WorldWideScience

Sample records for surface magnetic features

  1. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  2. Probing surface magnetism with ion beams

    International Nuclear Information System (INIS)

    Winter, H.

    2007-01-01

    Ion beams can be used to probe magnetic properties of surfaces by a variety of different methods. Important features of these methods are related to trajectories of atomic projectiles scattered from the surface of a solid target and to the electronic interaction mechanisms in the surface region. Both items provide under specific conditions a high sensitivity for the detection of magnetic properties in the region at the topmost layer of surface atoms. This holds in particular for scattering under planar surface channeling conditions, where under grazing impact atoms or ions are reflected specularly from the surface without penetration into the subsurface region. Two different types of methods are employed based on the detection of the spin polarization of emitted or captured electrons and on spin blocking effects for capture into atomic terms. These techniques allow one to probe the long range and short range magnetic order in the surface region

  3. Magnetic resonance imaging features of allografts

    International Nuclear Information System (INIS)

    Kattapuram, S.V.; Rosol, M.S.; Rosenthal, D.I.; Palmer, W.E.; Mankin, H.J.

    1999-01-01

    Objective. To investigate the magnetic resonance imaging (MRI) features of allografts at various time intervals after surgery in patients with osteoarticular allografts.Design and patients. Sixteen patients who were treated with osteoarticular allografts and who were followed over time with MRI studies as part of their long-term follow-up were retrospectively selected for this study. T1-weighted images were obtained both before and after gadolinium administration along with T2-weighted images. All images were reviewed by an experienced musculoseletal radiologist, with two other experienced radiologists used for consultation. Imaging studies were organized into three groups for ease of discussion: early postoperative period (2 days to 2 months), intermediate postoperative period (3 months to 2 years), and late postoperative period (greater than 2 years).Results. In the early postoperative period, no gadolinium enhancement of the allograft was visible in any of the MR images. A linear, thin layer of periosteal and endosteal tissue enhancement along the margin of the allograft was visible in images obtained at 3-4 months. This enhancement apeared gradually to increase in images from later periods, and appears to have stabilized in the images obtained approximately 2-3 years after allograft placement. The endosteal enhancement diminished after several years, with examinations conducted between 6 and 8 years following surgery showing minimal endosteal enhancement. However, focal enhancement was noted adjacent to areas of pressure erosion or degenerative cysts. All the cases showed inhomogeneity in the marrow signal (scattered low signal foci on T1 with corresponding bright signal on T2), and a diffuse, inhomogeneous marrow enhancement later on.Conclusion. We have characterized the basic MRI features of osteoarticular allografts in 16 patients who underwent imaging studies at various time points as part of routine follow-up. We believe that the endosteal and periosteal

  4. Feature sensitive multiscale editing on surfaces

    NARCIS (Netherlands)

    Clarenz, U.; Griebel, M.; Rumpf, M.; Schweitzer, M.A.; Telea, A.

    2004-01-01

    A novel editing method for large triangular meshes is presented. We detect surface features, such as edge and corners, by computing local zero and first surface moments, using a robust and noise resistant method. The feature detection is encoded in a finite element matrix, passed to an algebraic

  5. Universal features underlying the magnetism in diluted magnetic semiconductors

    Science.gov (United States)

    Andriotis, Antonis N.; Menon, Madhu

    2018-04-01

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO2, SnO2, Sn3N4, MoS2, ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  6. Universal features underlying the magnetism in diluted magnetic semiconductors.

    Science.gov (United States)

    Andriotis, Antonis N; Menon, Madhu

    2018-04-04

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO 2 , SnO 2 , Sn 3 N 4 , MoS 2 , ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  7. Surface magnetic structures in amorphous ferromagnetic microwires

    International Nuclear Information System (INIS)

    Usov, N.A.; Serebryakova, O.N.; Gudoshnikov, S.A.; Tarasov, V.P.

    2017-01-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  8. Surface magnetic structures in amorphous ferromagnetic microwires

    Energy Technology Data Exchange (ETDEWEB)

    Usov, N.A., E-mail: usov@obninsk.ru [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Serebryakova, O.N.; Gudoshnikov, S.A. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation); Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, IZMIRAN, 108840 Troitsk, Moscow (Russian Federation); Tarasov, V.P. [National University of Science and Technology «MISIS», 119049 Moscow (Russian Federation)

    2017-05-01

    The spatial period of magnetization perturbations that occur near the surface of magnetic nanotube or nanowire under the influence of surface magnetic anisotropy is determined by means of numerical simulation as a function of the sample geometry and material parameters. The surface magnetization distribution obtained is then used to estimate the period of the surface magnetic texture in amorphous microwire of several micrometers in diameter by means of appropriate variational procedure. The period of the surface magnetic texture in amorphous microwire is found to be significantly smaller than the wire diameter. - Highlights: • Magnetic structure may arise near the magnetic nanotube surface under the influence of surface magnetic anisotropy. • The period of the surface magnetization pattern is calculated as a function of the sample geometry. • Similar magnetic structure may exist in amorphous microwire of several micrometers in diameter. • The period of the surface magnetic structure in amorphous wire is found to be significantly smaller than the wire diameter.

  9. Moving Magnetic Features Around a Pore

    Energy Technology Data Exchange (ETDEWEB)

    Kaithakkal, A. J.; Riethmüller, T. L.; Solanki, S. K.; Lagg, A.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; VanNoort, M. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen D-37077 (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: anjali@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    Spectropolarimetric observations from Sunrise/IMaX, obtained in 2013 June, are used for a statistical analysis to determine the physical properties of moving magnetic features (MMFs) observed near a pore. MMFs of the same and opposite polarity, with respect to the pore, are found to stream from its border at an average speed of 1.3 km s{sup −1} and 1.2 km s{sup −1}, respectively, with mainly same-polarity MMFs found further away from the pore. MMFs of both polarities are found to harbor rather weak, inclined magnetic fields. Opposite-polarity MMFs are blueshifted, whereas same-polarity MMFs do not show any preference for up- or downflows. Most of the MMFs are found to be of sub-arcsecond size and carry a mean flux of ∼1.2 × 10{sup 17} Mx.

  10. Surface characterization based upon significant topographic features

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, J; Grime, D; Blateyron, F, E-mail: fblateyron@digitalsurf.fr [Digital Surf, 16 rue Lavoisier, F-25000 Besancon (France)

    2011-08-19

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  11. Surface characterization based upon significant topographic features

    International Nuclear Information System (INIS)

    Blanc, J; Grime, D; Blateyron, F

    2011-01-01

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  12. Magnetic Resonance Imaging Features of Neuromyelitis Optica

    International Nuclear Information System (INIS)

    You, Sun Kyung; Song, Chang June; Park, Woon Ju; Lee, In Ho; Son, Eun Hee

    2013-01-01

    To report the magnetic resonance (MR) imaging features of the spinal cord and brain in patients of neuromyelitis optica (NMO). Between January 2001 and March 2010, the MR images (spinal cord, brain, and orbit) and the clinical and serologic findings of 11 NMO patients were retrospectively reviewed. The contrast-enhancement of the spinal cord was performed (20/23). The presence and pattern of the contrast-enhancement in the spinal cord were classified into 5 types. Acute myelitis was monophasic in 8 patients (8/11, 72.7%); and optic neuritis preceded acute myelitis in most patients. Longitudinally extensive cord lesion (average, 7.3 vertebral segments) was involved. The most common type was the diffuse and subtle enhancement of the spinal cord with a multifocal nodular, linear or segmental intense enhancement (45%). Most of the brain lesions (5/11, 10 lesions) were located in the brain stem, thalamus and callososeptal interphase. Anti-Ro autoantibody was positive in 2 patients, and they showed a high relapse rate of acute myelitis. Anti-NMO IgG was positive in 4 patients (4/7, 66.7%). The imaging findings of acute myelitis in NMO may helpful in making an early diagnosis of NMO which can result in a severe damage to the spinal cord, and to make a differential diagnosis of multiple sclerosis and inflammatory diseases of the spinal cord such as toxocariasis.

  13. Magnetic Resonance Imaging Features of Neuromyelitis Optica

    Energy Technology Data Exchange (ETDEWEB)

    You, Sun Kyung; Song, Chang June; Park, Woon Ju; Lee, In Ho; Son, Eun Hee [Chungnam National University College of Medicine, Chungnam National University Hospital, Daejeon (Korea, Republic of)

    2013-03-15

    To report the magnetic resonance (MR) imaging features of the spinal cord and brain in patients of neuromyelitis optica (NMO). Between January 2001 and March 2010, the MR images (spinal cord, brain, and orbit) and the clinical and serologic findings of 11 NMO patients were retrospectively reviewed. The contrast-enhancement of the spinal cord was performed (20/23). The presence and pattern of the contrast-enhancement in the spinal cord were classified into 5 types. Acute myelitis was monophasic in 8 patients (8/11, 72.7%); and optic neuritis preceded acute myelitis in most patients. Longitudinally extensive cord lesion (average, 7.3 vertebral segments) was involved. The most common type was the diffuse and subtle enhancement of the spinal cord with a multifocal nodular, linear or segmental intense enhancement (45%). Most of the brain lesions (5/11, 10 lesions) were located in the brain stem, thalamus and callososeptal interphase. Anti-Ro autoantibody was positive in 2 patients, and they showed a high relapse rate of acute myelitis. Anti-NMO IgG was positive in 4 patients (4/7, 66.7%). The imaging findings of acute myelitis in NMO may helpful in making an early diagnosis of NMO which can result in a severe damage to the spinal cord, and to make a differential diagnosis of multiple sclerosis and inflammatory diseases of the spinal cord such as toxocariasis.

  14. Structural safety features for superconducting magnets

    International Nuclear Information System (INIS)

    Lehner, J.; Reich, M.; Powell, J.; Bezler, P.; Gardner, D.; Yu, W.; Chang, T.Y.

    1975-01-01

    A survey has been carried out for various potential structural safety problems of superconducting fusion magnets. These areas include: (1) Stresses due to inhomogeneous temperature distributions in magnets where normal regions have been initiated. (2) Stress distributions and yield forces due to cracks and failed regions. (3) Superconducting magnet response due to seismic excitation. These analyses have been carried out using a variety of large capacity finite element computer codes that allow for the evaluation of stresses in elastic or elastic-plastic zones and around singularities in the magnet structure. Thus far, these analyses have been carried out on UWMAK-I type magnet systems

  15. Surface magnetism of Fe(001)

    International Nuclear Information System (INIS)

    Ohnishi, S.; Freeman, A.J.; Weinert, M.

    1983-01-01

    Results of all-electron self-consistent semirelativistic full-potential linearized augmented-plane-wave local-density and local-spin-density studies are reported for a seven-layer Fe(001) thin film. The calculated work function for the ferromagnetic state is found to be in excellent agreement with experiment, whereas that calculated for the paramagnetic state is significantly worse (namely, 0.5 eV too large), indicating the importance of spin polarization on this electrostatic property. For both states, partial densities of states (projected by layer and by orbital angular momentum), surface states, and charge (and spin) densities are presented and their differences employed to discuss the origin of surface magnetism. No Friedel oscillation is found in the layer-by-layer charge density. The surface-layer magnetic moment is found to have been increased by 0.73μ/sub B/ from the center layer to 2.98μ/sub B//atom; a very small Friedel oscillation is obtained for the spin density, which indicates possible size effects in this seven-layer film. Layer-by-layer Fermi contact hyperfine fields are presented: While the core-polarization contributions are proportional to the magnetic moment, the conduction-electron contribution shows a pronounced Friedel oscillation in the central layer and, significantly, a change of sign and increase in the magnitude for the surface-layer contribution. The hyperfine field at the nucleus of the center-layer atoms is found to be in excellent agreement with experiment

  16. Magnetic Resonance Features of Cerebral Malaria

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U. (Dept. of Radiodiagnosis and Dept. of Medicine, All India Institute of Medical Sciences, New Delhi (India))

    2008-06-15

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm2, and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  17. Magnetic Resonance Features of Cerebral Malaria

    International Nuclear Information System (INIS)

    Yadav, P.; Sharma, R.; Kumar, S.; Kumar, U.

    2008-01-01

    Background: Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. Purpose: To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. Material and Methods: We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm 2 , and apparent diffusion coefficient (ADC) maps were obtained. Results: Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. Conclusion: MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients

  18. Surface ferro (or antiferro) magnetism in bulk antiferro (or ferro) magnets: renormalization group analysis

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1985-01-01

    The renormalization group techniques are applied, for the first time, to surface magnetism in bulk magnets, for all signs of surface and bulk coupling constants. The g-state Potts model is specifically focused, and a interesting q-evolution of the phase diagram is exhibited. In particular the Ising model (q=2) presents a remarkable feature: surface ferro (or antiferro) magnetism can disappear while heating an antiferro (or ferro) magnet, and reappear again for higher temperatures, before entering in the paramagnetic phase. (Author) [pt

  19. Magnetic mirror fusion systems: Characteristics and distinctive features

    International Nuclear Information System (INIS)

    Post, R.F.

    1987-01-01

    A tutorial account is given of the main characteristics and distinctive features of conceptual magnetic fusion systems employing the magnetic mirror principle. These features are related to the potential advantages that mirror-based fusion systems may exhibit for the generation of economic fusion power

  20. Magnetic activity at Mars - Mars Surface Magnetic Observatory

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Menvielle, M.; Merayo, José M.G.

    2012-01-01

    We use the extensive database of magnetic observations from the Mars Global Surveyor to investigate magnetic disturbances in the Martian space environment statistically, both close to and far from crustal anomalies. We discuss the results in terms of possible ionospheric and magnetospheric currents...... a magnetic experiment at the martian surface, the Mars Surface Magnetic Observatory (MSMO) including the science objectives, science experiment requirements, instrument and basic operations. We find the experiment to be feasible within the constraints of proposed stationary landing platforms....

  1. Surface modification of YIG by magnet array

    Energy Technology Data Exchange (ETDEWEB)

    Atalay, S., E-mail: satalay@inonu.edu.tr [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Kolat, V.S. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Bakır, H.G. [Inonu University, Science and Art Faculty, Astronomy Department, 44280 Malatya (Turkey); Izgi, T.; Kaya, A.O. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey); Kaya, O.A. [Inonu University, Education Faculty, Computer Education and Educational Technology Department, 44280 Malatya (Turkey); Gencer, H. [Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya (Turkey)

    2015-11-01

    Highlights: • The surface of YIG films were magnetically modulated by magnet array. • The surface modulated YIG films formed sharp band gaps. • A very small magnetic field change leads a large change in the peak value of band gap frequency. - Abstract: In this work, magnetostatic surface spin waves (MSSW) were propagated along the single crystal YIG (Y{sub 3}Fe{sub 5}O{sub 12}) film grown on GGG substrate. In order to obtain magnonic crystals, unlike the conventional methods, the surface of YIG films were magnetically modulated by magnet array in one and two-dimensions. The surface modulated YIG films formed sharp band gaps at approximately 6.55 GHz and 6.58 GHz at 1600 Oe magnetic field for one and two-dimensional magnonic crystals, respectively. It was found that a very small magnetic field change leads a large change in the peak value of band gap frequency.

  2. Surface modification of YIG by magnet array

    International Nuclear Information System (INIS)

    Atalay, S.; Kolat, V.S.; Bakır, H.G.; Izgi, T.; Kaya, A.O.; Kaya, O.A.; Gencer, H.

    2015-01-01

    Highlights: • The surface of YIG films were magnetically modulated by magnet array. • The surface modulated YIG films formed sharp band gaps. • A very small magnetic field change leads a large change in the peak value of band gap frequency. - Abstract: In this work, magnetostatic surface spin waves (MSSW) were propagated along the single crystal YIG (Y 3 Fe 5 O 12 ) film grown on GGG substrate. In order to obtain magnonic crystals, unlike the conventional methods, the surface of YIG films were magnetically modulated by magnet array in one and two-dimensions. The surface modulated YIG films formed sharp band gaps at approximately 6.55 GHz and 6.58 GHz at 1600 Oe magnetic field for one and two-dimensional magnonic crystals, respectively. It was found that a very small magnetic field change leads a large change in the peak value of band gap frequency.

  3. Robust Features Of Surface Electromyography Signal

    International Nuclear Information System (INIS)

    Sabri, M I; Miskon, M F; Yaacob, M R

    2013-01-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20–27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and

  4. Robust Features Of Surface Electromyography Signal

    Science.gov (United States)

    Sabri, M. I.; Miskon, M. F.; Yaacob, M. R.

    2013-12-01

    Nowadays, application of robotics in human life has been explored widely. Robotics exoskeleton system are one of drastically areas in recent robotic research that shows mimic impact in human life. These system have been developed significantly to be used for human power augmentation, robotics rehabilitation, human power assist, and haptic interaction in virtual reality. This paper focus on solving challenges in problem using neural signals and extracting human intent. Commonly, surface electromyography signal (sEMG) are used in order to control human intent for application exoskeleton robot. But the problem lies on difficulty of pattern recognition of the sEMG features due to high noises which are electrode and cable motion artifact, electrode noise, dermic noise, alternating current power line interface, and other noise came from electronic instrument. The main objective in this paper is to study the best features of electromyography in term of time domain (statistical analysis) and frequency domain (Fast Fourier Transform).The secondary objectives is to map the relationship between torque and best features of muscle unit activation potential (MaxPS and RMS) of biceps brachii. This project scope use primary data of 2 male sample subject which using same dominant hand (right handed), age between 20-27 years old, muscle diameter 32cm to 35cm and using single channel muscle (biceps brachii muscle). The experiment conduct 2 times repeated task of contraction and relaxation of biceps brachii when lifting different load from no load to 3kg with ascending 1kg The result shows that Fast Fourier Transform maximum power spectrum (MaxPS) has less error than mean value of reading compare to root mean square (RMS) value. Thus, Fast Fourier Transform maximum power spectrum (MaxPS) show the linear relationship against torque experience by elbow joint to lift different load. As the conclusion, the best features is MaxPS because it has the lowest error than other features and show

  5. Caroli's disease: magnetic resonance imaging features

    International Nuclear Information System (INIS)

    Guy, France; Cognet, Francois; Dranssart, Marie; Cercueil, Jean-Pierre; Conciatori, Laurent; Krause, Denis

    2002-01-01

    Our objective was to describe the main aspects of MR imaging in Caroli's disease. Magnetic resonance cholangiography with a dynamic contrast-enhanced study was performed in nine patients with Caroli's disease. Bile duct abnormalities, lithiasis, dot signs, hepatic enhancement, renal abnormalities, and evidence of portal hypertension were evaluated. Three MR imaging patterns of Caroli's disease were found. In all but two patients, MR imaging findings were sufficient to confirm the diagnosis. Moreover, MR imaging provided information about the severity, location, and extent of liver involvement. This information was useful in planning the best therapeutic strategy. Magnetic resonance cholangiography with a dynamic contrast-enhanced study is a good screening tool for Caroli's disease. Direct cholangiography should be reserved for confirming doubtful cases. (orig.)

  6. Composite elastic magnet films with hard magnetic feature

    Science.gov (United States)

    Wang, Weisong; Yao, Zhongmei; Chen, Jackie C.; Fang, Ji

    2004-10-01

    Hard magnetic materials with high remnant magnetic moment, Mr, have unique advantages that can achieve bi-directional (push-pull) movement in an external magnetic field. This paper presents the results on the fabrication and testing of novel composite elastic permanent magnet films. The microsize hard barium ferrite powder, NdFeB powder, and different silicone elastomers have been used to fabricate various large elongation hard magnetic films. Three different fabrication methods, screen-coating processing, moulding processing and squeegee-coating processing, have been investigated, and the squeegee-coating process was proven to be the most successful method. The uniform composite elastic permanent magnet films range from 40 µm to 216 µm in thickness have been successfully fabricated. These films were then magnetized in the thickness direction after fabrication. They exhibited permanent magnet behaviour; for instance, the film (0.640 mm3 in volume) made of polydimethyl siloxane (PDMS) and hard barium ferrite powders is measured to give a coercive force, Hc, of 3.24 × 105 A m-1 and Mr of 1.023 × 10-5 A m2, and the film (0.504 mm3 in volume) made of PDMS and NdFeB powders gives 1.55 × 105 A m-1 Hc and 8.081 × 10-5 A m2 Mr. These composite elastic permanent magnet films' mechanical properties, like Young's modulus and deflection force, have been evaluated. To validate the films' Young's modulus, a finite-element computer simulation (ANSYS®) is used and one film is chosen whose Young's modulus (16.60 MPa) is confirmed by the simulation results with ANSYS®. The large elongation composite elastic permanent magnet film provides an excellent diaphragm material, which plays an important role in the micropump or valve. The movement of the 126 µm thick film with 4.5 mm diameter made of PDMS and NdFeB powders has been tested in a 0.21 Tesla external magnetic field. It was proven to have large deflection of 125 µm.

  7. Mechanistic Features of Nanodiamonds in the Lapping of Magnetic Heads

    Directory of Open Access Journals (Sweden)

    Xionghua Jiang

    2014-01-01

    Full Text Available Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p0=3/2·W/πa2 and the indentation depth satisfies δ=k1P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM, scanning electron microscopy (SEM, and Auger electron spectroscopy (AES were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm·min−1 can be obtained with 100 nm diamonds embedded in the plate.

  8. Mechanistic features of nanodiamonds in the lapping of magnetic heads.

    Science.gov (United States)

    Jiang, Xionghua; Chen, Zhenxing; Wolfram, Joy; Yang, Zhizhou

    2014-01-01

    Nanodiamonds, which are the main components of slurry in the precision lapping process of magnetic heads, play an important role in surface quality. This paper studies the mechanistic features of nanodiamond embedment into a Sn plate in the lapping process. This is the first study to develop mathematical models for nanodiamond embedment. Such models can predict the optimum parameters for particle embedment. From the modeling calculations, the embedded pressure satisfies p 0 = (3/2) · (W/πa (2)) and the indentation depth satisfies δ = k1√P/HV. Calculation results reveal that the largest embedded pressure is 731.48 GPa and the critical indentation depth δ is 7 nm. Atomic force microscopy (AFM), scanning electron microscopy (SEM), and Auger electron spectroscopy (AES) were used to carry out surface quality detection and analysis of the disk head. Both the formation of black spots on the surface and the removal rate have an important correlation with the size of nanodiamonds. The results demonstrate that an improved removal rate (21 nm · min(-1)) can be obtained with 100 nm diamonds embedded in the plate.

  9. Feature extraction for magnetic domain images of magneto-optical recording films using gradient feature segmentation

    International Nuclear Information System (INIS)

    Quanqing, Zhu.; Xinsai, Wang; Xuecheng, Zou; Haihua, Li; Xiaofei, Yang

    2002-01-01

    In this paper, we present a method to realize feature extraction on low contrast magnetic domain images of magneto-optical recording films. The method is based on the following three steps: first, Lee-filtering method is adopted to realize pre-filtering and noise reduction; this is followed by gradient feature segmentation, which separates the object area from the background area; finally the common linking method is adopted and the characteristic parameters of magnetic domain are calculated. We describe these steps with particular emphasis on the gradient feature segmentation. The results show that this method has advantages over other traditional ones for feature extraction of low contrast images

  10. Features of photoinduced magnetism in some yttrium–iron-garnet single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vorob’eva, N. V., E-mail: vnv@anrb.ru [Akmulla Bashkir State Pedagogical University (Russian Federation); Mityukhlyaev, V. B. [Investigation Center for Surface and Vacuum (Russian Federation)

    2016-04-15

    Photoinduced magnetic phenomena are considered in yttrium–iron single-crystalline garnets grown from a BaO–B{sub 2}O{sub 3} molten solution with the addition of iridium to the initial melt. The features of the composition and defects of the crystal structure of the samples in the surface layer are determined. In view of this, explanations for features of the photoinduced magnetic phenomena in the investigated crystals are proposed. The determining role of oxygen anions for the photoinduced magnetic phenomena at room temperature is highlighted, and the possible role of a variation in the dopant content and composition is considered.

  11. Magnetic Fields above the Surface of aSuperconductor with Internal Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; /Stanford U., Phys. Dept. /SLAC, SSRl

    2007-06-26

    The author presents a method for calculating the magnetic fields near a planar surface of a superconductor with a given intrinsic magnetization in the London limit. He computes solutions for various magnetic domain boundary configurations and derives relations between the spectral densities of the magnetization and the resulting field in the vacuum half space, which are useful if the magnetization can be considered as a statistical quantity and its features are too small to be resolved individually. The results are useful for analyzing and designing magnetic scanning experiments. Application to existing data from such experiments on Sr{sub 2}RuO{sub 4} show that a domain wall would have been detectable, but the magnetic field of randomly oriented small domains and small defects may have been smaller than the experimental noise level.

  12. Neutron scattering on magnetic surfaces

    International Nuclear Information System (INIS)

    Ott, F.

    2007-01-01

    During the early eighties, advanced techniques for the deposition of ultra-thin metal films were developed. The combination of different types of materials gave rise to new physical phenomena such as the magnetic exchange coupling in superlattices or the exchange bias between ferro and anti-ferro layers. New types of heterostructures combining magnetic oxides, insulating oxides or magnetic semiconductors are still being developed. Alongside the fabrication of these new meta-materials made of thin films stacking, polarized neutron reflectometry has emerged as a routine tool for the characterization of magnetic hetero-structures. In the recent years, the new developments of polarized reflectivity have been connected to the study of micro- and nano-structures, especially micro-magnetic structures in multilayers. The technique of off-specular scattering has been developed for the study of the roughness or the micro magnetism at a micro metric scale. For the study of nano-metric structures, in the range below 100 nm, grazing incidence Small Angle Scattering is being considered. In thin films, the volume of magnetic matter is very small but nevertheless, diffraction experiments can be performed owing to the good performances of modern neutron spectrometers

  13. Surface magnetism of gallium arsenide nanofilms

    Science.gov (United States)

    Lu, Huan; Yu, Jin; Guo, Wanlin

    2017-11-01

    Gallium arsenide (GaAs) is the most widely used second-generation semiconductor with a direct band gap, and it is being increasingly used as nanofilms. However, the magnetic properties of GaAs nanofilms have never been studied. Here we find by comprehensive density-functional-theory calculations that GaAs nanofilms cleaved along the 〈111 〉 and 〈100 〉 directions become intrinsically metallic films with strong surface magnetism and the magnetoelectric effect. Surface magnetism and electrical conductivity are realized via a combined effect of charge transfer induced by spontaneous electric polarization through the film thickness and spin-polarized surface states. The surface magnetism of 〈111 〉 nanofilms can be significantly and linearly tuned by a vertically applied electric field, endowing the nanofilms with unexpectedly high magnetoelectric coefficients, which are tens of times higher than those of ferromagnetic metals and transition-metal oxides.

  14. Neutron scattering on magnetic surfaces

    Science.gov (United States)

    Ott, Frédéric

    2007-09-01

    During the early 1980s, advanced techniques for the deposition of ultra-thin metal films were developed. The combination of different types of materials gave rise to new physical phenomena such as the magnetic exchange coupling in superlattices or the exchange bias between ferro and anti-ferro layers. The field was very active because of the associated industrial applications in magnetic field sensors. New types of heterostructures combining magnetic oxides, insulating oxides or magnetic semiconductors are still being developed. Alongside the fabrication of these new meta-materials made of thin films stacking, polarized neutron reflectometry has emerged as a routine tool for the characterization of magnetic hetero-structures. In the recent years, the new developments of polarized reflectivity have been connected to the study of micro and nanostructures, especially micromagnetic structures in multilayers. The technique of off-specular scattering has been developed for the study of the roughness or the micromagnetism at a micrometric scale. For the study of nanometric structures, in the range below 100 nm, grazing incidence Small Angle Scattering is being considered. To cite this article: F. Ott, C. R. Physique 8 (2007).

  15. Structural design features for commercial fusion power reactor magnet systems

    International Nuclear Information System (INIS)

    Sviatoslavsky, I.N.; Young, W.C.

    1980-01-01

    The evolution of structural design features for commercial fusion power reactor magnet systems is discussed. Changing concepts in plasma physics and impurity control, new data on radiation damage in materials and developments in the maintainability and repairability of the magnet systems are the driving influences in this evolution. Generic problems in the magnet designs are discussed for several proposed magnetic confinement system configurations, including tokamaks, tandem mirrors, the Elmo Bumpy Torus, and the reversed field theta pinch. These systems are compared on the basis of how efficiently the magnets make use of structural materials. A measure of the effectiveness of a magnet system is found by determining the ratio of net electric power output from the reactor to the stored energy in the magnetic fields produced by the magnet coils in a given system. The stored energy in the magnetic field can then be used to establish a minimum structural volume and mass by use of the virial theorem. Experience with coil types such as solenoids, toroids, Yin-Yang, etc. has established factors by which the minima must be multiplied to yield anticipated volumes and masses of realistic magnet systems. These initial, admittedly approximate, calculations allow designers to estimate early in the process the contribution of the magnet systems to the overall cost of a fusion reactor. As work progresses these estimates can be used to indicate the degree to which the designers is making effective use of the structural material. Basic rules for effective placement of structure, common to all magnet systems, are also discussed in detail. Factors are presented which make it possible to compare structural savings to the cost of researching the parameters involved in the stability of superconductors. (orig.)

  16. Associations Between Spondyloarthritis Features and Magnetic Resonance Imaging Findings

    DEFF Research Database (Denmark)

    Arnbak, Bodil; Grethe Jurik, Anne; Hørslev-Petersen, Kim

    2016-01-01

    were 1) to estimate the prevalence of magnetic resonance imaging (MRI) findings and clinical features included in the ASAS criteria for SpA and 2) to explore the associations between MRI findings and clinical features. METHODS: We included patients ages 18-40 years with persistent low back pain who had...... been referred to the Spine Centre of Southern Denmark. We collected information on clinical features (including HLA-B27 and high-sensitivity C-reactive protein) and MRI findings in the spine and sacroiliac (SI) joints. RESULTS: Of 1,020 included patients, 537 (53%) had at least 1 of the clinical...... features included in the ASAS criteria for SpA. Three clinical features were common-inflammatory back pain according to the ASAS criteria, a good response to nonsteroidal antiinflammatory drugs (NSAIDs), and family history of SpA. The prevalence of these features ranged from 15% to 17%. Sacroiliitis on MRI...

  17. Magnetic surfaces and neoclassical transport in stellarators

    International Nuclear Information System (INIS)

    Ng, K.C.

    1987-06-01

    This paper studies the structure of a stellarator field and the confinement of a high temperature plasma in toroidal geometry. A field line tracing program is developed to explore the structure of magnetic fields on a fine scale so as to explain anomalous electron transport. The model magnetic field chosen has a simple analytic representation which is easy to compute, so that the field lines can be integrated to a high accuracy. In a typical case most of the magnetic surfaces are well behaved on the scale of the gyroradius of the electron, rho/sub e/, even when the magnetic field has no 2d symmetry. Island chains or stochastic regions are formed in the vicinity of magnetic surfaces with rational rotational transform iota = n/m. It is shown that the island with w decays exponentially with m. Results suggest that the anomalous electron transport observed in experiments may be due to the presence of an ambipolar electrostatic potential phi. This hypothesis is proven by computing the guiding center orbits of the electrons and estimating island widths of the drift surfaces that are swept out. It is shown that with a small electric potential depending on the toroidal and poloidal angles, the drift surface island width w is an order of magnitude larger than that of the magnetic surfaces and decays exponentially at a slower rate

  18. Surface magnetic enhancement for coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1988-01-01

    The progress achieved during this quarter includes the reagent shelf life study, the evaluation and selection of magnetizing reagents, an experimental database for activating and depressing the adsorption of magnetizing reagents in the presence of various chemicals, an adsorption regulator investigation, the establishment of a coal surface controlling theory, and a magnetite size effect study for the separation of magnetic enhanced minerals. The work is on schedule with the original plan. Modifications include the addition of a regulator study to help proving the selectivity controlling theory. The fundamentals for applying the magnetizing reagent technology on coal cleaning are generally established during this quarter. Selective magnetic enhancement of minerals through the adsorption of magnetizing reagents has been experimentally proved. The work for the next quarter will be mainly on optimizing the selective adsorption conditions and the continuation on magnetite size effect study.

  19. Synergistic structures from magnetic freeze casting with surface magnetized alumina particles and platelets.

    Science.gov (United States)

    Frank, Michael B; Hei Siu, Sze; Karandikar, Keyur; Liu, Chin-Hung; Naleway, Steven E; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-12-01

    Magnetic freeze casting utilizes the freezing of water, a low magnetic field and surface magnetized materials to make multi-axis strengthened porous scaffolds. A much greater magnetic moment was measured for larger magnetized alumina platelets compared with smaller particles, which indicated that more platelet aggregation occurred within slurries. This led to more lamellar wall alignment along the magnetic field direction during magnetic freeze casting at 75 mT. Slurries with varying ratios of magnetized particles to platelets (0:1, 1:3, 1:1, 3:1, 7:1, 1:0) produced porous scaffolds with different structural features and degrees of lamellar wall alignment. The greatest mechanical enhancement in the magnetic field direction was identified in the synergistic condition with the highest particle to platelet ratio (7:1). Magnetic freeze casting with varying ratios of magnetized anisotropic and isotropic alumina provided insights about how heterogeneous morphologies aggregate within lamellar walls that impact mechanical properties. Fabrication of strengthened scaffolds with multi-axis aligned porosity was achieved without introducing different solid materials, freezing agents or additives. Resemblance of 7:1 particle to platelet scaffold microstructure to wood light-frame house construction is framed in the context of assembly inspiration being derived from both natural and synthetic sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Evaluation of disturbed magnetic surfaces with fractal dimensions

    International Nuclear Information System (INIS)

    Mishimagi, Shigehiro; Yoshii, Keiichi; Kogoshi, Sumio; Maeda, Joji

    1998-01-01

    For collapsed magnetic surfaces that are produced by overlapping of two magnetic islands, the fractal dimension can effectively estimate the degradation of them. The fractal dimensions of cross sections of regular magnetic surfaces and clear magnetic islands are nearly 1, while that of a collapsed magnetic surface is more than 1.2 in the present study. The Lyapunov exponents and dimensions are also calculated, which suggest the behavior of the field line of the collapsed magnetic surface is chaos. (author)

  1. SURFACE MODIFITED MAGNETIC NANOPARTICLES FOR BIOMEDICAL APPLICATION

    Directory of Open Access Journals (Sweden)

    G. Yu. Vasyukov

    2014-01-01

    Full Text Available Unique physicochemical properties of nanomaterials arouse a great interest of specialists of various fields. Materials based on nanostructures purchase new mechanical, optical, and electrical properties. Great practical importance is the magnetic properties of materials, structural elements which lie at the nanoscale. Nanomaterials with magnetic properties have been used in drug delivery, magnetic hyperthermia, magnetic separation, and magnetic resonance imaging. Magnetic properties of nanoparticles depend on many factors, such as particle size and shape, chemical properties and lattice type. Magnetic characteristics can be changed by the interaction of particles with the surrounding matrix and neighboring particles.Unfortunately, many studies show that a great disadvantage of the unmodified nanoparticles is their non-specific interaction with the cells, which leads to their accumulation outside the target organs, also to­xicity of nanomaterials and their low colloidal stability. Surface modification of nanoparticles can solve this problem. Development of nanostructures based on magnetic nanoparticles and functionalized by biocompatible agents is one of the main targets of nanobiotechnology.

  2. The synthesis of Ba2+ doped multiferroic BiFeO3 nanoparticles by using a hydrothermal approach in the presence of different surface activators and the investigation of structural and magnetic features

    Science.gov (United States)

    Mardani, Reza

    2017-05-01

    In this work, Bi1-x Ba x FeO3 nanoparticles were synthesized by a hydrothermal method in the presence of various surface activators, and different amounts of barium were inserted in a bismuth ferrite (x  =  0.1, 0.15, 0.2) structure instead of bismuth. The structural and magnetic properties, morphology, and size of the synthesized nanoparticles were investigated by XRD, FT-IR, FE-SEM, TEM, DLS and VSM. The XRD analysis results reveal that the synthetic nanoparticles have a single phase. A phase shift from a rhombohedral structure to a tetragonal structure occurs due to the enhanced barium amount in the bismuth ferrite structure. The SEM analysis exhibits a uniform shape of the Bi0.85Ba0.15FeO3 particles and the image observed by TEM clarifies the size of the particles as 11 nm. Furthermore, the effect of the diverse surfaces of activators in the synthesis of Bi0.85Ba0.15FeO3 nanoparticles was studied, revealing that when sugar was used as a surfactant, the particle size reduced and the magnetic properties increased notably.

  3. Theory of magnetism application to surface physics

    CERN Document Server

    Diep, Hung T

    2014-01-01

    The book is intended for graduate students and researchers who wish to master the main properties of magnetic materials in the bulk state and at the nanometric scale such as for thin films and multilayers. This textbook provides the theories and methods of simulation to study and to understand these properties in an explicit manner. In the first part of the book, the quantum theory of magnetism is presented while the second part of the book is devoted to the application of the theory of magnetism to surface physics. Numerous examples covering typical cases in ferromagnets, antiferromagnets, ferrimagnets, helimagnets, and frustrated spin systems are all illustrated. Fundamental surface effects are shown and discussed. Lastly, the spin transport is described — in which the basic formulation of the Boltzmann's equation is recalled — and the recent methods of Monte Carlo simulation to deal with the spin resistivity are explained. This book contains a large number of detailed solutions for the problems given ...

  4. Kinetic features of magnetic reconnection in a plasmoid chain

    Science.gov (United States)

    Markidis, S.; Henri, P.; Lapenta, G.; Goldman, M. V.; Newman, D.; Eriksson, S.

    2012-04-01

    The kinetic features of plasmoid chain formation and evolution are investigated by two dimensional Particle-in-Cell simulations. Magnetic reconnection is initiated in multiple X points by the tearing instability. Plasmoids form and grow in size by continuously coalescing. Each chain plasmoid exhibits a strong out-of plane core magnetic field and an out-of-plane electron current that drives the coalescing process. The disappearance of the X points in the coalescence process are due to anti-reconnection, a magnetic reconnection where the plasma inflow and outflow are reversed with respect to the original reconnection flow pattern. Anti-reconnection is characterized by the Hall magnetic field quadrupole signature. Intense electric fields develop mainly in-plane normally to the separatrices and drive the ion dynamics in the plasmoids. Several bipolar electric field structures are localized along the separatrices. The analysis of the electron distribution function and phase space reveals the presence of counter-streaming electron beams and phase space electron holes along the reconnection separatrices.

  5. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  6. Surface magnetism in iron, cobalt, and nickel

    DEFF Research Database (Denmark)

    Alde´n, M.; Mirbt, S.; Skriver, Hans Lomholt

    1992-01-01

    with experimental values to within 10%, which may be considered most satisfactory in view of the computational efficiency of the Green’s function technique. Exchange and correlation have been treated wihtin the local spin-density approximation and we have considered three different parametrizations of the original......We have calculated magnetic moments, work functions, and surface energies for several of the most closely packed surfaces of iron, cobalt, and nickel by means of a spin-polarized Green’s-function technique based on the linear muffin-tin orbitals method within the tight-binding and atomic sphere...... approximations. We find enhanced spin moments at all the surfaces considered except for Ni fcc(111), where the moment at the surface reverts to its bulk value. This is in close agreement with earlier slab calculations. In addition, we find that the calculated work functions and surface energies agree...

  7. Surface treatment of magnetic recording heads

    Science.gov (United States)

    Komvopoulos, Kyriakos; Brown, Ian G.; Wei, Bo; Anders, Simone; Anders, Andre; Bhatia, Singh C.

    1995-01-01

    Surface modification of magnetic recording heads using plasma immersion ion implantation and deposition is disclosed. This method may be carried out using a vacuum arc deposition system with a metallic or carbon cathode. By operating a plasma gun in a long-pulse mode and biasing the substrate holder with short pulses of a high negative voltage, direct ion implantation, recoil implantation, and surface deposition are combined to modify the near-surface regions of the head or substrate in processing times which may be less than 5 min. The modified regions are atomically mixed into the substrate. This surface modification improves the surface smoothness and hardness and enhances the tribological characteristics under conditions of contact-start-stop and continuous sliding. These results are obtained while maintaining original tolerances.

  8. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  9. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  10. Heat transfer control in a plane magnetic fluid layer with a free surface

    International Nuclear Information System (INIS)

    Bashtovoi, V.G.; Pogirnitskaya, S.G.; Reks, A.G.

    1993-01-01

    The heat transfer mechanisms that are specific to a magnetic liquid have been already investigated extensively. The high sensitivity of the free magnetic liquid surface to the external magnetic field introduces a new feature into the heat transfer process. In the present work, the authors have investigated the possibility of controlling the heat transfer through the phenomenon of magnetic liquid surface instability in a uniform magnetic field. The conditions for heat transfer through a chamber, partially filled with a magnetic liquid, are governed by the characteristics of the free liquid surface and by its stability and development in the supercritical magnetic fields. The authors consider a model two-dimensional problem of heat transfer through a two-layer medium consisting of horizontally situated immiscible layers of magnetic and nonmagnetic liquids with given thermal conductivities. In the absence of an external magnetic field, the interface of the liquids represents a plane surface. In fields which exceed the critical magnitude, the interface is deformed along the wave. As the field intensity is increased, the amplitude of interface distortion becomes larger. The two-dimensional shape of the free magnetic liquid surface may be realized experimentally using two plane layers of magnetic and nonmagnetic liquids in a uniform magnetic field tangent to the interface of the component layers. 7 refs., 9 figs

  11. Spectral features of background ULF noise during magnetic storms

    Science.gov (United States)

    Kotik, Dmitry; Ermakova, Elena; Ryabov, Alexander; Shchecoldin, Aexander

    The monitoring of tangential components of ULF noise below first Schumann resonance was permanently provided since 2003 up to now at mid-latitude station New Life (56N, 44,7E). The regular structure in ULF spectrograms named SRS -spectral resonance structure could be observed practically every night excepting years of solar activity maximum. The SRS appears in the ULF noise due existing the resonator for Alfven waves in the ionosphere at heights from the bottom up to 600 -1000 km [1]. It was noticed that during magnetically disturbed time the strong anti-correlation between the intensity of SRS events and K index from station on neighbor magnetic meridian [2]. For more detail investigation it was choused several magnetic storms. First one is storm witch has began at November 20, 2003 with maximum Kp=9 (strong), second -at March 19, 2006 with Kp=6+ (moderate) and the third -at November 25, 2008 with Kp=5 (weak). The spectra of magnetic component amplitude and polarization parameter were analyzed. The comparison with ionosond and magnetic field data as well as world TEC maps for mentioned storm periods were made. The dynamics of changing the properties of ULF spectra during the storms were explored. The general regularities of these changes were displayed. One of the prominent feathers appeared at the end of the strong and moderate storms looked like fish shoals. Perhaps this kind of ULF bursts is the same nature as well known pearls pulsation but displayed in broad frequency range 1-6 Hz. May be it could be classified as special spectral structure. The analysis of changing the properties of ULF spectra during the storms together with geo-physical data has shown that the main regularities in changes the SRS caused by changing of the ionospheric parameters above the observation point. But some of ULF spectral features are results of interaction waves and particles in the magnetosphere. 1. Belyaev P.P., Polyakov S.V., Ermakova E.N., Isaev S.V. Solar cycle variations in

  12. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  13. Carbon induced magnetism of SnO2 surfaces

    International Nuclear Information System (INIS)

    Lu, Ying-Bo; Ling, Z.C.; Cong, Wei-Yan; Zhang, Peng; Dai, Ying

    2015-01-01

    The magnetism induced by Carbon (C) in SnO 2 surfaces are investigated by first principle calculations. The results show that C substitution at the outmost surface oxygen sites can induce magnetism in (110), (001) and (101) surfaces of SnO 2 . (110) surface is the most stable surface and the magnetism in which is stronger than that in other two surfaces, indicating that it is (110), but not other surfaces provides the main contribution to the surface magnetism of C-doped SnO 2 (SnO 2 :C). The magnetic moments predominantly come from C-2p orbitals, which arise from the crystal field transformation induced by the loss of coordinated atoms and the destroy of the local symmetry, and is enhanced by the local lattice distortion due to the Jahn–Teller effect. In all three surface slabs, the magnetism decays when C dopants are deeper from the outmost surfaces and disappears eventually. This work provides more rational understanding to the observed magnetism in SnO 2 :C materials than ever. - Highlights: • We investigate surface magnetism in (110), (001) and (101) surfaces of SnO 2 :C. • (110) surface provides the main contribution to the surface magnetism of SnO 2 :C. • Magnetism predominantly come from C-2p orbitals and crystal field transformation

  14. Central nervous system lymphoma: magnetic resonance imaging features at presentation

    Directory of Open Access Journals (Sweden)

    Ricardo Schwingel

    2012-02-01

    Full Text Available OBJECTIVE: This paper aimed at studying presentations of the central nervous system (CNS lymphoma using structural images obtained by magnetic resonance imaging (MRI. METHODS: The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. RESULTS: All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. CONCLUSION: Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  15. Robotized Surface Mounting of Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Erik Hultman

    2014-10-01

    Full Text Available Using permanent magnets on a rotor can both simplify the design and increase the efficiency of electric machines compared to using electromagnets. A drawback, however, is the lack of existing automated assembly methods for large machines. This paper presents and motivates a method for robotized surface mounting of permanent magnets on electric machine rotors. The translator of the Uppsala University Wave Energy Converter generator is used as an example of a rotor. The robot cell layout, equipment design and assembly process are presented and validated through computer simulations and experiments with prototype equipment. A comparison with manual assembly indicates substantial cost savings and an improved work environment. By using the flexibility of industrial robots and a scalable equipment design, it is possible for this assembly method to be adjusted for other rotor geometries and sizes. Finally, there is a discussion on the work that remains to be done on improving and integrating the robot cell into a production line.

  16. Renormalization and the breakup of magnetic surfaces

    International Nuclear Information System (INIS)

    Greene, J.M.

    1983-02-01

    There has been very considerable progress in the last few years on problems that are equivalent to finding the global structure of magnetic field lines in toroidal systems. A general problem of this class has a solution that is so complicated that it is impossible to find equations for the location of a field line which are valid everywhere along an infinitely long line. However, recent results are making it possible to find the asymptotic behavior of such systems in the limit of long lengths. This is just the information that is desired in many situations, since it includes the determination of the existence, or nonexistence, of magnetic surfaces. The key to our present understanding is renormalization. The present state-of-the-art has been described in Robert MacKay's thesis, for which this is an advertisement

  17. FIRST SIMULTANEOUS DETECTION OF MOVING MAGNETIC FEATURES IN PHOTOSPHERIC INTENSITY AND MAGNETIC FIELD DATA

    International Nuclear Information System (INIS)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip

    2012-01-01

    The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow (≤2 km s –1 ) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.

  18. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available . An intelligent mesh morphing strategy where dissimilar feature surfaces can be extracted automatically also greatly reduces the amount of user input required. REFERENCES [1] R. Bryan, P.S. Mohan, A. Hopkins, F. Galloway, M. Taylor and P. Nair, Statitical...

  19. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  20. Magnetic signature of surface defects at nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Vollmers, Nora Jenny; Gerstmann, Uwe; Schmidt, Wolf Gero [Theoretische Physik, Universitaet Paderborn (Germany)

    2011-07-01

    The n-type doping of diamond has been a long-standing issue, which recently gained attention in the context of nanodiamonds. Attempts of doping with nitrogen failed to result in the Electron paramagnetic Resonance (EPR) fingerprints expected from bulk material. Instead, the nanodiamond signals show a much larger deviation from the free-electron g-value and are believed to be related to intrinsic, carbon inherited defects. However, the absence of the bulk-like EPR spectra does not mean that nitrogen is not incorporated at all. The N atoms could be built in predominantly at or at least close to the surfaces yielding EPR spectra, very different from those measured in the bulk. In this work, we elucidate the situation by investigating the magnetic signature of paramagnetic defects in the nanodiamonds. We use the gauge-including projector augmented plane wave (GI-PAW) approach to calculate the hyperfine splittings and the elements of the electronic g-tensor. Taking the C(100) surface as a first model system, a possible contribution of nitrogen is discussed by comparing EPR parameters for different N incorporation depths: Incorporated directly at the surface, N gives rise to surface states similar to intrinsic carbon dangling bond-like states. Otherwise N is able to introduce surface conductivity as demonstrated by calculated effective mass tensors.

  1. Waves on the surface of a magnetic fluid layer in a traveling magnetic field

    International Nuclear Information System (INIS)

    Zimmermann, K.; Zeidis, I.; Naletova, V.A.; Turkov, V.A.

    2004-01-01

    The plane flow of a layer of incompressible viscous magnetic fluid with constant magnetic permeability under the action of a traveling magnetic field is analyzed. The strength of the magnetic field producing a sinusoidal traveling small-amplitude wave on the surface of a magnetic fluid is found. This flow can be used in designing mobile robots

  2. Representing images using curvilinear feature driven subdivision surfaces.

    Science.gov (United States)

    Zhou, Hailing; Zheng, Jianmin; Wei, Lei

    2014-08-01

    This paper presents a subdivision-based vector graphics for image representation and creation. The graphics representation is a subdivision surface defined by a triangular mesh augmented with color attribute at vertices and feature attribute at edges. Special cubic B-splines are proposed to describe curvilinear features of an image. New subdivision rules are then designed accordingly, which are applied to the mesh and the color attribute to define the spatial distribution and piecewise-smoothly varying colors of the image. A sharpness factor is introduced to control the color transition across the curvilinear edges. In addition, an automatic algorithm is developed to convert a raster image into such a vector graphics representation. The algorithm first detects the curvilinear features of the image, then constructs a triangulation based on the curvilinear edges and feature attributes, and finally iteratively optimizes the vertex color attributes and updates the triangulation. Compared with existing vector-based image representations, the proposed representation and algorithm have the following advantages in addition to the common merits (such as editability and scalability): 1) they allow flexible mesh topology and handle images or objects with complicated boundaries or features effectively; 2) they are able to faithfully reconstruct curvilinear features, especially in modeling subtle shading effects around feature curves; and 3) they offer a simple way for the user to create images in a freehand style. The effectiveness of the proposed method has been demonstrated in experiments.

  3. Chaotic approach to evaluation of disturbed magnetic surfaces

    International Nuclear Information System (INIS)

    Kogoshi, Sumio; Mishimagi, Sigehiro; Yoshii, Keiichi; Maeda, Joji

    1998-01-01

    A circle mapping can approximately reproduce the cross section of magnetic surfaces and the value of the periodic driving force (K) at a magnetic island varies with the width of the magnetic island, which suggests the value of K is one of measures for the degradation of magnetic surfaces. The profile of a rotational transform has flat regions at the magnetic islands. The width of the flat region is proportional to the width of the magnetic island. Therefore it may be another measure of the degradation of magnetic surfaces. This method requires less data for the estimation than the usual method of calculating the width of magnetic islands. For collapsed magnetic surfaces that are produced by overlapping of two magnetic islands, the fractal dimension can effectively estimate the degradation of them. The fractal dimensions of cross sections of regular magnetic surfaces and clear magnetic islands are nearly 1, while that of a collapsed magnetic surface is about 1.2 in the present study. (author)

  4. Surface decorated Fe3O4 nanoparticles for magnetic hyperthermia

    Science.gov (United States)

    Gawali, Santosh L.; Barick, K. C.; Hassan, P. A.

    2017-05-01

    Magnetic nanoparticles have been widely investigated for their great potential in several biomedical applications such as magnetic hyperthermia, drug delivery and magnetic resonance imaging (MRI). We have developed a formulation in which the surface of Fe3O4 magnetic nanoparticles is decorated with succinic acid (SA) to provide enhanced colloidal stability in biological fluids while preserving their optimal magnetic properties. The successful surface decoration of particles with SA is evident from FTIR, TGA, DLS and zeta-potential measurements. XRD and TEM analysis revealed the formation of inverse spinel Fe3O4 nanoparticles of average size 10 nm. Our induction heating studies exhibited the excellent heating efficacy of these nanoparticles under applied AC magnetic field. The heating ability was found to be strongly dependent on the concentration of particles in magnetic suspension and applied AC magnetic field. Specifically, a novel water-dispersible surface decorated Fe3O4 nanoparticles formulation was developed for magnetic hyperthermia.

  5. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  6. Cardiac magnetic resonance feature tracking in Kawasaki disease convalescence.

    Science.gov (United States)

    Bratis, Konstantinos; Hachmann, Pauline; Child, Nicholas; Krasemann, Thomas; Hussain, Tarique; Mavrogeni, Sophie; Botnar, Rene; Razavi, Reza; Greil, Gerald

    2017-01-01

    The objective of this study was to determine whether left ventricular (LV) myocardial deformation indices can detect subclinical abnormalities in Kawasaki disease convalescence. We hypothesized that subclinical myocardial abnormalities due to inflammation represent an early manifestation of the disease that persists in convalescence. Myocardial inflammation has been described as a global finding in the acute phase of Kawasaki disease. Despite normal systolic function by routine functional measurements, reduced longitudinal strain and strain rate have been detected by echocardiography in the acute phase. Peak systolic LV myocardial longitudinal, radial, and circumferential strain and strain rate were examined in 29 Kawasaki disease convalescent patients (15 males; mean [standard deviation] age: 11 [6.6] years; median interval from disease onset: 5.8 [5.4] years) and 10 healthy volunteers (5 males; mean age: 14 [3.8] years) with the use of cardiac magnetic resonance (CMR) feature tracking. Routine indices of LV systolic function were normal in both groups. Comparisons were made between normal controls and (i) the entire Kawasaki disease group, (ii) Kawasaki disease subgroup divided by coronary artery involvement. Average longitudinal and circumferential strain at all levels was lower in patients compared to normal controls. In subgroup analysis, both Kawasaki disease patients with and without a history of coronary involvement had similar longitudinal and circumferential strain at all levels and lower when compared to controls. There were lower circumferential and longitudinal values in Kawasaki disease patients with persisting coronary artery lesions when compared to those with regressed ones. In this CMR study in Kawasaki disease convalescent patients with preserved routine functional indices, we detected lower circumferential and longitudinal strain values compared to normal controls, irrespective of the coronary artery status.

  7. Surface magnetic enhancement for coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1989-01-01

    The progress achieved during this quarter includes the ten months shelf life study of magnetizing reagent, the effect of cation regulators on minerals and coals, the combination effect of depressant and activator on the adsorption of magnetizing reagent, optimum magnetite size for magnetizing reagent, and the magnetic field strength for separating magnetic enhanced minerals. The work is generally on schedule with the original plan. The Phase I study (a fundamental study) is nearly completed. Selective conditions for adsorbing magnetizing reagent on minerals have been identified. The work for the next quarter will be mainly on the Phase II study. Coal will be selected, procured, characterized, and processed.

  8. Touching Textured Surfaces: Cells in Somatosensory Cortex Respond Both to Finger Movement and to Surface Features

    Science.gov (United States)

    Darian-Smith, Ian; Sugitani, Michio; Heywood, John; Karita, Keishiro; Goodwin, Antony

    1982-11-01

    Single neurons in Brodmann's areas 3b and 1 of the macaque postcentral gyrus discharge when the monkey rubs the contralateral finger pads across a textured surface. Both the finger movement and the spatial pattern of the surface determine this discharge in each cell. The spatial features of the surface are represented unambiguously only in the responses of populations of these neurons, and not in the responses of the constituent cells.

  9. Detection of a bright feature on the surface of Betelgeuse

    Energy Technology Data Exchange (ETDEWEB)

    Buscher, D.F.; Baldwin, J.E.; Warner, P.J. (Mullard Radio Astronomy Observatory, Cambridge (UK). Cavendish Lab.); Haniff, C.A. (Palomar Observatory, Pasadena, CA (USA))

    1990-07-01

    We present high-resolution images of the M-supergiant Betelgeuse in 1989 February at wavelengths of 633, 700 and 710 nm, made using the non-redundant masking method. At all these wavelengths, there is unambiguous evidence for an asymmetric feature on the surface of the star, which contributes 10-15 per cent of the total observed flux. This might be due to a close companion passing in front of the stellar disc or, more likely, to large-scale convection in the stellar atmosphere. (author).

  10. Measurement of magnetic surfaces on the Compact Auburn Torsatron

    International Nuclear Information System (INIS)

    Henderson, M.A.; Gandy, R.F.; Hanson, J.D.; Knowlton, S.F.; Swanson, D.G.

    1992-01-01

    The magnetic flux surfaces of the Compact Auburn Torsatron have been experimentally mapped in a variety of magnetic configurations. The magnetic surface mapping was done using the phosphor screen technique. The results are compared with an extensive computer model in order to validate the design coil structure and determine what modifications are needed to correct any minor winding errors. In initial field mapping experiments, a large up--down asymmetry was identified in the vacuum magnetic surfaces. A set of mapping studies was used to characterize the error through addition of terms to the coil winding law. The error was corrected with the use of a radial trim coil

  11. Magnetic resonance imaging features of asymptomatic bipartite patella

    International Nuclear Information System (INIS)

    O'Brien, J.; Murphy, C.; Halpenny, D.; McNeill, G.; Torreggiani, W.C.

    2011-01-01

    Objective: The purpose of our study was to describe the magnetic resonance imaging (MRI) features of bipartite patella in asymptomatic patients. Materials and methods: The study was prospective in type and performed following institutional ethical committees approval. In total, 25 subjects were recruited into the study and informed consent obtained in each case. The local radiology database was utilised in conjunction with a clinical questionnaire to identify patients who had asymptomatic bipartite patella. Any patient with a history of trauma or symptomatic disease was excluded from the study. MRI imaging was performed in each case on a 1.5 T system using a dedicated knee coil and a standardised knee protocol. The images obtained were then analysed by two musculoskeletal radiologists in consensus. Results: Of the 25 subjects, there were 8 females and 17 males. The mean age was 34.6 years. All but one of the bipartite fragments were located on the superolateral aspect of the patella. In 23 cases, one fragment was identified. The average transverse diameter of the fragment was 12.8 mm. The average distance between the fragment and the adjacent patella in the axial plane was 1.46 mm. In addition, the cartilage overlying the patella and accessory fragment was intact in all cases. The average thickness of the patella cartilage at its border to the fragment was 2.4 mm with an average ratio of the cartilage thickness of the fragment as compared with the cartilage thickness of the patella of 0.72. There was no evidence of high signal or bone marrow oedema on fluid sensitive sequences within either the patella or the fragment in any of the patients. Fluid was identified in the cleft between the patella and the fragment in the majority of cases. Conclusions: Asymptomatic bipartite patella is characterised by intact but thinned cartilage along the border between the patella and the fragment, fluid between the cleft and a lack of any bone marrow oedema or high signal within

  12. Magnetic resonance imaging features of asymptomatic bipartite patella

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, J., E-mail: juliemobrien@gmail.com [Department of Radiology, Adelaide and Meath Incorporating National Children' s Hospital, Tallaght, Dublin 24 (Ireland); Murphy, C.; Halpenny, D.; McNeill, G.; Torreggiani, W.C. [Department of Radiology, Adelaide and Meath Incorporating National Children' s Hospital, Tallaght, Dublin 24 (Ireland)

    2011-06-15

    Objective: The purpose of our study was to describe the magnetic resonance imaging (MRI) features of bipartite patella in asymptomatic patients. Materials and methods: The study was prospective in type and performed following institutional ethical committees approval. In total, 25 subjects were recruited into the study and informed consent obtained in each case. The local radiology database was utilised in conjunction with a clinical questionnaire to identify patients who had asymptomatic bipartite patella. Any patient with a history of trauma or symptomatic disease was excluded from the study. MRI imaging was performed in each case on a 1.5 T system using a dedicated knee coil and a standardised knee protocol. The images obtained were then analysed by two musculoskeletal radiologists in consensus. Results: Of the 25 subjects, there were 8 females and 17 males. The mean age was 34.6 years. All but one of the bipartite fragments were located on the superolateral aspect of the patella. In 23 cases, one fragment was identified. The average transverse diameter of the fragment was 12.8 mm. The average distance between the fragment and the adjacent patella in the axial plane was 1.46 mm. In addition, the cartilage overlying the patella and accessory fragment was intact in all cases. The average thickness of the patella cartilage at its border to the fragment was 2.4 mm with an average ratio of the cartilage thickness of the fragment as compared with the cartilage thickness of the patella of 0.72. There was no evidence of high signal or bone marrow oedema on fluid sensitive sequences within either the patella or the fragment in any of the patients. Fluid was identified in the cleft between the patella and the fragment in the majority of cases. Conclusions: Asymptomatic bipartite patella is characterised by intact but thinned cartilage along the border between the patella and the fragment, fluid between the cleft and a lack of any bone marrow oedema or high signal within

  13. Isolation of residuals using trend surface analysis to magnetic data ...

    African Journals Online (AJOL)

    Polynomial surfaces of various degrees are fitted to a magnetic data of Awo area, southwestern Nigeria with the aim of isolating the residuals of the area associated with mineralogy. The fourth degree surface correlates better with the magnetic map of the study area. The residualized data were obtained by subtracting the ...

  14. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  15. Land surface and climate parameters and malaria features in Vietnam

    Science.gov (United States)

    Liou, Y. A.; Anh, N. K.

    2017-12-01

    Land surface parameters may affect local microclimate, which in turn alters the development of mosquito habitats and transmission risks (soil-vegetation-atmosphere-vector borne diseases). Forest malaria is a chromic issue in Southeast Asian countries, in particular, such as Vietnam (in 1991, approximate 2 million cases and 4,646 deaths were reported (https://sites.path.org)). Vietnam has lowlands, sub-tropical high humidity, and dense forests, resulting in wide-scale distribution and high biting rate of mosquitos in Vietnam, becoming a challenging and out of control scenario, especially in Vietnamese Central Highland region. It is known that Vietnam's economy mainly relies on agriculture and malaria is commonly associated with poverty. There is a strong demand to investigate the relationship between land surface parameters (land cover, soil moisture, land surface temperature, etc.) and climatic variables (precipitation, humidity, evapotranspiration, etc.) in association with malaria distribution. GIS and remote sensing have been proven their powerful potentials in supporting environmental and health studies. The objective of this study aims to analyze physical attributes of land surface and climate parameters and their links with malaria features. The outcomes are expected to illustrate how remotely sensed data has been utilized in geohealth applications, surveillance, and health risk mapping. In addition, a platform with promising possibilities of allowing disease early-warning systems with citizen participation will be proposed.

  16. Diamond Provenance Through Shape, Colour, Surface Features and Value

    Science.gov (United States)

    Harris, J.

    2002-05-01

    The physical properties of diamond provide a possible means by which run-of-mine productions may be identified. Such properties as shape, the regularity and angularity of the crystal form, the level of transparency, colour, syngenetic inclusion content and surface feature characteristics, all as a function of diamond size, can classify diamond productions. In early work, up to 1500 diamonds in specific sizes ranging from just under 2mm up to 6mm were evaluated. Using this procedure, most of the diamonds from the main mines in southern Africa have now been classified. Within South Africa, the mine at Swartruggens is the only one to have measurable levels of cube-shaped diamonds and an absence of the spinel twin form of diamond, more commonly known as the macle. In Botswana, the proportion of cube related forms at Jwaneng is about four times that at Orapa. Whilst the common diamond colours, colourless, yellow and brown, occur in most mines, there is a marked change in the proportion of transparent green-coated diamonds with depth in mines such as Finsch and Jwaneng. Individual mines may also have very small proportions of distinctive diamond colours, such as pinks at the Argyle mine in Australia and blues in the Premier mine in South Africa. More recently, classification emphasis has shifted away from large numbers of diamonds examined and particular attention has been paid to surface features, which reflect changes to the diamond either whilst still in the kimberlite, or subsequently during transport to an alluvial source. A classification of diamonds at the Venetia mine, South Africa, for example, showed that the proportion of diamonds with the feature referred to as corrosion sculpture, was distinctive between kimberlite types within the mine. With alluvial diamonds, transport causes further defects, particularly a general increase in the proportion of diamonds with surface features referred to as percussion marks and edge abrasion. The above observational

  17. Estimating Antarctic near-surface magnetic anomalies from Oersted and CHAMP satellite magnetometer observations

    Science.gov (United States)

    von Frese, R. R.; Kim, H.; Gaya-Pique, L. R.; Taylor, P. T.; Golynsky, A. V.; Kim, J.

    2004-12-01

    Significant improvement in predicting near-surface magnetic anomalies can result from the highly accurate magnetic observations of the CHAMP satellite that is orbiting at about 400 km altitude. In general, regional magnetic signals of the crust are strongly masked by the core field and its secular variations due to wavelength coupling in the spherical harmonic representation and thus are difficult to isolate in the satellite measurements. However, efforts to isolate the regional lithospheric from core field components can exploit the correlations between the CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations. In addition, we can use spectral correlation theory to filter the static lithospheric field components from the dynamic external field effects. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Oersted and noisier Magsat observations, CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intra-crustal magnetic features and crustal thickness variations of the Antarctic. Moreover, these results greatly facilitate predicting magnetic anomalies in the regional coverage gaps of the ADMAP compilation of Antarctic magnetic anomalies from shipborne, airborne and ground surveys. Our analysis suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.

  18. Magnetocaloric features of complex molecular magnets: The (Cr7Ni)2Cu molecular magnet and beyond

    International Nuclear Information System (INIS)

    Florez, J.M.; Nunez, Alvaro S.; Garcia, C.; Vargas, P.

    2010-01-01

    We study the new kind of systems represented by the Cr 7 Ni-M-Cr 7 Ni (M=Cu +2 ) molecule, which is a promising molecular achievement from the perspective of molecular electronics. By using an effective quantum Hamiltonian, an exact calculation of the magnetic specific heat C Mag and the magnetocaloric features, namely, the adiabatic change of the entropy ΔS Mag and temperature ΔT ad , respectively, are developed. A systematic simulation of the magnetocaloric properties is generated by modifying the effective exchange couplings into the molecular system. Extended discussion of calculated magnetocaloric features and its possible realization by experimental methods, are performed. In addition, comparisons with an exact numerical result and with a Van Vleck transformation, which has important application in similar micromagnetic structures with no exact analytical solution and larger Hilbert space, are presented. Moreover, an expression for the entangling-excitation frequencies of these systems is given as first application of our simplified solution to the effective molecular Hamiltonian.

  19. Design features of the SSC [Superconducting Super Collider] dipole magnet

    International Nuclear Information System (INIS)

    Willen, E.; Cottingham, J.; Ganetis, G.

    1989-01-01

    The main ring dipole for the SSC is specified as a high performance magnet that is required to provide a uniform, 6.6 T field in a 4 cm aperture at minimum cost. These design requirements have been addressed in an R ampersand D program in which the coil design, coil mechanical support, yoke and shell structure, trim coil and beam tube design, and a variety of new instrumentation, have been developed. The design of the magnet resulting from this intensive R ampersand D program, including various measurements from both 1.8 m and 17 m long models, is reviewed. 7 refs., 3 figs

  20. Principle features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods

    International Nuclear Information System (INIS)

    Dubov, A.

    2006-01-01

    Principle features of method of metal magnetic memory (MMM) as compared to known magnetic NDT methods are considered. Among the basic features of the MMM method, that it is based on use of the own magnetic leakage field (SMLF), arising in ferromagnetic and paramagnetic products on accumulations of high-density dislocations. Magnetodislocation hysteresis underlying effect of metal magnetic memory, takes place as at manufacture of products during formation of internal stresses and at their operation under action of working loads. It is impossible to obtain an information source like a self-magnetic field at any conditions with artificial magnetization in working constructions. Such information is formed and can be obtained only in a small external field, as the Earth's magnetic field is, in loaded constructions when deformation energy is a cut above the energy of the external magnetic field. Features and uniqueness of magnetometric instruments are considered. The instruments have no world analogues. Opportunities of the MMM method for the solution of actual NDT problems are: 100% quality control of machine-building products and heterogeneity of metal structure in a line production; express quality control of welded joints in the united complex system of the factors 'structural-mechanical heterogeneity - defects of a weld - structural and technological stress concentrator'; and, early diagnostics of fatigue damages of metal at an estimation and forecasting of equipment lifetime. (author)

  1. Proteus syndrome: The magnetic resonance and radiological features

    Energy Technology Data Exchange (ETDEWEB)

    Cremin, B.J.; Viljoen, D.L.; Beighton, P.; Wynchank, S.

    1987-10-01

    The Proteus syndrome is a recently delineated group of skeletal and mesodermal malformations. Its characteristics include hemihypertrophy and fatty/lymphangiomatous masses. This description outlines the imaging sequences available to the radiologist. It is mainly concerned with the use of magnetic resonance imaging. This shows the extent of the mesodermal malformation with particular reference to the extent of intra abdominal infiltration.

  2. Ceres' deformational surface features compared to other planetary bodies.

    Science.gov (United States)

    von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.

    2016-04-01

    On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on

  3. Effect of iron on vanadium (001) strained surface magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M; Al-Barwani, M; Gismelseed, A; Al-Rawas, A; Yousif, A; Widatallah, H; Bouziane, K; Al-Omari, I, E-mail: elzain@squ.edu.o [Department of Physics, College Of Science, Box 36, Sultan Qaboos University, Al Khod 123 (Oman)

    2010-03-01

    The magnetism of the vanadium (001) surface has been a controversial subject on both theoretical and experiment fronts. Both strongly ferromagnetic and paramagnetic phases were reported. We have used the first principle full-potential linearized-augmented plane waves (FP-LAPW) as implemented in WIEN2k package to study the magnetic properties of strained surfaces of vanadium films as a function of film thickness. We found that for films thicker than about 11 monolayers, the magnetism of the strained surfaces converge to a constant value of about 0.15{mu}{sub B}. Introduction of Fe monolayers and impurities at the centre of the films affects the magnetic structure of thin films but has no influence on the surface magnetism of thicker films. For Fe monolayers positioned at the centre of thick films, the Fe atoms maintain magnetic moment of order 0.86{mu}{sub B}, a quadruple splitting of order -0.3 mm/s and a small negative isomer shift, while an Fe impurity has vanishing hyperfine fields and magnetic moment. In addition we have varied the location of the Fe monolayer and impurity within the V films and found that their position affects the surface magnetism.

  4. Caroli's disease: magnetic resonance imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Guy, France; Cognet, Francois; Dranssart, Marie; Cercueil, Jean-Pierre; Conciatori, Laurent; Krause, Denis [Department of Radiology and Imaging, Dijon Le Bocage University Hospital, 2 Blvd. Marechal de Lattre de Tassigny, BP 1542, 21034 Dijon Cedex (France)

    2002-11-01

    Our objective was to describe the main aspects of MR imaging in Caroli's disease. Magnetic resonance cholangiography with a dynamic contrast-enhanced study was performed in nine patients with Caroli's disease. Bile duct abnormalities, lithiasis, dot signs, hepatic enhancement, renal abnormalities, and evidence of portal hypertension were evaluated. Three MR imaging patterns of Caroli's disease were found. In all but two patients, MR imaging findings were sufficient to confirm the diagnosis. Moreover, MR imaging provided information about the severity, location, and extent of liver involvement. This information was useful in planning the best therapeutic strategy. Magnetic resonance cholangiography with a dynamic contrast-enhanced study is a good screening tool for Caroli's disease. Direct cholangiography should be reserved for confirming doubtful cases. (orig.)

  5. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  6. A magnetic particle micro-trap for large trapping surfaces

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-01-08

    Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle- based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range.

  7. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    magnetic properties of these nanoparticles combined with SERS provide a wide range of applications. Keywords. Surface-enhanced Raman scattering; magnetic nanoparticles; core-shell nanostructure; bio-diagnosis. 1. Introduction. In recent years, plasmonic nanostructures exhibiting novel optical properties have attracted ...

  8. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  9. Linked Min.B configuration inside high shear magnetic surface

    International Nuclear Information System (INIS)

    Ohasa, K.; Ikuta, K.

    1976-03-01

    Arrangement of the l = m baseball coils to form the toroidally linked Min.B configuration with large rotational transform is studied analytically and numerically. By an optimization the closed magnetic isobars are obtained inside the last closed magnetic surface having practical volume and high shear if l = 3 baseball coils are arranged. (auth.)

  10. Magnetic resonance imaging features of extremity sarcomas of uncertain differentiation

    International Nuclear Information System (INIS)

    Stacy, G.S.; Nair, L.

    2007-01-01

    The purpose of this review is to illustrate the pertinent clinical and imaging features of extremity sarcomas of uncertain differentiation, including synovial sarcoma, epithelioid sarcoma, clear-cell sarcoma, and alveolar soft part sarcoma. These tumours should be considered in the differential diagnosis when a soft-tissue mass is encountered in the extremity of an adolescent or young adult

  11. Surface Magnetism of Cobalt Nanoislands Controlled by Atomic Hydrogen.

    Science.gov (United States)

    Park, Jewook; Park, Changwon; Yoon, Mina; Li, An-Ping

    2017-01-11

    Controlling the spin states of the surface and interface is key to spintronic applications of magnetic materials. Here, we report the evolution of surface magnetism of Co nanoislands on Cu(111) upon hydrogen adsorption and desorption with the hope of realizing reversible control of spin-dependent tunneling. Spin-polarized scanning tunneling microscopy reveals three types of hydrogen-induced surface superstructures, 1H-(2 × 2), 2H-(2 × 2), and 6H-(3 × 3), with increasing H coverage. The prominent magnetic surface states of Co, while being preserved at low H coverage, become suppressed as the H coverage level increases, which can then be recovered by H desorption. First-principles calculations reveal the origin of the observed magnetic surface states by capturing the asymmetry between the spin-polarized surface states and identify the role of hydrogen in controlling the magnetic states. Our study offers new insights into the chemical control of magnetism in low-dimensional systems.

  12. Imaging of Groin Pain: Magnetic Resonance and Ultrasound Imaging Features.

    Science.gov (United States)

    Lee, Susan C; Endo, Yoshimi; Potter, Hollis G

    Evaluation of groin pain in athletes may be challenging as pain is typically poorly localized and the pubic symphyseal region comprises closely approximated tendons and muscles. As such, magnetic resonance imaging (MRI) and ultrasound (US) may help determine the etiology of groin pain. A PubMed search was performed using the following search terms: ultrasound, magnetic resonance imaging, sports hernia, athletic pubalgia, and groin pain. Date restrictions were not placed on the literature search. Clinical review. Level 4. MRI is sensitive in diagnosing pathology in groin pain. Not only can MRI be used to image rectus abdominis/adductor longus aponeurosis and pubic bone pathology, but it can also evaluate other pathology within the hip and pelvis. MRI is especially helpful when groin pain is poorly localized. Real-time capability makes ultrasound useful in evaluating the pubic symphyseal region, as it can be used for evaluation and treatment. MRI and US are valuable in diagnosing pathology in athletes with groin pain, with the added utility of treatment using US-guided intervention. Strength-of Recommendation Taxonomy: C.

  13. Surface spin tunneling and heat dissipation in magnetic nanoparticles

    Science.gov (United States)

    Palakkal, Jasnamol P.; Obula Reddy, Chinna; Paulose, Ajeesh P.; Sankar, Cheriyedath Raj

    2018-03-01

    Quantum superparamagnetic state is observed in ultra-fine magnetic particles, which is often experimentally identified by a significant hike in magnetization towards low temperatures much below the superparamagnetic blocking temperature. Here, we report experimentally observed surface spin relaxation at low temperatures in hydrated magnesium ferrite nanoparticles of size range of about 5 nm. We observed time dependent oscillatory magnetization of the sample below 2.5 K, which is attributed to surface spin tunneling. Interestingly, we observed heat dissipation during the process by using an external thermometer.

  14. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  15. Magnetic flux surface measurements at the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Otte, Matthias; Andreeva, Tamara; Biedermann, Christoph; Bozhenkov, Sergey; Geiger, Joachim; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lazerson, Samuel [Princeton Plasma Physics Laboratory, Princeton (United States)

    2016-07-01

    Recently the first plasma operation phase of the Wendelstein 7-X stellarator has been started at IPP Greifswald. Wendelstein 7-X is an optimized stellarator with a complex superconducting magnet system consisting of 50 non-planar and 20 planar field coils and further 10 normal conducting control and 5 trim coils. The magnetic confinement and hence the expected plasma performance are decisively determined by the properties of the magnet system, especially by the existence and quality of the magnetic flux surfaces. Even small error fields may result in significant changes of the flux surface topology. Therefore, measurements of the vacuum magnetic flux surfaces have been performed before plasma operation. The first experimental results confirm the existence and quality of the flux surfaces to the full extend from low field up to the nominal field strength of B=2.5T. This includes the dedicated magnetic limiter configuration that is exclusively used for the first plasma operation. Furthermore, the measurements are indicating that the intrinsic error fields are within the tolerable range and can be controlled utilizing the trim coils as expected.

  16. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Science.gov (United States)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; hide

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  17. Surface mapping of magnetic hot stars. Theories versus observations

    Science.gov (United States)

    Kochukhov, O.

    2018-01-01

    This review summarises results of recent magnetic and chemical abundance surface mapping studies of early-type stars. We discuss main trends uncovered by observational investigations and consider reliability of spectropolarimetric inversion techniques used to infer these results. A critical assessment of theoretical attempts to interpret empirical magnetic and chemical maps in the framework of, respectively, the fossil field and atomic diffusion theories is also presented. This confrontation of theory and observations demonstrates that 3D MHD models of fossil field relaxation are successful in matching the observed range of surface magnetic field geometries. At the same time, even the most recent time-dependent atomic diffusion calculations fail to reproduce diverse horizontal abundance distributions found in real magnetic hot stars.

  18. Surface magnetism of exfoliated α-Co hydroxide nanosheets

    Science.gov (United States)

    Honda, Zentaro; Anai, Katsuki; Hagiwara, Masayuki; Kida, Takanori; Okutani, Akira; Sakai, Masamichi; Fukuda, Takeshi; Kamata, Norihiko

    2017-08-01

    α-Co hydroxide nanosheets have been synthesized and their magnetic properties were investigated. By using a soft chemical exfoliation technique, exfoliated α-Co hydroxide nanosheets, typically with lateral dimensions of few 100 nm, were obtained in a colloidal suspension. The magnetic responses of a sample consisting of a colloidal suspension of the nanosheets indicates a ferromagnetic phase transition occurs at TC=37.8 K. The magnetization possesses a linear temperature dependence at low temperatures below TC. In addition to this observation, the magnetization is proportional to (1-T/TC)β with β=0.8±0.1 near TC, which imply that the surface magnetism dominates in the exfoliated α-Co hydroxide nanosheets.

  19. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  20. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Oleksandr; Perevertov, Oleksiy; Tomáš, Ivan; Skrbek, B.

    2011-01-01

    Roč. 323, č. 12 (2011), s. 1692-1697 ISSN 0304-8853 R&D Projects: GA ČR GA101/09/1323; GA ČR GP102/09/P108 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : Barkhausen noise * steel surface decarburization * residual stress * magnetic non-destructive testing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.780, year: 2011

  1. Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines

    Science.gov (United States)

    Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng

    2017-11-01

    This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.

  2. Evolution of magnetism on a curved nano-surface.

    Science.gov (United States)

    Merkel, D G; Bessas, D; Zolnai, Z; Rüffer, R; Chumakov, A I; Paddubrouskaya, H; Van Haesendonck, C; Nagy, N; Tóth, A L; Deák, A

    2015-08-14

    To design custom magnetic nanostructures, it is indispensable to acquire precise knowledge about the systems in the nanoscale range where the magnetism forms. In this paper we present the effect of a curved surface on the evolution of magnetism in ultrathin iron films. Nominally 70 Å thick iron films were deposited in 9 steps on 3 different types of templates: (a) a monolayer of silica spheres with 25 nm diameter, (b) a monolayer of silica spheres with 400 nm diameter and (c) for comparison a flat silicon substrate. In situ iron evaporation took place in an ultrahigh vacuum chamber using the molecular beam epitaxy technique. After the evaporation steps, time differential nuclear forward scattering spectra, grazing incidence small angle X-ray scattering images and X-ray reflectivity curves were recorded. In order to reconstruct and visualize the magnetic moment configuration in the iron cap formed on top of the silica spheres, micromagnetic simulations were performed for all iron thicknesses. We found a great influence of the template topography on the onset of magnetism and on the developed magnetic nanostructure. We observed an individual magnetic behaviour for the 400 nm spheres which was modelled by vortex formation and a collective magnetic structure for the 25 nm spheres where magnetic domains spread over several particles. Depth selective nuclear forward scattering measurements showed that the formation of magnetism begins at the top region of the 400 nm spheres in contrast to the 25 nm particles where the magnetism first appears in the region where the spheres are in contact with each other.

  3. Clay mineralogy and magnetic susceptibility of Oxisols in geomorphic surfaces

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2014-06-01

    Full Text Available Studies analyzing the variability of clay minerals and magnetic susceptibility provide data for the delineation of site-specific management areas since many of their attributes are important to agronomy and the environment. This study aimed to evaluate the spatial variability of clay minerals, magnetic susceptibility, adsorbed phosphorus and physical attributes in Oxisols of sandstones in different geomorphic surfaces. For that purpose, soil samples were collected every 25 m along a transect located within the area where the geomorphic surfaces were identified and mapped. The transect occupied the central portion of 500 ha, where it was also sampled for density purposes with one sample per six hectares. Soil samples were collected at a depth of 0.0-0.2 m. The results of the physical, chemical, mineralogical and magnetic susceptibility analyses were subjected to statistical and geostatistical analyses. The nature of the clay minerals and magnetic susceptibility was dependent on the variation of the soil parent material. High values of magnetic susceptibility were associated with the presence of maghemite and magnetite of coarse size. The spatial variability of crystallinity and the content of Fe oxides, as well as magnetic susceptibility, were dependent on the age of the geomorphic surfaces. The youngest surface had greater spatial variability of these attributes. The iron (goethite and hematite and aluminum (gibbsite oxides in the youngest geomorphic surface influenced the low values of soil density and high values of total pore volume, micropores and P adsorption. The characterization of the spatial variability of Fe oxides and susceptibility allowed for the delineation of homogeneous areas.

  4. Theory of magnetic transition metal nanoclusters on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lounis, S.

    2007-04-17

    This thesis is motivated by the quest for the understanding and the exploration of complex magnetism provided by atomic scale magnetic clusters deposited on surfaces or embedded in the bulk. Use is made of the density functional theory (DFT). Acting within this framework, we have developed and implemented the treatment of non-collinear magnetism into the Juelich version of the full-potential Korringa-Kohn-Rostoker Green Function (KKR-GF) method. Firstly, the method was applied to 3d transition-metal clusters on different ferromagnetic surfaces. Different types of magnetic clusters where selected. In order to investigate magnetic frustration due to competing interactions within the ad-cluster we considered a (001) oriented surface of fcc metals, a topology which usually does not lead to non-collinear magnetism. We tuned the strength of the magnetic coupling between the ad-clusters and the ferromagnetic surface by varying the substrate from the case of Ni(001) with a rather weak hybridization of the Ni d-states with the adatom d-states to the case of Fe{sub 3ML}/Cu(001) with a much stronger hybridization due to the larger extend of the Fe wavefunctions. On Ni(001), the interaction between the Cr- as well as the Mn-dimer adatoms is of antiferromagnetic nature, which is in competition with the interaction with the substrate atoms. After performing total energy calculations we find that for Cr-dimer the ground state is collinear whereas the Mn-dimer prefers the non-collinear configuration as ground state. Bigger clusters are found to be magnetically collinear. These calculations were extended to 3d multimers on Fe{sub 3ML}/Cu(001). All neighboring Cr(Mn) moments in the compact tetramer are antiferromagnetically aligned in-plane, with the directions slightly tilted towards (outwards from) the substrate to gain some exchange interaction energy. The second type of frustration was investigated employing a Ni(111) surface, a surface with a triangular lattice of atoms, were

  5. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  6. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

    Science.gov (United States)

    Jeon, Seongbeom; Subbiah, Ramesh; Bonaedy, Taufik; Van, Seyoung; Park, Kwideok; Yun, Kyusik

    2018-02-01

    Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics. © 2017 Wiley Periodicals, Inc.

  7. Destruction of Invariant Surfaces and Magnetic Coordinates for Perturbed Magnetic Fields

    International Nuclear Information System (INIS)

    Hudson, S.R.

    2003-01-01

    Straight-field-line coordinates are constructed for nearly integrable magnetic fields. The coordinates are based on the robust, noble-irrational rotational-transform surfaces, whose existence is determined by an application of Greene's residue criterion. A simple method to locate these surfaces is described. Sequences of surfaces with rotational-transform converging to low order rationals maximize the region of straight-field-line coordinates

  8. Mesogranulation and the Solar Surface Magnetic Field Distribution

    Science.gov (United States)

    Yelles Chaouche, L.; Moreno-Insertis, F.; Martínez Pillet, V.; Wiegelmann, T.; Bonet, J. A.; Knölker, M.; Bellot Rubio, L. R.; del Toro Iniesta, J. C.; Barthol, P.; Gandorfer, A.; Schmidt, W.; Solanki, S. K.

    2011-02-01

    The relation of the solar surface magnetic field with mesogranular cells is studied using high spatial (≈100 km) and temporal (≈30 s) resolution data obtained with the IMaX instrument on board SUNRISE. First, mesogranular cells are identified using Lagrange tracers (corks) based on horizontal velocity fields obtained through local correlation tracking. After ≈20 minutes of integration, the tracers delineate a sharp mesogranular network with lanes of width below about 280 km. The preferential location of magnetic elements in mesogranular cells is tested quantitatively. Roughly 85% of pixels with magnetic field higher than 100 G are located in the near neighborhood of mesogranular lanes. Magnetic flux is therefore concentrated in mesogranular lanes rather than intergranular ones. Second, magnetic field extrapolations are performed to obtain field lines anchored in the observed flux elements. This analysis, therefore, is independent of the horizontal flows determined in the first part. A probability density function (PDF) is calculated for the distribution of distances between the footpoints of individual magnetic field lines. The PDF has an exponential shape at scales between 1 and 10 Mm, with a constant characteristic decay distance, indicating the absence of preferred convection scales in the mesogranular range. Our results support the view that mesogranulation is not an intrinsic convective scale (in the sense that it is not a primary energy-injection scale of solar convection), but also give quantitative confirmation that, nevertheless, the magnetic elements are preferentially found along mesogranular lanes.

  9. Infrared lines as probes of solar magnetic features. VIII. Mg I 12 micron diagnostics of sunspots

    NARCIS (Netherlands)

    Bruls, J.H.M.J.; Solanki, S.K.; Rutten, R.J.; Carlsson, M.

    1995-01-01

    Due to their large Zeeman sensitivity, the MgI lines at 12μm are important diagnostics of solar magnetism. The formation of their central emission features is now understood, enabling quantitative modeling and diagnostic application of these lines. We supply the first systematic analysis of solar

  10. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    the formation of quark stars, with particular attention to the attractive quark-nova scenario which may be connected to r-process nucleosynthesis. 2. Degenerate electron gas in a strong magnetic field. Recently, a few authors [21] pointed out that the deficit of (massive) strange quarks due to surface effects on the star can lead ...

  11. Surface-modified magnetic nanoparticles for cell labeling

    Czech Academy of Sciences Publication Activity Database

    Zasońska, Beata Anna; Patsula, Vitalii; Stoika, R.; Horák, Daniel

    2014-01-01

    Roč. 13, č. 4 (2014), s. 63-73 ISSN 2305-7815 R&D Projects: GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic nanoparticles * surface-modified * cell labeling Subject RIV: CD - Macromolecular Chemistry

  12. Noncollinear magnetism in surfaces and interfaces of transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huahai

    2009-09-15

    Noncollinear (NC) magnetism is common in nature, especially when there exist geometrical frustration and chemical imparity in the system. In this work we studied the NC magnetism and the response to external magnetic fields in surfaces and interfaces of transition metals by using an semi-empirical tight-binding (TB) method that parameterized to the ab initio TB-LMTO calculations. We implemented this method to study two systems. The first one is the system of 6 Mn monolayers on Fe(001) substrate. Due to the complex structure and magnetic properties of Mn, we found 23 collinear magnetic configurations but only one NC configuration. The collinear ground state has a layered antiferromagnetic (AFM) coupling which agrees with previous experiments and calculations. In the NC configuration the local AFM coupling in the Mn layers is preserved, but the surface is 90 degree coupled to the substrate. Similar to the experiment in CdCr{sub 2}O{sub 4}, we obtained a collinear plateau in the NC evolution of the average magnetic moment in Mn slab under external magnetic fields. Another is the system of a Cr monolayer on a stepped Fe(001) substrate. As expected, the local AFM coupling in the interface of Cr and Fe are preserved. However, the edge Cr atoms is about 90 coupled to their nearest Fe neighbors. We also simulated the procedure of adding more Cr coverages gradually to a Cr bilayer coverage. As coverages increase, the magnetic moments in the Cr interface reduce, and the collinear plateau becomes wider as coverages increase. However, the saturation fields in both the two systems are extremely high, around 10 kT.We expect that when the effect of temperature is taken into account, and in some proper systems, the saturation fields could be largely reduced to the scale that can be implemented in experiment, and our study may shed light on information storage devices with ultrahigh storage density. (orig.)

  13. High-resolution Observation of Moving Magnetic Features in Active Regions

    Science.gov (United States)

    Li, Qin; Deng, Na; Jing, Ju; Wang, Haimin

    2017-08-01

    Moving magnetic features (MMFs) are small photospheric magnetic elements that emerge and move outward toward the boundary of moat regions mostly during a sunspot decaying phase, in a serpent wave-like magnetic topology. Studies of MMFs and their classification (e.g., unipolar or bipolar types) strongly rely on the high spatiotemporal-resolution observation of photospheric magnetic field. In this work, we present a detailed observation of a sunspot evolution in NOAA active region (AR) 12565, using exceptionally high resolution Halpha images from the 1.6 New Solar telescope (NST) at Big Bear Solar Observatory (BBSO) and the UV images from the Interface Region Imaging Spectrograph (IRIS). The spectropolarimetric measurements of photospheric magnetic field are obtained from the NST Near InfraRed Imaging Spectropolarimeter (NIRIS) at Fe I 1.56 um line. We investigate the horizontal motion of the classified MMFs and discuss the clustering patterns of the geometry and motion of the MMFs. We estimate the rate of flux generation by appearance of MMFs and the role MMFs play in sunspot decaying phase. We also study the interaction between the MMFs and the existing magnetic field features and its response to Ellerman bombs and IRIS bombs respectively at higher layers.

  14. Electric control of magnetism in low-dimensional magnets on ferroelectric surfaces

    Directory of Open Access Journals (Sweden)

    Dorj Odkhuu

    2017-05-01

    Full Text Available Employing first-principles electronic structure calculations, we have studied the electric field controls of magnetism and magnetic anisotropy energy (MAE of the Fe adatoms on ferroelectric BaTiO3 and PbTiO3 surfaces. Remarkably, those effects exhibit dependence of the level of coverage as well as adsorption site of Fe atoms. While the magnitude of MAE is shown tunable by ferroelectric polarization in the full coverage of Fe monolayer, the direction of magnetization undergoes a transition from perpendicular to in-plane for the half or lower coverages. This magnetization reorientation is mainly ascribed to the site-dependent Fe d–O p hybridization, as a consequence of the formation of FeTiO2 layer at the surface.

  15. Oceanic whitecaps: Sea surface features detectable via satellite that ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Andreas et al (1995), and figure 1 of Monahan and Spillane (1984). et al (1995) made detailed measurements in a large wave basin of the increases in brightness tempera- ture associated with measured increases in stage A whitecap coverage. It follows that the fraction of the sea surface covered by stage A whitecaps can ...

  16. Surface and upper air meteorological features during onset phase of ...

    Indian Academy of Sciences (India)

    Over the Bay of Bengal higher negative (air to sea) values of sensible flux prevailed before the monsoon onset which became less negative with the advance of monsoon over that region. The pre-onset period was characterized by large sea surface temperature (SST) gradient over the Arabian Sea with rapid decrease ...

  17. FEATURES OF GEODEFORMATION CHANGES OF NEAR SURFACE SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    I. A. Larionov

    2016-11-01

    Full Text Available The results of investigations of the deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007,are presented. The peculiarity of the experiments on the registration of geodeformations is the application of a laser deformograph-interferometer constructed according to the Michelson interferometer scheme.

  18. Evaluation of surface decarburization depth by magnetic Barkhausen noise technique

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, O., E-mail: stupak@fzu.c [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 18221 Prague (Czech Republic); Perevertov, O.; Tomas, I. [Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 18221 Prague (Czech Republic); Skrbek, B. [Technical University of Liberec, Studentska 2, 46117 Liberec (Czech Republic)

    2011-06-15

    Industrially unfavorable process of steel surface decarburization was induced by annealing in air. Two methods of after-anneal surface treatment were used: an acid pickling and a sand blasting. The obtained decarburized layers were examined by optical microscope, wave dispersive spectrometer, and surface X-ray diffraction method. Magnetic Barkhausen noise technique was tested for applicability of non-destructive characterization of the decarburized layer depth. A newly introduced parameter, Barkhausen noise coercivity, was proposed for practical use due to its sensitivity to decarburization and stability to measurement conditions. Other magnetic parameters, e.g. number of Barkhausen noise counts, were found to be sensitive to the compressive residual stress caused by the sand blasting. - Research highlights: Barkhausen coercivity shows good stability and sensitivity to decarburization depth. Number of Barkhausen noise counts indicates compressive residual stress. Rms value of Barkhausen noise shows nonmonotonic dependence on decarburization depth.

  19. Observational Effects of Magnetism in O Stars: Surface Nitrogen Abundances

    Science.gov (United States)

    Martins, F.; Escolano, C.; Wade, G. A.; Donati, J. F.; Bouret, J. C.

    2011-01-01

    Aims. We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star Tau Sco.. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. Methods. We conduct a quantitative spectroscopic analysis of the ample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. Results. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results shOuld be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.

  20. Feature-based handling of surface faults in compact disc players

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2006-01-01

    In this paper a novel method called feature-based control is presented. The method is designed to improve compact disc players’ handling of surface faults on the discs. The method is based on a fault-tolerant control scheme, which uses extracted features of the surface faults to remove those from...... the detector signals used for control during the occurrence of surface faults. The extracted features are coefficients of Karhunen–Loève approximations of the surface faults. The performance of the feature-based control scheme controlling compact disc players playing discs with surface faults has been...... validated experimentally. The proposed scheme reduces the control errors due to the surface faults, and in some cases where the standard fault handling scheme fails, our scheme keeps the CD-player playing....

  1. Engineered biomimicry: polymeric replication of surface features found on insects

    Science.gov (United States)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  2. Electron-acoustic solitary waves in a magnetized plasma with hot electrons featuring Tsallis distribution

    Science.gov (United States)

    Tribeche, Mouloud; Sabry, Refaat

    2012-10-01

    Nonlinear dynamics of electron-acoustic solitary waves in a magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons featuring Tsallis distribution, and stationary ions are examined. The nonlinear evolution equation (i.e., Zakharov-Kuznetsov (ZK) equation), governing the propagation of EAS waves in such plasma is derived and investigated analytically and numerically, for parameter regimes relevant to the dayside auroral zone. It is revealed that the amplitude, strength and nature of the nonlinear EAS waves are extremely sensitive to the degree of the hot electron nonextensivity. Furthermore, the obtained results are in good agreement with the observations made by the Viking satellite.

  3. Preparation, surface modification and microwave characterization of magnetic iron fibers

    Energy Technology Data Exchange (ETDEWEB)

    Nie Yan [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: nieyanko@yahoo.com.cn; He Huahui [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao Zhenshen [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Gong Rongzhou [Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu Hongbin [Department of optoelectronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2006-11-15

    In this paper, magnetic iron fibers of 3-10 {mu}m diameter and an adjustable aspect ratio were synthesized successfully by a method involving pyrolysis of carbonyl under a magnetic field. A surface modification technology was also investigated. The electromagnetic parameters of the iron-fiber-wax composites were measured using the transmission/reflection coaxial line method in the microwave frequency range of 2-18 GHz. The results show that the prepared iron-fiber-wax composites exhibit high magnetic loss that can be further improved after phosphating. On the other hand, the complex permittivity was significantly decreased after phosphating. As a result, this kind of iron fiber may be useful for thin and lightweight radar-absorbing materials.

  4. The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces.

    Science.gov (United States)

    Kahle, Steffen; Deng, Zhitao; Malinowski, Nikola; Tonnoir, Charlène; Forment-Aliaga, Alicia; Thontasen, Nicha; Rinke, Gordon; Le, Duy; Turkowski, Volodymyr; Rahman, Talat S; Rauschenbach, Stephan; Ternes, Markus; Kern, Klaus

    2012-01-11

    The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support. © 2011 American Chemical Society

  5. Gapless Fermi Surfaces in anisotropic multiband superconductors in magnetic field.

    Science.gov (United States)

    Barzykin, Victor; Gor'kov, Lev P.

    2007-03-01

    We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the 1-st order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.

  6. Statistical Analysis of Magnetic Abrasive Finishing (MAF) On Surface Roughness

    Science.gov (United States)

    Givi, Mehrdad; Tehrani, Alireza Fadaei; Mohammadi, Aminollah

    2010-06-01

    Magnetic assisted finishing is one of the nontraditional methods of polishing that recently has been attractive for the researchers. This paper investigates the effects of some parameters such as rotational speed of the permanent magnetic pole, work gap between the permanent pole and the work piece, number of the cycles and the weight of the abrasive particles on aluminum surface plate finishing. The three levels full factorial method was used as the DOE technique (design of experiments) for studying the selected factors. Analysis of Variance (ANOVA) has been used to determine significant factors and also to obtain an equation based on data regression. Experimental results indicate that for a change in surface roughness ΔRa, number of cycles and working gap are found to be the most significant parameters followed by rotational speed and then weight of powders.

  7. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  8. Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles

    OpenAIRE

    Pinheiro, Paula C.; Daniel-da-Silva, Ana L.; Tavares, Daniela S.; Calatayud, M. Pilar; Goya, Gerardo F.; Trindade, Tito

    2013-01-01

    Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs) with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe3O4@SiO2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC), mediated by assembled shells of the c...

  9. Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases

    International Nuclear Information System (INIS)

    Vogel, Daniela; Righi, Alberto; Kreshak, Jennifer; Dei Tos, Angelo Paolo; Merlino, Biagio; Brunocilla, Eugenio; Vanel, Daniel

    2014-01-01

    Lipofibromatosis is a rare, benign, but infiltrative, soft tissue tumor seen in children. We present three cases of lipofibromatosis, each with different magnetic resonance imaging features and correlate this with the histological findings. The patients comprised two males and one female who presented in infancy; at birth, 5 months, and 7 months of age. Clinically, the masses were painless and slow-growing. The masses ranged in size from 2 to 6 cm and involved the distal extremities in two cases (one foot, one wrist) and the trunk. Magnetic resonance imaging showed lipomatous lesions with varying amounts of adipose and solid components in each case. There were no capsules at the periphery of the lesions. One case showed a fat-predominant lesion, another an equal mixture of fat and solid tissue, and the third was predominantly solid. This was reflected in the histology, which showed corresponding features. Radiological and histopathological differential diagnoses are reviewed. (orig.)

  10. Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Daniela; Righi, Alberto; Kreshak, Jennifer; Dei Tos, Angelo Paolo [Istituto Ortopedico Rizzoli, Bologna (Italy); Merlino, Biagio [Universita Cattolica del Sacro Cuore Policlinico ' ' A. Gemelli' ' , Dipartimento di Scienze Radiologiche, Roma (Italy); Brunocilla, Eugenio [U.O. di UROLOGIA, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna (Italy); Vanel, Daniel [Istituto Ortopedico Rizzoli, Anatomia Patologica, Bologna (Italy)

    2014-05-15

    Lipofibromatosis is a rare, benign, but infiltrative, soft tissue tumor seen in children. We present three cases of lipofibromatosis, each with different magnetic resonance imaging features and correlate this with the histological findings. The patients comprised two males and one female who presented in infancy; at birth, 5 months, and 7 months of age. Clinically, the masses were painless and slow-growing. The masses ranged in size from 2 to 6 cm and involved the distal extremities in two cases (one foot, one wrist) and the trunk. Magnetic resonance imaging showed lipomatous lesions with varying amounts of adipose and solid components in each case. There were no capsules at the periphery of the lesions. One case showed a fat-predominant lesion, another an equal mixture of fat and solid tissue, and the third was predominantly solid. This was reflected in the histology, which showed corresponding features. Radiological and histopathological differential diagnoses are reviewed. (orig.)

  11. Plasmas fluxes to surfaces for an oblique magnetic field

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Stangeby, P.C.; Elder, J.D.; Bell, M.G.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Owens, D.K.; Ramsey, A.T.; Ulrickson, M.

    1992-07-01

    The poloidal and toroidal spatial distributions of D α , He I and C II emission have been obtained in the vicinity of the TFTR bumper limiter and are compared with models of ion flow to the surface. The distributions are found not to agree with a model (the ''Cosine'' model) which determines the incident flux density using only the parallel fluxes in the scrape-off layer and the projected area of the surface perpendicular to the field lines. In particular, the Cosine model is not able to explain the significant fluxes observed at locations on the surface which are oblique to the magnetic field. It is further shown that these fluxes cannot be explained by the finite Larmor radius of impinging ions. Finally, it is demonstrated, with the use of Monte Carlo codes, that the distributions can be explained by including both parallel and cross-field transport onto the limiter surface

  12. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models

    International Nuclear Information System (INIS)

    Khalvati, Farzad; Wong, Alexander; Haider, Masoom A.

    2015-01-01

    Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data. In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI). Moreover, the proposed texture feature models incorporate features from individual b-value images. A comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature models. We performed feature selection analysis for each individual modality and then combined best features from each modality to construct the optimized texture feature models. The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy. Comprehensive texture feature models were developed for improved radiomics-driven detection of prostate cancer using MP-MRI. Using a

  13. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  14. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  15. Single-chain magnet features in 1D [MnR4TPP][TCNE] compounds

    International Nuclear Information System (INIS)

    Balanda, Maria; Tomkowicz, Zbigniew; Rams, Michal; Haase, Wolfgang

    2011-01-01

    Molecular chains of antiferrimagnetically coupled Mn III -ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T b = 6.6K, while that with R = F in Meta position shows both blocking (T b = 5.4 K) and magnetic ordering transition (T c = 10 K). For bulky groups R = OC n H 2n+1 , the magnetically ordered phase is observed (T c ∼ 22 K), which does not however prevent slow relaxation at T c of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  16. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Schumann, F.O. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  17. Cleaning of magnetic nanoparticle surfaces via cold plasmas treatments

    Directory of Open Access Journals (Sweden)

    Narayan Poudyal

    2017-05-01

    Full Text Available We report surface cleaning of magnetic nanoparticles (SmCo5 nanochips and CoFe2O4 nanoparticles by using cold plasma. SmCo5 nanochips and CoFe2O4 nanoparticles, coated with surfactants (oleic acid and oleylamine, respectively on their surfaces, were treated in cold plasmas generated in argon, hydrogen or oxygen atmospheres. The plasmas were generated using a capacitively coupled pulsed radio frequency discharge. Surface cleaning of nanoparticles was monitored by measurement of the reduction of surface carbon content as functions of plasma processing parameters and treatment times. EDX and XPS analyses of the nanoparticles, obtained after the plasma treatment, revealed significant reduction of carbon content was achieved via plasma treatment. The SmCo5 nanochips and CoFe2O4 nanoparticles treated in an argon plasma revealed reduction of atomic carbon content by more than 54 and 40 in atomic percentage, compared with the untreated nanoparticles while the morphology, crystal structures and magnetic properties are retained upon the treatments.

  18. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    International Nuclear Information System (INIS)

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-01-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the open-quotes sum rules.close quotes Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source

  19. Thermal Infrared Spectra of Microcrystalline Sedimentary Phases: Effects of Natural Surface Roughness on Spectral Feature Shape

    Science.gov (United States)

    Hardgrove, C.; Rogers, A. D.

    2012-03-01

    Thermal infrared spectral features of common microcrystalline phases (chert, alabaster, micrite) are presented. Spectra are sensitive to mineralogy and micron-scale (~1-25 µm) surface roughness. Roughness is on the scale of the average crystal size.

  20. Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials

    Science.gov (United States)

    Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang

    2018-03-01

    We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.

  1. Surface impedance of travelling--Wave antenna in magnetized plasma

    International Nuclear Information System (INIS)

    Denisenko, I.B.; Ostrikov, K.N.

    1993-01-01

    Wave properties of metal antennas immersed in a magnetoactive plasma are intensively studied nowadays with the objects of radio communications in ionosphere, plasma heating, gas discharge technique. Many papers are devoted to studies of sheath waves (SW) in magnetoplasma, which are surface by nature and propagate along the metal-low-density sheath-plasma waveguide structure. The results of these papers suggest that the existence of these waves makes significant contribution in antenna impedance. Note that the impedance measurement is one of possible ways of experimental surface waves characterization. In the present report the surface impedance of travelling SW antenna immersed in magnetoactive plasma is calculated and its dependence on the waveguide structure parameters such as plasma density, external magnetic field H 0 and electrons collisional frequency values, sheath region width, conductivity of metal surface is studied. The calculations have been carried out in a quasiplane approximation, when antenna radius greatly exceeds the SW skin depth. Note that the finite conductivity of metal is necessary to be taken into account to provide a finite surface impedance value. The surface impedance is calculated in two cases, namely when SW propagate along (Ζ parallel ) and across (Ζ perpendicular ) the external magnetic field. The relation between the values Ζ parallel and Ζ perpendicular is obtained. This relation shows that the values Ζ parallel and Ζ parallel may satisfy both inequalities Ζ parallel much-gt Ζ perpendicular and Ζ perpendicular approx-gt Ζ perpendicular dependent on the parameters of the structure. The comparison of dispersion properties of the SW propagating along Η 0 with the experimental results is carried out. The results are shown to satisfactorily correspond to the experimental results

  2. Surface magnetic phase transitions in Dy/Lu superlattices

    International Nuclear Information System (INIS)

    Goff, J.P.; Sarthour, R.S.; Micheletti, C.; Langridge, S.; Wilkins, C.J.T.; Ward, R.C.C.; Wells, M.R.

    1999-01-01

    Dy/Lu superlattices comprising ferromagnetic Dy blocks coupled antiferromagnetically across the Lu blocks may be modelled as a chain of XY spins with antiferromagnetic exchange and six-fold anisotropy. We have calculated the stable magnetic phases for the cases of large anisotropy and a field applied along an easy direction. For an infinite chain an intermediate phase (1, 5,...) is predicted, where the notation gives the angle between the moment and the applied field in units of π/3. Furthermore, the effects of surface reconstruction are determined for finite chains. A [Dy 20 Lu 12 ] 20 superlattice has been studied using bulk magnetization and polarized neutron reflectivity. The (1, 5,...) phase has been identified and the results provide direct evidence in support of the theoretical predictions. Dipolar forces are shown to account for the magnitude of the observed exchange coupling. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Ab initio theory of magnetic interactions at surfaces

    International Nuclear Information System (INIS)

    Sousa, C; Graaf, C de; Lopez, N; Harrison, N M; Illas, F

    2004-01-01

    The low to high spin energy transition of Ni adsorbed on regular and defective sites of MgO(100) and the relative strengths of bulk and surface magnetic coupling constants of first row transition metal oxides (MnO, FeO, CoO, NiO and CuO) are taken as examples to illustrate some deficiencies of density functional theory (DFT). For these ionic systems a cluster/periodic comparison within the same computational method (either DFT or Hartree-Fock) is used to establish that embedded cluster models provide an adequate representation. The cluster model approach is then used to obtain accurate values for the magnetic properties of interest by using explicitly correlated wavefunction methods which handle the electronic open shell rigorously as spin eigenfunctions

  4. Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tito Trindade

    2013-07-01

    Full Text Available Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe3O4@SiO2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC, mediated by assembled shells of the cationic polyelectrolyte, polyethyleneimine (PEI. The Fe3O4 functionalized particles were then preliminary evaluated as fluorescent and magnetic probes by performing studies in which neuroblast cells have been contacted with these nanomaterials.

  5. Surface segregations in amorphous magnetically soft alloy under oxidation

    International Nuclear Information System (INIS)

    Bayankin, V.A.; Vasil'ev, V.Yu.; Volkova, I.B.; Skvortsova, N.G.; Smirnova, O.I.

    1997-01-01

    Using the Auger electron spectroscopy and electron reflecting diffraction the effects of high temperature annealing and electro-chemical treatment on chemical composition and atomic structure of amorphous magnetically soft alloy Co 57 Fe 5 Ni 10 Si 11 B 7 were investigated. It is shown the surface layers on the base of silicon carbide are formed during annealing while during electro-chemical treatment a cobalt borides are formed. Besides, during electro-chemical treatment the amorphous structure with different interatomic space are saved depending on time. At the time, mechanical properties of the alloy are not worse and it may be used for manufacturing of magnetodrives from amorphous magnetically soft materials [ru

  6. Imposed, ordered dust structures and other plasma features in a strongly magnetized plasma

    Science.gov (United States)

    Thomas, Edward; Leblanc, Spencer; Lynch, Brian; Konopka, Uwe; Merlino, Robert; Rosenberg, Marlene

    2015-11-01

    The Magnetized Dusty Plasma Experiment (MDPX) device has been in operation for just over one year. In that time, the MDPX device has been operating using a uniform magnetic field configuration up to 3.0 Tesla and has successfully produced plasmas and dusty plasmas at high magnetic fields. In these experimental studies, we have made observations of a new type of imposed, ordered structure in a dusty plasma at magnetic fields above 1 T. These dusty plasma structures are shown to scale inversely with neutral pressure and are shown to reflect the spatial structure of a wire mesh placed in the plasma. Additionally, recent measurements have been made that give insights into the effective potential that establishes the ordered structures in the plasma. In this presentation, we report on details of the imposed, ordered dusty plasma structure as well as filamentary features that also appear in the plasma and modify the confinement of the dusty plasma. This work is supported with funding from the NSF and Department of Energy.

  7. ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY

    International Nuclear Information System (INIS)

    Yang, Kai; Guo, Yang; Ding, M. D.

    2015-01-01

    Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12–25 keV energy band were located at the footpoints of this hot channel. Using a nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope

  8. Correlation of magnetic and lithologic features of soils and Quaternary sediments from the Undulating Pampa, Argentina

    Science.gov (United States)

    Nabel, P. E.; Morrás, H. J. M.; Petersen, N.; Zech, W.

    1999-11-01

    A lithological and mineral magnetic study of three soil and underlying sedimentary sections located at different topographic positions in the Undulating Pampa was performed. On the basis of grain size analyses, clay, silt and sand mineralogy, and total Ti/Zr relationship three different sedimentary units were recognised in the profiles under study suggesting that the area has been influenced by three different sources of sediments. Magnetic susceptibility (MS) appears to be related to lithology, allowing the identification of some material and lithologic discontinuities. In the studied cases the maximum values of MS appear in both the B horizons of the present zonal soils as well as in the primary or reworked loess levels. In contrast, minimum values are associated with calcrete, paleosol, and hydromorphic horizons. Although magnetic susceptibility appears to be an effective means for identifying different materials and pedological features in this area, due to the superposition of effects on the magnetic signal a thorough interpretation of MS requires that a composite analysis should be made.

  9. Features of 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    International Nuclear Information System (INIS)

    Devred, A.

    1998-03-01

    In 1991, the Laboratoire Europeen pour la Physique des particules (CERN) has launched the fabrication in industry of seven 10-m long, 50-mm-twin-aperture dipole magnet prototypes for the Large Hadron Collider (LHC). Three of these prototypes were built in Italy, in collaboration with the Istituto Nazionale di Fisica Nucleare (INFN, by Ansaldo Energia Spa, two were built in Germany by Noell GmbH, one was built in France by a consortium constituted by Jeumont Industries and GEC Alsthom, and the last one was built by a consortium constituted by Elin in Austria and Holec in the Netherlands. In this paper, we review the design and specific features of the seven LHC dipole magnet prototypes. (author)

  10. Features of 10-M-long, 50-MM-Twin-aperture LHC dipole magnet prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A. [CEA Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee]|[CERN, Laboratoire Europeen pour la Physique des Particules, Geneva (Switzerland)

    1998-03-01

    In 1991, the Laboratoire Europeen pour la Physique des particules (CERN) has launched the fabrication in industry of seven 10-m long, 50-mm-twin-aperture dipole magnet prototypes for the Large Hadron Collider (LHC). Three of these prototypes were built in Italy, in collaboration with the Istituto Nazionale di Fisica Nucleare (INFN, by Ansaldo Energia Spa, two were built in Germany by Noell GmbH, one was built in France by a consortium constituted by Jeumont Industries and GEC Alsthom, and the last one was built by a consortium constituted by Elin in Austria and Holec in the Netherlands. In this paper, we review the design and specific features of the seven LHC dipole magnet prototypes. (author) 21 refs.

  11. Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique.

    Science.gov (United States)

    Almutairi, Haifa M; Boubertakh, Redha; Miquel, Marc E; Petersen, Steffen E

    2017-12-01

    Cardiovascular magnetic resonance (CMR) imaging is an important modality that allows the assessment of regional myocardial function by measuring myocardial deformation parameters, such as strain and strain rate throughout the cardiac cycle. Feature tracking is a promising quantitative post-processing technique that is increasingly used. It is commonly applied to cine images, in particular steady-state free precession, acquired during routine CMR examinations. To review the studies that have used feature tracking techniques in healthy subjects or patients with cardiovascular diseases. The article emphasizes the advantages and limitations of feature tracking when applied to regional deformation parameters. The challenges of applying the techniques in clinics and potential solutions are also reviewed. Research studies in healthy volunteers and/or patients either applied CMR-feature tracking alone to assess myocardial motion or compared it with either established CMR-tagging techniques or to speckle tracking echocardiography. These studies assessed the feasibility and reliability of calculating or determining global and regional myocardial deformation strain parameters. Regional deformation parameters are reviewed and compared. Better reproducibility for global deformation was observed compared with segmental parameters. Overall, studies demonstrated that circumferential was the most reproducible deformation parameter, usually followed by longitudinal strain; in contrast, radial strain showed high variability. Although feature tracking is a promising tool, there are still discrepancies in the results obtained using different software packages. This highlights a clear need for standardization of MRI acquisition parameters and feature tracking analysis methodologies. Validation, including physical and numerical phantoms, is still required to facilitate the use of feature tracking in routine clinical practice.

  12. Technology of magnetic abrasive finishing in machining of difficult-to-machine alloy complex surface

    Directory of Open Access Journals (Sweden)

    Fujian MA

    2016-10-01

    Full Text Available The technology of magnetic abrasive finishing is one of the important finishing technologies. Combining with low-frequency vibration and ultrasonic vibration, it can attain higher precision, quality and efficiency. The characteristics and the related current research of magnetic abrasive finishing, vibration assisted magnetic abrasive finishing and ultrasonic assisted magnetic abrasive finishing are introduced. According to the characteristics of the difficult-to-machine alloy's complex surface, the important problems for further study are presented to realize the finishing of complex surface with the technology of magnetic abrasive finishing, such as increasing the machining efficiency by enhancing the magnetic flux density of machining gap and compounding of magnetic energy and others, establishing of the control function during machining and the process planning method for magnetic abrasive finishing of complex surface under the space geometry restraint of complex surface on magnetic pole, etc.

  13. Fractal Features and Surface Micromorphology of Unworn Surfaces of Rigid Gas Permeable Contact Lenses.

    Science.gov (United States)

    Ţălu, Ştefan; Bramowicz, Miroslaw; Kulesza, Slawomir; Fiorillo, Ilenia; Giovanzana, Stefano

    2017-08-01

    The aim of this exploratory study was to investigate the micromorphology of surfaces of rigid gas permeable (RGP) contact lenses (CLs) using atomic force microscopy (AFM) followed by fractal analysis. In order to characterize in a quantitative manner the micromorphology of surfaces of new and unworn RGP CLs made of twelve different materials, AFM was taken and then analyzed using fractal methods. Surface topography was sampled in an intermittent-contact mode in air, on square areas of 5 × 5 µm 2 (MultiMode with Nanoscope V (Bruker). Spatial characteristics of 3-D surface texture were obtained using parameters defined in ISO 25178-2: 2012 norm. The surface texture turned out to have complex 3-D nanoscale geometry. For quantitative characterization of the properties of surface geometry at nanometer level of CL on the global scale, a series of fractal parameters was used. Statistical and fractal parameters of 3-D surfaces can be used by manufacturers to assess the micromorphology of CLs in order to improve their 3-D surface texture characteristics. These parameters can also be used in an elastic-plastic finite element model with contact elements to simulate the friction, wear and micro-elastohydrodynamic lubrication at a nanometer scale between the CL with the corneal surface.

  14. Permanent-Magnet Meissner Bearing

    Science.gov (United States)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  15. Vascular segmentation of head phase-contrast magnetic resonance angiograms using grayscale and shape features.

    Science.gov (United States)

    Xiao, Ruoxiu; Ding, Hui; Zhai, Fangwen; Zhao, Tong; Zhou, Wenjing; Wang, Guangzhi

    2017-04-01

    In neurosurgery planning, vascular structures must be predetermined, which can guarantee the security of the operation carried out in the case of avoiding blood vessels. In this paper, an automatic algorithm of vascular segmentation, which combined the grayscale and shape features of the blood vessels, is proposed to extract 3D vascular structures from head phase-contrast magnetic resonance angiography dataset. First, a cost function of mis-segmentation is introduced on the basis of traditional Bayesian statistical classification, and the blood vessel of weak grayscale that tended to be misclassified into background will be preserved. Second, enhanced vesselness image is obtained according to the shape-based multiscale vascular enhancement filter. Third, a new reconstructed vascular image is established according to the fusion of vascular grayscale and shape features using Dempster-Shafer evidence theory; subsequently, the corresponding segmentation structures are obtained. Finally, according to the noise distribution characteristic of the data, segmentation ratio coefficient, which increased linearly from top to bottom, is proposed to control the segmentation result, thereby preventing over-segmentation. Experiment results show that, through the proposed method, vascular structures can be detected not only when both grayscale and shape features are strong, but also when either of them is strong. Compared with traditional grayscale feature- and shape feature-based methods, it is better in the evaluation of testing in segmentation accuracy, and over-segmentation and under-segmentation ratios. The proposed grayscale and shape features combined vascular segmentation is not only effective but also accurate. It may be used for diagnosis of vascular diseases and planning of neurosurgery. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Control of magnetism in dilute magnetic semiconductor (Ga,MnAs films by surface decoration of molecules

    Directory of Open Access Journals (Sweden)

    Hailong eWang

    2016-03-01

    Full Text Available The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,MnAs thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,MnAs thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,MnAs and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.

  17. Revisiting magnetism of capped Au and ZnO nanoparticles: Surface band structure and atomic orbital with giant magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Antonio; Crespo, Patricia [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P.O. Box 155, 28230 Madrid (Spain); Dept. Fisica de Materiales, Universidad Complutense, Madrid (Spain); Garcia, Miguel Angel [Instituto de Ceramica y Vidrio, CSIC, C/ Kelsen, 5, Madrid 28049 (Spain); Coey, Michael [Trinity College Dublin, Dublin (Ireland); Ayuela, Andres; Echenique, Pedro Miguel [Centro de Fisica de Materiales, CFM-MPC CSIC-UPV/EHU, Donostia International Physics Center (DIPC), 20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Fac. de Quimicas, Universidad del Pais Vasco UPV-EHU, 20018 San Sebastian (Spain)

    2011-10-15

    In this article we review the exotic magnetism of nanoparticles (NPs) formed by substances that are not magnetic in bulk as described with generality in Section 1. In particular, the intrinsic character of the magnetism observed on capped Au and ZnO NPs is analysed. X-ray magnetic circular dichroism (XMCD) analysis has shown that the magnetic moments are intrinsic and lie in the Au and Zn atoms, respectively, as analysed in Section 2, where the general theoretical ideas are also revisited. Since impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states, the anomalous magnetic response is analysed in terms of the surface band in Section 3. Finally, Section 4 summarizes our last theoretical proposal. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    In recent years there has been the development of a high number of manufacturing methods for creating textured surfaces which often present deterministic patterns of valley features. Unfortunately, suitable methodologies for characterizing them are lacking. Existing standards cannot in fact...... properly characterize such surfaces, providing at times unreasonable values. In this paper, a new procedure for characterizing such surfaces is proposed, relying on advanced filtering and feature recognition and separation. Existing advanced filtering methods do not always eliminate all distortions......, therefore some modifications are investigated. In particular the robust Gaussian regression filter has been modified providing an envelope first-guess in order to always fit the mean line through the plateau region. Starting from a filtered and aligned profile, the feature thresholds recognition...

  19. Facile and green synthesis of core-shell structured magnetic chitosan submicrospheres and their surface functionalization.

    Science.gov (United States)

    Li, Yiya; Yuan, Dongying; Dong, Mingjie; Chai, Zhihua; Fu, Guoqi

    2013-09-17

    Submicrometer-sized magnetite colloid nanocrystal clusters (MCNCs) provide a new avenue for constructing uniformly sized and highly magnetic composite submicrospheres. Herein, a facile and eco-friendly method is described for the synthesis of Fe3O4@poly(acrylic acid) (PAA)/chitosan (CS) core-shell submicrospheres using MCNCs bearing carboxyl groups as the magnetic cores. It is based on the self-assembly of positively charged CS chains on the surface of the oppositely charged MCNCs dispersed in the aqueous solution containing acrylic acid (AA) and a cross-linker N,N'-methylenebis(acrylamide) (MBA), followed by radical induced cross-linking copolymerization of AA and MBA along the CS chains. The resulting polymer shell comprises a medium shell of cross-linked PAA/CS polyelectrolyte complexes and an outer shell of protonated CS chains. It was found that the shell thickness could be tuned by varying either the concentration of radical initiator or the molar ratio of AA to aminoglucoside units of CS. To the surface of thus obtained Fe3O4@PAA/CS particles, Au nanoparticles, a variety of functional groups such as fluorescein, carboxyl, quaternary ammonium, and aliphatic bromide, and even functional polymer chains were successfully introduced. Therefore, such Fe3O4@PAA/CS submicrospheres may be used as versatile magnetic functional scaffolds in biorelated areas like bioseparation and medical assay, considering the unique features of CS like nontoxicity and biocompatibility.

  20. Remote sensing of coastal sea-surface features off northern British Columbia

    International Nuclear Information System (INIS)

    Jardine, I.D.; Thomson, K.A.; LeBlond, P.H.; Foreman, M.G.

    1993-01-01

    This article presents an overview of surface oceanographic features identified by AVHRR imagery in Hecate Strait and adjacent waters surrounding the Queen Charlotte Islands, Canada, an area still poor in in situ observations. The observed features and their temporal variability are interpreted in terms of meteorological and hydrological forcing. The effects of tidal mixing are discussed through the application of a finite element numerical model

  1. Two dimensional electron gas confined over a spherical surface: Magnetic moment

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, A; Crespo, P [Instituto de Magnetismo Aplicado, UCM-CSIC-ADIF, Las Rozas. P. O. Box 155, Madrid 28230 (Spain) and Dpto. Fisica de Materiales, Universidad Complutense (Spain); Garcia, M A, E-mail: antonio.hernando@adif.es [Instituto de Ceramica y Vidrio, CSIC c/Kelsen, 5 Madrid 28049 (Spain)

    2011-04-01

    Magnetism of capped nanoparticles, NPs, of non-magnetic substances as Au and ZnO is briefly reviewed. The source of the magnetization is discussed on the light of recent X-ray magnetic circular dichroism experiments. As magnetic dichroism analysis has pointed out impurity atoms bonded to the surface act as donor or acceptor of electrons that occupy the surface states. It is proposed that mesoscopic collective orbital magnetic moments induced at the surface states can account for the experimental magnetism characteristic of these nanoparticles. The total magnetic moment of the surface originated at the unfilled Fermi level can reach values as large as 10{sup 2} or 10{sup 3} Bohr magnetons.

  2. Comparing experts and novices in Martian surface feature change detection and identification

    Science.gov (United States)

    Wardlaw, Jessica; Sprinks, James; Houghton, Robert; Muller, Jan-Peter; Sidiropoulos, Panagiotis; Bamford, Steven; Marsh, Stuart

    2018-02-01

    Change detection in satellite images is a key concern of the Earth Observation field for environmental and climate change monitoring. Satellite images also provide important clues to both the past and present surface conditions of other planets, which cannot be validated on the ground. With the volume of satellite imagery continuing to grow, the inadequacy of computerised solutions to manage and process imagery to the required professional standard is of critical concern. Whilst studies find the crowd sourcing approach suitable for the counting of impact craters in single images, images of higher resolution contain a much wider range of features, and the performance of novices in identifying more complex features and detecting change, remains unknown. This paper presents a first step towards understanding whether novices can identify and annotate changes in different geomorphological features. A website was developed to enable visitors to flick between two images of the same location on Mars taken at different times and classify 1) if a surface feature changed and if so, 2) what feature had changed from a pre-defined list of six. Planetary scientists provided ;expert; data against which classifications made by novices could be compared when the project subsequently went public. Whilst no significant difference was found in images identified with surface changes by expert and novices, results exhibited differences in consensus within and between experts and novices when asked to classify the type of change. Experts demonstrated higher levels of agreement in classification of changes as dust devil tracks, slope streaks and impact craters than other features, whilst the consensus of novices was consistent across feature types; furthermore, the level of consensus amongst regardless of feature type. These trends are secondary to the low levels of consensus found, regardless of feature type or classifier expertise. These findings demand the attention of researchers who

  3. Surface flute modes in the bumpy magnetic field

    International Nuclear Information System (INIS)

    Girka, I.O.; Girka, V.O.; Lapshin, V.I.

    2005-01-01

    Surface electromagnetic waves are often determined as the most possible cause of undesirable heating of edge plasma that leads, in turn, to strengthening of plasma - wall interaction in stellarators and increased plasma contamination. The propagation of surface flute modes near the interface of plasma column separated by a vacuum layer from the ring cylindrical ideally conductive metallic chamber is studied. The external steady bumpy magnetic field B-vector 0 = B 0z e-vector z + B 0r e-vector r was considered, B 0z =B 00 [1+ε m (r)cos(k m z)], here ε m '≡dε m /dr, k m =2π/L, L is the period of nonuniformity. non-uniformity of B-vector 0 is planned to be dominant in the confining magnetic field of the modular stellarator Helias, ε m ∼ 0.13. In the bumpy magnetic field the electromagnetic disturbance propagates in the form of the wave envelope, in which one alongside with the fundamental harmonic, proportional to exp[i(mθ±-ωt)], infinite set of satellite spatial harmonics, proportional to exp[i(mθ ± jk m z - ωt)], j=1,2,3..., is present. It is shown, that in the first approximation in the respect to ε m , amplitudes of the fundamental harmonics of the E-wave with the field components E r , E θ , B z do not vary, small satellite harmonics of these fields arise, proportional to exp[i(mθ ± k m z - ωt)]. At the same time due to weak coupling of - and - modes, caused by B-vector 0 nonuniformity and nonzero axial wave number of satellite harmonics, small satellite harmonics of H-wave with the field components E z , B r , B θ also arise. The amplitudes of satellite harmonics of E-wave are shown to be symmetric: E r (+) =E r (-) , E θ (+) =E θ (-) , B z (+) =B z (-) , and the amplitudes of H-wave are antisymmetric: B r (+) =-B r (-) , B θ (+) =- B θ (-) , E z (+) =-E z (-) . In the second approximation in the respect to ε m corrections to the amplitudes of the fundamental harmonic of E-wave arise. The correction to the eigen frequency of the wave

  4. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities.

    Science.gov (United States)

    Itakura, Haruka; Achrol, Achal S; Mitchell, Lex A; Loya, Joshua J; Liu, Tiffany; Westbroek, Erick M; Feroze, Abdullah H; Rodriguez, Scott; Echegaray, Sebastian; Azad, Tej D; Yeom, Kristen W; Napel, Sandy; Rubin, Daniel L; Chang, Steven D; Harsh, Griffith R; Gevaert, Olivier

    2015-09-02

    Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative magnetic resonance (MR) imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 single-institution patients with de novo, solitary, unilateral GBM. Three distinct phenotypic "clusters" emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters--pre-multifocal, spherical, and rim-enhancing, names reflecting their image features--were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from the analysis of TCGA tumor copy number and gene expression data with the PARADIGM (Pathway Recognition Algorithm Using Data Integration on Genomic Models) algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by the image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM. Copyright © 2015, American Association for the Advancement of Science.

  5. Streams and magnetic fields in surface layers of Ap-stars

    International Nuclear Information System (INIS)

    Dolginov, A.Z.; Urpin, V.A.

    1978-01-01

    Magnetic field generation of Ap-stars is considered. It is shown that in the surface layers of Ap-stars inhomogeneity of chemical composition produces a strong magnetic field. Velocities of possible circulation of stellar matter are estimated. It is shown that circulation does not prevent the process of the magnetic field generation. It needs the order of million years, for arranging the stationary magnetic field in surface layers

  6. Method of driving liquid flow at or near the free surface using magnetic microparticles

    Science.gov (United States)

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL

    2011-10-11

    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  7. New insight in the nature of surface magnetic anisotropy in iron borate

    Science.gov (United States)

    Strugatsky, M.; Seleznyova, K.; Zubov, V.; Kliava, J.

    2018-02-01

    The theory of surface magnetism of iron borate, FeBO3, has been extended by taking into consideration a crystal field contribution to the surface magnetic anisotropy energy. For this purpose, a model of distortion of the six-fold oxygen environment of iron ions in the near-surface layer of iron borate has been put forward. The spin Hamiltonian parameters for isolated Fe3+ ions in the distorted environment of the near-surface layer have been calculated using the Newman's superposition model. The crystal field contribution to the surface magnetic anisotropy energy has been calculated in the framework of the perturbation theory. The model developed allows concluding that the distortions of the iron environment produce a significant crystal field contribution to the surface magnetic anisotropy constant. The results of experimental studies of the surface magnetic anisotropy in iron borate can be described assuming the existence of relative contractions in the near-surface layer of the order of 1 %.

  8. Magnetic induction strength on surface of a ferro-medium circular cylinder

    Directory of Open Access Journals (Sweden)

    M. Jin

    2016-09-01

    Full Text Available Based on the Ampere molecular current hypothesis and the Biot–Savart law, a magnetic model on the metal magnetic memory (MMM testing of a specimen is proposed. Relation between magnetic flux leakage (MFL and magnetization of a ferro-medium circular cylinder is set up. We can predict magnetization of material according to the MFL on surface of the circular cylinder.

  9. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  10. Surface feature congruency effects in the object-reviewing paradigm are dependent on task memory demands.

    Science.gov (United States)

    Kimchi, Ruth; Pirkner, Yossef

    2014-08-01

    Perception of object continuity depends on establishing correspondence between objects viewed across disruptions in visual information. The role of spatiotemporal information in guiding object continuity is well documented; the role of surface features, however, is controversial. Some researchers have shown an object-specific preview benefit (OSPB)-a standard index of object continuity-only when correspondence could be based on an object's spatiotemporal information, whereas others have found color-based OSPB, suggesting that surface features can also guide object continuity. This study shows that surface feature-based OSPB is dependent on the task memory demands. When the task involved letters and matching just one target letter to the preview ones, no color congruency effect was found under spatiotemporal discontinuity and spatiotemporal ambiguity (Experiments 1-3), indicating that the absence of feature-based OSPB cannot be accounted for by salient spatiotemporal discontinuity. When the task involved complex shapes and matching two target shapes to the preview ones, color-based OSPB was obtained. Critically, however, when a visual working memory task was performed concurrently with the matching task, the presence of a nonspatial (but not a spatial) working memory load eliminated the color-based OSPB (Experiments 4 and 5). These results suggest that the surface feature congruency effects that are observed in the object-reviewing paradigm (with the matching task) reflect memory-based strategies that participants use to solve a memory-demanding task; therefore, they are not reliable measures of online object continuity and cannot be taken as evidence for the role of surface features in establishing object correspondence.

  11. Electrostatic surface waves on a magnetized quantum plasma half-space

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2016-03-15

    A theory of electrostatic surface waves on a quantum plasma half-space is developed with the inclusion of external magnetic field effects for the geometry in which the magnetic field is parallel to the surface and the direction of propagation is perpendicular to the magnetic field. A general analytical expression for dispersion relation of surface waves is obtained by solving Poisson and quantum magnetohydrodynamic equations with appropriate quantum boundary conditions.

  12. Segmentation of photospheric magnetic elements corresponding to coronal features to understand the EUV and UV irradiance variability

    Science.gov (United States)

    Zender, J. J.; Kariyappa, R.; Giono, G.; Bergmann, M.; Delouille, V.; Damé, L.; Hochedez, J.-F.; Kumara, S. T.

    2017-09-01

    Context. The magnetic field plays a dominant role in the solar irradiance variability. Determining the contribution of various magnetic features to this variability is important in the context of heliospheric studies and Sun-Earth connection. Aims: We studied the solar irradiance variability and its association with the underlying magnetic field for a period of five years (January 2011-January 2016). We used observations from the Large Yield Radiometer (LYRA), the Sun Watcher with Active Pixel System detector and Image Processing (SWAP) on board PROBA2, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Methods: The Spatial Possibilistic Clustering Algorithm (SPoCA) is applied to the extreme ultraviolet (EUV) observations obtained from the AIA to segregate coronal features by creating segmentation maps of active regions (ARs), coronal holes (CHs) and the quiet sun (QS). Further, these maps are applied to the full-disk SWAP intensity images and the full-disk (FD) HMI line-of-sight (LOS) magnetograms to isolate the SWAP coronal features and photospheric magnetic counterparts, respectively. We then computed full-disk and feature-wise averages of EUV intensity and line of sight (LOS) magnetic flux density over ARs/CHs/QS/FD. The variability in these quantities is compared with that of LYRA irradiance values. Results: Variations in the quantities resulting from the segmentation, namely the integrated intensity and the total magnetic flux density of ARs/CHs/QS/FD regions, are compared with the LYRA irradiance variations. We find that the EUV intensity over ARs/CHs/QS/FD is well correlated with the underlying magnetic field. In addition, variations in the full-disk integrated intensity and magnetic flux density values are correlated with the LYRA irradiance variations. Conclusions: Using the segmented coronal features observed in the EUV wavelengths as proxies to isolate the underlying

  13. Wernicke's encephalopathy in a malnourished surgical patient: clinical features and magnetic resonance imaging.

    Science.gov (United States)

    Nolli, M; Barbieri, A; Pinna, C; Pasetto, A; Nicosia, F

    2005-11-01

    We report a clinical and neuroradiological description of a severe case of Wernicke's encephalopathy in a surgical patient. After colonic surgery for neoplasm, he was treated for a long time with high glucose concentration total parenteral nutrition. In the early post-operative period, the patient showed severe encephalopathy with ataxia, ophthalmoplegia and consciousness disorders. We used magnetic resonance imaging (MRI) to confirm the clinical suspicion of Wernicke's encephalopathy. The radiological feature showed hyperintense lesions which were symmetrically distributed along the bulbo-pontine tegmentum, the tectum of the mid-brain, the periacqueductal grey substance, the hypothalamus and the medial periventricular parts of the thalamus. This progressed to typical Wernicke-Korsakoff syndrome with ataxia and memory and cognitive defects. Thiamine deficiency is a re-emerging problem in non-alcoholic patients and it may develop in surgical patients with risk factors such as malnutrition, prolonged vomiting and long-term high glucose concentration parenteral nutrition.

  14. Anatomic and pathologic features of third cranial nerve disorders according to magnetic resonance studies

    International Nuclear Information System (INIS)

    Ruiz, Y.; Torres, J.; Ramos, M.; Caniego, J.L.; Manzanares, R.; Fresno, L.F.

    1998-01-01

    The objective of this report is to demonstrate the utility of magnetic resonance (MR) in the diagnosis of disorders involving the third cranial nerves. We have selected MR studies corresponding to patients with an anomaly affecting the third cranial nerves, whether alone or in combination with other cranial nerves. In order to better study the pathology of these cranial nerves, we considered four different segments of the nerves: mesencephalic, cisternal, cavernous and orbital. We present the MR features of the anatomy of the third cranial nerves and the most representative lesions affecting the different intracranial segments: infraction, multiple sclerosis, glioma and cavernoma in the mesencephalon; posterior communicating artery aneurysm, neuritis, neurinomas and meningioma in the cisternal segment; aneurysm of the internal carotid artery, cavernous carotid fistula, metastasis and meningioma in the cavernous sinus and Tolosa-Hunt syndrome in the orbital apex. (Author) 11 refs

  15. Magnetic resonance features of primary central nervous system lymphoma in the immunocompetent patient: a pictorial essay

    International Nuclear Information System (INIS)

    Yap, Kelvin K.; Sutherland, Tom; Liew, Elain; Tartaglia, Con J.; Trost, Nick; Pang, Mei

    2012-01-01

    Primary central nervous system lymphoma (PCNSL) is an uncommon but important variant of non-Hodgkin lymphoma and represents up to 6% of all primary central nervous system (CNS) malignancies. Recognition of this entity by radiologist on MRI may avoid unnecessary neurosurgical resection and redirect to biopsy. The pretreatment MRI of patients with biopsy proven PCNSL from the last 5 years at our institution was reviewed. Selected examples were used to construct a pictorial essay to illustrate some of the typical and atypical MR features of PCNSL. MRI of other CNS conditions with imaging similarities to PCNSL was included to demonstrate possible mimics. The typical features of PCNSL lymphoma are intra-axial homogenous single or multiple contrast enhancing lesions, with marked surrounding oedema and restricted diffusion, usually contacting a cerebrospinal fluid (CSF) surface. Necrosis, peripheral enhancement, haemorrhage or calcification are unusual and other diagnoses should be considered if any of these features are present. Potential mimics include high grade glioma, infarcts, metastatic disease, demyelination, abscess and secondary lymphoma. Careful assessment of the MR features and correlation with the clinical findings should enable the radiologists to raise the possibility of PCNSL and minimise the risk of unnecessary resection.

  16. Separation of Atmospheric and Surface Spectral Features in Mars Global Surveyor Thermal Emission Spectrometer (TES) Spectra

    Science.gov (United States)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.

    2000-01-01

    We present two algorithms for the separation of spectral features caused by atmospheric and surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric dust, then for water-ice aerosols, and then, finally, for surface emissivity. A second independent algorithm uses a combination of factor analysis, target transformation, and deconvolution to simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have been applied to TES spectra, and both find very similar atmospheric and surface spectral shapes. For TES spectra taken during aerobraking and science phasing periods in nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that can be used for mineralogical identification.

  17. Hepatocellular carcinoma with bile duct tumor thrombi: Correlation of magnetic resonance imaging features to histopathologic manifestations

    International Nuclear Information System (INIS)

    Liu Qingyu; Chen Jianyu; Li Haigang; Liang Biling; Zhang Lei; Hu Tao

    2010-01-01

    Purpose: This study was to analyze the magnetic resonance imaging (MRI) features of hepatocellular carcinoma (HCC) with bile duct tumor thrombi, and explore their correlations to histopathology to improve the accuracy of diagnosis. Materials and methods: 21 patients with pathologically confirmed HCC with bile duct tumor thrombi was performed with a superconducting 1.5-T MR imager within two weeks before operation. Magnetic resonance cholangiopancreatography (MRCP) was performed on 18 patients. Images were retrospectively assessed for the size, location and MRI manifestations of HCC lesions and associated bile duct tumor thrombi. The differentiation of HCC lesions and the pathologic changes of bile duct tumor thrombi were retrospectively analyzed under microscope. Results: The average diameter of HCC lesions was 5.8 ± 2.8 cm, and ≤5.0 cm in nine cases. Capsule formation was observed on MRI or pathology in 4 cases of HCC (19%). Of the 21 cases with bile duct tumor thrombi, 20 were clearly presented on MRI as cord-like or columnar masses in the bile duct with proximal cholangiectasis. The tumor thrombi showed slightly hypointense on T1WI and slightly hyperintense on T2WI. On enhanced scan, three cases of tumor thrombi, which were mainly consisted of necrotic tissue, did not show enhancement; 17 cases, which were mainly consisted of cancer cells, showed mild or moderate enhancement. On magnetic resonance cholangiopancreatogram (MRCP), 14 cases of tumor thrombi presented as filling defect in the bile duct, abrupt obstruction of the bile duct, and cholangiectasis above the obstruction; four presented as dilated intra-hepatic bile ducts with missing common bile duct. Of the 21 patients, 16 had biliary hemorrhage; three also had tumor thrombi in the portal vein. Seventeen of the 21 HCC with biliary thrombi were poorly differentiated, unencapsulated and with an invasive growth. Nineteen of 21 bile duct tumor thrombi did not invade the bile duct wall and could be easily

  18. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  19. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  20. Pancreatic neuroendocrine neoplasms: Magnetic resonance imaging features according to grade and stage

    Science.gov (United States)

    De Robertis, Riccardo; Cingarlini, Sara; Tinazzi Martini, Paolo; Ortolani, Silvia; Butturini, Giovanni; Landoni, Luca; Regi, Paolo; Girelli, Roberto; Capelli, Paola; Gobbo, Stefano; Tortora, Giampaolo; Scarpa, Aldo; Pederzoli, Paolo; D’Onofrio, Mirko

    2017-01-01

    AIM To describe magnetic resonance (MR) imaging features of pancreatic neuroendocrine neoplasms (PanNENs) according to their grade and tumor-nodes-metastases stage by comparing them to histopathology and to determine the accuracy of MR imaging features in predicting their biological behavior. METHODS This study was approved by our institutional review board; requirement for informed patient consent was waived due to the retrospective nature of the study. Preoperative MR examinations of 55 PanNEN patients (29 men, 26 women; mean age of 57.6 years, range 21-83 years) performed between June 2013 and December 2015 were reviewed. Qualitative and quantitative features were compared between tumor grades and stages determined by histopathological analysis. RESULTS Ill defined margins were more common in G2-3 and stage III-IV PanNENs than in G1 and low-stage tumors (P < 0.001); this feature had high specificity in the identification of G2-3 and stage III-IV tumors (90.3% and 96%, 95%CI: 73.1-97.5 and 77.7-99.8). The mean apparent diffusion coefficient value was significantly lower in G2-3 and stage III-IV lesions compared to well differentiated and low-stage tumors (1.09 × 10-3 mm2/s vs 1.45 × 10-3 mm2/s and 1.10 × 10-3 mm2/s vs 1.53 × 10-3 mm2/s, P = 0.003 and 0.001). Receiving operator characteristic analysis determined optimal cut-offs of 1.21 and 1.28 × 10-3 mm2/s for the identification of G2-3 and stage III-IV tumors, with sensitivity and specificity values of 70.8/80.7% and 64.5/64% (95%CI: 48.7-86.6/60-92.7 and 45.4-80.2/42.6-81.3). CONCLUSION MR features of PanNENs vary according to their grade of differentiation and their stage at diagnosis and could predict the biological behavior of these tumors. PMID:28127201

  1. A sphericon-shaped magnetic millirobot rolling on a surface actuated by an external wobbling magnetic field

    Directory of Open Access Journals (Sweden)

    Seungmun Jeon

    2017-05-01

    Full Text Available This paper proposes a novel sphericon-shaped magnetic millirobot (SSMM that can roll on a variety of surfaces. The SSMM comprises four identical half cones with a cylindrical magnet inserted into the geometric center. It can roll forward or backward on a surface with repeated rolling cone motions (wobbling motions. Since a rolling SSMM develops its entire surface by means of line contact, a relatively large maximum static friction force can make the SSMM move on a surface steadily and effectively. In this work, a new type of external wobbling magnetic field (EWMF was also derived to manipulate the SSMM’s rolling motions precisely. Then, the controlled rolling motions of prototype SSMMs under various surface conditions were demonstrated to examine the rolling ability of the proposed SSMM.

  2. Eddy current analysis by BEM utilizing loop electric and surface magnetic currents as unknowns

    International Nuclear Information System (INIS)

    Ishibashi, Kazuhisa

    2002-01-01

    The surface integral equations whose unknowns are the surface electric and magnetic currents are widely used in eddy current analysis. However, when the skin depth is thick, computational error is increased especially in obtaining electromagnetic fields near the edge of the conductor. In order to obtain the electromagnetic field accurately, we propose an approach to solve surface integral equations utilizing loop electric and surface magnetic currents as unknowns. (Author)

  3. Thermal Behaviour of Unusual Local-Scale Surface Features on Vesta

    Science.gov (United States)

    Tosi, F.; Capria, M. T.; De Sanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    On Vesta, the region of the infrared spectrum beyond approximately 3.5 micrometers is dominated by the thermal emission of the asteroid's surface, which can be used to determine surface temperature by means of temperature-retrieval algorithms. The thermal behavior of areas of unusual albedo seen at the local scale can be related to physical properties that can provide information about the origin of those materials. Dawn's Visible and Infrared Mapping Spectrometer (VIR) hyperspectral cubes are used to retrieve surface temperatures, with high accuracy as long as temperatures are greater than 180 K. Data acquired in the Survey phase (23 July through 29 August 2011) show several unusual surface features: 1) high-albedo (bright) and low-albedo (dark) material deposits, 2) spectrally distinct ejecta, 3) regions suggesting finer-grained materials. Some of the unusual dark and bright features were re-observed by VIR in the subsequent High-Altitude Mapping Orbit (HAMO) and Low-Altitude Mapping Orbit (LAMO) phases at increased pixel resolution. To calculate surface temperatures, we applied a Bayesian approach to nonlinear inversion based on the Kirchhoff law and the Planck function. These results were cross-checked through application of alternative methods. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times. Some bright terrains have an overall albedo in the visible as much as 40% brighter than surrounding areas. Data from the IR channel of VIR show that bright regions generally correspond to regions with lower thermal emission, i.e. lower temperature, while dark regions correspond to areas with higher thermal emission, i.e. higher temperature. This behavior confirms that many of the dark appearances in the VIS mainly reflect albedo variations. In particular, it is shown that during maximum daily insolation, dark features in the equatorial region may rise to

  4. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru [Moscow State University (Russian Federation); Ignatenko, A. N.; Irkhin, V. Yu. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenberg model with various bulk and surface magnetic moments.

  5. The influence of hydrogen adsorption on magnetic properties of Ni/Cu(001) surface

    Czech Academy of Sciences Publication Activity Database

    Máca, František; Shick, Alexander; Redinger, J.; Podloucky, R.; Weinberger, P.

    2003-01-01

    Roč. 53, č. 1 (2003), s. 33-39 ISSN 0011-4626. [Symposium on Surface Physics /9./. Třešt', 02.09.2002-06.09.2002] R&D Projects: GA AV ČR IAA1010214 Grant - others:HPRN-CT(XE) 2000-00143 Institutional research plan: CEZ:AV0Z1010914 Keywords : surface magnetism * thin films * magnetic anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.263, year: 2003

  6. Some specific features of a surface-screw plasma instability in semiconductors

    International Nuclear Information System (INIS)

    Karavaev, G.F.; Tsipivka, Yu.I.

    1976-01-01

    A numerical analysis of the dispersion relation has been carried out, which enables to discover some new peculiarities in the behaviour of the surface helical instability (SHI) of a semiconductor plasma. To simplify the dispersion relation a semiconductor with nearly equal electron and hole mobilities has been considered. The dependences of threshold characteristics of SHI on a magnetic field H for different angular harmonics are represented graphically. A comparison of the formulas obtained shows that the approximation of truncated series yields an incorrect qualitative dependence of the wavelength on H, whereas asymptotic formulas in the range of strong magnetic fields yield not only a correct qualitative dependence of the threshold characteristics on H, but also a good quantitative agreement

  7. Thermal infrared remote sensing of surface features for renewable resource applications

    Science.gov (United States)

    Welker, J. E.

    1981-01-01

    The subjects of infrared remote sensing of surface features for renewable resource applications is reviewed with respect to the basic physical concepts involved at the Earth's surface and up through the atmosphere, as well as the historical development of satellite systems which produce such data at increasingly greater spatial resolution. With this general background in hand, the growth of a variety of specific renewable resource applications using the developing thermal infrared technology are discussed, including data from HCMM investigators. Recommendations are made for continued growth in this field of applications.

  8. A surface defect detection method based on multi-feature fusion

    Science.gov (United States)

    Wu, Xiaojun; Xiong, Huijiang; Yu, Zhiyang; Wen, Peizhi

    2017-07-01

    Automatic inspection takes a great role in guaranteeing the product quality. But one of the limitations of current inspection algorithms is either product specific or problem specific. In this paper, we propose a defect detection method based on three image features fusion for variety of industrial products surface detection. The proposed method learns sub-image gray level difference, color histogram and pixel regularity of qualified images off-line and test the images based on the detection results of these three image features. It avoids the feature training of defect products as it is difficult to collect large amount of defect samples. The experimental results show that the detection accuracy is between 93% and 98% and the approach is efficient for the real time applications of industrial product inspect.

  9. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  10. Relationship between iris surface features and angle width in Asian eyes.

    Science.gov (United States)

    Sidhartha, Elizabeth; Nongpiur, Monisha Esther; Cheung, Carol Y; He, Mingguang; Wong, Tien Yin; Aung, Tin; Cheng, Ching-Yu

    2014-10-23

    To examine the associations between iris surface features with anterior chamber angle width in Asian eyes. In this prospective cross-sectional study, we recruited 600 subjects from a large population-based study, the Singapore Epidemiology of Eye Diseases (SEED) study. We obtained standardized digital slit-lamp iris photographs and graded the iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of anterior chamber were imaged using anterior segment optical coherence tomography. Angle opening distance (AOD), angle recess area (ARA), and trabecular-iris space area (TISA) were measured using customized software. Associations of the angle width with the iris surface features in the subject's right eyes were assessed using linear regression analysis. A total of 464 eyes of the 464 subjects (mean age: 57.5 ± 8.6 years) had complete and gradable data for crypts and color, and 423 eyes had gradable data for furrows. After adjustment for age, sex, ethnicity, pupil size, and corneal arcus, higher crypt grade was independently associated with wider AOD750 (β [change in angle width per grade higher] = 0.018, P = 0.023), ARA750 (β = 0.022, P = 0.049), and TISA750 (β = 0.011, P = 0.019), and darker iris was associated narrower ARA750 (β = -0.025, P = 0.044) and TISA750 (β = -0.013, P = 0.011). Iris surface features, assessed and measured from slit-lamp photographs, correlated well with anterior chamber angle width; irises with more crypts and lighter color were associated with wider angle. These findings may provide another imaging modality to assess angle closure risk based on iris surface features. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  11. Surface features of central North America: a synoptic view from computer graphics

    Science.gov (United States)

    Pike, R.J.

    1991-01-01

    A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author

  12. Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets

    Directory of Open Access Journals (Sweden)

    Alireza Rasekh

    2016-11-01

    Full Text Available In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. Therefore, fast equations are needed to estimate the windage power losses of the machine. The geometry consists of an open rotor–stator with sixteen magnets at the periphery of the rotor with an annular opening in the entire disk. Air can flow in a channel being formed between the magnets and in a small gap region between the magnets and the stator surface. To construct the correlations, computational fluid dynamics (CFD simulations through the frozen rotor (FR method are performed at the practical ranges of the geometrical parameters, namely the gap size distance, the rotational speed of the rotor, the magnet thickness and the magnet angle. Thereafter, two categories of formulations are defined to make the windage losses dimensionless based on whether the losses are mainly due to the viscous forces or the pressure forces. At the end, the correlations can be achieved via curve fittings from the numerical data. The results reveal that the pressure forces are responsible for the windage losses for the side surfaces in the air-channel, whereas for the surfaces facing the stator surface in the gap, the viscous forces mainly contribute to the windage losses. Additionally, the results of the parametric study demonstrate that the overall windage losses in the machine escalate with an increase in either the rotational Reynolds number or the magnet thickness ratio. By contrast, the windage losses decrease once the magnet angle ratio enlarges. Moreover, it can be concluded that the proposed correlations are very useful tools in the design and optimizations of this type of electrical machine.

  13. Memory for surface features of unfamiliar melodies: independent effects of changes in pitch and tempo.

    Science.gov (United States)

    Schellenberg, E Glenn; Stalinski, Stephanie M; Marks, Bradley M

    2014-01-01

    A melody's identity is determined by relations between consecutive tones in terms of pitch and duration, whereas surface features (i.e., pitch level or key, tempo, and timbre) are irrelevant. Although surface features of highly familiar recordings are encoded into memory, little is known about listeners' mental representations of melodies heard once or twice. It is also unknown whether musical pitch is represented additively or interactively with temporal information. In two experiments, listeners heard unfamiliar melodies twice in an initial exposure phase. In a subsequent test phase, they heard the same (old) melodies interspersed with new melodies. Some of the old melodies were shifted in key, tempo, or key and tempo. Listeners' task was to rate how well they recognized each melody from the exposure phase while ignoring changes in key and tempo. Recognition ratings were higher for old melodies that stayed the same compared to those that were shifted in key or tempo, and detrimental effects of key and tempo changes were additive in between-subjects (Experiment 1) and within-subjects (Experiment 2) designs. The results confirm that surface features are remembered for melodies heard only twice. They also imply that key and tempo are processed and stored independently.

  14. Compressive Fracture of Brittle Geomaterial: Fractal Features of Compression-Induced Fracture Surfaces and Failure Mechanism

    Directory of Open Access Journals (Sweden)

    L. Ren

    2014-01-01

    Full Text Available Compressive fracture is one of the most common failure patterns in geotechnical engineering. For better understanding of the local failure mechanism of compressive fractures of brittle geomaterials, three compressive fracture tests were conducted on sandstone. Edge cracked semicircular bend specimens were used and, consequently, fresh and unfilled compressive fracture surfaces were obtained. A laser profilometer was employed to measure the topography of each rough fracture surface, followed by fractal analysis of the irregularities of the obtained compression-induced fracture surfaces using the cubic cover method. To carry out a contrastive analysis with the results of compressive fracture tests, three tension mode fracture tests were also conducted and the fractal features of the obtained fracture surfaces were determined. The obtained average result of the fractal dimensions of the compression-induced surfaces was 2.070, whereas the average result was 2.067 for the tension-induced fracture surfaces. No remarkable differences between the fractal dimensions of the compression-induced and tension-induced fracture surfaces may indicate that compressive fracture may occur, at least on the investigative scale of this work, in a similar manner to tension fracture.

  15. Temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom adsorbed on a surface

    International Nuclear Information System (INIS)

    Dino, Wilson Agerico; Kasai, Hideaki; Rodulfo, Emmanuel Tapas; Nishi, Mayuko

    2006-01-01

    Manifestations of the Kondo effect on an atomic length scale on and around a magnetic atom adsorbed on a nonmagnetic surface differ depending on the spectroscopic mode of operation of the scanning tunneling microscope. Two prominent signatures of the Kondo effect that can be observed at surfaces are the development of a sharp resonance (Yosida-Kondo resonance) at the Fermi level, which broadens with increasing temperature, and the splitting of this sharp resonance upon application of an external magnetic field. Until recently, observing the temperature and magnetic field dependence has been a challenge, because the experimental conditions strongly depend on the system's critical temperature, the so-called Kondo temperature T K . In order to clearly observe the temperature dependence, one needs to choose a system with a large T K . One can thus perform the experiments at temperatures T K . However, because the applied external magnetic field necessary to observe the magnetic field dependence scales with T K , one needs to choose a system with a very small T K . This in turn means that one should perform the experiments at very low temperatures, e.g., in the mK range. Here we discuss the temperature and magnetic field dependence of the Yosida-Kondo resonance for a single magnetic atom on a metal surface, in relation to recent experimental developments

  16. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  17. Observation of surface features on an active landslide, and implications for understanding its history of movement

    Directory of Open Access Journals (Sweden)

    M. Parise

    2003-01-01

    Full Text Available Surface features are produced as a result of internal deformation of active landslides, and are continuously created and destroyed by the movement. Observation of their presence and distribution, and surveying of their evolution may provide insights for the zonation of the mass movement in sectors characterized by different behaviour. The present study analyses and describes some example of surface features observed on an active mass movement, the Slumgullion earthflow, in the San Juan Mountains of southwestern Colorado. The Slumgullion earthflow is one of the most famous and spectacular landslides in the world; it consists of a younger, active part which moves on and over an older, much larger, inactive part. Total length of the earthflow is 6.8 km, with an estimated volume of 170 × 10 6 m 3 . Its nearly constant rate of movement (ranging from about 2 m per year at the head, to a maximum of 6–7 m per year at its narrow and central part, to values between 1.3 and 2 m per year at the active toe, and the geological properties of moving material, are well suited for the observation of the development and evolution of surface features. In the last 11 years, repeated surveying at the Slumgullion site has been performed through recognition of surface features, measurements of their main characteristics, and detailed mapping. In this study, two sectors of the Slumgullion earthflow are analysed through comparison of the features observed in this time span, and evaluation of the changes occurred: they are the active toe and an area located at the left flank of the landslide. Choice of the sectors was dictated in the first case, by particular activity of movement and the nearby presence of elements at risk (highway located only 250 m downhill from the toe; and in the second case, by the presence of many surface features, mostly consisting of several generations of flank ridges. The active toe of the landslide is characterized by continuous movement

  18. Coupling between magnetic field and curvature in Heisenberg spins on surfaces with rotational symmetry

    International Nuclear Information System (INIS)

    Carvalho-Santos, Vagson L.; Dandoloff, Rossen

    2012-01-01

    We study the nonlinear σ-model in an external magnetic field applied on curved surfaces with rotational symmetry. The Euler–Lagrange equations derived from the Hamiltonian yield the double sine-Gordon equation (DSG) provided the magnetic field is tuned with the curvature of the surface. A 2π skyrmion appears like a solution for this model and surface deformations are predicted at the sector where the spins point in the opposite direction to the magnetic field. We also study some specific examples by applying the model on three rotationally symmetric surfaces: the cylinder, the catenoid and the hyperboloid.

  19. Magnetic domains and surface effects in hollow maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cabot, Andreu; Alivisatos, A. Paul; Puntes, Victor; Balcells, Lluis; Iglesias, Oscar; Labarta, Amilcar

    2008-09-30

    In the present work, we investigate the magnetic properties of ferrimagnetic and non-interacting maghemite hollow nanoparticles obtained by the Kirkendall effect. From the experimental characterization of their magnetic behavior, we find that polycrystalline hollow maghemite nanoparticles exhibit low blocked-to-superparamagnetic transition temperatures, small magnetic moments, significant coercivities and irreversibility fields, and no magnetic saturation on external magnetic fields up to 5 T. These results are interpreted in terms of the microstructural parameters characterizing the maghemite shells by means of atomistic Monte Carlo simulations of an individual spherical shell. The model comprises strongly interacting crystallographic domains arranged in a spherical shell with random orientations and anisotropy axis. The Monte Carlo simulation allows discernment between the influence of the polycrystalline structure and its hollow geometry, while revealing the magnetic domain arranggement in the different temperataure regimes.

  20. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    International Nuclear Information System (INIS)

    Haendel, S.; Marchant, A. L.; Wiles, T. P.; Hopkins, S. A.; Cornish, S. L.

    2012-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85 Rb and 87 Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87 Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.

  1. On the surface magnetism induced atypical ferromagnetic behavior of cerium oxide (CeO2) nanoparticles

    Science.gov (United States)

    Sakara, M.; Arumugam, S.; Tripathy, S.; Balakumar, S.

    2012-06-01

    An investigation was made on the intrinsic ferromagnetic behavior of nano sized cerium oxide (ceria). The nanosized ceria was prepared by modified sol gel method with crystallite size around 7nm. Structural analysis was done by XRD which showed a single phase, impurity free fluorite type crystal structured of nano ceria. The morphological analysis by FESEM technique showed agglomerated nature of nanoparticles due to their high surface energy. The surface and bulk information was obtained from UV and visible Raman analysis. From Raman studies it was observed that the large surface defect which was the prime reason for the induced surface magnetism in the nano ceria. From magnetization studies by VSM, it was found that if magnetism was associated with the surface defects of the material. The ferromagnetic behavior of nanosized ceria is still under debate. An attempt has taken to explain the same with emphasizing the surface magnetism of ceria nanoparticles.

  2. Magnetic resonance imaging features of spontaneously regressed thymoma: report of 2 cases.

    Science.gov (United States)

    Nakazono, Takahiko; Yamaguchi, Ken; Egashira, Ryoko; Satoh, Toshimi; Yamasaki, Fumio; Mitsuoka, Masahiro; Hayashi, Shinichiro; Kudo, Sho

    2009-02-01

    The authors describe 2 cases in which thymoma spontaneously regressed. The first patient was a 49-year-old woman with myasthenia gravis. A chest radiograph on admission showed an anterior mediastinal mass that spontaneously decreased in size as shown on a radiograph obtained 2 weeks later. Surgical removal of the mass was performed and the histopathologic examination showed a type B2 thymoma with marked coagulation necrosis in the central area. The second patient was a 46-year-old woman who was hospitalized due to chest and back pain. A chest radiograph on admission showed an anterior mediastinal mass and bilateral pleural effusion. The mass decreased in size and the effusion disappeared as shown on a chest radiograph obtained 2 months later. Computed tomography-guided biopsy was performed, and histopathologic examination revealed thymoma with marked necrosis. In both cases, dynamic contrast-enhanced magnetic resonance images showed peripheral ringlike enhancement of the mass. The clinical and radiologic features of spontaneously regressed thymoma may be different from those of common thymoma.

  3. Automated registration of freehand B-mode ultrasound and magnetic resonance imaging of the carotid arteries based on geometric features

    DEFF Research Database (Denmark)

    Carvalho, Diego D. B.; Arias Lorza, Andres Mauricio; Niessen, Wiro J.

    2017-01-01

    An automated method for registering B-mode ultrasound (US) and magnetic resonance imaging (MRI) of the carotid arteries is proposed. The registration uses geometric features, namely, lumen centerlines and lumen segmentations, which are extracted fully automatically from the images after manual an...

  4. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features.

    Science.gov (United States)

    Machado, Mary C; Webster, Thomas J

    2017-01-01

    Polyvinyl chloride (PVC) endotracheal tubes (ETTs) nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP). Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson's correlation, R =0.997 [ R 2 =0.994, P degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change on surface chemistry but do significantly increase nanoscale surface roughness and alters ion adsorption, which suggests that the unique properties of these materials, including their previously reported ability to decrease bacterial adhesion and growth, are due to the changes in the degree of the nanoscale roughness, not changes in their surface chemistry.

  5. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features

    Directory of Open Access Journals (Sweden)

    C Brose

    2012-05-01

    Full Text Available Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  6. Examining the Impact of Question Surface Features on Students' Answers to Constructed-Response Questions on Photosynthesis

    Science.gov (United States)

    Weston, Michele; Haudek, Kevin C.; Prevost, Luanna; Urban-Lurain, Mark; Merrill, John

    2015-01-01

    One challenge in science education assessment is that students often focus on surface features of questions rather than the underlying scientific principles. We investigated how student written responses to constructed-response questions about photosynthesis vary based on two surface features of the question: the species of plant and the order of…

  7. Vector Magnetic Fields, Sub surface Stresses and Evolution of ...

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Observations of the strength and spatial distribution of vector magnetic fields in active regions have revealed several fundamental properties of the twist of their magnetic fields. First, the handedness of this twist obeys a hemispheric rule: left handed in the northern hemis phere, right handed in the southern. Second ...

  8. Exploring microstructure and surface features of Chinese coins using non-invasive approaches

    International Nuclear Information System (INIS)

    Xie, Ruishi; Li, Yuanli; Guo, Baogang; Hu, Hailong; Jiang, Linhai

    2015-01-01

    Highlights: • The microstructure and surface features of Chinese coins were systematically explored. • The application of non-invasive techniques enables unambiguous explorations of the component, morphology, microstructure and physical properties of the coins. • This work provides a new insight into exploration of surface properties of precious metal objects, metallic artefacts as well as monuments without causing any damage to them. - Abstract: Despite the apparent significance of Chinese coins, the knowledge about the surface properties of the coins is still largely unknown. To date, most analytical techniques (e.g., cross-section analysis, inductively coupled plasma-mass spectrometry, thermal analysis) require the partial or total destruction of the investigated sample, which is fatal to precious objects (e.g., artefacts and monuments). Herein, we systematically investigate the surface of a series of one yuan Chinese coins to disclose their chemical composition, morphology, and microstructure features using non-invasive techniques. Investigations were performed with scanning electron microscopy, coupled with energy dispersive X-ray spectroscopy, and X-ray diffraction. The application of these approaches enables unambiguous explorations of the component, morphology, microstructure and physical properties of the samples without destroying them. The identification of the coins was achieved in light of the name of issuing authority and floral pattern. The morphology observations of the samples display that these coins possess mostly homogeneous surfaces; hence such a finding allows the formulation of a possible minting technology. Besides, the energy dispersive X-ray spectroscopy has proved of great role in exploring these coins, mainly because of its detectability to easily probe the presence of certain minor elements, which is critical in understanding surface finishing technologies, and production processes. The findings manifest that the coins were made

  9. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  10. Analytical Calculation of Magnetic Field Distribution and Stator Iron Losses for Surface-Mounted Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Zhen Tian

    2017-03-01

    Full Text Available Permanent-magnet synchronous machines (PMSMs are widely used in electric vehicles owing to many advantages, such as high power density, high efficiency, etc. Iron losses can account for a significant component of the total loss in permanent-magnet (PM machines. Consequently, these losses should be carefully considered during the PMSM design. In this paper, an analytical calculation method has been proposed to predict the magnetic field distribution and stator iron losses in the surface-mounted permanent magnet (SPM synchronous machines. The method introduces the notion of complex relative air-gap permeance to take into account the effect of slotting. The imaginary part of the relative air-gap permeance is neglected to simplify the calculation of the magnetic field distribution in the slotted air gap for the surface-mounted permanent-magnet (SPM machine. Based on the armature reaction magnetic field analysis, the stator iron losses can be estimated by the modified Steinmetz equation. The stator iron losses under load conditions are calculated according to the varying d-q-axis currents of different control methods. In order to verify the analysis method, finite element simulation results are compared with analytical calculations. The comparisons show good performance of the proposed analytical method.

  11. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Tadashi, E-mail: tad_sekimoto@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Maruyama, Hitoshi, E-mail: maru-cib@umin.ac.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Kondo, Takayuki, E-mail: takakondonaika@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Shimada, Taro, E-mail: bobtaro51@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Takahashi, Masanori, E-mail: machat1215@yahoo.co.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Yokosuka, Osamu, E-mail: yokosukao@faculty.chiba-u.jp [Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Otsuka, Masayuki, E-mail: otsuka-m@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Miyazaki, Masaru, E-mail: masaru@faculty.chiba-u.jp [Department of General Surgery, Chiba University Graduate School of Medicine, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670 (Japan); Mine, Yoshitaka, E-mail: yoshitaka.mine@toshiba.co.jp [Toshiba Medical Systems Corporation, Ultrasound Systems Division, Ultrasound Systems Development Department, Otawara, Tochigi (Japan)

    2013-06-15

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis.

  12. Virtual laparoscopy: Initial experience with three-dimensional ultrasonography to characterize hepatic surface features

    International Nuclear Information System (INIS)

    Sekimoto, Tadashi; Maruyama, Hitoshi; Kondo, Takayuki; Shimada, Taro; Takahashi, Masanori; Yokosuka, Osamu; Otsuka, Masayuki; Miyazaki, Masaru; Mine, Yoshitaka

    2013-01-01

    Objective: To examine the potential utility of 3D-reconstructed sonograms to distinguish cirrhotic from non-cirrhotic livers by demonstrating hepatic surface characteristics. Materials and methods: A preliminary phantom study was performed to examine the potential resolution of 3D images, recognizing surface irregularities as a difference in height. In a prospective clinical study of 31 consecutive patients with ascites (21 cirrhosis, 10 non-cirrhosis), liver volume data were acquired by transabdominal mechanical scanning. The hepatic surface features of cirrhotic and non-cirrhotic patients were compared by 2 independent reviewers. Intra- and inter-operator/reviewer agreements were also examined. Results: The phantom study revealed that 0.4 mm was the minimum recognizable difference in height on the 3D sonograms. The hepatic surface image was successfully visualized in 74% patients (23/31). Success depended on the amount of ascites; visualization was 100% with ascites of 10 mm or more between the hepatic surface and abdominal wall. The images showed irregularity of the hepatic surface in all cirrhotic patients. The surface appearance was confirmed as being very similar in 3 patients who had both 3D sonogram and liver resection for transplantation. The ability to distinguish cirrhotic liver from non-cirrhotic liver improved with the use of combination of 2D- and 3D-imaging versus 2D-imaging alone (sensitivity, p = 0.02; accuracy, p = 0.02) or 3D-imaging alone (sensitivity, p = 0.03). Intra-/inter-operator and inter-reviewer agreement were excellent (κ = 1.0). Conclusion: 3D-based sonographic visualization of the hepatic surface showed high reliability and reproducibility, acting as a virtual laparoscopy method, and the technique has the potential to improve the diagnosis of cirrhosis

  13. Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rastabi, Reza Amini; Ghasemi, Ali, E-mail: ali13912001@yahoo.com; Tavoosi, Majid; Ramazani, Mazaher

    2017-03-15

    Structural and magnetic characterization of Fe-Cr-Co alloys during milling, annealing and consolidation processes was the goal of this study. In this regards, different powder mixtures of Fe{sub 80−x}Cr{sub x}Co{sub 20} (15≤x≤35) were mechanically milled in a planetary ball mill and then were consolidated by spark plasma sintering (SPS). The produced samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). According to achieved results, the structure of as-milled samples in different compositions consists of single α phase solid solution with coercivity and saturation of magnetization in the range of 110–200 Oe and 150–220 emu/g, respectively. The magnetic properties of consolidated samples depend on the kinds of formed precipitates in microstructure and the maximum values of coercive force and saturation of magnetization obtained in Fe{sub 55}Cr{sub 25}Co{sub 20} magnetic (with single α phase) alloy were 107 Oe and Ms 172 emu/g, respectively. In fact, the formation of non-magnetic σ and γ phases has a destructive effect on magnetic properties of consolidated samples with higher Cr content. Since such magnet requires less cobalt, and contains similar magnetic feature with superior ductility compare to the AlNiCo 5, it could be considered as a promising candidate for employing instead of AlNiCo 5. - Highlights: • Milled samples consist of single phase α-solid solution. • Saturation of magnetization of Fe{sub 65}Cr{sub 15}Co{sub 20} reached to 172 emu/g. • Fe{sub 65}Cr{sub 15}Co{sub 20} alloy is the suitable composition fabricated by SPS.

  14. Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper

    Science.gov (United States)

    Lopes, R.M.C.; Mitchell, K.L.; Stofan, E.R.; Lunine, J.I.; Lorenz, R.; Paganelli, F.; Kirk, R.L.; Wood, C.A.; Wall, S.D.; Robshaw, L.E.; Fortes, A.D.; Neish, Catherine D.; Radebaugh, J.; Reffet, E.; Ostro, S.J.; Elachi, C.; Allison, M.D.; Anderson, Y.; Boehmer, R.; Boubin, G.; Callahan, P.; Encrenaz, P.; Flamini, E.; Francescetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.A.; Johnson, W.T.K.; Kelleher, K.; Muhleman, D.O.; Ori, G.; Orosei, R.; Picardi, G.; Posa, F.; Roth, L.E.; Seu, R.; Shaffer, S.; Soderblom, L.A.; Stiles, B.; Vetrella, S.; West, R.D.; Wye, L.; Zebker, H.A.

    2007-01-01

    The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan. ?? 2006 Elsevier Inc.

  15. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  16. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  17. A new capacitive/resistive probe method for studying magnetic surfaces

    International Nuclear Information System (INIS)

    Kitajima, Sumio; Takayama, Masakazu; Zama, Tatsuya; Takaya, Kazuhiro; Takeuchi, Nobunao; Watanabe, Hiroshige

    1991-01-01

    A new capacitive/resistive probe method for mapping the magnetic surfaces from resistance or capacitance between a magnetic surface and a vacuum vessel was developed and tested. Those resistances and capacitances can be regarded as components of a simple electrical bridge circuit. This method exploits electrical transient response of the bridge circuit for a square pulse. From equiresistance or equicapacitance points, the magnetic surface structure can be deduced. Measurements on the Tohoku University Heliac, which is a small-size standard heliac, show good agreement with numerical calculations. This method is particularly useful for pulse-operated machines. (author)

  18. Surface Features and Cathodoluminescence (CL) Characteristics of Corundum Gems from Eastern of Thailand

    Science.gov (United States)

    Boonsoong, A.

    2017-12-01

    Thailand has long been well known as a supplier of gemstones and also one of the world's color stone centers for decades. The principal gemstones are corundum, garnet and zircon. The corundum deposits of Chanthaburi-Trat Provinces form the most significant ruby-sapphire concentration in Thailand. Corundums are commonly found in secondary deposits (alluvium, elluvial, residual-soil and colluvium deposits as well as stream sediments) with the thickness of the gem-bearing layer varying from 10-100cm and the thickness of the overburden ranging up to 15m. A number of corundum samples were collected from each of the twenty-nine corundum deposits in the Chanthaburi-Trat gem fields, eastern of Thailand. Corundum varies in colour across the region with colours associated with three geographic zones; a western zone, characterized by blue, green and yellow sapphires; a middle zone with blue, green sapphires plus rubies; and an eastern zone yielding mainly rubies. This project has aim to study surface features and characterize the Cathodoluminescence (CL) of corundum gems in the Chanthaburi-Trat gem fields, Thailand. Surfaces of the corundums under a scanning electron microscope show triangular etch features and randomly oriented needle-like patterns. These reveal that the corundums have interacted with the magma during their ascent to the Earth's surface. Surface features attributable to transport and weathering processes are scratches, conchoidal fractures and a spongy surface appearance. Clay minerals and Fe-Ti oxide minerals deposited on the spongy surfaces of some corundums also indicate that these grains experienced chemical weathering or reacted with the soil solution while they were in the alluvium. Cathodoluminescence shows some blue sapphires to exhibit dull blue luminescence. The main cause of the CL appearance of sapphires is likely to be a quench centre, Fe2+ in their structure. The bright red luminescence in corundum reflects a high Cr3+ content and is always

  19. Results of Vertical Scanning Interferometry (VSI) of Dissolved Borosilicate Glass: Evidence for Variable Surface Features and Global Surface Retreat

    Energy Technology Data Exchange (ETDEWEB)

    Icenhower, Jonathan P.; Luttge, Andreas; McGrail, B. Peter; Beig, Mikhala S.; Arvidson, Rolf S.; Cordova, Elsa A.; Steele, Jackie L.; Baum, Steven R.

    2003-10-29

    Two disparate reaction mechanisms have been invoked to explain the reactivity of glass in contact with aqueous solution. One model is based on arguments from Transition State Theory (TST), which postulates that glass dissolution rates are surface reaction controlled. Alternatively, the second model argues that release of elements from glass to solution is governed by diffusion through an altered layer that forms on the surface of glass. Vertical Scanning Interferometry (VSI) is a new technique that allows one to observe surface features of specimens exposed to solution and may, potentially, be used to distinguish between competing models. We performed a series of dissolution experiments with a suite of glass compositions from chemically simple (sodium borosilicate) to complex (sixteen component borosilicate). Dissolution rates were determined using single-pass flow-through (SPFT) apparatus at 90ºC and pH = 9 and over a solution saturation interval. Upon termination of the experiments, glass coupons were examined by VSI techniques. Effluent chemistry and VSI measurements indicate a nearly constant rate of 2.2 to 3.4 g m-2 d-1 over the solution interval; rates calculated from both methods are identical within experimental uncertainty. We argue that this glass is phase separated, and propose a model for dissolution based on the relative rates of dissolution of the two glass compositions. The data are consistent with a modified version of TST and indicate the potency of VSI methods to elucidate glass reaction mechanisms.

  20. Large Anisotropy Barrier in a Tetranuclear Single-Molecule Magnet Featuring Low-Coordinate Cobalt Centers.

    Science.gov (United States)

    Chakarawet, Khetpakorn; Bunting, Philip C; Long, Jeffrey R

    2018-02-14

    The tetranuclear cobalt cluster compound [Co 4 (μ-NP t Bu 3 ) 4 ][B(C 6 F 5 ) 4 ] ( t Bu = tert-butyl) was synthesized by chemical oxidation of Co 4 (NP t Bu 3 ) 4 with [FeCp 2 ][B(C 6 F 5 ) 4 ] and magnetically characterized to study the effect of electronic communication between low-coordinate metal centers on slow magnetic relaxation in a transition metal cluster. The dc magnetic susceptibility data reveal that the complex exhibits a well-isolated S = 9 / 2 ground state, which persists even to 300 K and is attributed to the existence of direct metal-metal orbital overlap. The ac magnetic susceptibility data further reveals that the complex exhibits slow magnetic relaxation in the absence of an applied field, and that the relaxation dynamics can be fit with a combination of Orbach, quantum tunneling, and Raman relaxation processes. The effective spin reversal barrier for this molecule is 87 cm -1 , the largest reported to date for a transition metal cluster, and arises due to the presence of a large easy-axis magnetic anisotropy. The complex additionally exhibits waist-restricted magnetic hysteresis and magnetic blocking below 3.6 K. Taken together, these results indicate that coupling of low-coordinate metal centers is a promising strategy to enhance magnetic anisotropy and slow magnetic relaxation in transition metal cluster compounds.

  1. Order-disorder transitions in adsorbed systems on magnetic surfaces

    International Nuclear Information System (INIS)

    Aguilera-Granja, F.; Moran-Lopez, J.L.; Instituto Politecnico Nacional, Mexico City. Centro de Investigacion y de Estudios Avanzados); Falicov, L.M.

    1984-01-01

    It is investigated the effect of adsorbed atoms on the magnetic properties of ferromagnets. The Ising model is employed considering nearest neigbours with antiferromagnetic coupling between atoms. (M.W.O.) [pt

  2. Feature tracking measurement of dyssynchrony from cardiovascular magnetic resonance cine acquisitions: comparison with echocardiographic speckle tracking.

    Science.gov (United States)

    Onishi, Toshinari; Saha, Samir K; Ludwig, Daniel R; Onishi, Tetsuari; Marek, Josef J; Cavalcante, João L; Schelbert, Erik B; Schwartzman, David; Gorcsan, John

    2013-10-17

    Analysis of left ventricular (LV) mechanical dyssynchrony may provide incremental prognostic information regarding cardiac resynchronization therapy (CRT) response in addition to QRS width alone. Our objective was to quantify LV dyssynchrony using feature tracking post processing of routine cardiovascular magnetic resonance (CMR) cine acquisitions (FT-CMR) in comparison to speckle tracking echocardiography. We studied 72 consecutive patients who had both steady-state free precession CMR and echocardiography. Mid-LV short axis CMR cines were analyzed using FT-CMR software and compared with echocardiographic speckle tracking radial dyssynchrony (time difference between the anteroseptal and posterior wall peak strain). Radial dyssynchrony analysis was possible by FT-CMR in all patients, and in 67 (93%) by echocardiography. Dyssynchrony by FT-CMR and speckle tracking showed limits of agreement of strain delays of ± 84 ms. These were large (up to 100% or more) relative to the small mean delays measured in more synchronous patients, but acceptable (mainly 200 ms. Radial dyssynchrony was significantly greater in wide QRS patients than narrow QRS patients by both FT-CMR (radial strain delay 230 ± 94 vs. 77 ± 92* ms) and speckle tracking (radial strain delay 242 ± 101 vs. 75 ± 88* ms, all *p acquisitions which, at least for the patients with more marked dyssynchrony, showed reasonable agreement with those from speckle tracking echocardiography. The clinical usefulness of the method, for example in predicting prognosis in CRT patients, remains to be investigated.

  3. Differentiating benign from malignant bone tumors using fluid-fluid level features on magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong; Cui, Jian Ling; Cui, Sheng Jie; Sun, Ying Cal; Cui, Feng Zhen [Dept. of Radiology, The Third Hospital of Hebei Medical University, Hebei Province Biomechanical Key Laborary of Orthopedics, Shijiazhuang, Hebei (China)

    2014-12-15

    To analyze different fluid-fluid level features between benign and malignant bone tumors on magnetic resonance imaging (MRI). This study was approved by the hospital ethics committee. We retrospectively analyzed 47 patients diagnosed with benign (n = 29) or malignant (n = 18) bone tumors demonstrated by biopsy/surgical resection and who showed the intratumoral fluid-fluid level on pre-surgical MRI. The maximum length of the largest fluid-fluid level and the ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane were investigated for use in distinguishing benign from malignant tumors using the Mann-Whitney U-test and a receiver operating characteristic (ROC) analysis. Fluid-fluid level was categorized by quantity (multiple vs. single fluid-fluid level) and by T1-weighted image signal pattern (high/low, low/high, and undifferentiated), and the findings were compared between the benign and malignant groups using the chi2 test. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of bone tumors in the sagittal plane that allowed statistically significant differentiation between benign and malignant bone tumors had an area under the ROC curve of 0.758 (95% confidence interval, 0.616-0.899). A cutoff value of 41.5% (higher value suggests a benign tumor) had sensitivity of 73% and specificity of 83%. The ratio of the maximum length of the largest fluid-fluid level to the maximum length of a bone tumor in the sagittal plane may be useful to differentiate benign from malignant bone tumors.

  4. [Localized Scleroderma of Lower Extremities:Clinical and Magnetic Resonance Imaging Features].

    Science.gov (United States)

    Wang, Feng-dan; Wang, Hong-wei; Wu, Zhi-hong; Hou, Bo; Jiang, Bo; Zhang, Yan; Feng, Feng; Jin, Zheng-yu; Yuan, Xie

    2015-08-01

    To evaluate the clinical and musculoskeletal characteristics of localized scleroderma with lower extremities affected. All the localized scleroderma patients,who received magnetic resonance (MR ) examinations of affected lower extremities at Peking Union Medical College Hospital from April 2013 to June 2014,were retrospectively reviewed. Their clinical data and laboratory results of antinuclear antibody,anti-double stranded-DNA antibody, and anti-extractable nuclear antigen antibody were collected and analyzed. All the MR examinations were non-contrast imaging using Siemens Skyra 3.0T MR scanner. There were 16 localized scleroderma patients with lower extremities affected, 11 of whom were linear scleroderma, 4 generalized morphea, and 1 deep morphea. Female to male ratio was 1:2.2. The mean age was 22.5 years. The mean time span was 7.4 years. Four of the 14 patients (28.6%) who received antinuclear antibody test were positive. All the 10 patients who received anti-double stranded-DNA antibody test and the 7 patients who received anti-extractable nuclear antigen antibody test were negative. The most common musculoskeletal MR features were subcutaneous septal thickening (16/16) and fascial thickening (11/16). The thickened speta and fascia could either be hypointenstiy or hyperintensity on turbo inversion recovery magnitude/proton density weighted imaging. Other MR manifestations were intramuscular speta thickening (3/16), muscular abnormal signals (1/16), and bone marrow abnormal signals (2/16). Musculoskeletal manifestations of the lower extremities with localized scleroderma can be well revealed using MR imaging.

  5. Detection of spring steel surface decarburization by magnetic hysteresis measurements

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Stupakov, Oleksandr; Tomáš, Ivan; Skrbek, B.

    2011-01-01

    Roč. 44, č. 6 (2011), s. 490-494 ISSN 0963-8695 R&D Projects: GA ČR GA101/09/1323; GA ČR GP102/09/P108 Grant - others:AV ČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : decarburization * magnetic hysteresis * spring steel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.477, year: 2011

  6. Stability of skyrmions on curved surfaces in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Santos, V.L., E-mail: vagson.carvalho@usach.cl [Instituto Federal de Educação, Ciência e Tecnologia Baiano - Campus Senhor do Bonfim, Km 04 Estrada da Igara, 48970-000 Senhor do Bonfim, Bahia (Brazil); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Elias, R.G.; Altbir, D. [Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Fonseca, J.M. [Universidade Federal de Viçosa, Departamento de Física, Avenida Peter Henry Rolfs s/n, 36570-000 Viçosa, MG (Brazil)

    2015-10-01

    We study the stability and energetics associated to skyrmions appearing as excitations on curved surfaces. Using a continuum model we show that the presence of cylindrically radial and azimuthal fields destabilize the skyrmions that appear in the absence of an external field. Weak fields generate fractional skyrmions while strong magnetic fields yield stable 2π-skyrmions, which have their widths diminished by the magnetic field strength. Under azimuthal fields vortex appears as stable state on the curved surface. - Highlights: • Stability of skyrmions on curved surfaces in the presence of a magnetic field. • Weak fields can destabilize skyrmions. • Strong magnetic fields yield the appearing of 2π-skyrmions. • The width of skyrmions is determined by the curvature and magnetic field strength. • Under azimuthal fields vortex appears as stable states.

  7. Lipase degradation of plasticized polyvinyl chloride endotracheal tube surfaces to create nanoscale features

    Directory of Open Access Journals (Sweden)

    Machado MC

    2017-03-01

    Full Text Available Mary C Machado,1 Thomas J Webster2 1Center for Biomedical Engineering, Division of Engineering Brown University, Providence, RI, 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA Abstract: Polyvinyl chloride (PVC endotracheal tubes (ETTs nanoetched with a fungal lipase have been shown to reduce bacterial growth and biofilm formation and could be an inexpensive solution to the complex problem of ventilator-associated pneumonia (VAP. Although bacterial growth and colonization on these nanoetched materials have been well characterized, little is known about the mechanism by which the fungal lipase degrades the PVC and, thus, alters its properties to minimize bacteria functions. This study used X-ray photoelectron spectroscopy (XPS and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR to better describe the surface chemistry of both unetched and lipase nanoetched PVC ETT. ATR-FTIR analysis of the unetched and treated surfaces showed a similar presence of a plasticizer. This was confirmed by XPS analysis, which showed an increase of carbon and the presence of oxygen on both unetched and nanoetched surfaces. A quantitative comparison of the FTIR spectra revealed significant correlations (Pearson’s correlation, R=0.997 [R2=0.994, P<0.001] between the unetched and nanomodified PVC ETT spectra, demonstrating similar surface chemistry. This analysis showed no shifting or widening of the bands in the spectra and no significant changes in the intensity of the infrared peaks due to the degradation of the plasticizer by the fungal lipase. In contrast, results from this study did demonstrate significantly increased nanoscale surface features on the lipase etched compared to non-etched PVC ETTs. This led to a change in surface energetics, which altered ion adsorption to the ETTs. Thus, these results showed that PVC surfaces nanoetched with a 0.1% lipase solution for 48 hours have no significant change

  8. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    Science.gov (United States)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the

  9. HYDROLOGIC AND FEATURE-BASED SURFACE ANALYSIS FOR TOOL MARK INVESTIGATION ON ARCHAEOLOGICAL FINDS

    Directory of Open Access Journals (Sweden)

    K. Kovács

    2012-07-01

    Full Text Available The improvement of detailed surface documentation methods provides unique tool mark-study opportunities in the field of archaeological researches. One of these data collection techniques is short-range laser scanning, which creates a digital copy of the object’s morphological characteristics from high-resolution datasets. The aim of our work was the accurate documentation of a Bronze Age sluice box from Mitterberg, Austria with a spatial resolution of 0.2 mm. Furthermore, the investigation of the entirely preserved tool marks on the surface of this archaeological find was also accomplished by these datasets. The methodology of this tool mark-study can be summarized in the following way: At first, a local hydrologic analysis has been applied to separate the various patterns of tools on the finds’ surface. As a result, the XYZ coordinates of the special points, which represent the edge lines of the sliding tool marks, were calculated by buffer operations in a GIS environment. During the second part of the workflow, these edge points were utilized to manually clip the triangle meshes of these patterns in reverse engineering software. Finally, circle features were generated and analysed to determine the different sections along these sliding tool marks. In conclusion, the movement of the hand tool could be reproduced by the spatial analysis of the created features, since the horizontal and vertical position of the defined circle centre points indicated the various phases of the movements. This research shows an exact workflow to determine the fine morphological structures on the surface of the archaeological find.

  10. Measurements of land surface features using an airborne laser altimeter: the HAPEX-Sahel experiment

    International Nuclear Information System (INIS)

    Ritchie, J.C.; Menenti, M.; Weltz, M.A.

    1997-01-01

    An airborne laser profiling altimeter was used to measure surface features and properties of the landscape during the HAPEX-Sahel Experiment in Niger, Africa in September 1992. The laser altimeter makes 4000 measurements per second with a vertical resolution of 5 cm. Airborne laser and detailed field measurements of vegetation heights had similar average heights and frequency distribution. Laser transects were used to estimate land surface topography, gully and channel morphology, and vegetation properties ( height, cover and distribution). Land surface changes related to soil erosion and channel development were measured. For 1 km laser transects over tiger bush communities, the maximum vegetation height was between 4-5 and 6-5 m, with an average height of 21 m. Distances between the centre of rows of tiger bush vegetation averaged 100 m. For two laser transects, ground cover for tiger bush was estimated to be 225 and 301 per cent for vegetation greater than 0-5m tall and 190 and 25-8 per cent for vegetation greater than 10m tall. These values are similar to published values for tiger bush. Vegetation cover for 14 and 18 km transects was estimated to be 4 per cent for vegetation greater than 0-5 m tall. These cover values agree within 1-2 per cent with published data for short transects (⩾ 100 m) for the area. The laser altimeter provided quick and accurate measurements for evaluating changes in land surface features. Such information provides a basis for understanding land degradation and a basis for management plans to rehabilitate the landscape. (author)

  11. Long wave dispersion relations for surface waves in a magnetically structured atmosphere

    International Nuclear Information System (INIS)

    Rae, I.C.; Roberts, B.

    1983-01-01

    A means of obtaining approximate dispersion relations for long wavelength magnetoacoustic surface waves propagating in a magnetically structured atmosphere is presented. A general dispersion relation applying to a wide range of magnetic profiles is obtained, and illustrated for the special cases of a single interface and a magnetic slab. In the slab geometry, for example, the dispersion relation contains both the even (sausage) and odd (kink) modes in one formalism

  12. Particular features of conditioned electrodefensive reflex in white rats on background of constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shust, I.V.; Galantyuk, S.I.; Cheretyanko, Yu.V.

    Study of the influence of magnetic fields upon the higher nervous activity of man and animals has long been attracting the attention of researchers. It is indicated in the literature that magnetic fields inhibit development of conditioned reflexes in planarians, fishes, and mammals. However, there are data of opposite nature as well, indicating accelerated development of the avoidance reflex in animals exposed previously to a magnetic field. Researchers studied formation of a conditioned electrodefensive reflex (CER) in white rats exposed to a constant magnetic field (CMF), and the influence of a vitamin preparation - galascorbin - on formation of the CER in animals exposed to a CMF.

  13. Correlative Study of Angiogenesis and Dynamic Contrast-Enhanced Magnetic Resonance Imaging Features of Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Wang, B.; Gao, Z.Q.; Yan, X.

    2005-01-01

    Purpose: To explore the correlation between contrast-enhancement patterns on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and angiogenesis by analyzing microvessel density (MVD), vascular endothelial growth factor (VEGF), and P53 protein expression in hepatocellular carcinoma (HCC). Material and Methods: MRI was performed with a GE Signa 5T MR scanner using SE and FMPSPGR sequences in 30 patients (38 lesions) during the period October 1998 to March 2000. All had histopathologically proven HCC. MR images were reviewed/analyzed retrospectively. The 30 patients were between 35 and 65 years of age. SE T1WI, PDWI, and T2WI were acquired initially. The FMPSPGR sequence was acquired in the same position. The DCE-MRI was performed in the arterial, portal vein, and delay phase after a bolus injection of Gd-DTPA. The specimens were stained immunohistochemically for CD34, VEGF, and P53. MVD was highlighted by anti-CD34 antibody staining. The enhancement features of HCC lesions were studied correlatively with the tumor MVD, VEGF, and P53 expression at protein level. Results: In the arterial phase, the results showed that MVD of HCC in the high-enhancement group (229.76±80.96) was higher than that in the equal-enhancement (173.09±61.38) and low-enhancement groups (153.00±108.58) (P <0.01, respectively). VEGF expression of HCC in the high-enhancement group (68.42%) was higher than that in the equal-enhancement (36.36%) and low-enhancement groups (38.89%) (P <0.05, respectively). In the portal vein phase, MVD of HCC in the enhancement group (259.80±93.30) was higher than that in the non-enhancement group (178.64±92.65) (P <0.05). No significant correlation was found between VEGF expression and the enhancement feature in the portal vein phase. In the delay phase, MVD of HCC in the ring-enhancement group (269.06±57.89) was significantly higher than that in the non-ring-enhancement group (144.10±88.90) (P <0.01). There was a significant difference in VEGF

  14. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    Science.gov (United States)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  15. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  16. EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2017-08-01

    Full Text Available The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  17. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors

    Directory of Open Access Journals (Sweden)

    Han Sun

    2018-03-01

    Full Text Available The novel human-computer interface (HCI using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC and Fisher discrimination (FD criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT and recognition rate (RR. The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU performed best with mean classification accuracy of 97.45% for all movement’s pairs. Channels placed on ECU and the extensor carpi radialis (ECR were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s

  18. Controllable magnetic doping of the surface state of a topological insulator

    DEFF Research Database (Denmark)

    Schlenk, T.; Bianchi, M.; Koleini, Mohammad

    2013-01-01

    principles calculations within density functional theory, these Fe substitutional impurities retain a large magnetic moment thus presenting an alternative scheme for magnetically doping the topological surface state. For both types of Fe doping, we see no indication of a gap at the Dirac point....

  19. Surface field in an ensemble of superconducting spheres under external magnetic field

    CERN Document Server

    Peñaranda, A; Ramírez-Piscina, L

    1999-01-01

    We perform calculations of the magnetic field on the surface of an ensemble of superconducting spheres when placed into an external magnetic field, which is the configuration employed in superheated superconducting granule detectors. The Laplace equation is numerically solved with appropriate boundary conditions by means of an iterative procedure and a multipole expansion.

  20. Magnetic surface breaking in 3D MHD equilibria of 1=2 Heliotron

    International Nuclear Information System (INIS)

    Hayashi, Takaya; Takei, Akira; Sato, Tetsuya.

    1992-01-01

    Magnetic surface breaking due to the finite pressure effect is analyzed for three dimensional magnetohydrodynamic equilibria of 1=2 Heliotron configuration. Characteristics of magnetic island formation are extensively surveyed. It is found that the well-hill criterion which has been predicted by the local analysis is not always applicable for all cases. (author)

  1. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Nabeta, Masahiro, E-mail: nabeta@mp.okayama-u.ac.jp; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-15

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  2. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  3. Surface feature characterization test plan: Conceptual design of a high level nuclear waste repository in salt

    International Nuclear Information System (INIS)

    1984-06-01

    This report presents the Surface Feature Characterization Test Plan for conceptual design. The Test Plan is part of the surface feature characterization program for conceptual design which will obtain information on site topography, hydrology, stratigraphy, and soil and rock engineering properties. The information will be obtained by the Geologic Project Manager (GPM). This Test Plan provides guidance to the GPM as to (1) the kinds of data to be collected, (2) anticipated methods, (3) the level of detail required, (4) interpretation to be made, and (5) the format for presentation. Based on this Test Plan and on conditions at the site that is selected, the GPM will develop an Activity Plan describing the methods to be used in obtaining the needed information. For each item of information, the Test Plan describes those facilities which require it for their design. The GPM can then determine the appropriate methods and level of effort for obtaining the information, taking into account its use and conditions at the selected site. 7 figs., 3 tabs

  4. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir

    2014-10-01

    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  5. Single-chain magnet features in 1D [MnR{sub 4}TPP][TCNE] compounds

    Energy Technology Data Exchange (ETDEWEB)

    Balanda, Maria [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Tomkowicz, Zbigniew; Rams, Michal [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Haase, Wolfgang, E-mail: Maria.Balanda@ifj.edu.pl [Institute of Physical Chemistry, Darmstadt University of Technology, 64287 Darmstadt (Germany)

    2011-07-06

    Molecular chains of antiferrimagnetically coupled Mn{sup III}-ion (S = 2) and TCNE (tetracyanoethylene) radical moments (s = 1/2 ) show different behaviour depending on group R substituted to TPP (tetraphenylporphyrin) and on the substitution site. The compound with R = F in Ortho position is a Single-Chain Magnet (SCM) with blocking temperature T{sub b} = 6.6K, while that with R = F in Meta position shows both blocking (T{sub b} = 5.4 K) and magnetic ordering transition (T{sub c} = 10 K). For bulky groups R = OC{sub n}H{sub 2n+1}, the magnetically ordered phase is observed (T{sub c} {approx} 22 K), which does not however prevent slow relaxation at T <8 K. Magnetic hysteresis with coercive field H{sub c} of 2 T at 2.3 K is like that of SCM. The frequency dependent AC susceptibility in the superimposed DC field reveals common features of all systems. The energy of intrachain ferromagnetic coupling between effective spin units 3/2, relevant at low temperatures, is determined for all compounds and the interchain dipolar coupling is estimated. It is concluded that slow relaxation is inherent for all quasi one-dimensional compounds and for the magnetically ordered ones shows up in the high enough magnetic field.

  6. Assessment of iris surface features and their relationship with iris thickness in Asian eyes.

    Science.gov (United States)

    Sidhartha, Elizabeth; Gupta, Preeti; Liao, Jiemin; Tham, Yih-Chung; Cheung, Carol Y; He, Mingguang; Wong, Tien Y; Aung, Tin; Cheng, Ching-Yu

    2014-05-01

    To assess iris surface features in Asian eyes and examine their associations with iris thickness measured by anterior segment optical coherence tomography (AS OCT). Cross-sectional study. We recruited 250 subjects from the Singapore Malay Eye Study. We obtained standardized slit-lamp photographs and developed a grading system assessing iris crypts (by number and size), furrows (by number and circumferential extent), and color (higher grade denoting darker iris). Vertical and horizontal cross-sections of the anterior chamber were imaged using AS OCT. Intragrader and intergrader agreements in the grading of iris surface were assessed by weighted κ (κ(w)) statistic. Associations of the average iris thickness with the grade of iris features were assessed using linear regression analysis. Frequency and size of iris crypts, furrows, and color; iris thickness at 750 μm (IT750) and 2000 μm (IT2000) from the scleral spur; and maximum iris thickness (ITM) averaged from the 4 quarters. Three hundred sixty-four eyes had complete and gradable data for crypts and color; 330 eyes were graded for furrows. The grading scheme showed good intragrader (crypt κ(w) = 0.919, furrow κ(w) =0.901, color κ(w) = 0.925) and intergrader (crypt κ(w) = 0.775, furrow κ(w) = 0.836, color κ(w) = 0.718) agreements. Higher crypt grade was associated independently with thinner IT750 (β [change in iris thickness per grade higher] = -0.007; P = 0.029), IT2000 (β = -0.018; P iris was also associated with thicker IT750 (β = 0.014; P = 0.001). Iris surface features, assessed and measured from slit-lamp photographs, correlate well with iris thickness. Irises with more crypts are thinner; irises with more extensive furrows and darker color are thicker peripherally. These findings may provide another means to assess angle closure risk based on iris features. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  7. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    Science.gov (United States)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-01

    We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  8. Long-lasting modulation of feature integration by transcranial magnetic stimulation

    NARCIS (Netherlands)

    Scharnowski, Frank; Rueter, Johannes; Jolij, Jacob; Hermens, Frouke; Kammer, Thomas; Herzog, Michael H.

    2009-01-01

    The human brain analyzes a visual object first by basic feature detectors. On the objects way to a conscious percept, these features are integrated in subsequent stages of the visual hierarchy. The time course of this feature integration is largely unknown. To shed light on the temporal dynamics of

  9. Magnetic character of holmium atom adsorbed on platinum surface

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Shapiro, D.S.; Kolorenč, Jindřich; Lichtenstein, A.I.

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-6, č. článku 2751. ISSN 2045-2322 R&D Projects: GA ČR GC15-05872J Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : rare-earth adatoms * density-functional theory * single- atom magnets Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.259, year: 2016

  10. Anomalous magnetism of the nanocrystalline oxide TiO2 surface

    Science.gov (United States)

    Ermakov, A. E.; Uimin, M. A.; Korolev, A. V.; Volegov, A. S.; Byzov, I. V.; Shchegoleva, N. N.; Minin, A. S.

    2017-03-01

    The magnetic properties of an oxygen-deficient nanocrystalline undoped titanium dioxide synthesized by the gas-phase, electric-explosion, and chemical method have been studied. The defect state was controlled using reduction treatments in vacuum or in a hydrogen atmosphere. It is shown that the defect state of the surface of nanocrystalline oxides (for example, the existence of vacancies in the anion sublattice and other defects) has a dominant influence on the formation of the magnetic properties of the samples under study. The main contributions to the magnetism of TiO2 nanoparticles after the reduction treatments are the paramagnetic contribution of the matrix, the paramagnetic Curie-Weiss contribution, and the contribution of the spontaneous magnetic moment provided by the existence of regions with different spin ordering. A heterogeneous magnetic state is found to exist in the TiO2 nanopowders; for example, at low temperatures, shifted hysteresis loops are observed as a result of a possible set of magnetic states with different spin orders. It is shown that a soft compaction or grinding of nanopowders in an agate mortar lead to substantial increase in the magnetization, sometimes, by a factor of more than two, regardless of the nanopowder synthesis method and the initial phase state of TiO2 (anatase or rutile structures). This experimental fact proves the key role of the surface defects and the magnetic moment carriers with different spin configurations localized mainly on the nanoparticle surface. The compaction changes the magnetization only in the case when the initial magnetic state has a nonlinear "quasi-superparamagnetic" character of the magnetization curve. As a result of predominant exchange interaction between the nanoparticles with a frustrated character of spin ordering on the nanoparticles surface, the ferromagnetic contribution increases as nanoparticles contact.

  11. A Brief Note on the Magnetowetting of Magnetic Nanofluids on AAO Surfaces

    Directory of Open Access Journals (Sweden)

    Yu-Chin Chien

    2018-02-01

    Full Text Available In magnetowetting, the material properties of liquid, surface morphology of solid, and applied external field are three major factors used to determine the wettability of a liquid droplet on a surface. For wetting measurements, an irregular or uneven surface could result in a significant experimental uncertainty. The periodic array with a hexagonal symmetry structure is an advantage of the anodic aluminum oxide (AAO structure. This study presents the results of the wetting properties of magnetic nanofluid sessile droplets on surfaces of various AAO pore sizes under an applied external magnetic field. Stable, water-based magnetite nanofluids are prepared by combining the chemical co-precipitation with the sol-gel technique, and AAO surfaces are then generated by anodizing the aluminum sheet in the beginning. The influence of pore size and magnetic field gradient on the magnetowetting of magnetic nanofluids on AAO surfaces is then investigated by an optical test system. Experimental results show that increasing the processing voltage of AAO templates could result in enhanced non-wettability behavior; that is, the increase in AAO pore size could lead to the increase in contact angle. The contact angle could be reduced by the applied magnetic field gradient. In general, the magnetic field has a more significant effect at smaller AAO pore sizes.

  12. Monte Carlo simulation of the surface magnetic phase transition in chromium

    International Nuclear Information System (INIS)

    Mata, G.J.; Valera, M.

    1995-03-01

    Antiferromagnetic chromium is known to have a surface magnetic phase transition at a temperature T s = 780K, which is well above its bulk Neel temperature, T N = 311K. Electronic structure calculations predict an enhancement of the magnetic moment at the surface, due to changes in the local electronic environment. In order to ascertain the role of such an enhancement in the surface magnetic transition, we have modelled the surface by means of a classical Heisenberg model in which: a) the magnitude of a given spin is equal to the value of the corresponding magnetic moment predicted by band structure calculations, b) the exchange interaction J between spins is the same throughout the system, and c) the exchange interaction is chosen so as to reproduce the bulk transition temperature. We find a ratio of surface to bulk transition temperature of T S /T N = 2.5, which is an excellent agreement with the experimental result. Our results suggest that the surface magnetic transition in chromium is driven by fluctuations in the orientation of the magnetic moments and that quantum fluctuations play a minor role. (author). 18 refs, 5 figs

  13. Stream/Bounce Event Perception Reveals a Temporal Limit of Motion Correspondence Based on Surface Feature over Space and Time

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi

    2011-06-01

    Full Text Available We examined how stream/bounce event perception is affected by motion correspondence based on the surface features of moving objects passing behind an occlusion. In the stream/bounce display two identical objects moving across each other in a two-dimensional display can be perceived as either streaming through or bouncing off each other at coincidence. Here, surface features such as colour (Experiments 1 and 2 or luminance (Experiment 3 were switched between the two objects at coincidence. The moment of coincidence was invisible to observers due to an occluder. Additionally, the presentation of the moving objects was manipulated in duration after the feature switch at coincidence. The results revealed that a postcoincidence duration of approximately 200 ms was required for the visual system to stabilize judgments of stream/bounce events by determining motion correspondence between the objects across the occlusion on the basis of the surface feature. The critical duration was similar across motion speeds of objects and types of surface features. Moreover, controls (Experiments 4a–4c showed that cognitive bias based on feature (colour/luminance congruency across the occlusion could not fully account for the effects of surface features on the stream/bounce judgments. We discuss the roles of motion correspondence, visual feature processing, and attentive tracking in the stream/bounce judgments.

  14. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  15. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness

    Science.gov (United States)

    Vignati, A.; Mazzetti, S.; Giannini, V.; Russo, F.; Bollito, E.; Porpiglia, F.; Stasi, M.; Regge, D.

    2015-04-01

    To explore contrast (C) and homogeneity (H) gray-level co-occurrence matrix texture features on T2-weighted (T2w) Magnetic Resonance (MR) images and apparent diffusion coefficient (ADC) maps for predicting prostate cancer (PCa) aggressiveness, and to compare them with traditional ADC metrics for differentiating low- from intermediate/high-grade PCas. The local Ethics Committee approved this prospective study of 93 patients (median age, 65 years), who underwent 1.5 T multiparametric endorectal MR imaging before prostatectomy. Clinically significant (volume ≥0.5 ml) peripheral tumours were outlined on histological sections, contoured on T2w and ADC images, and their pathological Gleason Score (pGS) was recorded. C, H, and traditional ADC metrics (mean, median, 10th and 25th percentile) were calculated on the largest lesion slice, and correlated with the pGS through the Spearman correlation coefficient. The area under the receiver operating characteristic curve (AUC) assessed how parameters differentiate pGS = 6 from pGS ≥ 7. The dataset included 49 clinically significant PCas with a balanced distribution of pGS. The Spearman ρ and AUC values on ADC were: -0.489, 0.823 (mean) -0.522, 0.821 (median) -0.569, 0.854 (10th percentile) -0.556, 0.854 (25th percentile) -0.386, 0.871 (C); 0.533, 0.923 (H); while on T2w they were: -0.654, 0.945 (C); 0.645, 0.962 (H). AUC of H on ADC and T2w, and C on T2w were significantly higher than that of the mean ADC (p = 0.05). H and C calculated on T2w images outperform ADC parameters in correlating with pGS and differentiating low- from intermediate/high-risk PCas, supporting the role of T2w MR imaging in assessing PCa biological aggressiveness.

  16. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking

    Directory of Open Access Journals (Sweden)

    Morton Geraint

    2012-06-01

    Full Text Available Abstract Background Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT is a recently described method of post processing routine cine acquisitions which aims to provide quantitative measurements of circumferentially and radially directed ventricular wall strain. Inter-study reproducibility is important for serial assessments however has not been defined for CMR-FT. Methods 16 healthy volunteers were imaged 3 times within a single day. The first examination was performed at 0900 after fasting and was immediately followed by the second. The third, non-fasting scan, was performed at 1400. CMR-FT measures of segmental and global strain parameters were calculated. Left ventricular (LV circumferential and radial strain were determined in the short axis orientation (EccSAX and ErrSAX respectively. LV and right ventricular longitudinal strain and LV radial strain were determined from the 4-chamber orientation (EllLV, EllRV, and ErrLAX respectively. LV volumes and function were also analysed. Inter-study reproducibility and study sample sizes required to demonstrate 5% changes in absolute strain were determined by comparison of the first and second exams. The third exam was used to determine whether diurnal variation affected reproducibility. Results CMR-FT strain analysis inter-study reproducibility was variable. Global strain assessment was more reproducible than segmental analysis. Overall EccSAX was the most reproducible measure of strain: coefficient of variation (CV 38% and 20.3% and intraclass correlation coefficient (ICC 0.68 (0.55-0.78 and 0.7 (0.32-0.89 for segmental and global analysis respectively. The least reproducible segmental measure was EllRV: CV 60% and ICC 0.56 (0.41-0.69 whilst the least reproducible global measure was ErrLAX: CV 33.3% and ICC 0.44 (0–0.77. Variable reproducibility was also reflected in the calculated sample sizes, which ranged from 11 (global EccSAX to 156 subjects (segmental EllRV. The

  17. Quantification of left ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature tracking.

    Directory of Open Access Journals (Sweden)

    Johannes T Kowallick

    Full Text Available Cardiovascular magnetic resonance feature tracking (CMR-FT offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach.Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 µg · kg(-1 · min(-1 in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance and basal (defined as 100% LV distance slices, four different models for the calculation of torsion were examined: Model-1 (25-75%, Model-2 (0-100%, Model-3 (25-100% and Model-4 (0-75%. Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values.Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75% discriminated between rest and stress (Global Torsion: 2.7 ± 1.5° cm(-1, 3.6 ± 2.0° cm(-1, 5.1 ± 2.2° cm(-1, p<0.01; Global Recoil Rate: -30.1 ± 11.1° cm(-1 s(-1,-46.9 ± 15.0° cm(-1 s(-1,-68.9 ± 32.3° cm(-1 s(-1, p<0.01; for rest, 10 and 20 µg · kg(-1 · min(-1 of dobutamine, respectively. Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation.CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal

  18. Rosai-Dorfman Disease with Epidural and Spinal Bone Marrow Involvement: Magnetic Resonance Imaging and Diffusion-Weighted Imaging Features

    International Nuclear Information System (INIS)

    Oner, A.Y.; Akpek, S.; Tali, T.

    2007-01-01

    Sinus histiocytosis with massive lymphadenopathy (SHML), or Rosai-Dorfman disease, is a rare histiocytic disorder that typically presents with chronic, self-limiting cervical lymphadenopathy. Although this disease mainly affects histiocytes, there are a few reports of bone marrow infiltration. Diffusion-weighted imaging (DWI) is a promising technology in differentiating between various bone marrow pathologies. We here present conventional magnetic resonance imaging and DWI features of a patient with SHML and bone marrow involvement

  19. Rosai-Dorfman Disease with Epidural and Spinal Bone Marrow Involvement: Magnetic Resonance Imaging and Diffusion-Weighted Imaging Features

    Energy Technology Data Exchange (ETDEWEB)

    Oner, A.Y.; Akpek, S.; Tali, T. [Dept. of Radiology, Gazi Univ. School of Medicine. Besevler-Ankara (Turkey)

    2007-04-15

    Sinus histiocytosis with massive lymphadenopathy (SHML), or Rosai-Dorfman disease, is a rare histiocytic disorder that typically presents with chronic, self-limiting cervical lymphadenopathy. Although this disease mainly affects histiocytes, there are a few reports of bone marrow infiltration. Diffusion-weighted imaging (DWI) is a promising technology in differentiating between various bone marrow pathologies. We here present conventional magnetic resonance imaging and DWI features of a patient with SHML and bone marrow involvement.

  20. Vector Magnetic Fields, Sub surface Stresses and Evolution of ...

    Indian Academy of Sciences (India)

    tribpo

    Arendt 1996). Bogdan (1984) found that flux tubes of the same sense of twist will merge if their relative velocities are slow enough to allow their magnetic fields to reconnect. Zweibel & Rhoads (1995) estimated an upper limit to the critical velocity and concluded that colliding twisted flux tubes may coalesce at the base of the ...

  1. Neodymium as the main feature of permanent magnets from hard disk drives (HDDs).

    Science.gov (United States)

    München, Daniel Dotto; Veit, Hugo Marcelo

    2017-03-01

    As a way to manage neodymium-iron-boron (NdFeB) magnets wasted in end-of-life hard disk drives (HDDs), a waste characterization is needed prior to a recycling process. Due to their magnetic properties, NdFeB magnets are essential in technological applications nowadays, thus causing an increase in the industrial demand for rare earth metals. However, these metals have a short supply, since they are difficult to obtain from ores, creating a critical market. In this work, a study of the characterization of sintered neodymium-iron-boron magnets was undertaken by qualitatively and quantitatively uncovering the neodymium recovery potential from this type of electronic waste. From the collection and disassembly of hard disk drives, in which the magnet represents less than 3% of the total weight, an efficient demagnetization process was proceeded at 320°C. Then, the magnet was ground and screened for an X-ray diffraction (XRD) analysis, which showed the Nd 2 Fe 14 B tetragonal phase as the dominant constituent of the sample. An analysis was also carried out in a scanning electron microscope (SEM) and an inductively coupled plasma optical emission spectrometer (ICP-OES), where the magnet composition showed 21.5wt% of neodymium and 65.1wt% of iron, among other chemicals. This Nd content is higher than the one found in Nd ores, enhancing the recyclability and the importance of waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Perception of acoustically complex phonological features in vowels is reflected in the induced brain-magnetic activity

    Directory of Open Access Journals (Sweden)

    Obleser Jonas

    2007-06-01

    Full Text Available Abstract A central issue in speech recognition is which basic units of speech are extracted by the auditory system and used for lexical access. One suggestion is that complex acoustic-phonetic information is mapped onto abstract phonological representations of speech and that a finite set of phonological features is used to guide speech perception. Previous studies analyzing the N1m component of the auditory evoked field have shown that this holds for the acoustically simple feature place of articulation. Brain magnetic correlates indexing the extraction of acoustically more complex features, such as lip rounding (ROUND in vowels, have not been unraveled yet. The present study uses magnetoencephalography (MEG to describe the spatial-temporal neural dynamics underlying the extraction of phonological features. We examined the induced electromagnetic brain response to German vowels and found the event-related desynchronization in the upper beta-band to be prolonged for those vowels that exhibit the lip rounding feature (ROUND. It was the presence of that feature rather than circumscribed single acoustic parameters, such as their formant frequencies, which explained the differences between the experimental conditions. We conclude that the prolonged event-related desynchronization in the upper beta-band correlates with the computational effort for the extraction of acoustically complex phonological features from the speech signal. The results provide an additional biomagnetic parameter to study mechanisms of speech perception.

  3. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-depende......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data.......Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular...

  4. Feature extraction and classifcation in surface grading application using multivariate statistical projection models

    Science.gov (United States)

    Prats-Montalbán, José M.; López, Fernando; Valiente, José M.; Ferrer, Alberto

    2007-01-01

    In this paper we present an innovative way to simultaneously perform feature extraction and classification for the quality control issue of surface grading by applying two well known multivariate statistical projection tools (SIMCA and PLS-DA). These tools have been applied to compress the color texture data describing the visual appearance of surfaces (soft color texture descriptors) and to directly perform classification using statistics and predictions computed from the extracted projection models. Experiments have been carried out using an extensive image database of ceramic tiles (VxC TSG). This image database is comprised of 14 different models, 42 surface classes and 960 pieces. A factorial experimental design has been carried out to evaluate all the combinations of several factors affecting the accuracy rate. Factors include tile model, color representation scheme (CIE Lab, CIE Luv and RGB) and compression/classification approach (SIMCA and PLS-DA). In addition, a logistic regression model is fitted from the experiments to compute accuracy estimates and study the factors effect. The results show that PLS-DA performs better than SIMCA, achieving a mean accuracy rate of 98.95%. These results outperform those obtained in a previous work where the soft color texture descriptors in combination with the CIE Lab color space and the k-NN classi.er achieved a 97.36% of accuracy.

  5. Surface feature based classification of plant organs from 3D laserscanned point clouds for plant phenotyping.

    Science.gov (United States)

    Paulus, Stefan; Dupuis, Jan; Mahlein, Anne-Katrin; Kuhlmann, Heiner

    2013-07-27

    Laserscanning recently has become a powerful and common method for plant parameterization and plant growth observation on nearly every scale range. However, 3D measurements with high accuracy, spatial resolution and speed result in a multitude of points that require processing and analysis. The primary objective of this research has been to establish a reliable and fast technique for high throughput phenotyping using differentiation, segmentation and classification of single plants by a fully automated system. In this report, we introduce a technique for automated classification of point clouds of plants and present the applicability for plant parameterization. A surface feature histogram based approach from the field of robotics was adapted to close-up laserscans of plants. Local geometric point features describe class characteristics, which were used to distinguish among different plant organs. This approach has been proven and tested on several plant species. Grapevine stems and leaves were classified with an accuracy of up to 98%. The proposed method was successfully transferred to 3D-laserscans of wheat plants for yield estimation. Wheat ears were separated with an accuracy of 96% from other plant organs. Subsequently, the ear volume was calculated and correlated to the ear weight, the kernel weights and the number of kernels. Furthermore the impact of the data resolution was evaluated considering point to point distances between 0.3 and 4.0 mm with respect to the classification accuracy. We introduced an approach using surface feature histograms for automated plant organ parameterization. Highly reliable classification results of about 96% for the separation of grapevine and wheat organs have been obtained. This approach was found to be independent of the point to point distance and applicable to multiple plant species. Its reliability, flexibility and its high order of automation make this method well suited for the demands of high throughput phenotyping.

  6. Preliminary investigations of design philosophies and features applicable to large magnetic suspension and balance systems

    Science.gov (United States)

    Britcher, C. P.; Fortescue, P. W.; Allcock, G. A.; Goodyer, M. J.

    1979-01-01

    The technology which is required to allow the principles of magnetic suspension and balance systems (MSBS) to be applied to the high Reynolds number transonic testing of aircraft models is examined. A test facility is presented as comprising a pressurized transonic cryogenic wind tunnel, with the MSBS providing full six degree of freedom control. The electro-magnets which are superconducting and fed from quiet, bipolar power supplies are examined. A model control system having some self adaptive characteristics is discussed.

  7. Morphological analysis of the left ventricular endocardial surface using a bag-of-features descriptor.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Qian, Zhen; Bhandarkar, Suchendra M; Liu, Tianming; Voros, Szilard; Rinehart, Sarah

    2015-07-01

    The limitations of conventional imaging techniques have hitherto precluded a thorough and formal investigation of the complex morphology of the left ventricular (LV) endocardial surface and its relation to the severity of coronary artery disease (CAD). However, recent developments in high-resolution multirow-detector computed tomography (MDCT) scanner technology have enabled the imaging of the complex LV endocardial surface morphology in a single heartbeat. Analysis of high-resolution computed tomography images from a 320-MDCT scanner allows for the noninvasive study of the relationship between the percent diameter stenosis (DS) values of the major coronary arteries and localization of the cardiac segments affected by coronary arterial stenosis. In this paper, a novel approach for the analysis of the nonrigid LV endocardial surface from MDCT images, using a combination of rigid body transformation-invariant shape descriptors and a more generalized isometry-invariant Bag-of-Features descriptor, is proposed and implemented. The proposed approach is shown to be successful in identifying, localizing, and quantifying the incidence and extent of CAD and, thus, is seen to have a potentially significant clinical impact. Specifically, the association between the incidence and extent of CAD, determined via the percent DS measurements of the major coronary arteries, and the alterations in the endocardial surface morphology is formally quantified. The results of the proposed approach on 16 normal datasets and 16 abnormal datasets exhibiting CAD with varying levels of severity are presented. A multivariable regression test is employed to test the effectiveness of the proposed morphological analysis approach. Experiments performed on a strictly leave-one-out basis are shown to exhibit a distinct and interesting pattern in terms of the correlation coefficient values within the cardiac segments, where the incidence of coronary arterial stenosis is localized.

  8. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    Science.gov (United States)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  9. Short term memory for single surface features and bindings in ageing: A replication study.

    Science.gov (United States)

    Isella, Valeria; Molteni, Federica; Mapelli, Cristina; Ferrarese, Carlo

    2015-06-01

    In the present study we replicated a previous experiment investigating visuo-spatial short term memory binding in young and older healthy individuals, in the attempt to verify the pattern of impairment that can be observed in normal elderly for short term memory for single items vs short term memory for bindings. Assessing a larger sample size (25 young and 25 older subjects), using a more appropriate measure of accuracy for a change detection task (A'), and adding the evaluation of speed of performance, we confirmed that old normals show a decline in short term memory for bindings of shape and colour that is of comparable extent, and not major, to the decline in memory for single shapes and single colours. The absence of a specific deficit of short term memory for conjunctions of surface features seems to distinguish cognitive ageing from Alzheimer's Disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  11. Crystal surface analysis using matrix textural features classified by a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Sawyer, C.R.; Quach, V.T.; Nason, D.; van den Berg, L.

    1991-01-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlappings subimage and features are extracted from each subimage based on statistical measures of the gray tone distribution, according to the method of Haralick [1]. Twenty parameters are derived from each subimage and presented to a Probabilistic Neural Network (PNN) [2] for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities. 6 refs., 4 figs

  12. Magnetic ground state and Fermi surface of bcc Eu

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jan; Laskowski, R.

    2004-01-01

    Roč. 70, č. 17 (2004), 174415/1-174415/6 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214; GA MŠk(CZ) ME 547 Grant - others:DE-FG(XX) 03-01ER45876 Institutional research plan: CEZ:AV0Z1010914 Keywords : europium * spin structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  13. The effect of speleothem surface slope on the remanent magnetic inclination

    Science.gov (United States)

    Ponte, J. M.; Font, E.; Veiga-Pires, C.; Hillaire-Marcel, C.; Ghaleb, B.

    2017-06-01

    Speleothems are of interest for high-resolution reconstruction of the Earth's magnetic field. However, little is known about the influence of speleothem morphologies on their natural remanent magnetization (NRM) record. Here we report on a high-resolution paleomagnetic study of a dome-shaped speleothem of middle Holocene age from southern Portugal, with special attention to the anisotropy of magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). To assess the potential influence of the slope of the speleothem surface on the recorded remanent magnetization, we compare magnetic directions and AMS and AARM fabrics from subhorizontal to gradually subvertical calcite growth layers collected in a transversal cross section of the speleothem. A linear correlation is observed between magnetic inclinations, calcite laminae slope, and AARM k1 inclination. The AMS fabric is mostly controlled by calcite crystals, with direction of the minimum axes (k3) perpendicular to laminae growth. Magnetic inclinations recorded in inclined and vertical calcite growth layers are underestimated when compared to a global paleosecular variation (PSV) model. After extrapolating magnetic inclinations to the horizontal, the corrected data better fit the PSV model but are still lower than the predicted magnetic inclinations, suggesting that inclination shallowing affects the entire speleothem. We suggest that speleothem morphology exerts a critical role on the magnetic inclination recording, which is controlled by the Earth's magnetic field but also influenced by particle rolling along the sloping surfaces. These observations open new avenues for reconstructing high-resolution paleomagnetic secular variation records from speleothems and provide new insights into their NRM acquisition mechanisms.

  14. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  15. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Neslušan, M.; Perevertov, Oleksiy

    2016-01-01

    Roč. 410, Jul (2016), 198-209 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen noise * surface field measurement * magnetization waveformcontrol * hard turning * surface integrity Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.630, year: 2016

  16. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  17. Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field

    International Nuclear Information System (INIS)

    Wang Changquan; Zhang Guixin; Wang Xinxin; Chen Zhiyu

    2012-01-01

    Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups. (plasma technology)

  18. Osteoblastoma of the spine with discordant magnetic resonance imaging and computed tomography imaging features in a child.

    Science.gov (United States)

    Chakrapani, Sanjay D; Grim, Kathryn; Kaimaktchiev, Vassil; Anderson, James C

    2008-12-01

    Case report. To describe the magnetic resonance imaging (MRI) and computed tomography (CT) findings of spinal osteoblastoma and illustrate how MRI features can be potentially misleading. Osteoblastoma is a rare benign tumor of bone that is known to incite a localized inflammatory response. These inflammatory features can simulate malignant behavior on MRI and can lead to misdiagnosis and unnecessarily aggressive resection unless one recognizes the classic benign features on CT. We present a case of osteoblastoma in a child to illustrate this concept. The patient's clinical and radiologic history is discussed with a brief review of the relevant literature. A 9-year-old girl with back pain receives an MRI of the lumbar spine demonstrating a sacral tumor with potentially malignant features including extensive marrow edema and enhancement. A CT demonstrates a well-circumscribed lesion without lytic changes or malignant bone formation. A benign lesion was favored given the CT features and conservative resection was performed. Final pathologic diagnosis was osteoblastoma. This case illustrates that the MRI findings for osteoblastoma can be misleading and caution should be used when evaluating benign tumors with known inflammatory responses on MRI. CT features seem to more accurately reflect the true nature and extent of the tumor.

  19. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps).

    Science.gov (United States)

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  20. Relating sub-surface ice features to physiological stress in a climate sensitive mammal, the American pika (Ochotona princeps.

    Directory of Open Access Journals (Sweden)

    Jennifer L Wilkening

    Full Text Available The American pika (Ochotona princeps is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without and analyzed for glucocorticoid metabolites (GCM. We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.

  1. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  2. Proton magnetic spectroscopy agreed better with magnetic resonance image to lateralization of epileptogenic zone than with surface electroencephalography

    Directory of Open Access Journals (Sweden)

    Ricardo Andre Amorim Leite

    2013-09-01

    Full Text Available Objective To analyze the agreement rate of proton magnetic spectroscopy with magnetic resonance image (MRI and surface electroence-phalography (EEG in extratemporal neocortical epilepsies. Methods A cross-sectional study, type series of cases included 33 patients, age range 13–59 years old, of both gender, presenting structural alteration identified by MRI (75.8% or by neurophysiologic techniques (72.7%. The variables were alterations of N-acetyl-aspartate/choline, N-acetyl-aspartate/creatine, choline/creatine, and N-acetyl-aspartate/cho-line+creatine coefficient of asymmetry. Results Agreement rates of lateralization by coefficient of asymmetry of NAA/Cho, NAA/Cr, Co/Cr, and NAA/Cho+Cr with MRI, independent of alteration of surface EEG, were equal to 93.3, 57.9, 15.4, and 93.3%, respectively, modifying to 100, 33.3, 0, and 100%, in 16 patients, with lateralization agreement of MRI and surface EEG. Conclusion Proton magnetic spectroscopy agreed better with MRI to lateralization of epileptogenic zone than with surface EEG.

  3. Cell-surface interactions involving immobilized magnetite nanoparticles on flat magnetic substrates.

    Science.gov (United States)

    Loichen, Juliane; Hartmann, Uwe

    2009-09-01

    A new method to affect cells by cell-surface interaction is introduced. Biocompatible magnetic nanobeads are deposited onto a biocompatible magnetic thin layer. The particles are composed of small magnetite crystals embedded in a matrix which can be functionalized by different molecules, proteins or growth factors. The magnetic interaction between surface and beads prevents endocytosis if the setup is utilized for cell culturing. The force acting between particles and magnetic layer is calculated by a magnetostatic approach. Biocompatibility is ensured by using garnet layers which turned out to be nontoxic and stable under culturing conditions. The garnet thin films exhibit spatially and temporally variable magnetic domain configurations in changing external magnetic fields and depending on their thermal pretreatment. Several patterns and bead deposition methods as well as the cell-surface interactions were analyzed. In some cases the cells show directed growth. Theoretical considerations explaining particular cell behavior on this magnetic material involve calculations of cell growth on elastic substrates and bending of cell membranes.

  4. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Science.gov (United States)

    Stupakov, A.; Neslušan, M.; Perevertov, O.

    2016-07-01

    The potential of the magnetic Barkhausen noise method for a non-destructive evaluation of the steel surface damage cased by milling was comprehensively investigated. A typical bearing steel was heat treated to three different hardnesses and then machined using the cutting tools with different degrees of the flank wear. The magnetic low-frequency measurements with a high reading depth were performed using a unique laboratory system providing a full control of the magnetization process. The high-frequency measurements were performed using a commercial Rollscan device. To study the induced magnetic anisotropy, the measurements were performed in two magnetization directions. In the feeding direction, the Barkhausen noise profiles showed a second high-field peak ascribed to an induced hardened surface layer, a so-called white layer. The most reliable results were obtained with the controlled waveform of the surface magnetic field measured directly by Hall sensors. In the perpendicular rotation direction, formation of the preferentially oriented matrix resulted in an enormously high Barkhausen noise activity. Based on these results, new magnetic parameters were proposed for the non-destructive evaluation of the white layer formation.

  5. Glazed ceramic roof tiles: influence of surface features in the solar reflectance index

    International Nuclear Information System (INIS)

    Bortoli, Leitcia Silva de; Stapait, Camila Cristina; Marinoski, Deivis Luis; Fredel, Marcio Celso; Schabbach, Luciana M.

    2016-01-01

    In this study the influence of surface features of ceramic roof tiles in the solar reflectance index were evaluated. Two glazed ceramic roof tiles (type stoneware) with the same color (ivory) but with different appearance (matte and brilliant) were the focus of the analysis. The Solar Reflectance Index (SRI) of the roofs tiles were determined by the solar reflectance values (UV-VIS-NIR) and emittance, measured in laboratory. The samples showed SRI> 39 in accordance with LEED certification criteria (Leadership in Energy and Environmental Design), contributing to minimizing the Heat Island Effects. Although the matte roof tile shows a slightly higher SRI value (82) than the brilliant one (78), the results for the variables that composes the SRI value (reflectance and emittance) were very similar. Analysis of XRD, SEM and EDS performed on the surfaces of the two roofs indicated for the matte glaze the presence of microcrystals (with barium and zinc) that can contribute to the slightly highest value of SRI. The roughness (optical interferometer white light) and the brightness (brightness meter) of the samples were also measured. (author)

  6. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR

    Science.gov (United States)

    Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,

    2014-01-01

    Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an

  7. THE SORPTION EXTRACTION FEATURES OF KARMOAZONATE MERCURY(I COMPLE X BY ANION EXCHANGER AV-17-8 SURFACE

    Directory of Open Access Journals (Sweden)

    Н. M. Guzenko

    2014-11-01

    Full Text Available The dynamic and kinetic curves were analyzed, they were obtained by karmoazonate mercury(I complex extraction by anion exchanger AV-17-8 surface, and also calculated values of sorption process speed factor have allowed to establish the features of the adsorption layers formation on the resin surface.

  8. Description of the Main Features of the Series Production of the LHC Main Dipole Magnets

    CERN Document Server

    Savary, F; Chevret, P; de Rijk, G; Fessia, P; Liénard, P; Miles, J; Modena, M; Rossi, L; Tommasini, D; Vlogaert, J; Bresson, D; Grunblatt, G; Decoene, JF; Bressani, F; Drago, G; Gagliardi, P; Eysselein, F; Gärtner, W; Lublow, P

    2008-01-01

    The series production of the LHC main dipole magnets was completed in November 2006. This paper presents the organization implemented at CERN and the milestones fixed to fullfil the technical requirements and to respect the master schedule of the machine installation. The CERN organization for the production follow-up, the quality assurance and the magnet testing, as well as the organization of the three main contractors will be described. A description of the design work and procurement of most of the specific heavy tooling and key components will be given with emphasis on the advantages and drawbacks.

  9. Features of the mass transfer in magnetic cataclysmic variables with fast-rotating white dwarfs

    Directory of Open Access Journals (Sweden)

    Isakova Polina

    2014-01-01

    Full Text Available The flow structure in magnetic cataclysmic variables was investigated taking into account the effects of strong magnetic field and fast rotation of the white dwarf. We modeled the AE Aqr system as a unique object that has the rotation period of the white dwarf is about 1000 times shorter than the orbital period of the binary system. Observations show that in spite of fast rotation of the white dwarf some part of the stream from the inner Lagrange point comes into the Roche lobe region. We analyzed possible mechanisms preventing material to outflow from the system.

  10. Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets

    Directory of Open Access Journals (Sweden)

    Ogbuka Cosmas

    2016-03-01

    Full Text Available A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM. With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90° to 180° torque angle.

  11. Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps

    International Nuclear Information System (INIS)

    Senin, Nicola; Leach, Richard K; Pini, Stefano; Blunt, Liam A

    2015-01-01

    Areal topography segmentation plays a fundamental role in those surface metrology applications concerned with the characterisation of individual topography features. Typical scenarios include the dimensional inspection and verification of micro-structured surface features, and the identification and characterisation of localised defects and other random singularities. While morphological segmentation into hills or dales is the only partitioning operation currently endorsed by the ISO specification standards on surface texture metrology, many other approaches are possible, in particular adapted from the literature on digital image segmentation. In this work an original segmentation approach is introduced and discussed, where topography partitioning is driven by information collected through the application of texture characterisation transforms popular in digital image processing. Gabor filters, wavelets and pyramid decompositions are investigated and applied to a selected set of test cases. The behaviour, performance and limitations of the proposed approach are discussed from the viewpoint of the identification and extraction of individual surface topography features. (paper)

  12. Electronic and magnetic properties of Mn{sub 12} single-molecule magnets on the Au(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Soenke; Burgert, Michael; Fonin, Mikhail; Groth, Ulrich; Ruediger, Ulrich [Universitaet Konstanz (Germany); Michaelis, Christian; Brihuega, Ivan; Kern, Klaus [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Dedkov, Yury S. [Institut fuer Festkoerperphysik, Technische Universitaet Dresden (Germany)

    2008-07-01

    The paramount interest in single-molecule magnets (SMMs) like Mn{sub 12}-acetate and its derivatives was inspired by numerous experimental and theoretical insights indicating the feasibility of addressing quantum effects of magnetism on a molecular scale. Due to its relatively high blocking temperature ({proportional_to}3 K) combined with the ability to identify well-defined spin states, Mn{sub 12} still remains the most favoured SMM possibly allowing the detection of magnetic fingerprints in transport properties of a single molecule. In this work, the electronic properties of Mn{sub 12} molecules chemically grafted on Au(111) surfaces have been studied by means of low temperature as well as room temperature scanning tunneling microscopy and spectroscopy (STS), X-ray absorption spectroscopy and photoelectron spectroscopy. The results revealed signatures from most probably intact Mn{sub 12} molecules while STS measurements in magnetic fields indicate the possibility to identify magnetic fingerprints in scanning tunneling spectra. The results will be discussed with respect to previous attempts to perform transport measurements on Mn{sub 12} SMMs.

  13. Magnetic resonance imaging features of hip disorders in an Egyptian pediatric population

    NARCIS (Netherlands)

    Ragab, Y.; Nabih, M.; Kamal, A.A.; Abd-Allah, M.A.; El-Refai, R.; Emad, Y.; El-Nagger, A.; El-Shaarawy, N.; Rasker, Johannes J.

    2015-01-01

    Hip disorders in a pediatric population are a diagnostic challenge. The aim of the study is to assess the role of magnetic resonance imaging (MRI) in the evaluation of non-traumatic hip disorders in a series of Egyptian patients and to review the literature on the most common hip conditions. Seventy

  14. Magnetic-field-dependent morphology of self-organized Fe on stepped Si(111) surfaces

    International Nuclear Information System (INIS)

    Cougo dos Santos, M.; Geshev, J.; Pereira, L. G.; Schmidt, J. E.

    2009-01-01

    The present work reports on Fe thin films grown on vicinal Si(111) substrates via rf magnetron sputtering. The dependencies of the growth mode and magnetic properties of the obtained iron nanostructures on both crystallographic surface orientation and on the direction of the very weak stray magnetic field from the magnetron gun were studied. Scanning tunneling microscopy images showed strong dependence of the Fe grains' orientation on the stray field direction in relation to the substrate's steps demonstrating that, under appropriately directed magnetic field, Si surfaces can be used as templates for well-defined self-assembled iron nanostructures. Magneto-optical Kerr effect hysteresis loops showed an easy-axis coercivity almost one order of magnitude smaller for the film deposited with stray field applied along the steps, accompanied with a change in the magnetization reversal mode. Phenomenological models involving coherent rotation and/or domain-wall unpinning were used for the interpretation of these results.

  15. Study on core–shell–shell structured nanoparticles with magnetic and luminescent features: Construction, characterization and oxygen-sensing behavior

    International Nuclear Information System (INIS)

    Min, BU; Wenzhong, Ma

    2013-01-01

    In this paper, we construct core–shell–shell structured nanoparticles, where magnetic Fe 3 O 4 nanoparticles are used as the inner core, mesoporous silica functionalized with phosphorescent Ru(II) complex is used as the outer shell, and the middle shell which is composed of amorphous silica is introduced to minimize the negative effect from the inner core on the sensing probes. The obtained magnetic–luminescent composite nanoparticles are characterized by XRD analysis, IR spectrum, electron microscopy, fluorescence microscopy, thermogravimetric analysis and nitrogen adsorption and desorption, confirming the core–shell–shell structure. The magnetic and photophysical properties of the composite nanoparticles are investigated in detail. Data suggest that the nanoparticles show a smaller saturation magnetization value compared with that of Fe 3 O 4 nanoparticles. The composite namoparticles are red-emitting ones, and the emission is sensitive towards oxygen concentration variations with sensitivity of 4.1 and response time of 7 s. -- Highlights: • Core–shell–shell structured nanoparticles have been constructed. • The nanoparticles have been fully characterized and studied. • The nanoparticles own magnetic, luminescent and oxygen-sensing features. • Good sensitivity, short response time and high photostability have been realized

  16. Correlation of geothermal springs with sub-surface fault terminations revealed by high-resolution, UAV-acquired magnetic data

    Science.gov (United States)

    Glen, Jonathan; A.E. Egger,; C. Ippolito,; N.Athens,

    2013-01-01

    There is widespread agreement that geothermal springs in extensional geothermal systems are concentrated at fault tips and in fault interaction zones where porosity and permeability are dynamically maintained (Curewitz and Karson, 1997; Faulds et al., 2010). Making these spatial correlations typically involves geological and geophysical studies in order to map structures and their relationship to springs at the surface. Geophysical studies include gravity and magnetic surveys, which are useful for identifying buried, intra-basin structures, especially in areas where highly magnetic, dense mafic volcanic rocks are interbedded with, and faulted against less magnetic, less dense sedimentary rock. High-resolution magnetic data can also be collected from the air in order to provide continuous coverage. Unmanned aerial systems (UAS) are well-suited for conducting these surveys as they can provide uniform, low-altitude, high-resolution coverage of an area without endangering crew. In addition, they are more easily adaptable to changes in flight plans as data are collected, and improve efficiency. We have developed and tested a new system to collect magnetic data using small-platform UAS. We deployed this new system in Surprise Valley, CA, in September, 2012, on NASA's SIERRA UAS to perform a reconnaissance survey of the entire valley as well as detailed surveys in key transition zones. This survey has enabled us to trace magnetic anomalies seen in ground-based profiles along their length. Most prominent of these is an intra-basin magnetic high that we interpret as a buried, faulted mafic dike that runs a significant length of the valley. Though this feature lacks surface expression, it appears to control the location of geothermal springs. All of the major hot springs on the east side of the valley lie along the edge of the high, and more specifically, at structural transitions where the high undergoes steps, bends, or breaks. The close relationship between the springs

  17. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated γ–Fe2O3 nanoparticles for applications in surface-enhanced .... After the solvent evaporated, 2 μL of analyte of ∼1 μM concentration was ..... dry soil, and comprised of smooth, distinct, rectangular and square shaped islands, whose ...

  18. The heterogeneity of surfaces of magnetic Ap stars

    International Nuclear Information System (INIS)

    Hack, M.

    1977-01-01

    The observations of spectrum-variability and light-variability of Ap stars are reviewed. It is shown that these variations are interpretable as due to the changing aspect of the spotted surface as the star rotates. It is stressed that the geometry of the phenomenon is understood fairly well but the physics is very far from being understood. (Auth.)

  19. Magnetic resonance imaging of the maxilla and mandible: signal characteristics and features in the differential diagnosis of common lesions.

    Science.gov (United States)

    Mosier, Kristine M

    2015-02-01

    The maxilla and mandible are among the most difficult areas of the body to image with magnetic resonance techniques owing to the geometry of the jaws as well as the frequent susceptibility artifacts from dental restorations or appliances. This chapter briefly reviews the essentials of imaging techniques and basic anatomy and discusses the most common inflammatory conditions, benign and malignant lesions of the jaws, and temporomandibular joint. This review emphasizes and illustrates specific magnetic resonance features that facilitate characterization and diagnostic differentiation of these lesions. As the focus of this review is on the differentiation of infection and benign and malignant disease, a discussion of internal derangements and associated inflammatory disorders of the temporomandibular joint is beyond the scope of this review and is not discussed.

  20. Bean-Livingston surface barrier and magnetic properties of granular superconductors

    Science.gov (United States)

    Kugel, K. I.; Rakhmanov, A. L.

    1992-06-01

    The magnetic flux penetration into a granular superconductor is studied, accounting for the Bean-Livingston surface barrier (BLSB). It is shown that the magnetic flux distribution is strongly affected by the BLSB in the case of large, closely packed granules. In particular, the intergranular magnetic field HO appears to be much higher than the external field H when Hsize and λ is the London penetration depth). The effects related to the difference between H and HO are discussed in the framework of a simplified model of a granular superconductor. The magnetic flux distribution is studied in the regular system of isotropic and anisotropic granules. The form of the HO( H) curve is calculated for both increasing and decreasing field H. It is shown that the existence of the BLSB results in the strong hysteresis of the HO( H) curve. The relation between these effects and the form of the magnetic field dependence of critical current in ceramic superconductors is discussed.

  1. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625 015 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad – 500 058 (India); Pandi, R. Senthur [School of Advanced Sciences, VIT University, Vellore – 632 014 (India)

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  2. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture.

    Science.gov (United States)

    Yin, Yuli; Yan, Liang; Zhang, Zhaohui; Wang, Jing

    2015-11-01

    A novel, facile and low cost process for imprinting protein on the surface of magnetic multiwalled carbon nanotubes (MMWNTs) was developed using human serum albumin (HSA) as the template and dopamine as the functional monomer. The magnetic imprinted polymers were characterized with transmission electron microscope (TEM), scanning electron microscope (SEM), Fourier-transform infrared spectrometry (FT-IR), vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) in detail. The maximum adsorption capacity of the magnetic imprinted polymers toward HSA was 66.23 mg g(-1) and it took 20 min to achieve the adsorption equilibrium. The magnetic imprinted polymers exhibited the specific selective adsorption toward HSA. Coupled with high performance liquid chromatography (HPLC) analysis, the magnetic imprinted polymers were used to solid-phase extract and detect HSA in urine samples successfully with the recoveries of 91.95-97.8%. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Bulk and surface effects in x-ray magnetic circular dichroism of iron clusters

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Ebert, H.

    2003-01-01

    Roč. 53, č. 1 (2003), s. 55-62 ISSN 0011-4626. [Symposium on Surface Physics /9./. Třešt', 02.09.2002-06.09.2002] R&D Projects: GA ČR GA202/02/0841 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray magnetic circular dichroism * clusters * spin-polarized relativistic KKR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.263, year: 2003

  4. The Surface and Bulk Magnetic Properties of Fe-Al Alloys

    Czech Academy of Sciences Publication Activity Database

    Hendrych, A.; Žitovsky, O.; Jirásková, Yvonna; Matko, I.

    2014-01-01

    Roč. 126, č. 1 (2014), s. 58-59 ISSN 0587-4246. [CSMAG Czech and Slovak Conference on Magnetism /15./. Košice, 17.06.2013-21.06.2013] R&D Projects: GA MŠk 7AMB12SK009 Institutional support: RVO:68081723 Keywords : Fe-Al * MOKE * Surface properties * MFM Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.530, year: 2014

  5. Magnetic order of FeMn alloy on the W(001) surface

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Martin; Kudrnovský, Josef; Máca, František

    2007-01-01

    Roč. 601, - (2007), s. 4261-4264 ISSN 0039-6028 R&D Projects: GA ČR GA202/04/0583; GA MŠk OC 150 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : manganese * iron * alloy * surface magnetism * density functional calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.855, year: 2007

  6. Effect of magnetic field on nonlinear interactions of electromagnetic and surface waves in a plasma layer

    International Nuclear Information System (INIS)

    Khalil, Sh.M.; El-Sherif, N.; El-Siragy, N.M.; Tanta Univ.; El-Naggar, I.A.; Alexandria Univ.

    1985-01-01

    Investigation is made for nonlinear interaction between incident radiation and a surface wave in a magnetized plasma layer. Both interacting waves are of P polarization. The generated currents and fields at combination frequencies are obtained analytically. Unlike the S-polarized interacting waves, the magnetic field affects the fundamental waves and leads to an amplification of generated waves when their frequencies approach the cyclotron frequency. (author)

  7. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.

    Science.gov (United States)

    Di Trapani, Daniele; Di Bella, Gaetano; Viviani, Gaspare

    2013-10-01

    Sanitary landfills for Municipal Solid Waste (MSW) disposal have been identified as one of the most important anthropogenic sources of methane (CH4) emissions; in order to minimize its negative effects on the environment, landfill gas (LFG) recovery is a suitable tool to control CH4 emissions from a landfill site; further, the measurement of CH4 emissions can represent a good way to evaluate the effectiveness of LFG recovering systems. In general, LFG will escape through any faults in the landfill capping or in the LFG collection system. Indeed, some areas of the capping can be more permeable than others (e.g. portions of a side slope), especially when considering a temporarily capped zone (covered area that is not expected to receive any further waste for a period of at least 3 months, but for engineering reasons does not have a permanent cap yet). These areas, which are characterized by abnormal emissions, are usually defined as "features": in particular, a feature is a small, discrete area or an installation where CH4 emissions significantly differ from the surrounding zones. In the present study, the influence that specific features have on CH4 emissions has been investigated, based on direct measurements carried out in different seasons by means of a flux chamber to the case study of Palermo (IT) landfill (Bellolampo). The results showed that the flux chamber method is reliable and easy to perform, and the contoured flux maps, obtained by processing the measured data were found to be a suitable tool for identifying areas with abnormal (high) emissions. Further, it was found that a relationship between methane emission rates and landfill side slope can be established. Concerning the influence of the temporary HDPE cover system on CH4 recovery efficiency, it contributed to a significant decrease of the free surface area available for uncontrolled emissions; this aspect, coupled to the increase of the CH4 volumes collected by the LFG recovery system, led to a

  8. Structural, atomic Hirschfeld surface, magnetic and magnetocaloric properties of SmNi{sub 5} compound

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, K., E-mail: nouri@icmpe.cnrs.fr [C.M.T.R, I.C.M.P.E, CNRS, Université Paris Est Créteil, UMR 7182, 2-8 rue Henri Dunant, F-94320 Thiais (France); Laboratoire des Sciences des Matériaux et de l' Environnement, Faculté des Sciences de Sfax- Université de Sfax, BP 1171, Sfax, 3018 (Tunisia); Jemmali, M. [Laboratoire des Sciences des Matériaux et de l' Environnement, Faculté des Sciences de Sfax- Université de Sfax, BP 1171, Sfax, 3018 (Tunisia); Chemistry Departement, College of Science and Arts at Ar-Rass, Qassim University, P.O. Box53 (Saudi Arabia); Walha, S. [Laboratoire des Sciences des Matériaux et de l' Environnement, Faculté des Sciences de Sfax- Université de Sfax, BP 1171, Sfax, 3018 (Tunisia); Zehani, K. [C.M.T.R, I.C.M.P.E, CNRS, Université Paris Est Créteil, UMR 7182, 2-8 rue Henri Dunant, F-94320 Thiais (France); Ben Salah, A. [Laboratoire des Sciences des Matériaux et de l' Environnement, Faculté des Sciences de Sfax- Université de Sfax, BP 1171, Sfax, 3018 (Tunisia); Bessais, L. [C.M.T.R, I.C.M.P.E, CNRS, Université Paris Est Créteil, UMR 7182, 2-8 rue Henri Dunant, F-94320 Thiais (France)

    2016-07-05

    The SmNi{sub 5} intermetallic compound has been investigated by arc-melting. Powder X-ray diffraction analysis and Rietveld refinement revealed that the sample crystallized in the hexagonal CaCu{sub 5}-type structure P6/mmm space group with the following lattice parameters: a = 4.9203 (1) Å, c = 3.9662 (1) Å. These lattice parameters for the compound are in good agreement with previous theoretical result and experimental data. The EDX analysis has been performed to confirm the composition of this compound. The chemical bonding in SmNi{sub 5} was analyzed using atomic Hirshfeld surfaces, and this analysis supports the presence of the structural elements and the coordination of Sm (1a), Ni (2c) and Ni (3 g). This study indicates the different types of interatomic interactions between the Sm and Ni atoms and the weak interactions between Sm–Sm atoms were also observed along the c axis. The magnetic properties and magnetocaloric effect (MCE) have been established by the magnetization and isothermal magnetization of different temperature measurements. The magnetization curve as a function of temperature shows a magnetic transition from ferromagnetic to paramagnetic state at the Curie temperature T{sub C} = 29 K. We have studied the MCE phenomena in the vicinity of magnetic phase transitions in terms of magnetic entropy change. The temperature dependence of the magnetization, the magnetic entropy changeΔS{sub M}, as well as the relative cooling power around the second-order magnetic transition and the Arrott plots for the alloys are reported. - Highlights: • The SmNi{sub 5} intermetallic compound has been investigated by arc-melting. • The chemical bonding in SmNi{sub 5} was analyzed using atomic Hirshfeld surfaces. • The second order magnetocaloric material SmNi{sub 5} is investigated.

  9. Relevance of sub-surface chip layers for the lifetime of magnetically trapped atoms

    DEFF Research Database (Denmark)

    Zhang, H. B.; Henkel, C; Haller, E.

    2005-01-01

    on the thickness of that layer, as long as the layers below have a much smaller conductivity; essentially the same magnetic noise would be obtained with a metallic membrane suspended in vacuum. Based on our theory we give general scaling laws of how to reduce the effect of surface magnetic noise on the trapped...... measurements where the center of a side guide trap is laterally shifted with respect to the current carrying wire using additional bias fields. Comparing the experiment to theory, we find a fair agreement and demonstrate that for a chip whose topmost layer is metallic, the magnetic noise depends essentially...

  10. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    Science.gov (United States)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  11. Stability analysis on the free surface phenomena of a magnetic fluid for general use

    International Nuclear Information System (INIS)

    Mizuta, Yo

    2011-01-01

    This paper presents an analysis for elucidating a variety of physical processes on the interface (free surface) of magnetic fluid. The present analysis is composed of the magnetic and the fluid analysis, both of which have no limitations concerning the interface elevation or its profile. The magnetic analysis provides rigorous interface magnetic field under arbitrary distributions of applied magnetic field. For the fluid analysis, the equation for interface motion includes all nonlinear effects. Physical quantities such as the interface magnetic field or the interface stresses, obtained first as the wavenumber components, facilitate confirming the relations with those by the conventional theoretical analyses. The nonlinear effect is formulated as the nonlinear mode coupling between the interface profile and the applied magnetic field. The stability of the horizontal interface profile is investigated by the dispersion relation, and summarized as the branch line. Furthermore, the balance among the spectral components of the interface stresses are shown, within the sufficient range of the wavenumber space. - Research Highlights: → General, rigorous but compact analysis for free surface phenomena is shown. → Analysis is applied without limitations on the interface elevation or its profile. → Nonlinear effects are formulated as the nonlinear mode coupling. → Bifurcation of stability is summarized as the branch line. → Balance among the interface stresses are shown in the wavenumber space.

  12. Electronic structure of surface-supported bis(phthalocyaninato) terbium(III) single molecular magnets.

    Science.gov (United States)

    Vitali, Lucia; Fabris, Stefano; Conte, Adriano Mosca; Brink, Susan; Ruben, Mario; Baroni, Stefano; Kern, Klaus

    2008-10-01

    The electronic structure of isolated bis(phthalocyaninato) terbium(III) molecules, a novel single-molecular-magnet (SMM), supported on the Cu(111) surface has been characterized by density functional theory and scanning tunneling spectroscopy. These studies reveal that the interaction with the metal surface preserves both the molecular structure and the large spin magnetic moment of the metal center. The 4f electron states are not perturbed by the adsorption while a strong molecular/metal interaction can induce the suppression of the minor spin contribution delocalized over the molecular ligands. The calculations show that the inherent spin magnetic moment of the molecule is only weakly affected by the interaction with the surface and suggest that the SMM character might be preserved.

  13. Interplay of Dirac surface states and magnetic fluctuations in topological insulator heterostructures

    Science.gov (United States)

    Hurst, Hilary M.; Efimkin, Dmitry K.; Galitski, Victor

    We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY-model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Classical magnetic fluctuations interacting with the surface states of a topological insulator can be described by an effective gauge field. This model can be mapped onto the problem of Dirac fermions in a random magnetic field, however this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion which results in screening of magnetic fluctuations. We show that this proximity coupling leads to anomalous transport behavior of the surface states near the BKT transition temperature.

  14. A Novel Technique for Mitigating Multipactor by Means of Magnetic Surface Roughness

    CERN Document Server

    Caspers, Friedhelm; Boria, V E; Bruns, W; Galan, L; Gimeno, B; Montero, I; Raboso, D; Vicente, C

    2010-01-01

    Multipactor phenomena which are closely linked to the SEY (secondary electron yield)can be mitigated by many different methods including groves in the metal surface as well as using electric or magnetic bias fields. However frequently the application of global magnetic or electric bias field is not practicable considering the weight and power limitations on-board satellites. Additionally, surface grooves may degrade the RF performance. Here we present a novel technique which is based on a magnetostatic field pattern on the metallic surface with fast spatial modulation in the order of 30 micron. This field pattern is produced by proper magnetization of an underlying ferromagnetic layer such as nickel. Simulations and preliminary experimental results will be shown and a number of applications, both for particle accelerators and satellite microwave payloads are discussed.

  15. Surface Modification of Magnetic Nanoparticles Using Gum Arabic

    International Nuclear Information System (INIS)

    Williams, Darryl N.; Gold, Katie A.; Holoman, Tracey R. Pulliam; Ehrman, Sheryl H.; Wilson, Otto C.

    2006-01-01

    Magnetite nanoparticles were synthesized and functionalized by coating the particle surfaces with gum arabic (GA) to improve particle stability in aqueous suspensions (i.e. biological media). Particle characterization was performed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) to analyze the morphology and quantify the size distribution of the nanoparticles, respectively. The results from DLS indicated that the GA-treated nanoparticles formed smaller agglomerates as compared to the untreated samples over a 30-h time frame. Thermogravimetric analyses indicated an average weight loss of 23%, showing that GA has a strong affinity toward the iron oxide surface. GA most likely contributes to colloid stability via steric stabilization. It was determined that the adsorption of GA onto magnetite exhibits Langmuir behavior

  16. Surface Modification of Magnetic Nanoparticles Using Gum Arabic

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Darryl N., E-mail: williamsdar@E-mail.chop.edu; Gold, Katie A.; Holoman, Tracey R. Pulliam; Ehrman, Sheryl H. [University of Maryland, Department of Chemical Engineering (United States); Wilson, Otto C. [Catholic University, Department of Biomedical Engineering (United States)

    2006-10-15

    Magnetite nanoparticles were synthesized and functionalized by coating the particle surfaces with gum arabic (GA) to improve particle stability in aqueous suspensions (i.e. biological media). Particle characterization was performed using transmission electron microscopy (TEM) and dynamic light scattering (DLS) to analyze the morphology and quantify the size distribution of the nanoparticles, respectively. The results from DLS indicated that the GA-treated nanoparticles formed smaller agglomerates as compared to the untreated samples over a 30-h time frame. Thermogravimetric analyses indicated an average weight loss of 23%, showing that GA has a strong affinity toward the iron oxide surface. GA most likely contributes to colloid stability via steric stabilization. It was determined that the adsorption of GA onto magnetite exhibits Langmuir behavior.

  17. Surface defect detection of magnetic microwires by miniature rotatable robot inside SEM

    Directory of Open Access Journals (Sweden)

    Wenfeng Wan

    2016-09-01

    Full Text Available Surface defect is regarded as one critical factor that affects magnetic properties of magnetic microwires. However, current imaging techniques only allow to observe samples from one fixed direction, and thereby most of surface defects on microwire cannot be detected. Herein, we firstly develop a miniature rotatable robot inside scanning electron microscopy (SEM and propose a relevant control strategy to align the microwire onto the rotation axis of the robot. After that, the microwire is rotated continuously by 360o and all the surface defects on the microwire are observed from different directions successfully. Multidirectional observation results can be used to located heating inhomogeneity, which is the main cause of defects. Magnetic measurement results show that the effect of defects on domain wall (DW should be considered in device design. This research provides the direct evidence for surface defects’ distribution and effect, which can be adopted to provide guidance for improving magnetic wire’s fabrication process and designing logic circuits made from those magnetic wires.

  18. Perpendicular magnetic anisotropy of ultrathin FeCo alloy films on Pd(0 0 1) surface: First principles study

    International Nuclear Information System (INIS)

    Kim, Dongyoo; Hong, Jisang

    2009-01-01

    Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of 2.36μ B . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.

  19. Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles

    Science.gov (United States)

    Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.

    2018-03-01

    The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.

  20. Magnetic properties and magnetoimpedance of FeCoNi/CuBe electroplated tubes with different features of field-annealing induced magnetic anisotropy

    Science.gov (United States)

    El Kammouni, R.; Chlenova, A. A.; Volchkov, S. O.; Kurlyandskaya, G. V.

    2017-02-01

    The effect of field annealing (in direct (DC) or alternating current (AC) field) on the structure, magnetic properties and giant magnetoimpedance (GMI) of CuBe/ Fe19Co17Ni64 electroplated tubes was studied. The field and frequency dependences of total impedance and its real part were comparatively analyzed together with magnetization processes features. The GMI sensitivity with respect to an applied field was the subject of special attention in view of possible applications of these materials in small magnetic field sensors. The maximum GMI ratio depends strongly on the heat treatments. The DC field annealing leads to the highest total impedance GMI ratio (ΔZ/Z=250%) and real part of the total impedance GMI ratio (ΔR/R=640%), compared to as-cast and AC field annealed samples. The external field response of DC annealed samples presented a single peak GMI response as a consequence of a strong contribution of the longitudinal effective anisotropy. At the same time, the maximum obtained sensitivity of 13.5%/Oe for DC case is much lower compared to the highest sensitivity values obtained for as-prepared (28.6%/Oe) and DC field annealed (22.0%/Oe) tubes for the low frequency of 2.5 MHz. The weak dependence of ΔZ/Z ratio in the case of AC field annealed samples in the high frequency range is an important advantage for particular sensor applications.

  1. SU-E-J-264: Using Magnetic Resonance Imaging-Derived Features to Quantify Radiotherapy-Induced Normal Tissue Morbidity

    International Nuclear Information System (INIS)

    Thor, M; Tyagi, N; Deasy, J

    2015-01-01

    Purpose: The aim of this study was to explore the use of Magnetic Resonance Imaging (MRI)-derived features as indicators of Radiotherapy (RT)-induced normal tissue morbidity. We also investigate the relationship between these features and RT dose in four critical structures. Methods: We demonstrate our approach for four patients treated with RT for base of tongue cancer in 2005–2007. For each patient, two MRI scans (T1-weighted pre (T1pre) and post (T1post) gadolinium contrast-enhancement) were acquired within the first six months after RT. The assessed morbidity endpoint observed in 2/4 patients was Grade 2+ CTCAEv.3 trismus. Four ipsilateral masticatory-related structures (masseter, lateral and medial pterygoid, and the temporal muscles) were delineated on both T1pre and T1post and these scans were co-registered to the treatment planning CT using a deformable demons algorithm. For each structure, the maximum and mean RT dose, and six MRI-derived features (the second order texture features entropy and homogeneity, and the first order mean, median, kurtosis, and skewness) were extracted and compared structure-wise between patients with and without trismus. All MRI-derived features were calculated as the difference between T1pre and T1post, ΔS. Results: For 5/6 features and all structures, ΔS diverged between trismus and non-trismus patients particularly for the masseter, lateral pterygoid, and temporal muscles using the kurtosis feature (−0.2 vs. 6.4 for lateral pterygoid). Both the maximum and mean RT dose in all four muscles were higher amongst the trismus patients (with the maximum dose being up to 25 Gy higher). Conclusion: Using MRI-derived features to quantify RT-induced normal tissue complications is feasible. We showed that several features are different between patients with and without morbidity and that the RT dose in all investigated structures are higher amongst patients with morbidity. MRI-derived features, therefore, has the potential to

  2. SU-E-J-264: Using Magnetic Resonance Imaging-Derived Features to Quantify Radiotherapy-Induced Normal Tissue Morbidity

    Energy Technology Data Exchange (ETDEWEB)

    Thor, M; Tyagi, N; Deasy, J [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2015-06-15

    Purpose: The aim of this study was to explore the use of Magnetic Resonance Imaging (MRI)-derived features as indicators of Radiotherapy (RT)-induced normal tissue morbidity. We also investigate the relationship between these features and RT dose in four critical structures. Methods: We demonstrate our approach for four patients treated with RT for base of tongue cancer in 2005–2007. For each patient, two MRI scans (T1-weighted pre (T1pre) and post (T1post) gadolinium contrast-enhancement) were acquired within the first six months after RT. The assessed morbidity endpoint observed in 2/4 patients was Grade 2+ CTCAEv.3 trismus. Four ipsilateral masticatory-related structures (masseter, lateral and medial pterygoid, and the temporal muscles) were delineated on both T1pre and T1post and these scans were co-registered to the treatment planning CT using a deformable demons algorithm. For each structure, the maximum and mean RT dose, and six MRI-derived features (the second order texture features entropy and homogeneity, and the first order mean, median, kurtosis, and skewness) were extracted and compared structure-wise between patients with and without trismus. All MRI-derived features were calculated as the difference between T1pre and T1post, ΔS. Results: For 5/6 features and all structures, ΔS diverged between trismus and non-trismus patients particularly for the masseter, lateral pterygoid, and temporal muscles using the kurtosis feature (−0.2 vs. 6.4 for lateral pterygoid). Both the maximum and mean RT dose in all four muscles were higher amongst the trismus patients (with the maximum dose being up to 25 Gy higher). Conclusion: Using MRI-derived features to quantify RT-induced normal tissue complications is feasible. We showed that several features are different between patients with and without morbidity and that the RT dose in all investigated structures are higher amongst patients with morbidity. MRI-derived features, therefore, has the potential to

  3. Features of protein-protein interactions that translate into potent inhibitors: topology, surface area and affinity.

    Science.gov (United States)

    Smith, Matthew C; Gestwicki, Jason E

    2012-07-26

    Protein-protein interactions (PPIs) control the assembly of multi-protein complexes and, thus, these contacts have enormous potential as drug targets. However, the field has produced a mix of both exciting success stories and frustrating challenges. Here, we review known examples and explore how the physical features of a PPI, such as its affinity, hotspots, off-rates, buried surface area and topology, might influence the chances of success in finding inhibitors. This analysis suggests that concise, tight binding PPIs are most amenable to inhibition. However, it is also clear that emerging technical methods are expanding the repertoire of 'druggable' protein contacts and increasing the odds against difficult targets. In particular, natural product-like compound libraries, high throughput screens specifically designed for PPIs and approaches that favour discovery of allosteric inhibitors appear to be attractive routes. The first group of PPI inhibitors has entered clinical trials, further motivating the need to understand the challenges and opportunities in pursuing these types of targets.

  4. Accessible surface area of proteins from purely sequence information and the importance of global features

    Science.gov (United States)

    Faraggi, Eshel; Zhou, Yaoqi; Kloczkowski, Andrzej

    2014-03-01

    We present a new approach for predicting the accessible surface area of proteins. The novelty of this approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Rather, sequential window information and the global monomer and dimer compositions of the chain are used. We find that much of the lost accuracy due to the elimination of evolutionary information is recouped by the use of global features. Furthermore, this new predictor produces similar results for proteins with or without sequence homologs deposited in the Protein Data Bank, and hence shows generalizability. Finally, these predictions are obtained in a small fraction (1/1000) of the time required to run mutation profile based prediction. All these factors indicate the possible usability of this work in de-novo protein structure prediction and in de-novo protein design using iterative searches. Funded in part by the financial support of the National Institutes of Health through Grants R01GM072014 and R01GM073095, and the National Science Foundation through Grant NSF MCB 1071785.

  5. Energy of surface states for 3D magnetic Schrödinger operators

    DEFF Research Database (Denmark)

    Nasrallah, Marwa

    In this dissertation, we study the Schrödinger operator with magnetic field in a three dimensional domain with compact smooth boundary. Functions in the domain of the operator satisfy (magnetic) Neumann condition on the boundary. The operator depends on the semi-classical parameter....... As this parameter becomes small, certain eigenfunctions of the operator are localized near the boundary of the domain, hence they will be called surface states. The main result of this dissertation is the calculation of the leading order terms of the energy and the number of surface states when the semi-classical...

  6. X-ray magnetic circular dichroism discloses surface spins correlation in maghemite hollow nanoparticles

    Science.gov (United States)

    Bonanni, Valentina; Basini, Martina; Peddis, Davide; Lascialfari, Alessandro; Rossi, Giorgio; Torelli, Piero

    2018-01-01

    The spin-spin correlations in hollow (H) and full (F) maghemite nanoparticles (NPs) have been studied by X-ray magnetic circular dichroism (XMCD). An unexpected XMCD signal was detected and analyzed under the application of a small field (μ0H = 160 Oe) and at remanence for both F and H NPs. Clear differences in the magnitude and in the lineshape of the XMCD spectra between F and H NPs emerged. By comparing XMCD measurements performed with a variable degree of surface sensitivity, we were able to address the specific role played by the surface spins in the magnetism of the NPs.

  7. M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies

    Science.gov (United States)

    Kramer, G.Y.; Besse, S.; Dhingra, D.; Nettles, J.; Klima, R.; Garrick-Bethell, I.; Clark, Roger N.; Combe, J.-P.; Head, J. W.; Taylor, L.A.; Pieters, C.M.; Boardman, J.; McCord, T.B.

    2011-01-01

    We examined the lunar swirls using data from the Moon Mineralogy Mapper (M3). The improved spectral and spatial resolution of M3 over previous spectral imaging data facilitates distinction of subtle spectral differences, and provides new information about the nature of these enigmatic features. We characterized spectral features of the swirls, interswirl regions (dark lanes), and surrounding terrain for each of three focus regions: Reiner Gamma, Gerasimovich, and Mare Ingenii. We used Principle Component Analysis to identify spectrally distinct surfaces at each focus region, and characterize the spectral features that distinguish them. We compared spectra from small, recent impact craters with the mature soils into which they penetrated to examine differences in maturation trends on- and off-swirl. Fresh, on-swirl crater spectra are higher albedo, exhibit a wider range in albedos and have well-preserved mafic absorption features compared with fresh off-swirl craters. Albedoand mafic absorptions are still evident in undisturbed, on-swirl surface soils, suggesting the maturation process is retarded. The spectral continuum is more concave compared with off-swirl spectra; a result of the limited spectral reddening being mostly constrained to wavelengths less than ∼1500 nm. Off-swirl spectra show very little reddening or change in continuum shape across the entire M3 spectral range. Off-swirl spectra are dark, have attenuated absorption features, and the narrow range in off-swirl albedos suggests off-swirl regions mature rapidly. Spectral parameter maps depicting the relative OH surface abundance for each of our three swirl focus regions were created using the depth of the hydroxyl absorption feature at 2.82 μm. For each of the studied regions, the 2.82 μm absorption feature is significantly weaker on-swirl than off-swirl, indicating the swirls are depleted in OH relative to their surroundings. The spectral characteristics of the swirls and adjacent terrains

  8. Magnetic frustration, short-range correlations and the role of the paramagnetic Fermi surface of PdCrO2

    Science.gov (United States)

    Billington, David; Ernsting, David; Millichamp, Thomas E.; Lester, Christopher; Dugdale, Stephen B.; Kersh, David; Duffy, Jonathan A.; Giblin, Sean R.; Taylor, Jonathan W.; Manuel, Pascal; Khalyavin, Dmitry D.; Takatsu, Hiroshi

    2015-01-01

    Frustrated interactions exist throughout nature, with examples ranging from protein folding through to frustrated magnetic interactions. Whilst magnetic frustration is observed in numerous electrically insulating systems, in metals it is a rare phenomenon. The interplay of itinerant conduction electrons mediating interactions between localised magnetic moments with strong spin-orbit coupling is likely fundamental to these systems. Therefore, knowledge of the precise shape and topology of the Fermi surface is important in any explanation of the magnetic behaviour. PdCrO2, a frustrated metallic magnet, offers the opportunity to examine the relationship between magnetic frustration, short-range magnetic order and Fermi surface topology. By mapping the short-range order in reciprocal space and experimentally determining the electronic structure, we have identified the dual role played by the Cr electrons in which the itinerant ones on the nested paramagnetic Fermi surface mediate the frustrated magnetic interactions between local moments. PMID:26206589

  9. Impact of surface coated magnetite used in magnetic drug delivery system on immune response

    Science.gov (United States)

    Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro

    2015-05-01

    Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.

  10. Magnetic properties and magnetoimpedance of FeCoNi/CuBe electroplated tubes with different features of field-annealing induced magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    El Kammouni, R.; Chlenova, A.A.; Volchkov, S.O. [Ural Federal University, Laboratory of Magnetic Sensors, Lenin Ave. 51, 620000 Ekaterinburg (Russian Federation); Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Ural Federal University, Laboratory of Magnetic Sensors, Lenin Ave. 51, 620000 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco BCMaterials (UPV/EHU), 48940 Leioa (Spain)

    2017-02-01

    The effect of field annealing (in direct (DC) or alternating current (AC) field) on the structure, magnetic properties and giant magnetoimpedance (GMI) of CuBe/ Fe{sub 19}Co{sub 17}Ni{sub 64} electroplated tubes was studied. The field and frequency dependences of total impedance and its real part were comparatively analyzed together with magnetization processes features. The GMI sensitivity with respect to an applied field was the subject of special attention in view of possible applications of these materials in small magnetic field sensors. The maximum GMI ratio depends strongly on the heat treatments. The DC field annealing leads to the highest total impedance GMI ratio (ΔZ/Z=250%) and real part of the total impedance GMI ratio (ΔR/R=640%), compared to as-cast and AC field annealed samples. The external field response of DC annealed samples presented a single peak GMI response as a consequence of a strong contribution of the longitudinal effective anisotropy. At the same time, the maximum obtained sensitivity of 13.5%/Oe for DC case is much lower compared to the highest sensitivity values obtained for as-prepared (28.6%/Oe) and DC field annealed (22.0%/Oe) tubes for the low frequency of 2.5 MHz. The weak dependence of ΔZ/Z ratio in the case of AC field annealed samples in the high frequency range is an important advantage for particular sensor applications. - Highlights: • CuBe/FeCoNi tubes were fabricated by electroplating. • The effect of field annealing on the structure, magnetic properties and magnetoimpedance was studied. • The maximum magnetoimpedance ( MI) ratio depends strongly on the heat treatments. • The DC field annealing leads to the highest total impedance MI ratio. • Transformation from one- to two-peaks MI curves was observed in the DC field annealed tubes.

  11. Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field

    CERN Document Server

    Kibis, O V

    2001-01-01

    Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics

  12. Magnetic resonance imaging features of complications following hip replacement: A pictorial review

    Directory of Open Access Journals (Sweden)

    Khushboo Pilania

    2016-01-01

    Full Text Available Hip replacement surgery helps millions of people worldwide walk painlessly each year. With increasing life spans and decreased clinical threshold for surgery, this number will continue to rise. With the increase in the number of surgeries and the longevity of implants, the need for early and prompt diagnosis of complications is also rising. This essay underlines the fact that magnetic resonance imaging on a 1.5T scanner with specialized metal artefact reduction sequences is a viable technique to image the post-arthroplasty hip and has vast potential in the prompt and early diagnosis of complications in these patients.

  13. Magnetic resonance imaging features of brain and spinal cord injury in a fatal case of isopropanol intoxication

    Directory of Open Access Journals (Sweden)

    Mahajan PS

    2014-03-01

    Full Text Available Parag Suresh Mahajan,1 Joyal Jacob Mathew,2 Abhilash Pulincherry Jayaram,1 Vidya Chander Negi,1 Mohamed Milad Abu Hmaira21Department of Radiology, 2Department of Medicine, Al-Khor Hospital, Hamad Medical Corporation, Doha, QatarAbstract: A 60-year-old man presented with headache, dizziness, and disorientation one day after consumption of isopropanol along with ethanol. Computed tomography (CT of the brain performed immediately was unremarkable. The patient collapsed within the hospital 30 minutes after the CT scan was done, and remained comatose until death, showing no improvement with symptomatic treatment. Magnetic resonance imaging of the brain and spine done 6 days after admission revealed bilaterally symmetrical hyperintensities involving the cerebral and cerebellar cortex and white matter, basal ganglia, thalami, and brainstem on T2-weighted, fluid attenuated inversion recovery and diffusion weighted images; similar hyperintensities were seen involving the swollen and edematous cervical spinal cord and cerebellar tonsillar herniation compressing the proximal cervical cord. Petechial hemorrhages were also noted within the brainstem. These features are compatible with toxic injury to the brain and cervical spinal cord. To our knowledge, the magnetic resonance imaging features of brain and spinal cord injury and cerebellar tonsillar herniation, secondary to isopropanol intoxication have not been reported in the published literature before.Keywords: alcohol intoxication, computed tomography, isopropyl alcohol, ethyl alcohol, toxicity

  14. Core surface magnetic field evolution 2000–2010

    DEFF Research Database (Denmark)

    Finlay, Chris; Jackson, A.; Gillet, N.

    2012-01-01

    We present new dedicated core surface field models spanning the decade from 2000.0 to 2010.0. These models, called gufm‐sat, are based on CHAMP, Ørsted and SAC‐C satellite observations along with annual differences of processed observatory monthly means. A spatial parametrization of spherical...... field and the unrealistic rapid decay typical of quadratic regularization at degrees above 12. We describe in detail aspects of the models that are relevant to core dynamics. Secular variation and secular acceleration are found to be of lower amplitude under the Pacific hemisphere where the core field...... is weaker. Rapid field evolution is observed under the eastern Indian Ocean associated with the growth and drift of an intense low latitude flux patch. We also find that the present axial dipole decay arises from a combination of subtle changes in the southern hemisphere field morphology....

  15. Self-Assembled Layering of Magnetic Nanoparticles in a Ferrofluid on Silicon Surfaces.

    Science.gov (United States)

    Theis-Bröhl, Katharina; Vreeland, Erika C; Gomez, Andrew; Huber, Dale L; Saini, Apurve; Wolff, Max; Maranville, Brian B; Brok, Erik; Krycka, Kathryn L; Dura, Joseph A; Borchers, Julie A

    2018-02-07

    This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.

  16. Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods.

    Science.gov (United States)

    Jung, Insub; Ih, Seongkeun; Yoo, Haneul; Hong, Seunghun; Park, Sungho

    2018-03-14

    In this study, we demonstrate the synthesis and application of magnetic plasmonic gyro-nanodisks (GNDs) for Fourier transform surface plasmon resonance based biodetection. Plasmonically active and magnetically responsive gyro-nanodisks were synthesized using electrochemical methods with anodized aluminum templates. Due to the unique properties of GNDs (magnetic responsiveness and surface plasmon bands), periodic extinction signals were generated under an external rotating magnetic field, which is, in turn, converted into frequency domains using Fourier transformation. After the binding of a target on GNDs, an increase in the shear force causes a shift in the frequency domain, which allows us to investigate biodetection for HA1 (the influenza virus). Most importantly, by modulating the number and the location of plasmonic nanodisks (a method for controlling the hydrodynamic forces by rationally designing the nanomaterial architecture), we achieved enhanced biodetection sensitivity. We expect that our results will contribute to improved sensing module performance, as well as a better understanding of dynamic nanoparticle systems, by harnessing the perturbed periodic fluctuation of surface plasmon bands under the modulated magnetic field.

  17. A Torque Error Compensation Algorithm for Surface Mounted Permanent Magnet Synchronous Machines with Respect to Magnet Temperature Variations

    Directory of Open Access Journals (Sweden)

    Chang-Seok Park

    2017-09-01

    Full Text Available This paper presents a torque error compensation algorithm for a surface mounted permanent magnet synchronous machine (SPMSM through real time permanent magnet (PM flux linkage estimation at various temperature conditions from medium to rated speed. As known, the PM flux linkage in SPMSMs varies with the thermal conditions. Since a maximum torque per ampere look up table, a control method used for copper loss minimization, is developed based on estimated PM flux linkage, variation of PM flux linkage results in undesired torque development of SPMSM drives. In this paper, PM flux linkage is estimated through a stator flux linkage observer and the torque error is compensated in real time using the estimated PM flux linkage. In this paper, the proposed torque error compensation algorithm is verified in simulation and experiment.

  18. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy ( 13 C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13 C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13 C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13 C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Low-frequency surface waves on semi-bounded magnetized quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Engineering Physics, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of)

    2016-08-15

    The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.

  20. Quadrature Slotted Surface Coil Pair for Magnetic Resonance Imaging at 4 Tesla: Phantom Study

    Directory of Open Access Journals (Sweden)

    Solis S.E.

    2012-01-01

    Full Text Available A coil array was composed of two slotted surface coils forming a structure with two plates at 900, each one having 6 circular slots and is introduced in this paper. Numerical simulations of the magnetic field of this coil array were performed at 170 MHz using the finite element method to study its behaviour. This coil array was developed for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode and quadrature driven. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. In vitro images showed the feasibility of this coil array for standard pulses and high field magnetic resonance imaging.

  1. Evolution of the surface magnetic field of rotating proto-neutron stars

    Science.gov (United States)

    Obergaulinger, M.; Aloy, M. Á.

    2017-12-01

    We study the evolution of the field on the surface of proto-neutron stars in the immediate aftermath of stellar core collapse by analyzing the results of self-consistent, axisymmetric simulations of the cores of rapidly rotating high-mass stars. To this end, we compare the field topology and the angular spectra of the poloidal and toroidal field components over a time of about one seconds for cores. Both components are characterized by a complex geometry with high power at intermediate angular scales. The structure is mostly the result of the accretion of magnetic flux embedded in the matter falling through the turbulent post-shock layer onto the PNS. Our results may help to guide further studies of the long-term magneto-thermal evolution of proto-neutron stars. We find that the accretion of stellar progenitor layers endowed with low or null magnetization bury the magnetic field on the PNS surface very effectively.

  2. High field surface magnetic study of Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kihal, A. [Laboratoire de Magnetisme et Spectroscopie des Solides (LM2S), Universite Badji Mokhtar, BP-12 Annaba (Algeria); LNCMI-G, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France); Fillion, G. [LNCMI-G, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France); Bouzabata, B. [Laboratoire de Magnetisme et Spectroscopie des Solides (LM2S), Universite Badji Mokhtar, BP-12 Annaba (Algeria); Barbara, B. [Institut Neel, CNRS-UJF, 25 Rue des Martyrs, BP-166, 38042 Grenoble-Cedex 9 (France)

    2012-03-15

    Magnetic properties of magnetite (Fe{sub 3}O{sub 4}) powders, milled for various times up to 15 h, are studied by magnetization measurements. For the starting powder, like in the bulk single crystal, the approach to magnetic saturation is mainly ruled by the usual 1/H and 1/H{sup 2} terms. But for the milled samples, as the grain size decreases, a 1/H{sup 1/2} term rises as the leading term and is interpreted in the framework of the theory of Chudnovsky et al. accounting for the effect of a random anisotropy generated near the surface, aside from a large constant high field susceptibility related to the canted spins at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Surface geometry of a rotating black hole in a magnetic field

    International Nuclear Information System (INIS)

    Kulkarni, R.; Dadhich, N.

    1986-01-01

    We study the intrinsic geometry of the surface of a rotating black hole in a uniform magnetic field, using a metric discovered by Ernst and Wild. Rotating black holes are analogous to material rotating bodies according to Smarr since black holes also tend to become more oblate on being spun up. Our study shows that the presence of a strong magnetic field ensures that a black hole actually becomes increasingly prolate on being spun up. Studying the intrinsic geometry of the black-hole surface also gives rise to an interesting embedding problem. Smarr shows that a Kerr black hole cannot be globally isometrically embedded in R 3 if its specific angular momentum a exceeds (√3 /2)mapprox.0.866. . .m. We show that in the presence of a magnetic field of strength B, satisfying 2- √3 2 m 2 3 for all values of the angular momentum

  4. Relating Sub-Surface Ice Features to Physiological Stress in a Climate Sensitive Mammal, the American Pika (Ochotona princeps)

    OpenAIRE

    Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna

    2015-01-01

    The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were...

  5. From surfaces to magnetic properties: special section dedicated to Juan Rojo

    Science.gov (United States)

    Mascaraque, A.; Rodríguez de la Fuente, O.; González-Barrio, Miguel A.

    2013-12-01

    Surface physics and magnetism, in particular the connection between surface defects, reduced dimensionality or size, crystal structure, electronic density of states and the mechanical and magnetic properties of solids, were always at the core of Juan Rojo's scientific interest and output. Both fields seem to meet at the nanoscale, a privileged playing field which is ideal for testing theoretical concepts, exploring new physics or probing a wealth of new, stunning and unheard-of applications. Upon reducing size or dimensionality, either in bulk systems or in thin films, surfaces and surface effects are telling. Thus, for instance, an ultra-thin coating can make nanoparticles of non-magnetic materials exhibit magnetic behaviour; or atomic steps can modify the local mechanical properties of a metallic single crystal. In this special section there are eight invited papers by disciples and close collaborators of Juan Rojo, that cover an ample spectrum of the above mentioned topics. The first paper, by Palacio et al, investigates the temperature and oxygen partial pressure conditions for FeO mono- and bi-layer growth on Ru(0001). The following paper, by Cortés-Gil et al, reports on the dramatic change in the electric resistivity of the manganite perovskite (La0.5Ca0.5)z MnO3 as a function of Ca content, an effect related to the removal of a charge-ordered state and a magnetic transition. Baeza et al study biomaterials for bone cancer treatment and skeletal reinforcing, as well as targeted magnetic nanoparticles used for intracell hyperthermia in cancer therapies. In the following paper, Marcano et al, assisted by a multi-technique approach, revisit the extraordinarily rich magnetic phase diagram of the Kondo system CeNi1- x Cux down to 100 mK temperatures. The magnetic field dependence of the martensitic transition temperature of the meta-magnetic shape memory alloy Ni50Mn34.5In15.5 in a crystalline and amorphous phase, in fields up to 13 T, is the subject of the paper

  6. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  7. IMAGING DIAGNOSIS-MAGNETIC RESONANCE IMAGING FEATURES OF A MULTIFOCAL OLIGODENDROGLIOMA IN THE SPINAL CORD AND BRAIN OF A DOG.

    Science.gov (United States)

    Schkeeper, Amy E; Moon, Rachel; Shrader, Stephanie; Koehler, Jey W; Linden, Daniel; Taylor, Amanda R

    2017-09-01

    An 8-year-old neutered male Toy Poodle was presented with chronic, progressive tetraparesis, and possible seizures. Magnetic resonance images demonstrated an extensive, T1 and T2 hyperintense contrast enhancing mass in the cervical spinal cord. Three nodules were present on the surface of the thalamus, with enhancement most evident on delayed images. A diagnosis of high-grade oligodendroglioma was confirmed with postmortem histopathology and immunohistochemical labeling. Oligodendroglioma should be considered as a differential for T1 hyperintense intraaxial or intramedullary lesions with contrast enhancement. If enhancement is not visualized on postcontrast images, delayed images may be beneficial. © 2016 American College of Veterinary Radiology.

  8. Magnetization anomalies of fine particles interpreted as surface effects by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hennion, M.; Mirebeau, I.; Bellouard, C.

    1994-01-01

    Inelastic neutron scattering experiments on small Fe particles (R=12 Angstrom) reveal that some part of the magnetic intensity is paramagnetic at 300 K. As T decreases it freezes and develops short range ferromagnetic correlations. It is attributed to spins at the particle surface. (authors). 3 figs., 5 refs

  9. Preliminary results of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer

    NARCIS (Netherlands)

    Jager, G. J.; Barentsz, J. O.; de la Rosette, J. J.; Rosenbusch, G.

    1994-01-01

    To evaluate the effectiveness of endorectal surface coil (ERC) magnetic resonance imaging (MRI) in the local staging of adenocarcinoma of the prostate (ACP). A total of 23 patients who were considered candidates for radical prostatectomy because of clinically localized ACP were examined by ERC-MRI.

  10. Surface critical magnetic field Hc3 (T) of a bulk superconductor ...

    Indian Academy of Sciences (India)

    ... surface critical magnetic field Hc3(). It is shown that c3() has the same temperature dependence with c2(), similar to the case of a single-band superconductor, c3()=1.66 c2(). We use an elimination procedure for the decoupling of G–L equations of two-band superconductivity, which eases the calculations.

  11. Structure and magnetic properties of Co chains on a stepped Cu surface

    Czech Academy of Sciences Publication Activity Database

    Pick, Štěpán; Ignatiev, P. A.; Klavsyuk, A. L.; Hergert, W.; Stepanyuk, V. S.; Bruno, P.

    2007-01-01

    Roč. 19, - (2007), s. 446001-446011 ISSN 0953-8984 Grant - others:Deutsche Forschungsgemeinschaft(DE) DFG SPP 1165 Institutional research plan: CEZ:AV0Z40400503 Source of funding: V - iné verejné zdroje Keywords : magnetic anisotropy energy * Co chains * Cu surface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.886, year: 2007

  12. Macroscopic quantum coherence in a magnetic nanoparticle above the surface of a superconductor

    Science.gov (United States)

    Chudnovsky; Friedman

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  13. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  14. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-01-01

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed

  15. Radio-frequency surface resistance of tunmgsten in weak magnetic fields

    International Nuclear Information System (INIS)

    Bojko, V.V.; Toniya, V.A.

    1988-01-01

    The surface impedance of single crystal tungsten specimens under anomalous skin effect in a magnetic field H is investigated experimentally. It is found that in magnetic fields ranging from 0 to 1 kOe the surface resistance R of tungsten varies in a nonmonotonous manner and experiences several extrema. The position of the latter with respect to magnetic field strength depends on the conduction electron mean free path l, on the roughness of the specimen surface and frequency of the irradiating electromagnetic wave. It is found that such behavior of R(H) is due to variation of the nature of the conduction electron scattering at the metal-external medium interface with increasing H. The geometrical dimensions of the surface roughnesses are determined at which diffuse scattering of the current occurs. The results are compared with the theoretical calculations, and a number of contradictions between the theory and experiments are noted. The effect of the magnetic field of the electromagnetic wave H ∼ on the conductivity of tungsten in the absence of H is studied

  16. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mudan, E-mail: chenmudan@163.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Wei, E-mail: climentjw@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Fenghe [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core–shell composite material based on magnetic hollow Fe{sub 3}O{sub 4} nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  17. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Science.gov (United States)

    Chen, Mudan; Jiang, Wei; Wang, Fenghe; Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core-shell composite material based on magnetic hollow Fe3O4 nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe3O4 nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  18. Surface-termination-dependent magnetism and strong perpendicular magnetocrystalline anisotropy of an FeRh(001) thin film

    Czech Academy of Sciences Publication Activity Database

    Jekal, S.; Rhim, S.H.; Hong, S.C.; Son, W.-J.; Shick, Alexander

    2015-01-01

    Roč. 92, č. 6 (2015), " 064410-1"-" 064410-6" ISSN 1098-0121 R&D Projects: GA ČR GA15-07172S Institutional support: RVO:68378271 Keywords : magnetic anisotropy * magnetic recording * surface science Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  19. Surface magnetization and the role of pattern defects in various types of ripple patterned films

    International Nuclear Information System (INIS)

    Colino, Jose M; Arranz, Miguel A; Barbero, Antonio J; Bollero, A; Camarero, J

    2016-01-01

    We present a detailed study of the magnetic properties of cobalt films with wide-area nanoscale ripple patterns, either on their surface only, or on both the film surface and substrate interface. Angular dependence vectorial-resolved magnetometry measurements and magnetic force microscopy with in situ magnetic field have been used to determine the magnetization reversal processes to correlate them to the different patterned nanostructures. All the samples show well-defined uniaxial magnetic anisotropy with the anisotropy axis lying along the ripple direction. Atomic force microscopy of the different types of pattern reveals various pattern defects: height corrugation and breaks of continuity along the ripple direction, and overlapping ripples and Y-shaped defects (pattern dislocation) across the pattern. In spite of the existence of such customary defects of erosive-regime patterns, the type of low-amplitude, surface-patterned films remarkably behave as a macrospin over almost the whole in-plane angular range (340°), with negligible spread of anisotropy axis or energy. In turn, it is found that high-amplitude surface-patterned films develop an angular distribution of anisotropy axes, probably related to the large distribution of amplitudes in a pattern of short ripples, and a significant distribution of anisotropy fields ΔH k /H k up to 15%. On the other hand, films grow on pre-patterned silicon with a significantly longer mean ripple length, and develop a larger anisotropy energy with H k up to 110 mT, probably because of the double interface effect. The switching fields close to the magnetization easy axis of all types of ripple pattern are not well reproduced by the macrospin approximation, but the observed pattern defects seem to be not responsible for the domain wall pinning that occurs with the field applied along the ripple direction. (paper)

  20. Magnetic resonance imaging and computed tomography features of nasopharyngeal carcinomas with maxillary sinus involvement

    Energy Technology Data Exchange (ETDEWEB)

    Chong, V.F.H.; Fan, Y.F.; Toh, K.H.; Khoo, J.B.H.; Lim, T.A. [Singapore General Hospital (Singapore). Dept. of Diagnostic Radiology

    1995-02-01

    Anterior spread of nasopharyngeal carcinoma (NPC) may infiltrate the maxillary sinus. In a prospective study of 114 patients comparing magnetic resonance imaging (MRI) and computed tomography (CT) in the staging of NPC, 10 (9%) patients were noted to have tumour infiltration of the maxillary sinuses. All of the patients except one had associated infiltration of the sphenoidal sinuses indicating advanced local spread. Computed tomography was excellent in outlining the extent of bony erosion and associated soft tissue mass within the antra. T1-weighted images could not demonstrate bony erosions directly although soft tissue extension into the sinuses could be clearly visualized. Both CT and MRI showed good demarcation between tumour and mucosal thickening within the maxillary sinus. Although MRI demonstrated soft tissue involvement more elegantly than CT, it did not appear to offer significantly more information that may affect clinical management. 13 refs., 1 tab., 4 figs.

  1. Magnetic resonance imaging features of complex Chiari malformation variant of Chiari 1 malformation

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Hannah E. [Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States); Moore, Kevin R. [University of Utah School of Medicine, Department of Radiology, Salt Lake City, UT (United States); Primary Children' s Medical Center, Department of Medical Imaging, Salt Lake City, UT (United States)

    2014-11-15

    Complex Chiari malformation is a subgroup of Chiari 1 malformation with distinct imaging features. Children with complex Chiari malformation are reported to have a more severe clinical phenotype and sometimes require more extensive surgical treatment than those with uncomplicated Chiari 1 malformation. We describe reported MR imaging features of complex Chiari malformation and evaluate the utility of craniometric parameters and qualitative anatomical observations for distinguishing complex Chiari malformation from uncomplicated Chiari 1 malformation. We conducted a retrospective search of the institutional imaging database using the keywords ''Chiari'' and ''Chiari 1'' to identify children imaged during the 2006-2011 time period. Children with Chiari 2 malformation were excluded after imaging review. We used the first available diagnostic brain or cervical spine MR study for data measurement. Standard measurements and observations were made of obex level (mm), cerebellar tonsillar descent (mm), perpendicular distance to basion-C2 line (pB-C2, mm), craniocervical angle (degrees), clivus length, and presence or absence of syringohydromyelia, basilar invagination and congenital craniovertebral junction osseous anomalies. After imaging review, we accessed the institutional health care clinical database to determine whether each subject clinically met criteria for Chiari 1 malformation or complex Chiari malformation. Obex level and craniocervical angle measurements showed statistically significant differences between the populations with complex Chiari malformation and uncomplicated Chiari 1 malformation. Cerebellar tonsillar descent and perpendicular distance to basion-C2 line measurements trended toward but did not meet statistical significance. Odontoid retroflexion, craniovertebral junction osseous anomalies, and syringohydromyelia were all observed proportionally more often in children with complex Chiari malformation than in

  2. Femtosecond-laser-induced periodic surface structures on magnetic layer targets: The roles of femtosecond-laser interaction and of magnetization

    Science.gov (United States)

    Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen

    2017-09-01

    We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.

  3. Replication of micro and nano-features on iPP by injection molding with fast cavity surface temperature evolution

    DEFF Research Database (Denmark)

    Speranzaa, Vito; Liparotia, Sara; Calaon, Matteo

    2017-01-01

    The production of polymeric components with functional structures in the micrometer and sub-micrometer range is a complex challenge for the injection molding process, since it suffers the use of low cavity surface temperatures that induce the fast formation of a frozen layer, thus preventing...... was sufficient to obtain accurate replication, with adequate surface temperatures. In the case of nano-features, the replication accuracy was affected by the morphology developed on the molding surface, that is aligned along the flow direction with dimensions comparable with the dimension of the nano...

  4. The evolution of magnetic hot massive stars: Implementation of the quantitative influence of surface magnetic fields in modern models of stellar evolution

    Science.gov (United States)

    Keszthelyi, Zsolt; Wade, Gregg A.; Petit, Veronique

    2017-11-01

    Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of "heavy" stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.

  5. Surface-spin magnetism of antiferromagnetic NiO in nanoparticle and bulk morphology

    International Nuclear Information System (INIS)

    Jagodic, M; Jaglicic, Z; Jelen, A; Dolinsek, J; Lee, Jin Bae; Kim, Hae Jin; Kim, Young-Min

    2009-01-01

    The surface-spin magnetism of the antiferromagnetic (AFM) material NiO in nanoparticle and bulk morphology was investigated by magnetic measurements (temperature-dependent zero-field-cooled (zfc) and field-cooled (fc) dc susceptibility, ac susceptibility and zfc and fc hysteresis loops). We addressed the question of whether the multisublattice ordering of the uncompensated surface spins and the exchange bias (EB) effect are only present in the nanoparticles, originating from their high surface-to-volume ratio or if these surface phenomena are generally present in the AFM materials regardless of their bulky or nanoparticle morphology, but the effect is just too small to be detected experimentally in the bulk due to a very small surface magnetization. Performing experiments on the NiO nanoparticles of different sizes and bulk NiO grains, we show that coercivity enhancement and hysteresis loop shift in the fc experiments, considered to be the key experimental manifestations of multisublattice ordering and the EB effect, are true nanoscale phenomena only present in the nanoparticles and absent in the bulk.

  6. Inner surface modification of a tube by magnetic glow-arc plasma source ion implantation

    International Nuclear Information System (INIS)

    Zhang Guling; Chinese Academy of Sciences, Beijing; Wang Jiuli; Feng Wenran; Chen Guangliang; Gu Weichao; Niu Erwu; Fan Songhua; Liu Chizi; Yang Size; Wu Xingfang

    2006-01-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved. (authors)

  7. Inner Surface Modification of a Tube by Magnetic Glow-Arc Plasma Source Ion Implantation

    Science.gov (United States)

    Zhang, Gu-Ling; Wang, Jiu-Li; Wu, Xing-Fang; Feng, Wen-Ran; Chen, Guang-Liang; Gu, Wei-Chao; Niu, Er-Wu; Fan, Song-Hua; Liu, Chi-Zi; Yang, Si-Ze

    2006-05-01

    A new method named the magnetic glow-arc plasma source ion implantation (MGA-PSII) is proposed for inner surface modification of tubes. In MGA-PSII, under the control of an axial magnetic field, which is generated by an electric coil around the tube sample, glow arc plasma moves spirally into the tube from its two ends. A negative voltage applied on the tube realized its inner surface implantation. Titanium nitride (TiN) films are prepared on the inner surface of a stainless steel tube in diameter 90 mm and length 600 mm. Hardness tests show that the hardness at the tube centre is up to 20 GPa. XRD, XPS and AES analyses demonstrate that good quality of TiN films can be achieved.

  8. Manipulating Magnetism at Organic/Ferromagnetic Interfaces by Molecule-Induced Surface Reconstruction.

    Science.gov (United States)

    Pang, Rui; Shi, Xingqiang; Van Hove, Michel A

    2016-03-30

    Fullerenes have several advantages as potential materials for organic spintronics. Through a theoretical first-principles study, we report that fullerene C60 adsorption can induce a magnetic reconstruction in a Ni(111) surface and expose the merits of the reconstructed C60/Ni(111) spinterface for molecular spintronics applications. Surface reconstruction drastically modifies the magnetic properties at both sides of the C60/Ni interface. Three outstanding properties of the reconstructed structure are revealed, which originate from reconstruction enhanced spin-split π-d coupling between C60 and Ni(111): (1) the C60 spin polarization and conductance around the Fermi level are enhanced simultaneously, which can be important for read-head sensor miniaturization; (2) localized spin-polarized states appear in C60 with a spin-filter functionality; and (3) magnetocrystalline anisotropic energy and exchange coupling in the outermost Ni layer are reduced enormously. Surface reconstruction can be realized simply by controlling the annealing temperature in experiments.

  9. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Chu, J.-H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.-H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; Hashimoto, M.; Sasagawa, T.; Zhang, S.C.; Fisher, I.R.; Hussain, Z.; Shen, Z.-X.; /SLAC

    2011-05-20

    Topological insulators are characterized by a massless Dirac surface state and a bulk energy gap. An insulating massive Dirac fermion state is predicted to occur if the breaking of the time reversal symmetry opens an energy gap at the Dirac point, provided that the Fermi-energy resides inside both the surface and bulk gaps. By introducing magnetic dopants into the three dimensional topological insulator Bi{sub 2}Se{sub 3} to break the time reversal symmetry, we observed the formation of a massive Dirac fermion on the surface; simultaneous magnetic and charge doping furthermore positioned the Fermi-energy inside the Dirac gap. The insulating massive Dirac Fermion state thus obtained may provide a tool for studying a range of topological phenomena relevant to both condensed matter and particle physics.

  10. How do features of dressage arenas influence training surface properties which are potentially associated with lameness?

    Science.gov (United States)

    Murray, Rachel C; Walters, Juli; Snart, Hannah; Dyson, Sue; Parkin, Tim

    2010-11-01

    Results from a previous study indicated that there are specific arena surface characteristics that are associated with an increased likelihood of lameness in dressage horses. It is important to understand what modifiable arena factors lead to these detrimental surface characteristics. The aim of this study was to describe the use of training surfaces and arenas for United Kingdom dressage horses and to investigate any relationships between arena/surface variables and detrimental surface characteristics. Data from a questionnaire returned by 22.5% of all 11,363 registered members of British Dressage were used for the study. Univariate and multivariable logistic regression models were developed with each of the previously identified surface characteristics as dependent variables. Respondents reported that the majority of arenas were privately owned, sized 20 × 40 m and had a sand and rubber surface. The results indicated that wax-coated and sand and rubber surfaces were associated with less detrimental surface properties than sand, sand and PVC, woodchips or grass. Woodchips were most strongly associated with the detrimental characteristic of slipping, and sand with tripping. The findings indicated that any arena surface should have a base, with limestone the recommended surface, and that crushed concrete was best avoided. This information supported previous studies in racehorses that indicated that surface maintenance is essential, especially when many horses are using an arena daily. Problems were less likely if an arena was privately owned. Copyright © 2010. Published by Elsevier Ltd.

  11. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  12. Porencephaly in dogs and cats: relationships between magnetic resonance imaging (MRI) features and hippocampal atrophy.

    Science.gov (United States)

    Hori, Ai; Hanazono, Kiwamu; Miyoshi, Kenjirou; Nakade, Tetsuya

    2015-07-01

    Porencephaly is the congenital cerebral defect and a rare malformation and described few MRI reports in veterinary medicine. MRI features of porencephaly are recognized the coexistence with the unilateral/bilateral hippocampal atrophy, caused by the seizure symptoms in human medicine. We studied 2 dogs and 1 cat with congenital porencephaly to characterize the clinical signs and MRI, and to discuss the associated MRI with hippocampal atrophy. The main clinical sign was the seizure symptoms, and all had hippocampal atrophy at the lesion side or the larger defect side. There is association between hippocampal atrophy or the cyst volume and the severe of clinical signs, and it is suggested that porencephaly coexists with hippocampal atrophy as well as humans in this study.

  13. Magnetic resonance imaging features of paraspinal infection in the dog and cat.

    Science.gov (United States)

    Holloway, Andrew; Dennis, Ruth; McConnell, Fraser; Herrtage, Mike

    2009-01-01

    The magnetic resonance (MR) imaging findings in 22 dogs and two cats with confirmed paraspinal infection of the thoracolumbar spine were characterized. These findings included extensive T2-hyperintense areas (24/24), abscessation (20/24), mild inherent T1-hyperintensity of muscle and abscesses (18/24), and postcontrast enhancement (24/24). Changes involved the vertebral canal in four patients. The longus coli muscles were affected in one cat. Thoracolumbar changes in the remaining 23 patients involved the iliopsoas and epaxial muscles in 23/23 and 19/23 patients, respectively. Iliopsoas muscle abscessation was unilateral in 12/23, and bilateral in 6/24 patients. Abscessation involved both epaxial and iliopsoas muscles in 2/23 patients and the epaxial muscles alone in one patient. A contrast-enhancing sinus tract within the deep thoracolumbar fascia was present in 10/23 patients. Lumbar vertebrae periosteal reactions were identified in 19/23 patients on MR images compared with 15/17 patients with radiography. A focal area of signal void suspected to represent foreign material was seen in 5/23 patients but foreign material was actually found in only two of these five. There was no recurrence of clinical signs following MR imaging and revision surgery. MR imaging permits the severity and extent of changes associated with paraspinal infection to be characterized and allows the location, number and any communication of sinus tracts to be documented.

  14. Partial epilepsy: A pictorial review of 3 TESLA magnetic resonance imaging features

    Directory of Open Access Journals (Sweden)

    Lucas Giansante Abud

    2015-09-01

    Full Text Available Epilepsy is a disease with serious consequences for patients and society. In many cases seizures are sufficiently disabling to justify surgical evaluation. In this context, Magnetic Resonance Imaging (MRI is one of the most valuable tools for the preoperative localization of epileptogenic foci. Because these lesions show a large variety of presentations (including subtle imaging characteristics, their analysis requires careful and systematic interpretation of MRI data. Several studies have shown that 3 Tesla (T MRI provides a better image quality than 1.5 T MRI regarding the detection and characterization of structural lesions, indicating that high-field-strength imaging should be considered for patients with intractable epilepsy who might benefit from surgery. Likewise, advanced MRI postprocessing and quantitative analysis techniques such as thickness and volume measurements of cortical gray matter have emerged and in the near future, these techniques will routinely enable more precise evaluations of such patients. Finally, the familiarity with radiologic findings of the potential epileptogenic substrates in association with combined use of higher field strengths (3 T, 7 T, and greater and new quantitative analytical post-processing techniques will lead to improvements regarding the clinical imaging of these patients. We present a pictorial review of the major pathologies related to partial epilepsy, highlighting the key findings of 3 T MRI.

  15. Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires

    International Nuclear Information System (INIS)

    Kantar, Ersin

    2016-01-01

    In the present study, a theoretical approach to investigate the hysteresis behaviors in segmented nanowires is described and applied to spin-1/2 and spin-1 hexagonal nanowire. The hysteresis loop, coercive field and remanent magnetization of a segmented Ising nanowire (SIN) are obtained by using the effective-field theory with correlations. The effects of the temperature, crystal field and geometrical parameters of nanowires on the hysteresis behaviors of the system are investigated. A number of characteristic behaviors are found, such as the occurrence of single and triple hysteresis loops for appropriate values of the crystal field. The hysteresis behaviors are also strongly dependent on geometrical parameters. Comparisons between the obtained theoretical results and some experimental works of segmented nanowire arrays with hysteresis behaviors are made and a very good agreement is obtained. - Highlights: • The hysteresis behaviors of a segmented Ising nanowire are obtained. • The effective-field theory with correlations are used to calculations. • The effects of the temperature and crystal field on the system are investigated. • The geometrical parameters have a significant effect on the system are observed. • The single and triple loops for appropriate values of the crystal field are obtained.

  16. Scanning electron microscopy of surface features of hamster embryo cells transformed in vitro by x-irradiation

    International Nuclear Information System (INIS)

    Borek, C.; Fenoglio, C.M.

    1976-01-01

    Scanning electron microscope studies were carried out on Syrian hamster embryo cells transformed in vitro by x-irradiation (300 rads) (x-ray transformed) and on normal nonirradiated and irradiated nontransformed controls. Transformed cells appeared in scanning electron microscopy as pleomorphic, thick cells piling up over each other and exhibiting extensive surface features consisting of microvilli, blebs, and ruffles. These surface structures were seen on single as well as on densely cultured transformed cells during both interphase and mitosis. The complex surface was observed shortly after transformation (on cells of a 20-day-old clone) and seems a permanent feature of the x-ray transformed cells (present after 8 years in culture). All controls appeared by scanning electron microscopy as regular, flat, and smooth cells which grew in high-density cultures to seemingly contact-inhibited monolayers. During mitosis the normal cells (control, nontransformed) displayed surface excrescences similar to those of the transformed cells making the mitotic normal cells indistinguishable from transformed cells. The complex surface features in the normal cells were temporary and reversed back to characteristic smoothness upon reentrance into interphase

  17. Physiological and genomic features of a novel violacein-producing bacterium isolated from surface seawater.

    Directory of Open Access Journals (Sweden)

    Yue-Hong Wu

    Full Text Available Strains JW1T and JW3, isolated from surface seawater of the Arabian Sea, were subjected to polyphasic taxonomic analysis. Cells of both strains were Gram-stain-negative, aerobic, and rod-shaped. They formed violet pigment and produced violacein. On the basis of 16S rRNA gene sequence analysis, strains JW1T and JW3 showed high 16S rRNA gene sequence similarity with Pseudoalteromonas byunsanensis JCM12483T (98.2%, P. shioyasakiensis SE3T (97.8%, P. arabiensis JCM 17292T (97.3%, and P. gelatinilytica NH153T (97.1%. The 16S rRNA gene sequence similarity between JW1T and JW3 was 100%. Phylogenetic analyses revealed that both strains fell within the cluster of the genus Pseudoalteromonas and represented an independent lineage. The average nucleotide identity and in silico DNA-DNA hybridization values between JW1T and type strains of the closely related Pseudoalteromonas species were 70.9-83.3% and 20.0-26.4%, respectively. The sole respiratory quinone in both strains is ubiquinone 8 (Q-8. The principal fatty acids are summed feature 3 (C16:1ω7c and/or iso-C15:0 2OH, C18:1ω7c, and C16:0. The major polar lipids are phosphatidylethanolamine, phosphatidylglycerol, one unidentified glycolipid, one unidentified aminolipid, and one unidentified phospholipid. The DNA G+C content was 43.3 mol%. Differential phylogenetic distinctiveness, chemotaxonomic differences, and phenotypic properties indicated that strains JW1T and JW3 could be differentiated from the Pseudoalteromonas species with validly published names. Therefore, it is proposed that strains JW1T and JW3 represent a novel species of the genus Pseudoalteromonas, for which the name Pseudoalteromonas amylolytica sp. nov. (type strain, JW1T = CGMCC 1.15681T = KCTC 52406T = MCCC 1K02162T is proposed.

  18. CosmoQuest - Mapping Surface Features Across the Inner Solar System

    Science.gov (United States)

    Grier, Jennifer A.; Richardson, Matthew; Gay, Pamela L.; Lehan, Cory; Owens, Ryan; Robbins, Stuart J.; DellaGiustina, Daniella; Bennett, Carina; Runco, Susan; Graff, Paige

    2017-10-01

    The CosmoQuest Virtual Research Facility allows research scientists to work together with citizen scientists in ‘big data’ investigations. Some research requires the examination of vast numbers of images - partnering with engaged and trained citizen scientists allows for that research to be completed in a thorough and timely manner. The techniques used by CosmoQuest to collect impact crater data have been validated to ensure robustness (Robbins et al., 2014), and include software tools that accurately identify crater clusters, and multiple crater identifications. CosmoQuest has current or up-and-coming projects that span much of the inner solar system. “Moon Mappers” gives the public a chance to learn about the importance of cratered surfaces, and investigate factors that effect the identification and measurement of impact craters such as incidence angle. In the “Mars Mappers” program citizens map small craters in valley networks. These will be used to estimate times of ancient water flow. In “Mercury Mappers” the public learns about other issues related to crater counting, such as secondaries. On Mercury, secondaries appear to dominate counts up to 10km. By mapping these craters, we will be able to better understand the maximum diameter of secondaries relative to the parent primary. The public encounters Vesta in “Vesta Mappers,” a project that contributes data to the overall crater counting efforts on that body. Asteroid investigations do not end there - the OSIRIS-REx team is collaborating with CosmoQuest to create a science campaign to generate boulder and crater counting datasets of the asteroid Bennu. This “Bennu Mappers” project will inform the final selection of the sample return site. The Earth is the target for the “Image Detective” project, which uses the 2 million images returned from crewed space flight. These images are rich in information about our changing Earth, as well as phenomena like aurora. Citizens tag these images

  19. Analysis of progression of fatigue conditions in biceps brachii muscles using surface electromyography signals and complexity based features.

    Science.gov (United States)

    Karthick, P A; Makaram, Navaneethakrishna; Ramakrishnan, S

    2014-01-01

    Muscle fatigue is a neuromuscular condition where muscle performance decreases due to sustained or intense contraction. It is experienced by both normal and abnormal subjects. In this work, an attempt has been made to analyze the progression of muscle fatigue in biceps brachii muscles using surface electromyography (sEMG) signals. The sEMG signals are recorded from fifty healthy volunteers during dynamic contractions under well defined protocol. The acquired signals are preprocessed and segmented in to six equal parts for further analysis. The features, such as activity, mobility, complexity, sample entropy and spectral entropy are extracted from all six zones. The results are found showing that the extracted features except complexity feature have significant variations in differentiating non-fatigue and fatigue zone respectively. Thus, it appears that, these features are useful in automated analysis of various neuromuscular activities in normal and pathological conditions.

  20. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Zélis, P.; Pasquevich, G.A. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Salcedo Rodríguez, K.L.; Sánchez, F.H. [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Rodríguez Torres, C.E., E-mail: torres@fisica.unlp.edu.ar [IFLP-CCT-La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67, Universidad Nacional de La Plata, 1900 La Plata (Argentina)

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe{sub 2}O{sub 4}) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m{sup 3}. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies K{sub V} =3.1 kJ/m{sup 3} and K{sub S} =16 μJ/m{sup 2}. - Highlights: • Surface magnetic response in ZnFe{sub 2}O{sub 4} film (thickness t ∼57 nm) by XMCD is studied. • Measurements of magnetic moment vs. applied field cycles via XMCD are presented. • Fe{sup 3+} at A- and B-sites are coupled antiferromagnetically between them. • A distinctive response of the surface with in-plane magnetic anisotropy is determined. • Volume and surface magnetic anisotropy are determined: 3.1 kJ/m{sup 3} and 16 μJ/m{sup 2}.

  1. The importance of Fe surface states for spintronic devices based on magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Chantis, Athanasios N [Los Alamos National Laboratory

    2008-01-01

    In this article we give a review of our recent theoretical studies of the influence of Fe(001) surface (interface) states on spin-polarized electron transport across magnetic tunnel junctions with Fe electrodes. We show that minority-spin surface (interface) states are responsible for at least two effects which are important for spin electronics. First, they can produce a sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single Fe electrode. The effect is driven by a Rashba shift of the resonant surface band when the magnetization changes direction. This can introduce a new class of spintronic devices, namely, tunneling magnetoresistance junctions with a single ferromagnetic electrode. Second, in Fe/GaAs(001) magnetic tunnel junctions minority-spin interface states produce a strong dependence of the tunneling current spin polarization on applied electrical bias. A dramatic sign reversal within a voltage range of just a few tenths of an eV is predicted. This explains the observed sign reversal of spin polarization in recent experiments of electrical spin injection in Fe/GaAs(001) and related reversal of tunneling magnetoresistance through vertical Fe/GaAs/Fe trilayers.

  2. Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation

    International Nuclear Information System (INIS)

    Mair, Lamar O; Carpenter, Jerome; Evans, Benjamin; Hall, Adam R; Shields, Adam; Superfine, Richard; Ford, Kris; Millard, Michael

    2011-01-01

    Directed manipulation of nanomaterials has significant implications in the field of nanorobotics, nanobiotechnology, microfluidics and directed assembly. With the goal of highly controllable nanomaterial manipulation in mind, we present a technique for the near-surface manoeuvering of magnetic nanorod swimmers and its application to controlled micromanipulation. We fabricate magnetic Janus nanorods and show that the magnetic rotation of these nanorods near a floor results in predictable translational motion. The nanorod plane of rotation is nearly parallel to the floor, the angle between rod tilt and floor being expressed by θ, where 0 0 0 . Orthogonal magnetic fields control in-plane motion arbitrarily. Our model for translation incorporates symmetry breaking through increased drag at the no-slip surface boundary. Using this method we demonstrate considerable rod steerability. Additionally, we approach, capture, and manipulate a polystyrene microbead as proof of principle. We attach Janus nanorods to the surfaces of cells and utilize these rods to manipulate individual cells, proving the ability to manoeuver payloads with a wide range of sizes.

  3. Near-surface nanoscale InAs Hall cross sensitivity to localized magnetic and electric fields.

    Science.gov (United States)

    Folks, L; Troup, A S; Boone, T D; Katine, J A; Nishioka, M; Grobis, M; Sullivan, G J; Ikhlassi, A; Field, M; Gurney, B A

    2009-06-24

    We have measured the room temperature response of nanoscale semiconductor Hall crosses to local applied magnetic fields under various local electric gate conditions using scanning probe microscopy. Near-surface quantum wells of AlSb/InAs/AlSb, located just 5 nm from the heterostructure surface, allow very high sensitivity to localized electric and magnetic fields applied near the device surfaces. The Hall crosses have critical dimensions of 400 and 100 nm, while the mean free path of the carriers is about 160 nm; hence the devices nominally span the transition from diffusive to quasi-ballistic transport. With certain small gate voltages (V(g)) the devices of both sizes are strongly responsive to the local magnetic field at the center of the cross, and the results are well described using finite element modeling. At high V(g), the response to local magnetic fields is greatly distorted by strong electric fields applied near the cross corners. However we observe no change in behavior with the size of the device.

  4. Effects of surface roughness on magnetic flux leakage testing of micro-cracks

    Science.gov (United States)

    Deng, Zhiyang; Sun, Yanhua; Yang, Yun; Kang, Yihua

    2017-04-01

    Magnetic flux leakage (MFL) testing owns the advantages of high inspection sensitivity and stability, but its testing results are always affected by surface roughness. The relationship between the surface roughness ({{R}a} ) and detection signals for surface-breaking cracks is mainly discussed. The existence of roughness magnetic compression effect (RMCE) in present MFL testing is specially pointed out and its relevant theory is also analyzed, which manifest themselves in the compression of MFL signal in its peak value and the baseline drifts mixed with noise. An experimental investigation on surface comparators with different arithmetic average height ({{R}a} ) and artificial notch size, is performed to analyze the effects of surface roughness on detection signals of cracks. The detection limit (DL) of micro-crack is analyzed by comparing the {{B}y} noise-signal ratio ({{S}y} ) and peak-peak signals of the cracks. Meanwhile, {{S}y} increases with the {{R}a} and R{{S}m} , in this case, relatively shallow defects cannot be clearly distinguished at determined rough surface. Afterwards, a series of simulations are designed and performed to verify the effects of surface roughness on characteristic {{B}y} of the electromagnetic field, and a theoretical DL of micro-crack is presented as: DL=2.88{{R}a}+7.00 . Furthermore, the optimal lift-off value is selected for the micro-cracks’ detection to weaken the negative magnetic compression effect. MFL signals cannot reflect the accurate sizes of the cracks on rough surface due to the RMCE and its relevant phenomenon. The discovery and results will benefit the quantitative evaluation of the MFL testing.

  5. Surface modification of ZnS films by applying an external magnetic field in vacuum chamber

    Science.gov (United States)

    Ehsani, M. H.; Zarei Moghadam, R.; Rezagholipour Dizaji, H.; Kameli, P.

    2017-09-01

    In this paper, ZnS films were prepared using pulsed laser deposition technique in vacuum chamber in the presence and absence of an external magnetic field. The applied magnetic field effects on optical properties and film growth conditions were studied. For this reason, morphological, structural and optical properties of the grown films have been investigated by atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and UV-vis spectroscopy analysis techniques. The structural studies revealed that the ZnS films deposited at 200 °C crystallized in hexagonal structure. The results showed the improvement of the film crystallinity upon grain size increment and the surface morphology modification resulted from applying an external magnetic field. Using the UV-vis spectroscopy data, absorption coefficient (α), refractive index (n) and extinction coefficient (k) of the samples were calculated. The band gap energy (E g) and Urbach energy were also calculated by Tauc, ASF and DASF methods. The results show that by applying magnetic field, the band gap and Urbach energies reduced, due to improvement in the film crystallinity. For describing the magnetic field effect, a simulation of applied magnetic field effect on vapor flux in vacuum chamber was performed using Multi-Physics COMSOL package.

  6. Magnetic moments in calcium isotopes via a surface-interaction experiment

    International Nuclear Information System (INIS)

    Niv, Y.; Hass, M.; Zemel, A.; Goldring, G.

    1979-01-01

    A rotation of the angular correlation of de-excitation γ-rays from 40 Ca and 44 Ca was observed in a tilted foil geometry. The signs and magnitudes of the magnetic moments of the 2 1 + of 44 Ca and of the 3 1 - level of 40 Ca were determined to be g = -0.28+-0.11 and g = +0.52+-0.18, respectively. This experiment provides further information regarding the polarization of deeply bound electronic configurations produced by a surface-interaction mechanism and demonstrates the feasibility of the present technique for measuring signs and magnitudes of magnetic moments of picosecond nuclear levels. (author)

  7. Exchange interaction of strongly anisotropic tripodal erbium single-ion magnets with metallic surfaces

    DEFF Research Database (Denmark)

    Dreiser, Jan; Wäckerlin, Christian; Ali, Md. Ehesan

    2014-01-01

    We present a comprehensive study of Er(trensal) single-ion magnets deposited in ultrahigh vacuum onto metallic surfaces. X-ray photoelectron spectroscopy reveals that the molecular structure is preserved after sublimation, and that the molecules are physisorbed on Au(111) while they are chemisorbed....... Furthermore XMCD indicates a weak antiferromagnetic exchange coupling between the single-ion magnets and the ferromagnetic Ni/Cu(100) substrate. For the latter case, spin-Hamiltonian fits to the XMCD M(H) suggest a significant structural distortion of the molecules. Scanning tunneling microscopy reveals...

  8. Parotid mandibular bone defect: A case report emphasizing imaging features in plain radiographs and magnetic resonance imaging.

    Science.gov (United States)

    Hisatomi, Miki; Munhoz, Luciana; Asaumi, Junichi; Arita, Emiko Saito

    2017-12-01

    Mandibular bone depression, also known as Stafne bone cavity, is defined as a bone depression filled mainly with salivary gland tissue. Parotid gland bone defects are infrequently observed. We report the case of a 52-year-old male patient who underwent radiographic examinations due to temporomandibular joint dysfunction, and a radiolucent area was detected in the mandibular ramus, with a provisional diagnosis of traumatic bone cyst or parotid mandibular bone defect. The patient was then referred for magnetic resonance imaging, which demonstrated a hyperintense area eroding the mandibular ramus, which corresponded to glandular tissue. Although the defect was a benign lesion, radiolucencies in the mandibular ramus lead to concerns among professionals, because their radiographic features can resemble various intrabony neoplastic lesions, such as giant cell tumors or benign tumors of the parotid gland.

  9. Evaluation of effect of surface treatment on corrosion resistance of Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Martins, Emerson Alves

    2009-01-01

    Nd-Fe-B magnets produced by powder metallurgy are highly susceptible to corrosion due to their complex microstructure and intrinsic porosity due to their fabrication process. Moreover, these magnets have excellent magnetic properties and find many applications. In the nuclear area, permanent magnets based on rare earth transition-iron-boron (Ne-Fe-B) are used in the manufacture of magnetic media (magnetic levitation) for ultra-centrifuges used for isotopic enrichment of uranium employed in nuclear reactors. In dentistry these types of magnets are used to fix total and partial prostheses on implants; in orthodontics to correct dental malocclusion and make moves; in buco-maxillo-facial surgery for setting facial prostheses of large defects of the face. In electronic equipment, they are used in scales, locks, electric motors and particularly in the manufacturing of hard drives of computers. The objective of this study is to evaluate the corrosion resistance of the magnet tested and surface treatments that could replace chromating that generates toxic residues and present high cost of processing waste with treatments that are environmentally friendly. The evaluation of the corrosion resistance was carried out through the analysis potentiodynamic polarization curves, electrochemical impedance spectroscopy, monitoring of corrosion potential as a function of test time and scanning electron microscopy to try to correlate the magnet microstructure with its corrosion resistance. The results show that these magnets are highly susceptible to corrosion that occurs preferentially in the Nd-rich phase, located in the boundaries of the magnetic matrix phase (ψ). Treatment with silane, cerium, sam, Cr 6 + , tricationic phosphate followed by bath of chromium trioxide and in NaH 2 PO 4 solution for 24 hours followed by bath of zinc sulphate did not improve the corrosion resistance of the magnet. Among the treatments used, immersion in NaH 2 PO 4 solution for 24 hours pH=3.8 was the

  10. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification

    International Nuclear Information System (INIS)

    Chen, Xinpu; Zhu, Xiangyang; Zhang, Dingguo

    2009-01-01

    Myoelectrical pattern classification is a crucial part in multi-functional prosthesis control. This paper investigates a discriminant Fourier-derived cepstrum (DFC) and feature-level post-processing (FLPP) to discriminate hand and wrist motions using the surface electromyographic signal. The Fourier-derived cepstrum takes advantage of the Fourier magnitude or sub-band power energy of signals directly and provides flexible use of spectral information changing with different motions. Appropriate cepstral coefficients are selected by a proposed separability criterion to construct DFC features. For the post-processing, FLPP which combines features from several analysis windows is used to improve the feature performance further. In this work, two classifiers (a linear discriminant classifier and quadratic discriminant classifier) without hyper-parameter optimization are employed to simplify the training procedure and avoid the possible bias of feature evaluation. Experimental results of the 11-motion problem show that the proposed DFC feature outperforms traditional features such as time-domain statistics and autoregressive-derived cepstrum in terms of the classification accuracy, and it is a promising method for the multi-functionality and high-accuracy control of myoelectric prostheses

  11. Development of high magnetic field soft X-ray spectroscopy and its application to the study of surface and interface

    International Nuclear Information System (INIS)

    Nakamura, Tetsuya; Narumi, Yasuo

    2014-01-01

    Magnetic materials are generally synthesized and used as alloys and compounds. They are also stacked as a multilayer film for spintronics device such as a reading-head sensor of a hard disk drive. The evaluation of magnetization is the most fundamental characterization in studies of magnetic materials. Especially, in alloys and compounds involving more than two magnetic elements, a partial magnetization with respect to each element, we call as an element specific magnetization, promises to provide the deeper understanding of their magnetic property. X-ray magnetic circular dichroism (XMCD) in absorption spectroscopy provides an element specific magnetization. As XMCD became increasingly popular, high-magnetic-field environment for XMCD measurements also became very important in order to investigate paramagnetic, antiferromagnetic, and meta-magnetic materials. Under the circumstance, a high-magnetic-field XMCD measurement technique of the soft-X-ray regime has been developed using a non-destructive pulse magnet having capability of generating 40 T at the twin helical undulators beamline, BL25SU, of SPring-8. In this review, we first introduce the concept and the technical features of high magnetic field XMCD and then show recent examples of the experiments. (author)

  12. Pancreatic hardness: Correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features

    Science.gov (United States)

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-01-01

    AIM To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. METHODS Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. RESULTS The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. CONCLUSION Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results. PMID:28373771

  13. Pancreatic hardness: Correlation of surgeon's palpation, durometer measurement and preoperative magnetic resonance imaging features.

    Science.gov (United States)

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-03-21

    To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results.

  14. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    International Nuclear Information System (INIS)

    Verhey, Leonard H.; Branson, Helen M.; Shroff, Manohar; Makhija, Monica; Banwell, Brenda

    2010-01-01

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 ± 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 ± 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  15. Magnetic resonance imaging features of hip disorders in an Egyptian pediatric population

    Directory of Open Access Journals (Sweden)

    Y. Ragab

    2015-09-01

    Full Text Available Hip disorders in a pediatric population are a diagnostic challenge. The aim of the study is to assess the role of magnetic resonance imaging (MRI in the evaluation of non-traumatic hip disorders in a series of Egyptian patients and to review the literature on the most common hip conditions. Seventy two consecutive patients [40 males (55.6% and 32 females (44.4] with acute onset of hip complaints unrelated to trauma or falls were recruited. All patients underwent an initial full clinical assessment and blood tests as well as contrast enhanced MRI of both hips. The most common diagnosis in this group of Egyptian patients was transient synovitis in 29 (40.3% cases, followed by seronegative enthesopathy and arthropathy syndrome in 8 (11.1%, septic arthritis in 10 (13.9%, tuberculous arthritis in 4 (5.6%, sickle-cell disease in 7 (9.7%, complicated with septic arthritis in 3 (4.2%, transient bone marrow edema (BME in 3 (4.2%, osteomyelitis in 2 (2.8%, osteosarcoma in 2 (2.8%, sciatic nerve injury in 1 (1.4%, leukemia with BME in 1 (1.4%, coxa vara of both hips and L5/S1 facet joint ankylosis in 1 (1.4%, and a benign bone cyst in 1 (1.4%. MRI studies showed hip effusion in a total of 51 patients (70.8%, joint space narrowing in 9 (12.5%, and BME in 15(20.8%. MRI is a sensitive tool for assessing hip disorders in a pediatric population and can play an important role in both diagnosis and management of different hip disorders, irrespective of the underlying pathology.

  16. Multiphase contrast-enhanced magnetic resonance imaging features of Bacillus Calmette-Guerin-induced granulomatous prostatitis in five patients

    Energy Technology Data Exchange (ETDEWEB)

    Kawada, Hiroshi; Kanematsu, Masayuki; Goshima, Satoshi; Kondo, Hiroshi; Watanabe, Haruo; Noda, Yoshifumi; Tanahashi, Yukichi; Kawai, Nobuyuki; Hoshi, Hiroaki [Gifu University Hospital, Gifu (Japan)

    2015-04-15

    To evaluate the multiphase contrast-enhanced magnetic resonance (MR) imaging features of Bacillus Calmette-Guerin (BCG)-induced granulomatous prostatitis (GP). Magnetic resonance images obtained from five patients with histopathologically proven BCG-induced GP were retrospectively analyzed for tumor location, size, signal intensity on T2-weighted images (T2WI) and diffusion-weighted images (DWI), apparent diffusion coefficient (ADC) value, and appearance on gadolinium-enhanced multiphase images. MR imaging findings were compared with histopathological findings. Bacillus Calmette-Guerin-induced GP (size range, 9-40 mm; mean, 21.2 mm) were identified in the peripheral zone in all patients. The T2WI showed lower signal intensity compared with the normal peripheral zone. The DWIs demonstrated high signal intensity and low ADC values (range, 0.44-0.68 x 10(-3) mm2/sec; mean, 0.56 x 10(-3) mm2/sec), which corresponded to GP. Gadolinium-enhanced multiphase MR imaging performed in five patients showed early and prolonged ring enhancement in all cases of GP. Granulomatous tissues with central caseation necrosis were identified histologically, which corresponded to ring enhancement and a central low intensity area on gadolinium-enhanced MR imaging. The findings on T2WI, DWI, and gadolinium-enhanced images became gradually obscured with time. Bacillus Calmette-Guerin-induced GP demonstrates early and prolonged ring enhancement on gadolinium-enhanced MR imaging which might be a key finding to differentiate it from prostate cancer.

  17. Predicting internal red oak (Quercus rubra) log defect features using surface defect defect measurements

    Science.gov (United States)

    R. Edward. Thomas

    2013-01-01

    Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...

  18. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  19. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); Koehler, Sven P.K., E-mail: sven.koehler@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Moor Row CA24 3HA (United Kingdom); School of Chemistry, The University of Manchester, Manchester M13 9PL (United Kingdom); Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-11-30

    Highlights: • Potential energy surfaces for H diffusion on Fe(110) calculated. • Full vibrational analysis of surface modes performed. • Vibrational analysis establishes lb site as a transition state to the 3f site. • Pronounced buckling observed in the Fe surface layer. - Abstract: We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber–Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe–H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm{sup −1}, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  20. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  1. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  2. Dynamics of Soil Deflation Features in Kangerlussuaq, Greenland Revealed by Variations in Lichen Diameters on Exposed Surfaces

    Science.gov (United States)

    Heindel, R. C.; Kelly, M. A.; Virginia, R. A.

    2013-12-01

    Little is known about the pervasive soil deflation features in the Kangerlussuaq region, West Greenland, an area deglaciated between ~6,800 and 150 years ago. While the majority of the landscape is vegetated with low-lying shrubs and graminoids, wind erosion has removed loess and vegetation from distinct patches ranging in size from a few to tens of meters across, leaving the underlying glacial till or bedrock exposed. Although previous work has considered aeolian landforms and regional loess deposition along the Watson River Valley, these deflation features have not been investigated in detail. We aim to determine both the timing and mechanisms of formation of the deflation features and will examine whether these mechanisms were related to regional climatic conditions, such as increased aridity, to fluctuations in the Greenland Ice Sheet, or to other factors. Our ongoing research investigating these features includes geomorphic mapping using field observations and satellite imagery, lichenometry of the exposed surfaces, and cosmogenic nuclide dating of boulders and bedrock within and near the deflation features. Here we present initial results from our lichenometry studies. During the summer of 2013, we measured maximum lichen (Rhizocarpon sp.) diameters on boulder and bedrock surfaces in 15 soil deflation features located between Kangerlussuaq and the ice sheet margin. Lichen diameters vary from only a few millimeters at the outer margins of deflation features to multiple centimeters (maximum ~50 mm) in the centers of the unvegetated patches. This distinct pattern suggests that the outer margins of the soil deflation features are currently active. Based on a previously established lichen growth curve for Rhizocarpon sp. in West Greenland, our results indicate that the features are expanding at a rate of ~1.5 m per 100 yrs. In addition, the large lichen diameters (~40-50 mm) that occur in the centers of deflation features suggest that the formation mechanism has

  3. Hamilton-Jacobi theory for continuation of magnetic field across a toroidal surface supporting a plasma pressure discontinuity

    International Nuclear Information System (INIS)

    McGann, M.; Hudson, S.R.; Dewar, R.L.; Nessi, G. von

    2010-01-01

    The vanishing of the divergence of the total stress tensor (magnetic plus kinetic) in a neighborhood of an equilibrium plasma containing a toroidal surface of discontinuity gives boundary and jump conditions that strongly constrain allowable continuations of the magnetic field across the surface. The boundary conditions allow the magnetic fields on either side of the discontinuity surface to be described by surface magnetic potentials, reducing the continuation problem to that of solving a Hamilton-Jacobi equation. The characteristics of this equation obey Hamiltonian equations of motion, and a necessary condition for the existence of a continued field across a general toroidal surface is that there exist invariant tori in the phase space of this Hamiltonian system. It is argued from the Birkhoff theorem that existence of such an invariant torus is also, in general, sufficient for continuation to be possible. An important corollary is that the rotational transform of the continued field on a surface of discontinuity must, generically, be irrational.

  4. Impurity scattering and magnetic field influence on a nodal surface of a d-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Aida

    2012-02-17

    In the present work the surface of d-wave superconductors is studied. In such superconductors zero-energy Andreev bound states (ABSs) may appear at the surface depending on the orientation of the d-wave with respect to the surface normal. Existence of these states influences the properties of the superconductor on the length scale of the coherence length, the spatial extension of the bound states. Surface roughness, surface disorder, or diffuse scattering as well as an external magnetic field at the surface may affect the bound states and consequently the surface properties. Based on Eilenberger equations we perform self-consistent calculations in three different cases: in the presence of impurities, in the presence of an external magnetic field, and a combination of these two cases. We focus on the influence of bulk impurity scattering in the Born approximation limit. We show that the impurity scattering around zero energy is significantly increased near the surface as compared to the bulk due to the presence of ABSs. This leads to a larger broadening of the ABSs than expected from the scattering rate in the bulk and consequently a decrease of the peak height of the local density of states at zero energy. Due to the anomalous Meissner current flowing at the nodal surface, the magnetic field initially increases before the normal Meissner screening sets in and eventually screens out the magnetic field exponentially. The field increase is stronger at low temperatures and leads to an increase in the modulus of the vector potential towards low temperatures. The result is a nonmonotonous temperature dependence of the vector potential at the surface. Since the vector potential is proportional to the superfluid velocity, the size of the peak splitting in the local density of states is directly influenced by such a behavior of the vector potential. We observe that the splitting is large both for low temperatures and close to the critical temperature. As a result also the

  5. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  6. Effective aerodynamic roughness estimated from airborne laser altimeter measurements of surface features

    NARCIS (Netherlands)

    De Vries, AC; Kustas, WP; Ritchie, JC; Klaassen, W; Menenti, M; Rango, A; Prueger, JH

    2003-01-01

    Aerodynamic roughness length (z(0)) and displacement height (d(0)) are important surface parameters for estimating surface fluxes in numerical models. These parameters are generally determined from wind flow characteristics using logarithmic wind profiles measured at a meteorological tower or by

  7. Predicting internal white oak (Quercus alba) log defect features using surface defect indicator measurements

    Science.gov (United States)

    Ralph E. Thomas

    2012-01-01

    As hardwood trees grow and develop, surface defects such as limb stubs and wounds are overgrown and encapsulated into the tree. Evidence of these defects can remain on the tree's surface for decades and in many instances for the life of the tree. The location and severity of internal defects dictate the quality and value of products that can be obtained from logs...

  8. Ultrastructural features of the internodes’ surface in horsetail (Equisetum arvense L.

    Directory of Open Access Journals (Sweden)

    Myroslava Stakhiv

    2013-04-01

    Full Text Available The ultrastructure of the outer surface of the common horsetail stem was studied. Through electron microscopic analysis we showed that silica plates on the surface of Equisetum arvense L. stem are distributed evenly, not tight, in thin layer. Thus, compact arrangement of particles on the internodes causes high mechanical strength and stiffness of the E. arvensestem and lateral branches.

  9. Is there any Correlation between Magnetic Resonance Imaging Features of Breast Lesions of BIRADS Category 4 with Histopathologic Results?

    Science.gov (United States)

    Farghadani, Maryam; Soofi, Ghazale Jamalipoor; Sarrami, Amir Hossein

    2017-01-01

    To evaluate the correlation of magnetic resonance imaging (MRI) features of breast lesions of Breast Imaging Reporting and Database System (BI-RADS) category 4 with histopathologic results. In a prospective study between December 2013 and April 2015, patients with suspicious mammographic and/or ultrasound findings referred for Breast MRI were evaluated. Patients with lesions of BI-RADS category 4 were enrolled with a written informed consent. In each patient, mass lesion (ML) or nonmass lesion (NML) was determined, and different characteristics of the lesions were recorded. A follow-up program was taken with mean 3-12 months. Patients who underwent core needle biopsy or open biopsy were summoned. Seventy-eight females aged 24-67 years (mean 43.1 ± 8.8) met the inclusion criteria and had adequate samples for histopathologic study. Twenty-nine (37.2%) patients had ML and 49 (62.8%) patients had NML. Tissue sampling in 63 (80.7%) patients was through core needle biopsy and in 15 (19.2%) patients through surgery. A wide spectrum of benign and malignant pathologic diagnoses was seen. In statistical analysis, none of the MRI features has a significant correlation with any specific histopathologic diagnosis ( P = 0.185). However, the relation between the MRI category (ML or NML) and pathology results was significant at level of 0.1 ( P = 0.06). This study showed that a wide spectrum of histopathologic results is seen in BI-RADS category 4. However, in this sample volume, none of the MRI features in this BI-RADS category has a significant correlation with any specific histopathologic diagnosis.

  10. Is there any Correlation between Magnetic Resonance Imaging Features of Breast Lesions of BIRADS Category 4 with Histopathologic Results?

    Directory of Open Access Journals (Sweden)

    Maryam Farghadani

    2017-01-01

    Full Text Available Background: To evaluate the correlation of magnetic resonance imaging (MRI features of breast lesions of Breast Imaging Reporting and Database System (BI-RADS category 4 with histopathologic results. Materials and Methods: In a prospective study between December 2013 and April 2015, patients with suspicious mammographic and/or ultrasound findings referred for Breast MRI were evaluated. Patients with lesions of BI-RADS category 4 were enrolled with a written informed consent. In each patient, mass lesion (ML or nonmass lesion (NML was determined, and different characteristics of the lesions were recorded. A follow-up program was taken with mean 3–12 months. Patients who underwent core needle biopsy or open biopsy were summoned. Results: Seventy-eight females aged 24–67 years (mean 43.1 ± 8.8 met the inclusion criteria and had adequate samples for histopathologic study. Twenty-nine (37.2% patients had ML and 49 (62.8% patients had NML. Tissue sampling in 63 (80.7% patients was through core needle biopsy and in 15 (19.2% patients through surgery. A wide spectrum of benign and malignant pathologic diagnoses was seen. In statistical analysis, none of the MRI features has a significant correlation with any specific histopathologic diagnosis (P = 0.185. However, the relation between the MRI category (ML or NML and pathology results was significant at level of 0.1 (P = 0.06. Conclusion: This study showed that a wide spectrum of histopathologic results is seen in BI-RADS category 4. However, in this sample volume, none of the MRI features in this BI-RADS category has a significant correlation with any specific histopathologic diagnosis.

  11. Computation of fractal features based on the fractal analysis of surface electromyogram to estimate force of contraction of different muscles.

    Science.gov (United States)

    Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant

    2014-01-01

    This research study investigates the fractal properties of surface Electromyogram (sEMG) to estimate the force levels of contraction of three muscles with different cross-sectional areas (CSA): m. quadriceps--vastus lateralis, m. biceps brachii, andm. flexor digitorum superficialis. The fractal features were computed based on the fractal analysis of sEMG, signal recorded while performing sustained muscle contraction at different force levels. A comparison was performed between the fractal features and five other features reported in the literature. Linear regression analysis was carried out to determine the relationship between the force of contraction (20-100%) and features of sEMG. The results from the coefficients of regression r² show that the new fractal feature, maximum fractal length of the signal has highest correlation (range 0.88-0.90) when compared with other features which ranges from 0.34 to 0.74 for the three different muscles. This study suggests that the estimation of various levels of sustained contraction of muscles with varied CSA will provide a better insight into the biomechanics model that involves muscle properties and muscle activation.

  12. External confinement and surface modes in magnetized force-free jets

    Science.gov (United States)

    Sobacchi, E.; Lyubarsky, Y. E.

    2018-01-01

    In the paradigm of magnetic launching of astrophysical jets, instabilities in the magnetohydrodynamic (MHD) flow are a good candidate to convert the Poynting flux into the kinetic energy of the plasma. If the magnetized plasma fills the almost entire space, the jet is unstable to helical perturbations of its body. However, the growth rate of these modes is suppressed when the poloidal component of the magnetic field has a vanishing gradient, which may be the actual case for a realistic configuration. Here we show that, if the magnetized plasma is confined into a limited region by the pressure of some external medium, the velocity shear at the contact surface excites unstable modes which can affect a significant fraction of the jet's body. We find that when the Lorentz factor of the jet is Γ ∼ 10 (Γ ∼ 100), these perturbations typically develop after propagating along the jet for tens (hundreds) of jet's radii. Surface modes may therefore play an important role in converting the energy of the jet from the Poynting flux to the kinetic energy of the plasma, particularly in active galactic nuclei. The scaling of the dispersion relation with (i) the angular velocity of the field lines and (ii) the sound speed in the confining gas is discussed.

  13. Measured surface magnetic field attenuation of shielded windows and wire mesh over an electrically small enclosure

    International Nuclear Information System (INIS)

    Hoeft, L.O.; Hofstra, J.S.; Karaskiewicz, R.J.; Wiser, G.

    1984-01-01

    The surface magnetic field attenuation of five types of shielded transparency (window) material was measured over the frequency range 10 kHz to 100 MHz by installing them on an .61 m x .61 m x .2 m enclosure, placing the enclosure on the wall of a TEM cell and measuring the surface and interior magnetic fields using a computer-controlled network analyzer system. The samples included two thicknesses of conductive grids on acrylic, hardware, cloth with 1/8 and 1/4-inch mesh, and a fine mesh laminated optical display window. These measurements are indicative of an enclosure with aperture coupling; namely, they become frequency-independent at high frequencies. Coarse mesh samples (1/8-1/4-inch mesh) were able to provide 50 to 60 dB of magnetic field reduction at tens of MHz, whereas the finer mesh did slightly better. This behavior is consistent with magnetic polarizability theory. Material thickness did not have an appreciable effect for frequencies above a MHz

  14. An Investigation Into Time Domain Features of Surface Electromyography to Estimate the Elbow Joint Angle

    Directory of Open Access Journals (Sweden)

    Triwiyanto Triwiyanto

    2017-01-01

    Full Text Available In literature, it is well established that feature extraction and pattern classification algorithms play essential roles in accurate estimation of the elbow joint angle. The problem with these algorithms, however, is that they require a learning stage to recognize the pattern as well as capture the variability associated with every subject when estimating the elbow joint angle. As EMG signals can be used to represent motion, we developed a non-pattern recognition method to estimate the elbow joint angle based on twelve time-domain features extracted from EMG signals recorded from bicep muscles alone. The extracted features were smoothed using a second order Butterworth low pass filter to produce the estimation. The accuracy of the estimated angles was evaluated by using the Pearson’s Correlation Coefficient (PCC and Root Mean Square Error (RMSE.The regression parameters (Euclidean distance, R^2 and slope were calculated to observe the response of the features to the elbow-joint angle. From the investigation, we found, in the period of motion 10s, MYOP features have the best accuracy: 0.97±0.02 (Mean±SD and 11.37±3.04˚ (Mean±SD for correlation coefficient and RMSE respectively. MYOP features also showed the highest R^2 and slope value 0.986±0.0083 (Mean±SD and 0.746±0.17 (Mean±SD respectively for flexion and extension motion and all periods of motion.

  15. Gapless Fermi Surfaces of Anisotropic Multiband Superconductors in a Magnetic Field

    Science.gov (United States)

    Barzykin, Victor; Gor'Kov, L. P.

    2007-02-01

    We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the first order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.

  16. Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration

    Directory of Open Access Journals (Sweden)

    F. Ramos-Mendieta

    2014-06-01

    Full Text Available High sensitivity of the Attenuated Total Reflectance technique for exciting transverse magnetic surface plasmons in free-standing doped graphene is reported; complete agreement with the electromagnetic dispersion relation is numerically demonstrated in the terahertz regime. By reducing the air gap between prism and graphene in the Otto configuration we found that the surface plasmon excitation is weakened, but interference effects arise producing perfect absorption. At 5 THz two dips of zero-reflection were found, one of them with residual plasmonic contribution. Consequently, the reflection can be suppressed by changing the separation between prism and graphene; it is not needed to modify the graphene doping level. Conditions for destructive interference leading to complete absorption are presented and a particular behavior of the evanescent magnetic fields just at perfect absorption is reported

  17. Evaluation of Parameters Affecting Magnetic Abrasive Finishing on Concave Freeform Surface of Al Alloy via RSM Method

    Directory of Open Access Journals (Sweden)

    Mehrdad Vahdati

    2016-01-01

    Full Text Available The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC. The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.

  18. Surface atomic relaxation and magnetism on hydrogen-adsorbed Fe(110) surfaces from first principles

    Science.gov (United States)

    Chohan, Urslaan K.; Jimenez-Melero, Enrique; Koehler, Sven P. K.

    2016-11-01

    We have computed adsorption energies, vibrational frequencies, surface relaxation and buckling for hydrogen adsorbed on a body-centred-cubic Fe(110) surface as a function of the degree of H coverage. This adsorption system is important in a variety of technological processes such as the hydrogen embrittlement in ferritic steels, which motivated this work, and the Haber-Bosch process. We employed spin-polarised density functional theory to optimise geometries of a six-layer Fe slab, followed by frozen mode finite displacement phonon calculations to compute Fe-H vibrational frequencies. We have found that the quasi-threefold (3f) site is the most stable adsorption site, with adsorption energies of ∼3.0 eV/H for all coverages studied. The long-bridge (lb) site, which is close in energy to the 3f site, is actually a transition state leading to the stable 3f site. The calculated harmonic vibrational frequencies collectively span from 730 to 1220 cm-1, for a range of coverages. The increased first-to-second layer spacing in the presence of adsorbed hydrogen, and the pronounced buckling observed in the Fe surface layer, may facilitate the diffusion of hydrogen atoms into the bulk, and therefore impact the early stages of hydrogen embrittlement in steels.

  19. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.

    2005-01-01

    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  20. Strong uniaxial magnetic anisotropy in Co films on highly ordered grating-like nanopatterned Ge surfaces

    Science.gov (United States)

    Alam Mollick, Safiul; Singh, Ranveer; Kumar, Mohit; Bhattacharyya, Satyaranjan; Som, Tapobrata

    2018-03-01

    We present a systematic investigation on uniaxial magnetic anisotropy (UMA) in Co thin films induced by high aspect ratio nanopatterned anisotropic substrates. Self-organized long grating-like nanostructures, with extreme regularities, are fabricated on Ge surfaces using Au-ion implantation at room temperature. Subsequently deposition of Co films are carried out on the same at two different angles. Magneto-optical Kerr effect measurements show strong UMA in Co films grown on ion-patterned Ge substrates, fabricated under different ion fluences, along and perpendicular to the direction of the patterns (long grating-like nanostructures). Magnetic force microscopy measurements under different externally applied magnetic fields reveal an easy domain wall motion when the field is applied along the grating-like nanostructures. On the other hand, high amplitude grating-like nanostructures hinder the spin rotation when the field is applied along the hard axis. The present study will be useful for magnetic recording media and ultra-small magnetic field sensors.

  1. Solar Magnetoseismology with Magnetoacoustic Surface Waves in Asymmetric Magnetic Slab Waveguides

    Science.gov (United States)

    Allcock, Matthew; Erdélyi, Robert

    2018-03-01

    Solar magnetoseismology is an indirect method to approximate plasma parameters that are traditionally difficult to measure in the solar atmosphere using observations of magnetohydrodynamic waves. A magnetic slab can act as waveguide for magnetoacoustic waves that approximates magnetic structures in the solar atmosphere. The asymmetry of the slab caused by different plasma parameters in each external region affects both the eigenfrequencies and eigenfunctions differently at each side of the slab, that is, both the temporal and spatial profiles of the eigenmodes of propagation along the slab are influenced by the equilibrium asymmetry. We present two novel diagnostic tools for solar magnetoseismology that use this distortion to estimate the slab magnetic field strength using the spatial distribution of magnetoacoustic surface waves: the amplitude ratio and the minimum perturbation shift techniques. They have the potential to estimate background equilibrium parameters in inhomogeneous solar structures such as elongated magnetic bright points, prominences, and the clusters of magnetic brightenings rooted in sunspot light bridges known as light bridge surges or light walls, which may be locally approximated as slabs.

  2. Surface critical magnetic field Hc3(T) of a bulk superconductor MgB2 ...

    Indian Academy of Sciences (India)

    Abstract. Two-band Ginzburg–Landau (TB G–L) equations for a bulk MgB2 were solved analyti- cally to determine the temperature dependence of surface critical magnetic field Hc3(T). It is shown that Hc3(T) has the same temperature dependence with Hc2(T), similar to the case of a single-band superconductor, Hc3(T) ...

  3. Surface and bulk magnetic properties of as-quenched FeNbB ribbons

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Postava, K.; Kraus, Luděk; Juraszek, J.; Jirásková, Yvonna; Teillet, J.; Barčová, K.; Švec, P.; Janičkovič, D.; Pištora, J.

    2008-01-01

    Roč. 320, č. 8 (2008), s. 1535-1540 ISSN 0304-8853 R&D Projects: GA ČR GA202/05/2111; GA AV ČR KAN400100653 Institutional research plan: CEZ:AV0Z20410507; CEZ:AV0Z10100520 Keywords : Surface nanocrystallization * Fe-based ribbon * depth profile Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2008

  4. Tuning the metal-insulator transition in manganite films through surface exchange coupling with magnetic nanodots.

    Science.gov (United States)

    Ward, T Z; Gai, Z; Xu, X Y; Guo, H W; Yin, L F; Shen, J

    2011-04-15

    In strongly correlated electronic systems, the global transport behavior depends sensitively on spin ordering. We show that spin ordering in manganites can be controlled by depositing isolated ferromagnetic nanodots at the surface. The exchange field at the interface is tunable with nanodot density and makes it possible to overcome dimensionality and strain effects in frustrated systems to greatly increasing the metal-insulator transition and magnetoresistance. These findings indicate that electronic phase separation can be controlled by the presence of magnetic nanodots.

  5. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  6. EDITORIAL: Selected papers from the 19th International Colloquium on Magnetic Films and Surfaces

    Science.gov (United States)

    Miyazaki, T.; Inoue, J.

    2007-03-01

    The 19th International Colloquium on Magnetic Films and Surfaces (ICMFS 2006) was held on 14-18 August 2006 at the Sendai International Center in Sendai, Japan. The purpose of the Colloquium was to bring together scientists working on magnetic thin films and surfaces and to provide an opportunity for presentation and discussion of recent experimental and theoretical advances in the field. 285 scientists from 17 countries (Japan: 167, overseas: 118) participated in the Colloquium, as well as 6 family members. There were 56 oral and 178 poster presentations. The oral presentations consisted of 3 plenary talks, 23 invited talks and 30 contributed talks. The number of presentations by scientific category are as follows: Spin dependent transport: 43 Magnetic storage/memory: 9 Magnetization reversal and fast dynamics: 15 Spin injection and spin transfer torque: 26 Magnetic thin films and multilayers: 71 High spin polarization materials: 17 Hard and soft magnetic materials: 3 Magneto-optics: 5 Characterization techniques for thin films and surfaces: 7 Exchange coupling: 13 Micro- and nanopatterned magnetic structures: 18 Micromagnetic modelling: 2 One of the characteristics of the present Colloquium is an increase in the number of presentations in the field of spin-electronics, as seen above. This Cluster Issue of Journal of Physics D: Applied Physics includes several important papers in this rapidly developing field. We believe that, in the future, the field of magnetic materials will maintain its popularity and, on top of that, other fields such as spintronics materials, materials related to life sciences and medicine and also materials related to the environment will be investigated further. The ICMFS Conference started in London in 1964, and is now one of the world-wide conferences on magnetism. The Colloquium has been held in Japan four times now: the previous ones being the 5th ICMFS in the Mount Fuji area, the 10th at Yokohama and the 17th at Kyoto, which was

  7. Effects of surface coordination chemistry on the magnetic properties of MnFe(2)O(4) spinel ferrite nanoparticles.

    Science.gov (United States)

    Vestal, Christy R; Zhang, Z John

    2003-08-13

    To understand the influence of surface interactions upon the magnetic properties of magnetic nanoparticles, the surface of manganese ferrite, MnFe(2)O(4), nanoparticles have been systematically modified with a series of para-substituted benzoic acid ligands (HOOC-C(6)H(4)-R; R = H, CH(3), Cl, NO(2), OH) and substituted benzene ligands (Y-C(6)H(5), Y = COOH, SH, NH(2), OH, SO(3)H). The coercivity of magnetic nanoparticles decreases up to almost 50% upon the coordination of the ligands on the nanoparticle surface, whereas the saturation magnetization has increased. The percentage coercivity decrease of the modified nanoparticles with respect to the native nanoparticles strongly correlates with the crystal field splitting energy (CFSE) Delta evoked by the coordination ligands. The ligand inducing largest CFSE results in the strongest effect on the coercivity of magnetic nanoparticles. The change in magnetic properties of nanoparticles also correlates with the specific coordinating functional group bound onto the nanoparticle surface. The correlations suggest the decrease in spin-orbital couplings and surface anisotropy of magnetic nanoparticles due to the surface coordination. Such surface effects clearly show the dependence on the size of nanoparticles.

  8. Surface Plasmon Resonances of an Axially Magnetized Plasma Column in the Presence of Collisional Loss

    Science.gov (United States)

    Es'kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V.

    2018-02-01

    Surface plasmon resonances arising in the course of scattering of an H-polarized plane electromagnetic wave by an axially magnetized plasma column are analyzed. Main attention is paid to the behavior of these resonances in the presence of collisional loss in the magnetoplasma filling the scatterer. The frequencies, Q factors, and amplitude coefficients of the electromagnetic field of multipole surface plasmon resonances of different orders are found, and conditions under which the collisional loss in the plasma completely suppresses a given resonance are determined.

  9. Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.

    Science.gov (United States)

    Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong

    2017-05-04

    Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.

  10. Effect of surface bilayer charges on the magnetic field around ionic channels

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Soares, Marília Amável [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Cortez, Celia Martins, E-mail: ccortezs@ime.uerj.br [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil); Oliveira Cruz, Frederico Alan de [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Physics, Rural Federal University of Rio de Janeiro (Brazil); Silva, Dilson [Post-graduation in Computational Sciences, Rio de Janeiro State University (Brazil); Department of Applied Mathematics, Rio de Janeiro State University (Brazil)

    2017-01-01

    In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na{sup +} and K{sup +}-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na{sup +} and K{sup +} permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K{sup +}-channel is very less sensible to temperature changes than the current density through a Na{sup +}- channel, active Na{sup +}-channels do not directly interfere with the K{sup +}-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.

  11. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  12. Restoring the magnetism of ultrathin LaMn O3 films by surface symmetry engineering

    Science.gov (United States)

    Peng, J. J.; Song, C.; Li, F.; Gu, Y. D.; Wang, G. Y.; Pan, F.

    2016-12-01

    The frustration of magnetization and conductivity properties of ultrathin manganite is detrimental to their device performance, preventing their scaling down process. Here we demonstrate that the magnetism of ultrathin LaMn O3 films can be restored by a SrTi O3 capping layer, which engineers the surface from a symmetry breaking induced out-of-plane orbital occupancy to the recovered in-plane orbital occupancy. The stabilized in-plane orbital occupancy would strengthen the intralayer double exchange and thus recovers the robust magnetism. This method is proved to be effective for films as thin as 2 unit cells, greatly shrinking the critical thickness of 6 unit cells for ferromagnetic LaMn O3 as demonstrated previously [Wang et al., Science 349, 716 (2015), 10.1126/science.aaa5198]. The achievement made in this work opens up new perspectives to an active control of surface states and thereby tailors the surface functional properties of transition metal oxides.

  13. Quantification of the lift height for magnetic force microscopy using 3D surface parameters

    International Nuclear Information System (INIS)

    Nenadovic, M.; Strbac, S.; Rakocevic, Z.

    2010-01-01

    In this work, the quantitative conditions for the lift height for imaging of the magnetic field using magnetic force microscopy (MFM) were optimized. A thin cobalt film deposited on a monocrystalline silicon (1 0 0) substrate with a thickness of 55 nm and a thin nickel film deposited on a glass with a thickness of 600 nm were used as samples. The topography of the surface was acquired by tapping mode atomic force microscopy (AFM), while MFM imaging was performed in the lift mode for various lift heights. It was determined that the sensitivity of the measurements was about 10% higher for images obtained at a scan angle of 90 o compared to a scan angle of 0 deg. Therefore, the three-dimensional surface texture parameters, i.e., average roughness, skewness, kurtosis and the bearing ratio, were determined in dependence on the lift height for a scan angle of 90 deg. The results of the analyses of the surface parameters showed that the influence of the substrate and its texture on the magnetic force image could be neglected for lift heights above 40 nm and that the upper lift height limit is 100 nm. It was determined that the optimal values of the lift heights were in the range from 60 to 80 nm, depending on the nature of the sample and on the type of the tip used.

  14. [Quantitative analysis of thiram by surface-enhanced raman spectroscopy combined with feature extraction Algorithms].

    Science.gov (United States)

    Zhang, Bao-hua; Jiang, Yong-cheng; Sha, Wen; Zhang, Xian-yi; Cui, Zhi-feng

    2015-02-01

    Three feature extraction algorithms, such as the principal component analysis (PCA), the discrete cosine transform (DCT) and the non-negative factorization (NMF), were used to extract the main information of the spectral data in order to weaken the influence of the spectral fluctuation on the subsequent quantitative analysis results based on the SERS spectra of the pesticide thiram. Then the extracted components were respectively combined with the linear regression algorithm--the partial least square regression (PLSR) and the non-linear regression algorithm--the support vector machine regression (SVR) to develop the quantitative analysis models. Finally, the effect of the different feature extraction algorithms on the different kinds of the regression algorithms was evaluated by using 5-fold cross-validation method. The experiments demonstrate that the analysis results of SVR are better than PLSR for the non-linear relationship between the intensity of the SERS spectrum and the concentration of the analyte. Further, the feature extraction algorithms can significantly improve the analysis results regardless of the regression algorithms which mainly due to extracting the main information of the source spectral data and eliminating the fluctuation. Additionally, PCA performs best on the linear regression model and NMF is best on the non-linear model, and the predictive error can be reduced nearly three times in the best case. The root mean square error of cross-validation of the best regression model (NMF+SVR) is 0.0455 micormol x L(-1) (10(-6) mol x L(-1)), and it attains the national detection limit of thiram, so the method in this study provides a novel method for the fast detection of thiram. In conclusion, the study provides the experimental references the selecting the feature extraction algorithms on the analysis of the SERS spectrum, and some common findings of feature extraction can also help processing of other kinds of spectroscopy.

  15. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    Science.gov (United States)

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    International Nuclear Information System (INIS)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van; Rodríguez, J. Blanco; Iniesta, J. C. Del Toro; Suárez, D. Orozco; Schmidt, W.; Pillet, V. Martínez; Knölker, M.

    2017-01-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  17. Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Chitta, L. P.; Peter, H.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; Noort, M. van [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rodríguez, J. Blanco [Grupo de Astronomía y Ciencias del Espacio, Universidad de Valencia, E-46980 Paterna, Valencia (Spain); Iniesta, J. C. Del Toro; Suárez, D. Orozco [Instituto de Astrofísica de Andalucía (CSIC), Apartado de Correos 3004, E-18080 Granada (Spain); Schmidt, W. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, D-79104 Freiburg (Germany); Pillet, V. Martínez [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Knölker, M., E-mail: chitta@mps.mpg.de [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2017-03-01

    How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.

  18. Surface effect on the electronic and the magnetic properties of rock-salt alkaline-earth metal silicides

    International Nuclear Information System (INIS)

    Bialek, Beata; Lee, Jaeil

    2011-01-01

    An all electron ab-initio method was employed to study the electronic and the magnetic properties of the (001) surface of alkaline-earth metal silicides, CaSi, SrSi, and BaSi, in the rock-salt structure. The three compounds retain their ferromagnetic metallic properties at the surface. Due to the surface effects, the magnetism of the topmost layer is changed as compared with the bulk. This is a short-range effect. In CaSi, the magnetism of the surface layer is noticeably reduced, as compared with the bulk: magnetic moments (MMs) on both Ca and Si atoms are reduced. In SrSi (001), the polarization of electrons in the surface atoms is similar to that in the bulk atoms, and the values of MMs on the component atoms in the topmost layer do not change as much as in CaSi. In BaSi (001), the magnetic properties of Si surface atoms are enhanced slightly, and the magnetism of Ba atoms is not affected considerably by the surface effect. The calculated densities of states confirm the short-range effect of the surface on the electronic properties of the metal silicides.

  19. Magnetic feature and near-infrared absorption of a [Pt(mnt)2]-based H-bond supramolecular crystal

    International Nuclear Information System (INIS)

    Li, Cui-Ping; Nie, Li; Pei, Wen-Bo; Li, Li; Tian, Zheng-Fang; Liu, Jian-Lan; Gao, Xu-Sheng; Ren, Xiao-Ming

    2016-01-01

    A new salt [H 2 DABCO][Pt(mnt) 2 ] 2 (1) (mnt 2- =maleonitriledithiolate and H 2 DABCO 2+ is diprotonated 1,4-diazabicyclo[2.2.2]octane) has been synthesized; its crystal structure, magnetic and near-IR absorption properties have been investigated. Two different [Pt(mnt) 2 ] - anions form the strong π-dimers, labeled as Pt(1)-dimer and Pt(2)-dimer, with quite shorter Pt…Pt and S…S distances and molecular plane-to-plane distance (<3.5 Å) within a dimer. The [Pt(mnt) 2 ] 2 2- π-dimers are connected through the cations in the strong H-bond manner to form three-dimensional H-bond supramolecular crystal. The salt shows weak paramagnetism in 1.99–300 K and this is due to the existence of strong antiferromagnetic coupling within a π-dimer. In addition, a small thermal hysteresis loop is observed at ca. 120 K, indicating that a phase transition probably occurs that is further confirmed by variable-temperature IR spectra. Another fascinating functionality of 1 is the intense near-IR absorption in the region of 750–2500 nm, and this near-IR absorption feature makes it to be a promising optical material. - Graphical abstract: A H-bond supramolecular crystal of [H 2 DABCO][Pt(mnt) 2 ] 2 shows a magnetic phase transition at ca. 120 K with sizable thermal hysteresis loop and intense near-IR absorption in the region of 750–2500 nm.

  20. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review – what is really needed?

    Directory of Open Access Journals (Sweden)

    Friebe M

    2016-07-01

    Full Text Available Michael Friebe Institute of Medical Engineering, Otto-von-Guericke-University, Magdeburg, Germany Abstract: There has been little technical innovation over the last few years for contrast media (CM injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography–CT or magnetic resonance–positron emission tomography examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients’ weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. Keywords: power injector, contrast media injection, injection protocols, MRI compatibility

  1. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    Science.gov (United States)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  2. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age.

    Science.gov (United States)

    Olivares-Navarrete, Rene; Raines, Andrew L; Hyzy, Sharon L; Park, Jung Hwa; Hutton, Daphne L; Cochran, David L; Boyan, Barbara D; Schwartz, Zvi

    2012-08-01

    The surface properties of materials contribute to host cellular response and play a significant role in determining the overall success or failure of an implanted biomaterial. Rough titanium (Ti) surface microtopography and high surface free energy have been shown to enhance osteoblast maturation in vitro and increase bone formation in vivo. Whereas the surface properties of Ti are known to affect osteoblast response, host bone quality also plays a significant role in determining successful osseointegration. One factor affecting host bone quality is patient age. We examined both in vitro and in vivo whether response to Ti surface features was affected by animal age. Calvarial osteoblasts isolated from 1-, 3-, and 11-month-old rats all displayed a reduction in cell number and increases in alkaline phosphatase-specific activity and osteocalcin in response to increasing Ti surface microtopography and surface energy. Further, osteoblasts from the three ages examined displayed increased production of osteocalcin and local factors osteoprotegerin, vascular endothelial growth factor (VEGF)-A, and active transforming growth factor (TGF)-β1 in response to increasing Ti surface roughness and surface energy. Latent TGF-β1 only increased in cultures of osteoblasts from 1- and 3-month-old rats. Treatment with the systemic osteotropic hormone 1α,25(OH)(2)D(3) further enhanced the response of osteoblasts to Ti surface features for all three age groups. However, osteoblasts derived from 11-month-old animals had a reduced response to 1α,25(OH)(2)D(3) compared to osteoblasts derived from 1- or 3-month-old animals. These results were confirmed in vivo. Ti implants placed in the femoral intramedullary canal of old (9-month-old) mice yielded lower bone-to-implant contact and neovascularization in response to Ti surface roughness and energy compared to younger (2-month-old) mice. These results show that rodent osteoblast maturation in vitro as well as new bone formation in vivo is

  3. Ab initio STM and STS simulations on magnetic and nonmagnetic metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dick, Alexey

    2008-04-14

    The aim of this work was to provide an in-depth understanding of a new generation of scan- ning tunneling microscopy experiments, performed employing different regimes of the STM: the spectroscopy-mode (the so-called Fourier Transformed STM, FT-STM), and the spin-sensitive mode (the so-called spin-polarized STM, SP-STM). In the present thesis ab initio tools are proposed that are based on DFT calculations to theoretically predict and analyze such types of the STM. The first part of this thesis focusses on the simulation of FT-STM, the mode that allows to probe local dispersion properties of the electrons at the surface. In order to provide the theoretical counterpart of the experimental FT-STM spectra we have introduced a new implicit approach that is derived from Tersoff-Hamann theory of the STM. The importance of an accurate description of surface wavefunctions at 5-15 A above the surface as well as the spurious quantum- size effects have been discussed in detail together with approaches to obtain converged FT-STM images. We applied our method to FT-STM experiments performed on Ag(110) surfaces. In the second part of the thesis we discuss the modeling of the spin-resolved STM, the mode that allows to characterize the magnetic structure of a surface. As a case system we studied here the magnetically-ordered transition-metal nitride surface Mn{sub 3}N{sub 2}(010). Because SP-STM experiments did not allow a conclusive understanding of the surface structure, we have first employed ab initio thermodynamics to figure out the most stable magnetic and atomic configuration of the surface that are consistent with experiments. To simulate SP-STM images on the most stable Mn{sub 3}N{sub 2}(010) surface we have employed the spin-generalized transfer-Hamiltonian formalism, assuming that the tip wavefunctions have dominant radial symmetry (s-like tip). (orig.)

  4. Seasonal features of atmospheric surface-layer characteristics over a tropical coastal station in Southern India

    International Nuclear Information System (INIS)

    Hari Prasad, K.B.R.R.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    Dispersion of air-borne effluents occurs in the atmospheric boundary layer (ABL) where turbulence is the main physical processes. In the surface layer of ABL, the mechanical (shear) generation of turbulence exceeds the buoyant generation or consumption of turbulence. In this layer, under steady state and horizontally homogeneous conditions various forces in the governing equation can be neglected and one can apply Monin-Obukhov Similarity Theory (MOST) to estimate the turbulent fluxes and other surface layer variables. Understanding the turbulent characteristics of the surface layer is vital for modeling of turbulent diffusion in regional numerical weather and pollution dispersion models. The objective of this study is to verify the validity of the MOST at the coastal site Kalpakkam under various atmospheric stability conditions with respect to different seasons for modeling atmospheric dispersion of radioactive effluents

  5. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn4N(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2017-01-01

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn 4 N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn 4 N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  6. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    Science.gov (United States)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  7. Modification of the iron mechanical- and corrosion features by ion implantation in surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1981-01-01

    The physical mechanisms responsable by the tin ion implantation in the iron surface at moderated doses are studied. Several techniques are used such as alpha-particle Rutherford backscattering, conversion electron Moessbauer spectroscopy and scanning electron microscopy. (L.C.) [pt

  8. Outstanding Antibiofilm Features of Quanta-CuO Film on Glass Surface.

    Science.gov (United States)

    Tripathy, Nirmalya; Ahmad, Rafiq; Bang, Seung Hyuck; Khang, Gilson; Min, Jiho; Hahn, Yoon-Bong

    2016-06-22

    Intelligently designed surface nanoarchitecture provides defined control over the behavior of cells and biomolecules at the solid-liquid interface. In this study, CuO quantum dots (quanta-CuO; ∼3-5 nm) were synthesized by a simple, low-temperature solution process and further formulated as paint to construct quanta-CuO thin film on glass. Surface morphological characterizations of the as-coated glass surface reveal a uniform film thickness (∼120 ± 10 nm) with homogeneous distribution of quanta-CuO. The antibiofilm assay showed a very high contact bacteria-killing capacity of as-coated quanta-CuO glass surfaces toward Staphylococcus aureus and Escherichia coli. This efficient antibacterial/antibiofilm activity was ascribed to the intracellular reactive oxygen species (ROS) generated by the quanta-CuO attached to the bacterial cells, which leads to an oxidative assault and finally results in bacterial cell death. Although there is a significant debate regarding the CuO nanostructure's antibacterial mode of action, we propose both contact killing and/or copper ion release killing mechanisms for the antibiofilm activity of quanta-CuO paint. Moreover, synergism of quanta-CuO with conventional antibiotics was also found to further enhance the antibacterial efficacy of commonly used antibiotics. Collectively, this state-of-the-art design of quanta-CuO coated glass can be envisioned as promising candidates for various biomedical and environmental device coatings.

  9. A Three-Dimensional View of Titan's Surface Features from Cassini RADAR Stereogrammetry

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Redding, B. L.; Becker, T. L.; Lee, E. M.; Stiles, B. W.; Hensley, S.; Hayes, A.; Lopes, R. M.; Lorenz, R. D.; Mitchell, K. L.; Radebaugh, J.; Paganelli, F.; Soderblom, L. A.; Stofan, E. R.; Wood, C. A.; Wall, S. D.; Cassini RADAR Team

    2008-12-01

    As of the end of its four-year Prime Mission, Cassini has obtained 300-1500 m resolution synthetic aperture radar images of the surface of Titan during 19 flybys. The elongated image swaths overlap extensively, and ~2% of the surface has now been imaged two or more times. The majority of image pairs have different viewing directions, and thus contain stereo parallax that encodes information about Titan's surface relief over distances of ~1 km and greater. As we have previously reported, the first step toward extracting quantitative topographic information was the development of rigorous "sensor models" that allowed the stereo systems previously used at the USGS and JPL to map Venus with Magellan images to be used for Titan mapping. The second major step toward extensive topomapping of Titan has been the reprocessing of the RADAR images based on an improved model of the satellite's rotation. Whereas the original images (except for a few pairs obtained at similar orbital phase, some of which we have mapped previously) were offset by as much as 30 km, the new versions align much better. The remaining misalignments, typically carbono)logic" cycle of precipitation, evaporation, and surface and subsurface fluid flow?

  10. Geological History of the Tyre Region of Europa: A Regional Perspective on Europan Surface Features and Ice Thickness

    Science.gov (United States)

    Kadel, Steven D.; Chuang, Frank C.; Greeley, Ronald; Moore, Jeffrey M.

    2000-01-01

    Galileo images of the Tyre Macula region of Europa at regional (170 m/pixel) and local (approx. 40 m/pixel) scales allow mapping and understanding of surface processes and landforms. Ridged plains, doublet and complex ridges, shallow pits, domes, "chaos" areas. impact structures, tilted blocks and massifs, and young fracture systems indicate a complex history of surface deformation on Europa. Regional and local morphologies of the Tyre region of Europa suggest that an impactor penetrated through several kilometers of water ice tc a mobile layer below. The surface morphology was initially dominated by formation of ridged plains, followed by development of ridge bands and doublet ridges, with chaos and fracture formation dominating the latter part of the geologic history of the Tyre region. Two distinct types of chaos have been identified which, along with upwarped dome materials, appear to represent a continuum of features (domes-play chaos-knobby chaos) resulting from increasing degree of surface disruption associated with local lithospheric heating and thinning. Local and regional stratigraphic relationships, block heights, and the morphology of the Tyre impact structure suggest the presence of low-viscosity ice or liquid water beneath a thin (severa1 kilometers) surface ice shell at the time of the impact. The very low impact crater density on the surface of Europa suggests that this thin shell has either formed or been thoroughly resurfaced in the very recent past.

  11. Influence of surface features on the adhesion of Staphyloccocus epidermidis to Ag–TiCN thin films

    International Nuclear Information System (INIS)

    Carvalho, Isabel; Almeida Alves, Cristiana Filipa; Carvalho, Sandra; Henriques, Mariana; Oliveira, João Carlos; Piedade, Ana Paula

    2013-01-01

    Staphylococcus epidermidis has emerged as one of the major nosocomial pathogens associated with infections of implanted medical devices. The initial adhesion of these organisms to the surface of biomaterials is assumed to be an important stage in their colonization. The main objective of this work is to assess the influence of surface features on the adhesion of S. epidermidis to Ag–TiCN coatings deposited by dc reactive magnetron sputtering. The structural results obtained by x-ray diffraction show that the coatings crystallize in a B1-NaCl crystal structure typical of TiC 0.3 N 0.7 . The increase of Ag content promoted the formation of Ag crystalline phases. According to the results obtained with atomic force microscopy, a decrease on the surface roughness of the films from 39 to 7 nm is observed as the Ag content increases from 0 to 15 at.%. Surface energy results show that the increase of Ag promotes an increase in hydrophobicity. Bacterial adhesion and biofilm formation on coatings were assessed by the enumeration of the number of viable cells. The results showed that the surface with lower roughness and higher hydrophobicity leads to greater bacterial adhesion and biofilm formation, highlighting that surface morphology and hydrophobicity rule the colonization of materials. (paper)

  12. Local changes of work function near rough features on Cu surfaces operated under high external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Djurabekova, Flyura, E-mail: flyura.djurabekova@helsinki.fi; Ruzibaev, Avaz; Parviainen, Stefan [Helsinki Institute of Physics and Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Holmström, Eero [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland); Department of Earth Sciences, Faculty of Maths and Physical Sciences, UCL Earth Sciences, Gower Street, London WC1E 6BT (United Kingdom); Hakala, Mikko [Department of Physics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki (Finland)

    2013-12-28

    Metal surfaces operated under high electric fields produce sparks even if they are held in ultra high vacuum. In spite of extensive research on the topic of vacuum arcs, the mystery of vacuum arc origin still remains unresolved. The indications that the sparking rates depend on the material motivate the research on surface response to extremely high external electric fields. In this work by means of density-functional theory calculations we analyze the redistribution of electron density on (100) Cu surfaces due to self-adatoms and in presence of high electric fields from −1 V/nm up to −2 V/nm (−1 to −2 GV/m, respectively). We also calculate the partial charge induced by the external field on a single adatom and a cluster of two adatoms in order to obtain reliable information on charge redistribution on surface atoms, which can serve as a benchmarking quantity for the assessment of the electric field effects on metal surfaces by means of molecular dynamics simulations. Furthermore, we investigate the modifications of work function around rough surface features, such as step edges and self-adatoms.

  13. COMPUTER GRAPHICS MEETS IMAGE FUSION: THE POWER OF TEXTURE BAKING TO SIMULTANEOUSLY VISUALISE 3D SURFACE FEATURES AND COLOUR

    Directory of Open Access Journals (Sweden)

    G. J. Verhoeven

    2017-08-01

    Full Text Available Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM approaches are capable of providing a photo-realistic texture along the threedimensional (3D digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  14. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    Science.gov (United States)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  15. Surface Reservoir Characterization and Stratigraphic Studies Using Rock Magnetism and EPR in Venezuela: A Review

    Science.gov (United States)

    Aldana, M.; Diaz, M.; Costanzo-Alvarez, V.

    2007-05-01

    During the last years, the Paleomagnetic and Rock Magnetic Laboratory at the Simon Bolivar University has incorporated studies of rock magnetism and non conventional techniques in geophysics (as Electronic Paramagnetic Resonance or EPR) to solve diverse problems at the Venezuelan oil industry. Particularly, surface reservoir characterization and EPR-Magnetostratigraphic studies have been performed. At some Venezuelan oil fields (Guafita, La Victoria and Furrial) rock magnetic properties studies (e.g. Magnetic Susceptibility (MS)), extractable organic matter (EOM) and organic matter free radical concentration (OMFRC obtained via EPR) analysis have been applied trying to identified, at shallow levels, the "oil magnetic signature" of subjacent reservoirs. The results obtained in non consolidated samples from the first 1500 m of producers and non producers wells, show the existence of MS, EOM and OMFRC anomalies at shallow levels that are associated with an underlying reservoir and/or oil migration. Authigenic spherical aggregates of submicronic FE-rich magnetic crystals, observed by Scanning Electron Microscopy (SEM), are responsible for the detected MS anomalies. These studies allowed to establish a set of criteria (i.e. EPR, EOM and SEM) in order to link, with a minimum uncertainty, near-surface MS anomalies with the underlying reservoir. We have also explored the application of EPR, combined with petrographic, MS analysis, Qn and S-ratios, to characterize stratigraphic facies and identifying depositional environments at various sections in southwestern Venezuela. The different paramagnetic species that have been identified (e.g. manganese, free radicals and different Fe forms) together with the rock magnetic parameters, seem to give valuable information regarding the lithological characteristics of the studied sections. According to our results, as manganese content is related with the redox conditions, it can be used as a paleoenvironmental change index in

  16. A surface acoustic wave passive and wireless sensor for magnetic fields, temperature, and humidity

    KAUST Repository

    Li, Bodong

    2015-01-01

    In this paper, we report an integrated single-chip surface acoustic wave sensor with the capability of measuring magnetic field, temperature, and humidity. The sensor is fabricated using a thermally sensitive LiNbO3 substrate, a humidity sensitive hydrogel coating, and a magnetic field sensitive impedance load. The sensor response to individually and simultaneously changing magnetic field, temperature and humidity is characterized by connecting a network analyzer directly to the sensor. Analytical models for each measurand are derived and used to compensate noise due to cross sensitivities. The results show that all three measurands can be monitored in parallel with sensitivities of 75 ppm/°C, 0.13 dB/%R.H. (at 50%R.H.), 0.18 dB/Oe and resolutions of 0.1 °C, 0.4%R.H., 1 Oe for temperature, humidity and magnetic field, respectively. A passive wireless measurement is also conducted on a current line using, which shows the sensors capability to measure both temperature and current signals simultaneously.

  17. Magnetic catechol-chitosan with bioinspired adhesive surface: preparation and immobilization of ω-transaminase.

    Directory of Open Access Journals (Sweden)

    Kefeng Ni

    Full Text Available The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS-iron oxide nanoparticles (IONPs composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

  18. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  19. Reconstructing solar magnetic fields from historical observations: Testing the surface flux transport model

    Science.gov (United States)

    Virtanen, Iiro; Virtanen, Ilpo; Pevtsov, Alexei; Yeates, Anthony; Mursula, Kalevi

    2017-04-01

    We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. We test the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and study how the flux distribution inside active regions and the initial magnetic field affect the simulation. We compare the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion and input data. We also compare the simulated magnetic field with observations. We find that there is generally good agreement between simulations and observations. While the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, that often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are rather minor or temporary, lasting typically one solar cycle.

  20. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    International Nuclear Information System (INIS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-01-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor cflx var-sigma in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor cflx var-sigma involving three different components is found by measuring the S 21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H ex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of cflx var-sigma (longitudinal var-sigma zz and circular var-sigma v ar-phi v ar-phi) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component var-sigma zv ar-phi (var-sigma v ar-phi z ) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. [copyright] 2001 American Institute of Physics

  1. Region Spherical Harmonic Magnetic Modeling from Near-Surface and Satellite-Altitude Anomlaies

    Science.gov (United States)

    Kim, Hyung Rae; von Frese, Ralph R. B.; Taylor, Patrick T.

    2013-01-01

    The compiled near-surface data and satellite crustal magnetic measured data are modeled with a regionally concentrated spherical harmonic presentation technique over Australia and Antarctica. Global crustal magnetic anomaly studies have used a spherical harmonic analysis to represent the Earth's magnetic crustal field. This global approach, however is best applied where the data are uniformly distributed over the entire Earth. Satellite observations generally meet this requirement, but unequally distributed data cannot be easily adapted in global modeling. Even for the satellite observations, due to the errors spread over the globe, data smoothing is inevitable in the global spherical harmonic presentations. In addition, global high-resolution modeling requires a great number of global spherical harmonic coefficients for the regional presentation of crustal magnetic anomalies, whereas a lesser number of localized spherical coefficients will satisfy. We compared methods in both global and regional approaches and for a case where the errors were propagated outside the region of interest. For observations from the upcoming Swarm constellation, the regional modeling will allow the production a lesser number of spherical coefficients that are relevant to the region of interest

  2. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-01

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  3. Influence of Surface Coating of Magnetic Nanoparticles on Mechanical Properties of Polymer Nanocomposites

    Science.gov (United States)

    Yarar, Ecem; Karakas, Gizem; Rende, Deniz; Ozisik, Rahmi; Malta, Seyda

    Polymer nanocomposites have emerged as promising materials due to improved properties when compared with conventional bulk polymers. Nanofillers are natural or synthetic organic/inorganic particles that are less than 100 nm in at least one dimension. Even the addition of trace amounts of nanofillers to polymers may lad to unique combinations of properties. Among variety of inorganic nanofillers, iron oxide magnetic nanoparticles are of great interest due to their unique physical and chemical properties, such as low toxicity, biocompatibility, large magnetization and conductivity, owing to their extremely small size and large specific surface area. In this study, approximately 8-10 nm magnetic nanoparticles coated with either citric acid or oleic acid are synthesized and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) (PEO). The hydrophobicity/hydrophillicity of the polymer and the surface coating on the iron oxide nanoparticles are exploited to control the dispersion state of nanoparticles, and the effect of dispersion on mechanical and thermal properties of the nanocomposite are investigated via experimental methods such as dynamic mechanical analysis and differential scanning calorimetry. This material is based upon work partially supported by the National Science Foundation under Grant No. CMMI-1538730 and TUBITAK 112M666.

  4. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-09

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  5. Chirality Driven by Magnetic Dipole Response for Demultiplexing of Surface Waves

    DEFF Research Database (Denmark)

    Sinev, Ivan S.; Bogdanov, Andrey A.; Komissarenko, Filipp E.

    2017-01-01

    Surface electromagnetic waves are characterized by the intrinsic spin-orbit interaction which results in the fascinating spin-momentum locking. Therefore, directional coupling of light to surface waves can be achieved through chiral nanoantennas. Here, we show that dielectric nanoantenna provides...... chiral response with strong spectral dependence due to the interference of electric and magnetic dipole momenta when placed in the vicinity of the metal-air interface. Remarkably, chiral behaviour in the proposed scheme does not require elliptical polarization of the pump beam or the geometric chirality...... of the nanoantenna. We show that the proposed ultracompact and simple dielectric nanoantenna allows for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution....

  6. Three dimensional display of the brain surface from magnetic resonance images using a personal computer

    International Nuclear Information System (INIS)

    Tamai, Jin

    1991-01-01

    A new system for three dimensional display of brain surface from magnetic resonance images has been developed using a personal computer. The system consists of the personal computer with a co-processor for mathematical operation and frame memory for full color graphic display. MRI data were transferred to the computer with the floppy disks. Using the paint algorithm, extraction of brain tissue was performed semi-automatically with a manual operation. Brain surface data were displayed on a CRT by a voxel method from an arbitral direction. The result of clinical application of the system showed that the 3-dimentional display of brain surface was useful in comprehending abnormalities including atrophy and cystic lesions. In this paper, we introduce the new system and discuss clinical applicabilities. (author)

  7. Adrenal glands in beta-thalassemia major: magnetic resonance (MR) imaging features and correlation with iron stores

    Energy Technology Data Exchange (ETDEWEB)

    Drakonaki, Eleni; Papakonstantinou, Olympia; Maris, Thomas; Gourtsoyiannis, Nicholas [University Hospital of Heraklion, Department of Radiology, Heraklion (Greece); Vasiliadou, Artemis [Aghios Georgios Hospital of Chania, Thalassemia Unit, Chania (Greece); Papadakis, Alex [Venizelion Hospital of Heraklion, Thalassemia Unit, Heraklion (Greece)

    2005-12-01

    This study aimed at describing the magnetic resonance (MR) imaging features of the adrenal glands in beta-thalassemic patients and at investigating the relation between adrenal and hepatic siderosis. Adrenal signal intensity (SI) was retrospectively assessed on abdominal MR studies of 35 patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 12 healthy controls, using T1- (120/4/90), intermediate - (120/4/20), and T2*- (120/15/20) weighted GRE sequences. Adrenal SI was graded as grade 0 (normal SI on all sequences), grade 1 (hypointensity on T2* alone), or grade 2 (hypointensity on at least T2*). Adrenal size was measured in the thalassemic patients and compared with normative data. Liver-to-muscle (L/M) SI ratios, expressing hepatic siderosis, were estimated on each sequence. Serum ferritin levels were recorded. Adrenal hypointensity (grades 1 and 2) was noted in 24/35 (68.6%) patients. L/M ratios correlated significantly with adrenal SI in all sequences. Patients with grade 1 and grade 2 adrenal SI had significantly decreased L/M ratios compared with grade 0. Serum ferritin correlated significantly with L/M values but not with adrenal SI. Adrenal size was within normal limits. Diffuse hypointensity in normal-sized adrenals is a common MR finding in beta-thalassemic patients and correlates with the degree of hepatic siderosis. (orig.)

  8. Adrenal glands in beta-thalassemia major: magnetic resonance (MR) imaging features and correlation with iron stores

    International Nuclear Information System (INIS)

    Drakonaki, Eleni; Papakonstantinou, Olympia; Maris, Thomas; Gourtsoyiannis, Nicholas; Vasiliadou, Artemis; Papadakis, Alex

    2005-01-01

    This study aimed at describing the magnetic resonance (MR) imaging features of the adrenal glands in beta-thalassemic patients and at investigating the relation between adrenal and hepatic siderosis. Adrenal signal intensity (SI) was retrospectively assessed on abdominal MR studies of 35 patients with beta-thalassemia major undergoing quantification of hepatic siderosis and 12 healthy controls, using T1- (120/4/90), intermediate - (120/4/20), and T2*- (120/15/20) weighted GRE sequences. Adrenal SI was graded as grade 0 (normal SI on all sequences), grade 1 (hypointensity on T2* alone), or grade 2 (hypointensity on at least T2*). Adrenal size was measured in the thalassemic patients and compared with normative data. Liver-to-muscle (L/M) SI ratios, expressing hepatic siderosis, were estimated on each sequence. Serum ferritin levels were recorded. Adrenal hypointensity (grades 1 and 2) was noted in 24/35 (68.6%) patients. L/M ratios correlated significantly with adrenal SI in all sequences. Patients with grade 1 and grade 2 adrenal SI had significantly decreased L/M ratios compared with grade 0. Serum ferritin correlated significantly with L/M values but not with adrenal SI. Adrenal size was within normal limits. Diffuse hypointensity in normal-sized adrenals is a common MR finding in beta-thalassemic patients and correlates with the degree of hepatic siderosis. (orig.)

  9. Voxelized Model of Brain Infusion That Accounts for Small Feature Fissures: Comparison With Magnetic Resonance Tracer Studies

    Science.gov (United States)

    Dai, Wei; Astary, Garrett W.; Kasinadhuni, Aditya K.; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2016-01-01

    Convection enhanced delivery (CED) is a promising novel technology to treat neural diseases, as it can transport macromolecular therapeutic agents greater distances through tissue by direct infusion. To minimize off-target delivery, our group has developed 3D computational transport models to predict infusion flow fields and tracer distributions based on magnetic resonance (MR) diffusion tensor imaging data sets. To improve the accuracy of our voxelized models, generalized anisotropy (GA), a scalar measure of a higher order diffusion tensor obtained from high angular resolution diffusion imaging (HARDI) was used to improve tissue segmentation within complex tissue regions of the hippocampus by capturing small feature fissures. Simulations were conducted to reveal the effect of these fissures and cerebrospinal fluid (CSF) boundaries on CED tracer diversion and mistargeting. Sensitivity analysis was also conducted to determine the effect of dorsal and ventral hippocampal infusion sites and tissue transport properties on drug delivery. Predicted CED tissue concentrations from this model are then compared with experimentally measured MR concentration profiles. This allowed for more quantitative comparison between model predictions and MR measurement. Simulations were able to capture infusate diversion into fissures and other CSF spaces which is a major source of CED mistargeting. Such knowledge is important for proper surgical planning. PMID:26833078

  10. Surface microstructure and magnetic behavior in FeSiB amorphous ribbons from magneto-optical Kerr effect

    Czech Academy of Sciences Publication Activity Database

    Životský, O.; Hendrych, A.; Klimša, L.; Jirásková, Yvonna; Buršík, Jiří; Gomez, J.A.M.; Janičkovič, D.

    2012-01-01

    Roč. 324, č. 4 (2012), s. 569-577 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z20410507 Keywords : Surface magnetism * Magnetooptic Kerr effect * Magneto-optical microscopy * ILEEMS * CEMS * Nanoscale phase separation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.826, year: 2012

  11. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: fvv@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: aleut@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: valery-aleut@yandex.ru [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)

    2015-10-27

    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  12. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine.

    Science.gov (United States)

    Ghanavatian, Parisa; Khalifeh, Khosrow; Jafarian, Vahab

    2016-12-01

    Brazzein (Brz) is a member of sweet-tasting protein containing four disulfide bonds. It was reported as a compact and heat-resistant protein. Here, we have used site-directed mutagenesis and replaced a surface-exposed alanine with aspartic acid (A19D mutant), lysine (A19K mutant) and glycine (A19G mutant). Activity comparisons of wild-type (WT) and mutants using taste panel test procedure showed that A19G variant has the same activity as WT protein. However, introduction of a positive charge in A19K mutant led to significant increase in Brz's sweetness, while A19D has reduced sweetness compared to WT protein. Docking studies showed that mutation at position 19 results in slight chain mobility of protein at the binding surface and changing the patterns of interactions toward more effective binding of E9K variant in the concave surface of sweet taste receptor. Far-UV CD data spectra have a characteristic shape of beta structure for all variants, however different magnitudes of spectra suggest that beta-sheet structure in WT and A19G is more stable than that of A19D and A19K. Equilibrium unfolding studies with fluorescence spectroscopy and using urea and dithiothritol (DTT) as chemical denaturants indicates that A19G mutant gains more stability against urea denaturation; while conformational stability of A19D and A19K decreases when compared with WT and A19G variants. We concluded that the positive charge at the surface of protein is important factor responsible for the interaction of protein with the human sweet receptor and Ala 19 can be considered as a key region for investigating the mechanism of the interaction of Brz with corresponding receptor. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  14. The mid-IR spectral effects of darkening agents and porosity on the silicate surface features of airless bodies

    Science.gov (United States)

    Young, C. L.; Wray, J. J.; Poston, M.; Hand, K. P.; Carlson, R. W.

    2017-12-01

    The surfaces of airless bodies present opportunities to investigate the physical processes acting on planetary systems over time, without the need to account for surface-atmosphere interactions. Silicate surfaces mixed with fine-grained optically dark material with varying degrees of porosity are ubiquitous on many airless bodies (e.g., Earth's Moon, Deimos, Phobos, asteroids, meteorites, and moons of the outer solar system). Although the mid-IR is rich in emissivity features of important minerals and molecular groups, including organics [e.g., 1], it is less studied for airless conditions and presents challenges in signal-to-noise ratio, especially for the colder outer solar system bodies with fined-grained surfaces [2, 3]. We systematically measured the mid-IR spectra of different mixtures of three silicates (antigorite, lizardite, and pure silica) with varying porosities and amounts of darkening agent (iron oxide and carbon). Serpentines, such as antigorite and lizardite, are common to airless surfaces, and their mid-IR spectra in the presence of darkening agents and different surface porosities would be typical for those measured by spacecraft. Although pure silica has only been measured in the plumes of Enceladus, it presents exciting possibilities for other Saturn-system surfaces due to long range transport [4], and it is therefore important to investigate how its spectral signature would be manifested in the mid-IR. Overall, this work provides a library of mineral mixtures to facilitate dealing with current and future mid-IR datasets of airless bodies. These results are also applicable to the development of future missions to airless bodies, and our continuing efforts will help determine if mid-IR spectrometry is worthwhile for surface compositional studies of icy bodies. The mixtures presented here could be useful for testing future mid-IR instruments by confirming detectability of spectral features for typical materials on the surfaces of interest. [1

  15. Wide-field surface plasmon microscopy of nano- and microparticles: features, benchmarking, limitations, and bioanalytical applications

    Science.gov (United States)

    Nizamov, Shavkat; Scherbahn, Vitali; Mirsky, Vladimir M.

    2017-05-01

    Detection of nano- and micro-particles is an important task for chemical analytics, food industry, biotechnology, environmental monitoring and many other fields of science and industry. For this purpose, a method based on the detection and analysis of minute signals in surface plasmon resonance images due to adsorption of single nanopartciles was developed. This new technology allows one a real-time detection of interaction of single nano- and micro-particles with sensor surface. Adsorption of each nanoparticle leads to characteristic diffraction image whose intensity depends on the size and chemical composition of the particle. The adsorption rate characterizes volume concentration of nano- and micro-particles. Large monitored surface area of sensor enables a high dynamic range of counting and to a correspondingly high dynamic range in concentration scale. Depending on the type of particles and experimental conditions, the detection limit for aqueous samples can be below 1000 particles per microliter. For application of method in complex media, nanoparticle images are discriminated from image perturbations due to matrix components. First, the characteristic SPRM images of nanoparticles (templates) are collected in aqueous suspensions or spiked real samples. Then, the detection of nanoparticles in complex media using template matching is performed. The detection of various NPs in consumer products like cosmetics, mineral water, juices, and wines was shown at sub-ppb level. The method can be applied for ultrasensitive detection and analysis of nano- and micro-particles of biological (bacteria, viruses, endosomes), biotechnological (liposomes, protein nanoparticles for drug delivery) or technical origin.

  16. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  17. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Magnetic order in the ultrathin iron film on the Ir(001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Maca, Frantisek; Kudrnovsky, Josef; Drchal, Vaclav [Institute of Physics ASCR, Praha (Czech Republic); Turek, Ilja [Institute of Physics of Materials ASCR, Brno (Czech Republic); Redinger, Josef [Vienna University of Technology, Vienna (Austria)

    2010-07-01

    We present detailed ab initio study of structural and magnetic stability of a Fe monolayer on the fcc(001) surface of iridium extending our last investigation. The Fe monolayer has a strong tendency to order antiferromagnetically for the true relaxed geometry. We compare the influence of two adsorbate species on the magnetic ground state - H and O. We found that the adsorption of oxygen (contrary to the H) lowers the stability of antiferromagnetic order and prefers ferromagnetic ground state. The ferromagnetism is stabilized by the increased Fe-Ir layer spacing. The present study centers around the evaluation of pair exchange interactions between Fe atoms in the Fe overlayer as a function of adsorbate coverage which allows for a detailed understanding of the antiferromagnetism of a Fe/Ir(001) overlayer. Our calculations indicate that the nature of the true ground state could be more complex and display a spin spiral like rather than a c(2 x 2)-antiferromagnetic order.

  19. The magnetic properties of Ce/Pd surface alloys investigated using DFT

    KAUST Repository

    Shuttleworth, I.G.

    2014-06-01

    The surface alloys that form between Ce and Pd(1 1 1), Pd(1 0 0) and both unreconstructed and missing-row type Pd(1 1 0) at low Ce coverage ( θCe=19ML) have shown permanent magnetism that is mediated in part by an RKKY-like delocalized Ce 6s-Pd 5s interaction. The Pd 4d states are significantly affected by alloying and their behavior cannot be explained by a purely spin-dependent Hamiltonian. Experimental observations of changes to the Pd 4d states are explained and the implications of Ce/Pd magnetism in reforming catalysis are discussed. © 2014 Elsevier B.V. All rights reserved.

  20. An Analytical Model for Prediction of Magnetic Flux Leakage from Surface Defects in Ferromagnetic Tubes

    Directory of Open Access Journals (Sweden)

    Suresh V.

    2016-02-01

    Full Text Available In this paper, an analytical model is proposed to predict magnetic flux leakage (MFL signals from the surface defects in ferromagnetic tubes. The analytical expression consists of elliptic integrals of first kind based on the magnetic dipole model. The radial (Bz component of leakage fields is computed from the cylindrical holes in ferromagnetic tubes. The effectiveness of the model has been studied by analyzing MFL signals as a function of the defect parameters and lift-off. The model predicted results are verified with experimental results and a good agreement is observed between the analytical and the experimental results. This analytical expression could be used for quick prediction of MFL signals and also input data for defect reconstructions in inverse MFL problem.

  1. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  2. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  3. Horizontal transport of the regolith, modification of features, and erosion rates on the lunar surface

    Science.gov (United States)

    Arvidson, R.; Drozd, R. J.; Hohenberg, C. M.; Morgan, C. J.; Poupeau, G.

    1975-01-01

    Impact-ejecta systematics are developed for the smaller cratering events which, with cumulative crater populations observed in young mare regions and on Copernicus ejecta fields, yield rates and a range distribution for the horizontal transport of material by impact processes. The deposition rate for material originating more than 1 m away is found to be about 8 mm per million years. Material from 10 km away accumulates at a rate of about 0.08 mm per million years, providing a steady influx of foreign material. From the degradation of boulder tracks, a rate of 5 plus or minus 3 cm per million years is computed for the filling of shallow lunar depressions on slopes. Mass wastage and downslope movement of bedrock outcroppings on Hadley Rille seem to be proceeding at a rate of about 8 mm per million years. The Camelot profile is suggestive of a secondary impact feature.

  4. Fermi Surface Manipulation by External Magnetic Field Demonstrated for a Prototypical Ferromagnet

    Directory of Open Access Journals (Sweden)

    E. Młyńczak

    2016-12-01

    Full Text Available We consider the details of the near-surface electronic band structure of a prototypical ferromagnet, Fe(001. Using high-resolution angle-resolved photoemission spectroscopy, we demonstrate openings of the spin-orbit-induced electronic band gaps near the Fermi level. The band gaps, and thus the Fermi surface, can be manipulated by changing the remanent magnetization direction. The effect is of the order of ΔE=100  meV and Δk=0.1  Å^{−1}. We show that the observed dispersions are dominated by the bulk band structure. First-principles calculations and one-step photoemission calculations suggest that the effect is related to changes in the electronic ground state and not caused by the photoemission process itself. The symmetry of the effect indicates that the observed electronic bulk states are influenced by the presence of the surface, which might be understood as related to a Rashba-type effect. By pinpointing the regions in the electronic band structure where the switchable band gaps occur, we demonstrate the significance of spin-orbit interaction even for elements as light as 3d ferromagnets. These results set a new paradigm for the investigations of spin-orbit effects in the spintronic materials. The same methodology could be used in the bottom-up design of the devices based on the switching of spin-orbit gaps such as electric-field control of magnetic anisotropy or tunneling anisotropic magnetoresistance.

  5. Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation

    Energy Technology Data Exchange (ETDEWEB)

    Bigongiari, A. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); TIPS/LULI, Universite Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilee 94200, Ivry-sur-Seine (France); Raynaud, M. [CEA/DSM/LSI, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Riconda, C. [TIPS/LULI, Universite Paris 6, CNRS, CEA, Ecole Polytechnique, 3, rue Galilee 94200, Ivry-sur-Seine (France); Heron, A. [CPHT, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Macchi, A. [Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica (CNR/INO), Dipartimento di Fisica ' ' E. Fermi' ' , Largo B. Pontecorvo 3, 56127 Pisa (Italy)

    2011-10-15

    The efficiency of laser overdense plasma coupling via surface plasma wave excitation is investigated. Two-dimensional particle-in-cell simulations are performed over a wide range of laser pulse intensity from 10{sup 15} to 10{sup 20} W cm{sup -2}{mu}m{sup 2} with electron density ranging from 25 to 100n{sub c} to describe the laser interaction with a grating target where a surface plasma wave excitation condition is fulfilled. The numerical studies confirm an efficient coupling with an enhancement of the laser absorption up to 75%. The simulations also show the presence of a localized, quasi-static magnetic field at the plasma surface. Two interaction regimes are identified for low (I{lambda}{sup 2} < 10{sup 17} W cm{sup -2}{mu}m{sup 2}) and high (I{lambda}{sup 2} > 10{sup 17} W cm{sup -2}{mu}m{sup 2}) laser pulse intensities. At ''relativistic'' laser intensity, steady magnetic fields as high as {approx}580 MG {mu}m/{lambda}{sub 0} at 7 x 10{sup 19} W cm{sup -2}{mu}m{sup 2} are obtained in the simulations.

  6. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds?

    Science.gov (United States)

    Bruinink, Arie; Bitar, Malak; Pleskova, Miriam; Wick, Peter; Krug, Harald F; Maniura-Weber, Katharina

    2014-01-01

    Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  7. Grain surface features and clay mineralogy of the quaternary sediments from Western Deccan Trap Region, India, and their palaeoclimatic significance

    Directory of Open Access Journals (Sweden)

    Veena U. Joshi

    2011-06-01

    Full Text Available Quartz sand grains obtained from a deeply gullied topography along the banks of two tributaries of River Pravara in Maharashtra (India have been examined with a scanning electron microscope (SEM. Quartz grains have been selected after a heavy mineral separation and micro-photographs of each grain were taken at various angles and magnifications. The sediments reveal features resulting from mechanical grinding as well as from chemical alteration. Conchoidal fractures, cleavage planes, grooves, v-shaped indentations etc. are the mechanical features documented on the grains whereas solution pits of varying sizes and intensity, precipitation surfaces, oriented v-pits, solution crevasses and etching are the features of chemical origin. Several evidences indicate that the samples have undergone digenetic changes. Few grains show the features of intense chemical breakdown. The overall assemblages of the grain surface features suggest that the samples have been subjected to subaqueous transport for a considerable period of time. The minor chemical features such as solution pits or semi circular arcuate steps found in abundance on these grains are due to the dissolution of the sediments in a low energy fluviatile environment. For clay mineralogy, fractions between <2 and <0.2 mm were separated out from the sediments. The clay fractions were then subjected to examination by X-ray diffraction (XRD of oriented K/Ca saturated samples using a Philips Diffractometer and Ni-filtered Cu Ka radiation with the scanning speed of 10 2Ө min -1. The main clay minerals for all the samples are identical and show the presence of hydroxy-interlayered smectites with minor quantities of mica, kaolinite, smectites, quartz and feldspar. The first weathering product of the Deccan Basalt (DB is the dioctahedral smectite. Since the present semi aridic climatic condition of the study area can not transform a smectite to HIS and either smectite to kaolin, it is quite likely that

  8. Increased critical current and improved magnetic field response of BSCCO material by surface diffusion of silver

    International Nuclear Information System (INIS)

    Negm, Y.Z.; Zimmerman, G.O.; Powers, R.E.; Eckhardt, K.A.

    1994-01-01

    The authors have developed a procedure of increasing the critical current of BSCCO ceramic superconducting material, the value of the critical current is increased by 30%. Moreover the degradation of the critical current with the applied magnetic field had been decreased. The procedure consists of applying a thin layer of silver to the surface of the conductor. The details of the procedure and the improved performance are discussed. This procedure has great significance for any future application of HTSC materials where high current carrying capacity is necessary. It will therefore be important in the application of HTSC materials to SSC high current leads

  9. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  10. Energy density and energy flow of surface waves in a strongly magnetized graphene

    Science.gov (United States)

    Moradi, Afshin

    2018-01-01

    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  11. Modeling of magnetic fields on a cylindrical surface and associated parameter estimation for development of a size sensor

    International Nuclear Information System (INIS)

    Zhang, Song; Rajamani, Rajesh

    2016-01-01

    This paper develops analytical sensing principles for estimation of circumferential size of a cylindrical surface using magnetic sensors. An electromagnet and magnetic sensors are used on a wearable band for measurement of leg size. In order to enable robust size estimation during rough real-world use of the wearable band, three estimation algorithms are developed based on models of the magnetic field variation over a cylindrical surface. The magnetic field models developed include those for a dipole and for a uniformly magnetized cylinder. The estimation algorithms used include a linear regression equation, an extended Kalman filter and an unscented Kalman filter. Experimental laboratory tests show that the size sensor in general performs accurately, yielding sub-millimeter estimation errors. The unscented Kalman filter yields the best performance that is robust to bias and misalignment errors. The size sensor developed herein can be used for monitoring swelling due to fluid accumulation in the lower leg and a number of other biomedical applications. (paper)

  12. Multiscale feature based analysis of surface EMG signals under fatigue and non-fatigue conditions.

    Science.gov (United States)

    Navaneethakrishna, M; Ramakrishnan, S

    2014-01-01

    In this work, an attempt has been made to differentiate sEMG signals under muscle fatigue and non-fatigue conditions using multiscale features. Signals are recorded from biceps brachii muscle of 50 normal adults during repetitive dynamic contractions. After prescribed preprocessing, each signal is divided into six segments out of which first and last segments are considered in this analysis. Multiscale RMS (MSRMS) and Multiscale Permutation Entropy (MSPE) are computed for each subject in the time scales ranging from 1 to 50. The median values of the MSRMS and MSPE are calculated for further analysis. The results show an increase in amplitude for sEMG signals under fatigue condition. MSRMS values are found to be significantly higher in fatigue. An approximately constant difference in MSRMS value between fatigue and non-fatigue condition is observed over the entire time scale with a negative slope. Further, the median of MSRMS values for each subject is able to distinguish fatigue and non-fatigue conditions. Similar analysis on MSPE showed significant difference between fatigue and non-fatigue cases and lower values of MSPE is observed in fatigue. It is also observed that the median value of MSRMS and MSPE are able to distinguish these conditions. t-test for MSRMS, MSPE and their median value show high statistical significance. It appears that this method of analysis can be used for clinical evaluation of muscles.

  13. Visibility of lunar surface features - Apollo 14 orbital observations and lunar landing.

    Science.gov (United States)

    Ziedman, K.

    1972-01-01

    Description of an in-flight visibility test conducted during the Apollo 14 mission for the purpose of validating and extending the mathematical visibility models used previously in the course of the Apollo program to examine the constraints on descent operations imposed by lunar visibility limitations. Following a background review of the effects on mission planning of the visibility limitations due to downsun lunar surface detail 'washout' and a discussion of the visibility prediction techniques previously used for studying lunar visibility problems, the visibility test rationale and procedures are defined and the test results presented. The results appear to confirm the validity of the visibility prediction techniques employed in lunar visibility problem studies. These results provide also a basis for improving the accuracy of the prediction techniques by appropriate modifications.

  14. Application of Amniotic Membrane in Ocular Surface Diseases: Clinical Features and Treatment Outcome

    Directory of Open Access Journals (Sweden)

    Derya Cindarik

    2012-05-01

    Full Text Available Pur po se: To investigate the effectiveness of amniotic membrane transplantation in cases with corneal thinning, desmatocele and refractive corneal ulcer. Ma te ri al and Met hod: Fifty-four eyes of 54 patients who were applied amniotic membrane transplantation for various ocular surface disease between January 2004 and February 2009 in Çukurova University Ophthalmology Department were included in the study. A complete ophthalmologic examination was performed. Corneal culture and corneal cytology samples were collected from the patients with the diagnosis of corneal ulcers. The patients were informed about the surgical procedure and the possible complications and informed consent was obtained. The amniotic membranes that were prepared under optimal conditions and protected in frozen forms were used in the operations. Follow-up examinations were done at postoperative 1st day, 1st week, 1st month, 3rd month, 6th month and then once in a year. Re sults: Of 54 patients, 26 (48.1% were men and 28 (51.8% were women. The mean age of patients was 52.53±19.75 (2-87 years. The cases were separated into 2 groups according to the etiology: group 1 - eyes with corneal ulcer (n:26 and group 2 - eyes with corneal stromal thinning, persistent epithelial defects and desmatocel (n:28. The transplantations were performed using cover technique in 17 eyes (31.4%, graft technique in 37 eyes (68.5% and graft technique with corneal patch in 2 eyes (3.7%. Partial penetrating keratoplasty was required in 38 of 54 eyes (70.3%. One eye was enucleated. Dis cus si on: The amniotic membrane transplantation has advantages like: it can be prepared easily and is cost-effective. It is a safe and effective procedure in ocular surface disease. (Turk J Ophthalmol 2012; 42: 177-82