, doesn’t limit patient swallowing. Patient voluntary or involuntary swallowing may introduce significant tumor motion, which can lead to suboptimal delivery. In this study, we have examined the feasibility of using surface mapping technology to detect patient swallowing during treatment and evaluated its magnitude. Methods: The C-RAD Catalyst system was used to detect the patient surface map. A volunteer lying on the couch was used to simulate the patient under treatment. A virtual marker was placed near the throat and was used to monitor the swallowing action. The target motion calculated by the Catalyst system through deformable registration was also collected. Two treatment isocenters, one placed close to the throat and the other placed posterior to the base-of-tongue, were used to check the sensitivity of surface mapping technique. Results: When the patient’s throat is not in the shadow of the patient’s chest, the Catalyst system can clearly identify the swallowing motion. In our tests, the vertical motion of the skin can reach to about 5mm. The calculated target motion can reach up to 1 cm. The magnitude of this calculated target motion is more dramatic when the plan isocenter is closer to the skin surface, which suggests that the Catalyst motion tracking technique is more sensitive to the swallowing motion with a shallower isocenter. Conclusion: Surface mapping can clearly identify patient swallowing during radiation treatment. This information can be used to evaluate the dosimetric impact of the involuntary swallowing. It may also be used to potentially gate head-&-neck radiation treatments. A prospective IRB approved study is currently enrolling patients in our

  17. Video-based Mobile Mapping System Using Smartphones

    Science.gov (United States)

    Al-Hamad, A.; Moussa, A.; El-Sheimy, N.

    2014-11-01

    The last two decades have witnessed a huge growth in the demand for geo-spatial data. This demand has encouraged researchers around the world to develop new algorithms and design new mapping systems in order to obtain reliable sources for geo-spatial data. Mobile Mapping Systems (MMS) are one of the main sources for mapping and Geographic Information Systems (GIS) data. MMS integrate various remote sensing sensors, such as cameras and LiDAR, along with navigation sensors to provide the 3D coordinates of points of interest from moving platform (e.g. cars, air planes, etc.). Although MMS can provide accurate mapping solution for different GIS applications, the cost of these systems is not affordable for many users and only large scale companies and institutions can benefits from MMS systems. The main objective of this paper is to propose a new low cost MMS with reasonable accuracy using the available sensors in smartphones and its video camera. Using the smartphone video camera, instead of capturing individual images, makes the system easier to be used by non-professional users since the system will automatically extract the highly overlapping frames out of the video without the user intervention. Results of the proposed system are presented which demonstrate the effect of the number of the used images in mapping solution. In addition, the accuracy of the mapping results obtained from capturing a video is compared to the same results obtained from using separate captured images instead of video.

  18. On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space

    Directory of Open Access Journals (Sweden)

    Minghao Jin

    2013-01-01

    Full Text Available By studying the Gauss map G and Laplace operator Δh of the second fundamental form h, we will classify surfaces of revolution with a lightlike axis in 3-dimensional Minkowski space and also obtain the surface of Enneper of the 2nd kind, the surface of Enneper of the 3rd kind, the de Sitter pseudosphere, and the hyperbolic pseudosphere that satisfy condition ΔhG=ΛG, Λ being a 3×3 real matrix.

  19. Map it @ WSU: Development of a Library Mapping System for Large Academic Libraries

    Directory of Open Access Journals (Sweden)

    Paul Gallagher

    2010-06-01

    Full Text Available The Wayne State Library System launched its library mapping application in February 2010, designed to help locate materials in the five WSU libraries. The system works within the catalog to show the location of materials, as well as provides a web form for use at the reference desk. Developed using PHP and MySQL, it requires only minimal effort to update using a unique call number overlay mechanism. In addition to mapping shelved materials, the system provides information for any of the over three hundred collections held by the WSU Libraries. Patrons can do more than just locate a book on a shelf: they can learn where to locate reserve items, how to access closed collections, or get driving maps to extension center libraries. The article includes a discussion of the technology reviewed and chosen during development, an overview of the system architecture, and lessons learned during development.

  20. Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources

    Science.gov (United States)

    Spruce, Joe; Berglund, Judith; Davis, Bruce

    2006-01-01

    This viewgraph presentation regards one element of a larger project on the integration of NASA science models and data into the Hazards U.S. Multi-Hazard (HAZUS-MH) Hurricane module for hurricane damage and loss risk assessment. HAZUS-MH is a decision support tool being developed by the National Institute of Building Sciences for the Federal Emergency Management Agency (FEMA). It includes the Hurricane Module, which employs surface roughness maps made from National Land Cover Data (NLCD) maps to estimate coastal hurricane wind damage and loss. NLCD maps are produced and distributed by the U.S. Geological Survey. This presentation discusses an effort to improve upon current HAZUS surface roughness maps by employing ASTER multispectral classifications with QuickBird "ground reference" imagery.

  1. Re-discovering surface mass spectrometry: chemical mapping from micro to macro

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, K.G.; O' Keefe, D.P

    2004-06-15

    New developments in electronics, devices, micro-encapsulation, and other areas demand the ability to acquire molecularly-specific information from smaller and smaller features. ToF-SIMS provides molecularly-specific mass spectral data, but sufficient high-mass signal has historically been difficult to obtain from organic/polymeric surfaces in the point-mapping mode of operation. Use of chemometric data reduction methods and the development of heavier primary ion sources enhance and extend the chemical information in the mapping data. Large-area chemical mapping via sample stage rastering has also opened up new applications. This capability allows single-experiment mapping of large or multiple features, provides information on surface uniformity over end-use-relevant areas, and offers potential for combinatorial and other screening applications. Examples of these applications are presented.

  2. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  3. Mapping Hfq-RNA interaction surfaces using tryptophan fluorescence quenching

    Science.gov (United States)

    Robinson, Kirsten E.; Orans, Jillian; Kovach, Alexander R.; Link, Todd M.; Brennan, Richard G.

    2014-01-01

    Hfq is a posttranscriptional riboregulator and RNA chaperone that binds small RNAs and target mRNAs to effect their annealing and message-specific regulation in response to environmental stressors. Structures of Hfq-RNA complexes indicate that U-rich sequences prefer the proximal face and A-rich sequences the distal face; however, the Hfq-binding sites of most RNAs are unknown. Here, we present an Hfq-RNA mapping approach that uses single tryptophan-substituted Hfq proteins, all of which retain the wild-type Hfq structure, and tryptophan fluorescence quenching (TFQ) by proximal RNA binding. TFQ properly identified the respective distal and proximal binding of A15 and U6 RNA to Gram-negative Escherichia coli (Ec) Hfq and the distal face binding of (AA)3A, (AU)3A and (AC)3A to Gram-positive Staphylococcus aureus (Sa) Hfq. The inability of (GU)3G to bind the distal face of Sa Hfq reveals the (R-L)n binding motif is a more restrictive (A-L)n binding motif. Remarkably Hfq from Gram-positive Listeria monocytogenes (Lm) binds (GU)3G on its proximal face. TFQ experiments also revealed the Ec Hfq (A-R-N)n distal face-binding motif should be redefined as an (A-A-N)n binding motif. TFQ data also demonstrated that the 5′-untranslated region of hfq mRNA binds both the proximal and distal faces of Ec Hfq and the unstructured C-terminus. PMID:24288369

  4. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    Energy Technology Data Exchange (ETDEWEB)

    Wanzenboeck, H.D.; Hochleitner, G.; Mika, J.; Shawrav, M.M.; Gavagnin, M.; Bertagnolli, E. [Vienna University of Technology, Institute for Solid State Electronics, Vienna (Austria)

    2014-12-15

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-μm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID. (orig.)

  5. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    International Nuclear Information System (INIS)

    Wanzenboeck, H.D.; Hochleitner, G.; Mika, J.; Shawrav, M.M.; Gavagnin, M.; Bertagnolli, E.

    2014-01-01

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-μm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID. (orig.)

  6. Mapping of local argon impingement on a virtual surface: an insight for gas injection during FEBID

    Science.gov (United States)

    Wanzenboeck, H. D.; Hochleitner, G.; Mika, J.; Shawrav, M. M.; Gavagnin, M.; Bertagnolli, E.

    2014-12-01

    During the last decades, focused electron beam induced deposition (FEBID) has become a successful approach for direct-write fabrication of nanodevices. Such a deposition technique relies on the precursor supply to the sample surface which is typically accomplished by a gas injection system using a tube-shaped injector nozzle. This precursor injection strategy implies a position-dependent concentration gradient on the surface, which affects the geometry and chemistry of the final nanodeposit. Although simulations already proposed the local distribution of nozzle-borne gas molecules impinging on the surface, this isolated step in the FEBID process has never been experimentally measured yet. This work experimentally investigates the local distribution of impinging gas molecules on the sample plane, isolating the direct impingement component from surface diffusion or precursor depletion by deposition. The experimental setup used in this work maps and quantifies the local impinging rate of argon gas over the sample plane. This setup simulates the identical conditions for a precursor molecule during FEBID. Argon gas was locally collected with a sniffer tube, which is directly connected to a residual gas analyzer for quantification. The measured distribution of impinging gas molecules showed a strong position dependence. Indeed, a 300-µm shift of the deposition area to a position further away from the impingement center spot resulted in a 50 % decrease in the precursor impinging rate on the surface area. With the same parameters, the precursor distribution was also simulated by a Monte Carlo software by Friedli and Utke and showed a good correlation between the empirical and the simulated precursor distribution. The results hereby presented underline the importance of controlling the local precursor flux conditions in order to obtain reproducible and comparable deposition results in FEBID.

  7. Quantized Arnold cat maps can be entropic K systems

    International Nuclear Information System (INIS)

    Narnhofer, H.

    1991-01-01

    Automorphisms on the irrational rotation algebra with respect to their ergodic properties are studied. Especially it is shown that for a dense set of the rotation parameter θ cat maps are entropic K systems. (Author)

  8. A chord diagrammatic presentation of the mapping class group of a once bordered surface

    DEFF Research Database (Denmark)

    Bene, Alex

    2010-01-01

    of Teichmüller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy groupoid......The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichmüller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path groupoid...

  9. A Chord Diagrammatic Presentation of the Mapping Class Group of a Once Bordered Surface

    DEFF Research Database (Denmark)

    Bene, Alex

    groupoid of Teichm\\"uller space with a discrete set objects. In particular, it leads to an infinite, but combinatorially simple, presentation of the mapping class group of an orientable surface. In this note, we give a presentation of a full mapping class group equivariant subgroupoid of the Ptolemy......The Ptolemy groupoid is a combinatorial groupoid generated by elementary moves on marked trivalent fatgraphs with three types of relations. Through the fatgraph decomposition of Teichm\\"uller space, the Ptolemy groupoid is a mapping class group equivariant subgroupoid of the fundamental path...

  10. In situ mapping of radionuclides in subsurface and surface soils: 1994 Summary report

    International Nuclear Information System (INIS)

    Schilk, A.J.; Hubbard, C.W.; Knopf, M.A.; Abel, K.H.

    1995-04-01

    Uranium production and support facilities at several DOE sites occasionally caused local contamination of some surface and subsurface soils. The thorough cleanup of these sites is a major public concern and a high priority for the US Department of Energy, but before any effective remedial protocols can be established, the three-dimensional distributions of target contaminants must be characterized. Traditional means of measuring radionuclide activities in soil are cumbersome, expensive, time-consuming, and often do not accurately reflect conditions over very large areas. New technologies must be developed, or existing ones improved, to allow cheaper, faster, and safer characterization of radionuclides in soils at these sites. The Pacific Northwest Laboratory (PNL) was tasked with adapting, developing, and demonstrating technologies to measure uranium in surface and subsurface soils. In partial completion of this effort, PNL developed an improved in situ gamma-ray spectrometry system to satisfy the technical requirements. This document summarizes fiscal-year 1994 efforts at PNL to fulfill requirements for TTP number-sign 321103 (project number-sign 19307). These requirements included (a) developing a user-friendly software package for reducing field-acquired gamma-ray spectra, (b) constructing an improved data-acquisition hardware system for use with high-purity germanium detectors, (c) ensuring readiness to conduct field mapping exercises as specified by the sponsor, (d) evaluating the in situ gamma-ray spectrometer for the determination of uranium depth distribution, and (e) documenting these efforts

  11. Regional quantitative analysis of cortical surface maps of FDG PET images

    CERN Document Server

    Protas, H D; Hayashi, K M; Chin Lung, Yu; Bergsneider, M; Sung Cheng, Huang

    2006-01-01

    Cortical surface maps are advantageous for visualizing the 3D profile of cortical gray matter development and atrophy, and for integrating structural and functional images. In addition, cortical surface maps for PET data, when analyzed in conjunction with structural MRI data allow us to investigate, and correct for, partial volume effects. Here we compared quantitative regional PET values based on a 3D cortical surface modeling approach with values obtained directly from the 3D FDG PET images in various atlas-defined regions of interest (ROIs; temporal, parietal, frontal, and occipital lobes). FDG PET and 3D MR (SPGR) images were obtained and aligned to ICBM space for 15 normal subjects. Each image was further elastically warped in 2D parameter space of the cortical surface, to align major cortical sulci. For each point within a 15 mm distance of the cortex, the value of the PET intensity was averaged to give a cortical surface map of FDG uptake. The average PET values on the cortical surface map were calcula...

  12. Mapping 2000 2010 Impervious Surface Change in India Using Global Land Survey Landsat Data

    Science.gov (United States)

    Wang, Panshi; Huang, Chengquan; Brown De Colstoun, Eric C.

    2017-01-01

    Understanding and monitoring the environmental impacts of global urbanization requires better urban datasets. Continuous field impervious surface change (ISC) mapping using Landsat data is an effective way to quantify spatiotemporal dynamics of urbanization. It is well acknowledged that Landsat-based estimation of impervious surface is subject to seasonal and phenological variations. The overall goal of this paper is to map 200-02010 ISC for India using Global Land Survey datasets and training data only available for 2010. To this end, a method was developed that could transfer the regression tree model developed for mapping 2010 impervious surface to 2000 using an iterative training and prediction (ITP) approach An independent validation dataset was also developed using Google Earth imagery. Based on the reference ISC from the validation dataset, the RMSE of predicted ISC was estimated to be 18.4%. At 95% confidence, the total estimated ISC for India between 2000 and 2010 is 2274.62 +/- 7.84 sq km.

  13. Surface peptide mapping of protein I and protein III of four strains of Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Judd, R.C.

    1982-01-01

    Whole cells and isolated outer membranes (OMs) of four strains of gonococci were surface radioiodinated with either lactoperoxidase or Iodogen (Pierce Chemical Co., Rockford, Ill.). These preparations were solubilized in sodium dodecyl sulfate and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Surface-radioiodinated protein I (PI) and PIII bands were excised from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and digested with alpha-chymotrypsin, and the resultant 125 I-peptide fragments were resolved by high-voltage electrophoresis and thin-layer chromatography (i.e., surface peptide mapping). Radioemitting peptidic fragments were visualized by autoradiography. Results demonstrated that the PI molecule of each gonococcal strain studied had unique iodinatable peptides exposed on the surface of whole cells and OMs, whereas PIIIs appeared to have the same portion of the molecule exposed on the surface of bacteria or OMs, regardless of the gonococcal strain from which they were isolated. Many more radiolabeled peptides were seen in surface peptide maps of PIs from radiolabeled OMs than in those from radioiodinated whole cells, whereas different peptidic fragments were seen in the surface peptide maps of PIIIs from radiolabeled OMs than were seen in those from radiolabeled whole cells. These data suggest that PI may contribute strain-specific antigenic determinants and PIII may contribute cross-reactive determinants and that the surface exposure of PI and PIII is different in isolated OMs than in the OM of intact gonococci

  14. Instruments and Methods: A Low-Cost Glacier-Mapping System

    DEFF Research Database (Denmark)

    Christensen, Erik Lintz; Reeh, Niels; Forsberg, René

    2000-01-01

    the capability of acquiring accurate data on location and ice-surface elevation, and adequate-quality data on ice thickness. The system has been applied successfully in mapping the Nioghalvfjerdsfjorden glacier, northeast Greenland, in spite of the difficult conditions with melting water on the glacier surface....... The measurements from the floating part of the glacier have been evaluated by comparison of radar data with laser-altimeter and in situ measurements....

  15. Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

    Science.gov (United States)

    Bender, Adrian M.; Haeussler, Peter J.

    2017-05-04

    We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

  16. Surface sedimentation at permeable pavement systems

    DEFF Research Database (Denmark)

    Støvring, Jan; Dam, Torben; Jensen, Marina Bergen

    2018-01-01

    Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance of restorat......Newly installed permeable pavement (PP) systems provide high surface infiltration capacity, but the accumulation of sediments causes a decrease in capacity over time, eventually leading to surface clogging. With the aim of investigating local sedimentation processes and the importance...

  17. Information and Analytical Web Mapping SystemMap of Health Care of Krasnoyarsk Region”

    Directory of Open Access Journals (Sweden)

    Kadochnikov Alexey

    2016-01-01

    Full Text Available Approaches to the modern geoinformation web-systems development and technological features of software implementation are considered, their development trends are discussed. A brief description of the web 2.0 technologies main components is given, the use of which provides the current level of web mapping. Goals and objectives, the main purpose of the formed region’s health management informational support system based on mapping web-interface are formulated. A general characteristic of the created software is given, some aspects of its implementation and program architecture are discussed. User interface construction features are discussed using several examples.

  18. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  19. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    OpenAIRE

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    1999-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface mo...

  20. FUZZY MAPPING IN DATA SONIFICATION SYSTEM OF WIRELESS SENSOR NETWORK

    Directory of Open Access Journals (Sweden)

    Arseny A. Markhotin

    2016-11-01

    Full Text Available Problem Statement. This paper describes the modeling of sonification system with possible types of wireless sensor network data. Fuzzy logic is used for the data-to-sound mapping. Methods. Devised sonification system includes input data model and sound synthesis core. It was created in Pure Data. For fuzzy output of mapped data the Fuzzy Logic Toolboxof MATLABwas used. Moreover, the system model has an ability to send data to the side application via UDP protocol. Results. We offer the method of timbre space organization for sonification system output and the following output of control sound characteristics depending on the type of input data. Practical Relevance. The offered approach of using fuzzy logic in sonification systems can be applied in development of new applications when the formalization of data-to-sound mapping is difficult and also complicated timbal space organization is required.

  1. Stability Analysis of Periodic Systems by Truncated Point Mappings

    Science.gov (United States)

    Guttalu, R. S.; Flashner, H.

    1996-01-01

    An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the "exact solution". It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.

  2. Functional mapping of the primate auditory system.

    Science.gov (United States)

    Poremba, Amy; Saunders, Richard C; Crane, Alison M; Cook, Michelle; Sokoloff, Louis; Mishkin, Mortimer

    2003-01-24

    Cerebral auditory areas were delineated in the awake, passively listening, rhesus monkey by comparing the rates of glucose utilization in an intact hemisphere and in an acoustically isolated contralateral hemisphere of the same animal. The auditory system defined in this way occupied large portions of cerebral tissue, an extent probably second only to that of the visual system. Cortically, the activated areas included the entire superior temporal gyrus and large portions of the parietal, prefrontal, and limbic lobes. Several auditory areas overlapped with previously identified visual areas, suggesting that the auditory system, like the visual system, contains separate pathways for processing stimulus quality, location, and motion.

  3. Dipyridamole Body Surface Potential Mapping: Noninvasive Differentiation of Syndrome X from Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Boudík, F.; Anger, Z.; Aschermann, M.; Vojáček, J.; Tomečková, Marie

    2002-01-01

    Roč. 35, č. 3 (2002), s. 181-191 ISSN 0022-0736 R&D Projects: GA MZd IZ4038 Keywords : body surface potential mapping * dipyridamole * coronary artery disease * syndrome X Subject RIV: BD - Theory of Information Impact factor: 0.599, year: 2002

  4. Research on the Application of Rapid Surveying and Mapping for Large Scare Topographic Map by Uav Aerial Photography System

    Science.gov (United States)

    Gao, Z.; Song, Y.; Li, C.; Zeng, F.; Wang, F.

    2017-08-01

    Rapid acquisition and processing method of large scale topographic map data, which relies on the Unmanned Aerial Vehicle (UAV) low-altitude aerial photogrammetry system, is studied in this paper, elaborating the main work flow. Key technologies of UAV photograph mapping is also studied, developing a rapid mapping system based on electronic plate mapping system, thus changing the traditional mapping mode and greatly improving the efficiency of the mapping. Production test and achievement precision evaluation of Digital Orth photo Map (DOM), Digital Line Graphic (DLG) and other digital production were carried out combined with the city basic topographic map update project, which provides a new techniques for large scale rapid surveying and has obvious technical advantage and good application prospect.

  5. Demonstration of volumetric analysis using the topographical mapping system at Hanford

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Carteret, B.A.; Pardini, A.F.; Samuel, T.J.

    1997-07-01

    During the spring of 1997, the Topographical Mapping System (TMS) for hazardous and radiological environments was used to perform volumetric measurements of simulated waste in the cold test cell in the Fuel Materials and Examination Facility at the Hanford site. The TMS was used to measure the volume of five simulated waste mounds. Custom software designed by Oak Ridge National Laboratory was used to calculate the volume of waste from the surface maps supplied by the TMS. The results of the measurements were analyzed using the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) and were documented. Development of the TMS and ICERVS was initiated by the US Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a three-dimensional TMS suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE's waste characterization and remediation efforts to obtain baseline data on the content of storage tank interiors as well as on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford site, the TMS was designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention. An appendix contains the source code for calculating the volume from two surface maps

  6. Recommendation System Based on Fuzzy Cognitive Map

    OpenAIRE

    Wei Liu; Linzhi Gao

    2014-01-01

    With the increase of data volume and visitor volume, the website faces great challenge in the environment of network. How to know the users’ requirements rapidly and effectively and recommend the required information to the user becomes the research direction of all websites. The researchers of recommendation system propose a series of recommendation system models and algorithms for the user. The common challenge faced by these algorithms is how to judge the user intention and recommend...

  7. Implementation of cartographic symbols for planetary mapping in geographic information systems

    Science.gov (United States)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  8. Systems Neuroscience of Psychosis: Mapping Schizophrenia Symptoms onto Brain Systems.

    Science.gov (United States)

    Strik, Werner; Stegmayer, Katharina; Walther, Sebastian; Dierks, Thomas

    2017-01-01

    Schizophrenia research has been in a deadlock for many decades. Despite important advances in clinical treatment, there are still major concerns regarding long-term psychosocial reintegration and disease management, biological heterogeneity, unsatisfactory predictors of individual course and treatment strategies, and a confusing variety of controversial theories about its etiology and pathophysiological mechanisms. In the present perspective on schizophrenia research, we first discuss a methodological pitfall in contemporary schizophrenia research inherent in the attempt to link mental phenomena with the brain: we claim that the time-honored phenomenological method of defining mental symptoms should not be contaminated with the naturalistic approach of modern neuroscience. We then describe our Systems Neuroscience of Psychosis (SyNoPsis) project, which aims to overcome this intrinsic problem of psychiatric research. Considering schizophrenia primarily as a disorder of interindividual communication, we developed a neurobiologically informed semiotics of psychotic disorders, as well as an operational clinical rating scale. The novel psychopathology allows disentangling the clinical manifestations of schizophrenia into behavioral domains matching the functions of three well-described higher-order corticobasal brain systems involved in interindividual human communication, namely, the limbic, associative, and motor loops, including their corticocortical sensorimotor connections. The results of several empirical studies support the hypothesis that the proposed three-dimensional symptom structure, segregated into the affective, the language, and the motor domain, can be specifically mapped onto structural and functional abnormalities of the respective brain systems. New pathophysiological hypotheses derived from this brain system-oriented approach have helped to develop and improve novel treatment strategies with noninvasive brain stimulation and practicable clinical

  9. Assessing System Thinking through Different Concept-Mapping Practices

    Science.gov (United States)

    Brandstadter, Kristina; Harms, Ute; Grossschedl, Jorg

    2012-01-01

    System thinking is usually investigated by using questionnaires, video analysis, or interviews. Recently, concept-mapping (CM) was suggested as an adequate instrument for analysing students' system thinking. However, there are different ways with which to use this method. Therefore, the purpose of this study was to examine whether particular…

  10. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2016-02-25

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  11. Mapping Carrier Dynamics on Material Surfaces in Space and Time using Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya; Adhikari, Aniruddha; Shaheen, Basamat; Yang, Haoze; Mohammed, Omar F.

    2016-01-01

    Selectively capturing the ultrafast dynamics of charge carriers on materials surfaces and at interfaces is crucial to the design of solar cells and optoelectronic devices. Despite extensive research efforts over the past few decades, information and understanding about surface-dynamical processes, including carrier trapping and recombination remains extremely limited. A key challenge is to selectively map such dynamic processes, a capability that is hitherto impractical by time-resolved laser techniques, which are limited by the laser’s relatively large penetration depth and consequently they record mainly bulk information. Such surface dynamics can only be mapped in real space and time by applying four-dimensional (4D) scanning ultrafast electron microscopy (S-UEM), which records snapshots of materials surfaces with nanometer spatial and sub-picosecond temporal resolutions. In this method, the secondary electron (SE) signal emitted from the sample’s surface is extremely sensitive to the surface dynamics and is detected in real time. In several unique applications, we spatially and temporally visualize the SE energy gain and loss, the charge carrier dynamics on the surface of InGaN nanowires and CdSe single crystals and its powder film. We also provide the mechanisms for the observed dynamics, which will be the foundation for future potential applications of S-UEM to a wide range of studies on material surfaces and device interfaces.

  12. Active and Passive Remote Sensing Data Time Series for Flood Detection and Surface Water Mapping

    Science.gov (United States)

    Bioresita, Filsa; Puissant, Anne; Stumpf, André; Malet, Jean-Philippe

    2017-04-01

    As a consequence of environmental changes surface waters are undergoing changes in time and space. A better knowledge of the spatial and temporal distribution of surface waters resources becomes essential to support sustainable policies and development activities. Especially because surface waters, are not only a vital sweet water resource, but can also pose hazards to human settlements and infrastructures through flooding. Floods are a highly frequent disaster in the world and can caused huge material losses. Detecting and mapping their spatial distribution is fundamental to ascertain damages and for relief efforts. Spaceborne Synthetic Aperture Radar (SAR) is an effective way to monitor surface waters bodies over large areas since it provides excellent temporal coverage and, all-weather day-and-night imaging capabilities. However, emergent vegetation, trees, wind or flow turbulence can increase radar back-scatter returns and pose problems for the delineation of inundated areas. In such areas, passive remote sensing data can be used to identify vegetated areas and support the interpretation of SAR data. The availability of new Earth Observation products, for example Sentinel-1 (active) and Sentinel-2 (passive) imageries, with both high spatial and temporal resolution, have the potential to facilitate flood detection and monitoring of surface waters changes which are very dynamic in space and time. In this context, the research consists of two parts. In the first part, the objective is to propose generic and reproducible methodologies for the analysis of Sentinel-1 time series data for floods detection and surface waters mapping. The processing chain comprises a series of pre-processing steps and the statistical modeling of the pixel value distribution to produce probabilistic maps for the presence of surface waters. Images pre-processing for all Sentinel-1 images comprise the reduction SAR effect like orbit errors, speckle noise, and geometric effects. A modified

  13. Stochastic perturbations in open chaotic systems: random versus noisy maps.

    Science.gov (United States)

    Bódai, Tamás; Altmann, Eduardo G; Endler, Antonio

    2013-04-01

    We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the random map is always larger than that of the noisy map. In random maps we show that the escape rate κ and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and show that the improvement of the precision of the estimations with the number of trajectories N is extremely slow ([proportionality]1/lnN). We also argue that the finite-size D estimators are typically biased. General theoretical results are combined with analytical calculations and numerical simulations in area-preserving baker maps.

  14. CMIS: Crime Map Information System for Safety Environment

    Science.gov (United States)

    Kasim, Shahreen; Hafit, Hanayanti; Yee, Ng Peng; Hashim, Rathiah; Ruslai, Husni; Jahidin, Kamaruzzaman; Syafwan Arshad, Mohammad

    2016-11-01

    Crime Map is an online web based geographical information system that assists the public and users to visualize crime activities geographically. It acts as a platform for the public communities to share crime activities they encountered. Crime and violence plague the communities we are living in. As part of the community, crime prevention is everyone's responsibility. The purpose of Crime Map is to provide insights of the crimes occurring around Malaysia and raise the public's awareness on crime activities in their neighbourhood. For that, Crime Map visualizes crime activities on a geographical heat maps, generated based on geospatial data. Crime Map analyse data obtained from crime reports to generate useful information on crime trends. At the end of the development, users should be able to make use of the system to access to details of crime reported, crime analysis and report crimes activities. The development of Crime Map also enable the public to obtain insights about crime activities in their area. Thus, enabling the public to work together with the law enforcer to prevent and fight crime.

  15. Mapping cellular hierarchy by single-cell analysis of the cell surface repertoire.

    Science.gov (United States)

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H

    2013-10-03

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method, we analyzed over 1,500 single cells throughout the mouse hematopoietic system and illustrate its utility for revealing important biological insights. The comprehensive single cell data set permits mapping of the mouse hematopoietic stem cell differentiation hierarchy by computational lineage progression analysis. Further profiling of 180 intracellular regulators enabled construction of a genetic network to assign the earliest differentiation event during hematopoietic lineage specification. Analysis of acute myeloid leukemia elicited by MLL-AF9 uncovered a distinct cellular hierarchy containing two independent self-renewing lineages with different clonal activities. The strategy has broad applicability in other cellular systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mapping a classification system to architectural education

    DEFF Research Database (Denmark)

    Hermund, Anders; Klint, Lars; Rostrup, Nicolai

    2015-01-01

    This paper examines to what extent a new classification system, Cuneco Classification System, CCS, proves useful in the education of architects, and to what degree the aim of an architectural education, rather based on an arts and crafts approach than a polytechnic approach, benefits from...... the distinct terminology of the classification system. The method used to examine the relationship between education, practice and the CCS bifurcates in a quantitative and a qualitative exploration: Quantitative comparison of the curriculum with the students’ own descriptions of their studies through...... a questionnaire survey among 88 students in graduate school. Qualitative interviews with a handful of practicing architects, to be able to cross check the relevance of the education with the profession. The examination indicates the need of a new definition, in addition to the CCS’s scale, covering the earliest...

  17. Mapping land water and energy balance relations through conditional sampling of remote sensing estimates of atmospheric forcing and surface states

    Science.gov (United States)

    Farhadi, Leila; Entekhabi, Dara; Salvucci, Guido

    2016-04-01

    In this study, we develop and apply a mapping estimation capability for key unknown parameters that link the surface water and energy balance equations. The method is applied to the Gourma region in West Africa. The accuracy of the estimation method at point scale was previously examined using flux tower data. In this study, the capability is scaled to be applicable with remotely sensed data products and hence allow mapping. Parameters of the system are estimated through a process that links atmospheric forcing (precipitation and incident radiation), surface states, and unknown parameters. Based on conditional averaging of land surface temperature and moisture states, respectively, a single objective function is posed that measures moisture and temperature-dependent errors solely in terms of observed forcings and surface states. This objective function is minimized with respect to parameters to identify evapotranspiration and drainage models and estimate water and energy balance flux components. The uncertainty of the estimated parameters (and associated statistical confidence limits) is obtained through the inverse of Hessian of the objective function, which is an approximation of the covariance matrix. This calibration-free method is applied to the mesoscale region of Gourma in West Africa using multiplatform remote sensing data. The retrievals are verified against tower-flux field site data and physiographic characteristics of the region. The focus is to find the functional form of the evaporative fraction dependence on soil moisture, a key closure function for surface and subsurface heat and moisture dynamics, using remote sensing data.

  18. Globalland30 Mapping Capacity of Land Surface Water in Thessaly, Greece

    Directory of Open Access Journals (Sweden)

    Ioannis Manakos

    2014-12-01

    Full Text Available The National Geomatics Center of China (NGCC produced Global Land Cover (GlobalLand30 maps with 30 m spatial resolution for the years 2000 and 2009–2010, responding to the need for harmonized, accurate, and high-resolution global land cover data. This study aims to assess the mapping accuracy of the land surface water layer of GlobalLand30 for 2009–2010. A representative Mediterranean region, situated in Greece, is considered as the case study area, with 2009 as the reference year. The assessment is realized through an object-based comparison of the GlobalLand30 water layer with the ground truth and visually interpreted data from the Hellenic Cadastre fine spatial resolution (0.5 m orthophoto map layer. GlobCover 2009, GlobCorine 2009, and GLCNMO 2008 corresponding thematic layers are utilized to show and quantify the progress brought along with the increment of the spatial resolution, from 500 m to 300 m and finally to 30 m with the newly produced GlobalLand30 maps. GlobalLand30 detected land surface water areas show a 91.9% overlap with the reference data, while the coarser resolution products are restricted to lower accuracies. Validation is extended to the drainage network elements, i.e., rivers and streams, where GlobalLand30 outperforms the other global map products, as well.

  19. Groundwater quality mapping using geographic information system ...

    African Journals Online (AJOL)

    Spatial variations in ground water quality in the corporation area of Gulbarga City located in the northern part of Karnataka State, India, have been studied using geographic information system (GIS) technique. GIS, a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground ...

  20. Low Cost Vision Based Personal Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    M. M. Amami

    2014-03-01

    Full Text Available Mobile mapping systems (MMS can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS. A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  1. Low Cost Vision Based Personal Mobile Mapping System

    Science.gov (United States)

    Amami, M. M.; Smith, M. J.; Kokkas, N.

    2014-03-01

    Mobile mapping systems (MMS) can be used for several purposes, such as transportation, highway infrastructure mapping and GIS data collecting. However, the acceptance of these systems is not wide spread and their use is still limited due the high cost and dependency on the Global Navigation Satellite System (GNSS). A low cost vision based personal MMS has been produced with an aim to overcome these limitations. The system has been designed to depend mainly on cameras and use of low cost GNSS and inertial sensors to provide a bundle adjustment solution with initial values. The system has the potential to be used indoor and outdoor. The system has been tested indoors and outdoors with different GPS coverage, surrounded features, and narrow and curvy paths. Tests show that the system is able to work in such environments providing 3D coordinates of better than 10 cm accuracy.

  2. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    Science.gov (United States)

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  3. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    Science.gov (United States)

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  4. Mapping and predicting mortality from systemic sclerosis

    DEFF Research Database (Denmark)

    Elhai, Muriel; Meune, Christophe; Boubaya, Marouane

    2017-01-01

    OBJECTIVES: To determine the causes of death and risk factors in systemic sclerosis (SSc). METHODS: Between 2000 and 2011, we examined the death certificates of all French patients with SSc to determine causes of death. Then we examined causes of death and developed a score associated with all-ca....... With the emergence of new therapies, these important observations should help caregivers plan and refine the monitoring and management to prolong these patients' survival....

  5. Beam Position and Phase Monitor - Wire Mapping System

    International Nuclear Information System (INIS)

    Watkins, Heath A.; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-01-01

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  6. Mapping Health Needs to Support Health System Management in Poland

    Science.gov (United States)

    Holecki, Tomasz; Romaniuk, Piotr; Woźniak-Holecka, Joanna; Szromek, Adam R.; Syrkiewicz-Świtała, Magdalena

    2018-01-01

    In Poland, following the example of other EU countries, the first maps of health needs prepared by the Ministry of Health were presented in 2016. The maps constitute a foundation for rational decision-making in the management of health care resources, being potentially useful for all actors in health system. This refers in particular to the institutions responsible for distribution of funds and contracting health service, but also for decision-makers, who determine the scope of funds to be utilized in the health system, or the structure of benefits provided to patients. Service providers are also addressees of the maps, to give them a basis for planning future activities. The article presents a structured assessment of the current state of affairs, based on recent experience and sets out likely directions for the development of health needs in mapping in Poland in the future. We discuss the criticism addressed toward maps by representatives of various groups acting in health care. It includes the lack of recognition of some of the key health needs, or wrong emphases, where much more attention is paid to the recognition of current resources in the health system, instead of making prognoses regarding the future developments of health needs. Nonetheless, we find that this instrument is potentially of high usability, in case of elimination of the existing weaknesses. PMID:29662876

  7. Open quantum maps from complex scaling of kicked scattering systems

    Science.gov (United States)

    Mertig, Normann; Shudo, Akira

    2018-04-01

    We derive open quantum maps from periodically kicked scattering systems and discuss the computation of their resonance spectra in terms of theoretically grounded methods, such as complex scaling and sufficiently weak absorbing potentials. In contrast, we also show that current implementations of open quantum maps, based on strong absorptive or even projective openings, fail to produce the resonance spectra of kicked scattering systems. This comparison pinpoints flaws in current implementations of open quantum maps, namely, the inability to separate resonance eigenvalues from the continuum as well as the presence of diffraction effects due to strong absorption. The reported deviations from the true resonance spectra appear, even if the openings do not affect the classical trapped set, and become appreciable for shorter-lived resonances, e.g., those associated with chaotic orbits. This makes the open quantum maps, which we derive in this paper, a valuable alternative for future explorations of quantum-chaotic scattering systems, for example, in the context of the fractal Weyl law. The results are illustrated for a quantum map model whose classical dynamics exhibits key features of ionization and a trapped set which is organized by a topological horseshoe.

  8. GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management.

    Science.gov (United States)

    Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk

    2018-01-15

    Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land

  9. Global Rapid Flood Mapping System with Spaceborne SAR Data

    Science.gov (United States)

    Yun, S. H.; Owen, S. E.; Hua, H.; Agram, P. S.; Fattahi, H.; Liang, C.; Manipon, G.; Fielding, E. J.; Rosen, P. A.; Webb, F.; Simons, M.

    2017-12-01

    As part of the Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards, at NASA's Jet Propulsion Laboratory and California Institute of Technology, we have developed an automated system that produces derived products for flood extent map generation using spaceborne SAR data. The system takes user's input of area of interest polygons and time window for SAR data search (pre- and post-event). Then the system automatically searches and downloads SAR data, processes them to produce coregistered SAR image pairs, and generates log amplitude ratio images from each pair. Currently the system is automated to support SAR data from the European Space Agency's Sentinel-1A/B satellites. We have used the system to produce flood extent maps from Sentinel-1 SAR data for the May 2017 Sri Lanka floods, which killed more than 200 people and displaced about 600,000 people. Our flood extent maps were delivered to the Red Cross to support response efforts. Earlier we also responded to the historic August 2016 Louisiana floods in the United States, which claimed 13 people's lives and caused over $10 billion property damage. For this event, we made synchronized observations from space, air, and ground in close collaboration with USGS and NOAA. The USGS field crews acquired ground observation data, and NOAA acquired high-resolution airborne optical imagery within the time window of +/-2 hours of the SAR data acquisition by JAXA's ALOS-2 satellite. The USGS coordinates of flood water boundaries were used to calibrate our flood extent map derived from the ALOS-2 SAR data, and the map was delivered to FEMA for estimating the number of households affected. Based on the lessons learned from this response effort, we customized the ARIA system automation for rapid flood mapping and developed a mobile friendly web app that can easily be used in the field for data collection. Rapid automatic generation of SAR-based global flood maps calibrated with independent observations from

  10. Benchmark of 6D SLAM (6D Simultaneous Localisation and Mapping Algorithms with Robotic Mobile Mapping Systems

    Directory of Open Access Journals (Sweden)

    Bedkowski Janusz

    2017-09-01

    Full Text Available This work concerns the study of 6DSLAM algorithms with an application of robotic mobile mapping systems. The architecture of the 6DSLAM algorithm is designed for evaluation of different data registration strategies. The algorithm is composed of the iterative registration component, thus ICP (Iterative Closest Point, ICP (point to projection, ICP with semantic discrimination of points, LS3D (Least Square Surface Matching, NDT (Normal Distribution Transform can be chosen. Loop closing is based on LUM and LS3D. The main research goal was to investigate the semantic discrimination of measured points that improve the accuracy of final map especially in demanding scenarios such as multi-level maps (e.g., climbing stairs. The parallel programming based nearest neighborhood search implementation such as point to point, point to projection, semantic discrimination of points is used. The 6DSLAM framework is based on modified 3DTK and PCL open source libraries and parallel programming techniques using NVIDIA CUDA. The paper shows experiments that are demonstrating advantages of proposed approach in relation to practical applications. The major added value of presented research is the qualitative and quantitative evaluation based on realistic scenarios including ground truth data obtained by geodetic survey. The research novelty looking from mobile robotics is the evaluation of LS3D algorithm well known in geodesy.

  11. Mapping Health of Bonaire Coral Reefs Using a Lightweight Hyperspectral Mapping System - First Results

    Science.gov (United States)

    Suomalainen, Juha; Mucher, Sander; Kooistra, Lammert; Meesters, Erik

    2014-05-01

    The Dutch Caribbean island of Bonaire is one of the world's top diving holiday destinations much due to its clear waters and healthy coral reefs. The coral reefs surround the western side of the island as an approximately 50-150m wide band. However, the general consensus is that the extent and biodiversity of the Bonarian coral reef is constantly decreasing due to anthropogenic pressures. The last extensive study of the health of the reef ecosystem was performed in 1985 by Van Duyl creating an underwater atlas. In order to update this atlas of Bonaire's coral reefs, in October 2013, a hyperspectral mapping campaign was performed using the WUR Hyperspectral Mapping System (HYMSY). A dive validation campaign has been planned for early 2014. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing it to be mounted on varying platforms. In Bonaire the system was flown on two platforms. (1) on a Cessna airplane to provide a coverage for whole west side of the island with a hyperspectral map in 2-4m resolution and a RGB orthomosaic in 15cm resolution, and (2) on a kite pulled by boat and car to provide a subset coverage in higher resolution. In this presentation we will present our mapping technique and first results including a preliminary underwater atlas and conclusions on reef development.

  12. SURFACES OF HARD-SPHERE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Dietrich Stoyan

    2014-07-01

    Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.

  13. An application of Geographic Information System in mapping flood ...

    African Journals Online (AJOL)

    Roland

    1Department of Geography, Benue State University, Makurdi, Benue State, Nigeria. 2National Agency for the Control of AIDS (NACA), Central Area, Abuja, Nigeria. Accepted 20 May, 2013. This study deals with the application of Geographic Information Systems (GIS) in mapping flood risk zones in Makurdi Town. This study ...

  14. Okeanos Explorer (EX1602): Mission System Shakedown/CAPSTONE Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operations will use the ship’s deep water mapping systems (Kongsberg EM302 multibeam sonar, EK60 split-beam fisheries sonars, Knudsen 3260 chirp sub-bottom...

  15. Update of the LIPID MAPS comprehensive classification system for lipids

    NARCIS (Netherlands)

    Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; Wakelam, M.J.O.; Dennis, E.A.

    2009-01-01

    In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is

  16. Topographical mapping system for radiological and hazardous environments acceptance testing

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Dochat, G.R.

    1997-01-01

    During the summer of 1996, the Topographical Mapping System (TMS) for hazardous and radiological environments and its accompanying three-dimensional (3-D) visualization tool, the Interactive Computer-Enhanced Remote-Viewing System (ICERVS), were delivered to Oak Ridge National Laboratory (ORNL). ORNL and Mechanical Technology, Inc., performed final acceptance testing of the TMS during the next eight months. The TMS was calibrated and characterized during this period. This paper covers the calibration, characterization, and acceptance testing of the TMS. Development of the TMS and ICERVS was initiated by the US Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a 3-D, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE's waste characterization and remediation efforts and to obtain baseline data on the content of the storage tank interiors as well as data on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Washington site, the TMS is designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  17. Topographical mapping system for radiological and hazardous environments acceptance testing

    Science.gov (United States)

    Armstrong, Gary A.; Dochat, G. R.

    1997-09-01

    During the summer of 1996, the topographical mapping system (TMS) for hazardous and radiological environments and its accompanying three-dimensional (3-D) visualization tool, the interactive computer-enhanced remote-viewing system (ICERVS), were delivered to Oak Ridge National Laboratory (ORNL). ORNL and Mechanical Technology, Inc., performed final acceptance testing of the TMS during the next eight months. The TMS was calibrated and characterized during this period. This paper covers the calibration, characterization, and acceptance testing of the TMS. Development of the TMS and the ICERVS was initiated by the U.S. Department of Energy (DOE) for the purpose of characterization and remediation of underground storage tanks (USTs) at DOE sites across the country. DOE required a 3-D, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is the mapping of the interior of USTs as part of DOE's waste characterization and remediation efforts and to obtain baseline data on the content of the storage tank interiors as well as data on changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Washington site, the TMS is designed to be a self-contained, compact, reconfigurable system that is capable of providing rapid, variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

  18. Partial synchronization in a system of coupled logistic maps

    DEFF Research Database (Denmark)

    Taborov, A.V.; Maistrenko, Y.L; Mosekilde, Erik

    1999-01-01

    The phenomenon of clustering (or partial synchronization) in a system of globqally coupled chaotic oscillators is studied by means of a model of three coupled logistic maps. We determine the regions in parameter space where total and partial synchronization take place, examine the bifurcations...

  19. An improved map based graphical android authentication system ...

    African Journals Online (AJOL)

    Currently, graphical password methods are available for android and other devices, but the major problem is vulnerability issue. A map graphical-based authentication system (Dheeraj et al, 2013) was designed on mobile android devices, but it did not provide a large choice or multiple sequence to user for selecting ...

  20. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  1. Surface strain rate colour map of the Tatra Mountains region (Slovakia based on GNSS data

    Directory of Open Access Journals (Sweden)

    Bednárik Martin

    2016-12-01

    Full Text Available The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

  2. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope.

    Science.gov (United States)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-08-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  3. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meng; Xu, Chunkai, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn; Zhang, Panke; Li, Zhean; Chen, Xiangjun, E-mail: xuck@ustc.edu.cn, E-mail: xjun@ustc.edu.cn [Hefei National Laboratory for Physical Science at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-08-15

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  4. Note: Electron energy spectroscopy mapping of surface with scanning tunneling microscope

    International Nuclear Information System (INIS)

    Li, Meng; Xu, Chunkai; Zhang, Panke; Li, Zhean; Chen, Xiangjun

    2016-01-01

    We report a novel scanning probe electron energy spectrometer (SPEES) which combines a double toroidal analyzer with a scanning tunneling microscope to achieve both topography imaging and electron energy spectroscopy mapping of surface in situ. The spatial resolution of spectroscopy mapping is determined to be better than 0.7 ± 0.2 μm at a tip sample distance of 7 μm. Meanwhile, the size of the field emission electron beam spot on the surface is also measured, and is about 3.6 ± 0.8 μm in diameter. This unambiguously demonstrates that the spatial resolution of SPEES technique can be much better than the size of the incident electron beam.

  5. A Novel Sensory Mapping Design for Bipedal Walking on a Sloped Surface

    Directory of Open Access Journals (Sweden)

    Chiao-Min Wu

    2012-10-01

    Full Text Available This paper presents an environment recognition method for bipedal robots using a time-delay neural network. For a robot to walk in a varying terrain, it is desirable that the robot can adapt to any environment encountered in real-time. This paper aims to develop a sensory mapping unit to recognize environment types from the input sensory data based on an artificial neural network approach. With the proposed sensory mapping design, a bipedal walking robot can obtain real-time environment information and select an appropriate walking pattern accordingly. Due to the time-dependent property of sensory data, the sensory mapping is realized by using a time-delay neural network. The sensory data of earlier time sequences combined with current sensory data are sent to the neural network. The proposed method has been implemented on the humanoid robot NAO for verification. Several interesting experiments were carried out to verify the effectiveness of the sensory mapping design. The mapping design is validated for the uphill, downhill and flat surface cases, where three types of environment can be recognized by the NAO robot online.

  6. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.

    Science.gov (United States)

    Jogikalmath, G; Stuart, J K; Pungor, A; Hlady, V

    1999-08-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si(3)N(4) tip surfaces was found for all modified glass surfaces.

  7. ON RANDOM ITERATED FUNCTION SYSTEMS WITH GREYSCALE MAPS

    Directory of Open Access Journals (Sweden)

    Matthew Demers

    2012-05-01

    Full Text Available In the theory of Iterated Function Systems (IFSs it is known that one can find an IFS with greyscale maps (IFSM to approximate any target signal or image with arbitrary precision, and a systematic approach for doing so was described. In this paper, we extend these ideas to the framework of random IFSM operators. We consider the situation where one has many noisy observations of a particular target signal and show that the greyscale map parameters for each individual observation inherit the noise distribution of the observation. We provide illustrative examples.

  8. Wireless sensing on surface hydrocarbon production systems

    International Nuclear Information System (INIS)

    Kane, D; McStay, D; Mulholland, J; Costello, L

    2009-01-01

    The use of wireless sensor networks for monitoring and optimising the performance of surface hydrocarbon production systems is reported. Wireless sensor networks are shown to be able to produce comprehensively instrumented XTs and other equipment that generate the data required by Intelligent Oilfield systems. The information produced by such systems information can be used for real-time operational control, production optimization and troubleshooting.

  9. Mapping healthcare systems: a policy relevant analytic tool.

    Science.gov (United States)

    Sekhri Feachem, Neelam; Afshar, Ariana; Pruett, Cristina; Avanceña, Anton L V

    2017-07-01

    In the past decade, an international consensus on the value of well-functioning systems has driven considerable health systems research. This research falls into two broad categories. The first provides conceptual frameworks that take complex healthcare systems and create simplified constructs of interactions and functions. The second focuses on granular inputs and outputs. This paper presents a novel translational mapping tool - the University of California, San Francisco mapping tool (the Tool) - which bridges the gap between these two areas of research, creating a platform for multi-country comparative analysis. Using the Murray-Frenk framework, we create a macro-level representation of a country's structure, focusing on how it finances and delivers healthcare. The map visually depicts the fundamental policy questions in healthcare system design: funding sources and amount spent through each source, purchasers, populations covered, provider categories; and the relationship between these entities. We use the Tool to provide a macro-level comparative analysis of the structure of India's and Thailand's healthcare systems. As part of the systems strengthening arsenal, the Tool can stimulate debate about the merits and consequences of different healthcare systems structural designs, using a common framework that fosters multi-country comparative analyses. © The Author 2017. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  10. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  11. Decision support system for surface irrigation design

    OpenAIRE

    Gonçalves, José M.; Pereira, L.S.

    2009-01-01

    The SADREG decision support system was developed to help decision makers in the process of design and selection of farm surface irrigation systems to respond to requirements of modernization of surface irrigation—furrow, basin, and border irrigation. It includes a database, simulation models, user-friendly interfaces, and multicriteria analysis models. SADREG is comprised of two components: design and selection. The first component applies database information, and through several si...

  12. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  13. Surface Operations Systems Improve Airport Efficiency

    Science.gov (United States)

    2009-01-01

    With Small Business Innovation Research (SBIR) contracts from Ames Research Center, Mosaic ATM of Leesburg, Virginia created software to analyze surface operations at airports. Surface surveillance systems, which report locations every second for thousands of air and ground vehicles, generate massive amounts of data, making gathering and analyzing this information difficult. Mosaic?s Surface Operations Data Analysis and Adaptation (SODAA) tool is an off-line support tool that can analyze how well the airport surface operation is working and can help redesign procedures to improve operations. SODAA helps researchers pinpoint trends and correlations in vast amounts of recorded airport operations data.

  14. Calculation of solidification microstructure maps for the system Al-Fe-Si

    International Nuclear Information System (INIS)

    Gilgien, P.

    1996-01-01

    Computer programs have been developed in order to calculate solidification microstructure maps for binary and ternary alloys. These programs are based on recent analytical models for the constrained growth of dendrites and eutectics. Due to the importance of phase diagrams data, programs for the calculation of growth kinetics are coupled with ThermoCalc, a commercial software for phase diagram calculations. These programs have been used to calculate a solidification microstructure map for the Al-Fe system from 0 to 4 at%Fe. Comparison of the calculated results with an experimental solidification microstructure map from the literature shows that all microstructure transitions were predicted. Nevertheless there remain significant discrepancies between some calculated and experimental transition velocities. The programs were also used to calculate solidification microstructure maps in the Al-rich corner of the Al-Fe-Si system (0 to 8 at% Fe and 0 to 8 at% Si). In this case also, calculated results were in satisfactory agreement with experimental solidification microstructure maps, although the comparison was only partial since experimental ternary microstructure maps are less complete than for the binary system, and because the available thermodynamic database does not, as yet, include metastable phases. Laser surface remelting experiments were carried out on an Al-4 at% Fe alloy in order to link results from the literature, obtained at high solidification rates by laser surface remelting and at low solidification rates by Bridman experiments. Finally, Bridman experiments were carried out with an Al-2.63 wt% Fe alloy in order to determine the critical velocity at which a planar Al-Al 13 Fe 4 eutectic front is destabilised in a cellular eutectic by a small amount of Si. The critical solidification velocity thus obtained was in agreement with a criterion of constitutional undercooling. (author) figs., tabs., refs

  15. Exercise body surface potential mapping in single and multiple coronary artery disease

    International Nuclear Information System (INIS)

    Montague, T.J.; Witkowski, F.X.; Miller, R.M.; Johnstone, D.E.; MacKenzie, R.B.; Spencer, C.A.; Horacek, B.M.

    1990-01-01

    Body surface ST integral maps were recorded in 36 coronary artery disease (CAD) patients at: rest; peak, angina-limited exercise; and, 1 and 5 min of recovery. They were compared to maps of 15 CAD patients who exercised to fatigue, without angina, and eight normal subjects. Peak exercise heart rates were similar (NS) in all groups. With exercise angina, patients with two and three vessel CAD had significantly (p less than 0.05) greater decrease in the body surface sum of ST integral values than patients with single vessel CAD. CAD patients with exercise fatigue, in the absence of angina, had decreased ST integrals similar (NS) to patients with single vessel CAD who manifested angina and the normal control subjects. There was, however, considerable overlap among individuals; some patients with single vessel CAD had as much exercise ST integral decrease as patients with three vessel CAD. All CAD patients had persistent ST integral decreases at 5 min of recovery and there was a direct correlation of the recovery and peak exercise ST changes. Exercise ST changes correlated, as well, with quantitative CAD angiographic scores, but not with thallium perfusion scores. These data suggest exercise ST integral body surface mapping allows quantitation of myocardium at ischemic risk in patients with CAD, irrespective of the presence or absence of ischemic symptoms during exercise. A major potential application of this technique is selection of CAD therapy guided by quantitative assessment of ischemic myocardial risk

  16. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images

    Science.gov (United States)

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-01-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  17. Statistical characterization of discrete conservative systems: The web map

    Science.gov (United States)

    Ruiz, Guiomar; Tirnakli, Ugur; Borges, Ernesto P.; Tsallis, Constantino

    2017-10-01

    We numerically study the two-dimensional, area preserving, web map. When the map is governed by ergodic behavior, it is, as expected, correctly described by Boltzmann-Gibbs statistics, based on the additive entropic functional SB G[p (x ) ] =-k ∫d x p (x ) lnp (x ) . In contrast, possible ergodicity breakdown and transitory sticky dynamical behavior drag the map into the realm of generalized q statistics, based on the nonadditive entropic functional Sq[p (x ) ] =k 1/-∫d x [p(x ) ] q q -1 (q ∈R ;S1=SB G ). We statistically describe the system (probability distribution of the sum of successive iterates, sensitivity to the initial condition, and entropy production per unit time) for typical values of the parameter that controls the ergodicity of the map. For small (large) values of the external parameter K , we observe q -Gaussian distributions with q =1.935 ⋯ (Gaussian distributions), like for the standard map. In contrast, for intermediate values of K , we observe a different scenario, due to the fractal structure of the trajectories embedded in the chaotic sea. Long-standing non-Gaussian distributions are characterized in terms of the kurtosis and the box-counting dimension of chaotic sea.

  18. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  19. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  20. Map of natural gamma radiation in Spain: radiometric characterization of different types of surfaces

    International Nuclear Information System (INIS)

    Suarez Mahou, E.; Fernandez Amigot, J.A.; Botas Medina, J.

    1997-01-01

    The gamma radioactivity flowing from ground and rocks is due to the presence in these of uranium, thorium and potassium-40. The method of radiometric characterization depends on the purpose of the undertaking. Radiometric characterization can be realized on big surfaces (tens or hundreds of square kilometres studied on a national scale), medium size surfaces (50 to 1000 square kilometres, for example, in epidemiological or biological studies in areas with a determined radiometric background) small surfaces of less than 50 square kilometres (industrial sites, pre-operational studies, etc.). This article considers aspects of radiometric characterization on surfaces of interest and describes the contribution of the MARNA (Natural Provisional Radiation Map of Spain) Project selection and radiometric characterization

  1. Soil properties mapping with the DIGISOIL multi-sensor system

    Science.gov (United States)

    Grandjean, G.

    2012-04-01

    The multidisciplinary DIGISOIL project aimed to integrate and improve in situ and proximal measurement technologies for the assessment of soil properties and soil degradation indicators, going from the sensing technologies to their integration and their application in (digital) soil mapping (DSM). In order to assess and prevent soil degradation and to benefit from the different ecological, economical and historical functions of the soil in a sustainable way, high resolution and quantitative maps of soil properties are needed. The core objective of the project is to explore and exploit new capabilities of advanced geophysical technologies for answering this societal demand. To this aim, DIGISOIL addresses four issues covering technological, soil science and economic aspects: (i) the validation of geophysical (in situ, proximal and airborne) technologies and integrated pedo-geophysical inversion techniques (mechanistic data fusion) (ii) the relation between the geophysical parameters and the soil properties, (iii) the integration of the derived soil properties for mapping soil functions and soil threats, (iv) the pre-evaluation, standardisation and sub-industrialization of the proposed methodologies, including technical and economical studies related to the societal demand. With respect to these issues, the DIGISOIL project allows to develop, test and validate the most relevant geophysical technologies for mapping soil properties. The system was tested on different field tests, and validated the proposed technologies and solutions for each of the identified methods: geoelectric, GPR, EMI, seismics, magnetic and hyperspectral. After data acquisition systems, sensor geometry, and advanced data processing techniques have been developed and validated, we present now the solutions for going from geophysical data to soil properties maps. For two test sites, located respectively in Luxembourg (LU) and Mugello (IT) a set of soil properties maps have been produced. They give

  2. Requirements and design concept for a facility mapping system

    International Nuclear Information System (INIS)

    Barry, R.E.; Burks, B.L.; Little, C.Q.

    1995-01-01

    The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D ampersand D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D ampersand D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, open-quotes the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculableclose quotes. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program

  3. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    Science.gov (United States)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  4. 'The surface management system' (SuMS) database: a surface-based database to aid cortical surface reconstruction, visualization and analysis

    Science.gov (United States)

    Dickson, J.; Drury, H.; Van Essen, D. C.

    2001-01-01

    Surface reconstructions of the cerebral cortex are increasingly widely used in the analysis and visualization of cortical structure, function and connectivity. From a neuroinformatics perspective, dealing with surface-related data poses a number of challenges. These include the multiplicity of configurations in which surfaces are routinely viewed (e.g. inflated maps, spheres and flat maps), plus the diversity of experimental data that can be represented on any given surface. To address these challenges, we have developed a surface management system (SuMS) that allows automated storage and retrieval of complex surface-related datasets. SuMS provides a systematic framework for the classification, storage and retrieval of many types of surface-related data and associated volume data. Within this classification framework, it serves as a version-control system capable of handling large numbers of surface and volume datasets. With built-in database management system support, SuMS provides rapid search and retrieval capabilities across all the datasets, while also incorporating multiple security levels to regulate access. SuMS is implemented in Java and can be accessed via a Web interface (WebSuMS) or using downloaded client software. Thus, SuMS is well positioned to act as a multiplatform, multi-user 'surface request broker' for the neuroscience community.

  5. System Considerations and Challendes in 3d Mapping and Modeling Using Low-Cost Uav Systems

    Science.gov (United States)

    Lari, Z.; El-Sheimy, N.

    2015-08-01

    In the last few years, low-cost UAV systems have been acknowledged as an affordable technology for geospatial data acquisition that can meet the needs of a variety of traditional and non-traditional mapping applications. In spite of its proven potential, UAV-based mapping is still lacking in terms of what is needed for it to become an acceptable mapping tool. In other words, a well-designed system architecture that considers payload restrictions as well as the specifications of the utilized direct geo-referencing component and the imaging systems in light of the required mapping accuracy and intended application is still required. Moreover, efficient data processing workflows, which are capable of delivering the mapping products with the specified quality while considering the synergistic characteristics of the sensors onboard, the wide range of potential users who might lack deep knowledge in mapping activities, and time constraints of emerging applications, are still needed to be adopted. Therefore, the introduced challenges by having low-cost imaging and georeferencing sensors onboard UAVs with limited payload capability, the necessity of efficient data processing techniques for delivering required products for intended applications, and the diversity of potential users with insufficient mapping-related expertise needs to be fully investigated and addressed by UAV-based mapping research efforts. This paper addresses these challenges and reviews system considerations, adaptive processing techniques, and quality assurance/quality control procedures for achievement of accurate mapping products from these systems.

  6. Object detection system based on multimodel saliency maps

    Science.gov (United States)

    Guo, Ya'nan; Luo, Chongfan; Ma, Yide

    2017-03-01

    Detection of visually salient image regions is extensively applied in computer vision and computer graphics, such as object detection, adaptive compression, and object recognition, but any single model always has its limitations to various images, so in our work, we establish a method based on multimodel saliency maps to detect the object, which intelligently absorbs the merits of various individual saliency detection models to achieve promising results. The method can be roughly divided into three steps: in the first step, we propose a decision-making system to evaluate saliency maps obtained by seven competitive methods and merely select the three most valuable saliency maps; in the second step, we introduce heterogeneous PCNN algorithm to obtain three prime foregrounds; and then a self-designed nonlinear fusion method is proposed to merge these saliency maps; at last, the adaptive improved and simplified PCNN model is used to detect the object. Our proposed method can constitute an object detection system for different occasions, which requires no training, is simple, and highly efficient. The proposed saliency fusion technique shows better performance over a broad range of images and enriches the applicability range by fusing different individual saliency models, this proposed system is worthy enough to be called a strong model. Moreover, the proposed adaptive improved SPCNN model is stemmed from the Eckhorn's neuron model, which is skilled in image segmentation because of its biological background, and in which all the parameters are adaptive to image information. We extensively appraise our algorithm on classical salient object detection database, and the experimental results demonstrate that the aggregation of saliency maps outperforms the best saliency model in all cases, yielding highest precision of 89.90%, better recall rates of 98.20%, greatest F-measure of 91.20%, and lowest mean absolute error value of 0.057, the value of proposed saliency evaluation

  7. An archiving system for Planetary Mapping Data - Availability of derived information and knowledge in Planetary Science!

    Science.gov (United States)

    Nass, A.

    2017-12-01

    Since the late 1950s a huge number of planetary missions started to explore our solar system. The data resulting from this robotic exploration and remote sensing varies in data type, resolution and target. After data preprocessing, and referencing, the released data are available for the community on different portals and archiving systems, e.g. PDS or PSA. One major usage for these data is mapping, i.e. the extraction and filtering of information by combining and visualizing different kind of base data. Mapping itself is conducted either for mission planning (e.g. identification of landing site) or fundamental research (e.g. reconstruction of surface). The mapping results for mission planning are directly managed within the mission teams. The derived data for fundamental research - also describable as maps, diagrams, or analysis results - are mainly project-based and exclusively available in scientific papers. Within the last year, first steps have been taken to ensure a sustainable use of these derived data by finding an archiving system comparable to the data portals, i.e. reusable, well-documented, and sustainable. For the implementation three tasks are essential. Two tasks have been treated in the past 1. Comparability and interoperability has been made possible by standardized recommendations for visual, textual, and structural description of mapping data. 2. Interoperability between users, information- and graphic systems is possible by templates and guidelines for digital GIS-based mapping. These two steps are adapted e.g. within recent mapping projects for the Dawn mission. The third task hasn`t been implemented thus far: Establishing an easily detectable and accessible platform that holds already acquired information and published mapping results for future investigations or mapping projects. An archive like this would support the scientific community significantly by a constant rise of knowledge and understanding based on recent discussions within

  8. Mapping surface flow in low gradient areas with thermal remote sensing

    DEFF Research Database (Denmark)

    Prinds, Christian; Petersen, Rasmus Jes; Greve, Mogens Humlekrog

    of drainage input into the buffer system and 2) the flow path of the water. The TIR imagery was collected by a UAV (eBee from SenseFly) with a thermal camera (ThermoMap from SenseFly) at early spring in 2016 and 2017. The surveys are conducted in cold periods where discharging drainage water (and groundwater...

  9. Two-dimensional Value Stream Mapping: Integrating the design of the MPC system in the value stream map

    DEFF Research Database (Denmark)

    Powell, Daryl; Olesen, Peter Bjerg

    2013-01-01

    Companies use value stream mapping to identify waste, often in the early stages of a lean implementation. Though the tool helps users to visualize material and information flows and to identify improvement opportunities, a limitation of this approach is the lack of an integrated method...... for analysing and re-designing the MPC system in order to support lean improvement. We reflect on the current literature regarding value stream mapping, and use practical insights in order to develop and propose a two-dimensional value stream mapping tool that integrates the design of the MPC system within...... the material and information flow map....

  10. A wafer mapping technique for residual stress in surface micromachined films

    International Nuclear Information System (INIS)

    Schiavone, G; Murray, J; Smith, S; Walton, A J; Desmulliez, M P Y; Mount, A R

    2016-01-01

    The design of MEMS devices employing movable structures is crucially dependant on the mechanical behaviour of the deposited materials. It is therefore important to be able to fully characterize the micromachined films and predict with confidence the mechanical properties of patterned structures. This paper presents a characterization technique that enables the residual stress in MEMS films to be mapped at the wafer level by using microstructures released by surface micromachining. These dedicated MEMS test structures and the associated measurement techniques are used to extract localized information on the strain and Young’s modulus of the film under investigation. The residual stress is then determined by numerically coupling this data with a finite element analysis of the structure. This paper illustrates the measurement routine and demonstrates it with a case study using electrochemically deposited alloys of nickel and iron, particularly prone to develop high levels of residual stress. The results show that the technique enables wafer mapping of film non-uniformities and identifies wafer-to-wafer differences. A comparison between the results obtained from the mapping technique and conventional wafer bow measurements highlights the benefits of using a procedure tailored to films that are non-uniform, patterned and surface-micromachined, as opposed to simple standard stress extraction methods. The presented technique reveals detailed information that is generally unexplored when using conventional stress extraction methods such as wafer bow measurements. (paper)

  11. Airborne system for mapping and tracking extended gamma ray sources

    International Nuclear Information System (INIS)

    Stuart, T.P.; Hendricks, T.J.; Wallace, G.G.; Cleland, J.R.

    1976-01-01

    An airborne system was developed for mapping and tracking extended sources of airborne or terrestrially distributed γ-ray emitters. The system records 300 channel γ-ray spectral data every three seconds on magnetic tape. Computer programs have been written to isolate the contribution from the particular radionuclide of interest. Aircraft position as sensed by a microwave ranging system is recorded every second on magnetic tape. Measurements of airborne stack releases of 41 A concentrations versus time or aircraft position agree well with computer code predictions

  12. From globally coupled maps to complex-systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp [Research Center for Complex Systems Biology, Graduate School of Arts and Sciences, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-09-15

    Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.

  13. The Regional Land Cover Monitoring System: Building regional capacity through innovative land cover mapping approaches

    Science.gov (United States)

    Saah, D.; Tenneson, K.; Hanh, Q. N.; Aekakkararungroj, A.; Aung, K. S.; Goldstein, J.; Cutter, P. G.; Maus, P.; Markert, K. N.; Anderson, E.; Ellenburg, W. L.; Ate, P.; Flores Cordova, A. I.; Vadrevu, K.; Potapov, P.; Phongsapan, K.; Chishtie, F.; Clinton, N.; Ganz, D.

    2017-12-01

    Earth observation and Geographic Information System (GIS) tools, products, and services are vital to support the environmental decision making by governmental institutions, non-governmental agencies, and the general public. At the heart of environmental decision making is the monitoring land cover and land use change (LCLUC) for land resource planning and for ecosystem services, including biodiversity conservation and resilience to climate change. A major challenge for monitoring LCLUC in developing regions, such as Southeast Asia, is inconsistent data products at inconsistent intervals that have different typologies across the region and are typically made in without stakeholder engagement or input. Here we present the Regional Land Cover Monitoring System (RLCMS), a novel land cover mapping effort for Southeast Asia, implemented by SERVIR-Mekong, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries. The RLCMS focuses on mapping biophysical variables (e.g. canopy cover, tree height, or percent surface water) at an annual interval and in turn using those biophysical variables to develop land cover maps based on stakeholder definitions of land cover classes. This allows for flexible and consistent land cover classifications that can meet the needs of different institutions across the region. Another component of the RLCMS production is the stake-holder engagement through co-development. Institutions that directly benefit from this system have helped drive the development for regional needs leading to services for their specific uses. Examples of services for regional stakeholders include using the RLCMS to develop maps using the IPCC classification scheme for GHG emission reporting and developing custom annual maps as an input to hydrologic modeling/flood forecasting systems. In addition to the implementation of this system and the service stemming from the RLCMS in Southeast Asia, it is

  14. Potential of EnMAP spaceborne imaging spectroscopy for the prediction of common surface soil properties and expected accuracy

    Science.gov (United States)

    Chabrillat, Sabine; Foerster, Saskia; Steinberg, Andreas; Stevens, Antoine; Segl, Karl

    2016-04-01

    There is a renewed awareness of the finite nature of the world's soil resources, growing concern about soil security, and significant uncertainties about the carrying capacity of the planet. As a consequence, soil scientists are being challenged to provide regular assessments of soil conditions from local through to global scales. However, only a few countries have the necessary survey and monitoring programs to meet these new needs and existing global data sets are out-of-date. A particular issue is the clear demand for a new area-wide regional to global coverage with accurate, up-to-date, and spatially referenced soil information as expressed by the modeling scientific community, farmers and land users, and policy and decision makers. Soil spectroscopy from remote sensing observations based on studies from the laboratory scale to the airborne scale has been shown to be a proven method for the quantitative prediction of key soil surface properties in local areas for exposed soils in appropriate surface conditions such as low vegetation cover and low water content. With the upcoming launch of the next generation of hyperspectral satellite sensors in the next 3 to 5 years (EnMAP, HISUI, PRISMA, SHALOM), a great potential for the global mapping and monitoring of soil properties is appearing. Nevertheless, the capabilities to extend the soil properties current spectral modeling from local to regional scales are still to be demonstrated using robust methods. In particular, three central questions are at the forefront of research nowadays: a) methodological developments toward improved algorithms and operational tools for the extraction of soil properties, b) up scaling from the laboratory into space domain, and c) demonstration of the potential of upcoming satellite systems and expected accuracy of soil maps. In this study, airborne imaging spectroscopy data from several test sites are used to simulate EnMAP satellite images at 30 m scale. Then, different soil

  15. EVALUATION OF VALUE STREAM MAPPING IN MANUFACTURING SYSTEMS REDESIGNING

    OpenAIRE

    Serrano , Ibon; Ochoa Laburu , Carlos; De Castro , Rodolfo

    2008-01-01

    Abstract The Value Stream Mapping (VSM) technique, developed within the lean production paradigm, was presented as an innovative graphic technique to help practitioners redesign production systems. This paper presents the results of a project whose main purpose is to evaluate the real applicability of VSM to redesign disconnected flow lines based on manufacturing environments with a diversity of logistical problems. The research was developed using multiple case study methodology i...

  16. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  17. A Simple Numerical Body Surface Mapping Parameter Signifies Successful Percutaneous Coronary Artery Intervention.

    Science.gov (United States)

    Simonyi, Gábor; Kirschner, Róbert; Szűcs, Endre; Préda, István; Duray, Gábor; Medvegy, Nóra; Horvath, Bálint; Medvegy, Mihály

    2016-03-01

    In coronary artery disease (CAD), body surface potential mapping (BSPM) may reveal minor electrical potential changes appearing in the depolarization phase even if pathological changes are absent on the conventional 12-lead ECG. We hypothesized that a simple BSPM parameter, Max/Min signifies successful percutaneous coronary intervention (PCI). Ninety-two adult Caucasian patients with stable CAD and positive exercise test underwent coronary angiography. Seventy patients (age, 59 ± 8; 46 males) were revascularized by PCI (left anterior descending [LAD] in 38, right [RCA] in 17 and left circumflex [LCX] coronary artery in 15). Control groups contained 22 patients (age, 60 ± 8; 14 males) without intervention and 35 healthy subjects (age, 58 ± 2; 15 males). Left ventricular ejection fraction (LVEF, transthoracic echocardiography) and Max/Min BSPM parameter (63-lead Montreal system) were evaluated before and 4-40 days following coronary angiography. Max/Min was defined by the ratio of the highest maximum to the deepest minimum potential of all leads recorded by BSPM. Before PCI, Max/Min value of patients with LAD lesion (0.83 [0.74; 0.93]) was significantly lower while that with RCA lesion (1.63 [1.35; 1.99]) was significantly higher than that of healthy group (1.01 [0.970; 1.13]) (P intervention. LVEF significantly increased (from 46.50% [43.00; 51.00] to 49.00% [46.00; 51.00]) only after LAD PCI. Max/Min parameter is suitable to follow patients after LAD and RCA PCI. © 2015 Wiley Periodicals, Inc.

  18. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    Science.gov (United States)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  19. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Intensive cropping systems today represent a paramount issue in terms of environmental impacts, since agricultural pollutants can constitute a potential threat to surface water, non-target organisms and aquatic ecosystems. Levels of pesticide concentrations in surface waters are indeed unquestionably correlated to crop and soil management practices at field-scale. Due to the numerous applications of pesticides required, orchards and vineyards can represent relevant non-point sources for pesticide contamination of water bodies, mainly prompted by soil erosion, surface runoff and spray drift. To reduce risks of pesticide contamination of surface water, the Directive 2009/128/CET imposed the local implementation of agricultural good practices and mitigation actions such as the use of vegetative buffer filter strips and hedgerows along river and pond banks. However, implementation of mitigation actions is often difficult, especially in extremely fragmented agricultural landscapes characterized by a complex territorial matrix set up on urban sprawling, frequent surface water bodies, important geomorphological processes and protected natural areas. Typically, such landscape matrix is well represented by the, Prosecco-DOCG vineyards area (NE of Italy, Province of Treviso) which lays on hogback hills of conglomerate, marls and sandstone that ranges between 50 and 500 m asl. Moreover such vineyards landscape is characterized by traditional and non-traditional agricultural terraces The general aim of this paper is to identify areas of surface water bodies with high potential risk of pesticide contamination from surrounding vineyards in the 735 ha of Lierza river basin (Refrontolo, TV), one of the most representative terraced landscape of the Prosecco-DOCG area. Specific aims are i) mapping terraced Prosecco-DOCG vineyards, ii) classifying potential risk from pesticide of the different areas. Remote sensing technologies such as four bands aerial photos (RGB+NIR) and Light

  20. GSM based real time remote radiation monitoring and mapping system

    International Nuclear Information System (INIS)

    Dodiya, Kamal; Gupta, Ashutosh; Padmanabhan, N.; Chaudhury, Probal; Pradeepkumar, K.S.

    2014-01-01

    Mobile Radiological Impact Assessment Laboratory (M-RIAL) has been developed in Radiation Safety Systems Division, Bhabha Atomic Research Centre for carrying out assessment of radioactive contamination following a nuclear or radiological emergency in a nuclear facility or in public domain. During such situations a large area is to be monitored for radiological impact assessment and availability of the monitored data in real-time to a control centre is a great advantage for the decision makers. Development and application of such a system has been described in this paper. The system can transmit real-time radiological data, acquired by the universal counting system of M-RIAL and tagged with positional information, wirelessly to an Emergency Response Centre (ERC) using Global System for Mobile (GSM) communication. The radiological profile of the affected area is then superimposed on Geographical Information System (GIS) at the ERC and which can be used for the generation of radiological impact maps for use as decision support

  1. High-resolution, real-time mapping of surface soil moisture at the field scale using ground penetrating radar

    Science.gov (United States)

    Lambot, S.; Minet, J.; Slob, E.; Vereecken, H.; Vanclooster, M.

    2008-12-01

    Measuring soil surface water content is essential in hydrology and agriculture as this variable controls important key processes of the hydrological cycle such as infiltration, runoff, evaporation, and energy exchanges between the earth and the atmosphere. We present a ground-penetrating radar (GPR) method for automated, high-resolution, real-time mapping of soil surface dielectric permittivity and correlated water content at the field scale. Field scale characterization and monitoring is not only necessary for field scale management applications, but also for unravelling upscaling issues in hydrology and bridging the scale gap between local measurements and remote sensing. In particular, such methods are necessary to validate and improve remote sensing data products. The radar system consists of a vector network analyzer combined with an off-ground, ultra-wideband monostatic horn antenna, thereby setting up a continuous-wave steeped-frequency GPR. Radar signal analysis is based on three-dimensional electromagnetic inverse modelling. The forward model accounts for all antenna effects, antenna-soil interactions, and wave propagation in three-dimensional multilayered media. A fast procedure was developed to evaluate the involved Green's function, resulting from a singular, complex integral. Radar data inversion is focused on the surface reflection in the time domain. The method presents considerable advantages compared to the current surface characterization methods using GPR, namely, the ground wave and common reflection methods. Theoretical analyses were performed, dealing with the effects of electric conductivity on the surface reflection when non-negligible, and on near-surface layering, which may lead to unrealistic values for the surface dielectric permittivity if not properly accounted for. Inversion strategies are proposed. In particular the combination of GPR with electromagnetic induction data appears to be promising to deal with highly conductive soils

  2. Mapping of contaminated sites using mobile gamma spectrometry: Marcassin system

    International Nuclear Information System (INIS)

    Panza, F.; Demongeot, S.; Crosland, E.; Foissard, B.

    2015-01-01

    Document available in abstract form only. Full text of publication follows: As part of the development of a tool for use in a nuclear emergency, post-accident situations and contaminated sites, the Institute for Radiation Protection and Nuclear Safety (IRSN) has designed an instrument for mapping natural and artificial radioactivity in soil using in situ gamma spectrometry. The development of this mobile system is based on various studies initiated by IRSN. The tool, named MARCASSIN (Moyen Autoporteur pour la Realisation de Cartographies de l'Activite Sur Sites contamINes, or automotive resource for mapping radioactivity at contaminated sites), has already been used to characterise various types of sites: contaminated soil (Fukushima), old open-pit mines (centre of France) and environmental sites (Paris region). Mounted on a quad-type vehicle, the instrument is composed of a spectrometer, a radiation meter and a global positioning system. Using coordinates and nuclear data, results are given in the form of mapping indicating type of radionuclides, radioactivity level, dose rate and contamination distribution in real-time. To improve detection level above sites where radioactivity levels are low, the system also is capable of processing data. Two of these methods are as follows: the first, 're-meshing', improves the estimate of soil radioactivity by increasing measurement statistics. The results agree with the reference values (soil samples measured in the laboratory), even for normal environmental levels of radioactivity. The second method, for which a patent is pending, is based on a deconvolution of mapping data. Re-processing deducts the impulse response of MARCASSIN from the radiation flux measurements in order to restore the value sought, which is the soil emission rate by radiological energy or activity. A theoretical example demonstrates the possibilities of this method. (authors)

  3. Indoor Positioning System Using Depth Maps and Wireless Networks

    Directory of Open Access Journals (Sweden)

    Jaime Duque Domingo

    2016-01-01

    Full Text Available This work presents a new Indoor Positioning System (IPS based on the combination of WiFi Positioning System (WPS and depth maps, for estimating the location of people. The combination of both technologies improves the efficiency of existing methods, based uniquely on wireless positioning techniques. While other positioning systems force users to wear special devices, the system proposed in this paper just requires the use of smartphones, besides the installation of RGB-D sensors in the sensing area. Furthermore, the system is not intrusive, being not necessary to know people’s identity. The paper exposes the method developed for putting together and exploiting both types of sensory information with positioning purposes: the measurements of the level of the signal received from different access points (APs of the wireless network and the depth maps provided by the RGB-D cameras. The obtained results show a significant improvement in terms of positioning with respect to common WiFi-based systems.

  4. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    Science.gov (United States)

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  5. Effects of surface-mapping corrections and synthetic-aperture focusing techniques on ultrasonic imaging

    International Nuclear Information System (INIS)

    Barna, B.A.; Johnson, J.A.

    1981-01-01

    Improvements in ultrasonic imaging that can be obtained using algorithms that map the surface of targets are evaluated. This information is incorporated in the application of synthetic-aperture focusing techniques which also have the potential to improve image resolution. Images obtained using directed-beam (flat) transducers and the focused transducers normally used for synthetic-aperture processing are quantitatively compared by using no processing, synthetic-aperture processing with no corrections for surface variations, and synthetic-aperture processing with surface mapping. The unprocessed images have relatively poor lateral resolutions because echoes from two adjacent reflectors show interference effects which prevent their identification even if the spacing is larger than the single-hole resolution. The synthetic-aperture-processed images show at least a twofold improvement in lateral resolution and greatly reduced interference effects in multiple-hole images compared to directed-beam images. Perhaps more importantly, in images of test blocks with substantial surface variations portions of the image are displaced from their actual positions by several wavelengths. To correct for this effect an algorithm has been developed for calculating the surface variations. The corrected images produced using this algorithm are accurate within the experimental error. In addition, the same algorithm, when applied to the directed-beam data, produced images that are not only accurately positioned, but that also have a resolution comparable to conventional synthetic-aperture-processed images obtained from focused-transducer data. This suggests that using synthetic-aperture processing on the type of data normally collected during directed-beam ultrasonic inspections would eliminate the need to rescan for synthetic-aperture enhancement

  6. Poincare map for some polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Varin, V P

    2004-01-01

    One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincare map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.

  7. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  8. Learning from Nature - Mapping of Complex Hydrological and Geomorphological Process Systems for More Realistic Modelling of Hazard-related Maps

    Science.gov (United States)

    Chifflard, Peter; Tilch, Nils

    2010-05-01

    Introduction Hydrological or geomorphological processes in nature are often very diverse and complex. This is partly due to the regional characteristics which vary over time and space, as well as changeable process-initiating and -controlling factors. Despite being aware of this complexity, such aspects are usually neglected in the modelling of hazard-related maps due to several reasons. But particularly when it comes to creating more realistic maps, this would be an essential component to consider. The first important step towards solving this problem would be to collect data relating to regional conditions which vary over time and geographical location, along with indicators of complex processes. Data should be acquired promptly during and after events, and subsequently digitally combined and analysed. Study area In June 2009, considerable damage occurred in the residential area of Klingfurth (Lower Austria) as a result of great pre-event wetness and repeatedly heavy rainfall, leading to flooding, debris flow deposit and gravitational mass movement. One of the causes is the fact that the meso-scale watershed (16 km²) of the Klingfurth stream is characterised by adverse geological and hydrological conditions. Additionally, the river system network with its discharge concentration within the residential zone contributes considerably to flooding, particularly during excessive rainfall across the entire region, as the flood peaks from different parts of the catchment area are superposed. First results of mapping Hydro(geo)logical surveys across the entire catchment area have shown that - over 600 gravitational mass movements of various type and stage have occurred. 516 of those have acted as a bed load source, while 325 mass movements had not reached the final stage yet and could thus supply bed load in the future. It should be noted that large mass movements in the initial or intermediate stage were predominately found in clayey-silty areas and weathered material

  9. Gross-Pitaevski map as a chaotic dynamical system.

    Science.gov (United States)

    Guarneri, Italo

    2017-03-01

    The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle, for which exponential instability has been recently reported. Here it is studied as a classical dynamical system in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the "resonant" case, when the free rotation period is commensurate to 2π, and the map has countably many constants of the motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.

  10. A mobile gamma ray spectrometer system for nuclear hazard mapping

    CERN Document Server

    Smethurst, M A

    2000-01-01

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data m...

  11. Flat Surface Damage Detection System (FSDDS)

    Science.gov (United States)

    Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina

    2013-01-01

    The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.

  12. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  13. DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer

    International Nuclear Information System (INIS)

    Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi

    2014-01-01

    Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.

  14. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    Science.gov (United States)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified

  15. Monitoring System for ALICE Surface Areas

    CERN Document Server

    Demirbasci, Oguz

    2016-01-01

    I have been at CERN for 12 weeks within the scope of Summer Student Programme working on a monitoring system project for surface areas of the ALICE experiment during this period of time. The development and implementation of a monitoring system for environmental parameters in the accessible areas where a cheap hardware setup can be deployed were aim of this project. This report explains how it was developed by using Arduino, Raspberry PI, WinCC OA and DIM protocol.

  16. Dry cooling systems with plastic surfaces

    International Nuclear Information System (INIS)

    Roma, Carlo; Leonelli, Vincenzo

    1975-01-01

    Research and experiments made on dry cooling systems with plastic surfaces are described. The demonstration program planned in Italy for a 100Gcal/h dry cooling system is exposed, and an installation intended for a large 1300Mwe nuclear power station is described with reference to the assembly (exploitation and maintenance included). The performance and economic data relating to this installation are also exposed [fr

  17. XML-BSPM: an XML format for storing Body Surface Potential Map recordings.

    Science.gov (United States)

    Bond, Raymond R; Finlay, Dewar D; Nugent, Chris D; Moore, George

    2010-05-14

    The Body Surface Potential Map (BSPM) is an electrocardiographic method, for recording and displaying the electrical activity of the heart, from a spatial perspective. The BSPM has been deemed more accurate for assessing certain cardiac pathologies when compared to the 12-lead ECG. Nevertheless, the 12-lead ECG remains the most popular ECG acquisition method for non-invasively assessing the electrical activity of the heart. Although data from the 12-lead ECG can be stored and shared using open formats such as SCP-ECG, no open formats currently exist for storing and sharing the BSPM. As a result, an innovative format for storing BSPM datasets has been developed within this study. The XML vocabulary was chosen for implementation, as opposed to binary for the purpose of human readability. There are currently no standards to dictate the number of electrodes and electrode positions for recording a BSPM. In fact, there are at least 11 different BSPM electrode configurations in use today. Therefore, in order to support these BSPM variants, the XML-BSPM format was made versatile. Hence, the format supports the storage of custom torso diagrams using SVG graphics. This diagram can then be used in a 2D coordinate system for retaining electrode positions. This XML-BSPM format has been successfully used to store the Kornreich-117 BSPM dataset and the Lux-192 BSPM dataset. The resulting file sizes were in the region of 277 kilobytes for each BSPM recording and can be deemed suitable for example, for use with any telemonitoring application. Moreover, there is potential for file sizes to be further reduced using basic compression algorithms, i.e. the deflate algorithm. Finally, these BSPM files have been parsed and visualised within a convenient time period using a web based BSPM viewer. This format, if widely adopted could promote BSPM interoperability, knowledge sharing and data mining. This work could also be used to provide conceptual solutions and inspire existing formats

  18. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    Science.gov (United States)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  19. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature

    Science.gov (United States)

    Marques da Silva, J. R.; Damásio, C. V.; Sousa, A. M. O.; Bugalho, L.; Pessanha, L.; Quaresma, P.

    2015-06-01

    Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: "thermal integral over air temperature (accumulated degree-days)". The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.

  20. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map

    Directory of Open Access Journals (Sweden)

    Yan An

    2016-01-01

    Full Text Available In this study, principal component analysis (PCA and a self-organising map (SOM were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong, covering the period of 2009–2011. PCA was initially applied to identify the principal components (PCs among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  1. Descriptive Characteristics of Surface Water Quality in Hong Kong by a Self-Organising Map.

    Science.gov (United States)

    An, Yan; Zou, Zhihong; Li, Ranran

    2016-01-08

    In this study, principal component analysis (PCA) and a self-organising map (SOM) were used to analyse a complex dataset obtained from the river water monitoring stations in the Tolo Harbor and Channel Water Control Zone (Hong Kong), covering the period of 2009-2011. PCA was initially applied to identify the principal components (PCs) among the nonlinear and complex surface water quality parameters. SOM followed PCA, and was implemented to analyze the complex relationships and behaviors of the parameters. The results reveal that PCA reduced the multidimensional parameters to four significant PCs which are combinations of the original ones. The positive and inverse relationships of the parameters were shown explicitly by pattern analysis in the component planes. It was found that PCA and SOM are efficient tools to capture and analyze the behavior of multivariable, complex, and nonlinear related surface water quality data.

  2. Mapping of a river using close range photogrammetry technique and unmanned aerial vehicle system

    International Nuclear Information System (INIS)

    Room, M H M; Ahmad, A

    2014-01-01

    Photogrammetry is a technique that can be used to record the information of any feature without direct contact. Nowadays, a combination of photogrammetry and Unmanned Aerial Vehicle (UAV) systems is widely used for various applications, especially for large scale mapping. UAV systems offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and remote sensing system. Therefore, a combination of photogrammetry and UAV created a new term which is UAV photogrammetry. The aim of this study is to investigate the ability of a UAV system to map a river at very close distance. A digital camera is attached to the Hexacopter UAV and it is flown at 2 m above the ground surface to produce aerial photos. Then, the aerial photos are processed to create two photogrammetric products as output. These are mosaicked orthophoto and digital image. Both products are assessed (RSME). The RSME of X and Y coordinates are ±0.009 m and ±0.033 m respectively. As a conclusion, photogrammetry and the UAV system offer a reliable accuracy for mapping a river model and advantages in term of cost-efficient, high ground resolution and rapid data acquisition

  3. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    International Nuclear Information System (INIS)

    Li Xin; Hu, Daning; Dang Yan; Chen Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2009-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.eduhttp://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  4. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin, E-mail: xinli@eller.arizona.edu; Hu, Daning, E-mail: hud@eller.arizona.edu; Dang Yan, E-mail: ydang@eller.arizona.edu; Chen Hsinchun, E-mail: hchen@eller.arizona.ed [University of Arizona, Departmet of Management Information Systems, Eller College of Management (United States); Roco, Mihail C., E-mail: mroco@nsf.go [National Science Foundation (United States); Larson, Catherine A., E-mail: cal@eller.arizona.edu; Chan, Joyce, E-mail: joycepchan@eller.arizona.ed [University of Arizona, Department of Management Information Systems, Eller College of Management (United States)

    2009-04-15

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.eduhttp://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  5. Automotive System for Remote Surface Classification.

    Science.gov (United States)

    Bystrov, Aleksandr; Hoare, Edward; Tran, Thuy-Yung; Clarke, Nigel; Gashinova, Marina; Cherniakov, Mikhail

    2017-04-01

    In this paper we shall discuss a novel approach to road surface recognition, based on the analysis of backscattered microwave and ultrasonic signals. The novelty of our method is sonar and polarimetric radar data fusion, extraction of features for separate swathes of illuminated surface (segmentation), and using of multi-stage artificial neural network for surface classification. The developed system consists of 24 GHz radar and 40 kHz ultrasonic sensor. The features are extracted from backscattered signals and then the procedures of principal component analysis and supervised classification are applied to feature data. The special attention is paid to multi-stage artificial neural network which allows an overall increase in classification accuracy. The proposed technique was tested for recognition of a large number of real surfaces in different weather conditions with the average accuracy of correct classification of 95%. The obtained results thereby demonstrate that the use of proposed system architecture and statistical methods allow for reliable discrimination of various road surfaces in real conditions.

  6. A Surface Soil Radioactivity Mapping Has Been Carried Out at Muria Peninsula, Central Java

    International Nuclear Information System (INIS)

    Soepradto-Tjokrokardono; Nasrun-Syamsul; Supardjo-AS; Djodi-R-Mappa; Kurnia-Setyawan W

    2004-01-01

    The air of this mapping is to gain exposure dose value of the soil surface of Muria Peninsula. Central Java, in the area of 75 km radius from Ujung Lemah Abang. Lemah Abang is the proposed site of the first indonesian nuclear Power Plant. A radioactivity data obtained in 1995/1996 to 1998/1999 researches has been used for input data. For further analysis, a conversation factor multiplication is applied. This conversation factor is obtained from linear regression equation of the relationship between radioactivity and exposure values gained from re-measured randomly 44 points which are representative for high, medium, and low radiation areas obtained in 1995/1996 to 1998/1999 activities and it taking soil samples. The conversation data result is being constructed of the Surface Exposure Dose Map of Muria Peninsula. Those data show that the exposure dose of northern slope of Muria Volcano is relatively higher than that of southern slope, it means be harmonizing to the soil sample radioactivity values. The maximum radioactivity value of the soil samples is 3,56.10 -2 Bq/gram (α radiation), 8,22.10 -1 Bq/gram (β radiation) and 6,20.10 -1 Bq/gram (γ radiation) and the minimum values are 4,44 10 -3 Bq/gram (α radiation), 1,50. 10 -1 Bq/gram (β radiation) and 4,09. 10 -2 Bq/gram (γ radiation). (author)

  7. A human motion model based on maps for navigation systems

    Directory of Open Access Journals (Sweden)

    Kaiser Susanna

    2011-01-01

    Full Text Available Abstract Foot-mounted indoor positioning systems work remarkably well when using additionally the knowledge of floor-plans in the localization algorithm. Walls and other structures naturally restrict the motion of pedestrians. No pedestrian can walk through walls or jump from one floor to another when considering a building with different floor-levels. By incorporating known floor-plans in sequential Bayesian estimation processes such as particle filters (PFs, long-term error stability can be achieved as long as the map is sufficiently accurate and the environment sufficiently constraints pedestrians' motion. In this article, a new motion model based on maps and floor-plans is introduced that is capable of weighting the possible headings of the pedestrian as a function of the local environment. The motion model is derived from a diffusion algorithm that makes use of the principle of a source effusing gas and is used in the weighting step of a PF implementation. The diffusion algorithm is capable of including floor-plans as well as maps with areas of different degrees of accessibility. The motion model more effectively represents the probability density function of possible headings that are restricted by maps and floor-plans than a simple binary weighting of particles (i.e., eliminating those that crossed walls and keeping the rest. We will show that the motion model will help for obtaining better performance in critical navigation scenarios where two or more modes may be competing for some of the time (multi-modal scenarios.

  8. Surface mapping, organic matter and water stocks in peatlands of the Serra do Espinhaço meridional - Brazil

    Directory of Open Access Journals (Sweden)

    Márcio Luiz da Silva

    2013-10-01

    Full Text Available Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water, low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000 by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1 of organic matter and 142,138,262 m³ (9,948 m³ ha-1 of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric organic matter predominate, followed by the intermediate stage (hemic. The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation

  9. FAST DRAWING OF TRAFFIC SIGN USING MOBILE MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    Q. Yao

    2016-06-01

    Full Text Available Traffic sign provides road users with the specified instruction and information to enhance traffic safety. Automatic detection of traffic sign is important for navigation, autonomous driving, transportation asset management, etc. With the advance of laser and imaging sensors, Mobile Mapping System (MMS becomes widely used in transportation agencies to map the transportation infrastructure. Although many algorithms of traffic sign detection are developed in the literature, they are still a tradeoff between the detection speed and accuracy, especially for the large-scale mobile mapping of both the rural and urban roads. This paper is motivated to efficiently survey traffic signs while mapping the road network and the roadside landscape. Inspired by the manual delineation of traffic sign, a drawing strategy is proposed to quickly approximate the boundary of traffic sign. Both the shape and color prior of the traffic sign are simultaneously involved during the drawing process. The most common speed-limit sign circle and the statistic color model of traffic sign are studied in this paper. Anchor points of traffic sign edge are located with the local maxima of color and gradient difference. Starting with the anchor points, contour of traffic sign is drawn smartly along the most significant direction of color and intensity consistency. The drawing process is also constrained by the curvature feature of the traffic sign circle. The drawing of linear growth is discarded immediately if it fails to form an arc over some steps. The Kalman filter principle is adopted to predict the temporal context of traffic sign. Based on the estimated point,we can predict and double check the traffic sign in consecutive frames.The event probability of having a traffic sign over the consecutive observations is compared with the null hypothesis of no perceptible traffic sign. The temporally salient traffic sign is then detected statistically and automatically as the rare

  10. Fast Drawing of Traffic Sign Using Mobile Mapping System

    Science.gov (United States)

    Yao, Q.; Tan, B.; Huang, Y.

    2016-06-01

    Traffic sign provides road users with the specified instruction and information to enhance traffic safety. Automatic detection of traffic sign is important for navigation, autonomous driving, transportation asset management, etc. With the advance of laser and imaging sensors, Mobile Mapping System (MMS) becomes widely used in transportation agencies to map the transportation infrastructure. Although many algorithms of traffic sign detection are developed in the literature, they are still a tradeoff between the detection speed and accuracy, especially for the large-scale mobile mapping of both the rural and urban roads. This paper is motivated to efficiently survey traffic signs while mapping the road network and the roadside landscape. Inspired by the manual delineation of traffic sign, a drawing strategy is proposed to quickly approximate the boundary of traffic sign. Both the shape and color prior of the traffic sign are simultaneously involved during the drawing process. The most common speed-limit sign circle and the statistic color model of traffic sign are studied in this paper. Anchor points of traffic sign edge are located with the local maxima of color and gradient difference. Starting with the anchor points, contour of traffic sign is drawn smartly along the most significant direction of color and intensity consistency. The drawing process is also constrained by the curvature feature of the traffic sign circle. The drawing of linear growth is discarded immediately if it fails to form an arc over some steps. The Kalman filter principle is adopted to predict the temporal context of traffic sign. Based on the estimated point,we can predict and double check the traffic sign in consecutive frames.The event probability of having a traffic sign over the consecutive observations is compared with the null hypothesis of no perceptible traffic sign. The temporally salient traffic sign is then detected statistically and automatically as the rare event of having a

  11. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.

    2018-02-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  12. Magnetic surface mapping with highly transparent screens on the Auburn Torsatron

    International Nuclear Information System (INIS)

    Hartwell, G.J.; Gandy, R.F.; Henderson, M.A.; Hanson, J.D.; Swanson, D.G.; Bush, C.J.; Colchin, R.J.; England, A.C.; Lee, D.K.

    1987-01-01

    In stellarator-type magnetic confinement devices (of which the torsatron is one), the magnetic field is produced entirely by external, current-carrying coils. Two methods for mapping magnetic surfaces in the Auburn Torsatron were tested and compared, both of which involve the use of highly transparent screens. The first method consists of coating the screen with a phosphor that emits light when struck by electrons emitted by an electron gun. A pattern representative of a magnetic surface is formed on the screen, and this pattern is recorded photographically. The second method uses an uncoated screen to collect electrons emitted from an emissive probe, which is scanned over a poloidal cross section of the torus. Under certain conditions, the collected current is a constant over a particular magnetic surface so that a contour plot of the current versus position is equivalent to a plot of the magnetic surfaces. Parametric studies of the two methods are presented, and the effectiveness of each technique is discussed

  13. Nanoscale Surface Photovoltage Mapping of 2D Materials and Heterostructures by Illuminated Kelvin Probe Force Microscopy

    KAUST Repository

    Shearer, Melinda J.; Li, Ming-yang; Li, Lain-Jong; Jin, Song; Hamers, Robert J

    2018-01-01

    Nanomaterials are interesting for a variety of applications, such as optoelectronics and photovoltaics. However, they often have spatial heterogeneity, i.e. composition change or physical change in the topography or structure, which can lead to varying properties that would influence their applications. New techniques must be developed to understand and correlate spatial heterogeneity with changes in electronic properties. Here we highlight the technique of surface photovoltage-Kelvin probe force microscopy (SPV-KFM), which is a modified version of non-contact atomic force microscopy capable of imaging not only the topography and surface potential, but also the surface photovoltage on the nanoscale. We demonstrate its utility in probing monolayer WSe2-MoS2 lateral heterostructures, which form an ultrathin p-n junction promising for photovoltaic and optoelectronic applications. We show surface photovoltage maps highlighting the different photoresponse of the two material regions as a result of the effective charge separation across this junction. Additionally, we study the variations between different heterostructure flakes and emphasize the importance of controlling the synthesis and transfer of these materials to obtain consistent properties and measurements.

  14. Multilevel power distribution synthesis for a movable flux mapping system

    International Nuclear Information System (INIS)

    Bollacasa, D.; Terney, W.B.; Vincent, G.F.; Dziadosz, D.; Schleicher, T.

    1992-01-01

    A Computer Software package has been developed to support the synthesis of the 3-dimensional power distribution from detector signals from a movable flux mapping system. The power distribution synthesis is based on methodology developed for fixed incore detectors. The full core solution effectively couples all assemblies in the core whether they are instrumented or not. The solution is not subject to approximations for the treatment of assemblies where a measurement cannot be made and provides an accurate representation of axial variations which may be induced by axial blankets, burnable absorber cut back regions and axially zoned flux suppression rods

  15. Mapping Between Semantic Graphs and Sentences in Grammar Induction System

    Directory of Open Access Journals (Sweden)

    Laszlo Kovacs

    2010-06-01

    Full Text Available The proposed transformation module performs mapping be-
    tween two di®erent knowledge representation forms used in grammar induction systems. The kernel knowledge representation form is a special predicate centered conceptual graph called ECG. The ECG provides a semantic-based, language independent description of the environment. The other base representation form is some kind of language. The sentences of the language should meet the corresponding grammatical rules. The pilot project demonstrates the functionality of a translator module using this transformation engine between the ECG graph and the Hungarian language.

  16. Mapping system, magnetic measurement and shimming in CRM cyclotron

    International Nuclear Information System (INIS)

    Zhong Junqing; Lv Yinlong; Yin Zhiguo

    2008-01-01

    The Central Region Model (CRM) is a compact H - cyclotron. Because of the intrinsic asymmetry of the magnet, its machining and assembly are very complicated. To guarantee the magnet field distribution, it is necessary to measure and shim the magnetic field. This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency. The method to effectively reduce the amplitude of the 1st harmonic by shimming bars 1s also introduced. (authors)

  17. Indoor and Outdoor Mobile Mapping Systems for Architectural Surveys

    Science.gov (United States)

    Campi, M.; di Luggo, A.; Monaco, S.; Siconolfi, M.; Palomba, D.

    2018-05-01

    This paper presents the results of architectural surveys carried out with mobile mapping systems. The data acquired through different instruments for both indoor and outdoor surveying are analyzed and compared. The study sample shows what is required for an acquisition in a dynamic mode indicating the criteria for the creation of a georeferenced network for indoor spaces, as well as the operational processes concerning data capture, processing, and management. The differences between a dynamic and static scan have been evaluated, with a comparison being made with the aerial photogrammetric survey of the same sample.

  18. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  19. a Distributed Online 3D-LIDAR Mapping System

    Science.gov (United States)

    Schmiemann, J.; Harms, H.; Schattenberg, J.; Becker, M.; Batzdorfer, S.; Frerichs, L.

    2017-08-01

    In this paper we are presenting work done within the joint development project ANKommEn. It deals with the development of a highly automated robotic system for fast data acquisition in civil disaster scenarios. One of the main requirements is a versatile system, hence the concept embraces a machine cluster consisting of multiple fundamentally different robotic platforms. To cover a large variety of potential deployment scenarios, neither the absolute amount of participants, nor the precise individual layout of each platform shall be restricted within the conceptual design. Thus leading to a variety of special requirements, like onboard and online data processing capabilities for each individual participant and efficient data exchange structures, allowing reliable random data exchange between individual robots. We are demonstrating the functionality and performance by means of a distributed mapping system evaluated with real world data in a challenging urban and rural indoor/outdoor scenarios.

  20. A DISTRIBUTED ONLINE 3D-LIDAR MAPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    J. Schmiemann

    2017-08-01

    Full Text Available In this paper we are presenting work done within the joint development project ANKommEn. It deals with the development of a highly automated robotic system for fast data acquisition in civil disaster scenarios. One of the main requirements is a versatile system, hence the concept embraces a machine cluster consisting of multiple fundamentally different robotic platforms. To cover a large variety of potential deployment scenarios, neither the absolute amount of participants, nor the precise individual layout of each platform shall be restricted within the conceptual design. Thus leading to a variety of special requirements, like onboard and online data processing capabilities for each individual participant and efficient data exchange structures, allowing reliable random data exchange between individual robots. We are demonstrating the functionality and performance by means of a distributed mapping system evaluated with real world data in a challenging urban and rural indoor/outdoor scenarios.

  1. Switchable host-guest systems on surfaces.

    Science.gov (United States)

    Yang, Ying-Wei; Sun, Yu-Long; Song, Nan

    2014-07-15

    CONSPECTUS: For device miniaturization, nanotechnology follows either the "top-down" approach scaling down existing larger-scale devices or the "bottom-up' approach assembling the smallest possible building blocks to functional nanoscale entities. For synthetic nanodevices, self-assembly on surfaces is a superb method to achieve useful functions and enable their interactions with the surrounding world. Consequently, adaptability and responsiveness to external stimuli are other prerequisites for their successful operation. Mechanically interlocked molecules such as rotaxanes and catenanes, and their precursors, that is, molecular switches and supramolecular switches including pseudorotaxanes, are molecular machines or prototypes of machines capable of mechanical motion induced by chemical signals, biological inputs, light or redox processes as the external stimuli. Switching of these functional host-guest systems on surfaces becomes a fundamental requirement for artificial molecular machines to work, mimicking the molecular machines in nature, such as proteins and their assemblies operating at dynamic interfaces such as the surfaces of cell membranes. Current research endeavors in material science and technology are focused on developing either a new class of materials or materials with novel/multiple functionalities by shifting host-guest chemistry from solution phase to surfaces. In this Account, we present our most recent attempts of building monolayers of rotaxanes/pseudorotaxanes on surfaces, providing stimuli-induced macroscopic effects and further understanding on the switchable host-guest systems at interfaces. Biocompatible versions of molecular machines based on synthetic macrocycles, such as cucurbiturils, pillararenes, calixarenes, and cyclodextrins, have been employed to form self-assembled monolayers of gates on the surfaces of mesoporous silica nanoparticles to regulate the controlled release of cargo/drug molecules under a range of external stimuli

  2. System for removing contaminated surface layers

    International Nuclear Information System (INIS)

    Yoshikawa, Kozo.

    1987-04-01

    The object of the present invention is to offer a new type of useful decontamination system, with which the contaminated surface layers can be removed effectively by injection of such solid microparticles. Liquid carbon dioxide is passed from a liquid carbon dioxide tank via the carbon dioxide supply line into the system for injecting solid carbon dioxide particles. Part of the liquid carbon dioxide introduced into the system is converted to solid carbon dioxide particles by the temperature drop resulting from adiabatic expansion in the carbon dioxide expansion space of the injection system. The solid carbon dioxide particles reach the injection nozzle, which is connected through the expansion space. The carbon dioxide microparticles are further cooled and accelerated by nitrogen gas injected from the nitrogen gas nozzle at the tip of the nitrogen gas supply line, which is connected to a liquid nitrogen tank. The cooled and accelerated solid carbon dioxide microparticles are injected from the injection nozzle for the solid carbon dioxide and directed against the contaminated surface to be cleaned, and, as a result, the surface contamination is removed

  3. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K. F.; Yang, Fang; Song, Y. R. [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Xiaole [Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Xianfeng [The State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu, Canhua; Qian, Dong; Gao, C. L., E-mail: clgao@sjtu.edu.cn; Jia, Jin-Feng [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China); Luo, Weidong, E-mail: wdluo@sjtu.edu.cn [Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing (China)

    2016-02-08

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations.

  4. Vectorial mapping of noncollinear antiferromagnetic structure of semiconducting FeSe surface with spin-polarized scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Zhang, K. F.; Yang, Fang; Song, Y. R.; Zhang, Xiaole; Chen, Xianfeng; Liu, Canhua; Qian, Dong; Gao, C. L.; Jia, Jin-Feng; Luo, Weidong

    2016-01-01

    Antiferromagnetic semiconductors gain increasing interest due to their possible application in spintronics. Using spin polarized scanning tunneling microscopy operating in a vector field, we mapped the noncollinear antiferromagnetic spin structure of a semiconducting hexagonal FeSe surface on the atomic scale. The surface possesses an in-plane compensated Néel structure which is further confirmed by first-principles calculations

  5. Fractional equations of kicked systems and discrete maps

    International Nuclear Information System (INIS)

    Tarasov, Vasily E; Zaslavsky, George M

    2008-01-01

    Starting from kicked equations of motion with derivatives of non-integer orders, we obtain 'fractional' discrete maps. These maps are generalizations of well-known universal, standard, dissipative, kicked damped rotator maps. The main property of the suggested fractional maps is a long-term memory. The memory effects in the fractional discrete maps mean that their present state evolution depends on all past states with special forms of weights. These forms are represented by combinations of power-law functions

  6. Surface density mapping of natural tissue by a scanning haptic microscope (SHM).

    Science.gov (United States)

    Moriwaki, Takeshi; Oie, Tomonori; Takamizawa, Keiichi; Murayama, Yoshinobu; Fukuda, Toru; Omata, Sadao; Nakayama, Yasuhide

    2013-02-01

    To expand the performance capacity of the scanning haptic microscope (SHM) beyond surface mapping microscopy of elastic modulus or topography, surface density mapping of a natural tissue was performed by applying a measurement theory of SHM, in which a frequency change occurs upon contact of the sample surface with the SHM sensor - a microtactile sensor (MTS) that vibrates at a pre-determined constant oscillation frequency. This change was mainly stiffness-dependent at a low oscillation frequency and density-dependent at a high oscillation frequency. Two paragon examples with extremely different densities but similar macroscopic elastic moduli in the range of natural soft tissues were selected: one was agar hydrogels and the other silicon organogels with extremely low (less than 25 mg/cm(3)) and high densities (ca. 1300 mg/cm(3)), respectively. Measurements were performed in saline solution near the second-order resonance frequency, which led to the elastic modulus, and near the third-order resonance frequency. There was little difference in the frequency changes between the two resonance frequencies in agar gels. In contrast, in silicone gels, a large frequency change by MTS contact was observed near the third-order resonance frequency, indicating that the frequency change near the third-order resonance frequency reflected changes in both density and elastic modulus. Therefore, a density image of the canine aortic wall was subsequently obtained by subtracting the image observed near the second-order resonance frequency from that near the third-order resonance frequency. The elastin-rich region had a higher density than the collagen-rich region.

  7. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  8. An improved method for Multipath Hemispherical Map (MHM) based on Trend Surface Analysis

    Science.gov (United States)

    Wang, Zhiren; Chen, Wen; Dong, Danan; Yu, Chao

    2017-04-01

    Among various approaches developed for detecting the multipath effect in high-accuracy GNSS positioning, Only MHM (Multipath Hemispherical Map) and SF (Sidereal Filtering) can be implemented to real-time GNSS data processing. SF is based on the time repeatability of satellites which just suitable for static environment, while the spatiotemporal repeatability-based MHM is applicable not only for static environment but also for dynamic carriers with static multipath environment such as ships and airplanes, and utilizes much smaller number of parameters than ASF. However, the MHM method also has certain defects. Since the MHM take the mean of residuals from the grid as the filter value, it is more suitable when the multipath regime is medium to low frequency. Now existing research data indicate that the newly advanced Sidereal Filtering (ASF) method perform better with high frequency multipath reduction than MHM by contrast. To solve the above problem and improve MHM's performance on high frequency multipath, we combined binary trend surface analysis method with original MHM model to effectively analyze particular spatial distribution and variation trends of multipath effect. We computed trend surfaces of the residuals within a grid by least-square procedures, and chose the best results through the moderate successive test. The enhanced MHM grid was constructed from a set of coefficients of the fitted equation instead of mean value. According to the analysis of the actual observation, the improved MHM model shows positive effect on high frequency multipath reduction, and significantly reduced the root mean square (RMS) value of the carrier residuals. Keywords: Trend Surface Analysis; Multipath Hemispherical Map; high frequency multipath effect

  9. Surface properties of functional polymer systems

    Science.gov (United States)

    Wong, Derek

    Polymer surface modification typically involves blending with other polymers or chemical modification of the parent polymer. Such strategies inevitably result in polymer systems that are spatially and chemically heterogeneous, and which exhibit the phenomenon of surface segregation. This work investigates the effects of chain architecture on the surface segregation behavior of such functionally modified polymers using a series of end- and center-fluorinated poly(D,L-lactide). Surface segregation of the fluorinated functional groups was observed in both chain architectures via AMPS and water contact angle. Higher surface segregation was noted for functional groups located at the chain end as opposed to those in the middle of the chain. A self-consistent mean-field lattice theory was used to model the composition depth profiles of functional groups and excellent agreement was found between the model predictions and the experimental AMPS data in both chain architectures. Polymer properties are also in general dependent on both time and temperature, and exhibit a range of relaxation times in response to environmental stimuli. This behavior arises from the characteristic frequencies of molecular motions of the polymer chain and the interrelationship between time and temperature has been widely established for polymer bulk properties. There is evidence that surface properties also respond in a manner that is time and temperature dependent and that this dependence may not be the same as that observed for bulk properties. AMPS and water contact angle experiments were used to investigate the surface reorganization behavior of functional groups using a series of anionically synthesized end-fluorinated and end-carboxylated poly(styrene). It was found that both types of functional end-groups reorganized upon a change in the polarity of the surface environment in order to minimize the surface free energy. ADXPS and contact angle results suggest that the reorganization depth was

  10. SURFACE INDUSTRIAL HVAC SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.M. Ansari

    2005-04-05

    The purpose of this system description document (SDD) is to establish requirements that drive the design of the surface industrial heating, ventilation, and air-conditioning (HVAC) system and its bases to allow the design effort to proceed to license application. This SDD will be revised at strategic points as the design matures. This SDD identifies the requirements and describes the system design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This SDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This SDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. The SDD follows the design with regard to the description of the system. The description that provided in this SDD reflects the current results of the design process.

  11. Mapping the Fetomaternal Peripheral Immune System at Term Pregnancy.

    Science.gov (United States)

    Fragiadakis, Gabriela K; Baca, Quentin J; Gherardini, Pier Federico; Ganio, Edward A; Gaudilliere, Dyani K; Tingle, Martha; Lancero, Hope L; McNeil, Leslie S; Spitzer, Matthew H; Wong, Ronald J; Shaw, Gary M; Darmstadt, Gary L; Sylvester, Karl G; Winn, Virginia D; Carvalho, Brendan; Lewis, David B; Stevenson, David K; Nolan, Garry P; Aghaeepour, Nima; Angst, Martin S; Gaudilliere, Brice L

    2016-12-01

    Preterm labor and infections are the leading causes of neonatal deaths worldwide. During pregnancy, immunological cross talk between the mother and her fetus is critical for the maintenance of pregnancy and the delivery of an immunocompetent neonate. A precise understanding of healthy fetomaternal immunity is the important first step to identifying dysregulated immune mechanisms driving adverse maternal or neonatal outcomes. This study combined single-cell mass cytometry of paired peripheral and umbilical cord blood samples from mothers and their neonates with a graphical approach developed for the visualization of high-dimensional data to provide a high-resolution reference map of the cellular composition and functional organization of the healthy fetal and maternal immune systems at birth. The approach enabled mapping of known phenotypical and functional characteristics of fetal immunity (including the functional hyperresponsiveness of CD4 + and CD8 + T cells and the global blunting of innate immune responses). It also allowed discovery of new properties that distinguish the fetal and maternal immune systems. For example, examination of paired samples revealed differences in endogenous signaling tone that are unique to a mother and her offspring, including increased ERK1/2, MAPK-activated protein kinase 2, rpS6, and CREB phosphorylation in fetal Tbet + CD4 + T cells, CD8 + T cells, B cells, and CD56 lo CD16 + NK cells and decreased ERK1/2, MAPK-activated protein kinase 2, and STAT1 phosphorylation in fetal intermediate and nonclassical monocytes. This highly interactive functional map of healthy fetomaternal immunity builds the core reference for a growing data repository that will allow inferring deviations from normal associated with adverse maternal and neonatal outcomes. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. A neurochemical map of the developing amphioxus nervous system

    Directory of Open Access Journals (Sweden)

    Candiani Simona

    2012-06-01

    Full Text Available Abstract Background Amphioxus, representing the most basal group of living chordates, is the best available proxy for the last invertebrate ancestor of the chordates. Although the central nervous system (CNS of amphioxus comprises only about 20,000 neurons (as compared to billions in vertebrates, the developmental genetics and neuroanatomy of amphioxus are strikingly vertebrate-like. In the present study, we mapped the distribution of amphioxus CNS cells producing distinctive neurochemicals. To this end, we cloned genes encoding biosynthetic enzymes and/or transporters of the most common neurotransmitters and assayed their developmental expression in the embryo and early larva. Results By single and double in situ hybridization experiments, we identified glutamatergic, GABAergic/glycinergic, serotonergic and cholinergic neurons in developing amphioxus. In addition to characterizing the distribution of excitatory and inhibitory neurons in the developing amphioxus CNS, we observed that cholinergic and GABAergic/glycinergic neurons are segmentally arranged in the hindbrain, whereas serotonergic, glutamatergic and dopaminergic neurons are restricted to specific regions of the cerebral vesicle and the hindbrain. We were further able to identify discrete groups of GABAergic and glutamatergic interneurons and cholinergic motoneurons at the level of the primary motor center (PMC, the major integrative center of sensory and motor stimuli of the amphioxus nerve cord. Conclusions In this study, we assessed neuronal differentiation in the developing amphioxus nervous system and compiled the first neurochemical map of the amphioxus CNS. This map is a first step towards a full characterization of the neurotransmitter signature of previously described nerve cell types in the amphioxus CNS, such as motoneurons and interneurons.

  13. The map of energy flow in HVAC systems

    International Nuclear Information System (INIS)

    Perez-Lombard, Luis; Ortiz, Jose; Maestre, Ismael R.

    2011-01-01

    Highlights: → Discussion of the four stages in the 'HVAC systems energy chain'. → Examination of HVAC systems as energy conversion devices. → Analysis of HVAC Sankey diagrams. → Discussion of HVAC loads and HVAC energy losses. -- Abstract: Heating, ventilation and air conditioning (HVAC) systems are the most energy consuming building services representing approximately half of the final energy use in the building sector and between one tenth and one fifth of the energy consumption in developed countries. Despite their significant energy use, there is a lack of a consistent and homogeneous framework to efficiently guide research and energy policies, mainly due to the complexity and variety of HVAC systems but also to insufficient rigour in their energy analysis. This paper reviews energy related aspects of HVAC systems with the aim of establishing a common ground for the analysis of their energy efficiency. The paper focuses on the map of energy flow to deliver thermal comfort: the HVAC energy chain. Our approach deals first with thermal comfort as the final service delivered to building occupants. Secondly, conditioned spaces are examined as the systems where useful heat (or coolth) is degraded to provide comfort. This is followed by the analysis of HVAC systems as complex energy conversion devices where energy carriers are transformed into useful heat and coolth, and finally, the impact of HVAC energy consumption on energy resources is discussed.

  14. 49 CFR 1152.13 - Amendment of the system diagram map or narrative.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Amendment of the system diagram map or narrative... map or narrative. (a) Each carrier shall be responsible for maintaining the continuing accuracy of its system diagram map and the accompanying line descriptions or narrative. Amendments may be filed at any...

  15. The mapping approach in the path integral formalism applied to curve-crossing systems

    International Nuclear Information System (INIS)

    Novikov, Alexey; Kleinekathoefer, Ulrich; Schreiber, Michael

    2004-01-01

    The path integral formalism in a combined phase-space and coherent-state representation is applied to the problem of curve-crossing dynamics. The system of interest is described by two coupled one-dimensional harmonic potential energy surfaces interacting with a heat bath consisting of harmonic oscillators. The mapping approach is used to rewrite the Lagrangian function of the electronic part of the system. Using the Feynman-Vernon influence-functional method the bath is eliminated whereas the non-Gaussian part of the path integral is treated using the generating functional for the electronic trajectories. The dynamics of a Gaussian wave packet is analyzed along a one-dimensional reaction coordinate within a perturbative treatment for a small coordinate shift between the potential energy surfaces

  16. An ultrasonic sensor controller for mapping and servo control in robotic systems

    International Nuclear Information System (INIS)

    Drotning, W.D.; Garcia, P. Jr.

    1993-03-01

    An ultrasonic sensor controller has been developed and applied in a variety of robotic systems for operation in hazardous environments. The controller consists of hardware and software that control multiple ultrasonic range sensors and provide workspace information to robot controllers for rapid, safe, and reliable operation in hazardous and remote environments. The hardware consists of a programmable multichannel controller that resides on a VMEbus for high speed communication to a multiprocessor architecture. The sensor controller has been used in a number of applications, which include providing high precision range information for proximity servo control of robots, and performing surface and obstacle mapping functions for safe path planning of robots in unstructured environments

  17. Mapping the surface of Escherichia coli peptide deformylase by NMR with organic solvents.

    Science.gov (United States)

    Byerly, Douglas W; McElroy, Craig A; Foster, Mark P

    2002-07-01

    Identifying potential ligand binding sites on a protein surface is an important first step for targeted structure-based drug discovery. While performing control experiments with Escherichia coli peptide deformylase (PDF), we noted that the organic solvents used to solubilize some ligands perturbed many of the same resonances in PDF as the small molecule inhibitors. To further explore this observation, we recorded (15)N HSQC spectra of E. coli peptide deformylase (PDF) in the presence of trace quantities of several simple organic solvents (acetone, DMSO, ethanol, isopropanol) and identified their sites of interaction from local perturbation of amide chemical shifts. Analysis of the protein surface structure revealed that the ligand-induced shift perturbations map to the active site and one additional surface pocket. The correlation between sites of solvent and inhibitor binding highlights the utility of organic solvents to rapidly and effectively validate and characterize binding sites on proteins prior to designing a drug discovery screen. Further, the solvent-induced perturbations have implications for the use of organic solvents to dissolve candidate ligands in NMR-based screens.

  18. ConfidenHT™ System for Diagnostic Mapping of Renal Nerves.

    Science.gov (United States)

    Tsioufis, Costas; Dimitriadis, Kyriakos; Tsioufis, Panagiotis; Patras, Rafael; Papadoliopoulou, Maria; Petropoulou, Zoi; Konstantinidis, Dimitris; Tousoulis, Dimitrios

    2018-05-19

    To summarize the evidence regarding the distribution of renal nerves and their patterns of anatomic variations in animal and human settings. Moreover, the methodology and results of studies regarding renal nerve stimulation (RNS) in both preclinical and clinical models are presented. There are differences regarding the number and the size of renal fibers, as well as their distance from the lumen in the diverse parts of the main renal arteries and the branches. In both animals and humans, RNS is safe and results in an increase of blood pressure (BP) while the effect on heart rate varies. In this context, the ConfidenHT™ system constitutes an integrated solution for effective RNS in humans. Due to the diversity of renal nerve anatomy in humans, arterial areas for more effective renal denervation cannot be homogenously defined. The concept of mapping of renal nerves can improve completeness of renal denervation therapies by means of integrated RNS solutions such as the ConfidenHT™ system.

  19. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  20. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  1. Optimization of microwave-assisted extraction (MAP) for ginseng components by response surface methodology.

    Science.gov (United States)

    Kwon, Joong-Ho; Bélanger, Jacqueline M R; Paré, J R Jocelyn

    2003-03-26

    Response surface methodology (RSM) was applied to predict optimum conditions for microwave-assisted extraction-a MAP technology-of saponin components from ginseng roots. A central composite design was used to monitor the effect of ethanol concentration (30-90%, X(1)) and extraction time (30-270 s, X(2)) on dependent variables, such as total extract yield (Y(1)), crude saponin content (Y(2)), and saponin ratio (Y(3)), under atmospheric pressure conditions when focused microwaves were applied at an emission frequency of 2450 MHz. In MAP under pre-established conditions, correlation coefficients (R (2)) of the models for total extract yield and crude saponin were 0.9841 (p extraction conditions were predicted for each variable as 52.6% ethanol and 224.7 s in extract yield and as 77.3% ethanol and 295.1 s in crude saponins, respectively. Estimated maximum values at predicted optimum conditions were in good agreement with experimental values.

  2. Detailed mapping of surface units on Mars with HRSC color data

    Science.gov (United States)

    Combe, J.-Ph.; Wendt, L.; McCord, T. B.; Neukum, G.

    2008-09-01

    Introduction: Making use of HRSC color data Mapping outcrops of clays, sulfates and ferric oxides are basis information to derive the climatic, tectonic and volcanic evolution of Mars, especially the episodes related to the presence of liquid water. The challenge is to resolve spatially the outcrops and to distinguish these components from the globally-driven deposits like the iron oxide-rich bright red dust and the basaltic dark sands. The High Resolution Stereo Camera (HRSC) onboard Mars-Express has five color filters in the visible and near infrared that are designed for visual interpretation and mapping various surface units [1]. It provides also information on the topography at scale smaller than a pixel (roughness) thanks to the different geometry of observation for each color channel. The HRSC dataset is the only one that combines global coverage, 200 m/pixel spatial resolution or better and filtering colors of light. The present abstract is a work in progress (to be submitted to Planetary and Space Science) that shows the potential and limitations of HRSC color data as visual support and as multispectral images. Various methods are described from the most simple to more complex ones in order to demonstrate how to make use of the spectra, because of the specific steps of processing they require [2-4]. The objective is to broaden the popularity of HRSC color data, as they could be used more widely by the scientific community. Results prove that imaging spectrometry and HRSC color data complement each other for mapping outcrops types. Example regions of interest HRSC is theoretically sensitive to materials with absorption features in the visible and near-infrared up to 1 μm. Therefore, oxide-rich red dust and basalts (pyroxenes) can be mapped, as well as very bright components like water ice [5, 6]. Possible detection of other materials still has to be demonstrated. We first explore regions where unusual mineralogy appears clearly from spectral data. Hematite

  3. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    Science.gov (United States)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  4. Meteorological applications of a surface network of Global Positioning System receivers

    NARCIS (Netherlands)

    Haan, de S.

    2008-01-01

    This thesis presents meteorological applications of water vapour observations from a surface network of Global Positioning System (GPS) receivers. GPS signals are delayed by the atmo¬sphere due to atmospheric refraction and bending. Mapped to the zenith, this delay is called Zenith Total Delay

  5. Groundwater vulnerability mapping in Guadalajara aquifers system (Western Mexico)

    Science.gov (United States)

    Rizo-Decelis, L. David; Marín, Ana I.; Andreo, Bartolomé

    2016-04-01

    Groundwater vulnerability mapping is a practical tool to implement strategies for land-use planning and sustainable socioeconomic development coherent with groundwater protection. The objective of vulnerability mapping is to identify the most vulnerable zones of catchment areas and to provide criteria for protecting the groundwater used for drinking water supply. The delineation of protection zones in fractured aquifers is a challenging task due to the heterogeneity and anisotropy of hydraulic conductivities, which makes difficult prediction of groundwater flow organization and flow velocities. Different methods of intrinsic groundwater vulnerability mapping were applied in the Atemajac-Toluquilla groundwater body, an aquifers system that covers around 1300 km2. The aquifer supplies the 30% of urban water resources of the metropolitan area of Guadalajara (Mexico), where over 4.6 million people reside. Study area is located in a complex neotectonic active volcanic region in the Santiago River Basin (Western Mexico), which influences the aquifer system underneath the city. Previous works have defined the flow dynamics and identified the origin of recharge. In addition, the mixture of fresh groundwater with hydrothermal and polluted waters have been estimated. Two main aquifers compose the multilayer system. The upper aquifer is unconfined and consists of sediments and pyroclastic materials. Recharge of this aquifer comes from rainwater and ascending vertical fluids from the lower aquifer. The lower aquifer consists of fractured basalts of Pliocene age. Formerly, the main water source has been the upper unit, which is a porous and unconsolidated unit, which acts as a semi-isotropic aquifer. Intense groundwater usage has resulted in lowering the water table in the upper aquifer. Therefore, the current groundwater extraction is carried out from the deeper aquifer and underlying bedrock units, where fracture flow predominates. Pollution indicators have been reported in

  6. Fission Surface Power System Initial Concept Definition

    Science.gov (United States)

    2010-01-01

    Under the NASA Exploration Technology Development Program (ETDP) and in partnership with the Department of Energy (DOE), NASA has embarked on a project to develop Fission Surface Power (FSP) technology. The primary goals of the project are to 1) develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options, 2) establish a hardwarebased technical foundation for FSP design concepts and reduce overall development risk, 3) reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates, and 4) generate the key products to allow NASA decision-makers to consider FSP as a preferred option for flight development. The FSP project was initiated in 2006 as the Prometheus Program and the Jupiter Icy Moons Orbiter (JIMO) mission were phased-out. As a first step, NASA Headquarters commissioned the Affordable Fission Surface Power System Study to evaluate the potential for an affordable FSP development approach. With a cost-effective FSP strategy identified, the FSP team evaluated design options and selected a Preliminary Reference Concept to guide technology development. Since then, the FSP Preliminary Reference Concept has served as a point-of-departure for several NASA mission architecture studies examining the use of nuclear power and has provided the foundation for a series of "Pathfinder" hardware tests. The long-term technology goal is a Technology Demonstration Unit (TDU) integrated system test using full-scale components and a non-nuclear reactor simulator. The FSP team consists of Glenn Research Center (GRC), Marshall Space Flight Center (MSFC) and the DOE National Laboratories at Los Alamos (LANL), Idaho (INL), Oak Ridge (ORNL), and Sandia (SNL). The project is organized into two main elements: Concept Definition and Risk Reduction. Under Concept Definition, the team performs trade studies, develops analytical tools, and formulates system concepts. Under Risk

  7. Seafloor mapping of large areas using multibeam system - Indian experience

    Digital Repository Service at National Institute of Oceanography (India)

    Kodagali, V.N.; KameshRaju, K.A; Ramprasad, T.

    averaged and merged to produce large area maps. Maps were generated in the scale of 1 mil. and 1.5 mil covering area of about 2 mil. sq.km in single map. Also, depth contour interval were generated. A computer program was developed to convert the depth data...

  8. Object Tracking Vision System for Mapping the UCN τ Apparatus Volume

    Science.gov (United States)

    Lumb, Rowan; UCNtau Collaboration

    2016-09-01

    The UCN τ collaboration has an immediate goal to measure the lifetime of the free neutron to within 0.1%, i.e. about 1 s. The UCN τ apparatus is a magneto-gravitational ``bottle'' system. This system holds low energy, or ultracold, neutrons in the apparatus with the constraint of gravity, and keeps these low energy neutrons from interacting with the bottle via a strong 1 T surface magnetic field created by a bowl-shaped array of permanent magnets. The apparatus is wrapped with energized coils to supply a magnetic field throughout the ''bottle'' volume to prevent depolarization of the neutrons. An object-tracking stereo-vision system will be presented that precisely tracks a Hall probe and allows a mapping of the magnetic field throughout the volume of the UCN τ bottle. The stereo-vision system utilizes two cameras and open source openCV software to track an object's 3-d position in space in real time. The desired resolution is +/-1 mm resolution along each axis. The vision system is being used as part of an even larger system to map the magnetic field of the UCN τ apparatus and expose any possible systematic effects due to field cancellation or low field points which could allow neutrons to depolarize and possibly escape from the apparatus undetected. Tennessee Technological University.

  9. ST-T isointegral analysis of exercise stress body surface mapping for identifying ischemic areas in patients with angina pectoris

    International Nuclear Information System (INIS)

    Nakajima, T.; Kawakubo, K.; Toda, I.; Mashima, S.; Ohtake, T.; Iio, M.; Sugimoto, T.

    1988-01-01

    ST-T isointegral analysis of body surface mapping was used in an attempt to localize ischemic areas on exercise tests. In 28 patients with angina pectoris and 10 healthy subjects, body surface potential was recorded with 87 leads, and ST isopotential and ST-T isointegral maps were constructed. In all 10 healthy subjects, the basic pattern of the ST-T isointegral map showed no significant change after exercise. In 23 of 28 patients with angina pectoris (82%), alterations in the ST-T isointegral map after exercise were observed. They were divided into four types (anterior, inferoposterior, lateral, and global) according to the distribution of negative values, which were well correlated with the extent of ischemic area determined by thallium myocardial scintigraphy and coronary angiography. The postexercise ST-T isointegral map was normalized after administration of nitroglycerin in four of five patients. In five patients (18%) who did not show abnormalities on the postexercise ST-T isointegral map, the magnitude of maximal ST depression was significantly smaller than that observed in the other 23 patients with angina pectoris (0.14 vs 0.23 mV on the average, p less than 0.05). It was concluded that the exercise test with ST-T isointegral mapping is a new method for noninvasive detection of location and severity of ischemic regions

  10. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  11. Guided asteroid deflection by kinetic impact: Mapping keyholes to an asteroid's surface

    Science.gov (United States)

    Chesley, S.; Farnocchia, D.

    2014-07-01

    range from around 1 for a porous, compressible body producing negligible ejecta, to 2 when the ejecta momentum matches the spacecraft momentum, and as high as 5--10 for rocky bodies that produce large, high-velocity ejecta fragments. If the impactor hits the centerpoint of a spherical asteroid the momentum of the escaping ejecta directly adds to the momentum of the impacting asteroid, but if the impact is oblique then the ejecta and spacecraft momenta are added to the asteroid in vector sum. This suggests the possibility that for a given intercept trajectory the asteroid deflection could include guidance by targeting an oblique impact that could steer the asteroid Δ V to a more optimal direction that is different from the relative velocity direction of the spacecraft. An oblique impact decreases the net Δ V magnitude, and yet could significantly increase the net deflection at the time of the threatening Earth encounter. We use asteroid (101955) Bennu, which is the target of the OSIRIS-REx asteroid sample return mission and which has a series of potential Earth impacts in the years from 2175--2196, as an example to demonstrate the effectiveness of the oblique impact. These future potential impacts will occur if the asteroid passes through one of a series of keyholes when the asteroid passes the Earth at roughly the lunar distance from the Earth in 2135. To study the Bennu deflection problem we simulate a hypervelocity spacecraft impact on Bennu in March 2021, after the OSIRIS-REx mission is complete. In our example, the spacecraft arrives from approximately the sunward direction, and targeting ahead or behind the center of the asteroid allows non-negligible transverse accelerations for modest values of β. A given impact location on the asteroid surface yields a given Δ V vector, and our approach starts by mapping the net Δ V components on the surface for an assumed value of β. Knowing the mapping from impact location to Δ V and also the mapping from Δ V to the

  12. [The primary research and development of software oversampling mapping system for electrocardiogram].

    Science.gov (United States)

    Zhou, Yu; Ren, Jie

    2011-04-01

    We put forward a new concept of software oversampling mapping system for electrocardiogram (ECG) to assist the research of the ECG inverse problem to improve the generality of mapping system and the quality of mapping signals. We then developed a conceptual system based on the traditional ECG detecting circuit, Labview and DAQ card produced by National Instruments, and at the same time combined the newly-developed oversampling method into the system. The results indicated that the system could map ECG signals accurately and the quality of the signals was good. The improvement of hardware and enhancement of software made the system suitable for mapping in different situations. So the primary development of the software for oversampling mapping system was successful and further research and development can make the system a powerful tool for researching ECG inverse problem.

  13. Surface Map Traffic Intent Displays and Net-Centric Data-link Communications for NextGen

    Science.gov (United States)

    Shelton, Kevin J.; Prinzel, Lawrence J., III; Jones, Denise R.; Allamandola, Angela S.; Arthur, Jarvis J., III; Bailey, Randall E.

    2009-01-01

    By 2025, U.S. air traffic is predicted to increase three fold and may strain the current air traffic management system, which may not be able to accommodate this growth. In response to this challenge, a revolutionary new concept has been proposed for U.S. aviation operations, termed the Next Generation Air Transportation System or "NextGen". Many key capabilities are being identified to enable NextGen, including the use of data-link communications. Because NextGen represents a radically different approach to air traffic management and requires a dramatic shift in the tasks, roles, and responsibilities for the flight deck, there are numerous research issues and challenges that must be overcome to ensure a safe, sustainable air transportation system. Flight deck display and crew-vehicle interaction concepts are being developed that proactively investigate and overcome potential technology and safety barriers that might otherwise constrain the full realization of NextGen. The paper describes simulation research, conducted at National Aeronautics and Space Administration (NASA) Langley Research Center, examining data-link communications and traffic intent data during envisioned four-dimensional trajectory (4DT)-based and equivalent visual (EV) surface operations. Overall, the results suggest that controller pilot data-link communications (CPDLC) with the use of mandatory pilot read-back of all clearances significantly enhanced situation awareness for 4DT and EV surface operations. The depiction of graphical traffic state and intent information on the surface map display further enhanced off-nominal detection and pilot qualitative reports of safety and awareness.

  14. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  15. Mapping the criminal mind: idiographic assessment of criminal belief systems.

    Science.gov (United States)

    Walters, Glenn D

    2005-02-01

    An idiographic procedure designed to assess the belief systems of criminal offenders is described, investigated, and clarified. This measure, the Cognitive Map of Major Belief Systems (CMMBS), assesses the five belief systems (self-view, world-view, past-view, present-view, future-view) held to occupy the higher echelons of human cognition. Modest to moderate test-retest reliability was achieved when 19 inmates, enrolled in one of three drug-counseling groups, completed the CMMBS on two separate occasions, 2 weeks apart. It was also ascertained that the drug treatment specialist who served as therapist for all three groups "blindly" matched the 19 CMMBS records to the inmates who produced them. A case study of one of the 19 participants was used to illustrate how the CMMBS is employed with individual offenders and how belief systems interact with major schematic subnetworks such as attributions, outcome expectancies, efficacy expectancies, goals, values, and thinking styles to create crime-supporting lifestyles.

  16. PET and SPET tracers for mapping the cardiac nervous system

    International Nuclear Information System (INIS)

    Langer, Oliver; Halldin, Christer

    2002-01-01

    The human cardiac nervous system consists of a sympathetic and a parasympathetic branch with (-)-norepinephrine and acetylcholine as the respective endogenous neurotransmitters. Dysfunction of the cardiac nervous system is implicated in various types of cardiac disease, such as heart failure, myocardial infarction and diabetic autonomic neuropathy. In vivo assessment of the distribution and function of cardiac sympathetic and parasympathetic neurones with positron emission tomography (PET) and single-photon emission tomography (SPET) can be achieved by means of a number of carbon-11-, fluorine-18-, bromine-76- and iodine-123-labelled tracer molecules. Available tracers for mapping sympathetic neurones can be divided into radiolabelled catecholamines, such as 6-[ 18 F]fluorodopamine, (-)-6-[ 18 F]fluoronorepinephrine and (-)-[ 11 C]epinephrine, and radiolabelled catecholamine analogues, such as [ 123 I]meta-iodobenzylguanidine, [ 11 C]meta-hydroxyephedrine, [ 18 F]fluorometaraminol, [ 11 C]phenylephrine and meta-[ 76 Br]bromobenzylguanidine. Resistance to metabolism by monoamine oxidase and catechol-O-methyl transferase simplifies the myocardial kinetics of the second group. Both groups of compounds are excellent agents for an overall assessment of sympathetic innervation. Biomathematical modelling of tracer kinetics is complicated by the complexity of the steps governing neuronal uptake, retention and release of these agents as well as by their high neuronal affinity, which leads to partial flow dependence of uptake. Mapping of cardiac parasympathetic neurones is limited by a low density and focal distribution pattern of these neurones in myocardium. Available tracers are derivatives of vesamicol, a molecule that binds to a receptor associated with the vesicular acetylcholine transporter. Compounds like (-)-[ 18 F]fluoroethoxybenzovesamicol display a high degree of non-specific binding in myocardium which restricts their utility for cardiac neuronal imaging. (orig.)

  17. A mobile gamma ray spectrometer system for nuclear hazard mapping

    International Nuclear Information System (INIS)

    Smethurst, Mark A.

    2000-12-01

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making authorities. The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data means that the results of a survey can be delivered to decision makers immediately upon return to base. It is also possible to deliver data via a live mobile telephone link while surveying is underway. The measuring system can be adjusted to make measurements lasting between 1 second and 5 seconds. The spatial density of measuring positions depends on the duration of each measurement and the speed of travel of the measuring system. Measuring with 1 s intervals while travelling at 50 km/h in a car results in a measurement every 14 m along the road. Measuring with 1 s intervals in an aeroplane travelling at 250 km/h produces a measurement for every 70 m travelled. Eight hours surveying can produce up to 30000 measurements over a region hundreds of kilometres across. (Author)

  18. Mapping global surface water inundation dynamics using synergistic information from SMAP, AMSR2 and Landsat

    Science.gov (United States)

    Du, J.; Kimball, J. S.; Galantowicz, J. F.; Kim, S.; Chan, S.; Reichle, R. H.; Jones, L. A.; Watts, J. D.

    2017-12-01

    A method to monitor global land surface water (fw) inundation dynamics was developed by exploiting the enhanced fw sensitivity of L-band (1.4 GHz) passive microwave observations from the Soil Moisture Active Passive (SMAP) mission. The L-band fw (fwLBand) retrievals were derived using SMAP H-polarization brightness temperature (Tb) observations and predefined L-band reference microwave emissivities for water and land endmembers. Potential soil moisture and vegetation contributions to the microwave signal were represented from overlapping higher frequency Tb observations from AMSR2. The resulting fwLBand global record has high temporal sampling (1-3 days) and 36-km spatial resolution. The fwLBand annual averages corresponded favourably (R=0.84, pretrievals showed favourable classification accuracy for water (commission error 31.84%; omission error 28.08%) and land (commission error 0.82%; omission error 0.99%) and seasonal wet and dry periods when compared to independent water maps derived from Landsat-8 imagery. The new fwLBand algorithms and continuing SMAP and AMSR2 operations provide for near real-time, multi-scale monitoring of global surface water inundation dynamics, potentially benefiting hydrological monitoring, flood assessments, and global climate and carbon modeling.

  19. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  20. Point contact tunneling spectroscopy apparatus for large scale mapping of surface superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Groll, Nickolas; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Zasadzinksi, John F. [Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Proslier, Thomas, E-mail: prolier@anl.gov [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); High Energy Physics Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States)

    2015-09-15

    We describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T{sub C}) and density of states over large surface areas with size up to mm{sup 2}. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that can be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. The point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.

  1. Mapping of upper electronic reaction surfaces by tuned laser photolysis and by absorption and emission spectroscopies

    International Nuclear Information System (INIS)

    Morgan, M.A.

    1989-07-01

    Potential energy surfaces for photorotamerization of two intramolecularly hydrogen-bonded molecules, o-hydroxybenzaldehyde (OHBA) and methyl salicylate (MS), isolated in cryogenic matrices have been spectroscopically mapped. In addition, the external heavy atom effect of krypton and xenon matrices on the coupling between the S 1 and T 1 surfaces of 4-(dimethylamino)benzonitrile has been examined. Heavy atom matrices are known to increase rates of spin-forbidden processes. The phosphorescence intensity of DMABN increases in krypton and xenon matrices, while the fluorescence intensity, and phosphorescence and fluorescence lifetimes, decrease. These effects are interpreted in terms of a model in which the phosphorescence rate constant increases 300-fold in xenon compared to argon, while the rate constants for intersystem crossing and nonradiative relaxation from the triplet state increase by factors of less than 5. Lifetime measurements in argon matrices doped with heavy atoms indicate that even one heavy atom neighbor has a significant effect on both singlet and triplet lifetimes. 78 refs., 35 figs., 15 tabs

  2. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  3. Automatic Road Sign Inventory Using Mobile Mapping Systems

    Science.gov (United States)

    Soilán, M.; Riveiro, B.; Martínez-Sánchez, J.; Arias, P.

    2016-06-01

    The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS) use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS), thus, road sign information can be available to be used in a Smart City context.

  4. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  5. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    Science.gov (United States)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  6. A surface plasmon resonance assay for characterisation and epitope mapping of anti-GLP-1 antibodies.

    Science.gov (United States)

    Thomsen, Lasse; Gurevich, Leonid

    2018-04-19

    The incretin hormone glucagon-like peptide-1 (GLP-1) has been subject to substantial pharmaceutical research regarding the treatment of type 2 diabetes mellitus. However, quantification of GLP-1 levels remains complicated due to the low circulation concentration and concurrent existence of numerous metabolites, homologous peptides, and potentially introduced GLP-1 receptor agonists. Surface plasmon resonance (SPR) facilitates real-time monitoring allowing a more detailed characterisation of the interaction compared with conventional enzyme-linked immunosorbent assays (ELISA). In this paper, we describe the development of the first SPR assays for characterisation of anti-GLP-1 antibodies for ELISA purposes. Binding responses were obtained on covalently immobilised anti-GLP-1 antibodies at 12°C, 25°C, and 40°C and fitted to a biomolecular (1:1) interaction model showing association rates of 1.01 × 10 3 to 4.54 × 10 3  M -1  s -1 and dissociation rates of 3.56 × 10 -5 to 1.56 × 10 -3  s -1 leading to affinities of 35.2 to 344 nM, depending on the temperature. Determination of thermodynamic properties revealed an enthalpy driven interaction (ΔH polar amino acids (ΔC p  < 0). Pair-wise epitope mapping was performed on captured anti-GLP-1 antibodies followed by subsequent interaction with GLP-1 (7-36) and other anti-GLP-1 antibodies. A global evaluation of every binding response led to an epitope map elucidating the potential of various anti-GLP-1 antibody pairs for sandwich ELISA and hence pinpointing the optimal antibody combinations. The SPR assays proved capable of providing vital information for ELISA development endorsing it as a useful optimisation tool. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Digital Mapping and Land Information Systems - Volume 6

    DEFF Research Database (Denmark)

    Frederiksen, Poul

    1998-01-01

    Introduction of digital mapping techniques in the 28 counties of Latvia related to the offices of the national mapping agency (State Land Service). Major components are: Training of regional staff, procurement of hard- and software, training of technical staff from State Land Service, HQ. Develop......Introduction of digital mapping techniques in the 28 counties of Latvia related to the offices of the national mapping agency (State Land Service). Major components are: Training of regional staff, procurement of hard- and software, training of technical staff from State Land Service, HQ...

  8. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    Science.gov (United States)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  9. Color Shaded-Relief and Surface-Classification Maps of the Fish Creek Area, Harrison Bay Quadrangle, Northern Alaska

    Science.gov (United States)

    Mars, John L.; Garrity, Christopher P.; Houseknecht, David W.; Amoroso, Lee; Meares, Donald C.

    2007-01-01

    Introduction The northeastern part of the National Petroleum Reserve in Alaska (NPRA) has become an area of active petroleum exploration during the past five years. Recent leasing and exploration drilling in the NPRA requires the U.S. Bureau of Land Management (BLM) to manage and monitor a variety of surface activities that include seismic surveying, exploration drilling, oil-field development drilling, construction of oil-production facilities, and construction of pipelines and access roads. BLM evaluates a variety of permit applications, environmental impact studies, and other documents that require rapid compilation and analysis of data pertaining to surface and subsurface geology, hydrology, and biology. In addition, BLM must monitor these activities and assess their impacts on the natural environment. Timely and accurate completion of these land-management tasks requires elevation, hydrologic, geologic, petroleum-activity, and cadastral data, all integrated in digital formats at a higher resolution than is currently available in nondigital (paper) formats. To support these land-management tasks, a series of maps was generated from remotely sensed data in an area of high petroleum-industry activity (fig. 1). The maps cover an area from approximately latitude 70?00' N. to 70?30' N. and from longitude 151?00' W. to 153?10' W. The area includes the Alpine oil field in the east, the Husky Inigok exploration well (site of a landing strip) in the west, many of the exploration wells drilled in NPRA since 2000, and the route of a proposed pipeline to carry oil from discovery wells in NPRA to the Alpine oil field. This map area is referred to as the 'Fish Creek area' after a creek that flows through the region. The map series includes (1) a color shaded-relief map based on 5-m-resolution data (sheet 1), (2) a surface-classification map based on 30-m-resolution data (sheet 2), and (3) a 5-m-resolution shaded relief-surface classification map that combines the shaded

  10. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.

    Science.gov (United States)

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-05-25

    During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.

  11. Development of a System to Assist Automatic Translation of Hand-Drawn Maps into Tactile Graphics and Its Usability Evaluation

    Directory of Open Access Journals (Sweden)

    Jianjun Chen

    2014-01-01

    Full Text Available Tactile graphics are images that use raised surfaces so that a visually impaired person can feel them. Tactile maps are used by blind and partially sighted people when navigating around an environment, and they are also used prior to a visit for orientation purposes. Since the ability to read tactile graphics deeply depends on individuals, providing tactile graphics individually is needed. This implies that producing tactile graphics should be as simple as possible. Based on this background, we are developing a system for automating production of tactile maps from hand-drawn figures. In this paper, we first present a pattern recognition method for hand-drawn maps. The usability of our system is then evaluated by comparing it with the two different methods to produce tactile graphics.

  12. Gene annotation from scientific literature using mappings between keyword systems.

    Science.gov (United States)

    Pérez, Antonio J; Perez-Iratxeta, Carolina; Bork, Peer; Thode, Guillermo; Andrade, Miguel A

    2004-09-01

    The description of genes in databases by keywords helps the non-specialist to quickly grasp the properties of a gene and increases the efficiency of computational tools that are applied to gene data (e.g. searching a gene database for sequences related to a particular biological process). However, the association of keywords to genes or protein sequences is a difficult process that ultimately implies examination of the literature related to a gene. To support this task, we present a procedure to derive keywords from the set of scientific abstracts related to a gene. Our system is based on the automated extraction of mappings between related terms from different databases using a model of fuzzy associations that can be applied with all generality to any pair of linked databases. We tested the system by annotating genes of the SWISS-PROT database with keywords derived from the abstracts linked to their entries (stored in the MEDLINE database of scientific references). The performance of the annotation procedure was much better for SWISS-PROT keywords (recall of 47%, precision of 68%) than for Gene Ontology terms (recall of 8%, precision of 67%). The algorithm can be publicly accessed and used for the annotation of sequences through a web server at http://www.bork.embl.de/kat

  13. Global Distribution of Shallow Water on Mars: Neutron Mapping of Summer-Time Surface by HEND/Odyssey

    Science.gov (United States)

    Mitrofanov, I. G.; Litvak, M. L.; Kozyrev, A. S.; Sanin, A. B.; Tretyakov, V. I.; Boynton, W.; Hamara, D.; Shinohara, C.; Saunders, R. S.; Drake, D.

    2003-01-01

    Orbital mapping of induced neutrons and gamma-rays by Odyssey has recently successfully proven the applicability of nuclear methods for studying of the elementary composition of Martian upper-most subsurface. In particular, the suite of Gamma-Ray Spectrometer (GRS) has discovered the presence of large water-ice rich regions southward and northward on Mars. The data of neutron mapping of summer-time surface are presented below from the Russian High Energy Neutron Spectrometer (HEND), which is a part of GRS suite. These maps represent the content of water in the soil for summer season at Southern and Northern hemispheres, when the winter deposit of CO2 is absent on the surface. The seasonal evolution of CO2 coverage on Mars is the subject of the complementary paper.

  14. Design of Intelligent Transportation Inquiry System Based on MapX in the Environment of VC++

    Directory of Open Access Journals (Sweden)

    Cheng Juan

    2016-01-01

    Full Text Available This paper applied MapInfo, the professional soft ware tool of GIS, integrated secondary exploiture combining with elctronic maps, and made use of the exploiture flat roof Visual C++ as the tool of visualize development, transferred MapX, a control of MapInfo, integrated them. The paper designed the Inquiry System in Intelligent Transportation, which including query system of road information, query system of bus information, query system of district information. It can be carried out space analysis and query function based on GIS. Adopted SQL Server manage attribute data, by data binding, attribute data in SQL Server and victor picture data were combined.

  15. Mapping Cellular Hierarchy by Single-Cell Analysis of the Cell Surface Repertoire

    OpenAIRE

    Guo, Guoji; Luc, Sidinh; Marco, Eugenio; Lin, Ta-Wei; Peng, Cong; Kerenyi, Marc A.; Beyaz, Semir; Kim, Woojin; Xu, Jian; Das, Partha Pratim; Neff, Tobias; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2013-01-01

    Stem cell differentiation pathways are most often studied at the population level, whereas critical decisions are executed at the level of single cells. We have established a highly multiplexed, quantitative PCR assay to profile in an unbiased manner a panel of all commonly used cell surface markers (280 genes) from individual cells. With this method we analyzed over 1500 single cells throughout the mouse hematopoietic system, and illustrate its utility for revealing important biological insi...

  16. Global 30m 2000-2014 Surface Water Dynamics Map Derived from All Landsat 5, 7, and 8

    Science.gov (United States)

    Hudson, A.; Hansen, M.

    2015-12-01

    Water is critical for human life, agriculture, and ecosystems. A better understanding of where it is and how it is changing will enable better management of this valuable resource and guide protection of sensitive ecological areas. Global water maps have typically been representations of surface water at one given time. However, there is both seasonal and interannual variability: rivers meander, lakes disappear, floods arise. To address this ephemeral nature of water, in this study University of Maryland has developed a method that analyzes every Landsat 5, 7, and 8 scene from 1999-2015 to produce global seasonal maps (Winter, Spring, Summer, Fall) of surface water dynamics from 2000-2014. Each Landsat scene is automatically classified into land, water, cloud, haze, shadow, and snow via a decision tree algorithm. The land and water observations are aggregated per pixel into percent occurrence of water in a 3 year moving window for each meteorological season. These annual water percentages form a curve for each season that is discretized into a continuous 3 band RGB map. Frequency of water observation and type of surface water change (loss, gain, peak, or dip) is clearly seen through brightness and hue respectively. Additional data layers include: the year the change began, peak year, minimum year, and the year the change process ended. Currently these maps have been created for 18 1°x1° test tiles scattered around the world, and a portion of the September-November map over Bangladesh is shown below. The entire Landsat archive from 1999-2015 will be processed through a partnership with Google Earth Engine to complete the global product in the coming months. In areas where there is sufficient satellite data density (e.g. the United States), this project could be expanded to 1984-2015. This study provides both scientific researchers and the public an understandable, temporally rich, and globally consistent map showing surface water changes over time.

  17. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    Science.gov (United States)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  18. Surface Management System Departure Event Data Analysis

    Science.gov (United States)

    Monroe, Gilena A.

    2010-01-01

    This paper presents a data analysis of the Surface Management System (SMS) performance of departure events, including push-back and runway departure events.The paper focuses on the detection performance, or the ability to detect departure events, as well as the prediction performance of SMS. The results detail a modest overall detection performance of push-back events and a significantly high overall detection performance of runway departure events. The overall detection performance of SMS for push-back events is approximately 55%.The overall detection performance of SMS for runway departure events nears 100%. This paper also presents the overall SMS prediction performance for runway departure events as well as the timeliness of the Aircraft Situation Display for Industry data source for SMS predictions.

  19. Develop advanced nonlinear signal analysis topographical mapping system

    Science.gov (United States)

    1994-01-01

    The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of

  20. A test of boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Arima, A.; Yoshida, N.; Ginocchio, J.N.

    1981-01-01

    The Otsuka-Arima-Iachello Method, the Belyaev-Zelevinsky-Marshalek boson expansion method, and the boson expansion theory are each used to map a solvable fermion hamiltonian onto a boson space. Comparison of the spectra and transition rates obtained by these three boson mapping methods are compared to the exact values. (orig.)

  1. Mapping coastal vegetation using an expert system and hyperspectral imagery

    NARCIS (Netherlands)

    Schmidt, K.S.; Skidmore, A.K.; Kloosterman, E.H.; Oosten, van H.; Kumar, L.; Janssen, J.A.M.

    2004-01-01

    Mapping and monitoring salt marshes in the Netherlands are important activities of the Ministry of Public Works (Rijkswaterstaat). The Survey Department (Meetkundige Dienst) produces vegetation maps using aerial photographs. However, it is a time-consuming and expensive activity. The accuracy of the

  2. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  3. Self-organizing adaptive map: autonomous learning of curves and surfaces from point samples.

    Science.gov (United States)

    Piastra, Marco

    2013-05-01

    Competitive Hebbian Learning (CHL) (Martinetz, 1993) is a simple and elegant method for estimating the topology of a manifold from point samples. The method has been adopted in a number of self-organizing networks described in the literature and has given rise to related studies in the fields of geometry and computational topology. Recent results from these fields have shown that a faithful reconstruction can be obtained using the CHL method only for curves and surfaces. Within these limitations, these findings constitute a basis for defining a CHL-based, growing self-organizing network that produces a faithful reconstruction of an input manifold. The SOAM (Self-Organizing Adaptive Map) algorithm adapts its local structure autonomously in such a way that it can match the features of the manifold being learned. The adaptation process is driven by the defects arising when the network structure is inadequate, which cause a growth in the density of units. Regions of the network undergo a phase transition and change their behavior whenever a simple, local condition of topological regularity is met. The phase transition is eventually completed across the entire structure and the adaptation process terminates. In specific conditions, the structure thus obtained is homeomorphic to the input manifold. During the adaptation process, the network also has the capability to focus on the acquisition of input point samples in critical regions, with a substantial increase in efficiency. The behavior of the network has been assessed experimentally with typical data sets for surface reconstruction, including suboptimal conditions, e.g. with undersampling and noise. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Geospatial Information Categories Mapping in a Cross-lingual Environment: A Case Study of “Surface Water” Categories in Chinese and American Topographic Maps

    Directory of Open Access Journals (Sweden)

    Xi Kuai

    2016-06-01

    Full Text Available The need for integrating geospatial information (GI data from various heterogeneous sources has seen increased importance for geographic information system (GIS interoperability. Using domain ontologies to clarify and integrate the semantics of data is considered as a crucial step for successful semantic integration in the GI domain. Nevertheless, mechanisms are still needed to facilitate semantic mapping between GI ontologies described in different natural languages. This research establishes a formal ontology model for cross-lingual geospatial information ontology mapping. By first extracting semantic primitives from a free-text definition of categories in two GI classification standards with different natural languages, an ontology-driven approach is used, and a formal ontology model is established to formally represent these semantic primitives into semantic statements, in which the spatial-related properties and relations are considered as crucial statements for the representation and identification of the semantics of the GI categories. Then, an algorithm is proposed to compare these semantic statements in a cross-lingual environment. We further design a similarity calculation algorithm based on the proposed formal ontology model to distance the semantic similarities and identify the mapping relationships between categories. In particular, we work with two GI classification standards for Chinese and American topographic maps. The experimental results demonstrate the feasibility and reliability of the proposed model for cross-lingual geospatial information ontology mapping.

  5. Collaborative damage mapping for emergency response: the role of Cognitive Systems Engineering

    Science.gov (United States)

    Kerle, N.; Hoffman, R. R.

    2013-01-01

    Remote sensing is increasingly used to assess disaster damage, traditionally by professional image analysts. A recent alternative is crowdsourcing by volunteers experienced in remote sensing, using internet-based mapping portals. We identify a range of problems in current approaches, including how volunteers can best be instructed for the task, ensuring that instructions are accurately understood and translate into valid results, or how the mapping scheme must be adapted for different map user needs. The volunteers, the mapping organizers, and the map users all perform complex cognitive tasks, yet little is known about the actual information needs of the users. We also identify problematic assumptions about the capabilities of the volunteers, principally related to the ability to perform the mapping, and to understand mapping instructions unambiguously. We propose that any robust scheme for collaborative damage mapping must rely on Cognitive Systems Engineering and its principal method, Cognitive Task Analysis (CTA), to understand the information and decision requirements of the map and image users, and how the volunteers can be optimally instructed and their mapping contributions merged into suitable map products. We recommend an iterative approach involving map users, remote sensing specialists, cognitive systems engineers and instructional designers, as well as experimental psychologists.

  6. Multi-pollutant surface objective analyses and mapping of air quality health index over North America.

    Science.gov (United States)

    Robichaud, Alain; Ménard, Richard; Zaïtseva, Yulia; Anselmo, David

    2016-01-01

    Air quality, like weather, can affect everyone, but responses differ depending on the sensitivity and health condition of a given individual. To help protect exposed populations, many countries have put in place real-time air quality nowcasting and forecasting capabilities. We present in this paper an optimal combination of air quality measurements and model outputs and show that it leads to significant improvements in the spatial representativeness of air quality. The product is referred to as multi-pollutant surface objective analyses (MPSOAs). Moreover, based on MPSOA, a geographical mapping of the Canadian Air Quality Health Index (AQHI) is also presented which provides users (policy makers, public, air quality forecasters, and epidemiologists) with a more accurate picture of the health risk anytime and anywhere in Canada and the USA. Since pollutants can also behave as passive atmospheric tracers, they provide information about transport and dispersion and, hence, reveal synoptic and regional meteorological phenomena. MPSOA could also be used to build air pollution climatology, compute local and national trends in air quality, and detect systematic biases in numerical air quality (AQ) models. Finally, initializing AQ models at regular time intervals with MPSOA can produce more accurate air quality forecasts. It is for these reasons that the Canadian Meteorological Centre (CMC) in collaboration with the Air Quality Research Division (AQRD) of Environment Canada has recently implemented MPSOA in their daily operations.

  7. Project CONVERGE: Initial Results From the Mapping of Surface Currents in Palmer Deep

    Science.gov (United States)

    Statscewich, H.; Kohut, J. T.; Winsor, P.; Oliver, M. J.; Bernard, K. S.; Cimino, M. A.; Fraser, W.

    2016-02-01

    The Palmer Deep submarine canyon on the Western Antarctic Peninsula provides a conduit for upwelling of relatively warm, nutrient rich waters which enhance local primary production and support a food web productive enough to sustain a large top predator biomass. In an analysis of ten years of satellite-tagged penguins, Oliver et al. (2013) showed that circulation features associated with tidal flows may be a key driver of nearshore predator distributions. During diurnal tides, the penguins feed close to their breeding colonies and during semi-diurnal tides, the penguins make foraging trips to the more distant regions of Palmer Deep. It is hypothesized that convergent features act to concentrate primary producers and aggregate schools of krill that influence the behavior of predator species. The initial results from a six month deployment of a High Frequency Radar network in Palmer Deep are presented in an attempt to characterize and quantify convergent features. During a three month period from January through March 2015, we conducted in situ sampling consisting of multiple underwater glider deployments, small boat acoustic surveys of Antarctic krill, and penguin ARGOS-linked satellite telemetry and time-depth recorders (TDRs). The combination of real-time surface current maps with adaptive in situ sampling introduces High Frequency Radar to the Antarctic in a way that allows us to rigorously and efficiently test the influence of local tidal processes on top predator foraging ecology.

  8. High-precision geologic mapping to evaluate the potential for seismic surface rupture at TA-55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gardner, J.N.; Lavine, A.; Vaniman, D.; WoldeGabriel, G.

    1998-06-01

    In this report the authors document results of high-precision geologic mapping in the vicinity of TA-55 that has been done to identify parts of the southern portion of the Rendija Canyon Fault, or any other faults, with the potential for seismic surface rupture. To assess the potential for surface rupture at TA-55, an area of approximately 3 square miles that includes the Los Alamos County Landfill and Twomile, Mortandad, and Sandia Canyons has been mapped in detail. Map units are mostly cooling or flow units within the Tshirege Member (1.2 Ma) of the Bandelier Tuff. Stratigraphic markers that are useful for determining offsets in the map area include a distinct welding break at or near the cooling Unit 2-Unit 3 contact, and the Unit 3-Unit 4 contact. At the County Landfill the contact between the Tshirege Member of the Bandelier Tuff and overlying Quaternary alluvium has also been mapped. The mapping indicates that there is no faulting in the near-surface directly below TA-55, and that the closest fault is about 1500 feet west of the Plutonium Facility. Faulting is more abundant on the western edge of the map area, west of TA-48 in uppermost Mortandad Canyon, upper Sandia Canyon, and at the County Landfill. Measured vertical offsets on the faults range from 1 to 8 feet on mapped Bandelier Tuff contacts. Faulting exposed at the Los Alamos County Landfill has deformed a zone over 1000 feet wide, and has a net vertical down-to-the-west displacement of at least 15 feet in the Bandelier Tuff. Individual faults at the landfill have from less than 1 foot to greater than 15 feet of vertical offset on the Bandelier Tuff. Most faults in the landfill trend N-S, N20W, or N45E. Results of the mapping indicate that the Rendija Canyon Fault does not continue directly south to TA-55. At present, the authors have insufficient data to connect faulting they have mapped to areas of known faulting to the north or south of the study area

  9. Functional methods and mappings of dissipative quantum systems

    International Nuclear Information System (INIS)

    Baur, H.

    2006-01-01

    In the first part of this work we extract the algebraic structure behind the method of the influence functional in the context of dissipative quantum mechanics. Special emphasis was put on the transition from a quantum mechanical description to a classical one, since it allows a deeper understanding of the measurement-process. This is tightly connected with the transition from a microscopic to a macroscopic world where the former one is described by the rules of quantum mechanics whereas the latter follows the rules of classical mechanics. In addition we show how the results of the influence functional method can be interpreted as a stochastical process, which in turn allows an easy comparison with the well known time development of a quantum mechanical system by use of the Schroedinger equation. In the following we examine the tight-binding approximation of models of which their hamiltionian shows discrete eigenstates in position space and where transitions between those states are suppressed so that propagation either is described by tunneling or by thermal activation. In the framework of dissipative quantum mechanics this leads to a tremendous simplification of the effective description of the system since instead of looking at the full history of all paths in the path integral description, we only have to look at all possible jump times and the possible corresponding set of weights for the jump direction, which is much easier to handle both analytically and numerically. In addition we deal with the mapping and the connection of dissipative quantum mechanical models with ones in quantum field theory and in particular models in statistical field theory. As an example we mention conformal invariance in two dimensions which always becomes relevant if a statistical system only has local interaction and is invariant under scaling. (orig.)

  10. AUTOMATIC ROAD SIGN INVENTORY USING MOBILE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Soilán

    2016-06-01

    Full Text Available The periodic inspection of certain infrastructure features plays a key role for road network safety and preservation, and for developing optimal maintenance planning that minimize the life-cycle cost of the inspected features. Mobile Mapping Systems (MMS use laser scanner technology in order to collect dense and precise three-dimensional point clouds that gather both geometric and radiometric information of the road network. Furthermore, time-stamped RGB imagery that is synchronized with the MMS trajectory is also available. In this paper a methodology for the automatic detection and classification of road signs from point cloud and imagery data provided by a LYNX Mobile Mapper System is presented. First, road signs are detected in the point cloud. Subsequently, the inventory is enriched with geometrical and contextual data such as orientation or distance to the trajectory. Finally, semantic content is given to the detected road signs. As point cloud resolution is insufficient, RGB imagery is used projecting the 3D points in the corresponding images and analysing the RGB data within the bounding box defined by the projected points. The methodology was tested in urban and road environments in Spain, obtaining global recall results greater than 95%, and F-score greater than 90%. In this way, inventory data is obtained in a fast, reliable manner, and it can be applied to improve the maintenance planning of the road network, or to feed a Spatial Information System (SIS, thus, road sign information can be available to be used in a Smart City context.

  11. Synthesis maps: visual knowledge translation for the CanIMPACT clinical system and patient cancer journeys.

    Science.gov (United States)

    Jones, P H; Shakdher, S; Singh, P

    2017-04-01

    Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visual knowledge translation from the mixed-methods canimpact study to inform Canadian clinical research, policy, and practice discourses. Two synthesis maps, drawn together from multiple canimpact investigations and sources, were required to articulate critical differences between the clinical system and patient perspectives. The synthesis map of Canada-wide clinical cancer systems illustrates the relationships between primary care and the full cancer continuum. A patient-centred map was developed to represent the cancer (and primary care) journeys as experienced by breast and colorectal cancer patients.

  12. THE RAILMAPPER – A DEDICATED MOBILE LIDAR MAPPING SYSTEM FOR RAILWAY NETWORKS

    Directory of Open Access Journals (Sweden)

    J. Kremer

    2012-07-01

    Full Text Available The Mobile LiDAR Mapping System StreetMapper from IGI and 3D Laser Mapping (Bingham Nottingham, UK is mounted on a large variety of road vehicles to cover different mission specifications. In addition to the operation on the road, the system finds its applications on other kinds of vehicles, like boats or trains. The modular and flexible system concept even allows utilizing the same LiDAR Mapping system for Mobile Mapping on the ground and for airborne missions on helicopters, respectively. Besides this general flexibility, each application has its own special requirements. Special hardware and software components are needed to complete the core components, like the laser scanner and the GNSS/IMU systems, to build a dedicated system for the chosen task. Compared to the typical dynamics of a road vehicle mounted Mobile Mapping system, a dedicated rail mapping system operates under conditions that are much more challenging for a high accuracy GNSS/IMU trajectory determination. Furthermore, the typical rail mapping tasks, like the exact measurement of the rail track geometry, require the operation of the most accurate laser scanners and of specialized post-processing software. In this paper, the RailMapper, a specialized Mobile Mapping system for railway surveys is presented. The system is described with focus on the railway specific requirements and results of practical surveys are given.

  13. Potentiometric surfaces of the intermediate aquifer system, west-central Florida, May, 1993

    Science.gov (United States)

    Mularoni, R.A.

    1994-01-01

    The intermediate aquifer system underlies a 5000-sq-mi area including De Soto, Sarasota, Hardee, Manatee, and parts of Charlotte, Hillsborough, Highlands, and Polk Counties, Florida. It is overlain by the surf@cial aquifer system and underlain by the Floridan aquifer system. The potentiometric surface of the intermediate aquifer system was mapped by determining the altitude of water levels in a network of wells and represented on a map by contours that connect points of equal altitude. This map represents water-level conditions near the end of the spring dry season when ground- water withdrawals for agricultural use were high. The cumulative rainfall for the study area was 4.84 inches above normal for the period from June 1992 to May 1993. Hydrographs for selected wells indicated that the annual and seasonal fluctuations of the water levels were generally large (greater than 15 feet) in the central interior region where water demand for irrigation is high during the fall and spring. Seasonal fluctuations were smaller in the northern recharge area where water use is predominantly for public supply. Water levels measured in May 1993 for the composite intermediate aquifer potentiometric surface were lower than those measured in May or September 1992. A cone of depression exists in the potentiometric surface for the composite aquifer system at Warm Mineral Springs, which is a natural discharge point from this system.

  14. Operating experiences of reactor shutdown system at MAPS

    International Nuclear Information System (INIS)

    Kotteeswaran, T.J.; Subramani, V.A.; Hariharan, K.

    1997-01-01

    The reactors in Madras Atomic Power Station (MAPS), Kalpakkam are Pressurised Heavy Water Reactors (PHWR) similar to RAPS, Kota. The moderator heavy water is pumped into the calandria from dump tank to make the reactor critical. Later with the calandria level held constant at 92% FT, the further power changes are being done with the movement of adjuster rods. The moderator is held in calandria by means of helium gas pressure differential between top of calandria and dump tank located below. The shutdown of the reactor is effected by dumping the moderator water to dump tank by fast equalizing of helium gas pressure. In the revised mode of operation of moderator circuit after the moderator inlet manifold failure, the dump timing was observed to be more compared to the normal value. This was investigated and observed to be due to accumulation of D 2 O in the gas space above dump valves, which was affecting the helium equalizing flow. Also some of Indicating Alarm Meters (IAM) in protective system initiating the trip signals have failed in the unsafe mode. They have been modified to avoid the recurrence of the failures. (author)

  15. Using fuzzy self-organising maps for safety critical systems

    International Nuclear Information System (INIS)

    Kurd, Zeshan; Kelly, Tim P.

    2007-01-01

    This paper defines a type of constrained artificial neural network (ANN) that enables analytical certification arguments whilst retaining valuable performance characteristics. Previous work has defined a safety lifecycle for ANNs without detailing a specific neural model. Building on this previous work, the underpinning of the devised model is based upon an existing neuro-fuzzy system called the fuzzy self-organising map (FSOM). The FSOM is type of 'hybrid' ANN which allows behaviour to be described qualitatively and quantitatively using meaningful expressions. Safety of the FSOM is argued through adherence to safety requirements-derived from hazard analysis and expressed using safety constraints. The approach enables the construction of compelling (product-based) arguments for mitigation of potential failure modes associated with the FSOM. The constrained FSOM has been termed a 'safety critical artificial neural network' (SCANN). The SCANN can be used for non-linear function approximation and allows certified learning and generalisation for high criticality roles. A discussion of benefits for real-world applications is also presented

  16. Cost Behavior: Mapping and Systemic Analysis of International Publications

    Directory of Open Access Journals (Sweden)

    Fernando Richartz

    2014-12-01

    Full Text Available This article has as objective mapping of scientific researches into costs behavior to identify its current scenario. The research on database provided a selection of relevant bibliographic portfolio, which had as a result 29 articles according to the research criteria defined in the study. From those, the articles from Anderson, Banker e Janakiraman (2003 were highlighted. Furthermore, Banker is considered to be the main author about costs behavior, its importance is noticed not only in the portfolio itself, but also, in its references. The most important periodic, either for its impact, or related to its number of articles publicized, is The Accounting Review. Finally, from the relationship between the most important articles about bibliometric analysis, featuring systemic analysis, the conclusion is that an important article about cost behavior has a quantitative approach (with the use of robust regression, recognize the existence of Sticky Costs (no matter which approach is in use, makes use of a variety of explanations (internal & external and add some variable or information for scientific evolution of the subject.

  17. Boson mappings for elementary excitations in fermion systems

    International Nuclear Information System (INIS)

    Geyer, H.B.

    1981-07-01

    The boson mapping formalism is presented with a dual purpose in mind. It is first demonstrated to constitute a microscopic formalism leading to the introduction of collective variables into the many-fermion problem in an exact and consistent manner. Secondly it is shown to present ideal exploring ground with a view to the reconciliation of phenomenological collective nuclear models and microscopic considerations. Of the various existing possibilities for the construction of a boson mapping, we single out the finite, non-unitary Dyson-Maleev mapping, emphasising the convenience of its finiteness, especially in investigations concerning formal aspects of the boson mapping formalism. A contribution to the theory of Dyson-Maleev mappinigs for fermion operators is made by introducing the construction of a consistent mapping for single fermion operators which is free of limitations previously imposed on such a mapping. In various fermion models studies it is shown how the Dyson-Maleev mapping can be utilized to obtain equivalent boson models which, however, can be restricted to yield information about the collective subspace only. As far as phenomenological models are concerned, some new light from a microscopic viewpiont is shed on the assumption underlying the interacting boson model as well as on the calculational procedures usually adopted in this model. The most important observation concerns the assumed structure of the IBM hamiltonian where a non-hermitian form, rather than the existing hermitian form, is indicated

  18. Synthesis maps: visual knowledge translation for the CanIMPACT clinical system and patient cancer journeys

    OpenAIRE

    Jones, P.H.; Shakdher, S.; Singh, P.

    2017-01-01

    Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visu...

  19. Brugada syndrome is associated with scar and endocardial involvement: Insights from high-density mapping with the Rhythmia™ mapping system.

    Science.gov (United States)

    Providência, Rui; Carmo, Pedro; Moscoso Costa, Francisco; Cavaco, Diogo; Morgado, Francisco; Scanavacca, Mauricio; Adragão, Pedro

    2017-10-01

    The authors report the first catheter ablation of Brugada syndrome in the literature using the Rhythmia™ mapping system. Learning points include: (1) low voltage areas can be documented while mapping in some individuals, suggesting that Brugada syndrome may not be a pure ion channel disorder; (2) typical long fractionated potentials can also be identified in the endocardium, supporting the need to map the endocardium in all Brugada patients requiring ablation; (3) disappearance of the typical coved pattern following ablation does not necessarily predict cure, as the patient we present experienced ventricular fibrillation recurrence a few months later. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data

    Directory of Open Access Journals (Sweden)

    Chang Huang

    2016-07-01

    Full Text Available Monitoring the dynamics of surface water using remotely sensed data generally requires both high spatial and high temporal resolutions. One effective and popular approach for achieving this is image fusion. This study adopts a widely accepted fusion model, the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, for blending the newly available coarse-resolution Suomi NPP-VIIRS data with Landsat data in order to derive water maps at 30 m resolution. The Pan-sharpening technique was applied to preprocessing NPP-VIIRS data to achieve a higher-resolution before blending. The modified Normalized Difference Water Index (mNDWI was employed for mapping surface water area. Two fusion alternatives, blend-then-index (BI or index-then-blend (IB, were comparatively analyzed against a Landsat derived water map. A case study of mapping Poyang Lake in China, where water distribution pattern is complex and the water body changes frequently and drastically, was conducted. It has been revealed that the IB method derives more accurate results with less computation time than the BI method. The BI method generally underestimates water distribution, especially when the water area expands radically. The study has demonstrated the feasibility of blending NPP-VIIRS with Landsat for achieving surface water mapping at both high spatial and high temporal resolutions. It suggests that IB is superior to BI for water mapping in terms of efficiency and accuracy. The finding of this study also has important reference values for other blending works, such as image blending for vegetation cover monitoring.

  1. Extrinsic Calibration for Vehicle-based Mobile Mapping System

    Directory of Open Access Journals (Sweden)

    SHI Limei

    2015-01-01

    Full Text Available Having the advantage of 360° imaging and rotation invariance, panoramic camera has gradually been used in mobile mapping systems(MMS. Calibration is an essential requirement to make sure that MMS can get high quality geo-information. This paper presents a way to address the extrinsic calibration for vehicle-based MMS composed of panoramic camera and Position and Orientation System (POS. Firstly, control points in the natural scene are set up, whose spatial coordinates are measured with high precision. Secondly, a panoramic spherical model is constructed and panoramic image can be projected to this model by means of spherical reverse transformation projection. Then, localize and select the control points in 3D spherical panoramic view but not in panoramic distorted image directly, the spherical coordinates of control points in panoramic image are gotten. After points correspondence is established, make use of direct geo-reference positioning equation and coordinate transformation, the translation and rotation parameters of panoramic camera relative to POS are computed. Experiments are conducted separately in space city calibration site located in Beijing and the Binhai New Area in Tianjin using our approach. Test results are listed as follows. When the GPS signal are of good quality, absolute positioning mean square error of a point is 10.3 cm in two-dimension plane and 16.5 cm in height direction; Otherwise, it is 35.4 cm in two-dimension plane and 54.8 cm in height direction. The max relative error of distance measurement is about 5 cm over a short distance (distance<3 km, which is not obviously affected by the GPS signal quality.

  2. COMPETITIVE PRESSURE SYSTEMS MAPPING IN THE BRAZILIAN TRUCK MARKET

    Directory of Open Access Journals (Sweden)

    Ricardo Costa da Cruz

    2013-06-01

    Full Text Available The automotive business in Brazil achieved 10% of the industry revenue and 6% of the formal employment by 2008. The commercial vehicle segment concentrated so far eight truck makers that experienced their best market figures in 2008, the economy crisis in 2009, and an extraordinary recovery in 2010. Government tax reduction programs as well as special financing incentives were undoubtedly decisive to re-stimulate the business during the crisis. Positive Brazilian perspectives with the boom in the agricultural, oil and gas, mining and infrastructure activities plus the coming sports events call the attention of new players that are quickly implementing different business strategies to become part of the game. New emission regulations starting from 2012 also bring uncertainties, challenges and opportunities. With the growing globalization and market concentration it's critical for any industry understand and minimize the forces of competitive pressures. The main goal of this paper, therefore, is to contribute to the academy with an alternative approach of strategic and behavioral analysis of rivalry and competition different than the five forces model of Porter. Ford, Iveco, MAN, Mercedes-Benz, Scania and Volvo were assessed from 2008 to 2010 within three main performance indicators – unit sales, gross revenues and operating profits – supporting the elaboration of the competitive pressure systems mapping model of D'aveni, including a hypothetical future scenario with a new entrant and the potential impacts in the system. Main findings and results portray the asymmetrical strategic behavior of competitors and the temporary dynamic stability in the Brazilian truck industry.

  3. Multiseasonal Tree Crown Structure Mapping with Point Clouds from OTS Quadrocopter Systems

    Science.gov (United States)

    Hese, S.; Behrendt, F.

    2017-08-01

    structure is limited in the leaf-on status (the point cloud is a mainly a description of the interpolated crown surface) - the visibility of the internal crown structure in leaf-off status allows to map also the internal tree structure up to and stopping at the secondary branch level system. When combined the leaf-on and leaf-off point clouds generate a comprehensive tree crown structure description that allows a low cost and detailed 3D crown structure mapping and potentially precise biomass mapping and/or internal structural differentiation of deciduous tree species types. Compared to TLS (Terrestrial Laser Scanning) based measurements the costs are neglectable and in the range of 1500-2500 €. This suggests the approach for low cost but fine scale in-situ applications and/or projects where TLS measurements cannot be derived and for less dense forest stands where POI flights can be performed. This study used the in-copter GPS measurements for geo referencing. Better absolute geo referencing results will be obtained with DGPS reference points. The study however clearly demonstrates the potential of OTS very low cost copter systems and the image attributed GPS measurements of the copter for the automatic calculation of complex 3D point clouds in a multi temporal tree crown mapping context.

  4. MULTISEASONAL TREE CROWN STRUCTURE MAPPING WITH POINT CLOUDS FROM OTS QUADROCOPTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    S. Hese

    2017-08-01

    crown structure is limited in the leaf-on status (the point cloud is a mainly a description of the interpolated crown surface – the visibility of the internal crown structure in leaf-off status allows to map also the internal tree structure up to and stopping at the secondary branch level system. When combined the leaf-on and leaf-off point clouds generate a comprehensive tree crown structure description that allows a low cost and detailed 3D crown structure mapping and potentially precise biomass mapping and/or internal structural differentiation of deciduous tree species types. Compared to TLS (Terrestrial Laser Scanning based measurements the costs are neglectable and in the range of 1500–2500 €. This suggests the approach for low cost but fine scale in-situ applications and/or projects where TLS measurements cannot be derived and for less dense forest stands where POI flights can be performed. This study used the in-copter GPS measurements for geo referencing. Better absolute geo referencing results will be obtained with DGPS reference points. The study however clearly demonstrates the potential of OTS very low cost copter systems and the image attributed GPS measurements of the copter for the automatic calculation of complex 3D point clouds in a multi temporal tree crown mapping context.

  5. Maps of surface activity of 137Cs of Slovakia on scale 1:200 000

    International Nuclear Information System (INIS)

    Gluch, A.

    2005-05-01

    The present set of maps (13 maps) arose from the geological project 'Re-ambulation of 137 Cs radioactivity map of Slovakia at scales 1:200 000 and 1:500 000' in phase of indicative geological survey of environmental factors. Maps document the state of contamination of the territory of Slovakia by one of the radioisotopes cesium-137 at the reference date 01.01.2005. In solving of geological tasks were used all available relevant data on measurements of 137 Cs activity from the whole territory of the Slovak Republic for the period from 1990 to 2003 from results of air and ground gamma spectrometric measurements. (authors)

  6. Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps

    Science.gov (United States)

    Chen, I.-Ting; Chang, Li-Chiu; Chang, Fi-John

    2018-01-01

    In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal groundwater variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is implemented to investigate the interactive mechanism between surface water and groundwater over the river basin based on large high-dimensional data sets coupled with their occurrence times. We find that extracting the occurrence time from each 30-day moving average data set in the clustered neurons of the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwater. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a neuron, which can visibly explore the major features of the groundwater in the vertical direction. The constructed SOM topological maps nicely display that: (1) the groundwater movement, in general, extends from the eastern area to the western, where groundwater in the eastern area can be easily recharged from precipitation in wet seasons and discharged into streams during dry seasons due to the high permeability in this area; (2) the water movements in the four aquifers of the study area are quite different, and the seasonal variations of groundwater in the second and third aquifers are larger than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and surface water are comprehensively linked together over the constructed maps to present groundwater characteristics and the interrelation between groundwater and surface water. The proposed modeling methodology not only can classify the large complex high-dimensional data sets into visible topological maps to effectively facilitate the quantitative status of regional groundwater resources but can also provide useful elaboration for future groundwater management.

  7. System and method for image mapping and visual attention

    Science.gov (United States)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  8. Rendering Systems Visible for Design: Synthesis Maps as Constructivist Design Narratives

    Directory of Open Access Journals (Sweden)

    Peter Jones

    Full Text Available Synthesis maps integrate research evidence, system expertise, and design proposals into visual narratives. These narratives support communication and decision-making among stakeholders. Synthesis maps evolved from earlier visualization tools in systemics and design. They help stakeholders to understand design options for complex sociotechnical systems. Other visual approaches map complexity for effective collaboration across perspectives and knowledge domains. These help stakeholder groups to work in higher-order design contexts for sociotechnical or human-ecological systems. This article describes a constructivist pedagogy for collaborative learning in small teams of mixed-discipline designers. Synthesis mapping enables these teams to learn systems methods for design research in complex problem domains. Synthesis maps integrate knowledge from research cycles and iterative sensemaking to define a coherent design narrative. While synthesis maps may include formal system modeling techniques, they do not require them. Synthesis maps tangibly render research observations and design choices. As a hybrid system design method, synthesis maps are a contribution to the design genre of visual systems thinking.

  9. A light-weight hyperspectral mapping system for unmanned aerial vehicles - The first results

    NARCIS (Netherlands)

    Suomalainen, Juha; Anders, Niels; Iqbal, Shahzad; Franke, Jappe; Wenting, Philip; Bartholomeus, Harm; Becker, Rolf; Kooistra, Lammert

    2017-01-01

    Research opportunities using UAV remote sensing techniques are limited by the payload of the platform. Therefore small UAV's are typically not suitable for hyperspectral imaging due to the weight of the mapping system. In this research, we are developing a light-weight hyperspectral mapping system

  10. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  11. RASSOR - Regolith Advanced Surface Systems Operations Robot

    Science.gov (United States)

    Gill, Tracy R.; Mueller, Rob

    2015-01-01

    The Regolith Advanced Surface Systems Operations Robot (RASSOR) is a lightweight excavator for mining in reduced gravity. RASSOR addresses the need for a lightweight (robot that is able to overcome excavation reaction forces while operating in reduced gravity environments such as the moon or Mars. A nominal mission would send RASSOR to the moon to operate for five years delivering regolith feedstock to a separate chemical plant, which extracts oxygen from the regolith using H2 reduction methods. RASSOR would make 35 trips of 20 kg loads every 24 hours. With four RASSORs operating at one time, the mission would achieve 10 tonnes of oxygen per year (8 t for rocket propellant and 2 t for life support). Accessing craters in space environments may be extremely hard and harsh due to volatile resources - survival is challenging. New technologies and methods are required. RASSOR is a product of KSC Swamp Works which establishes rapid, innovative and cost effective exploration mission solutions by leveraging partnerships across NASA, industry and academia.

  12. Lunar Surface Systems Supportability Technology Development Roadmap

    Science.gov (United States)

    Oeftering, Richard C.; Struk, Peter M.; Green, Jennifer L.; Chau, Savio N.; Curell, Philip C.; Dempsey, Cathy A.; Patterson, Linda P.; Robbins, William; Steele, Michael A.; DAnnunzio, Anthony; hide

    2011-01-01

    The Lunar Surface Systems Supportability Technology Development Roadmap is a guide for developing the technologies needed to enable the supportable, sustainable, and affordable exploration of the Moon and other destinations beyond Earth. Supportability is defined in terms of space maintenance, repair, and related logistics. This report considers the supportability lessons learned from NASA and the Department of Defense. Lunar Outpost supportability needs are summarized, and a supportability technology strategy is established to make the transition from high logistics dependence to logistics independence. This strategy will enable flight crews to act effectively to respond to problems and exploit opportunities in an environment of extreme resource scarcity and isolation. The supportability roadmap defines the general technology selection criteria. Technologies are organized into three categories: diagnostics, test, and verification; maintenance and repair; and scavenge and recycle. Furthermore, "embedded technologies" and "process technologies" are used to designate distinct technology types with different development cycles. The roadmap examines the current technology readiness level and lays out a four-phase incremental development schedule with selection decision gates. The supportability technology roadmap is intended to develop technologies with the widest possible capability and utility while minimizing the impact on crew time and training and remaining within the time and cost constraints of the program.

  13. Multiscale radar mapping of surface melt over mountain glaciers in High Mountain Asia

    Science.gov (United States)

    Steiner, N.; McDonald, K. C.

    2017-12-01

    Glacier melt dominates input for many hydrologic systems in the Himalayan Hindukush region that feed rivers that are critical for downstream ecosystems and hydropower generation in this highly populated area. Deviation in seasonal surface melt timing and duration with a changing climate has the potential to affect up to a billion people on the Indian Subcontinent. Satellite-borne microwave remote sensing has unique capabilities that allow monitoring of numerous landscape processes associated with snowmelt and freeze/thaw state, without many of the limitations in optical-infrared sensors such as solar illumination or atmospheric conditions. The onset of regional freeze/thaw and surface melting transitions determine important surface hydrologic variables like river discharge. Theses regional events are abrupt therefore difficult to observe with low-frequency observation sensors. Recently launched synthetic aperture radar (SAR) onboard the Sentinel-1 A and B satellites from the European Space Agency (ESA) provide wide-swath and high spatial resolution (50-100 m) C-Band SAR observations with observations frequencies not previously available, on the order of 8 to 16 days. The Sentinel SARs provide unique opportunity to study freeze/thaw and mountain glacier melt dynamics at process level scales, spatial and temporal. The melt process of individual glaciers, being fully resolved by imaging radar, will inform on the radiometric scattering physics associated with surface hydrology during the transition from melted to thawed state and during refreeze. Backscatter observations, along with structural information about the surface will be compared with complimentary coarse spatial resolution C-Band radar scatterometers, Advanced Scatterometer (ASCAT Met Op A+B), to understand the sub-pixel contribution of surface melting and freeze/thaw signals. This information will inform on longer-scale records of backscatter from ASCAT, 2006-2017. We present a comparison of polarimetric C

  14. Geometric Description of Fibre Bundle Surface for Birkhoff System

    International Nuclear Information System (INIS)

    Li-Mei, Cao; Hua-Fei, Sun; Zhen-Ning, Zhang

    2009-01-01

    A fibre bundle surface for the Birkhoff system is constructed. The metric and the Riemannian connection of the surface are defined and the representation of the Gaussian curvature of this surface is presented. Finally, three examples for the Birkhoff system are given to illustrate our results. (general)

  15. Quantum maps of geodesic flows on surfaces of constant negative curvature

    International Nuclear Information System (INIS)

    Bogomolny, E.B.; Carioli, M.

    1992-01-01

    The Selberg zeta function Z(s) yields an exact relationship between the periodic orbits of a fully chaotic Hamiltonian system (the geodesic flow on surfaces of constant negative curvature) and the corresponding quantum system (the spectrum of the Laplace-Beltrami operator on the same manifold). It was found that for certain manifolds Z(s) can be exactly rewritten as the Fredholm determinant det(1-T s ), where T s is the generalization of the Ruelle-Perron-Frobenius transfer operator. An alternative derivation of this result is presented, yielding a method to find not only the spectrum but also the eigenvalues of the Laplace-Beltrami operator in terms of eigenfunctions of T s . Various properties of the transfer operator are investigated both analytically and numerically. (author) 15 refs., 10 figs

  16. Cross-terminology mapping challenges: A demonstration using medication terminological systems

    Science.gov (United States)

    Saitwal, Himali; Qing, David; Jones, Stephen; Bernstam, Elmer; Chute, Christopher G.; Johnson, Todd R.

    2015-01-01

    Standardized terminological systems for biomedical information have provided considerable benefits to biomedical applications and research. However, practical use of this information often requires mapping across terminological systems—a complex and time-consuming process. This paper demonstrates the complexity and challenges of mapping across terminological systems in the context of medication information. It provides a review of medication terminological systems and their linkages, then describes a case study in which we mapped proprietary medication codes from an electronic health record to SNOMED-CT and the UMLS Metathesaurus. The goal was to create a polyhierarchical classification system for querying an i2b2 clinical data warehouse. We found that three methods were required to accurately map the majority of actively prescribed medications. Only 62.5% of source medication codes could be mapped automatically. The remaining codes were mapped using a combination of semi-automated string comparison with expert selection, and a completely manual approach. Compound drugs were especially difficult to map: only 7.5% could be mapped using the automatic method. General challenges to mapping across terminological systems include (1) the availability of up-to-date information to assess the suitability of a given terminological system for a particular use case, and to assess the quality and completeness of cross-terminology links; (2) the difficulty of correctly using complex, rapidly evolving, modern terminologies; (3) the time and effort required to complete and evaluate the mapping; (4) the need to address differences in granularity between the source and target terminologies; and (5) the need to continuously update the mapping as terminological systems evolve. PMID:22750536

  17. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes, vegetation water...

  18. SAFARI 2000 AVHRR-derived Land Surface Temperature Maps, Africa, 1995-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Land Surface Temperature (LST) is a key indicator of land surface states, and can provide information on surface-atmosphere heat and mass fluxes,...

  19. Mapping query terms to data and schema using content based similarity search in clinical information systems.

    Science.gov (United States)

    Safari, Leila; Patrick, Jon D

    2013-01-01

    This paper reports on the issues in mapping the terms of a query to the field names of the schema of an Entity Relationship (ER) model or to the data part of the Entity Attribute Value (EAV) model using similarity based Top-K algorithm in clinical information system together with an extension of EAV mapping for medication names. In addition, the details of the mapping algorithm and the required pre-processing including NLP (Natural Language Processing) tasks to prepare resources for mapping are explained. The experimental results on an example clinical information system demonstrate more than 84 per cent of accuracy in mapping. The results will be integrated into our proposed Clinical Data Analytics Language (CliniDAL) to automate mapping process in CliniDAL.

  20. Experience of MAPS in monitoring of personnel movement with on-line database management system

    International Nuclear Information System (INIS)

    Rajendran, T.S.; Anand, S.D.

    1992-01-01

    As a part of physical protection system, access control system has been installed in Madras Atomic Power Station(MAPS) to monitor and regulate the movement of persons within MAPS. The present system in its original form was meant only for security monitoring. A PC based database management system was added to this to computerize the availability of work force for actual work. (author). 2 annexures

  1. DyKOSMap: A framework for mapping adaptation between biomedical knowledge organization systems.

    Science.gov (United States)

    Dos Reis, Julio Cesar; Pruski, Cédric; Da Silveira, Marcos; Reynaud-Delaître, Chantal

    2015-06-01

    Knowledge Organization Systems (KOS) and their associated mappings play a central role in several decision support systems. However, by virtue of knowledge evolution, KOS entities are modified over time, impacting mappings and potentially turning them invalid. This requires semi-automatic methods to maintain such semantic correspondences up-to-date at KOS evolution time. We define a complete and original framework based on formal heuristics that drives the adaptation of KOS mappings. Our approach takes into account the definition of established mappings, the evolution of KOS and the possible changes that can be applied to mappings. This study experimentally evaluates the proposed heuristics and the entire framework on realistic case studies borrowed from the biomedical domain, using official mappings between several biomedical KOSs. We demonstrate the overall performance of the approach over biomedical datasets of different characteristics and sizes. Our findings reveal the effectiveness in terms of precision, recall and F-measure of the suggested heuristics and methods defining the framework to adapt mappings affected by KOS evolution. The obtained results contribute and improve the quality of mappings over time. The proposed framework can adapt mappings largely automatically, facilitating thus the maintenance task. The implemented algorithms and tools support and minimize the work of users in charge of KOS mapping maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  3. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  4. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Science.gov (United States)

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  5. POLE PHOTOGRAMMETRY WITH AN ACTION CAMERA FOR FAST AND ACCURATE SURFACE MAPPING

    Directory of Open Access Journals (Sweden)

    J. A. Gonçalves

    2016-06-01

    Full Text Available High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point, which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.

  6. Pole Photogrammetry with AN Action Camera for Fast and Accurate Surface Mapping

    Science.gov (United States)

    Gonçalves, J. A.; Moutinho, O. F.; Rodrigues, A. C.

    2016-06-01

    High resolution and high accuracy terrain mapping can provide height change detection for studies of erosion, subsidence or land slip. A UAV flying at a low altitude above the ground, with a compact camera, acquires images with resolution appropriate for these change detections. However, there may be situations where different approaches may be needed, either because higher resolution is required or the operation of a drone is not possible. Pole photogrammetry, where a camera is mounted on a pole, pointing to the ground, is an alternative. This paper describes a very simple system of this kind, created for topographic change detection, based on an action camera. These cameras have high quality and very flexible image capture. Although radial distortion is normally high, it can be treated in an auto-calibration process. The system is composed by a light aluminium pole, 4 meters long, with a 12 megapixel GoPro camera. Average ground sampling distance at the image centre is 2.3 mm. The user moves along a path, taking successive photos, with a time lapse of 0.5 or 1 second, and adjusting the speed in order to have an appropriate overlap, with enough redundancy for 3D coordinate extraction. Marked ground control points are surveyed with GNSS for precise georeferencing of the DSM and orthoimage that are created by structure from motion processing software. An average vertical accuracy of 1 cm could be achieved, which is enough for many applications, for example for soil erosion. The GNSS survey in RTK mode with permanent stations is now very fast (5 seconds per point), which results, together with the image collection, in a very fast field work. If an improved accuracy is needed, since image resolution is 1/4 cm, it can be achieved using a total station for the control point survey, although the field work time increases.

  7. Surface properties of semi-infinite Fermi systems

    International Nuclear Information System (INIS)

    Campi, X.; Stringari, S.

    1979-10-01

    A functional relation between the kinetic energy density and the total density is used to analyse the surface properties of semi-infinite Fermi systems. One find an explicit expression for the surface thickness in which the role of the infinite matter compressibility, binding energy and non-locality effects is clearly shown. The method, which holds both for nuclear and electronic systems (liquid metals), yields a very simple relation between the surface thickness and the surface energy

  8. OpenDBDDAS Toolkit: Secure MapReduce and Hadoop-like Systems

    KAUST Repository

    Fabiano, Enrico

    2015-06-01

    The OpenDBDDAS Toolkit is a software framework to provide support for more easily creating and expanding dynamic big data-driven application systems (DBDDAS) that are common in environmental systems, many engineering applications, disaster management, traffic management, and manufacturing. In this paper, we describe key features needed to implement a secure MapReduce and Hadoop-like system for high performance clusters that guarantees a certain level of privacy of data from other concurrent users of the system. We also provide examples of a secure MapReduce prototype and compare it to another high performance MapReduce, MR-MPI.

  9. THE GENERATION OF BUILDING FLOOR PLANS USING PORTABLE AND UNMANNED AERIAL VEHICLE MAPPING SYSTEMS

    Directory of Open Access Journals (Sweden)

    G. J. Tsai

    2016-06-01

    Full Text Available Indoor navigation or positioning systems have been widely developed for Location-Based Services (LBS applications and they come along with a keen demand of indoor floor plans for displaying results even improving the positioning performance. Generally, the floor plans produced by robot mapping focus on perceiving the environment to avoid obstacles and using the feature landmarks to update the robot position in the relative coordinate frame. These maps are not accurate enough to incorporate to the indoor positioning system. This study aims at developing Indoor Mobile Mapping System (Indoor MMS and concentrates on generating the highly accurate floor plans based on the robot mapping technique using the portable, robot and Unmanned Aerial Vehicles (UAV platform. The proposed portable mapping system prototype can be used in the chest package and the handheld approach. In order to evaluate and correct the generated floor plans from robot mapping techniques, this study builds the testing and calibration field using the outdoor control survey method implemented in the indoor environments. Based on control points and check points from control survey, this study presents the map rectification method that uses the affine transformation to solve the scale and deformation problems and also transfer the local coordinate system into world standard coordinate system. The preliminary results illustrate that the final version of the building floor plan reach 1 meter absolute positioning accuracy using the proposed mapping systems that combines with the novel map rectification approach proposed. These maps are well geo-referenced with world coordinate system thus it can be applied for future seamless navigation applications including indoor and outdoor scenarios.

  10. Planetary maps - Passports for the mind

    International Nuclear Information System (INIS)

    Anderson, C.M.

    1990-01-01

    The various types of planetary maps are reviewed. Included are basic descriptions of planimetric, topographic, geologic, and digital maps. It is noted that planimetric maps are pictorial representations of a planet's round surface flattened into a plane, such as controlled photomosaic maps and shaded relief maps. Topographic maps, those usually made with data from altimeters and stereoscopic images, have contour lines indicating the shapes and elevations of landforms. Geologic maps carry additional information about landforms, such as rock types, the processes that formed them, and their relative ages. The International Astronomical Union nomenclature system is briefly discussed, pointing out that the Union often assigns themes to areas to be mapped

  11. Mapping possible flowpaths of contaminants through surface and cross-borehole spectral time-domain induced polarization

    DEFF Research Database (Denmark)

    Bording, Thue Sylvester; Fiandaca, Gianluca; Maurya, Pradip Kumar

    Traditional methods for mapping possible flowpaths of contaminants in sedimentary environments by boreholes may often be insufficient. Additional information may be acquired by geophysical methods. In the present study, cross-borehole and surface measurements were performed using time-domain indu......-domain induced polarization (TDIP). After measurements the entire test site was dug out, and the geology was described. A 2D spectral inversion of the combined dataset is presented, which is in great correspondence with the observed geology....

  12. Automation system for tritium contaminated surface monitoring

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Raceanu, Mircea; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  13. Map showing selected surface-water data for the Nephi 30 x 60-minute quadrangle, Utah

    Science.gov (United States)

    Price, Don

    1984-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Nephi 30 x 60 minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) Mundorff (1972 and 1974), and Waddell and others (1982).

  14. Map showing selected surface-water data for the Huntington 30 x 60-minute quadrangle, Utah

    Science.gov (United States)

    Price, Don

    1984-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Huntington 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing area shown on the map was delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972) and Mundorff and Thompson (1982).

  15. Map showing selected surface-water data for the Manti 30 x 60-minute Quadrangle, Utah

    Science.gov (United States)

    Price, Don

    1984-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Manti 30 x 60 minute quadrangle. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Hahl and Cabell (1965) and Mundorff and Thompson (1982).

  16. Map showing selected surface-water data for the Price 30 x 60-minute Quadrangle, Utah

    Science.gov (United States)

    Price, Don

    1984-01-01

    This is one of a series of maps that describe the geology and related natural resources of the Price 30 x 60-minute quadrangle, Utah. Streamflow records used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas shown on the map were delineated from a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964). Sources of information about recorded floods resulting from cloudbursts included Woolley (1946) and Butler and Marsell (1972); sources of information about the chemical quality of streamflow included Mundorff (1972; 1977), and Waddell and others (1982).

  17. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Howat, I. M.; Tscherning, C. C.

    2013-01-01

    We combine the complementary characteristics of laser altimeter data and stereoscopic digital elevation models (DEMs) to construct high-resolution (_100 m) maps of surface elevations and elevation changes over rapidly changing outlet glaciers in Greenland. Measurements from spaceborne and airborne...... laser altimeters have relatively low errors but are spatially limited to the ground tracks, while DEMs have larger errors but provide spatially continuous surfaces. The principle of our method is to fit the DEM surface to the altimeter point clouds in time and space to minimize the DEM errors and use...... that surface to extrapolate elevations away from altimeter flight lines. This reduces the DEM registration errors and fills the gap between the altimeter paths. We use data from ICESat and ATM as well as SPOT 5 DEMs from 2007 and 2008 and apply them to the outlet glaciers Jakobshavn Isbræ (JI...

  18. Mapping Deep Low Velocity Zones in Alaskan Arctic Coastal Permafrost using Seismic Surface Waves

    Science.gov (United States)

    Dou, S.; Ajo Franklin, J. B.; Dreger, D. S.

    2012-12-01

    Permafrost degradation may be an important amplifier of climate change; Thawing of near-surface sediments holds the potential of increasing greenhouse gas emissions due to microbial decomposition of preserved organic carbon. Recently, the characterization of "deep" carbon pools (several meters below the surface) in circumpolar frozen ground has increased the estimated amount of soil carbon to three times higher than what was previously thought. It is therefore potentially important to include the characteristics and processes of deeper permafrost strata (on the orders of a few to tens of meters below surface) in climate models for improving future predictions of accessible carbon and climate feedbacks. This extension is particularly relevant if deeper formations are not completely frozen and may harbor on-going microbial activity despite sub-zero temperatures. Unfortunately, the characterization of deep permafrost systems is non-trivial; logistics and drilling constraints often limit direct characterization to relatively shallow units. Geophysical measurements, either surface or airborne, are often the most effective tools for evaluating these regions. Of the available geophysical techniques, the analysis of seismic surface waves (e.g. MASW) has several unique advantages, mainly the ability to provide field-scale information with good depth resolution as well as penetration (10s to 100s of m with small portable sources). Surface wave methods are also able to resolve low velocity regions, a class of features that is difficult to characterize using traditional P-wave refraction methods. As part of the Department of Energy (DOE) Next-Generation Ecosystem Experiments (NGEE-Arctic) project, we conducted a three-day seismic field survey (May 12 - 14, 2012) at the Barrow Environmental Observatory, which is located within the Alaskan Arctic Coastal Plain. Even though permafrost at the study site is continuous, ice-rich and thick (>= 350m), our Multichannel Analysis of

  19. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    Tonkova, Vyara; Arhelger, Volker; Schenk, Jochen; Neeb, Heiko; Koblenz Univ.

    2012-01-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T 1 , T * 2 and total water content. Employing the multiexponential T * 2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T * 2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T 1 , T * 2 , total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  20. A National System to Map and Quantify Terrestrial Vertebrate Biodiversity

    Science.gov (United States)

    Biodiversity is crucial for the functioning of ecosystems and the products and services from which we transform natural assets of the Earth for human survival, security, and well-being. The ability to assess, report, map, and forecast the life support functions of ecosystems is a...

  1. Multilayered tori in a system of two coupled logistic maps

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Mosekilde, Erik

    2009-01-01

    of two coupled logistic maps through period-doubling or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We hereafter present two different scenarios by which a multilayered torus can be destructed. One scenario involves a cascade of period-doubling bifurcations of both...

  2. Generating Clustered Journal Maps : An Automated System for Hierarchical Classification

    NARCIS (Netherlands)

    Leydesdorff, L.; Bornmann, L.; Wagner, C.S.

    2017-01-01

    Journal maps and classifications for 11,359 journals listed in the combined Journal Citation Reports 2015 of the Science and Social Sciences Citation Indexes are provided at https://leydesdorff.github.io/journals/ and http://www.leydesdorff.net/jcr15. A routine using VOSviewer for integrating the

  3. Mapping the Early Intervention System in Ontario, Canada

    Science.gov (United States)

    Underwood, Kathryn

    2012-01-01

    This study documents the wide range of early intervention services across the province of Ontario. The services are mapped across the province showing geographic information as well as the scope of services (clinical, family-based, resource support, etc.), the range of early intervention professionals, sources of funding and the populations served…

  4. Land surface sensitivity of mesoscale convective systems

    Science.gov (United States)

    Tournay, Robert C.

    Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and

  5. Design and update of a classification system: the UCSD map of science.

    Directory of Open Access Journals (Sweden)

    Katy Börner

    Full Text Available Global maps of science can be used as a reference system to chart career trajectories, the location of emerging research frontiers, or the expertise profiles of institutes or nations. This paper details data preparation, analysis, and layout performed when designing and subsequently updating the UCSD map of science and classification system. The original classification and map use 7.2 million papers and their references from Elsevier's Scopus (about 15,000 source titles, 2001-2005 and Thomson Reuters' Web of Science (WoS Science, Social Science, Arts & Humanities Citation Indexes (about 9,000 source titles, 2001-2004-about 16,000 unique source titles. The updated map and classification adds six years (2005-2010 of WoS data and three years (2006-2008 from Scopus to the existing category structure-increasing the number of source titles to about 25,000. To our knowledge, this is the first time that a widely used map of science was updated. A comparison of the original 5-year and the new 10-year maps and classification system show (i an increase in the total number of journals that can be mapped by 9,409 journals (social sciences had a 80% increase, humanities a 119% increase, medical (32% and natural science (74%, (ii a simplification of the map by assigning all but five highly interdisciplinary journals to exactly one discipline, (iii a more even distribution of journals over the 554 subdisciplines and 13 disciplines when calculating the coefficient of variation, and (iv a better reflection of journal clusters when compared with paper-level citation data. When evaluating the map with a listing of desirable features for maps of science, the updated map is shown to have higher mapping accuracy, easier understandability as fewer journals are multiply classified, and higher usability for the generation of data overlays, among others.

  6. Modeling of the positioning system and visual mark-up of historical cadastral maps

    Directory of Open Access Journals (Sweden)

    Tomislav Jakopec

    2013-03-01

    Full Text Available The aim of the paper is to present of the possibilities of positioning and visual markup of historical cadastral maps onto Google maps using open source software. The corpus is stored in the Croatian State Archives in Zagreb, in the Maps Archive for Croatia and Slavonia. It is part of cadastral documentation that consists of cadastral material from the period of first cadastral survey conducted in the Kingdom of Croatia and Slavonia from 1847 to 1877, and which is used extensively according to the data provided by the customer service of the Croatian State Archives. User needs on the one side and the possibilities of innovative implementation of ICT on the other have motivated the development of the system which would use digital copies of original cadastral maps and connect them with systems like Google maps, and thus both protect the original materials and open up new avenues of research related to the use of originals. With this aim in mind, two cadastral map presentation models have been created. Firstly, there is a detailed display of the original, which enables its viewing using dynamic zooming. Secondly, the interactive display is facilitated through blending the cadastral maps with Google maps, which resulted in establishing links between the coordinates of the digital and original plans through transformation. The transparency of the original can be changed, and the user can intensify the visibility of the underlying layer (Google map or the top layer (cadastral map, which enables direct insight into parcel dynamics over a longer time-span. The system also allows for the mark-up of cadastral maps, which can lead to the development of the cumulative index of all terms found on cadastral maps. The paper is an example of the implementation of ICT for providing new services, strengthening cooperation with the interested public and related institutions, familiarizing the public with the archival material, and offering new possibilities for

  7. Mapping alteration using imagery from the Tiangong-1 hyperspectral spaceborne system: Example for the Jintanzi gold province, China

    Science.gov (United States)

    Liu, Lei; Feng, Jilu; Rivard, Benoit; Xu, Xinliang; Zhou, Jun; Han, Ling; Yang, Junlu; Ren, Guangli

    2018-02-01

    The Tiangong-1 Hyperspectral Imager (HSI) is a relatively new spaceborne hyperspectral remote sensing system that was launched by the Chinese government on September 29th 2011. The system has 64 shortwave infrared (SWIR) spectral bands (1000-2500 nm) and imagery is at a spatial resolution of 20 m. This study represents an evaluation of Tiangong-1 data for the production of alteration mineral maps. Alteration mineral maps resulting from the analysis of Tiangong-1 HSI data and airborne SASI (Shortwave infrared Airborne Spectrographic Imager) data are compared for the Jintanzi area, Beishan, Gansu province, northwest China where gold bearing veins are documented. The results illustrate the detection of muscovite, kaolinite, chlorite, epidote, calcite and dolomite from Tiangong-1 HSI data and most anomalies seen in the airborne SASI data are captured. The Tiangong-1 data appears to be well suited for the detection of surface mineralogy in support of regional mapping and exploration. The data complements that which will be offered by the Chinese GF-5 Hyperspectral Imager and the German EnMAP system, both scheduled for launch in 2018.

  8. A computer-aided surface roughness measurement system

    International Nuclear Information System (INIS)

    Hughes, F.J.; Schankula, M.H.

    1983-11-01

    A diamond stylus profilometer with computer-based data acquisitions/analysis system is being used to characterize surfaces of reactor components and materials, and to examine the effects of surface topography on thermal contact conductance. The current system is described; measurement problems and system development are discussed in general terms and possible future improvements are outlined

  9. Terrain Correction on the moving equal area cylindrical map projection of the surface of a reference ellipsoid

    Science.gov (United States)

    Ardalan, A.; Safari, A.; Grafarend, E.

    2003-04-01

    An operational algorithm for computing the ellipsoidal terrain correction based on application of closed form solution of the Newton integral in terms of Cartesian coordinates in the cylindrical equal area map projected surface of a reference ellipsoid has been developed. As the first step the mapping of the points on the surface of a reference ellipsoid onto the cylindrical equal area map projection of a cylinder tangent to a point on the surface of reference ellipsoid closely studied and the map projection formulas are computed. Ellipsoidal mass elements with various sizes on the surface of the reference ellipsoid is considered and the gravitational potential and the vector of gravitational intensity of these mass elements has been computed via the solution of Newton integral in terms of ellipsoidal coordinates. The geographical cross section areas of the selected ellipsoidal mass elements are transferred into cylindrical equal area map projection and based on the transformed area elements Cartesian mass elements with the same height as that of the ellipsoidal mass elements are constructed. Using the close form solution of the Newton integral in terms of Cartesian coordinates the potential of the Cartesian mass elements are computed and compared with the same results based on the application of the ellipsoidal Newton integral over the ellipsoidal mass elements. The results of the numerical computations show that difference between computed gravitational potential of the ellipsoidal mass elements and Cartesian mass element in the cylindrical equal area map projection is of the order of 1.6 × 10-8m^2/s^2 for a mass element with the cross section size of 10 km × 10 km and the height of 1000 m. For a 1 km × 1 km mass element with the same height, this difference is less than 1.5 × 10-4 m^2}/s^2. The results of the numerical computations indicate that a new method for computing the terrain correction based on the closed form solution of the Newton integral in

  10. Mapping surface disturbance of energy-related infrastructure in southwest Wyoming--An assessment of methods

    Science.gov (United States)

    Germaine, Stephen S.; O'Donnell, Michael S.; Aldridge, Cameron L.; Baer, Lori; Fancher, Tammy; McBeth, Jamie; McDougal, Robert R.; Waltermire, Robert; Bowen, Zachary H.; Diffendorfer, James; Garman, Steven; Hanson, Leanne

    2012-01-01

    We evaluated how well three leading information-extraction software programs (eCognition, Feature Analyst, Feature Extraction) and manual hand digitization interpreted information from remotely sensed imagery of a visually complex gas field in Wyoming. Specifically, we compared how each mapped the area of and classified the disturbance features present on each of three remotely sensed images, including 30-meter-resolution Landsat, 10-meter-resolution SPOT (Satellite Pour l'Observation de la Terre), and 0.6-meter resolution pan-sharpened QuickBird scenes. Feature Extraction mapped the spatial area of disturbance features most accurately on the Landsat and QuickBird imagery, while hand digitization was most accurate on the SPOT imagery. Footprint non-overlap error was smallest on the Feature Analyst map of the Landsat imagery, the hand digitization map of the SPOT imagery, and the Feature Extraction map of the QuickBird imagery. When evaluating feature classification success against a set of ground-truthed control points, Feature Analyst, Feature Extraction, and hand digitization classified features with similar success on the QuickBird and SPOT imagery, while eCognition classified features poorly relative to the other methods. All maps derived from Landsat imagery classified disturbance features poorly. Using the hand digitized QuickBird data as a reference and making pixel-by-pixel comparisons, Feature Extraction classified features best overall on the QuickBird imagery, and Feature Analyst classified features best overall on the SPOT and Landsat imagery. Based on the entire suite of tasks we evaluated, Feature Extraction performed best overall on the Landsat and QuickBird imagery, while hand digitization performed best overall on the SPOT imagery, and eCognition performed worst overall on all three images. Error rates for both area measurements and feature classification were prohibitively high on Landsat imagery, while QuickBird was time and cost prohibitive for

  11. The Use of Causal Mapping in the Design of Sustainability Performance Measurement Systems

    DEFF Research Database (Denmark)

    Parisi, Cristiana

    2013-01-01

    organisations’ strategic performance measurement systems (SPMSs). This study’s main contribution is the triangulation of multiple qualitative methods to enhance the reliability of causal maps. This innovative approach supports the use of causal mapping to extract managerial tacit knowledge in order to identify...

  12. The Usefulness of Tactual Maps of the New York City Subway System.

    Science.gov (United States)

    Luxton, K.; And Others

    1994-01-01

    Sixteen people with blindness or visual impairments used three different types of tactual maps of the New York City subway system presenting information at three levels of specificity. Results indicated that the tactual maps improved participants' attitudes toward the subway and benefited blind as well as low vision participants. (Author/DB)

  13. Towards High-Definition 3D Urban Mapping: Road Feature-Based Registration of Mobile Mapping Systems and Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Mahdi Javanmardi

    2017-09-01

    Full Text Available Various applications have utilized a mobile mapping system (MMS as the main 3D urban remote sensing platform. However, the accuracy and precision of the three-dimensional data acquired by an MMS is highly dependent on the performance of the vehicle’s self-localization, which is generally performed by high-end global navigation satellite system (GNSS/inertial measurement unit (IMU integration. However, GNSS/IMU positioning quality degrades significantly in dense urban areas with high-rise buildings, which block and reflect the satellite signals. Traditional landmark updating methods, which improve MMS accuracy by measuring ground control points (GCPs and manually identifying those points in the data, are both labor-intensive and time-consuming. In this paper, we propose a novel and comprehensive framework for automatically georeferencing MMS data by capitalizing on road features extracted from high-resolution aerial surveillance data. The proposed framework has three key steps: (1 extracting road features from the MMS and aerial data; (2 obtaining Gaussian mixture models from the extracted aerial road features; and (3 performing registration of the MMS data to the aerial map using a dynamic sliding window and the normal distribution transform (NDT. The accuracy of the proposed framework is verified using field data, demonstrating that it is a reliable solution for high-precision urban mapping.

  14. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kayo, Issha [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Nishimichi, Takahiro, E-mail: kashiwagi@utap.phys.s.u-tokyo.ac.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  15. CZMIL (coastal zone mapping and imaging lidar): from first flights to first mission through system validation

    Science.gov (United States)

    Feygels, Viktor I.; Park, Joong Yong; Wozencraft, Jennifer; Aitken, Jennifer; Macon, Christopher; Mathur, Abhinav; Payment, Andy; Ramnath, Vinod

    2013-06-01

    CZMIL is an integrated lidar-imagery system and software suite designed for highly automated generation of physical and environmental information products for coastal zone mapping in the framework of the US Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP). This paper presents the results of CZMIL system validation in turbid water conditions along the Gulf Coast of Mississippi and in relatively clear water conditions in Florida in late spring 2012. Results of the USACE May-October 2012 mission in Green Bay, WI and Lake Erie are presented. The system performance tests show that CZMIL successfully achieved 7-8m depth in Mississippi with Kd =0.46m-1 (Kd is the diffuse attenuation coefficient) and up to 41m in Florida when Kd=0.11m-1. Bathymetric accuracy of CZMIL was measured by comparing CZMIL depths with multi-beam sonar data from Cat Island, MS and from off the coast of Fort. Lauderdale, FL. Validation demonstrated that CZMIL meets USACE specifications (two standard deviation, 2σ, ~30 cm). To measure topographic accuracy we made direct comparisons of CZMIL elevations to GPS-surveyed ground control points and vehicle-based lidar scans of topographic surfaces. Results confirmed that CZMIL meets the USACE topographic requirements (2σ, ~15 cm). Upon completion of the Green Bay and Lake Erie mission there were 89 flights with 2231 flightlines. The general hours of aircraft engine time (which doesn't include all transit/ferry flights) was 441 hours with 173 hours of time on survey flightlines. The 4.8 billion (!) laser shots and 38.6 billion digitized waveforms covered over 1025 miles of shoreline.

  16. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    Science.gov (United States)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-02-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  17. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  18. Global map and spectroscopic analyses of Martian fluvial systems: paleoclimatic implications

    Science.gov (United States)

    Alemanno, Giulia; Orofino, Vincenzo; Mancarella, Francesca; Fonti, Sergio

    2017-04-01

    Currently environmental conditions on Mars do not allow the presence of liquid water on its surface for long periods of time. However, there are various evidences for past water flow at its surface. In fact, the ancient terrains of Mars are covered with fluvial and lacustrine features such as valley networks, longitudinal valleys and basin lakes. There are no doubts about the fact that the Martian valleys were originated by water flow. This led many researchers to think that probably, at the time of their formation, the conditions of atmospheric pressure and surface temperature were different from the present[1]. To infer the climate history of Mars from valley networks, a global approach is necessary. We produced a global map of Martian valleys. We manually mapped all the valleys (longer than 20 km) as vector-based polylines within the QGIS software, using THEMIS daytime IR (100 m/pixel), and where possible CTX images (up to 6 m/pixel), plus topographic MOLA data ( 500 m/pixel). Respect to the previous manual maps[1,2] data of higher image quality (new THEMIS mosaic) and topographic information allow us to identify new structures and more tributaries for a large number of systems. We also used the geologic map of Mars[3] in order to determine the valleys age distribution. Most valleys are too small for age determination from superposition of impact craters so we have assumed that a valley is as old as the terrain on which it has been carved[1]. Furthermore we are, currently, analyzing spectroscopic data from CRISM instrument (Compact Reconnaissance Imaging Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, concerning the mapped valleys or associated basin lakes with the aim of assessing the mineralogy of these structures. Our attention is especially focused on the possible detection of any hydrated minerals (e.g. phyllosilicates, hydrated silica) or evaporites (e.g. carbonates, sulfates, chlorides). Phyllosilicates- bearing rocks are considered as an

  19. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael B.; Bergman, Torbjoern (Geological Survey of Sweden, Uppsala (Sweden)); Isaksson, Hans (GeoVista AB, Luleaa (Sweden)); Petersson, Jesper (SwedPower AB, Stockholm (Sweden))

    2008-12-15

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  20. Bedrock geology Forsmark. Modelling stage 2.3. Description of the bedrock geological map at the ground surface

    International Nuclear Information System (INIS)

    Stephens, Michael B.; Bergman, Torbjoern; Isaksson, Hans; Petersson, Jesper

    2008-12-01

    A description of the bedrock geological map of the ground surface at the Forsmark site is presented here. This map is essentially a 2D model for the distribution of different types of rock unit on this surface. Besides showing the distribution of these rock units, the bedrock geological map also displays the distribution of some deformation zones that intersect the ground surface. It also presents information bearing on the position and form of outcrops, the location and projection of boreholes drilled during the site investigation programme, subordinate rock types, the occurrence of abandoned mines or exploration prospects, measurements of ductile structures in outcrops, inferred form lines, key minerals, and the occurrence of mylonite and cataclastic rock. Bedrock data from outcrops and excavations, airborne and ground magnetic data and information from the uppermost part of boreholes have all been used in the construction of the geological map. The description has also made use of complementary analytical data bearing on the composition and age of the rocks as well gamma-ray spectrometry and gravity data. Uncertainty in the position of the boundaries between rock units over the mapped area are addressed in a qualitative manner. Four model versions of the bedrock geological map have been delivered to SKB's GIS database (bedrock geological map, Forsmark, versions 1.1, 1.2, 2.2 and 2.3) at different times during the site investigation programme. The Forsmark area is situated along the coast of the Baltic Sea in northern Uppland, Sweden, in a region where the overall level of ductile strain in the bedrock is high. This high-strain region extends several tens of kilometres across the WNW-ENE to NW-SE strike of the rocks in this part of the Fennoscandian Shield. At Forsmark, the coastal region is composed partly of high-strain belts, which formed under amphibolite-facies metamorphic conditions, and partly of tectonic lenses, where the bedrock is also affected by

  1. High-density surface EMG maps from upper-arm and forearm muscles

    Directory of Open Access Journals (Sweden)

    Rojas-Martínez Monica

    2012-12-01

    Full Text Available Abstract Background sEMG signal has been widely used in different applications in kinesiology and rehabilitation as well as in the control of human-machine interfaces. In general, the signals are recorded with bipolar electrodes located in different muscles. However, such configuration may disregard some aspects of the spatial distribution of the potentials like location of innervation zones and the manifestation of inhomogineties in the control of the muscular fibers. On the other hand, the spatial distribution of motor unit action potentials has recently been assessed with activation maps obtained from High Density EMG signals (HD-EMG, these lasts recorded with arrays of closely spaced electrodes. The main objective of this work is to analyze patterns in the activation maps, associating them with four movement directions at the elbow joint and with different strengths of those tasks. Although the activation pattern can be assessed with bipolar electrodes, HD-EMG maps could enable the extraction of features that depend on the spatial distribution of the potentials and on the load-sharing between muscles, in order to have a better differentiation between tasks and effort levels. Methods An experimental protocol consisting of isometric contractions at three levels of effort during flexion, extension, supination and pronation at the elbow joint was designed and HD-EMG signals were recorded with 2D electrode arrays on different upper-limb muscles. Techniques for the identification and interpolation of artifacts are explained, as well as a method for the segmentation of the activation areas. In addition, variables related to the intensity and spatial distribution of the maps were obtained, as well as variables associated to signal power of traditional single bipolar recordings. Finally, statistical tests were applied in order to assess differences between information extracted from single bipolar signals or from HD-EMG maps and to analyze

  2. Mapping sub-surface geostrophic currents from altimetry and a fleet of gliders

    Science.gov (United States)

    Alvarez, A.; Chiggiato, J.; Schroeder, K.

    2013-04-01

    Integrating the observations gathered by different platforms into a unique physical picture of the environment is a fundamental aspect of networked ocean observing systems. These are constituted by a spatially distributed set of sensors and platforms that simultaneously monitor a given ocean region. Remote sensing from satellites is an integral part of present ocean observing systems. Due to their autonomy, mobility and controllability, underwater gliders are envisioned to play a significant role in the development of networked ocean observatories. Exploiting synergism between remote sensing and underwater gliders is expected to result on a better characterization of the marine environment than using these observational sources individually. This study investigates a methodology to estimate the three dimensional distribution of geostrophic currents resulting from merging satellite altimetry and in situ samples gathered by a fleet of Slocum gliders. Specifically, the approach computes the volumetric or three dimensional distribution of absolute dynamic height (ADH) that minimizes the total energy of the system while being close to in situ observations and matching the absolute dynamic topography (ADT) observed from satellite at the sea surface. A three dimensional finite element technique is employed to solve the minimization problem. The methodology is validated making use of the dataset collected during the field experiment called Rapid Environmental Picture-2010 (REP-10) carried out by the NATO Undersea Research Center-NURC during August 2010. A marine region off-shore La Spezia (northwest coast of Italy) was sampled by a fleet of three coastal Slocum gliders. Results indicate that the geostrophic current field estimated from gliders and altimetry significantly improves the estimates obtained using only the data gathered by the glider fleet.

  3. Massive Modularity of Space and Surface Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will conduct a systems level investigation of a modular design and operations approach for future NASA exploration systems. Particular emphasis will be...

  4. Usefulness of ventricular endocardial electric reconstruction from body surface potential maps to noninvasively localize ventricular ectopic activity in patients

    Science.gov (United States)

    Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin

    2013-06-01

    As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.

  5. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  6. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  7. Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.

    Science.gov (United States)

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F; Becker, James T; Aizenstein, Howard J; Lopez, Oscar L; Tamburo, Robert J; Toga, Arthur W; Thompson, Paul M

    2010-02-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics-these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Mapping of Proteomic Composition on the Surfaces of Bacillus spores by Atomic Force Microscopy-based Immunolabeling

    Energy Technology Data Exchange (ETDEWEB)

    Plomp, M; Malkin, A J

    2008-06-02

    Atomic force microscopy provides a unique capability to image high-resolution architecture and structural dynamics of pathogens (e.g. viruses, bacteria and bacterial spores) at near molecular resolution in native conditions. Further development of atomic force microscopy in order to enable the correlation of pathogen protein surface structures with specific gene products is essential to understand the mechanisms of the pathogen life cycle. We have applied an AFM-based immunolabeling technique for the proteomic mapping of macromolecular structures through the visualization of the binding of antibodies, conjugated with nanogold particles, to specific epitopes on Bacillus spore surfaces. This information is generated while simultaneously acquiring the surface morphology of the pathogen. The immunospecificity of this labeling method was established through the utilization of specific polyclonal and monoclonal antibodies that target spore coat and exosporium epitopes of Bacillus atrophaeus and Bacillus anthracis spores.

  9. An estimated potentiometric surface of the Death Valley region, Nevada and California, developed using geographic information system and automated interpolation techniques

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1998-01-01

    An estimated potentiometric surface was constructed for the Death Valley region, Nevada and California, from numerous, disparate data sets. The potentiometric surface was required for conceptualization of the ground-water flow system and for construction of a numerical model to aid in the regional characterization for the Yucca Mountain repository. Because accurate, manual extrapolation of potentiometric levels over large distances is difficult, a geographic-information-system method was developed to incorporate available data and apply hydrogeologic rules during contour construction. Altitudes of lakes, springs, and wetlands, interpreted as areas where the potentiometric surface intercepts the land surface, were combined with water levels from well data. Because interpreted ground-water recharge and discharge areas commonly coincide with groundwater basin boundaries, these areas also were used to constrain a gridding algorithm and to appropriately place local maxima and minima in the potentiometric-surface map. The resulting initial potentiometric surface was examined to define areas where the algorithm incorrectly extrapolated the potentiometric surface above the land surface. A map of low-permeability rocks overlaid on the potentiometric surface also indicated areas that required editing based on hydrogeologic reasoning. An interactive editor was used to adjust generated contours to better represent the natural water table conditions, such as large hydraulic gradients and troughs, or ''vees''. The resulting estimated potentiometric-surface map agreed well with previously constructed maps. Potentiometric-surface characteristics including potentiometric-surface mounds and depressions, surface troughs, and large hydraulic gradients were described

  10. New exact solutions of the (2 + 1)-dimensional breaking soliton system via an extended mapping method

    International Nuclear Information System (INIS)

    Ma Songhua; Fang Jianping; Zheng Chunlong

    2009-01-01

    By means of an extended mapping method and a variable separation method, a series of solitary wave solutions, periodic wave solutions and variable separation solutions to the (2 + 1)-dimensional breaking soliton system is derived.

  11. Demonstration of a Moving-Map System for Improved Lane Navigation of Amphibious Vehicles

    National Research Council Canada - National Science Library

    Clohrenz, Maura

    2003-01-01

    The Naval Research Laboratory (NRL) is testing and demonstrating a prototype moving-map system on amphibious vehicles and landing craft to aid the location neutralization and navigation around mines and obstacles in the surf and beach zone...

  12. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  13. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  14. Design of a 3-D Magnetic Mapping System to Locate Reinforcing Steel in Concrete Pavements

    Science.gov (United States)

    2017-12-01

    This report outlines the design, fabrication, and testing of a 3-D magnetic mapping system used to locate reinforcing steel in concrete pavements developed at Kansas State University (KSU) in 2006. The magnetic sensing functionality is based on the p...

  15. Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM.

    Science.gov (United States)

    Lagüela, Susana; Dorado, Iago; Gesto, Manuel; Arias, Pedro; González-Aguilera, Diego; Lorenzo, Henrique

    2018-03-02

    This paper presents a Wearable Prototype for indoor mapping developed by the University of Vigo. The system is based on a Velodyne LiDAR, acquiring points with 16 rays for a simplistic or low-density 3D representation of reality. With this, a Simultaneous Localization and Mapping (3D-SLAM) method is developed for the mapping and generation of 3D point clouds of scenarios deprived from GNSS signal. The quality of the system presented is validated through the comparison with a commercial indoor mapping system, Zeb-Revo, from the company GeoSLAM and with a terrestrial LiDAR, Faro Focus 3D X330. The first is considered as a relative reference with other mobile systems and is chosen due to its use of the same principle for mapping: SLAM techniques based on Robot Operating System (ROS), while the second is taken as ground-truth for the determination of the final accuracy of the system regarding reality. Results show that the accuracy of the system is mainly determined by the accuracy of the sensor, with little increment in the error introduced by the mapping algorithm.

  16. Behavior Analysis of Novel Wearable Indoor Mapping System Based on 3D-SLAM

    Directory of Open Access Journals (Sweden)

    Susana Lagüela

    2018-03-01

    Full Text Available This paper presents a Wearable Prototype for indoor mapping developed by the University of Vigo. The system is based on a Velodyne LiDAR, acquiring points with 16 rays for a simplistic or low-density 3D representation of reality. With this, a Simultaneous Localization and Mapping (3D-SLAM method is developed for the mapping and generation of 3D point clouds of scenarios deprived from GNSS signal. The quality of the system presented is validated through the comparison with a commercial indoor mapping system, Zeb-Revo, from the company GeoSLAM and with a terrestrial LiDAR, Faro Focus3D X330. The first is considered as a relative reference with other mobile systems and is chosen due to its use of the same principle for mapping: SLAM techniques based on Robot Operating System (ROS, while the second is taken as ground-truth for the determination of the final accuracy of the system regarding reality. Results show that the accuracy of the system is mainly determined by the accuracy of the sensor, with little increment in the error introduced by the mapping algorithm.

  17. Geographical information system and predictive risk maps of urinary schistosomiasis in Ogun State, Nigeria

    Directory of Open Access Journals (Sweden)

    Solarin Adewale RT

    2008-05-01

    Full Text Available Abstract Background The control of urinary schistosomiasis in Ogun State, Nigeria remains inert due to lack of reliable data on the geographical distribution of the disease and the population at risk. To help in developing a control programme, delineating areas of risk, geographical information system and remotely sensed environmental images were used to developed predictive risk maps of the probability of occurrence of the disease and quantify the risk for infection in Ogun State, Nigeria. Methods Infection data used were derived from carefully validated morbidity questionnaires among primary school children in 2001–2002, in which school children were asked among other questions if they have experienced "blood in urine" or urinary schistosomiasis. The infection data from 1,092 schools together with remotely sensed environmental data such as rainfall, vegetation, temperature, soil-types, altitude and land cover were analysis using binary logistic regression models to identify environmental features that influence the spatial distribution of the disease. The final regression equations were then used in Arc View 3.2a GIS software to generate predictive risk maps of the distribution of the disease and population at risk in the state. Results Logistic regression analysis shows that the only significant environmental variable in predicting the presence and absence of urinary schistosomiasis in any area of the State was Land Surface Temperature (LST (B = 0.308, p = 0.013. While LST (B = -0.478, p = 0.035, rainfall (B = -0.006, p = 0.0005, ferric luvisols (B = 0.539, p = 0.274, dystric nitosols (B = 0.133, p = 0.769 and pellic vertisols (B = 1.386, p = 0.008 soils types were the final variables in the model for predicting the probability of an area having an infection prevalence equivalent to or more than 50%. The two predictive risk maps suggest that urinary schistosomiasis is widely distributed and occurring in all the Local Government Areas (LGAs

  18. Gaia eclipsing binary and multiple systems. Supervised classification and self-organizing maps

    Science.gov (United States)

    Süveges, M.; Barblan, F.; Lecoeur-Taïbi, I.; Prša, A.; Holl, B.; Eyer, L.; Kochoska, A.; Mowlavi, N.; Rimoldini, L.

    2017-07-01

    Context. Large surveys producing tera- and petabyte-scale databases require machine-learning and knowledge discovery methods to deal with the overwhelming quantity of data and the difficulties of extracting concise, meaningful information with reliable assessment of its uncertainty. This study investigates the potential of a few machine-learning methods for the automated analysis of eclipsing binaries in the data of such surveys. Aims: We aim to aid the extraction of samples of eclipsing binaries from such databases and to provide basic information about the objects. We intend to estimate class labels according to two different, well-known classification systems, one based on the light curve morphology (EA/EB/EW classes) and the other based on the physical characteristics of the binary system (system morphology classes; detached through overcontact systems). Furthermore, we explore low-dimensional surfaces along which the light curves of eclipsing binaries are concentrated, and consider their use in the characterization of the binary systems and in the exploration of biases of the full unknown Gaia data with respect to the training sets. Methods: We have explored the performance of principal component analysis (PCA), linear discriminant analysis (LDA), Random Forest classification and self-organizing maps (SOM) for the above aims. We pre-processed the photometric time series by combining a double Gaussian profile fit and a constrained smoothing spline, in order to de-noise and interpolate the observed light curves. We achieved further denoising, and selected the most important variability elements from the light curves using PCA. Supervised classification was performed using Random Forest and LDA based on the PC decomposition, while SOM gives a continuous 2-dimensional manifold of the light curves arranged by a few important features. We estimated the uncertainty of the supervised methods due to the specific finite training set using ensembles of models constructed

  19. Rapid surface sampling and archival record system

    Energy Technology Data Exchange (ETDEWEB)

    Barren, E.; Penney, C.M.; Sheldon, R.B. [GE Corporate Research and Development Center, Schenectady, NY (United States)] [and others

    1995-10-01

    A number of contamination sites exist in this country where the area and volume of material to be remediated is very large, approaching or exceeding 10{sup 6} m{sup 2} and 10{sup 6} m{sup 3}. Typically, only a small fraction of this material is actually contaminated. In such cases there is a strong economic motivation to test the material with a sufficient density of measurements to identify which portions are uncontaminated, so extensively they be left in place or be disposed of as uncontaminated waste. Unfortunately, since contamination often varies rapidly from position to position, this procedure can involve upwards of one million measurements per site. The situation is complicated further in many cases by the difficulties of sampling porous surfaces, such as concrete. This report describes a method for sampling concretes in which an immediate distinction can be made between contaminated and uncontaminated surfaces. Sample acquisition and analysis will be automated.

  20. Satellite Power System (SPS) mapping of exclusion areas for rectenna sites

    Science.gov (United States)

    Blackburn, J. B., Jr.; Bavinger, B. A.

    1978-01-01

    The areas of the United States that were not available as potential sites for receiving antennas that are an integral part of the Satellite Power System concept are presented. Thirty-six variables with the potential to exclude the rectenna were mapped and coded in a computer. Some of these variables exclude a rectenna from locating within the area of its spatial influence, and other variables potentially exclude the rectenna. These maps of variables were assembled from existing data and were mapped on a grid system.

  1. PREFERENCE FOR MAP SCALE OF IN-CAR ROUTE GUIDANCE AND NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ana Paula Marques Ramos

    Full Text Available Usability issues of maps presented in-car Route Guidance and Navigation System (RGNS may result in serious impacts on traffic safety. To obtain effective RGNS, evaluation of 'user satisfaction' with the system has played a prominent role, since designers can quantify drivers' acceptance about presented information. An important variable related to design of RGNS interfaces refers to select appropriate scale for maps, since it interferes on legibility of maps. Map with good legibility may support drivers comprehend information easily and take decisions during driving task quickly. This paper evaluates drivers' preference for scales used in maps of RGNS. A total of 52 subjects participated of an experiment performed in a parked car. Maps were designed at four different scales 1:1,000, 1:3,000, 1:6,000 and 1:10,000 for a route composed of 13 junctions. Map design was based on cartographic communication principles, such as perceptive grouping and figure-ground segregation. Based on studies cases, we conclude intermediate scales (1:6,000 and 1:3,000 were more acceptable among drivers compared to large scales (1:1,000 and small (1:10,000. RGNS should select scales for maps which supports drivers to quickly identify direction of the maneuver and, simultaneously, get information about surroundings of route. More results are presented and implications discussed

  2. Statistical mapping of zones of focused groundwater/surface-water exchange using fiber-optic distributed temperature sensing

    Science.gov (United States)

    Mwakanyamale, Kisa; Day-Lewis, Frederick D.; Slater, Lee D.

    2013-01-01

    Fiber-optic distributed temperature sensing (FO-DTS) increasingly is used to map zones of focused groundwater/surface-water exchange (GWSWE). Previous studies of GWSWE using FO-DTS involved identification of zones of focused GWSWE based on arbitrary cutoffs of FO-DTS time-series statistics (e.g., variance, cross-correlation between temperature and stage, or spectral power). New approaches are needed to extract more quantitative information from large, complex FO-DTS data sets while concurrently providing an assessment of uncertainty associated with mapping zones of focused GSWSE. Toward this end, we present a strategy combining discriminant analysis (DA) and spectral analysis (SA). We demonstrate the approach using field experimental data from a reach of the Columbia River adjacent to the Hanford 300 Area site. Results of the combined SA/DA approach are shown to be superior to previous results from qualitative interpretation of FO-DTS spectra alone.

  3. Coastline planning and management through digital mapping systems

    Science.gov (United States)

    Hysenaj, M.

    2015-11-01

    Albania is a country with a coastline of 316 km. The potentiality offered turns into a determinant factor for the Albanian economy. However specific issues need a solution. One of them remains the shoreline pollution. It affects mostly foreign visitors, also local population which recently tends to avoid attending these areas, instead they frequent foreign places. The importance of GIS technology in the water sector is undisputed. This paper will present a full set of digital maps representing a complete picture of the Albanian shoreline situation. The entire coastline is divided into the major frequented areas with a spatial extension based mainly on district level.

  4. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports

  5. Surfaces and Interfaces of Magnetoelectric Oxide Systems

    Science.gov (United States)

    Cao, Shi

    Magnetoelectric materials Cr2O3, hexagonal LuFeO 3 and YbFeO3 are studied in this thesis. The surface of chromia (Cr2O3) has a surface electronic structure distinct from the bulk. Our work shows that placing a Cr2O3 single crystal into a single domain state will result in net Cr2O 3 spin polarization at the boundary, even in the presence of a gold overlayer. From the Cr 2p3/2 X-ray magnetic circular dichroism signal, there is clear evidence of interface polarization with overlayers of both Pd and Pt on chromia. Cobalt thin films on Cr2O3(0001) show larger magnetic contrast in magnetic force microscopy indicating enhancement of perpendicular anisotropy induced by Cr2O3. The interfacial charge transfer between mechanically exfoliated few-layer graphene and Cr2O3(0001) surfaces has been investigated showing hole doping of few-layer graphene. Density functional theory calculations furthermore confirm the p-type nature of the graphene on top of chromia, and suggest that the chromia is able to induce a significant carrier spin polarization in the graphene layer. The surface termination and the nominal valence states for hexagonal LuFeO3 thin films were characterized. The stable surface terminates in a Fe-O layer. This is consistent wit the results of density functional calculations. The structural transition at about 1000 °C, from the hexagonal to the orthorhombic phase of LuFeO3, has been investigated in thin films of LuFeO3. The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured. Dramatic differences in both the spectral features and the linear dichroism are observed. We have also studied the ferrimagnetism in h-YbFeO3 by measuring the magnetization of Fe and Yb separately. The results directly show antialignment of magnetization of Yb and Fe ions in h-YbFeO3 at low temperature, with an exchange field on Yb of about 17 kOe. All ferrimagnets, by default, are magnetoelectrics. These findings directly

  6. Conflict simulation for surface transport systems

    International Nuclear Information System (INIS)

    Keeton, S.C.; De Laquil, P. III.

    1977-07-01

    An important element in the analysis of transportation safeguards systems is the determination of the outcome of an armed attack against the system. Such information is necessary to understand relationships among the various defender tactics, weapons systems, and adversary attributes. A battle model, SABRES, which can simulate safeguards engagements is under development. This paper briefly describes the first phase of SABRES and presents some examples of its capabilities

  7. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    Science.gov (United States)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  8. Distributed neural system for emotional intelligence revealed by lesion mapping.

    Science.gov (United States)

    Barbey, Aron K; Colom, Roberto; Grafman, Jordan

    2014-03-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease.

  9. VISUAL UAV TRAJECTORY PLAN SYSTEM BASED ON NETWORK MAP

    Directory of Open Access Journals (Sweden)

    X. L. Li

    2012-07-01

    Full Text Available The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key

  10. Visual Uav Trajectory Plan System Based on Network Map

    Science.gov (United States)

    Li, X. L.; Lin, Z. J.; Su, G. Z.; Wu, B. Y.

    2012-07-01

    The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key

  11. Distributed neural system for emotional intelligence revealed by lesion mapping

    Science.gov (United States)

    Colom, Roberto; Grafman, Jordan

    2014-01-01

    Cognitive neuroscience has made considerable progress in understanding the neural architecture of human intelligence, identifying a broadly distributed network of frontal and parietal regions that support goal-directed, intelligent behavior. However, the contributions of this network to social and emotional aspects of intellectual function remain to be well characterized. Here we investigated the neural basis of emotional intelligence in 152 patients with focal brain injuries using voxel-based lesion-symptom mapping. Latent variable modeling was applied to obtain measures of emotional intelligence, general intelligence and personality from the Mayer, Salovey, Caruso Emotional Intelligence Test (MSCEIT), the Wechsler Adult Intelligence Scale and the Neuroticism-Extroversion-Openness Inventory, respectively. Regression analyses revealed that latent scores for measures of general intelligence and personality reliably predicted latent scores for emotional intelligence. Lesion mapping results further indicated that these convergent processes depend on a shared network of frontal, temporal and parietal brain regions. The results support an integrative framework for understanding the architecture of executive, social and emotional processes and make specific recommendations for the interpretation and application of the MSCEIT to the study of emotional intelligence in health and disease. PMID:23171618

  12. Reference reactor module for NASA's lunar surface fission power system

    International Nuclear Information System (INIS)

    Poston, David I.; Kapernick, Richard J.; Dixon, David D.; Werner, James; Qualls, Louis; Radel, Ross

    2009-01-01

    Surface fission power systems on the Moon and Mars may provide the first US application of fission reactor technology in space since 1965. The Affordable Fission Surface Power System (AFSPS) study was completed by NASA/DOE to determine the cost of a modest performance, low-technical risk surface power system. The AFSPS concept is now being further developed within the Fission Surface Power (FSP) Project, which is a near-term technology program to demonstrate system-level TRL-6 by 2013. This paper describes the reference FSP reactor module concept, which is designed to provide a net power of 40 kWe for 8 years on the lunar surface; note, the system has been designed with technologies that are fully compatible with a Martian surface application. The reactor concept uses stainless-steel based. UO 2 -fueled, pumped-NaK fission reactor coupled to free-piston Stirling converters. The reactor shielding approach utilizes both in-situ and launched shielding to keep the dose to astronauts much lower than the natural background radiation on the lunar surface. The ultimate goal of this work is to provide a 'workhorse' power system that NASA can utilize in near-term and future Lunar and Martian mission architectures, with the eventual capability to evolve to very high power, low mass systems, for either surface, deep space, and/or orbital missions.

  13. MAPS: The Organization of a Spatial Database System Using Imagery, Terrain, and Map Data

    Science.gov (United States)

    1983-06-01

    segments which share the same pixel position. Finally, in any largo system, a logical partitioning of the database must be performed in order to avoid...34theodore roosevelt memoria entry 0; entry 1: Virginia ’northwest Washington* 2 en 11" ies for "crossover" for ’theodore roosevelt memor i entry 0

  14. ASPHERICAL SURFACES APPROXIMATION IN AUTOMATED DESIGN OF OPTICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    T. V. Ivanova

    2015-07-01

    Full Text Available Subject of Research. The paper deals with the problems of higher order aspherical surfaces approximation using different equation types. The objects of research are two types of equations for higher order aspherical surfaces description used in different software for optical systems design (SАRО, OPAL, ZEMAX, CODE-V, etc. and dependent on z-coordinate or on a radial coordinate on the surface. Conversion from one type of equations to another is considered in view of application in different software for optical systems design. Methods. The subject matter of the method lies in usage of mean square method approximation for recalculation of high-order aspherical surface. Iterative algorithm for recalculation is presented giving the possibility to recalculate coefficients for different types of equations with required accuracy. Recommendations are given for choosing recalculation parameters such as the number of result equation coefficients, the number of points for recalculation and point allocation on a surface. Main Results. Example of recalculation for aspherical surface and accuracy estimation, including result aberration comparison between initial surface and recalculated surface are presented. The example has shown that required accuracy of surface representation was obtained. Practical Relevance. This technique is usable for recalculation of higher order aspherical surfaces in various types of software for optical systems design and also for research of optimal higher order aspherical surfaces description.

  15. A system and method for online high-resolution mapping of gastric slow-wave activity.

    Science.gov (United States)

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  16. Mapping wetlands and surface water in the Prairie Pothole Region of North America: Chapter 16

    Science.gov (United States)

    Rover, Jennifer R.; Mushet, David M.

    2015-01-01

    The Prairie Pothole Region (PPR) is one of the most highly productive wetland regions in the world. Prairie Pothole wetlands serve as a primary feeding and breeding habitat for more than one-half of North America’s waterfowl population, as well as a variety of songbirds, waterbirds, shorebirds, and other wildlife. During the last century, extensive land conversions from grassland with wetlands to cultivated cropland and grazed pastureland segmented and reduced wetland habitat. Inventorying and characterizing remaining wetland habitat is critical for the management of wetland ecosystem services. Remote sensing technologies are often utilized for mapping and monitoring wetlands. This chapter presents background specific to the PPR and discusses approaches employed in mapping its wetlands before presenting a case study.

  17. Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.

    Science.gov (United States)

    Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young

    2010-03-10

    We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.

  18. Mapping surface tension induced menisci with application to tensiometry and refractometry.

    Science.gov (United States)

    Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve

    2015-07-28

    In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.

  19. Reactivity mapping: electrochemical gradients for monitoring reactivity at surfaces in space and time

    NARCIS (Netherlands)

    Krabbenborg, Sven; Nicosia, Carlo; Chen, P.; Huskens, Jurriaan

    2013-01-01

    Studying and controlling reactions at surfaces is of great fundamental and applied interest in, among others, biology, electronics and catalysis. Because reaction kinetics is different at surfaces compared with solution, frequently, solution-characterization techniques cannot be used. Here we report

  20. Moho map of South America from receiver functions and surface waves

    Science.gov (United States)

    Lloyd, Simon; van der Lee, Suzan; FrançA, George Sand; AssumpçãO, Marcelo; Feng, Mei

    2010-11-01

    We estimate crustal structure and thickness of South America north of roughly 40°S. To this end, we analyzed receiver functions from 20 relatively new temporary broadband seismic stations deployed across eastern Brazil. In the analysis we include teleseismic and some regional events, particularly for stations that recorded few suitable earthquakes. We first estimate crustal thickness and average Poisson's ratio using two different stacking methods. We then combine the new crustal constraints with results from previous receiver function studies. To interpolate the crustal thickness between the station locations, we jointly invert these Moho point constraints, Rayleigh wave group velocities, and regional S and Rayleigh waveforms for a continuous map of Moho depth. The new tomographic Moho map suggests that Moho depth and Moho relief vary slightly with age within the Precambrian crust. Whether or not a positive correlation between crustal thickness and geologic age is derived from the pre-interpolation point constraints depends strongly on the selected subset of receiver functions. This implies that using only pre-interpolation point constraints (receiver functions) inadequately samples the spatial variation in geologic age. The new Moho map also reveals an anomalously deep Moho beneath the oldest core of the Amazonian Craton.

  1. Localization and Mapping Using a Non-Central Catadioptric Camera System

    Science.gov (United States)

    Khurana, M.; Armenakis, C.

    2018-05-01

    This work details the development of an indoor navigation and mapping system using a non-central catadioptric omnidirectional camera and its implementation for mobile applications. Omnidirectional catadioptric cameras find their use in navigation and mapping of robotic platforms, owing to their wide field of view. Having a wider field of view, or rather a potential 360° field of view, allows the system to "see and move" more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. Any perspective camera can be used. A platform was constructed in order to combine the mirror and a camera to build a catadioptric system. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The mathematical model for localizing the system was determined using conditions based on the reflective properties of the mirror. The obtained platform positions were then used to map the environment using epipolar geometry. Experiments were performed to test the mathematical models and the achieved location and mapping accuracies of the system. An iterative process of positioning and mapping was applied to determine object coordinates of an indoor environment while navigating the mobile platform. Camera localization and 3D coordinates of object points obtained decimetre level accuracies.

  2. Surface-Enhanced Raman Spectroscopy Based Quantitative Bioassay on Aptamer-Functionalized Nanopillars Using Large-Area Raman Mapping

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Palla, Mirko; Bosco, Filippo

    2013-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been used in a variety of biological applications due to its high sensitivity and specificity. Here, we report a SERS-based biosensing approach for quantitative detection of biomolecules. A SERS substrate bearing gold-decorated silicon nanopillars......-to-spot variation in conventional SERS quantification. Furthermore, we have developed an analytical model capable of predicting experimental intensity distributions on the substrates for reliable quantification of biomolecules. Lastly, we have calculated the minimum needed area of Raman mapping for efficient...

  3. Sikorsky interactive graphics surface design/manufacturing system

    Science.gov (United States)

    Robbins, R.

    1975-01-01

    An interactive graphics system conceived to be used in the design, analysis, and manufacturing of aircraft components with free form surfaces was described. In addition to the basic surface definition and viewing capabilities inherent in such a system, numerous other features are present: surface editing, automated smoothing of control curves, variable milling patch boundary definitions, surface intersection definition and viewing, automatic creation of true offset surfaces, digitizer and drafting machine interfaces, and cutter path optimization. Documented costs and time savings of better than six to one are being realized with this system. The system was written in FORTRAN and GSP for use on IBM 2250 CRT's in conjunction with an IBM 370/158 computer.

  4. Minimalist identification system based on venous map for security applications

    Science.gov (United States)

    Jacinto G., Edwar; Martínez S., Fredy; Martínez S., Fernando

    2015-07-01

    This paper proposes a technique and an algorithm used to build a device for people identification through the processing of a low resolution camera image. The infrared channel is the only information needed, sensing the blood reaction with the proper wave length, and getting a preliminary snapshot of the vascular map of the back side of the hand. The software uses this information to extract the characteristics of the user in a limited area (region of interest, ROI), unique for each user, which applicable to biometric access control devices. This kind of recognition prototypes functions are expensive, but in this case (minimalist design), the biometric equipment only used a low cost camera and the matrix of IR emitters adaptation to construct an economic and versatile prototype, without neglecting the high level of effectiveness that characterizes this kind of identification method.

  5. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  6. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Science.gov (United States)

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  7. Comparative morphometry of facial surface models obtained from a stereo vision system in a healthy population

    Science.gov (United States)

    López, Leticia; Gastélum, Alfonso; Chan, Yuk Hin; Delmas, Patrice; Escorcia, Lilia; Márquez, Jorge

    2014-11-01

    Our goal is to obtain three-dimensional measurements of craniofacial morphology in a healthy population, using standard landmarks established by a physical-anthropology specialist and picked from computer reconstructions of the face of each subject. To do this, we designed a multi-stereo vision system that will be used to create a data base of human faces surfaces from a healthy population, for eventual applications in medicine, forensic sciences and anthropology. The acquisition process consists of obtaining the depth map information from three points of views, each depth map is obtained from a calibrated pair of cameras. The depth maps are used to build a complete, frontal, triangular-surface representation of the subject face. The triangular surface is used to locate the landmarks and the measurements are analyzed with a MATLAB script. The classification of the subjects was done with the aid of a specialist anthropologist that defines specific subject indices, according to the lengths, areas, ratios, etc., of the different structures and the relationships among facial features. We studied a healthy population and the indices from this population will be used to obtain representative averages that later help with the study and classification of possible pathologies.

  8. an improved map based graphical android authentication system

    African Journals Online (AJOL)

    Ahmad et al.

    was designed on mobile android devices, but it did not provide a large choice or multiple ... password authentication system android application devices. The system adds the ..... Password, Computer Science Thesis.Paper 2.Pg 5-18. 27.

  9. An initial bibliometric analysis and mapping of systems engineering research

    CSIR Research Space (South Africa)

    Oosthuizen, Rudolph

    2016-07-01

    Full Text Available Systems engineering is still a growing field that depends on continuous research to develop and mature. Research in systems engineering is difficult and the classic approaches for other engineering disciplines may not be sufficient. Additional...

  10. Novel Color Depth Mapping Imaging Sensor System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  11. Novel Color Depth Mapping Imaging Sensor System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous and semi-autonomous robotic systems require information about their surroundings in order to navigate properly. A video camera machine vision system can...

  12. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy.

    Science.gov (United States)

    Marutschke, Christoph; Walters, Deron; Walters, Deron; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika

    2014-08-22

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic - yet decisive - question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid-liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface.

  13. Three-dimensional hydration layer mapping on the (10.4) surface of calcite using amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Marutschke, Christoph; Hermes, Ilka; Bechstein, Ralf; Kühnle, Angelika; Walters, Deron; Cleveland, Jason

    2014-01-01

    Calcite, the most stable modification of calcium carbonate, is a major mineral in nature. It is, therefore, highly relevant in a broad range of fields such as biomineralization, sea water desalination and oil production. Knowledge of the surface structure and reactivity of the most stable cleavage plane, calcite (10.4), is pivotal for understanding the role of calcite in these diverse areas. Given the fact that most biological processes and technical applications take place in an aqueous environment, perhaps the most basic—yet decisive—question addresses the interaction of water molecules with the calcite (10.4) surface. In this work, amplitude modulation atomic force microscopy is used for three-dimensional (3D) mapping of the surface structure and the hydration layers above the surface. An easy-to-use scanning protocol is implemented for collecting reliable 3D data. We carefully discuss a comprehensible criterion for identifying the solid–liquid interface within our data. In our data three hydration layers form a characteristic pattern that is commensurate with the underlying calcite surface. (paper)

  14. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  15. The Practical Application of Aqueous Geochemistry in Mapping Groundwater Flow Systems in Fractured Rock Masses

    Science.gov (United States)

    Bursey, G.; Seok, E.; Gale, J. E.

    2017-12-01

    groundwater samples can plot to the left of the meteoric water line as a result of isotopic exchange between meteoric water and silicate rock in near-surface environments at low temperatures. These and other examples are considered in the practical application of aqueous geochemistry in helping to map flow systems in fractured-rock systems.

  16. Bisimulation and Open Maps for Timed Transition Systems

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1999-01-01

    Formal models for real-time systems have been studied intensively over the past decade. Much of the theory of untimed systems have been lifted to real-time settings. One example is the notion of bisimulation applied to timed transition systems, which is studied here within the general categorical...

  17. A carborne gamma-ray spectrometer system for natural radioactivity mapping and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R.L.; Cox, J.R. [Exploranium Ltd., Mississauga, Ontario (Canada)

    1997-12-31

    This paper summarizes the experience gained in the use of a carborne gamma-ray spectrometer system for mapping both natural and man-made radiation. Particular emphasis is placed on the calibration of the system for converting the gamma-ray measurements to ground concentrations of potassium, uranium and thorium and the activity of {sup 137}Cs. During the Finnish Emergency Response Exercise (Resume95), the carborne system was shown to be effective in mapping both natural and man-made radiation from {sup 137}Cs fallout and in locating radioactive sources. The application of the carborne system for mineral exploration is also demonstrated. (au). 10 refs.

  18. A carborne gamma-ray spectrometer system for natural radioactivity mapping and environmental monitoring

    International Nuclear Information System (INIS)

    Grasty, R.L.; Cox, J.R.

    1997-01-01

    This paper summarizes the experience gained in the use of a carborne gamma-ray spectrometer system for mapping both natural and man-made radiation. Particular emphasis is placed on the calibration of the system for converting the gamma-ray measurements to ground concentrations of potassium, uranium and thorium and the activity of 137 Cs. During the Finnish Emergency Response Exercise (Resume95), the carborne system was shown to be effective in mapping both natural and man-made radiation from 137 Cs fallout and in locating radioactive sources. The application of the carborne system for mineral exploration is also demonstrated. (au)

  19. A carborne gamma-ray spectrometer system for natural radioactivity mapping and environmental monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Grasty, R L; Cox, J R [Exploranium Ltd., Mississauga, Ontario (Canada)

    1998-12-31

    This paper summarizes the experience gained in the use of a carborne gamma-ray spectrometer system for mapping both natural and man-made radiation. Particular emphasis is placed on the calibration of the system for converting the gamma-ray measurements to ground concentrations of potassium, uranium and thorium and the activity of {sup 137}Cs. During the Finnish Emergency Response Exercise (Resume95), the carborne system was shown to be effective in mapping both natural and man-made radiation from {sup 137}Cs fallout and in locating radioactive sources. The application of the carborne system for mineral exploration is also demonstrated. (au). 10 refs.

  20. Development of the geoCamera, a System for Mapping Ice from a Ship

    Science.gov (United States)

    Arsenault, R.; Clemente-Colon, P.

    2012-12-01

    The geoCamera produces maps of the ice surrounding an ice-capable ship by combining images from one or more digital cameras with the ship's position and attitude data. Maps are produced along the ship's path with the achievable width and resolution depending on camera mounting height as well as camera resolution and lens parameters. Our system has produced maps up to 2000m wide at 1m resolution. Once installed and calibrated, the system is designed to operate automatically producing maps in near real-time and making them available to on-board users via existing information systems. The resulting small-scale maps complement existing satellite based products as well as on-board observations. Development versions have temporarily been deployed in Antarctica on the RV Nathaniel B. Palmer in 2010 and in the Arctic on the USCGC Healy in 2011. A permanent system has been deployed during the summer of 2012 on the USCGC Healy. To make the system attractive to other ships of opportunity, design goals include using existing ship systems when practical, using low costs commercial-off-the-shelf components if additional hardware is necessary, automating the process to virtually eliminate adding to the workload of ships technicians and making the software components modular and flexible enough to allow more seamless integration with a ships particular IT system.