WorldWideScience

Sample records for surface loads general

  1. Engineering a Zirconium MOF through Tandem "Click" Reactions: A General Strategy for Quantitative Loading of Bifunctional Groups on the Pore Surface.

    Science.gov (United States)

    Zhang, Yingfan; Gui, Bo; Chen, Rufan; Hu, Guiping; Meng, Yi; Yuan, Daqiang; Zeller, Matthias; Wang, Cheng

    2018-02-19

    Metal-organic frameworks (MOFs) assembled from linkers of identical length but with different functional groups have gained increasing interests recently. However, it is very challenging for precise control of the ratios of different functionalities. Herein, we reported a stable azide- and alkyne-appended Zr-MOF that can undergo quantitative tandem click reactions on the different functional sites, thus providing a unique platform for quantitative loading of bifunctional moieties. As an added advantage, the same MOF product can be obtained via two independent routes. The method is versatile and can tolerate a wide variety of functional groups, and furthermore, a heterogeneous acid-base MOF organocatalyst was synthesized by tandemly introducing both acidic and basic groups onto the predesigned pore surface. The presented strategy provides a general way toward the construction of bifunctional MOFs with a precise control of ratio of different functionalities for desirable applications in future.

  2. Responsibility loadings for dental services by general dentists.

    Science.gov (United States)

    Brennan, David S; Spencer, A John

    2010-06-23

    Responsibility loadings determine relative value units of dental services that translate services into a common scale of work effort. The aims of this paper were to elicit responsibility loadings for a subset of dental services and to relate responsibility loadings to ratings of importance of the components of responsibility. Responsibility loadings and ratings of components of responsibility were collected using mailed questionnaires from a random sample of Australian private general practice dentists in 2007 (response rate = 77%). Median responsibility loadings were 1.25 for an initial oral examination and for a 3+-surface amalgam restoration, 1.50 for a simple extraction and for root canal obturation (single canal), and 1.75 for subgingival curettage (per quadrant). Across the five services coefficients from a multivariate logit model showed that ratings of importance of knowledge (0.34), dexterity (0.24), physical effort (0.28) and mental effort (0.48) were associated with responsibility loadings (P dental service provision.

  3. Dust Load on Surfaces in Animal Buildings

    DEFF Research Database (Denmark)

    Lengweiler, P.; Strøm, J. S.; Takai, H.

    To investigate the physical process of particle deposition on and resuspension from surfaces in animal buildings, a test facility and a sampling method is established. The influences of surface orientation and air turbulence and velocity just as other parameters on the dust load on a surface...

  4. Responsibility loadings for dental services by general dentists

    Directory of Open Access Journals (Sweden)

    Spencer A John

    2010-06-01

    Full Text Available Abstract Background Responsibility loadings determine relative value units of dental services that translate services into a common scale of work effort. The aims of this paper were to elicit responsibility loadings for a subset of dental services and to relate responsibility loadings to ratings of importance of the components of responsibility. Methods Responsibility loadings and ratings of components of responsibility were collected using mailed questionnaires from a random sample of Australian private general practice dentists in 2007 (response rate = 77%. Results Median responsibility loadings were 1.25 for an initial oral examination and for a 3+-surface amalgam restoration, 1.50 for a simple extraction and for root canal obturation (single canal, and 1.75 for subgingival curettage (per quadrant. Across the five services coefficients from a multivariate logit model showed that ratings of importance of knowledge (0.34, dexterity (0.24, physical effort (0.28 and mental effort (0.48 were associated with responsibility loadings (P Conclusions The elicited median responsibility loadings showed agreement with previous estimates indicating convergent validity. Components of responsibility were associated with loadings indicating that components can explain and predict responsibility aspects of dental service provision.

  5. Bayesian techniques for surface fuel loading estimation

    Science.gov (United States)

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  6. Surface instabilities in shock loaded granular media

    Science.gov (United States)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  7. Monotonic Loading of Circular Surface Footings on Clay

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin

    2011-01-01

    Appropriate modeling of offshore foundations under monotonic loading is a significant challenge in geotechnical engineering. This paper reports experimental and numerical analyses, specifically investigating the response of circular surface footings during monotonic loading and elastoplastic beha...

  8. Generalized Response Surface Methodology : A New Metaheuristic

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Generalized Response Surface Methodology (GRSM) is a novel general-purpose metaheuristic based on Box and Wilson.s Response Surface Methodology (RSM).Both GRSM and RSM estimate local gradients to search for the optimal solution.These gradients use local first-order polynomials.GRSM, however, uses

  9. Loading and plotting of cortical surface representations in Nilearn

    Directory of Open Access Journals (Sweden)

    Julia Huntenburg

    2017-02-01

    Full Text Available Processing neuroimaging data on the cortical surface traditionally requires dedicated heavy-weight software suites. Here, we present an initial support of cortical surfaces in Python within the neuroimaging data processing toolbox Nilearn. We provide loading and plotting functions for different surface data formats with minimal dependencies, along with examples of their application. Limitations of the current implementation and potential next steps are discussed.

  10. Surface heat loads on the ITER divertor vertical targets

    Czech Academy of Sciences Publication Activity Database

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R.A.; Corre, Y.; Dejarnac, Renaud; Firdaouss, M.; Kočan, M.; Komm, Michael; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046025. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : ITER * divertor * ELM heat load * inter-ELM heat load * tungsten Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa5e2a

  11. A METHOD OF LOADING UNIT FORMATION TAKING INTO ACCOUNT MASS, LOAD-BEARING STRENGTH AND SURFACES OF PACKING UNITS

    Directory of Open Access Journals (Sweden)

    Kamil POPIELA

    2017-09-01

    Full Text Available The problem of loading unit formation is computationally complex in nature. This article presents a heuristic algorithm of forming unit loads, which can be applied to unit load arrangement on unit load devices. This method accounts for dimensional, mass and load-bearing strength of loading units and loading devices. Moreover, the rotation of packages about a 90° vertical axis has been made possible. In this algorithm, the bearing surface of each packing unit is entirely supported. This guarantees the stability of additional unit load layers. A sample calculation of the arrangement of 30-unit loads is presented in this article.

  12. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  13. Mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Pinder, J.E. III; McLeod, K.W.

    1989-01-01

    Radionuclide-bearing soil particles on plant surfaces can be ingested and contribute to human dose, but evaluating the potential dose is limited by the relatively few data available on the masses of soil particles present on plant surfaces. This report summarizes mass loading data (i.e., mass of soil per unit of vegetation) for crops in the southeastern United States and compares these data to (1) those from other regions and (2) the mass loadings used in radionuclide transfer models to predict soil contamination of plant surfaces. Mass loadings were estimated using the 238Pu content of crops as an indicator of soil on plant surfaces. Crops were grown in two soils: a sandy clay loam soil and a loamy sand soil. Concentrations of soil on southeastern crops (i.e., mg soil g-1 plant) differed by more than a factor of 100 due to differences in crop growth form and biomass. Mean concentrations ranged from 1.7 mg g-1 for corn to 260 mg g-1 for lettuce. Differences in mass loadings between soils were less than those among crops. Concentrations differed by less than a factor of two between the two soil types. Because of (1) the differences among crops and (2) the limited data available from other systems, it is difficult to draw conclusions regarding regional or climatic variation in mass loadings. There is, however, little evidence to suggest large differences among regions. The mass loadings used to predict soil contamination in current radionuclide transfer models appear to be less than those observed for most crops

  14. Analysis of deformation due to inclined load in generalized ...

    African Journals Online (AJOL)

    The present investigation deals with study of deformation in homogeneous, isotropic thermodiffusion elastic half-space as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. The integral transform technique is used to solve the problem. As an application of ...

  15. An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders

    DEFF Research Database (Denmark)

    Paulsen, Bo Terp; Bredmose, Henrik; Bingham, Harry B.

    2014-01-01

    A fully nonlinear domain decomposed solver is proposed for efficient computations of wave loads on surface piercing structures in the time domain. A fully nonlinear potential flow solver was combined with a fully nonlinear Navier–Stokes/VOF solver via generalized coupling zones of arbitrary shape....... Sensitivity tests of the extent of the inner Navier–Stokes/VOF domain were carried out. Numerical computations of wave loads on surface piercing circular cylinders at intermediate water depths are presented. Four different test cases of increasing complexity were considered; 1) weakly nonlinear regular waves...

  16. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  17. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    , there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions.......A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms...

  18. Generalized surface tension bounds in vacuum decay

    Science.gov (United States)

    Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.

    2018-02-01

    Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.

  19. Normal loads program for aerodynamic lifting surface theory. [evaluation of spanwise and chordwise loading distributions

    Science.gov (United States)

    Medan, R. T.; Ray, K. S.

    1974-01-01

    A description of and users manual are presented for a U.S.A. FORTRAN 4 computer program which evaluates spanwise and chordwise loading distributions, lift coefficient, pitching moment coefficient, and other stability derivatives for thin wings in linearized, steady, subsonic flow. The program is based on a kernel function method lifting surface theory and is applicable to a large class of planforms including asymmetrical ones and ones with mixed straight and curved edges.

  20. The pore-load modulus of ordered nanoporous materials with surface effects

    Science.gov (United States)

    Liu, Mingchao; Wu, Jian; Gan, Yixiang; Chen, C. Q.

    2016-03-01

    Gas and liquid adsorption-induced deformation of ordered porous materials is an important physical phenomenon with a wide range of applications. In general, the deformation can be characterized by the pore-load modulus and, when the pore size reduces to nanoscale, it is affected by surface effects and shows prominent size-dependent features. In this Letter, the influence of surface effects on the elastic properties of ordered nanoporous materials with internal pressure is accounted for in a single pore model. A porosity and surface elastic constants dependent closed form solution for the size dependent pore-load modulus is obtained and verified by finite element simulations and available experimental results. In addition, it is found to depend on the geometrical arrangement of pores. This study provides an efficient tool to analyze the surface effects on the elastic response of ordered nanoporous materials.

  1. Effect of surfaces similarity on contact resistance of fractal rough surfaces under cyclic loading

    Science.gov (United States)

    Gao, Yuanwen; Liu, Limei; Ta, Wurui; Song, Jihua

    2018-03-01

    Although numerous studies have shown that contact resistance depends significantly on roughness and fractal dimension, it remains elusive how they affect contact resistance between rough surfaces. The interface similarity index is first proposed to describe the similarity of the contact surfaces, which gives a good indication of the actual contact area between surfaces. We reveal that the surfaces' similarity be an origin of contact resistance variation. The cyclic loading can increase the contact stiffness, and the contact stiffness increases with the increase of the interface similarity index. These findings explain the mechanism of surface roughness and fractal dimension on contact resistance, and also provide reference for the reliability design of the electrical connection.

  2. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy

    DEFF Research Database (Denmark)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli

    2015-01-01

    tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim...... cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform...

  3. Surface modification of titanium for load-bearing applications.

    Science.gov (United States)

    Bose, Susmita; Roy, Mangal; Das, Kakoli; Bandyopadhyay, Amit

    2009-12-01

    Titanium and its alloys are extensively used in load-bearing metallic devices. They are bioinert material and, therefore, get encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. Here we report modification of titanium surface using bioactive tricalcium phosphates (TCP) and nanoscale TiO2 to enhance cell-materials interaction. We have introduced bioactivity in Ti using laser-assisted coating of TCP and by anodization to grow surface TiO2 at room temperature using a mixed aqueous solution of sodium fluoride, citric acid and sulfuric acid as electrolyte. TCP coating showed a columnar Ti grains at the substrate side of the coating and transitioned to an equiaxed grains at the outside. Coating hardness increased from 882 +/- 67 to 1029 +/- 112 Hv as the volume fraction of TCP increased in the coating. For TiO2 nanotubes, microscopic analysis showed tubes of 50 nm in diameter with wall thickness of 15 nm and typical length between 200 nm and 1 micron based on anodization times. Effects of TCP and nanoscale TiO2 coating on bone cell-material interaction were examined by culturing osteoprecursor cells (OPC1) on coated surfaces. Antibacterial activity analysis using metallic Ag via electrodeposition showed over 99% antibacterial activity against the growth of colonies of Pseudomonas aeruginosa.

  4. 46 CFR 154.406 - Design loads for cargo tanks and fixtures: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design loads for cargo tanks and fixtures: General. 154..., Construction and Equipment Cargo Containment Systems § 154.406 Design loads for cargo tanks and fixtures: General. (a) Calculations must show that a cargo tank and its fixtures are designed for the following...

  5. Self-dual geometry of generalized Hermitian surfaces

    International Nuclear Information System (INIS)

    Arsen'eva, O E; Kirichenko, V F

    1998-01-01

    Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian RK-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces

  6. Efficient lifetime estimation techniques for general multiaxial loading

    Science.gov (United States)

    Papuga, Jan; Halama, Radim; Fusek, Martin; Rojíček, Jaroslav; Fojtík, František; Horák, David; Pecha, Marek; Tomčala, Jiří; Čermák, Martin; Hapla, Václav; Sojka, Radim; Kružík, Jakub

    2017-07-01

    In this paper, we discuss and present our progress toward a project, which is focused on fatigue life prediction under multiaxial loading in the domain of low-cycle fatigue, i.e. cases, where the plasticity cannot be neglected. First, the elastic-plastic solution in the finite element analysis is enhanced and verified on own experiments. Second, the method by Jiang describing the instantaneous damage increase by analyses of load time by time, is in implementation phase. In addition, simplified routines for conversion of elastic stresses-strains to elastic-plastic ones as proposed by Firat and Ye et.al. are evaluated on the basis of data gathered from external sources. In order to produce high quality complex analyses, which could be feasible in an acceptable time, and allow the period for next analyses of results to be expanded; the core of PragTic fatigue solver used for all fatigue computations are being re-implemented to get the fully parallelized scalable solution.

  7. Visual Assessment of Surface Fuel Loads Does Not Align with Destructively Sampled Surface Fuels

    Directory of Open Access Journals (Sweden)

    Sarah C. McColl-Gausden

    2017-10-01

    Full Text Available Fuel load and structure are fundamental drivers of fire behaviour. Accurate data is required for managers and researchers to better understand our ability to alter fire risk. While there are many ways to quantify fuel, visual assessment methods are generally considered the most efficient. Visual hazard assessments are commonly used by managers, government agencies and consultants to provide a fuel hazard score or rating but not a quantity of fuel. Many systems attempt to convert the hazard score or rating to a fuel load for use in fire behaviour models. Here we investigate whether the conversion table in the widely used Overall Fuel Hazard Guide (OFHG matches destructively sampled fuel loads from 116 sites across five forest types. We specifically examine whether there are quantifiable differences that can be attributed to forest type. We found there is overlap between the two methods for low, moderate and high hazard categories, however for the very high and extreme hazard categories, visual assessment overestimated fuel load in four of the five forest types. Using a commonly applied fire behaviour model, we found that the overestimation of fuel load in very high and extreme hazard categories leads to an overestimation of fire behavior in these hazard categories.

  8. A generalization of algebraic surface drawing

    Science.gov (United States)

    Blinn, J. F.

    1982-01-01

    An implicit surface mathematical description of three-dimensional space is defined in terms of all points which satisfy some equation F(x, y, z) equals 0. This form is ideal for space-shaded picture drawing, where the coordinates are substituted for x and y and the equation is solved for z. A new algorithm is presented which is applicable to functional forms other than those of first- and second-order polynomial functions, such as the summation of several Gaussian density distributions. The algorithm was created in order to model electron density maps of molecular structures, but is shown to be capable of generating shapes of esthetic interest.

  9. Influence of Surface Energy Effects on Elastic Fields of a Layered Elastic Medium under Surface Loading

    Directory of Open Access Journals (Sweden)

    Supakorn Tirapat

    2017-01-01

    Full Text Available This paper presents the analysis of a layered elastic half space under the action of axisymmetric surface loading and the influence of the surface energy effects. The boundary value problems for the bulk and the surface are formulated based on classical linear elasticity and a complete Gurtin-Murdoch constitutive relation. An analytical technique using Love’s representation and the Hankel integral transform is employed to derive an integral-form solution for both displacement and stress fields. An efficient numerical quadrature is then applied to accurately evaluate all involved integrals. Selected numerical results are presented to portray the influence of various parameters on elastic fields. Numerical results indicate that the surface stress displays a significant influence on both displacement and stress fields. It is also found that the layered half space becomes stiffer with the presence of surface stresses. In addition, unlike the classical elasticity solution, size-dependent behavior of elastic fields is noted. The present analytical solutions provide fundamental understanding of the influence of surface energy on layered elastic materials. It can also be used as a benchmark solution for the development of numerical techniques such as FEM and BEM, for analysis of more complex problems involving a layered medium under the influence of surface energy effects.

  10. Limit load estimation method for pipe with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Onizawa, Kunio; Sugino, Hideharu

    2009-01-01

    When a flaw is detected in a stainless steel pipe during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in the present codes, the limit load criterion is only provided for the case of a flaw with the uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in a pipe. In this paper, a limit load estimation method is proposed considering a circumferential flaw with arbitrary shape, in order to make it possible to evaluate the integrity of the pipe for general case. The plastic collapse moment and stress are obtained by dividing the surface flaw into several segmented sub-flaws. Using this method, good agreement is observed between the numerical solution and reported experimental results. Several numerical examples are also given to show the validity of this method. Finally, it can be seen that the number of the segmented sub-flaws for the semi-elliptical surface flaw is sufficient to be three from engineering judgment. (author)

  11. GENERAL RESPONSE OBSERVED IN CYCLICALLY LOADED COHESIVE SOILS

    Directory of Open Access Journals (Sweden)

    Andrés Nieto Leal

    2016-01-01

    Full Text Available El comportamiento de suelos cohesivos sometidos a cargas cíclicas es afectado por diferentes factores; entre los más importantes se encuentran las características del suelo, estado actual e historia de esfuerzos, y condiciones específicas del ensayo. Desde inicios de 1960 varias investigaciones se han realizado con el objetivo de entender el comportamiento de estos suelos; éstas se han efectuado en una gran variedad de suelos cohesivos con diferentes índices de plasticidad, relación de sobreconsolidación, y diferentes condiciones de ensayo (cargas cíclicas. El objetivo de este trabajo es recopilar los resultados de las investigaciones más relevantes y presentar, en términos generales, el comportamiento de suelos cohesivos sujetos a cargas cíclicas. Además, se han identificado las principales características del comportamiento de suelos cohesivos cargados cíclicamente que se deberían tener en cuenta para el desarrollo de nuevos modelos constitutivos usados en la predicción del comportamiento de estos suelos.

  12. Multilayered elastic analysis formulation for surface moment loading

    CSIR Research Space (South Africa)

    Maina, JW

    2006-01-01

    Full Text Available , respectively. Measurements by Stress-In-Motion (SIM) technology on slow (creep) speed truck tires have shown that, depending on the magnitude of the load, there are acceptable "n" or unacceptable "m" shaped stress distributions at the tire/road interface...

  13. Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2016-09-01

    Full Text Available The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads, such as from construction of high-rise buildings above underground structures. In saturated ground, the surface load will generate an additional mechanical response through stress changes and ground displacement, as well as a hydraulic response through pore pressure changes. These hydro-mechanical (H-M changes can severely influence tunnel stability. This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground. Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua (FLAC. One model represented weak and low permeability ground (stiff clay, and the other represented strong and high permeability ground (weathered granite. Each of the models was run under two liner permeabilities: permeable and impermeable. Two main cases were compared. In Case 1, the surface load was applied 10 years after tunnel construction. In Case 2, the surface load was applied after the steady state pore pressure condition was achieved. The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading, with high pore pressures, large inward displacement around the tunnels, and high bending moments in the liner. In addition, the severity of the response increased toward steady state. This induced H-M response was worse for tunnels in clay than for those in granite. Furthermore, the long-term liner stabilities in Case 1 and Case 2 were similar, indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible. These findings suggest that under surface loading, in addition to the ground strength, tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of

  14. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  15. Effect of conditioner load on the polishing pad surface during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Cheol Min; Qin, Hong Yi; Hong, Seok Jun; Jeon, Sang Hyuk; Kulkarni, Atul; Kim, Tae Sun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    During the Chemical mechanical planarization (CMP), the pad conditioning process can affect the pad surface characteristics. Among many CMP process parameters, the improper applied load on the conditioner arm may have adverse effects on the polyurethane pad. In this work, we evaluated the pad surface properties under the various conditioner arm applied during pad conditioning process. The conditioning pads were evaluated for surface topography, surface roughness parameters such as Rt and Rvk and Material removal rate (MRR) and within-wafer non-uniformity after wafer polishing. We observed that, the pad asperities were collapsed in the direction of conditioner rotation and blocks the pad pores applied conditioner load. The Rvk value and MRR were founded to be in relation with 4 > 1 > 7 kgF conditioner load. Hence, this study shows that, 4 kgF applied load by conditioner is most suitable for the pad conditioning during CMP.

  16. Pad for holding a load against a surface by suction

    International Nuclear Information System (INIS)

    Farmer, R.C.; Goldsmith, H.A.; Proudlove, M.J.

    1981-01-01

    This invention concerns suction pads for supporting loads. Specifically, the suction pad is part of a pair of pads located at the ends of a bridge forming a vehicle for transporting instruments for the non-destructive testing of a large vessel intended to contain a fuel assembly for a nuclear reactor immersed in a liquid metal coolant. For example, the vehicle is of the type described in the French patent application filed this day under the heading 'Vehicle for transporting instruments for testing against a wall' [fr

  17. Calculus on Surfaces with General Closest Point Functions

    KAUST Repository

    März, Thomas

    2012-01-01

    The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this method. The main idea is that surface differentials of a surface function can be replaced with Cartesian differentials of its closest point extension, i.e., its composition with a closest point function. We introduce a general class of these closest point functions (a subset of differentiable retractions), show that these are exactly the functions necessary to satisfy the above idea, and give a geometric characterization of this class. Finally, we construct some closest point functions and demonstrate their effectiveness numerically on surface PDEs. © 2012 Society for Industrial and Applied Mathematics.

  18. Riparian shrub buffers reduce surface water pollutant loads

    Science.gov (United States)

    W. A. Geyer; C. Barden; K. Mankin; D. Devlin

    2003-01-01

    Surface water resources in Kansas often contain concentrations of pesticides, nutrients, and sediments that are of concern to local citizens. The United States Geological Survey reported in 1999 that 97 percent of streams and 82 percent of lakes in Kansas would not fully support all uses as designated by state statutes (U.S. Geological Survey 1999). Bacteria and...

  19. A generalized constitutive equation for creep of polymers at multiaxial loading

    Science.gov (United States)

    Altenbach, H.; Altenbach, J.; Zolochevsky, A.

    1996-11-01

    This paper introduced a unified formulation for generalized deformation models including load dependent effects (2nd order effects). It is given in more detail for stationary creep of isotropic, orthotropic, and anisotropic material behavior. A further generalization of the introduced 6-parameter constitutive equation is possible by coupling creep and damage. These generalizations include the classical theory of creep damage [13]. The proof of the proposed theory is given in [20-22] for special cases with a reduced number of material parameters. The results of calculations show a good agreement with results from multiaxial tests.

  20. Effect of natural ageing on surface of silver loaded TPE and its influence in antimicrobial efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Tomacheski, Daiane, E-mail: daitomacheski@gmail.com [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil); Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Pittol, Michele [Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Simões, Douglas Naue; Ribeiro, Vanda Ferreira [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil); Softer Brasil Compostos Termoplásticos LTDA, 275 Edgar Hoffmeister Avenue, Campo Bom 93700-000 (Brazil); Santana, Ruth Marlene Campomanes [Department of Materials Engineering, Laboratory of Polymers – LAPOL, Universidade Federal do Rio Grande do Sul, UFRGS, 9500 Bento Gonçalves Avenue, Postal Code 15010, Porto Alegre 91501-970 (Brazil)

    2017-05-31

    Highlights: • Ag loaded TPE lost their antimicrobial efficacy after polymer degradation. • Modifications in Ag loaded TPE surface provide conditions to bacteria settlement. • Rough TPE surface and the low γ{sub S}{sup +} was more favorable for bacterial development. - Abstract: The aim of this study is to characterize the modifications in silver loaded TPE surfaces exposed to weathering and their relation to susceptibility to microbial attack. Silver loaded TPE materials were exposed to natural ageing for nine months and modifications in antimicrobial properties and surface characteristics were evaluated. Chemical changes were investigated by using the infrared spectra. The average surface roughness and topography were determined by atomic force microscopy. Contact angle was measured to verify wettability conditions and surface free energy (SFE). After nine months of exposure, a decrease in the antimicrobial properties of loaded TPE compounds was observed. A reduction in surface roughness and improvement in wettability and high values of polar component of SFE were verified. The best antibacterial action was noticed in the sample with high Lewis acid force, lower roughness and lower carbonyl index.

  1. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone.

    Science.gov (United States)

    Owen, John R; Wayne, Jennifer S

    2011-07-01

    The superficial tangential zone (STZ) plays a significant role in normal articular cartilage's ability to support loads and retain fluids. To date, tissue engineering efforts have not replicated normal STZ function in cartilage repairs. This finite element study examined the STZ's role in normal and repaired articular surfaces under different contact conditions. Contact area and pressure distributions were allowed to change with time, tension-compression nonlinearity modeled collagen behavior in the STZ, and nonlinear geometry was incorporated to accommodate finite deformation. Responses to loading via impermeable and permeable rigid surfaces were compared to loading via normal cartilage, a more physiologic condition, anticipating the two rigid loading surfaces would bracket that of normal. For models loaded by normal cartilage, an STZ placed over the inferior repair region reduced the short-term axial compression of the articular surface by 15%, when compared to a repair without an STZ. Covering the repair with a normal STZ shifted the flow patterns and strain levels back toward that of normal cartilage. Additionally, reductions in von Mises stress (21%) and an increase in fluid pressure (13%) occurred in repair tissue under the STZ. This continues to show that STZ properties of sufficient quality are likely critical for the survival of transplanted constructs in vivo. However, response to loading via normal cartilage did not always fall within ranges predicted by the rigid surfaces. Use of more physiologic contact models is recommended for more accurate investigations into properties critical to the success of repair tissues.

  2. Effect of Ingredient Loading on Surface Migration Kinetics of Additives in Vulcanized Natural Rubber Compounds

    Directory of Open Access Journals (Sweden)

    Bryan B. Pajarito

    2014-12-01

    Full Text Available Surface migration kinetics of chemical additives in vulcanized natural rubber compounds were studied as function of ingredient loading. Rubber sheets were compounded according to a 212-8 fractional factorial design of experiment, where ingredients were treated as factors varied at two levels of loading. Amount of migrated additives in surface of rubber sheets was monitored through time at ambient conditions. The maximum amount and estimated rate of additive migration were determined from weight loss kinetic curves. Attenuated total reflection–Fourier transform infrared (ATR-FTIR spectroscopy and optical microscopy were used to characterize the chemical structure and surface morphology of sheet specimens during additive migration. ANOVA results showed that increased loading of reclaimed rubber, CaCO3, and paraffin wax signif icantly decreased the maximum amount of additive migration; by contrast, increased loading of used oil, asphalt, and mercaptobenzothiazole disulphide (MBTS increased the maximum amount. Increased loading of sulfur, diphenylguanidine (DPG, and paraffin wax significantly decreased the additive migration rate; increased loading of used oil, asphalt, and stearic acid elicited an opposite effect. Comparison of ATRFTIR spectra of migrated and cleaned rubber surfaces showed signif icant variation in intensity of specif ic absorbance bands that are also present in infrared spectra of migrating chemicals. Paraffin wax, used oil, stearic acid, MBTS, asphalt, and zinc stearate were identified to bloom and bleed in the rubber sheets. Optical micrographs of migrated rubber surfaces revealed formation of white precipitates due to blooming and of semi-transparent wet patches due to bleeding.

  3. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    Science.gov (United States)

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Bone response to immediate loading through titanium implants with different surface roughness in rats.

    Science.gov (United States)

    Sato, Naoko; Kuwana, Toshie; Yamamoto, Miou; Suenaga, Hanako; Anada, Takahisa; Koyama, Shigeto; Suzuki, Osamu; Sasaki, Keiichi

    2014-07-01

    Because of its high predictability of success, implant therapy is a reliable treatment for replacement of missing teeth. The concept of immediate implant loading has been widely accepted in terms of early esthetic and functional recovery. However, there is little biological evidence to support this concept. The objective of this study was to examine the interactive effects of mechanical loading and surface roughness of immediately loaded titanium implants on bone formation in rats. Screw-shaped anodized titanium implants were either untreated (smooth) or acid-etched. Two implants were inserted parallel to each other in the tibiae of rats, and a closed coil spring (2.0 N) was immediately applied. Trabecular and cortical bone around both implants was analyzed using microtomographic images, and a removal torque test was performed at weeks 1, 2, and 4. Immediate loading of acid-etched implants resulted in significant decreases in bone mineral density, contact surface area, and cortical bone thickness. These effects were not observed after immediate loading of smooth implants. Conversely, loading did not influence acid-etched implant fixation; however, smooth implant fixation at week 1 was significantly reduced. These results imply that surface roughness regulates bone response to mechanical stress and that immediate loading might not inhibit osseointegration for smooth and rough implants in the late healing stages.

  5. Aberration analysis for freeform surface terms overlay on general decentered and tilted optical surfaces.

    Science.gov (United States)

    Yang, Tong; Cheng, Dewen; Wang, Yongtian

    2018-03-19

    Aberration theory helps designers to better understand the nature of imaging systems. However, the existing aberration theory of freeform surfaces has many limitations. For example, it only works in the special case when the central area of the freeform surface is used. In addition, the light footprint is limited to a circle, which does not match the case of an elliptical footprint for general systems. In this paper, aberrations generated by freeform surface term overlay on general decentered and tilted optical surfaces are analyzed. For the case when the off-axis section of a freeform surface is used, the aberration equation for using stop and nonstop surfaces is discussed, and the aberrations generated by Zernike terms up to Z 17/18 are analyzed in detail. To solve the problem of the elliptical light footprint for tilted freeform surfaces, the scaled pupil vector is used in the aberration analysis. The mechanism of aberration transformation is discovered, and the aberrations generated by different Zernike terms in this case are calculated. Finally we proposed aberration equations for freeform terms on general decentered and tilted freeform surfaces. The research result given in this paper offers an important reference for optical designers and engineers, and it is of great importance in developing analytical methods for general freeform system design, tolerance analysis, and system assembly.

  6. A general approach to mesoporous metal oxide microspheres loaded with noble metal nanoparticles

    KAUST Repository

    Jin, Zhao

    2012-04-26

    Catalytic microspheres: A general approach is demonstrated for the facile preparation of mesoporous metal oxide microspheres loaded with noble metal nanoparticles (see TEM image in the picture). Among 18 oxide/noble metal catalysts, TiO 2/0.1 mol Pd microspheres showed the highest turnover frequency in NaBH 4 reduction of 4-nitrophenol (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Generalized perturbation theory error control within PWR core-loading pattern optimization

    International Nuclear Information System (INIS)

    Imbriani, J.S.; Turinsky, P.J.; Kropaczek, D.J.

    1995-01-01

    The fuel management optimization code FORMOSA-P has been developed to determine the family of near-optimum loading patterns for PWR reactors. The code couples the optimization technique of simulated annealing (SA) with a generalized perturbation theory (GPT) model for evaluating core physics characteristics. To ensure the accuracy of the GPT predictions, as well as to maximize the efficient of the SA search, a GPT error control method has been developed

  8. Surface and Internal Waves due to a Moving Load on a Very Large Floating Structure

    Directory of Open Access Journals (Sweden)

    Taro Kakinuma

    2012-01-01

    Full Text Available Interaction of surface/internal water waves with a floating platform is discussed with nonlinearity of fluid motion and flexibility of oscillating structure. The set of governing equations based on a variational principle is applied to a one- or two-layer fluid interacting with a horizontally very large and elastic thin plate floating on the water surface. Calculation results of surface displacements are compared with the existing experimental data, where a tsunami, in terms of a solitary wave, propagates across one-layer water with a floating thin plate. We also simulate surface and internal waves due to a point load, such as an airplane, moving on a very large floating structure in shallow water. The wave height of the surface or internal mode is amplified when the velocity of moving point load is equal to the surface- or internal-mode celerity, respectively.

  9. Entanglement entropy from surface terms in general relativity

    OpenAIRE

    Bhattacharyya, Arpan; Sinha, Aninda

    2013-01-01

    Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighbourhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1 dimensional CFTs at finite temperature whose gravity dual is the BTZ black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement ent...

  10. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    Science.gov (United States)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  11. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  12. Tailoring hydrogel surface properties to modulate cellular response to shear loading.

    Science.gov (United States)

    Meinert, Christoph; Schrobback, Karsten; Levett, Peter A; Lutton, Cameron; Sah, Robert L; Klein, Travis J

    2017-04-01

    Biological tissues at articulating surfaces, such as articular cartilage, typically have remarkable low-friction properties that limit tissue shear during movement. However, these frictional properties change with trauma, aging, and disease, resulting in an altered mechanical state within the tissues. Yet, it remains unclear how these surface changes affect the behaviour of embedded cells when the tissue is mechanically loaded. Here, we developed a cytocompatible, bilayered hydrogel system that permits control of surface frictional properties without affecting other bulk physicochemical characteristics such as compressive modulus, mass swelling ratio, and water content. This hydrogel system was applied to investigate the effect of variations in surface friction on the biological response of human articular chondrocytes to shear loading. Shear strain in these hydrogels during dynamic shear loading was significantly higher in high-friction hydrogels than in low-friction hydrogels. Chondrogenesis was promoted following dynamic shear stimulation in chondrocyte-encapsulated low-friction hydrogel constructs, whereas matrix synthesis was impaired in high-friction constructs, which instead exhibited increased catabolism. Our findings demonstrate that the surface friction of tissue-engineered cartilage may act as a potent regulator of cellular homeostasis by governing the magnitude of shear deformation during mechanical loading, suggesting a similar relationship may also exist for native articular cartilage. Excessive mechanical loading is believed to be a major risk factor inducing pathogenesis of articular cartilage and other load-bearing tissues. Yet, the mechanisms leading to increased transmission of mechanical stimuli to cells embedded in the tissue remain largely unexplored. Here, we demonstrate that the tribological properties of loadbearing tissues regulate cellular behaviour by governing the magnitude of mechanical deformation arising from physiological tissue

  13. Traffic Load on Interconnection Lines of Generalized Double Ring Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Riaz, Muhammad Tahir; Madsen, Ole Brun

    2004-01-01

    consists of two planar rings, which are easily embedded by fiber or other wired solutions. It is shown that for large N2R structures, the interconnection lines carry notably lower loads than the other lines if shortest-path routing is used, and the effects of two other routing schemes are explored, leading......Generalized Double Ring (N2R) network structures possess a number of good properties, but being not planar they are hard to physically embed in communication networks. However, if some of the lines, the interconnection lines, are implemented by wireless technologies, the remaining structure...... to lower load on interconnection lines at the price of larger efficient average distance and diameter....

  14. Statics of Shallow Inclined Elastic Cables under General Vertical Loads: A Perturbation Approach

    Directory of Open Access Journals (Sweden)

    Angelo Luongo

    2018-02-01

    Full Text Available The static problem for elastic shallow cables suspended at points at different levels under general vertical loads is addressed. The cases of both suspended and taut cables are considered. The funicular equation and the compatibility condition, well known in literature, are here shortly re-derived, and the commonly accepted simplified hypotheses are recalled. Furthermore, with the aim of obtaining simple asymptotic expressions with a desired degree of accuracy, a perturbation method is designed, using the taut string solution as the generator system. The method is able to solve the static problem for any distributions of vertical loads and shows that the usual, simplified analysis is just the first step of the perturbation procedure proposed here.

  15. General Rotational Surfaces in Pseudo-Euclidean 4-Space with Neutral Metric

    OpenAIRE

    Aleksieva, Yana; Milousheva, Velichka; Turgay, Nurettin Cenk

    2016-01-01

    We define general rotational surfaces of elliptic and hyperbolic type in the pseudo-Euclidean 4-space with neutral metric which are analogous to the general rotational surfaces of C. Moore in the Euclidean 4-space. We study Lorentz general rotational surfaces with plane meridian curves and give the complete classification of minimal general rotational surfaces of elliptic and hyperbolic type, general rotational surfaces with parallel normalized mean curvature vector field, flat general rotati...

  16. On the Pressure Distribution in a Porous Media under a Spherical Loading Surface

    Science.gov (United States)

    Wang, Qiuyun; Zhu, Zenghao; Nathan, Rungun; Wu, Qianhong

    2017-11-01

    The phenomenon of pressure generation and relaxation inside a porous media is widely observed in biological systems. Herein, we report a biomimetic study to examine the pressure distribution inside a soft porous layer when a spherical loaded surface suddenly impacts on it. A novel experimental setup was developed that includes a fully instrumented spherical piston and a soft fibrous porous layer underneath. Extensive experimental study was performed with different porous materials, different loadings and different sized loading surfaces. The pore pressure generation and the motion of the loading surface were recorded. A novel theoretical model was developed to characterize the pressure field during the process. Excellent agreement was observed between the experimental results and the theoretically predictions. It shows that the pressure generation is governed by the Brinkman parameter, α = h/Kp0.5, where h is the porous layer thickness, and Kp is the undeformed permeability. The study improves our understanding of the dynamic response of soft porous media under rapid compression. It has board impact on the study of transient load bearing in biological systems and industry applications. This work was supported by the National Science Foundation (NSF CBET) under Award #1511096.

  17. Effect of immediate or delayed loading following immediate placement of implants with a modified surface.

    Science.gov (United States)

    Liñares, A; Mardas, N; Dard, M; Donos, N

    2011-01-01

    to evaluate the effect of the timing of loading on bone-to-implant contact (BIC) following immediate placement of implants with a hydrophilic sandblasted, large-grit and acid-etched surface (modSLA) into fresh extraction sockets in a minipig model. six minipigs were used in this study. In each hemi-mandible, two conical shape implants (TE, Straumann implants) with a hydrophilic surface (modSLA) were placed in fresh extraction sockets. In one side of the mandible (control), two implants were immediately placed in fresh extraction sockets. The implants were loaded after 4 weeks of healing. At the contralateral side (test), two implants were immediately placed and loaded. After 8 weeks of healing, the animals were sacrificed and histologically analysed. during the experimental period, no implants were lost and all of them presented to be osseointegrated. The percentage of BIC was similar in both groups: 66.1% and 65.1% for the control and test group, respectively. Furthermore, the distance from the shoulder of the implant to bone crest and the distance from the shoulder to the first BIC were similar in both groups. immediate implant placement and loading showed similar BIC with immediate placement and delayed loading when implants with a modSLA surface were used. Both procedures showed similar buccal bone crest levels, which presented some resorption irrespective of the treatment modality.

  18. The Fracture of Plasma-Treated Polyurethane Surface under Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Ilya A. Morozov

    2018-02-01

    Full Text Available Plasma treatment of soft polymers is a promising technique to improve biomedical properties of the materials. The response to the deformation of such materials is not yet clear. Soft elastic polyurethane treated with plasma immersion ion implantation is subjected to fatigue uniaxial loading. The influence of the strain amplitude and the plasma treatment regime on damage character is discussed. Surface defects are studied in unloaded and stretched states of the material. As a result of fatigue loading, transverse cracks (with closed overlapping edges as well as with open edges deeply propagating into the polymer and longitudinal folds which are break and bend inward, appear on the surface. Hard edges of cracks cut the soft polymer which is squeezed from the bulk to the surface. The observed damages are related to the high stiffness of the modified surface and its transition to the polymer substrate.

  19. Study of surfaces and surface layers on high temperature materials after short-time thermal loads

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1985-11-01

    Being part of the plasma-wall interaction during TOKAMAK operation, erosion- and redeposition processes of First Wall materials substantially influence plasma parameters as well as the properties of the First Wall. An important redeposition process of eroded material is the formation of thin films by atomic condensation. Examinations of First Wall components after TOKAMAK operation lead to the assumption that these thin metallic films tend to agglomerate to small particles under subsequent heat load. In laboratory experiments it is shown that thin metallic films on various substrates can agglomerate under short time high heat fluxes and also under longer lasting lower thermal loads, thus verifying the ''agglomeration hypothesis''. (orig.) [de

  20. Risk analysis of breakwater caisson under wave attack using load surface approximation

    Science.gov (United States)

    Kim, Dong Hyawn

    2014-12-01

    A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method (FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.

  1. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  2. A novel approach to generate random surface thermal loads in piping

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir; Cizelj, Leon

    2014-07-01

    Highlights: • Approach for generating continuous and time-dependent random thermal fields. • Temperature fields simulate fluid mixing thermal loads at fluid–wall interface. • Through plane-wave decomposition, experimental temperature statistics are reproduced. • Validation of the approach with a case study from literature. • Random surface thermal loads generation for future thermal fatigue analyses of piping. - Abstract: There is a need to perform three-dimensional mechanical analyses of pipes, subjected to complex thermo-mechanical loadings such as the ones evolving from turbulent fluid mixing in a T-junction. A novel approach is proposed in this paper for fast and reliable generation of random thermal loads at the pipe surface. The resultant continuous and time-dependent temperature fields simulate the fluid mixing thermal loads at the fluid–wall interface. The approach is based on reproducing discrete fluid temperature statistics, from experimental readings or computational fluid dynamic simulation's results, at interface locations through plane-wave decomposition of temperature fluctuations. The obtained random thermal fields contain large scale instabilities such as cold and hot spots traveling at flow velocities. These low frequency instabilities are believed to be among the major causes of the thermal fatigue in T-junction configurations. The case study found in the literature has been used to demonstrate the generation of random surface thermal loads. The thermal fields generated with the proposed approach are statistically equivalent (within the first two moments) to those from CFD simulations results of similar characteristics. The fields maintain the input data at field locations for a large set of parameters used to generate the thermal loads. This feature will be of great advantage in future sensitivity fatigue analyses of three-dimensional pipe structures.

  3. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  4. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  5. Generalization of fewest-switches surface hopping for coherences

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  6. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in The Czech Republic. Critical loads of acidity to surface waters, Northern Moravia and Silesia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Henriksen, A.; Raclavska, H.; Matysek, D.

    1994-12-31

    The governments of Norway and Czech and Slovak Federal Republic have signed a bilateral environmental protection agreement. This report describes Project 4.2 of the agreement: Assessing critical loads of acidity to surface waters in The Czech Republic. Critical load of acidity to surface waters and exceedance of critical load were estimated by using standard methods modified for the sampling area. Water samples were mainly taken from small forest streams, which were the only available surface waters with negligible pollution from local sources. High critical loads were calculated, averaging 20 times higher than the corresponding value for southern Norway. The deposition of acidifying components in the region was high, but did not exceed the critical load and so there is a reserve for additional acid deposition. Scattered water analyses from several other parts of The Czech Republic indicate both low critical loads and exceedance of critical load in various regions (e.g. Bohemia). 21 refs., 14 figs., 3 tabs.

  7. Influence of zirconia surface treatment on veneering porcelain shear bond strength after cyclic loading.

    Science.gov (United States)

    Nishigori, Atsushi; Yoshida, Takamitsu; Bottino, Marco C; Platt, Jeffrey A

    2014-12-01

    The influence of yttria-stabilized tetragonal zirconia polycrystal surface treatment on veneering porcelain shear bond strength after cyclic loading is not fully understood. The purpose of this study was to investigate the influence of yttria-stabilized tetragonal zirconia polycrystal surface treatment on veneering porcelain shear bond strength and cyclic loading on the shear bond strength between the 2 materials. A total of 48 cylinder-shaped yttria-stabilized tetragonal zirconia polycrystal specimens were fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM), sintered for 8 hours at 1500°C, ground with 320-grit diamond paper, and divided into 4 groups (n = 12) according to surface treatment as follows: no treatment/control; heat treatment of 650°C to 1000°C at 55°C/min; airborne-particle abrasion with 50-μm alumina at 0.4 MPa pressure for 10 seconds; or heat treatment after abrasion. A veneering porcelain cylinder was built and fired on the prepared yttria-stabilized tetragonal zirconia polycrystal specimens. The shear bond strength was tested with a universal testing machine. Six specimens from each group were subjected to cyclic loading (10000 cycles, 1.5 Hz, 10 N load) before testing. The mean ± SD ranged from 10.7 ± 15.4 to 34.1 ± 10.0. Three-way ANOVA found no statistically significant (P > .05) effect of surface treatment and cyclic loading on shear bond strength. The Sidak multiple comparisons procedure found that cyclic loading specimens had significantly lower shear bond strength than noncyclic loading specimens after airborne-particle abrasion without heat treatment (P = .013). Within the limitations of this study, the shear bond strength between yttria-stabilized tetragonal zirconia polycrystal and veneering porcelain was not significantly affected by surface treatment. Airborne-particle abrasion without subsequent heat treatment should be avoided as a surface treatment in fabrication methods. Copyright © 2014

  8. Effects of electric and magnetic loadings on bone surface remodeling: a model modification and simulation.

    Science.gov (United States)

    Kazerooni, Anahita Fathi; Rabbani, Mohsen; Yazdchi, Mohammadreza; Kasiri, Saeid; Rad, Hamidreza Saligheh

    2011-06-01

    This paper presents a new modification to the previous model of bone surface remodeling under electric and magnetic loadings. For this study, the thermo-electro-magneto-elastic model of bone surface remodeling is used. This model is modified by considering an important phenomenon occurring in living bone through its adaptation to external loadings called desensitization. In fact, bone cells lose their responsiveness and sensitivity to long-term external loadings, i.e., they become desensitized. Therefore, bone cells need a recovery period, during which they become resensitized. In this work, this phenomenon is considered in the original model. The effects of various electric and magnetic loading conditions, including various frequencies, waveforms and pulse duty cycles, are explored on the modified model and compared to the original model. The modified model is also searched for the optimal frequency and duty cycle, to obtain the best bone growth response under electromagnetic fields. The results of this paper show that the modified model is consistent with experimental observations. In addition, it is indicated that this modified model in contrast to the original model, is sensitive to frequency. It is shown that the optimal frequency of loading for the modified model is 1 Hertz (Hz), and the pulse duty cycles up to 50% are sufficient for bone remodeling to reach its maximum value.

  9. Smart release of doxorubicin loaded on polyetheretherketone (PEEK) surface with 3D porous structure.

    Science.gov (United States)

    Ouyang, Liping; Sun, Zhenjie; Wang, Donghui; Qiao, Yuqin; Zhu, Hongqin; Ma, Xiaohan; Liu, Xuanyong

    2018-03-01

    It is important to fabricate an implant possessing environment sensitive drug delivery. In this work, the construction of 3D porous structure on polyetheretherketone (PEEK) surface and pH sensitive polymer, chitosan, was introduced. The smart release of doxorubicin can be realized on the 3D porous surface of PEEK loading chitosan. We give a feasible explanation for the effect of chitosan on smart drug release according to Henderson-Hasselbalch equation. Furthermore, the intracellular drug content of the cell cultured on the samples with highest chitosan is significantly higher at pH 4.0, whereas lower at pH 7.4 than other samples. The smart release of doxorubicin via modification with chitosan onto 3D porous PEEK surface paves the way for the application of PEEK in drug loading platform for recovering bone defect caused by malignant bone tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effectiveness of screw surface coating on the stability of zirconia abutments after cyclic loading.

    Science.gov (United States)

    Basílio, Mariana de Almeida; Butignon, Luis Eduardo; Arioli Filho, João Neudenir

    2012-01-01

    Different surface treatments have been developed in attempts to prevent the loosening of abutment screws. The aim of the current study was to compare the effectiveness of titanium alloy screws with tungsten-doped diamond-like carbon (W-DLC) coating and uncoated screws in providing stability to zirconia (ZrO2) ceramic abutments after cyclic loading. Twenty prefabricated ZrO2 ceramic abutments on their respective external-hex implants were divided into two groups of equal size according to the type of screw used: uncoated titanium alloy screw (Ti) or titanium alloy screw with W-DLC coating (W-DLC/Ti). The removal torque value (preload) of the abutment screw was measured before and after loading. Cyclic loading between 11 and 211 N was applied at an angle of 30 degrees to the long axis of the implants at a frequency of 15 Hz. A target of 0.5 X 106 cycles was defined. Group means were calculated and compared using analysis of variance and the F test (α = .05). Before cyclic loading, the preload for Ti screws was significantly higher than that for W-DLC/Ti screws (P = .021). After cyclic loading, there was no significant difference between them (P = .499). Under the studied conditions, it can be concluded that, after cyclic loading, both abutment screws presented a significant reduction in the mean retained preload and similar effectiveness in maintaining preload.

  11. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  12. Effect of aerosols loading and retention on surface temperature in the DJF months

    Science.gov (United States)

    Emetere, M. E.; Onyechekwa, L.; Tunji-Olayeni, P.

    2017-05-01

    The effect of aerosols loading most often results in aerosols retention in the atmosphere. Aside the health hazards of aerosol retention, its effect on climate change are visible. In this research, it was proposed that the effect of aerosol retention also affects the fluctuation of the surface temperature. The location of study is Enugu, Nigeria (6.4584° N, 7.5464° E). Twenty-nine years GISS Surface Temperature Analysis (GISTEMP) data set and sixteen years MISR aerosol optical data set were used. The fluctuations in the sixteen years aerosol optical depth (AOD) tallied with the surface temperature. The curve-fitting tool of Matlab was used to generate a polynomial for the surface temperature and used to project a five years prediction of the surface temperature.

  13. Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces

    DEFF Research Database (Denmark)

    Rinker, Jennifer M.

    2016-01-01

    at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four......This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a high-dimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data...... turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project...

  14. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J.; Gerzabek, M.H.; Mueck, K.

    1994-03-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broad bean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broad bean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plant during the experimental period are 68 % and 32 % for broadbean, 47 % and 53 % for ryegrass, respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (authors)

  15. An experimental study on mass loading of soil particles on plant surfaces

    International Nuclear Information System (INIS)

    Li, J. G.; Gerzabek, M. H.; Mueck, K.

    1994-01-01

    Radionuclide contaminated soil adhered to plant surfaces can contribute to human ingestion dose. To determine this contribution, a method of 46 Sc neutron activation analysis was established and tested, by which a detection limit of 0.05 mg soil per g dry plant biomass can be obtained. In the field and greenhouse experiment the mass loading of soil on ryegrass (Lolium perenne L.) and broadbean (Vicia faba L.) was investigated and the contribution from rainsplash and wind erosion were evaluated separately. Soil retained on plant surfaces in field conditions in Seibersdorf/Austria was 5.77 ± 1.44 mg soil per g dry plant for ryegrass and 9.51 ± 0.73 mg soil per g dry plant for broadbean. Estimates of contribution from rainsplash and wind erosion to soil contamination of plants during the experimental period are 68 % and 32 % for broadbean 47 % and 53 % for ryegrass respectively. Mass loading results from field studies indicate that soil adhesion on plant surfaces can contribute up to 23 % of plant 137 Cs contamination, the transfer factors modified by mass loading decline differently, depending on 137 Cs concentration of the soil and the soil mass adhered to plant surfaces. (author)

  16. Controllable load sharing for soft adhesive interfaces on three-dimensional surfaces

    Science.gov (United States)

    Song, Sukho; Drotlef, Dirk-Michael; Majidi, Carmel; Sitti, Metin

    2017-05-01

    For adhering to three-dimensional (3D) surfaces or objects, current adhesion systems are limited by a fundamental trade-off between 3D surface conformability and high adhesion strength. This limitation arises from the need for a soft, mechanically compliant interface, which enables conformability to nonflat and irregularly shaped surfaces but significantly reduces the interfacial fracture strength. In this work, we overcome this trade-off with an adhesion-based soft-gripping system that exhibits enhanced fracture strength without sacrificing conformability to nonplanar 3D surfaces. Composed of a gecko-inspired elastomeric microfibrillar adhesive membrane supported by a pressure-controlled deformable gripper body, the proposed soft-gripping system controls the bonding strength by changing its internal pressure and exploiting the mechanics of interfacial equal load sharing. The soft adhesion system can use up to ˜26% of the maximum adhesion of the fibrillar membrane, which is 14× higher than the adhering membrane without load sharing. Our proposed load-sharing method suggests a paradigm for soft adhesion-based gripping and transfer-printing systems that achieves area scaling similar to that of a natural gecko footpad.

  17. Mechanical stability of immediately loaded implants with various surfaces and designs: a pilot study in dogs.

    Science.gov (United States)

    Neugebauer, Jörg; Weinländer, Michael; Lekovic, Vojislav; von Berg, Karl-Heinz Linne; Zoeller, Joachim E

    2009-01-01

    Immediate loading is among the most innovative techniques in implant therapy today. This pilot study investigates the biomechanical outcome of various designs and surfaces that claim to shorten implant treatment. In each quadrant of two mongrel dogs, four different implants were used for immediate loading. The following implants were placed 3 months after tooth extraction: screw with low thread profile and anodic oxidized surface (LPAOS), solid screw with wide thread profile and titanium plasma spray coating (WPTPS), screw with low profile and hybrid design of double-etched and machined surface (LPHES), and screw with two thread profiles and a sandblasted and acid-etched surface (DTSAE). The insertion torque of each implant was above 35 Ncm. Resonance frequency analysis was performed after implant placement and again after sacrifice. Additionally, the removal torque and the amount of embedded titanium particles in the peri-implant bone were measured. All 16 prostheses were functional after a 5-month loading period. The highest mean removal torque values were recorded with WPTPS implants (24.4 Ncm/mm), followed by DTSAE implants (22.3 Ncm/mm) and LPAOS implants (18.7 Ncm/mm); the lowest score was obtained by LPHES (12.0 Ncm/mm). The ISQ values increased between the time of surgery and recall for all systems on average, but a significant positive correlation was found for DTSAE only. Significantly higher amounts of titanium were found in the surrounding bone with WPTPS (0.76%) and LPAOS (0.41%) in comparison with DTSAE (0.10%) and LPHES (0.03%). Immediate loading is possible with various designs and surfaces if high primary stability can be achieved during implant placement.

  18. Investigation into Mass Loading Sensitivity of Sezawa Wave Mode-Based Surface Acoustic Wave Sensors

    Directory of Open Access Journals (Sweden)

    N. Ramakrishnan

    2013-02-01

    Full Text Available In this work mass loading sensitivity of a Sezawa wave mode based surface acoustic wave (SAW device is investigated through finite element method (FEM simulation and the prospects of these devices to function as highly sensitive SAW sensors is reported. A ZnO/Si layered SAW resonator is considered for the simulation study. Initially the occurrence of Sezawa wave mode and displacement amplitude of the Rayleigh and Sezawa wave mode is studied for lower ZnO film thickness. Further, a thin film made of an arbitrary material is coated over the ZnO surface and the resonance frequency shift caused by mass loading of the film is estimated. It was observed that Sezawa wave mode shows significant sensitivity to change in mass loading and has higher sensitivity (eight times higher than Rayleigh wave mode for the same device configuration. Further, the mass loading sensitivity was observed to be greater for a low ZnO film thickness to wavelength ratio. Accordingly, highly sensitive SAW sensors can be developed by coating a sensing medium over a layered SAW device and operating at Sezawa mode resonance frequency. The sensitivity can be increased by tuning the ZnO film thickness to wavelength ratio.

  19. Coupling characteristics of dielectric-loaded surface plasmon polariton waveguides: a simple method of analysis.

    Science.gov (United States)

    Srivastava, Triranjita; Kumar, Arun

    2009-11-01

    A simple method to obtain the coupling characteristics of a directional coupler consisting of two dielectric-loaded surface plasmon polariton waveguides is reported. The method is found to give accurate results in comparison with the widely used effective index method. Theoretical results are also found to match excellently with recently reported measurements on coupling lengths in such waveguides [Opt. Lett.34, 310 (2009)OPLEDP0146-959210.1364/OL.34.000310].

  20. Continental-scale water fluxes from continuous GPS observations of Earth surface loading

    Science.gov (United States)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2015-12-01

    After more than a decade of observing annual oscillations of Earth's surface from seasonal snow and water loading, continuous GPS is now being used to model time-varying terrestrial water fluxes on the local and regional scale. Although the largest signal is typically due to the seasonal hydrological cycle, GPS can also measure subtle surface deformation caused by sustained wet and dry periods, and to estimate the spatial distribution of the underlying terrestrial water storage changes. The next frontier is expanding this analysis to the continental scale and paving the way for incorporating GPS models into the National Climate Assessment and into the observational infrastructure for national water resource management. This will require reconciling GPS observations with predictions from hydrological models and with remote sensing observations from a suite of satellite instruments (e.g. GRACE, SMAP, SWOT). The elastic Earth response which transforms surface loads into vertical and horizontal displacements is also responsible for the contamination of loading observations by tectonic and anthropogenic transients, and we discuss these and other challenges to this new application of GPS.

  1. Symptom load and general function among patients with erythema migrans: a prospective study with a 1-year follow-up after antibiotic treatment in Norwegian general practice.

    Science.gov (United States)

    Eliassen, Knut Eirik; Hjetland, Reidar; Reiso, Harald; Lindbæk, Morten; Tschudi-Madsen, Hedda

    2017-03-01

    Promptly treated erythema migrans (EM) has good prognosis. However, some patients report persistent symptoms. Do patients with EM have more symptoms than the general population? We describe individual symptoms and general function in EM-patients at time of diagnosis and one year after treatment. Prospective study with 1-year follow up after treatment. Questionnaires included a modified version of the Subjective Health Complaints Inventory, comprising three additional Lyme borreliosis (LB) related symptoms. General function was assessed using a five-point scale modified from the COOP/WONCA charts. Norwegian general practice. A total of 188 patients were included in a randomized controlled trial comparing three antibiotic regimens for EM, of whom 139 had complete data for this study. Individual symptoms, symptom load and general function. Mild symptoms were common, reported by 84.9% at baseline and by 85.6% at follow-up. At baseline, patients reported a mean of 5.4 symptoms, compared with 6.2 after one year. Severely bothersome symptoms and severely impaired general function were rare. Tiredness was the most reported symptom both at baseline and at follow-up. Palsy (other than facial) was the least reported symptom, but the only one with a significant increase. However, this was not associated to the EM. The symptom load was comparable to that reported in the general population. We found an increase in symptom load at follow-up that did not significantly affect general function. Monitoring patients' symptom loads prior to treatment reduce the probability of attributing follow-up symptoms to LB. Key points Erythema migrans has a good prognosis.Patients treated for erythema migrans have a slight increase in symptom load one year after treatment. This increase does not affect general function. The levels of subjective health complaints in patients treated for erythema migrans are comparable to the background population.

  2. Effect of Cyclic Loading on Surface Instability of Silicone Rubber under Compression

    Directory of Open Access Journals (Sweden)

    Zhonglin Li

    2017-04-01

    Full Text Available This work combines experiments and finite element simulations to study the effect of pre-imposed cyclic loading on surface instability of silicon rubber under compression. We first fabricate cuboid blocks of silicon rubber and pinch them cyclicly a few times. Then, an in-house apparatus is set to apply uniaxial compression on the silicon rubber under exact plane strain conditions. Surprisingly, we find multiple creases on the surface of silicone rubber, significantly different from what have been observed on the samples without the cyclic pinching. To reveal the underlying physics for these experimentally observed multiple creases, we perform detailed nanoindentation experiments to measure the material properties at different locations of the silicon rubber. The modulus is found to be nonuniform and varies along the thickness direction after the cyclic pinching. According to these experimental results, three-layer and multilayer finite element models are built with different materials properties informed by experiments. The three-layer finite element model can excellently explain the nucleation and pattern of multiple surface creases on the surface of compressed silicone rubber, in good agreement with experiments. Counterintuitively, the multilayer model with gradient modulus cannot be used to explain the multiple creases observed in our experiments. According to these simulations, the experimentally observed multiple creases should be attributed to a thin and stiff layer formed on the surface of silicon rubber after the pre-imposed cyclic loading.

  3. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    International Nuclear Information System (INIS)

    Ragni, D; Ashok, A; Van Oudheusden, B W; Scarano, F

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988–92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°

  4. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    Science.gov (United States)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  5. Eradication of high viable loads of Listeria monocytogenes contaminating food-contact surfaces

    Directory of Open Access Journals (Sweden)

    Silvia ede Candia

    2015-07-01

    Full Text Available This study demonstrates the efficacy of cold gaseous ozone treatments at low concentrations in the eradication of high Listeria monocytogenes viable cell loads from glass, polypropylene, stainless steel and expanded polystyrene food-contact surfaces. Using a step by step approach, involving the selection of the most resistant strain-surface combinations, 11 Listeria spp. strains resulted inactivated by a continuous ozone flow at 1.07 mg m-3 after 24 or 48 h of cold incubation, depending on both strain and surface evaluated. Increasing the inoculum level to 9 log CFU coupon-1, the best inactivation rate was obtained after 48h of treatment at 3.21 mg m-3 ozone concentration when cells were deposited onto stainless steel and expanded polystyrene coupons, resulted the most resistant food-contact surfaces in the previous assays.The addition of naturally microbiologically contaminated meat extract to a high load of L. monocytogenes LMG 23775 cells, the most resistant strain out of the 11 assayed Listeria spp. strains, led to its complete inactivation after four days of treatment.To the best of our knowledge, this is the first report describing the survival of L. monocytogenes and the effect of ozone treatment under cold storage conditions on expanded polystyrene, a commonly-used material in food packaging. These results could be useful for reducing pathogen cross-contamination phenomena during cold food storage.

  6. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  7. Surface modification and fatigue behavior of nitinol for load bearing implants

    Science.gov (United States)

    Bernard, Sheldon A.

    Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected

  8. Water pollution abatement programme. The Czech Republic. Project 4.2. Assessing critical loads of acidity to surface waters in the Czech Republic. Critical loads of acidity to surface waters, north-eastern Bohemia and northern Moravia, The Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Lien, L.; Raclavsky, K.; Raclavska, H.; Matysek, D.; Hovind, H.

    1996-01-01

    This report discusses estimates of critical loads of acidity to surface waters and their exceedances, for north-eastern Bohemia and Moravia in The Czech Republic. The survey covers 13 400 km{sup 2}, or 17% of the area of the country. Varying critical loads were observed within the examined region. 19% of the examined area showed exceedance of critical load and another 11% was close to exceedance. The survey should continue in Bohemia. 24 refs., 20 figs., 4 tabs.

  9. Observations on the effects of grooved surfaces on the interfacial torque in highly loaded rolling and sliding tests

    DEFF Research Database (Denmark)

    Janakiraman, Shravan; Klit, Peder; Jensen, Niels Steenfeldt

    2014-01-01

    Some efforts have been undertaken to study the effects of grooved surfaces on the interfacial film thickness and torque between two contacting non-conformal surfaces under heavy loads. Transverse grooves of micrometer scale depth were engraved on polished, flat ring surfaces using established...... industrial methods like laser engraving and wire cutting. The grooved surfaces were then run against a polished flat surface at loads corresponding to high normal Hertzian pressures. Experiments were conducted to study the effects of the following parameters on the interfacial torque-groove depth, groove...

  10. Sodium Dodecyl Sulfate (SDS)-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Science.gov (United States)

    Li, Li; Molin, Soeren; Yang, Liang; Ndoni, Sokol

    2013-01-01

    Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS) block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS) was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h) and significantly reduce biofilm formation in long-term (1 week) by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability. PMID:23377015

  11. Sodium Dodecyl Sulfate (SDS-Loaded Nanoporous Polymer as Anti-Biofilm Surface Coating Material

    Directory of Open Access Journals (Sweden)

    Sokol Ndoni

    2013-02-01

    Full Text Available Biofilms cause extensive damage to industrial settings. Thus, it is important to improve the existing techniques and develop new strategies to prevent bacterial biofilm formation. In the present study, we have prepared nanoporous polymer films from a self-assembled 1,2-polybutadiene-b-polydimethylsiloxane (1,2-PB-b-PDMS block copolymer via chemical cross-linking of the 1,2-PB block followed by quantitative removal of the PDMS block. Sodium dodecyl sulfate (SDS was loaded into the nanoporous 1,2-PB from aqueous solution. The SDS-loaded nanoporous polymer films were shown to block bacterial attachment in short-term (3 h and significantly reduce biofilm formation in long-term (1 week by gram-negative bacterium Escherichia coli. Tuning the thickness or surface morphology of the nanoporous polymer films allowed to extent the anti-biofilm capability.

  12. Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading

    International Nuclear Information System (INIS)

    Sukhorukova, I.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, Ph.V.; Anisimova, N.Y.; Gloushankova, N.A.; Zhitnyak, I.Y.; Benesova, J.; Amler, E.; Shtansky, D.V.

    2015-01-01

    Graphical abstract: - Highlights: • Bioactive materials with rate-controlled release of antibacterial agent. • Ag + ion release from TiCaPCON-Ag films depended on Ag content. • TiCaPCON-coated Ti network structure with blind pores loaded with co-amoxiclav. • Strong bactericidal effect of drug-loaded samples. • Antibacterial yet biocompatible and bioactive surfaces. - Abstract: Two approaches (surface doping with bactericidal element and loading of antibiotic into specially formed surface microcontainers) to the fabrication of antibacterial yet biocompatible and bioactive surfaces are described. A network structure with square-shaped blind pores of 2.6 ± 0.6 × 10 −3 mm 3 for drug loading was obtained by selective laser sintering (SLS). The SLS-fabricated samples were loaded with 0.03, 0.3, 2.4, and 4 mg/cm 2 of co-amoxiclav (amoxicillin and clavulanic acid). Ag-doped TiCaPCON films with 0.4, 1.2, and 4.0 at.% of Ag were obtained by co-sputtering of composite TiC 0.5 -Ca 3 (PO 4 ) 2 and metallic Ag targets. The surface structure of SLS-prepared samples and cross-sectional morphology of TiCaPCON-Ag films were studied by scanning electron microscopy. The through-thickness of Ag distribution in the TiCaPCON-Ag films was obtained by glow discharge optical emission spectroscopy. The kinetics of Ag ion release in normal saline solution was studied using inductively coupled plasma mass spectrometry. Bacterial activity of the samples was evaluated against S. epidermidis, S. aureus, and K. pneum. ozaenae using the agar diffusion test and photometric method by controlling the variation of optical density of the bacterial suspension over time. Cytocompatibility of the Ag-doped TiCaPCON films was observed in vitro using chondrocytic and MC3T3-E1 osteoblastic cells. The viability and proliferation of chondrocytic cells were determined using the MTS assay and PicoGreen assay tests, respectively. The alkaline phosphatase (ALP) activity of the SLS-fabricated samples

  13. Two approaches to form antibacterial surface: Doping with bactericidal element and drug loading

    Energy Technology Data Exchange (ETDEWEB)

    Sukhorukova, I.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, Ph.V. [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); Anisimova, N.Y.; Gloushankova, N.A.; Zhitnyak, I.Y. [N.N Blokhin Russian Cancer Research Center of RAMS, Kashirskoe shosse 24, Moscow 115478 (Russian Federation); Benesova, J. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Institute of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, V Uvalu 84, Prague 15006 (Czech Republic); Amler, E. [Institute of Experimental Medicine of the ASCR, Vídenska 1083, Prague 14220 (Czech Republic); Faculty of Biomedical Engineering, Czech Technical University in Prague (Czech Republic); Shtansky, D.V., E-mail: shtansky@shs.misis.ru [National University of Science and Technology “MISIS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)

    2015-03-01

    Graphical abstract: - Highlights: • Bioactive materials with rate-controlled release of antibacterial agent. • Ag{sup +} ion release from TiCaPCON-Ag films depended on Ag content. • TiCaPCON-coated Ti network structure with blind pores loaded with co-amoxiclav. • Strong bactericidal effect of drug-loaded samples. • Antibacterial yet biocompatible and bioactive surfaces. - Abstract: Two approaches (surface doping with bactericidal element and loading of antibiotic into specially formed surface microcontainers) to the fabrication of antibacterial yet biocompatible and bioactive surfaces are described. A network structure with square-shaped blind pores of 2.6 ± 0.6 × 10{sup −3} mm{sup 3} for drug loading was obtained by selective laser sintering (SLS). The SLS-fabricated samples were loaded with 0.03, 0.3, 2.4, and 4 mg/cm{sup 2} of co-amoxiclav (amoxicillin and clavulanic acid). Ag-doped TiCaPCON films with 0.4, 1.2, and 4.0 at.% of Ag were obtained by co-sputtering of composite TiC{sub 0.5}-Ca{sub 3}(PO{sub 4}){sub 2} and metallic Ag targets. The surface structure of SLS-prepared samples and cross-sectional morphology of TiCaPCON-Ag films were studied by scanning electron microscopy. The through-thickness of Ag distribution in the TiCaPCON-Ag films was obtained by glow discharge optical emission spectroscopy. The kinetics of Ag ion release in normal saline solution was studied using inductively coupled plasma mass spectrometry. Bacterial activity of the samples was evaluated against S. epidermidis, S. aureus, and K. pneum. ozaenae using the agar diffusion test and photometric method by controlling the variation of optical density of the bacterial suspension over time. Cytocompatibility of the Ag-doped TiCaPCON films was observed in vitro using chondrocytic and MC3T3-E1 osteoblastic cells. The viability and proliferation of chondrocytic cells were determined using the MTS assay and PicoGreen assay tests, respectively. The alkaline phosphatase (ALP

  14. In-situ imaging of tungsten surface modification under ITER-like transient heat loads

    Directory of Open Access Journals (Sweden)

    A.A. Vasilyev

    2017-08-01

    Full Text Available Experimental research on behavior of rolled tungsten plates under intense transient heat loads generated by a powerful (a total power of up to 7 MW long-pulse (0.1–0.3ms electron beam with full irradiation area of 2 cm2 was carried out. Imaging of the sample by the fast CCD cameras in the NIR range and with illumination by the 532nm continuous-wave laser was applied for in-situ surface diagnostics during exposure. In these experiments tungsten plates were exposed to heat loads 0.5–1MJ/m2 with a heat flux factor (Fhf close to and above the melting threshold of tungsten at initial room temperature. Crack formation and crack propagation under the surface layer were observed during multiple exposures. Overheated areas with excessive temperature over surrounding surface of about 500K were found on severely damaged samples more than 5ms after beam ending. The application of laser illumination enables to detect areas of intense tungsten melting near crack edges and crack intersections.

  15. Discrete complexes immobilized onto click-SBA-15 silica: controllable loadings and the impact of surface coverage on catalysis.

    Science.gov (United States)

    Nakazawa, Jun; Smith, Brian J; Stack, T Daniel P

    2012-02-08

    Azidopropyl functionalized mesoporous silica SBA-15 were prepared with variable azide loadings of 0.03-0.7 mmol g(-1) (~2-50% of maximal surface coverage) through a direct synthesis, co-condensation approach. These materials are functionalized selectively with ethynylated organic moieties through a copper-catalyzed azide alkyne cycloaddition (CuAAC) or "click" reaction. Specific loading within a material can be regulated by either the azide loading or limiting the alkyne reagent relative to the azide loading. The immobilization of ferrocene, pyrene, tris(pyridylmethyl)amine (TPA), and iron porphyrin (FeTPP) demonstrates the robust nature and reproducibility of this two-step synthetic attachment strategy. Loading-sensitive pyrene fluorescence correlates with a theoretically random surface distribution, rather than a uniform one; site-isolation of tethered moieties ~15 Å in length occurs at loadings less than 0.02 mmol g(-1). The effect of surface loading on reactivity is observed in the oxygenation of SBA-15-[Cu(I)(TPA)]. SBA-15-[Mn(II)(TPA)]-catalyzed epoxidation exhibits a systematic dependence on surface loading. A comparison of homogeneous, site-isolated and site-dense complexes provides insight into catalyst speciation and ligand activity.

  16. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes

    Science.gov (United States)

    Carden, H. D.

    1984-01-01

    Three six place, low wing, twin engine general aviation airplane test specimens were crash tested at the Langley Impact Dynamics Research Facility under controlled free flight conditions. One structurally unmodified airplane was the base line specimen for the test series. The other two airplanes were structurally modified to incorporate load limiting (energy absorbing) subfloor concepts into the structure for full scale crash test evaluation and for comparison with the unmodified airplane test results. Typically, the lowest floor accelerations, the lowest anthropomorphic dummy responses, and the least seat crushing of standard and load limiting seats occurred in the airplanes modified with load limiting subfloors, wherein the greatest structural crushing of the subfloor took place. The better performing of the two load limiting subfloor concepts reduced the peak airplane floor accelerations to -25g to -30g as compared with approximately -40g to -55g for the unmodified airplane structure.

  17. Performance of two load-limiting subfloor concepts in full-scale general aviation airplane crash tests

    Science.gov (United States)

    Carden, H. D.

    1984-01-01

    Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.

  18. A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranes

    KAUST Repository

    Dilpazir, S.

    2016-01-29

    Homogeneously dispersed titanium dioxide loaded polyacrylonitrile nanofiber membranes with increased active mass loading, Ti3+ surface defects and hydrophilicity were fabricated by combining electrospinning and UV-ozone surface treatment. The photocatalytic activity improved by a factor of ∼2 and the kinetics of photodegradation switched from pseudo-first order to pseudo-second order with increasing TiO2 content with a maximum rate constant of 20.7 h-1. © The Royal Society of Chemistry 2016.

  19. The dependence of surface temperature on IGBTs load and ambient temperature

    Directory of Open Access Journals (Sweden)

    Alexander Čaja

    2015-01-01

    Full Text Available Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT elements by loop heat pipe (LHP. IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  20. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements.

    Science.gov (United States)

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar

    2015-05-15

    This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.

  1. Surface water acidification and critical loads: exploring the F-factor

    Directory of Open Access Journals (Sweden)

    K. Bishop

    2009-11-01

    Full Text Available As acid deposition decreases, uncertainties in methods for calculating critical loads become more important when judgements have to be made about whether or not further emission reductions are needed. An important aspect of one type of model that has been used to calculate surface water critical loads is the empirical F-factor which estimates the degree to which acid deposition is neutralised before it reaches a lake at any particular point in time relative to the pre-industrial, steady-state water chemistry conditions.

    In this paper we will examine how well the empirical F-functions are able to estimate pre-industrial lake chemistry as lake chemistry changes during different phases of acidification and recovery. To accomplish this, we use the dynamic, process-oriented biogeochemical model SAFE to generate a plausible time series of annual runoff chemistry for ca. 140 Swedish catchments between 1800 and 2100. These annual hydrochemistry data are then used to generate empirical F-factors that are compared to the "actual" F-factor seen in the SAFE data for each lake and year in the time series. The dynamics of the F-factor as catchments acidify, and then recover are not widely recognised.

    Our results suggest that the F-factor approach worked best during the acidification phase when soil processes buffer incoming acidity. However, the empirical functions for estimating F from contemporary lake chemistry are not well suited to the recovery phase when the F-factor turns negative due to recovery processes in the soil. This happens when acid deposition has depleted the soil store of BC, and then acid deposition declines, reducing the leaching of base cations to levels below those in the pre-industrial era. An estimate of critical load from water chemistry during recovery and empirical F functions would therefore result in critical loads that are too low. Therefore, the empirical estimates of the F-factor are a significant source of

  2. Evaluation of underground pipe-structure interface for surface impact load

    International Nuclear Information System (INIS)

    Wang, Shen

    2017-01-01

    Highlights: • A simple method is proposed for the evaluation of underground pipelines for surface impact load considering the effect of a nearby pipe-structure interface. • The proposed simple method can be used to evaluate the magnitude of damage within a short period of time after accidental drop occurs. • The proposed method is applied in a practical example and compared by using finite element analysis. - Abstract: Nuclear safety related buried pipelines need to be assessed for the effects of postulated surface impact loads. In published solutions, the buried pipe is often considered within an elastic half space without interference with other underground structures. In the case that a surface impact occurs in short distance from an underground pipe-structure interface, this boundary condition will further complicate the buried pipe evaluation. Neglecting such boundary effect in the assessment may lead to underestimating potential damage of buried pipeline, and jeopardizing safety of the nuclear power plant. Comprehensive analysis of such structure-pipe-soil system is often subjected to availability of state-of-art finite element tools, as well as costly and time consuming. Simple, but practical conservative techniques have not been established. In this study, a mechanics based solution is proposed in order to assess the magnitude of damage to a buried pipeline beneath a heavy surface impact considering the effect of a nearby pipe-structure interface. The proposed approach provides an easy to use tool in the early stage of evaluation before the decision of applying more costly technique can be made by owner of the nuclear facility.

  3. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Science.gov (United States)

    Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  4. Features of Representations in General Chemistry Textbooks: A Peek through the Lens of the Cognitive Load Theory

    Science.gov (United States)

    Nyachwaya, James M.; Gillaspie, Merry

    2016-01-01

    The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…

  5. Modelling reduction of urban heat load in Vienna by modifying surface properties of roofs

    Science.gov (United States)

    Žuvela-Aloise, Maja; Andre, Konrad; Schwaiger, Hannes; Bird, David Neil; Gallaun, Heinz

    2018-02-01

    The study examines the potential of urban roofs to reduce the urban heat island (UHI) effect by changing their reflectivity and implementing vegetation (green roofs) using the example of the City of Vienna. The urban modelling simulations are performed based on high-resolution orography and land use data, climatological observations, surface albedo values from satellite imagery and registry of the green roof potential in Vienna. The modelling results show that a moderate increase in reflectivity of roofs (up to 0.45) reduces the mean summer temperatures in the densely built-up environment by approximately 0.25 °C. Applying high reflectivity materials (roof albedo up to 0.7) leads to average cooling in densely built-up area of approximately 0.5 °C. The green roofs yield a heat load reduction in similar order of magnitude as the high reflectivity materials. However, only 45 % of roof area in Vienna is suitable for greening and the green roof potential mostly applies to industrial areas in city outskirts and is therefore not sufficient for substantial reduction of the UHI effect, particularly in the city centre which has the highest heat load. The strongest cooling effect can be achieved by combining the green roofs with high reflectivity materials. In this case, using 50 or 100 % of the green roof potential and applying high reflectivity materials on the remaining surfaces have a similar cooling effect.

  6. Progressive high-load strength training compared with general low-load exercises in patients with rotator cuff tendinopathy: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Ingwersen, Kim G; Christensen, Robin; Sørensen, Lilli; Jørgensen, Hans Ri; Jensen, Steen Lund; Rasmussen, Sten; Søgaard, Karen; Juul-Kristensen, Birgit

    2015-01-27

    Shoulder pain is the third most common musculoskeletal disorder, often affecting people's daily living and work capacity. The most common shoulder disorder is the subacromial impingement syndrome (SIS) which, among other pathophysiological changes, is often characterised by rotator cuff tendinopathy. Exercise is often considered the primary treatment option for rotator cuff tendinopathy, but there is no consensus on which exercise strategy is the most effective. As eccentric and high-load strength training have been shown to have a positive effect on patella and Achilles tendinopathy, the aim of this trial is to compare the efficacy of progressive high-load exercises with traditional low-load exercises in patients with rotator cuff tendinopathy. The current study is a randomised, participant- and assessor-blinded, controlled multicentre trial. A total of 260 patients with rotator cuff tendinopathy will be recruited from three outpatient shoulder departments in Denmark, and randomised to either 12 weeks of progressive high-load strength training or to general low-load exercises. Patients will receive six individually guided exercise sessions with a physiotherapist and perform home-based exercises three times a week. The primary outcome measure will be change from baseline to 12 weeks in the patient-reported outcome Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire. Previous studies of exercise treatment for SIS have not differentiated between subgroups of SIS and have often had methodological flaws, making it difficult to specifically design target treatment for patients diagnosed with SIS. Therefore, it was considered important to focus on a subgroup such as tendinopathy, with a specific tailored intervention strategy based on evidence from other regions of the body, and to clearly describe the intervention in a methodologically strong study. The trial was registered with Clinicaltrials.gov ( NCT01984203 ) on 31 October 2013.

  7. Parametric study of dielectric loaded surface plasmon polariton add-drop filters for hybrid silicon/plasmonic optical circuitry

    Science.gov (United States)

    Dereux, A.; Hassan, K.; Weeber, J.-C.; Djellali, N.; Bozhevolnyi, S. I.; Tsilipakos, O.; Pitilakis, A.; Kriezis, E.; Papaioannou, S.; Vyrsokinos, K.; Pleros, N.; Tekin, T.; Baus, M.; Kalavrouziotis, D.; Giannoulis, G.; Avramopoulos, H.

    2011-01-01

    Surface plasmons polaritons are electromagnetic waves propagating along the surface of a conductor. Surface plasmons photonics is a promising candidate to satisfy the constraints of miniaturization of optical interconnects. This contribution reviews an experimental parametric study of dielectric loaded surface plasmon waveguides ring resonators and add-drop filters within the perspective of the recently suggested hybrid technology merging plasmonic and silicon photonics on a single board (European FP7 project PLATON "Merging Plasmonic and Silicon Photonics Technology towards Tb/s routing in optical interconnects"). Conclusions relevant for dielectric loaded surface plasmon switches to be integrated in silicon photonic circuitry will be drawn. They rely on the opportunity offered by plasmonic circuitry to carry optical signals and electric currents through the same thin metal circuitry. The heating of the dielectric loading by the electric current enables to design low foot-print thermo-optical switches driving the optical signal flow.

  8. Nuclear criticality safety: general. 4. The CASTOR X/32S Method of Covering mis-loading Concerns

    International Nuclear Information System (INIS)

    Lancaster, Dale B.; Rombough, Charles T.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    density. The CASTOR X/32S, however, would be shipped dry.An event that would cause flooding would be another unlikely independent event. Nevertheless, the cask could be unloaded in an un-borated pool, although it is not currently anticipated. Typically, reprocessing pools are un-borated. A repository may unload and load into a waste package in an un-borated pool. (The current Yucca Mountain design uses a dry transfer.) Finally, some transfers have occurred from pressurized water reactors to un-borated boiling water reactor pools. When reactivity control inserts are used rather than burnup credit, the worth of missing an insert in the CASTOR X/32S is almost 10% in reactivity. But, when burnup credit is not used, the margin due to the negative reactivity of burnup is twice that. It is also very difficult to miss a brightly colored insert during loading or later at the plant before the unloading would occur (only in unloading could the cask normally be flooded with un-borated water). A single assembly mis-load (assuming all reactivity control inserts are in place) is only worth ∼3% in k eff . This is well covered by the 5% administrative margin as well as the burnup. Using the burnup credit cask, the worth of a single assembly mis-load is ∼4% in reactivity. This is still less than the 5% administrative margin. Burnup credit currently allows for actinides only, so there is generally margin due to fission products that is greater than the worth of a worse-case mis-loaded assembly (assumed to be 5 wt% 235 U with burnup). Prior to sealing a cask, the quality-assurance steps described in this paper would be sufficient to prevent mis-loading and meet the double-contingency principle. Criticality analyses of mis-loadings are not required for licensing. If an assembly mis-loading occurred, the cask would still not go critical even if unloaded in an un-borated pool. (authors)

  9. General Models for Assessing Hazards Aircraft Pose to Surface Facilities

    International Nuclear Information System (INIS)

    Ragan, G.E.

    2002-01-01

    This paper derives formulas for estimating the frequency of accidental aircraft crashes into surface facilities. Objects unintentionally dropped from aircraft are also considered. The approach allows the facility to be well within the flight area; inside the flight area, but close to the edge; or completely outside the flight area

  10. Test results employed by General Electric for boiling water reactor containment and vertical vent loads

    International Nuclear Information System (INIS)

    Fukushima, T.Y.; Singh, A.; James, A.J.; Winkler, W.D.; Walenciak, M.R.; Rosa, J.M.

    1975-10-01

    During a safety relief valve blowdown, air contained in the relief line discharges into the suppression pool with the resulting oscillations of the air bubble causing dynamic loading on the containment. The magnitude and characteristics of such loading depend upon the geometry of the discharge device at the end of the safety relief line. Extensive small scale and large scale testing was performed to evaluate the performance of a four-arm quencher discharge device. Results of these tests, description of test facility, instrumentation and test procedures are described. During a loss-of-coolant accident, steam flows through vertical vent pipes such as employed in Mark I and II Containments and condenses in the suppression pool at the vent exit. During this condensation process, a steam bubble which forms at the vent exit will collapse irregularly leading to water impingement on the vent pipe. The water impingement phenomenon causes lateral loading on the vertical vents. The loading phenomena and series of tests performed to evaluate the load magnitudes are described. During a later part of the safety relief valve blowdown, steam discharges into the suppression pool through the safety relief line end discharge device. Extensive tests were carried out to investigate the high temperature condensation phenomenon and the temperature threshold limits for the occurrence of condensation vibrations for various configurations including the quencher configuration, of the relief line and discharge device. Results of these tests including a description of the test facility, instrumentation and test procedures have been included

  11. Load-bearing evaluation of spinal posterior column by measuring surface strain from lumbar pedicles. An in vitro study.

    Science.gov (United States)

    Sun, Peidong; Zhao, Weidong; Bi, Zhenyu; Wu, Changfu; Ouyang, Jun

    2012-01-01

    An understanding of the load transfer within spinal posterior column of lumbar spine is necessary to determine the influence of mechanical factors on potential mechanisms of the motion-sparing implant such as artificial intervertebral disc and the dynamic spine stabilization systems. In this study, a new method has been developed for evaluating the load bearing of spinal posterior column by the surface strain of spinal pedicle response to the loading of spinal segment. Six cadaveric lumbar spine segments were biomechanically evaluated between levels L1 and L5 in intact condition and the strain gauges were pasted to an inferior surface of L2 pedicles. Multidirectional flexibility testing used the Panjabi testing protocol; pure moments for the intact condition with overall spinal motion and unconstrained intact moments of ±8 Nm were used for flexion-extension and lateral bending testing. High correlation coefficient (0.967-0.998) indicated a good agreement between the load of spinal segment and the surface strain of pedicle in all loading directions. Principal compressive strain could be observed in flexion direction and tensile strain in extension direction, respectively. In conclusion, the new method seems to be effective for evaluating posterior spinal column loads using pedicles' surface strain data collected during biomechanical testing of spine segments.

  12. Is the current stress state in the Central Amazonia caused by surface water loading?

    Science.gov (United States)

    Ibanez, Delano M.; Riccomini, Claudio; Miranda, Fernando P.

    2014-11-01

    We present new fault data for the region of the Manaus, Central Amazonia, Brazil. Field measurements concentrate on the Miocene-Holocene sedimentary deposits exposed on the Amazonas River Basin, in order to investigate the development of this region in this time-interval. Two faulting events are distinguished since the Miocene. The oldest one is related to NW-SE extension during Miocene times and associated with paleoseismicity, while the younger is associated with NE-SW extension direction and seems to persist today. These two deformational events may be thereby considered Neotectonic. Moreover, the second extensional pulse with NE-SW orientation can be explained by the surface hydrological loading, which induces the Central Amazonia flexural subsidence and may promote extensional stresses in the upper crust.

  13. Metal-loaded graphene surface plasmon waveguides working in the terahertz regime

    DEFF Research Database (Denmark)

    Xiao, Binggang; Qin, Kang; Xiao, Sanshui

    2015-01-01

    A metal-loaded graphene surface plasmon waveguide composed of a thin silica layer sandwiched between a graphene layer and a metal stripe is proposed and the waveguiding properties in the THz regime are numerically investigated. The results show that the fundamental mode of the proposed waveguide...... is tightly confined in the middle silica layer with an acceptable propagation loss. Compared with most other graphene waveguides proposed in the literature, the realization of this waveguide does not need to pattern or deform the graphene layer, thus retaining the superior properties of bulk graphene...... material. The tight modal confinement and the ease of fabrication suggest the high potential use of this waveguide in high-density THz photonic integration....

  14. [Preparation of red mud loaded Co catalysts: optimization using response surface methodology (RSM) and activity evaluation].

    Science.gov (United States)

    Li, Hua-Nan; Xu, Bing-Bing; Qi, Fei; Sun, De-Zhi

    2013-11-01

    The removal efficiency of catalytic ozonation of bezafibrate (BZF) by red mud loaded Co catalysts (Co/RM) was used as the index value in statistical experimental designs. The most important factors influencing BZF degradation (P removal efficiency was 71.29% as calculated by predictive value and a maximum removal efficiency of 70.74% was actually achieved. The experiment data was very close to the predictive value and the deviation was 1% (component formed on the surface of RM by the addition of cobalt into red mud, enhanced the catalytic activity. Moreover, the dissolved metal concentration in the solution for catalytic ozonation of BZF degradation by RM or Co/RM was determined by ICP-OES. The results showed that for both catalysts there was no leaching of catalytic active components into the solution, which could suggest that the two catalysts were safe and could have certain application prospect.

  15. MODEL OF AIRCRAFT ELECTRICAL POWER SUPPLY SYSTEM CHANNEL OF ALTERNATIVE CURRENT RUNNING ON A GENERALIZED UNBALANCED THREE-PHASE LOAD

    Directory of Open Access Journals (Sweden)

    Aleksej Gennad'evich Demchenko

    2017-01-01

    Full Text Available This article is devoted to mathematical modeling of the channel of AC on-board power supply systems (PSS when running on static active-inductive load, connected on a "wye with neutral" and "delta". The mathematical model of aircraft synchronous generator, electricity distribution, three-phase static active-inductive load are considered. When making a mathematical description the author used the equations for the voltages of windings and flux linkages cir- cuits of the stator and rotor of the generator in a stationary system phase coordinates "ABC". When considering the mathe- matical model of the distribution system, the equations that took into account the drop of the voltages on the active and inductive resistance of the distribution system power wires were used. When considering the mathematical models of three- phase static loads connected on a "wye with neutral" and "delta", the equations that took into account the drop of the volt- ages on the active and inductive resistance loads were used. The matrix equations system of channel PSS AC when running on a generalized three-phase static active-inductive load was obtained. The three phase static loads scheme connected ac- cording to the "delta" scheme was converted to "wye" to simplify the solution of channel PSS AC circuit matrix equations system. The choice of the phase coordinates system "ABC" for the mathematical description of the generator, distribution system and the static load was made due to its advantage over the coordinate system "dq", because the equation written in phase coordinates are valid for symmetric and asymmetric modes of the generator, while the equations written in the coor- dinate system "dq" will be valid only for symmetric modes. As a result of joint solution of the generator equations, distribution system, three-phase static loads there were obtained the formulae for the generator stator winding phases, gen- erator phases currents, the voltage drops on the load

  16. GENERATION OF A VECTOR OF NODAL FORCES PRODUCED BY LOADS PRE-SET BY THE ARBITRARY SCULPTED SURFACE DESIGNATED FOR UNIVERSAL STRESS ANALYSIS SOFTWARE

    Directory of Open Access Journals (Sweden)

    Shaposhnikov Nikolay Nikolaevich

    2012-10-01

    A user may select the surface accommodating any simulated arbitrary load; further, a point of the pre-set load intensity specified in the Distributed Load Q field of interface window Distributed Loads, and the point of zero intensity load are to be specified. The above source data are used to calculate the scale coefficient of transition from linear distances to the real value of the load intensity generated within the coordinate surface. The point of zero load intensity represents a virtual plane of zero distributed load values. The proposed software designated for the conversion of arbitrary distributed loads into the nodal load is compact; therefore, it may be integrated into modules capable of exporting the nodal load into other systems of strength analysis, though functioning as a problem-oriented geometrical utility of AutoCAD.

  17. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    Directory of Open Access Journals (Sweden)

    Fernández-Golfín, J. I.

    1997-06-01

    Full Text Available Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh. Three different levels of stress (20 %, 30 % and 40 %, based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in particle boards with similar characteristics. This behaviour was just the opposite than the one exhibited by the panels when the comparison is made based on the same level of load (kg Melamin coating seems to strongly influence the creep behaviour of the raw material, especially when surface and edge coating were combined.

    Cuatro tipos de acabados superficiales distintos, aplicados sobre tableros MDF comerciales de 19 mm de espesor, son empleados en el estudio del comportamiento reológico de los tableros MDF ante condiciones alternantes de humedad relativa (20ºC/30 % hr-20ºC/90 % hr. Para el análisis del comportamiento reológico de los tableros se consideran tres niveles de tensión distintos (20 %, 30 %y 40 %, calculados en función de la carga última de rotura a flexión. Los ensayos son efectuados aplicando la carga en punto medio. La fluencia relativa de los tableros MDF resulta ser superior a la exhibida por los tableros de partículas de similares características, observándose que los revestimientos melamínicos aplicados superficialmente influyen eficazmente en la mejora de su comportamiento reológico. Cuando la comparación entre tableros MDF y de partículas se efectúa considerando idénticos niveles de carga aplicada en vez de tensión, el resultado de la comparación resulta ser, justamente, el contrario.

  18. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    Science.gov (United States)

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four…

  19. Traffic Load on Interconnection Lines of Generalized Double Ring Network Structures

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup; Riaz, Muhammad Tahir; Madsen, Ole Brun

    2005-01-01

    consists of two planar rings, which are easily embedded by fiber or other wired solutions. It is shown that for large N2R structures, the interconnection lines carry notably lower loads than the other lines if shortest-path routing is used, and the effects of two other routing schemes are explored, leading...

  20. Effect of Surface Modifications on the Retention of Cement-retained Implant Crowns under Fatigue Loads: An In vitro Study

    Science.gov (United States)

    Ajay, R.; Suma, K.; Ali, Seyed Asharaf; Kumar Sivakumar, Jambai Sampath; Rakshagan, V.; Devaki, V.; Divya, K.

    2017-01-01

    Background: Masticatory forces cause fatigue to the dental luting agents, adversely affecting the retention of these cement-retained crowns. Sandblasting (SB) and diamond abrading the abutment surface improves the bond strength of luting agents. However, the effect of acid etching (AE) on the implant abutment surface and the effect of other surface modifications under masticatory load are yet to be documented. Purpose: The aim of the study was to evaluate the effect of abutment surface modifications on the retention of cement-retained restorations subjected to cyclic fatigue loads. Materials and Methods: Forty Ni-Cr copings were made on Cp-titanium laboratory analogs. The specimens were divided into two groups as Group I: Uniaxial tensile loading (UTL) and Group II: Offaxial cyclic loading followed by uniaxial tensile loading [CTL]. Further subgrouped as, subgroup I: Control (C), subgroup II: SB, subgroup III: AE, and subgroup IV: SB + AE. The copings were luted with Zn2(PO4)3 and subjected to uniaxial tensile loading. Copings were recemented, and CTL was conducted. Two-way analysis of variance was used as the statistical test of significance. Results: In relation to the subgroups, the bond strength of Zn2(PO4)3 was higher in Group I than in Group II. The bond strength in subgroup IV was superior in both Group I and Group II (547.170 N ± 5.752 and 531.975 N ± 6.221 respectively). Conclusions: For both UTL and CTL, abutment SB + AE elicited maximum coping retention followed by AE. Off-axial cyclic loading adversely affected the retention irrespective of the surface modifications. PMID:29284956

  1. Assessment of agar gel loaded with micro-emulsion for the cleaning of porous surfaces

    Directory of Open Access Journals (Sweden)

    Florence Gorel

    2010-11-01

    Full Text Available Le système composé d’un gel d’agar-agar et d’une microémulsion présente plusieurs qualités pour extraire des matériaux hydrophobes de couches poreuses. Les propriétés rhéologiques de ce système sont adaptées à un usage en restauration et sont stables pendant plusieurs jours. Les gels permettent la solubilisation du matériau à l’aide de faible quantité de solvant, l’empêchent de créer des auréoles, permettent le contrôle de l’évaporation des solvants et ne laissent pas de résidus de gel dans les pores.Agar gel loaded with micro-emulsion could be used to extract lipophilic materials from porous surfaces. The physical properties of the gels are good enough for a conservation work. They allow the micro-emulsion to flow on the porous surface and to wet it but maintain the micro-emulsion in its structure and prevent the formation of rings. The evaporation of the solvents is slowed down and the gels can be used during a long period.

  2. Proper Generalized Decomposition (PGD) for the numerical simulation of polycrystalline aggregates under cyclic loading

    Science.gov (United States)

    Nasri, Mohamed Aziz; Robert, Camille; Ammar, Amine; El Arem, Saber; Morel, Franck

    2018-02-01

    The numerical modelling of the behaviour of materials at the microstructural scale has been greatly developed over the last two decades. Unfortunately, conventional resolution methods cannot simulate polycrystalline aggregates beyond tens of loading cycles, and they do not remain quantitative due to the plasticity behaviour. This work presents the development of a numerical solver for the resolution of the Finite Element modelling of polycrystalline aggregates subjected to cyclic mechanical loading. The method is based on two concepts. The first one consists in maintaining a constant stiffness matrix. The second uses a time/space model reduction method. In order to analyse the applicability and the performance of the use of a space-time separated representation, the simulations are carried out on a three-dimensional polycrystalline aggregate under cyclic loading. Different numbers of elements per grain and two time increments per cycle are investigated. The results show a significant CPU time saving while maintaining good precision. Moreover, increasing the number of elements and the number of time increments per cycle, the model reduction method is faster than the standard solver.

  3. Automated detection of cracks on the faying surface within high-load transfer bolted speciments

    Science.gov (United States)

    Wheatley, Gregory; Kollgaard, Jeffrey R.

    2003-07-01

    Boeing is currently conducting evaluation testing of the Comparative Vacuum Monitoring (CVMTM) system offered by Structural Monitoring Systems, Ltd (SMS). Initial testing has been conducted by SMS, with further test lab validations to be performed at Boeing in Seattle. Testing has been conducted on dog bone type specimens that have been cut at the center line. A notch was cut at one of the bolt holes and a CVM sensor installed on both sides of the plate. The doublers were added and a single line of 4 bolts along the longitudinal center line were used to attach the doubler plates to the dog bone type specimen. In this way, a high load transfer situation exists between the two halves of the dog bone specimen and the doubler plates. The CVM sensors are slightly over 0.004" (0.1mm) in thickness and are installed directly upon the faying surface of the dog bone specimen. Testing was conducted on an Instron 8501 Servohydraulic testing machine at the Department of Mechanical and Materials Engineering, University of Western Australia. The standard laboratory equipment offered by Structural Monitoring Systems, Ltd was used for crack detection. This equipment included the Kvac (vacuum supply) and the Sim8 (flow meter). The Sim8 was electrically connected to the Instron machine so that as soon as a crack was detected, fatigue loading was halted. The aim of the experiment was for CVM to detect a crack on the faying surface of the specimens at a length of 0.050" +/- 0.010". This was accomplished successfully. CVM has been developed on the principle that a small volume maintained at a low vacuum is extremely sensitive to any ingress of air. In addition to the load bearing sensors described above, self-adhesive, elastomeric sensors with fine channels on the adhesive face have been developed. When the sensors have been adhered to the structure under test, these fine channels, and the structure itself, form a manifold of galleries alternately at low vacuum and atmospheric pressure

  4. Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings

    Science.gov (United States)

    Karimi, Morteza; Shahidi, Ali Reza

    2017-05-01

    The theories of nonlocal, refined plate, and surface effects are used in this study to investigate the free vibration of magnetoelectroelastic (MEE) nanoplates resting on elastic foundations. For this purpose, the MEE nanoplate is subjected not only to external magnetic and electric potentials but also to thermal and shear in-plane loads. The refined plate theory is used and the Maxwell equations and magnetoelectric boundary conditions employed to determine the variations in the electric and magnetic potentials along the direction of the nanoplate thickness. This is followed by deriving the governing equations based on the Hamilton's principle, which are then solved via the generalized differential quadrature method. In a later stage of the study, the effects of electric and magnetic potentials, nonlocal parameter, thermal and shear in-plane loading, Winkler and shear moduli, different boundary conditions, and aspect ratio are explored in a parametric study on the surface effects of vibration characteristics of MEE nanoplates. It is found that the effect of surface parameters enhanced with increases in nonlocal parameter, electric potential, in-plane shear load, and temperature change. However, this effect is observed to decrease when the magnetic potential, dimensionless Winkler and shear moduli, and nanoplate thickness are augmented.

  5. On the use of lifting surface theory for moderately and heavily loaded ship propellers

    NARCIS (Netherlands)

    Van Gent, W.

    1977-01-01

    It is usual to subdivide the loading range of a ship propeller, in which it developes a thrust in the direction of advance, into light, moderate and heavy loadings. The division is based on the degree to which the flow is influenced by the action of the propeller. For the heavily loaded propeller no

  6. Load Frequency Control in Isolated Micro-Grids with Electrical Vehicles Based on Multivariable Generalized Predictive Theory

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2015-03-01

    Full Text Available In power systems, although the inertia energy in power sources can partly cover power unbalances caused by load disturbance or renewable energy fluctuation, it is still hard to maintain the frequency deviation within acceptable ranges. However, with the vehicle-to-grid (V2G technique, electric vehicles (EVs can act as mobile energy storage units, which could be a solution for load frequency control (LFC in an isolated grid. In this paper, a LFC model of an isolated micro-grid with EVs, distributed generations and their constraints is developed. In addition, a controller based on multivariable generalized predictive control (MGPC theory is proposed for LFC in the isolated micro-grid, where EVs and diesel generator (DG are coordinated to achieve a satisfied performance on load frequency. A benchmark isolated micro-grid with EVs, DG, and wind farm is modeled in the Matlab/Simulink environment to demonstrate the effectiveness of the proposed method. Simulation results demonstrate that with MGPC, the energy stored in EVs can be managed intelligently according to LFC requirement. This improves the system frequency stability with complex operation situations including the random renewable energy resource and the continuous load disturbances.

  7. Generalized Analytical Program of Thyristor Phase Control Circuit with Series and Parallel Resonance Load

    OpenAIRE

    Nakanishi, Sen-ichiro; Ishida, Hideaki; Himei, Toyoji

    1981-01-01

    The systematic analytical method is reqUired for the ac phase control circuit by means of an inverse parallel thyristor pair which has a series and parallel L-C resonant load, because the phase control action causes abnormal and interesting phenomena, such as an extreme increase of voltage and current, an unique increase and decrease of contained higher harmonics, and a wide variation of power factor, etc. In this paper, the program for the analysis of the thyristor phase control circuit with...

  8. Mechanistic Investigation into the Selective Anticancer Cytotoxicity and Immune System Response of Surface-Functionalized, Dichloroacetate-Loaded, UiO-66 Nanoparticles.

    Science.gov (United States)

    Abánades Lázaro, Isabel; Haddad, Salame; Rodrigo-Muñoz, José M; Orellana-Tavra, Claudia; Del Pozo, Victoria; Fairen-Jimenez, David; Forgan, Ross S

    2018-02-14

    The high drug-loading and excellent biocompatibilities of metal-organic frameworks (MOFs) have led to their application as drug-delivery systems (DDSs). Nanoparticle surface chemistry dominates both biostability and dispersion of DDSs while governing their interactions with biological systems, cellular and/or tissue targeting, and cellular internalization, leading to a requirement for versatile and reproducible surface functionalization protocols. Herein, we explore not only the effect of introducing different surface functionalities to the biocompatible Zr-MOF UiO-66 but also the efficacy of three surface modification protocols: (i) direct attachment of biomolecules [folic acid (FA) and biotin (Biot)] introduced as modulators for UiO-66 synthesis, (ii) our previously reported "click-modulation" approach to covalently attach polymers [poly(ethylene glycol) (PEG), poly-l-lactide, and poly-N-isopropylacrylamide] to the surface of UiO-66 through click chemistry, and (iii) surface ligand exchange to postsynthetically coordinate FA, Biot, and heparin to UiO-66. The innovative use of a small molecule with metabolic anticancer activity, dichloroacetate (DCA), as a modulator during synthesis is described, and it is found to be compatible with all three protocols, yielding surface-coated, DCA-loaded (10-20 w/w %) nano-MOFs (70-170 nm). External surface modification generally enhances the stability and colloidal dispersion of UiO-66. Cellular internalization routes and efficiencies of UiO-66 by HeLa cervical cancer cells can be tuned by surface chemistry, and anticancer cytotoxicity of DCA-loaded MOFs correlates with the endocytosis efficiency and mechanisms. The MOFs with the most promising coatings (FA, PEG, poly-l-lactide, and poly-N-isopropylacrylamide) were extensively tested for selectivity of anticancer cytotoxicity against MCF-7 breast cancer cells and HEK293 healthy kidney cells as well as for cell proliferation and reactive oxygen species production against J774

  9. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  10. Linkage design effect on the reliability of surface micromachined microengines driving a load

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, D.M.; Peterson, K.A.; Irwin, L.W.; Tangyunyong, P.; Miller, W.M.; Eaton, W.P.; Smith, N.F.; Rodgers, M.S.

    1998-08-01

    The reliability of microengines is a function of the design of the mechanical linkage used to connect the electrostatic actuator to the drive. The authors have completed a series of reliability stress tests on surface micromachined microengines driving an inertial load. In these experiments, the authors used microengines that had pin mechanisms with guides connecting the drive arms to the electrostatic actuators. Comparing this data to previous results using flexure linkages revealed that the pin linkage design was less reliable. The devices were stressed to failure at eight frequencies, both above and below the measured resonance frequency of the microengine. Significant amounts of wear debris were observed both around the hub and pin joint of the drive gear. Additionally, wear tracks were observed in the area where the moving shuttle rubbed against the guides of the pin linkage. At each frequency, they analyzed the statistical data yielding a lifetime (t{sub 50}) for median cycles to failure and {sigma}, the shape parameter of the distribution. A model was developed to describe the failure data based on fundamental wear mechanisms and forces exhibited in mechanical resonant systems. The comparison to the model will be discussed.

  11. Damage identification from uniform load surface using continuous and stationary wavelet transforms

    Directory of Open Access Journals (Sweden)

    M. Masoumi

    Full Text Available Derived from flexibility matrix, Uniform Load Surface (ULS is used to identify damages in beam-type structures. This method is beneficial in terms of more participating the lower order modes and having less prone to noise and irregularities in the measured data in comparison with the original flexibility matrix technique. Therefore, these characteristics make this approach a practical tool in the field of damage identification. This paper presents a procedure to employ stationary wavelet transform multi-resolution analysis (SWT-MRA to refine ULS obtained from the damaged structure and then using continuous wavelet transform (CWT for localizing the discontinuity of improved ULS as a sign of damage site. Evaluation of the proposed method is carried out by examining a cantilever beam as a numerical case, where the ULS is formed by using mode shapes of damaged beam and two kinds of wavelets (i.e. symmetrical 4 and bior 6.8 is applied for discerning the induced crack. Moreover, a laboratory test is conducted on a free-free beam to experimentally evaluate the practicability of the technique.

  12. Power monitoring in dielectric-loaded surface plasmon-polariton waveguides.

    Science.gov (United States)

    Kumar, Ashwani; Gosciniak, Jacek; Andersen, Thomas B; Markey, Laurent; Dereux, Alain; Bozhevolnyi, Sergey I

    2011-02-14

    We report on propagating mode power monitoring in dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) by measuring the resistance of gold stripes supporting the DLSPPW mode propagation. Inevitable absorption of the DLSPPW mode in metal causes an increase in the stripe temperature and, thereby, in its resistance whose variations are monitored with an external Wheatstone bridge being accurately balanced in the absence of radiation in a waveguide. The investigated waveguide configuration consists of a 1-µm-thick and 10-µm-wide polymer ridges tapered laterally to a 1-µm-wide ridge placed on a 50-nm-thin and 4-µm-wide gold stripe, all supported by a magnesium fluoride substrate. Using single-mode polarization-maintaining fiber for in- and out-coupling of radiation, DLSPPW mode power monitoring at telecom wavelengths is realized with the responsivities of up to ~1.8 µV/µW (showing weak wavelength dependence) being evaluated for a bias voltage of 1 V.

  13. METHANE DRY REFORMING OVER Ni SUPPORTED ON PINE SAWDUST ACTIVATED CARBON: EFFECTS OF SUPPORT SURFACE PROPERTIES AND METAL LOADING

    Directory of Open Access Journals (Sweden)

    Rafael García

    2015-05-01

    Full Text Available The influence of metal loading and support surface functional groups (SFG on methane dry reforming (MDR over Ni catalysts supported on pine-sawdust derived activated carbon were studied. Using pine sawdust as the catalyst support precursor, the smallest variety and lowest concentration of SFG led to best Ni dispersion and highest catalytic activity, which increased with Ni loading up to 3 Ni atoms nm-2. At higher Ni loading, the formation of large metal aggregates was observed, consistent with a lower "apparen" surface area and a decrease in catalytic activity. The H2/CO ratio rose with increasing reaction temperature, indicating that increasingly important side reactions were taking place in addition to MDR.

  14. Use of 198 Au, with surface labelling, in the study of solid transport by bed load in large natural channels

    International Nuclear Information System (INIS)

    Nakahira, S.

    1987-01-01

    The present study aims to present a method of measuring the bed load transport using a radioisotope technique in large natural channels. This study describes the basic principles of radioisotope application in this field, emphasizing the use of 198 Au for surface labelling of a natural sediment. Moreover, it presents the theoretical aspects, critical analysis, recommendations and comments on the methodology proposed. (author)

  15. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were...

  16. Experimental demonstration of CMOS-compatible long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs)

    DEFF Research Database (Denmark)

    Zektzer, Roy; Desiatov, Boris; Mazurski, Noa

    2015-01-01

    We demonstrate the design, fabrication and experimental characterization of long-range dielectric-loaded surface plasmon-polariton waveguides (LR-DLSPPWs) that are compatible with complementary metal-oxide semiconductor (CMOS) technology. The demonstrated waveguides feature good mode confinement...

  17. Relationship of post-fire ground cover to surface fuel loads and consumption in longleaf pine ecosystems

    Science.gov (United States)

    Andrew T. Hudak; Roger D. Ottmar; Robert E. Vihnanek; Clint S. Wright

    2014-01-01

    The RxCADRE research team collected multi-scale measurements of pre-, during, and post-fire variables on operational prescribed fires conducted in 2008, 2011, and 2012 in longleaf pine ecosystems in the southeastern USA. Pre- and post-fire surface fuel loads were characterized in alternating pre- and post-fire clip plots systematically established within burn units....

  18. The effect of salvage logging on surface fuel loads and fuel moisture in beetle-infested lodgepole pine forests

    Science.gov (United States)

    Paul R. Hood; Kellen N. Nelson; Charles C. Rhoades; Daniel B. Tinker

    2017-01-01

    Widespread tree mortality from mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) outbreaks has prompted forest management activities to reduce crown fire hazard in the Rocky Mountain region. However, little is known about how beetle-related salvage logging and biomass utilization options affect woody surface fuel loads and fuel moisture dynamics. We compared...

  19. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  20. Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions

    Science.gov (United States)

    Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.

  1. General load function in geo-mechanics: application to underground works

    International Nuclear Information System (INIS)

    Maiolino, S.

    2006-04-01

    This work deals both with the behavioral and numerical aspects of the mechanical response of a rock massif to the digging out of a tunnel. The comparison between existing criteria has permitted to stress on some key points, like the dependence of the criterion to the average stress and the extension ratio. A load function, easily identifiable with tests, with regular and convex properties, has been proposed which allows to take into account the shape of the Mohr envelope of the criterion and the extension ratio. Regularized forms of Mohr-Coulomb and Hoek-Brown criteria can thus be achieved. The development of this new criterion has been completed by the proposal of a numerical charts method which greatly speeds up the resolution. For the proposed criterion, the physical problem is equivalent to a purely geometrical problem in polar coordinates in the plan. Numerical charts can thus be built which allow to find immediately the value of plastic deformations and to greatly reduce the processing time. Tunnel calculation methods have been the object of a bibliographic synthesis, specifying the domains and limitations of use of tunnel dimensioning methods used by engineers. The modeling of tunnels excavation has been performed with the stationary algorithm designed for the calculation of systems submitted to mobile loads. This algorithm has been adapted to integrate the new criterion and the numerical charts system. These tools have been validated using a real case study and data supplied by the French national agency of radioactive waste management (ANDRA) in the framework of the MODEX-REP European project (5. Euratom plan). The study of these data has permitted to define a rock wear variable, easily identifiable and allowing to parameterize the damaged rock criterion. (J.S.)

  2. THE EFFECTS OF SURFACE-INDUCED LOADS ON FOREARM MUSCLE ACTIVITY DURING STEERING A BICYCLE

    Directory of Open Access Journals (Sweden)

    Pinar Arpinar-Avsar

    2013-09-01

    Full Text Available On the bicycle, the human upper extremity has two essential functions in steering the bicycle and in supporting the body. Through the handlebar, surface- induced loads are transmitted to the hand and arm of the bicycle rider under vibration exposure conditions. Thus, the purpose of the study was to investigate the effect of vibration exposure on forearm muscle activity for different road surfaces (i.e. smooth road, concrete stone pavement, rough road and for different bicycles. Ten subjects participated in experiments and two types of bicycles, i.e. Road Bike (RB and Mountain Bike (MTB are compared. The acceleration magnitudes were dominant along x and z-axes. The r.m.s acceleration values in the z direction at the stem of MTB were at most 2.56, 7.04 and 10.76 m·s-2 when pedaling respectively on asphalt road, concrete pavement and rough road. In the case of RB the corresponding values were respectively 4.43, 11.75 and 27.31 m·s-2. The cumulative normalized muscular activity levels during MTB trials on different surfaces had the same tendency as with acceleration amplitudes and have ranked in the same order from lowest to highest value. Although road bike measurements have resulted in a similar trend of increment, the values computed for rough road trials were higher than those in MTB trials. During rough road measurements on MTB, rmsEMG of extensor muscles reached a value corresponding to approximately 50% of MVC (Maximum Voluntary Contraction. During RB trials performed on rough road conditions, rmsEMG (%MVC values for the forearm flexor muscles reached 45.8% of their maximal. The level of muscular activity of forearm muscles in controlling handlebar movements has been observed to be enhanced by the increase in the level of vibration exposed on the bicycle. Since repeated forceful gripping and pushing forces to a handle of a vibratory tool can create a risk of developing circulatory, neurological, or musculoskeletal disorder, a bicycle rider

  3. The mechanical interactions between an American football cleat and playing surfaces in-situ at loads and rates generated by elite athletes: a comparison of playing surfaces.

    Science.gov (United States)

    Kent, Richard; Forman, Jason L; Crandall, Jeff; Lessley, David

    2015-03-01

    This study quantified the mechanical interactions between an American football cleat and eight surfaces used by professional American football teams. Loading conditions were applied with a custom-built testing apparatus designed to represent play-relevant maneuvers of elite athletes. Two natural grass and six infill artificial surfaces were tested with the cleated portion of a shoe intended for use on either surface type. In translation tests with a 2. 8-kN vertical load, the grass surfaces limited the horizontal force on the cleats by tearing. This tearing was not observed with the artificial surfaces, which allowed less motion and generated greater horizontal force (3.2 kN vs. 4.5 kN, p force on the natural surfaces than on the artificial surfaces (2.4 kN vs. 3.0 kN, p force-limiting mechanism inherent to natural grass surfaces. Future work should consider implications of these findings for performance and injury risk and should evaluate the findings' sensitivity to cleat pattern and playing conditions.

  4. Theoretical design and analysis of wideband active hard electromagnetic surfaces using non-Foster circuit loaded anisotropic metasurfaces

    Science.gov (United States)

    Li, Yunbo; Li, Aobo; Sievenpiper, Daniel

    2018-02-01

    The electromagnetic (EM) hard surface which can both support transverse electric and transverse magnetic surface wave modes has the important ability to reduce the EM blockage of metallic obstacles. We propose a method to design an electrically thin hard surface with wide bandwidth by loading with non-Foster elements. The wideband hard surface composed of an anisotropic impedance coating can be considered as a kind of active metasurface. We develop a method to determine the values of the loading non-Foster circuit which can minimize the dispersion of the unit cells. For this method, we derive accurate values for the loading non-Foster elements through theoretical analysis. We also determine the fundamental limitations on the bandwidth due to stability requirements. To verify our theoretical design, we simulate the transmission performance between the two ports on opposite sides of a metallic rhombus-shaped obstacle coated with the non-Foster based metasurface. The simulated results show that the blockage has been largely reduced over a broad bandwidth from 0.2 GHz to 1.5 GHz. Finally, we provide a discussion on how the resistive part of the non-Foster circuit can affect the performance of the wideband hard surface coating.

  5. Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory

    Science.gov (United States)

    Ansari, R.; Ashrafi, M. A.; Pourashraf, T.; Sahmani, S.

    2015-04-01

    The buckling and vibration responses of nanoplates made of functionally graded materials (FGMs) subjected to thermal loading are studied in prebuckling domain with considering the effect of surface stress. To accomplish this purpose, Gurtin-Murdoch elasticity theory is incorporated into the classical plate theory to develop a non-classical plate model including the surface effects. The material properties of FGM nanoplate are considered to be graded in the thickness direction on the basis of the power law function. Hamilton's principle is utilized to derive size-dependent governing differential equations of motion and associated boundary conditions. Selected numerical results are presented to indicate the importance of surface stress effect. It is revealed that in the presence of surface stress effect, the influence of material property gradient index on the critical thermal buckling load is more prominent for FGM nanoplates with lower length-to-thickness ratios. Also, by increasing the natural frequency of FGM nanoplate, the role of surface stress effect in the value of critical thermal buckling load is more prominent.

  6. Loading of titanium implants with hydrophilic endosteal surface 3 weeks after insertion: clinical and radiological outcome of a 12-month prospective clinical trial.

    Science.gov (United States)

    Hinkle, Robert M; Rimer, Stephen R; Morgan, Michael H; Zeman, Paul

    2014-08-01

    The aim of this study was to test whether early loading (21 days after insertion) of implants with a hydrophilic surface is safe and reliable in a general clinical practice setting. This was a prospective multicenter clinical trial conducted in 3 independent surgical practices. Patients were selected according to predefined inclusion and exclusion criteria. Implants were placed in posterior regions into healed alveoli and native bone using a 1-stage (unsubmerged) surgical protocol. Loading was to be performed 21 days thereafter. Patients were followed clinically and radiographically for 1 year. Twenty-one patients who received 23 implants were followed for 1 year. None of the osseointegrated implants were lost. One broken provisional crown was reported during the trial period. The crestal bone remained remarkably stable (ie, approximately 1 mm below the microgap). The most coronal bone-to-implant contact stabilized at the level of the first implant thread just beneath the machined collar. Within the limitations of this clinical study, the authors confirmed that loading of implants with a hydrophilic surface 3 weeks after placement appears to be a safe and predictable treatment option. No crestal bone loss was observed 1 year after implant placement. Therefore, it appears that crestal bone loss is dependent on the design features of the specific implant line. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  7. Self-consistent field theory of block copolymers on a general curved surface.

    Science.gov (United States)

    Li, Jianfeng; Zhang, Hongdong; Qiu, Feng

    2014-03-01

    In this work, we propose a theoretical framework based on the self-consistent field theory (SCFT) for the study of self-assembling block copolymers on a general curved surface. Relevant numerical algorithms are also developed. To demonstrate the power of the approach, we calculate the self-assembled patterns of diblock copolymers on three distinct curved surfaces with different genus. We specially study the geometrical effects of curved surfaces on the conformation of polymer chains as well as on the pattern formation of block copolymers. By carefully examining the diffusion equation of the propagator on curved surfaces, it is predicted that Gaussian chains are completely unaware of the extrinsic curvature but that they will respond to the intrinsic curvature of the surface. This theoretical assertion is consistent with our SCFT simulations of block copolymers on general curved surfaces.

  8. Generalized surface momentum balances for the analysis of surface dilatational data

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2013-01-01

    Dilatational rheological properties of interfaces are often determined using drop tensiometers, in which the interface of the droplet is subjected to oscillatory area changes. A dynamic surface tension is determined either by image analysis of the droplet profile or by measuring the capillary

  9. Land surface Verification Toolkit (LVT) - a generalized framework for land surface model evaluation

    Science.gov (United States)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J.; Harrison, K.; Liu, Y.; Shaw, M.

    2012-06-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it supports hydrological data products from non-LIS environments as well. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  10. Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads

    International Nuclear Information System (INIS)

    Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae

    2014-01-01

    Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints . This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects

  11. Accuracy of Surface Plate Measurements - General Purpose Software for Flatness Measurement

    NARCIS (Netherlands)

    Meijer, J.; Heuvelman, C.J.

    1990-01-01

    Flatness departures of surface plates are generally obtained from straightness measurements of lines on the surface. A computer program has been developed for on-line measurement and evaluation, based on the simultaneous coupling of measurements in all grid points. Statistical methods are used to

  12. General contact mechanics theory for randomly rough surfaces with application to rubber friction

    OpenAIRE

    Scaraggi, Michele; Persson, Bo N. J.

    2015-01-01

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic or viscoelastic, and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interfacial separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for a rubber block sliding on a road surface....

  13. Estimating ammonium and nitrate load from septic systems to surface water bodies within ArcGIS environments

    Science.gov (United States)

    Zhu, Yan; Ye, Ming; Roeder, Eberhard; Hicks, Richard W.; Shi, Liangsheng; Yang, Jinzhong

    2016-01-01

    This paper presents a recently developed software, ArcGIS-based Nitrogen Load Estimation Toolkit (ArcNLET), for estimating nitrogen loading from septic systems to surface water bodies. The load estimation is important for managing nitrogen pollution, a world-wide challenge to water resources and environmental management. ArcNLET simulates coupled transport of ammonium and nitrate in both vadose zone and groundwater. This is a unique feature that cannot be found in other ArcGIS-based software for nitrogen modeling. ArcNLET is designed to be flexible for the following four simulating scenarios: (1) nitrate transport alone in groundwater; (2) ammonium and nitrate transport in groundwater; (3) ammonium and nitrate transport in vadose zone; and (4) ammonium and nitrate transport in both vadose zone and groundwater. With this flexibility, ArcNLET can be used as an efficient screening tool in a wide range of management projects related to nitrogen pollution. From the modeling perspective, this paper shows that in areas with high water table (e.g. river and lake shores), it may not be correct to assume a completed nitrification process that converts all ammonium to nitrate in the vadose zone, because observation data can indicate that substantial amount of ammonium enters groundwater. Therefore, in areas with high water table, simulating ammonium transport and estimating ammonium loading, in addition to nitrate transport and loading, are important for avoiding underestimation of nitrogen loading. This is demonstrated in the Eggleston Heights neighborhood in the City of Jacksonville, FL, USA, where monitoring well observations included a well with predominant ammonium concentrations. The ammonium loading given by the calibrated ArcNLET model can be 10-18% of the total nitrogen load, depending on various factors discussed in the paper.

  14. Analysis of pushing exercises: muscle activity and spine load while contrasting techniques on stable surfaces with a labile suspension strap training system.

    Science.gov (United States)

    McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T

    2014-01-01

    Labile surfaces in the form of suspension straps are increasingly being used as a tool in resistance training programs. Pushing is a common functional activity of daily living and inherently part of a well-rounded training program. This study examined pushing exercises performed on stable surfaces and unstable suspension straps, specifically muscle activation levels and spine loads were quantified together with the influence of employing technique coaching. There were several main questions that this study sought to answer: Which exercises challenged particular muscles? What was the magnitude of the resulting spine load? How did stable and unstable surfaces differ? Did coaching influence the results? Fourteen men were recruited as part of a convenience sample (mean age, 21.1 ± 2.0 years; height, 1.77 ± 0.06 m; mean weight, 74.6 ± 7.8 kg). Data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force-in this way, the model was sensitive to the individuals choice of motor control for each task; muscle forces and linked segment joint loads were used to calculate spine loads. Exercises were performed using stable surfaces for hand/feet contact and repeated where possible with labile suspension straps. Speed of movement was standardized across participants with the use of a metronome for each exercise. There were gradations of muscle activity and spine load characteristics to every task. In general, the instability associated with the labile exercises required greater torso muscle activity than when performed on stable surfaces. Throughout the duration of an exercise, there was a range of compression; the TRX push-up ranged from 1,653 to 2,128.14 N, whereas the standard push-up had a range from 1,233.75 to 1,530.06 N. There was no significant effect of exercise on spine compression (F(4,60) = 0.86, p = 0.495). Interestingly, a standard push-up showed significantly

  15. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    Science.gov (United States)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    The general use of pesticides in the Orge Basin, located in the southern part of the Paris suburb (France), is damaging surface water quality. Consequently, an increase in the water supply costs is registered by the water supply agencies that are situated downstream the Orge confluence with the Seine River. In this catchment, high uses of glyphosate are registered for fallow fields (upstream part) and for roadway weed control (downstream part). The proportion of glyphosate coming from these two zones was not well known, along with the double source of its metabolite AMPA originated from the degradation of some detergent phosphonates. The aim of this work was firstly to identify the potential sources of glyphosate and AMPA in urban sectors (such as sewerage system inputs) and in agricultural areas and to quantify the origins of urban pesticides pathways towards surface waters at the basin scale. The new approach of this project was to collect information at three different scales to establish a first step of modeling. At the basin scale, 1 year of surface water monitoring at the outlet of the Orge River was useful to establish the inputs towards the Seine River. At the urban catchment scale, the investigations have permitted to record glyphosate and AMPA loads transferred by storm waters and by wastewaters. Loads were estimated during and out of application calendar, in different hydrological conditions such as rainfall with high intensity or dry conditions. Impact of WWTP on surface water was also demonstrated. The third phase of this work was the interpretation of agricultural inputs from two different agricultural catchments of the Orge River. The results showed the impact of urban uses of glyphosate upon the Orge River contamination with annual loads from 100 times higher from the urban zone than from the agricultural one. Storm sewers were recognized to be the main way for glyphosate transfer towards surface waters. A budget of glyphosate and AMPA inputs and

  16. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (p... of the biofilm community decreased significantly (p=0.004) compared to the metacommunity. These observations indicate that the selection towards Nitrotoga and Nitrospira dominated community assembly under different nitrite loadings. Lastly, we compared our observations of community composition...

  17. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Science.gov (United States)

    Luo, Y.; Zhang, X.; Liu, X.; Ficklin, D. L.; Zhang, M.

    2008-12-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992 to 2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application timing in the study area.

  18. Plastic limit loads for cylindrical shell intersections under combined loading

    International Nuclear Information System (INIS)

    Skopinsky, V.N.; Berkov, N.A.; Vogov, R.A.

    2015-01-01

    In this research, applied methods of nonlinear analysis and results of determining the plastic limit loads for shell intersection configurations under combined internal pressure, in-plane moment and out-plane moment loadings are presented. The numerical analysis of shell intersections is performed using the finite element method, geometrically nonlinear shell theory in quadratic approximation and plasticity theory. For determining the load parameter of proportional combined loading, the developed maximum criterion of rate of change of relative plastic work is employed. The graphical results for model of cylindrical shell intersection under different two-parameter combined loadings (as generalized plastic limit load curves) and three-parameter combined loading (as generalized plastic limit load surface) are presented on the assumption that the internal pressure, in-plane moment and out-plane moment loads were applied in a proportional manner. - Highlights: • This paper presents nonlinear two-dimensional FE analysis for shell intersections. • Determining the plastic limit loads under combined loading is considered. • Developed maximum criterion of rate of change of relative plastic work is employed. • Plastic deformation mechanism in shell intersections is discussed. • Results for generalized plastic limit load curves of branch intersection are presented

  19. Analysis of ground motion due to moving surface loads induced by high-speed trains

    OpenAIRE

    Galvín, Pedro; Domínguez Abascal, José

    2007-01-01

    A three-dimensional time domain boundary element (BE) approach for the analysis of soil vibrations induced by high-speed moving loads is presented in this paper. An attenuation law is included in the formulation. By doing so, internal material damping can be taken into account. The characteristics of the BE model required for the study of travelling load problems are analysed. Thus, mesh size, type of elements, internal damping representation and the complete numerical approach are validated....

  20. Effects of the different frequencies and loads of ultrasonic surface rolling on surface mechanical properties and fretting wear resistance of HIP Ti–6Al–4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, G., E-mail: ligang_scut@outlook.com; Qu, S.G., E-mail: qusg@scut.edu.cn; Pan, Y.X.; Li, X.Q.

    2016-12-15

    Highlights: • Effects of MUSR frequency and load on surface properties of HIP Ti-6Al-4V investigated. • The grains in surface-modified layer were refined and appeared twins and many dense dislocations. • The hardened layer depth and surface residual stress of MUSR- treated samples were significantly improved. • MUSR- treated samples showed the good fretting friction and wear resistance. • The best microstructure and properties of surface-modified layer obtained by sample treated by 30 kHz and 900 N. - Abstract: The main purpose of this paper was to investigate the effects of the different frequencies and loads of multi-pass ultrasonic surface rolling (MUSR) on surface layer mechanical properties, microstructure and fretting friction and wear characteristics of HIP (hot isostatic pressing) Ti–6Al–4 V alloy. Some microscopic analysis methods (SEM, TEM and EDS) were used to characterize the modified surface layer of material after MUSR treatment. The results indicated that the material in sample surface layer experienced a certain extent plastic deformation, and accompanied by some dense dislocations and twins generation. Moreover surface microhardness and residual stress of samples treated by MUSR were also greatly improved compared with the untreated. The fretting friction and wear properties of samples treated by MUSR in different conditions are tested at 10 and 15 N in dry friction conditions. It could be found that friction coefficient and wear volume loss were significantly declined in the optimal result. The main wear mechanism of MUSR-treated samples included abrasive wear, adhesion and spalling.

  1. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  2. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  3. Application of advanced biomechanical methods in studying low back pain – recent development in estimation of lower back loads and large-array surface electromyography and findings

    Directory of Open Access Journals (Sweden)

    Bazrgari B

    2017-07-01

    Full Text Available Babak Bazrgari,1 Ting Xia2 1F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, 2Palmer Center for Chiropractic Research, Palmer College of Chiropractic, Davenport, IA, USA Abstract: Low back pain (LBP is a major public health problem and the leading disabling musculoskeletal disorder globally. A number of biomechanical methods using kinematic, kinetic and/or neuromuscular approaches have been used to study LBP. In this narrative review, we report recent developments in two biomechanical methods: estimation of lower back loads and large-array surface electromyography (LA-SEMG and the findings associated with LBP. The ability to estimate lower back loads is very important for the prevention and the management of work-related low back injuries based on the mechanical loading model as one category of LBP classification. The methods used for estimation of lower back loads vary from simple rigid link-segment models to sophisticated, optimization-based finite element models. In general, reviewed reports of differences in mechanical loads experienced in lower back tissues between patients with LBP and asymptomatic individuals are not consistent. Such lack of consistency is primarily due to differences in activities under which lower back mechanical loads were investigated as well as heterogeneity of patient populations. The ability to examine trunk neuromuscular behavior is particularly relevant to the motor control model, another category of LBP classification. LA-SEMG not only is noninvasive but also provides spatial resolution within and across muscle groups. Studies using LA-SEMG showed that healthy individuals exhibit highly organized, symmetric back muscle activity patterns, suggesting an orderly recruitment of muscle fibers. In contrast, back muscle activity patterns in LBP patients are asymmetric or multifocal, suggesting lack of orderly muscle recruitment. LA-SEMG was also shown capable of

  4. SIMULATION OF TEMPERATURE AND TRANSPORT LOAD IMPACT ON FORMATION AND DEVELOPMENT OF CRACKS ON ASPHALT-CONCRETE ROAD SURFACES

    OpenAIRE

    I. S. Melnikova

    2012-01-01

    An analysis of statistical data has shown that about 60 % of all types of road surface destructions and damages in the Republic of Belarus are attributed to cracks (separate, frequent and cracks network). The process of cracks formation in the asphalt concrete pavement is rather complicated and it is affected by a number of factors. The most important and determining factors are character and value of traffic loads, temperature action, road pavement structure, properties of materials used for...

  5. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II)

    DEFF Research Database (Denmark)

    Gotfredsen, K; Berglundh, T; Lindhe, J

    2001-01-01

    extracted bilaterally. 12 weeks later, 2 implants with a TPS surface were placed in one side and 2 implants with a machined surface were placed in the contralateral side. Twelve weeks after implant installation, crowns, connected in pairs with orthodontic expansion screws, were fitted to the implants......The purpose of the present study was to compare bone reactions adjacent to titanium implants with either a titanium plasma-sprayed (TPS) or a machined surface subjected to lateral static loading induced by an expansion force. In 3 labrador dogs, the 2nd, 3rd and 4th mandibular premolars were...... and histometric examination. A higher marginal bone level was observed around implants with a TPS surface compared to machined implants. Furthermore, the values describing the amount of bone-to-implant contact at the bone/implant interface as well as the density of the peri-implant bone were lower at the machined...

  6. Loading an Optical Trap with Diamond Nanocrystals Containing Nitrogen-Vacancy Centers from a Surface

    Science.gov (United States)

    Hsu, Jen-Feng; Ji, Peng; Dutt, M. V. Gurudev; D'Urso, Brian R.

    2015-03-01

    We present a simple and effective method of loading particles into an optical trap. Our primary application of this method is loading photoluminescent material, such as diamond nanocrystals containing nitrogen-vacancy (NV) centers, for coupling the mechanical motion of the trapped crystal with the spin of the NV centers. Highly absorptive material at the trapping laser frequency, such as tartrazine dye, is used as media to attach nanodiamonds and burn into a cloud of air-borne particles as the material is swept near the trapping laser focus on a glass slide. Particles are then trapped with the laser used for burning or transferred to a second laser trap at a different wavelength. Evidence of successful loading diamond nanocrystals into the trap presented includes high sensitivity of the photoluminecscence (PL) to the excitation laser and the PL spectra of the optically trapped particles

  7. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    Science.gov (United States)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are

  8. Optical Feather and Foil for Shape and Dynamic Load Sensing of Critical Flight Surfaces, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future flight vehicles may comprise complex flight surfaces requiring coordinated in-situ sensing and actuation. Inspired by the complexity of the flight surfaces on...

  9. Multilayer Coating of Tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile.

    Science.gov (United States)

    Meng, Rui; Li, Ke; Chen, Zhe; Shi, Chen

    2016-02-01

    The effect of surface charges on the cellular uptake rate and drug release profile of tetrandrine-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPNs) was studied. Stabilizer-free nanoprecipitation method was used in this study for the synthesis of TPNs. A typical layer-by-layer approach was applied for multi-coating particles' surface with use of poly(styrene sulfonate) sodium salt (PSS) as anionic layer and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified TPNs were characterized by different physicochemical techniques such as Zeta sizer, scanning electron microscopy and transmission electron microscopy. The drug loading efficiency, release profile and cellular uptake rate were evaluated by high performance liquid chromatography and confocal laser scanning microscopy, respectively. The resultant PSS/PAH/PSS/PAH/TPNs (4 layers) exhibited spherical-shaped morphology with the average size of 160.3±5.165 nm and zeta potential of-57.8 mV. The encapsulation efficiency and drug loading efficiency were 57.88% and 1.73%, respectively. Multi-layer coating of polymeric materials with different charges on particles' surface could dramatically influence the drug release profile of TPNs (4 layers vs. 3 layers). In addition, variable layers of surface coating could also greatly affect the cellular uptake rate of TPNs in A549 cells within 8 h. Overall, by coating particles' surface with those different charged polymers, precise control of drug release as well as cellular uptake rate can be achieved simultaneously. Thus, this approach provides a new strategy for controllable drug delivery.

  10. Recent Successes and Remaining Challenges in Predicting Phosphorus Loading to Surface Waters at Large Scales

    Science.gov (United States)

    Harrison, J.; Metson, G.; Beusen, A.

    2017-12-01

    Over the past century humans have greatly accelerated phosphorus (P) flows from land to aquatic ecosystems, causing eutrophication and associated effects such as harmful algal blooms and hypoxia. Effectively addressing this challenge requires understanding geographic and temporal distribution of aquatic P loading, knowledge of major controls on P loading, and the relative importance of various potential P sources. The Global (N)utrient (E)xport from (W)ater(S)heds) NEWS model and recent improvements and extensions of this modeling system can be used to generate this understanding. This presentation will focus on insights global NEWS models grant into past, present, and potential future P sources and sinks, with a focus on the world's large rivers. Early results suggest: 1) that while aquatic P loading is globally dominated by particulate forms, dissolved P can be locally dominant; 2) that P loading has increased substantially at the global scale, but unevenly between world regions, with hotspots in South and East Asia; 3) that P loading is likely to continue to increase globally, but decrease in certain regions that are actively pursuing proactive P management; and 4) that point sources, especially in urban centers, play an important (even dominant) role in determining loads of dissolved inorganic P. Despite these insights, substantial unexplained variance remains when model predictions and measurements are compared at global and regional scales, for example within the U.S. Disagreements between model predictions and measurements suggest opportunities for model improvement. In particular, explicit inclusion of soil characteristics and the concept of temporal P legacies in future iterations of NEWS (and other) models may help improve correspondence between models and measurements.

  11. Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns

    Directory of Open Access Journals (Sweden)

    Ahmed Attia

    2010-04-01

    Full Text Available OBJECTIVE: This study investigated the durability of repaired all-ceramic crowns after cyclic loading. MATERIAL AND METHODS: Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20. Fracture site was treated before repair as follows: roughening with diamond bur, (DB; air abrasion using 50 µm Al2O3, (AA and silica coating using Cojet system followed by silane application, (SC. Control group (CG 20 specimens were left without fracture. Palatal cusps were repaired using composite resin. Specimens were stored in water bath at 37ºC for one week. Ten specimens of each group were subjected to cyclic loading. Fracture load (N was recorded for each specimen using a universal testing machine. Two-way analysis of variance (ANOVA and Tukey honestly significant difference (HSD test (a=.05 were used for statistical analysis. RESULTS: There was statistically significant difference between control and tested groups, (p<0.001. Post Hoc analysis with the Tukey HSD test showed that cyclic loading fatigue significantly decreased means fracture load of control and test groups as follows (CG, 950.4±62.6 / 872.3±87.4, P = 0.0004, (DB, 624.2 ±38 / 425.5± 31.7, P <.001, (AA, 711.5 ±15.5 / 490 ± 25.2, p <0.001 and (SC, 788.7 ± 18.1 / 610.2 ± 25.2, P <.001, while silica coating and silane application significantly increased fracture load of repaired crowns (p<0.05. CONCLUSION: Repair of fractured In-ceram zirconia crowns after chairside treatment of the fracture site by silica coating and silane application could improve longevity of repaired In-ceram zirconia crowns.

  12. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy

    NARCIS (Netherlands)

    Falco Gracia, J.A.; Barrajon-Catalan, E.; Menendez-Gutierrez, M.P.; Coll, J.; Micol, V.; Estepa, A.

    2013-01-01

    In this study, melittin, a well-characterized pore-forming lytic amphiphilic peptide susceptible to be vehiculized in lipid membranes, has been utilized to study their antiviral properties. For this purpose, an assay based on melittin loaded-immunoliposomes previously described by our group was

  13. General surface reconstruction for cone-beam multislice spiral computed tomography

    International Nuclear Information System (INIS)

    Chen Laigao; Liang Yun; Heuscher, Dominic J.

    2003-01-01

    A new family of cone-beam reconstruction algorithm, the General Surface Reconstruction (GSR), is proposed and formulated in this paper for multislice spiral computed tomography (CT) reconstructions. It provides a general framework to allow the reconstruction of planar or nonplanar surfaces on a set of rebinned short-scan parallel beam projection data. An iterative surface formation method is proposed as an example to show the possibility to form nonplanar reconstruction surfaces to minimize the adverse effect between the collected cone-beam projection data and the reconstruction surfaces. The improvement in accuracy of the nonplanar surfaces over planar surfaces in the two-dimensional approximate cone-beam reconstructions is mathematically proved and demonstrated using numerical simulations. The proposed GSR algorithm is evaluated by the computer simulation of cone-beam spiral scanning geometry and various mathematical phantoms. The results demonstrate that the GSR algorithm generates much better image quality compared to conventional multislice reconstruction algorithms. For a table speed up to 100 mm per rotation, GSR demonstrates good image quality for both the low-contrast ball phantom and thorax phantom. All other performance parameters are comparable to the single-slice 180 deg. LI (linear interpolation) algorithm, which is considered the 'gold standard'. GSR also achieves high computing efficiency and good temporal resolution, making it an attractive alternative for the reconstruction of next generation multislice spiral CT data

  14. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  15. Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation.

    Science.gov (United States)

    Song, Zhiwang; Lu, Yonglin; Zhang, Xia; Wang, Haiping; Han, Junyi; Dong, Chunyan

    2016-01-01

    Folate-conjugated, curcumin-loaded human serum albumin nanoparticles (F-CM-HSANPs) were obtained by the chemical conjugation of folate to the surface of the curcumin (CM)-loaded human serum albumin nanoparticles (NPs). The NPs were characterized by various parameters, including size, polydispersity, zeta potential, morphology, encapsulation efficiency, and drug release profile. The mean particle size of F-CM-HSANPs was 165.6±15.7 nm (polydispersity index <0.28), and the average encapsulation efficiency percentage and drug loading percentage of the F-CM-HSANPs were 88.7%±4.8% and 7.9%±0.4%, respectively. Applied in vitro, the CM NPs, after conjugation with folate, maintained sustained release, and a faster release of CM was more visibly observed than the unconjugated NPs. F-CM-HSANPs can prolong the retention time of CM significantly in vivo. However, after intravenous injection of F-CM-HSANPs, the pharmacokinetic parameters of CM were not significantly different from those of CM-loaded human serum albumin NPs. The improved antitumor activity of F-CM-HSANPs may be attributable to the protection of drug from enzymatic deactivation followed by the selective localization at the desired site. These results suggest that the intravenous injection of F-CM-HSANPs is likely to have an advantage in the current clinical CM formulation, because it does not require the use of a solubilization agent and it is better able to target the tumor tissue.

  16. Influence of surface treatment and cyclic loading on the durability of repaired all-ceramic crowns

    Science.gov (United States)

    ATTIA, Ahmed

    2010-01-01

    Objective This study investigated the durability of repaired all-ceramic crowns after cyclic loading. Material and methods Eighty In-ceram zirconia crowns were fabricated to restore prepared maxillary premolars. Resin cement was used for cementation of crowns. Palatal cusps were removed to simulate fracture of veneering porcelain and divided into 4 groups (n = 20). Fracture site was treated before repair as follows: roughening with diamond bur, (DB); air abrasion using 50 µm Al2O3, (AA) and silica coating using Cojet system followed by silane application, (SC). Control group (CG) 20 specimens were left without fracture. Palatal cusps were repaired using composite resin. Specimens were stored in water bath at 37°C for one week. Ten specimens of each group were subjected to cyclic loading. Fracture load (N) was recorded for each specimen using a universal testing machine. Two-way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) test (α=.05) were used for statistical analysis. Results There was statistically significant difference between control and tested groups, (pcrowns (pzirconia crowns after chairside treatment of the fracture site by silica coating and silane application could improve longevity of repaired In-ceram zirconia crowns. PMID:20485932

  17. Contribution of Heavy Metal Leaching from Agricultural Soils to Surface Water Loads

    NARCIS (Netherlands)

    Bonten, L.T.C.; Romkens, P.F.A.M.; Brus, D.J.

    2008-01-01

    Point sources for surface water contamination have been reduced by 50 to 90% during the past decades in The Netherlands. However, quality guidelines for heavy metals are still exceeded in many surface waters. It has been suggested that leaching of heavy metals from (diffusively polluted) soils can

  18. Estimation of real-time N load in surface water using dynamic data driven application system

    Science.gov (United States)

    Y. Ouyang; S.M. Luo; L.H. Cui; Q. Wang; J.E. Zhang

    2011-01-01

    Agricultural, industrial, and urban activities are the major sources for eutrophication of surface water ecosystems. Currently, determination of nutrients in surface water is primarily accomplished by manually collecting samples for laboratory analysis, which requires at least 24 h. In other words, little to no effort has been devoted to monitoring real-time variations...

  19. Surface biomimetic modification with laminin-loaded heparin/poly-L-lysine nanoparticles for improving the biocompatibility

    International Nuclear Information System (INIS)

    Liu, Tao; Hu, Youdong; Tan, Jianying; Liu, Shihui; Chen, Junying; Guo, Xin; Pan, Changjiang; Li, Xia

    2017-01-01

    Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-L-lysine nanoparticles. Alteration of heparin and poly-L-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1 μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis. - Highlights: • A novel laminin-loaded anticoagulant nanoparticle was prepared and used for titanium surface modification. • The nanoparticle binding density was adjustable by alteration the concentration ratio of heparin and poly-L-lysine. • In a certain range of NPs density, the surface was found to selectively direct platelet and vascular cells behavior.

  20. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-06-01

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure reduction from a nearby target free surface. The free-surface influence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure during the entire penetra- tion event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was 21 degrees and predom- inately resulted from the pressure reduction of the free surface. Good agreement was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  1. Modeling of Oblique Penetration into Geologic Targets Using Cavity Expansion Penetrator Loading with Target free-Surface Effects

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.

    1999-05-03

    A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.

  2. The effect of a low glycemic load diet on acne vulgaris and the fatty acid composition of skin surface triglycerides.

    Science.gov (United States)

    Smith, Robyn N; Braue, Anna; Varigos, George A; Mann, Neil J

    2008-04-01

    Dietary factors have long been implicated in acne pathogenesis. It has recently been hypothesized that low glycemic load diets may influence sebum production based on the beneficial endocrine effects of these diets. To determine the effect of a low glycemic load diet on acne and the fatty acid composition of skin surface triglycerides. Thirty-one male acne patients (aged 15-25 years) completed sebum sampling tests as part of a larger 12-week, parallel design dietary intervention trial. The experimental treatment was a low glycemic load diet, comprised of 25% energy from protein and 45% from low glycemic index carbohydrates. In contrast, the control situation emphasized carbohydrate-dense foods without reference to the glycemic index. Acne lesion counts were assessed during monthly visits. At baseline and 12-weeks, the follicular sebum outflow and composition of skin surface triglycerides were assessed using lipid absorbent tapes. At 12 weeks, subjects on the experimental diet demonstrated increases in the ratio of saturated to monounsaturated fatty acids of skin surface triglycerides when compared to controls [5.3+/-2.0% (mean+/-S.E.M.) vs. -2.7+/-1.7%, P=0.007]. The increase in the saturated/monounsaturated ratio correlated with acne lesion counts(r=-0.39, P=0.03). Increased follicular sebum outflow was also associated with an increase in the proportion of monounsaturated fatty acids in sebum (r=0.49, P=0.006). This suggests a possible role of desaturase enzymes in sebaceous lipogenesis and the clinical manifestation of acne. However, further work is needed to clarify the underlying role of diet in sebum gland physiology.

  3. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  4. Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study

    NARCIS (Netherlands)

    Ganeles, J.; Zollner, A.; Jackowski, J.; ten Bruggenkate, C.M.; Beagle, J.; Guerra, F.

    2008-01-01

    Objective: Immediate and early loading of implants can simplify treatment and increase patient satisfaction. This 3-year randomized-controlled trial will therefore evaluate survival rates and bone-level changes with immediately and early loaded Straumann implants with the SLActive surface. Material

  5. Preparation and characterization of gadolinium-loaded PLGA particles surface modified with RGDS for the detection of thrombus

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2013-10-01

    Full Text Available Yu Zhang,1 Jun Zhou,1 Dajing Guo,1 Meng Ao,2 Yuanyi Zheng,2 Zhigang Wang21Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China; 2Institute of Ultrasound Imaging, Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of ChinaAbstract: Thrombotic disease is a leading cause of death and disability worldwide. The development of magnetic resonance molecular imaging provides potential promise for early disease diagnosis. In this study, we explore the preparation and characterization of gadolinium (Gd-loaded poly (lactic-co-glycolic acid (PLGA particles surface modified with the Arg-Gly-Asp-Ser (RGDS peptide for the detection of thrombus. PLGA was employed as the carrier-delivery system, and a double emulsion solvent-evaporation method (water in oil in water was used to prepare PLGA particles encapsulating the magnetic resonance contrast agent Gd diethylenetriaminepentaacetic acid (DTPA. To synthesize the Gd-PLGA/chitosan (CS-RGDS particles, carbodiimide-mediated amide bond formation was used to graft the RGDS peptide to CS to form a CS-RGDS film that coated the surface of the PLGA particles. Blank PLGA, Gd-PLGA, and Gd-PLGA/CS particles were fabricated using the same water in oil in water method. Our results indicated that the RGDS peptide successfully coated the surface of the Gd-PLGA/CS-RGDS particles. The particles had a regular shape, smooth surface, relatively uniform size, and did not aggregate. The high electron density of the Gd-loaded particles and a translucent film around the particles coated with the CS and CS-RGDS films could be observed by transmission electron microscopy. In vitro experiments demonstrated that the Gd-PLGA/CS-RGDS particles could target thrombi and could be imaged using a clinical magnetic resonance scanner. Compared with the Gd-DTPA solution, the longitudinal relaxation time of

  6. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Janjic M

    2017-08-01

    Full Text Available Milka Janjic,1,2 Foteini Pappa,1 Varvara Karagkiozaki,1 Christakis Gitas,2 Kiriakos Ktenidis,2 Stergios Logothetidis1 1Department of Physics, Laboratory for Thin Films – Nanosystems and Nanometrology, University of Thessaloniki, 2School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece Abstract: This study describes the development of drug-loaded nanofibrous scaffolds as a nanocoating for endovascular stents for the local and sustained delivery of rosuvastatin (Ros and heparin (Hep to injured artery walls after endovascular procedures via the electrospinning process.Purpose: The proposed hybrid covered stents can promote re-endothelialization; improve endothelial function; reduce inflammatory reaction; inhibit neointimal hyperplasia of the injured artery wall, due to well-known pleiotropic actions of Ros; and prevent adverse events such as in-stent restenosis (ISR and stent thrombosis (ST, through the antithrombotic action of Hep.Methods: Biodegradable nanofibers were prepared by dissolving cellulose acetate (AC and Ros in N,N-dimethylacetamide (DMAc and acetone-based solvents. The polymeric solution was electrospun (e-spun into drug-loaded AC nanofibers onto three different commercially available stents (Co–Cr stent, Ni–Ti stent, and stainless steel stent, resulting in nonwoven matrices of submicron-sized fibers. Accordingly, Hep solution was further used for fibrous coating onto the engineered Ros-loaded stent. The functional encapsulation of Ros and Hep drugs into polymeric scaffolds further underwent physicochemical analysis. Morphological characterization took place via scanning electron microscopy (SEM and atomic force microscopy (AFM analyses, while scaffolds’ wettability properties were obtained by contact angle (CA measurements.Results: The morphology of the drug-loaded AC nanofibers was smooth, with an average diameter of 200–800 nm, and after CA measurement, we concluded to the superhydrophobic nature

  7. Surface modification of endovascular stents with rosuvastatin and heparin-loaded biodegradable nanofibers by electrospinning

    Science.gov (United States)

    Janjic, Milka; Pappa, Foteini; Karagkiozaki, Varvara; Gitas, Christakis; Ktenidis, Kiriakos; Logothetidis, Stergios

    2017-01-01

    This study describes the development of drug-loaded nanofibrous scaffolds as a nanocoating for endovascular stents for the local and sustained delivery of rosuvastatin (Ros) and heparin (Hep) to injured artery walls after endovascular procedures via the electrospinning process. Purpose The proposed hybrid covered stents can promote re-endothelialization; improve endothelial function; reduce inflammatory reaction; inhibit neointimal hyperplasia of the injured artery wall, due to well-known pleiotropic actions of Ros; and prevent adverse events such as in-stent restenosis (ISR) and stent thrombosis (ST), through the antithrombotic action of Hep. Methods Biodegradable nanofibers were prepared by dissolving cellulose acetate (AC) and Ros in N,N-dimethylacetamide (DMAc) and acetone-based solvents. The polymeric solution was electrospun (e-spun) into drug-loaded AC nanofibers onto three different commercially available stents (Co–Cr stent, Ni–Ti stent, and stainless steel stent), resulting in nonwoven matrices of submicron-sized fibers. Accordingly, Hep solution was further used for fibrous coating onto the engineered Ros-loaded stent. The functional encapsulation of Ros and Hep drugs into polymeric scaffolds further underwent physicochemical analysis. Morphological characterization took place via scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses, while scaffolds’ wettability properties were obtained by contact angle (CA) measurements. Results The morphology of the drug-loaded AC nanofibers was smooth, with an average diameter of 200–800 nm, and after CA measurement, we concluded to the superhydrophobic nature of the engineered scaffolds. In vitro release rates of the pharmaceutical drugs were determined using a high-performance liquid chromatography assay, which showed that after the initial burst, drug release was controlled slowly by the degradation of the polymeric materials. Conclusion These results imply that AC nanofibers

  8. Enhanced proliferation and migration of fibroblasts on the surface of fibroblast growth factor-2-loaded fibrin microthreads.

    Science.gov (United States)

    Cornwell, Kevin G; Pins, George D

    2010-12-01

    Fibrin microthreads are discrete biopolymer fibers, 50-100 μm in diameter, produced from the natural extracellular matrix protein of the provisional matrix that promotes tissue regeneration in the in vivo wound healing environment. The goals of this study were to investigate the feasibility of creating fibrin microthreads containing fibroblast growth factor-2 (FGF-2), and to study the potential of a fibrin matrix to bind signaling proteins known to promote wound healing and regulate cell function in localized cellular microenvironments on scaffold surfaces. FGF-2 was loaded into fibrin microthreads in concentrations ranging from 0 to 200 ng/mL, to investigate the effect of the material on fibroblast attachment, proliferation, cellular outgrowth, and alignment. Although FGF-2-loaded microthreads did not affect fibroblast attachment, they significantly increased cellular outgrowth and proliferation relative to unloaded microthreads. The most pronounced effects were observed at day 7 of cell culture. Further, all of the fibrin microthreads promoted the alignment of fibroblasts and their cytoskeletal components along the long axis of threads, independent of the FGF-2 concentration. Ultimately, we anticipate that these fibrin microthreads will be a promising biopolymer material to promote the regeneration of injured tissues because of their mechanical stability and their matrix signaling capabilities, particularly when loaded with matrix-bound growth factors such as FGF-2.

  9. Modeling viscoelastic deformation of the earth due to surface loading by commercial finite element package - ABAQUS

    Science.gov (United States)

    Kit Wong, Ching; Wu, Patrick

    2017-04-01

    Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

  10. Failure of a dampening pin. Combination of dynamic service load and increased notch effect because of surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, A.; Riesenbeck, S.; Ullrich, T. [Berlin Gas Turbine Plant (Germany). Materials Testing Laboratory; Voelker, J. [Siemens Gas Turbine Plant (Germany)

    2004-07-01

    As revealed by an inspection of hot gas path components, a dampening pin for the stage 4 moving blades of an industrial gas turbine for power plant applications broke in the summer of 2003. The failure mode of the fractured pin was high cycle fatigue. The root cause of the failure was probably a combination of the dynamic service load and an increased notch effect caused by an increased surface roughness of the pin. In the case of the notch-sensitive material Udimet 720, this was detrimental to the fatigue limit. The measured surface roughness of the failed part was out of specification and traceable to the use of non-OEM (Original Equipment Manufacturer) components. High temperature corrosion did not seem to have played a significant role in the failure mechanism. (orig.)

  11. Efficiency of Nanotube Surface-Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis.

    Science.gov (United States)

    Ferreira, Cimara Fortes; Babu, Jegdish; Hamlekhan, Azhang; Patel, Sweetu; Shokuhfar, Tolou

    The prevalence of peri-implant infection in patients with dental implants has been shown to range from 28% to 56%. A nanotube-modified implant surface can deliver antibiotics locally and suppress periodontal pathogenic bacterial growth. The aim of this study was to evaluate the deliverability of antibiotics via a nanotube-modified implant. Dental implants with a nanotube surface were fabricated and loaded with doxycycline. Afterward, each dental implant with a nanotube surface was placed into 2-mL tubes, removed from solution, and placed in a fresh solution daily for 28 days. Experimental samples from 1, 2, 4, 16, 24, and 28 days were used for this evaluation. The concentration of doxycycline was measured using spectrophotometric analysis at 273-nm absorbance. The antibacterial effect of doxycycline was evaluated by supplementing Porphyromonas gingivalis (P gingivalis) growth media with the solution collected from the dental implants at the aforementioned time intervals for a period of 48 hours under anaerobic conditions. A bacterial viability assay was used to evaluate P gingivalis growth at 550-nm absorbance. Doxycycline concentration varied from 0.33 to 1.22 μg/mL from day 1 to day 28, respectively. A bacterial viability assay showed the highest P gingivalis growth at day 1 (2 nm) and the lowest at day 4 (0.17 nm), with a gradual reduction from day 1 to day 4 of approximately 87.5%. The subsequent growth pattern was maintained and slightly increased from baseline in approximately 48.3% from day 1 to day 24. The final P gingivalis growth measured at day 28 was 29.4% less than the baseline growth. P gingivalis growth was suppressed in media supplemented with solution collected from dental implants with a nanotube surface loaded with doxycycline during a 28-day time interval.

  12. In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance

    International Nuclear Information System (INIS)

    Lu, Y.Y.; Zhang, Y.Y.; Zhang, J.; Shi, Y.; Li, Z.; Feng, Z.C.; Li, C.

    2016-01-01

    Graphical abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO 2 (CuS/TiO 2 ) at low temperature. In photocatalytic degradation of MB or 4-CP, it is found that the surface modification with CuS can enhance the photocatalytic efficiency of TiO 2 . The promotion of photocatalytic performance is mainly ascribed to the enhanced charge separation originating from the well-matched heterostructure between CuS and rutile TiO 2 . - Highlights: • CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO 2 at low temperature. • In the photo-degradation studies of MB and 4-CP, surface modification with CuS can enhance the photocatalytic efficiency of rutile TiO 2 . • CuS/TiO 2 composite materials show the good repeatability of the photocatalytic activity. • This work provides a facile method to design and fabricate the effective composites photocatalyst. - Abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO 2 (CuS/TiO 2 ) at low temperature. CuS/TiO 2 composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO 2 samples. It is found that CuS/TiO 2 photocatalyst, which CuS are loaded on the surface of rutile TiO 2 , exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO 2 or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO 2 by forming heterojunction between CuS and rutile TiO 2 , which is confirmed by photoluminescence (PL) spectra and TEM. Moreover, CuS content has a significant

  13. Automated Measurement for Sensitivity Analysis of Runoff-Sediment Load at Varying Surface Gradients

    Directory of Open Access Journals (Sweden)

    Imanogor P.A.

    2015-07-01

    Full Text Available Direct measurement of surface runoff is often associated with errors and inaccuracies which results to unreliable hydrological data. An automatic Runoff-meter using tipping buckets arrangement calibrated to tip 0.14 liter of runoff water per tip with an accuracy of ± 0.001 litre was used to measure surface runoff from a steel bounded soil tray of dimension (1200 mm X 900 mm X 260 mm filled with sand loamy to the depth of 130 mm and inclined at angle (0 0 , 5 0 ,12 0 and 15 0 horizontal to the instrument. The effect of varying angles of inclination on runoff intensity, sediment loss rate and sediment loss is significant at 5 % confidence level, while surface runoff is not significant at 5 % confidence level. Total highest sediment loss of 458.2 g and 313.4 g were observed at angle 15 0 and 12 0 respectively. Total surface runoff of 361.5 mm and 445.8 mm were generated at inclined angle of 0 0 and 5 0 , while at angle 12 0 and 15 0 , 564.3 mm and 590.0 mm of surface runoff were generated. In addition, runoff intensity and sediment loss rate were highest at angle 15 0 , while the lowest values of 1.5mm/min and 5.43 g/min were obtained at angle of inclination 5 0 . The results showed that strong relationship existed among the hydrological variables as a result of subjecting the steel bounded soil tray to different angles of inclination. Such results would provide useful data for the running of physics-based deterministic model of surface runoff and erosion which will be useful for the design of hydrological structures, land use planning and management.

  14. Analytical expressions of the imaging and aberration coefficients of a general form surface.

    Science.gov (United States)

    Yang, Liu; Qi, Jin Wei; Bin, Zhu

    2017-12-01

    A theoretical development is presented in this paper for describing and understanding the imaging and aberrations of a general form surface. The development is based on the Taylor expansion of an arbitrary ray trace from the object reference plane to the image reference plane, which is called the base mapping of the general form surface in this paper. The base mapping is expressed as two Taylor series of the object and pupil coordinates and the imaging and aberration coefficients in the third-order scope are derived and presented as analytical expressions relevant to the optic parameters, invoking no approximations. The situation with tilted object and observing plane is also considered, and the mapping from a tilted object to a tilted observing plane is derived via simple mathematical manipulations based on the base mapping.

  15. Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River

    Science.gov (United States)

    Pai, Henry; Villamizar, Sandra R.; Harmon, Thomas C.

    2017-11-01

    Delineating pollutant reactive transport pathways that connect local land use patterns to surface water is an important goal. This work illustrates high-resolution river mapping of salinity or specific conductance (SC) and nitrate (NO3-) as a potential part of achieving this goal. We observed longitudinal river SC and nitrate distributions using high-resolution synoptic in situ sensing along the lower Merced River (38 river km) in Central California (USA) from 2010 to 2012. We calibrated a distributed groundwater-surface water (GW-SW) discharge model for a conservative solute using 13 synoptic SC sampling events at flows ranging from 1.3 to 31.6 m3 s-1. Nitrogen loads ranged from 0.3 to 1.6 kg N d-1 and were greater following an extended high flow period during a wet winter. Applying the distributed GW-SW discharge estimates to a simplistic reactive nitrate transport model, the model reproduced observed river nitrate distribution well (RRMSE = 5-21%), with dimensionless watershed-averaged nitrate removal (kt) ranging from 0 to 0.43. Estimates were uncertain due to GW nitrate data variability, but the resulting range was consistent with prior removal estimates. At the segment scale, estimated GW-SW nitrate loading ranged from 0 to 17 g NO3- s-1 km-1. Local loading peaked near the middle of the study reach, a location that coincides with a shallow clay lens and with confined animal feed operations in close proximity to the river. Overall, the results demonstrate the potential for high-resolution synoptic monitoring to support GW-SW modeling efforts aimed at understanding and managing nonpoint source pollution.

  16. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Science.gov (United States)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  17. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    Directory of Open Access Journals (Sweden)

    L. Yu

    2018-01-01

    from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater–surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  18. Mirror and grating surface figure requirements for grazing incidence synchrotron radiation beamlines: Power loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Hulbert, S.L.; Sharma, S.

    1987-01-01

    At present, grazing incidence mirrors are used almost exclusively as the first optical element in VUV and soft x-ray synchrotron radiation beamlines. The performance of these mirrors is determined by thermal and mechanical stress-induced figure errors as well as by figure errors remaining from the grinding and polishing process. With the advent of VUV and soft x-ray undulators and wigglers has come a new set of thermal stress problems related to both the magnitude and the spatial distribution of power from these devices. In many cases the power load on the entrance slits and gratings in these beamlines is no longer negligible. The dependence of thermally-induced front-end mirror figure errors on various storage ring and insertion device parameters (especially those at the National Synchrotron Light Source) and the effects of these figure errors on two classes of soft x-ray beamlines are presented.

  19. Evaluation of the relation between groundwater pollution and the pollutant load on surface waters

    NARCIS (Netherlands)

    Groenendijk, P.; Roest, C.W.J.

    1996-01-01

    The importance of the relation between groundwater and surface water is demonstrated by the impact of water quality standards on permissible nitrogen losses at farm level. The effects of the intended fertilization reduction measures on agricultural production justify a thorough examination of the

  20. Analysis of cross-section surface roughness evolution of carbon fibre reinforced polymer under fatigue loading

    Czech Academy of Sciences Publication Activity Database

    Doktor, T.; Valach, Jaroslav; Kytýř, Daniel; Fíla, Tomáš; Minster, Jiří; Kostelecká, M.

    2012-01-01

    Roč. 106, č. 3 (2012), s399-s400 ISSN 0009-2770 Institutional support: RVO:68378297 Keywords : surface roughness * degradation monitoring * SEM * LSCM Subject RIV: JI - Composite Materials Impact factor: 0.453, year: 2012 http://www.chemicke-listy.cz/common/content-issue_s2-volume_106-year_2012.html

  1. Equations for the calculation of N- and P-load on surface waters

    NARCIS (Netherlands)

    Steenvoorden, J.H.A.M.

    1983-01-01

    Nutrient loadson surface and ground waters is the result of inputs from various sources. For the development of a plan for water management information is needed about the consequences of alternative scenarios. Therefore mathematica! approaches have been developed for the contributions by the

  2. Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry.

    Science.gov (United States)

    Silber, David; Kowalski, Piotr M; Traeger, Franziska; Buchholz, Maria; Bebensee, Fabian; Meyer, Bernd; Wöll, Christof

    2016-09-30

    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO 2 (110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO 2 (110) surface.

  3. General contact mechanics theory for randomly rough surfaces with application to rubber friction

    Science.gov (United States)

    Scaraggi, M.; Persson, B. N. J.

    2015-12-01

    We generalize the Persson contact mechanics and rubber friction theory to the case where both surfaces have surface roughness. The solids can be rigid, elastic, or viscoelastic and can be homogeneous or layered. We calculate the contact area, the viscoelastic contribution to the friction force, and the average interface separation as a function of the sliding speed and the nominal contact pressure. We illustrate the theory with numerical results for the classical case of a rubber block sliding on a road surface. We find that with increasing sliding speed, the influence of the roughness on the rubber block decreases to the extent that only the roughness of the stiff counter face needs to be considered.

  4. Modelling the drained response of bucket foundations for offshore wind turbines under general monotonic and cyclic loading

    DEFF Research Database (Denmark)

    Foglia, Aligi; Gottardi, Guido; Govoni, Laura

    2015-01-01

    the typical conditions of offshore wind turbines: very large cyclic overturning moment, large cyclic horizontal load and comparatively little, self-weight induced, vertical load. The experimental soil-foundation response is interpreted within the macro-element approach, using an existing analytical model...

  5. Roll Damping Derivatives from Generalized Lifting-Surface Theory and Wind Tunnel Forced-Oscillation Tests

    Science.gov (United States)

    Pototzky, Anthony S; Murphy, Patrick C.

    2014-01-01

    Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.

  6. Line-focus probe excitation of Scholte acoustic waves at the liquid-loaded surfaces of periodic structures

    International Nuclear Information System (INIS)

    Every, A.G.; Vines, R.E.; Wolfe, J.P.

    1999-01-01

    A model is introduced to explain our observation of Scholte-like ultrasonic waves traveling at the water-loaded surfaces of solids with periodically varying properties. The observations pertain to two two-dimensional superlattices: a laminated solid of alternating 0.5-mm-thick layers of aluminum and a polymer, and a hexagonal array of polymer rods of lattice spacing 1 mm in an aluminum matrix. The surface waves are generated and detected by line focus acoustic lenses aligned parallel to each other, and separated by varying distances. The acoustic fields of these lenses may be considered a superposition of plain bulk waves with wave normals contained within the angular apertures of the lenses. For homogeneous solids, phase matching constraints do not allow the Scholte wave to be coupled into with an experimental configuration of this type. This is not true for a spatially periodic solid, where coupling between bulk waves and the Scholte surface wave takes place through Umklapp processes involving a change in the wave-vector component parallel to the surface by a reciprocal lattice vector. In the experiments, the source pulse is broadband, extending up to about 6 MHz, whereas the spectrum of the observed Scholte wave is peaked at around 4 and 4.5 MHz for the layered solid and hexagonal lattice, respectively. We attribute this to a resonance in the surface response of the solid, possibly associated with a critical point in the dispersion relation of the superlattice. On rotating the solid about its surface normal, the Scholte wave displays dramatic variation in phase arrival time and, to a lesser extent, also group arrival time. This variation is well accounted for by our model. copyright 1999 The American Physical Society

  7. Flight Investigation on a Fighter-Type Airplane of Factors which Affect the Loads and Load Distributions on the Vertical Tail Surfaces During Rudder Kicks and Fishtails

    Science.gov (United States)

    1947-08-01

    is not&d to decresse with increase of pedel force; or amount of resistance to deflection. This result is in agreement wi"& the results of tests made...Vertical-Tail Loads In Rollin Yull-Out Mmcuvers~ NACA CB No. L4rn4, 1944. 5. Boshm, Job , and Davis, Philip: Consideration of I$-namk Loads on the

  8. Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces

    Science.gov (United States)

    Gao, L.; Jacob, W.; von Toussaint, U.; Manhard, A.; Balden, M.; Schmid, K.; Schwarz-Selinger, T.

    2017-01-01

    Fundamental understanding of hydrogen-metal interactions is challenging due to a lack of knowledge on defect production and/or evolution upon hydrogen ingression, especially for metals undergoing hydrogen irradiation with ion energy below the displacement thresholds reported in literature. Here, applying a novel low-energy argon-sputter depth profiling method with significantly improved depth resolution for tungsten (W) surfaces exposed to deuterium (D) plasma at 300 K, we show the existence of a 10 nm thick D-supersaturated surface layer (DSSL) with an unexpectedly high D concentration of ~10 at.% after irradiation with ion energy of 215 eV. Electron back-scatter diffraction reveals that the W lattice within this DSSL is highly distorted, thus strongly blurring the Kikuchi pattern. We explain this strong damage by the synergistic interaction of energetic D ions and solute D atoms with the W lattice. Solute D atoms prevent the recombination of vacancies with interstitial W atoms, which are produced by collisions of energetic D ions with W lattice atoms (Frenkel pairs). This proposed damaging mechanism could also be active on other hydrogen-irradiated metal surfaces. The present work provides deep insight into hydrogen-induced lattice distortion at plasma-metal interfaces and sheds light on its modelling work.

  9. Development of tea tree oil-loaded liposomal formulation using response surface methodology.

    Science.gov (United States)

    Ge, Yan; Ge, Mingqiao

    2015-03-23

    The aim of this study is to prepare tea tree oil liposome (TTOL) and optimize the preparation condition by single factor experiment and statistical design. TTOL was prepared using a thin-film hydration with the combination of sonication method and the preparation conditions of TTOL were optimized with response surface methodology (RSM). The optimal preparation conditions for TTOL by response surface methodology were as follows: the mass ratio of PC and Cho 5.51, TTO concentration 1.21% (v/v) and Tween 80 concentration 0.79% (v/v). The response surface analysis showed that the significant (p  0.05) lack of fit for the reduced models. Furthermore, the interaction of the mass ratio of PC/Cho and TTO concentration had a significant effect. The amounts of Tween 80 required were also reduced with RSM. Under these conditions, the experimental encapsulation efficiency of TTOL was 97.81 ± 0.33%, which was close with the predicted value. Therefore, the optimized preparation condition was very reliable. The increased entrapment efficiency would significantly improve the TTO stability and bioavailability.

  10. Enhanced protein loading on a planar Si(111)-H surface with second generation NTA

    Science.gov (United States)

    Liu, Xiang; Han, Huan-Mei; Liu, Hong-Bo; Xiao, Shou-jun

    2010-08-01

    A Si(111)-H surface was modified via a direct reaction between Si-H and 1-undecylenic acid (UA) under microwave irradiation to form molecular monolayers with terminal carboxyl groups. After esterifying carboxylic acid being esterified with N-hydroxysuccinimide (NHS), aminobutyl nitrilotriacetic acid (ANTA) was bound to the silicon surface through amidation (pH = 8.0) between its primary amino group and NHS-ester, producing nitrilotriacetic acid (NTA) anions. Then hexa-histidine tagged thioredoxin-urodilatin (his-tagged protein) and FITC-labeled hexa-histidine tagged thioredoxin-urodilatin (FITC-his-tagged protein) can be anchored after NTA was coordinated with Ni 2+. Furthermore, the NTA-terminated chip was acidified with 0.1 M HCl and subsequently esterified with NHS and then amidated with ANTA again to produce a second generation NTA. Thus the surface density of nitrilotriacetic acid anions was improved and resultantly that of anchored proteins was also enhanced through the iterative reactions. Both multiple transmission-reflection infrared spectroscopy (MTR-IR) and fluorescence scanning measurements demonstrated a proximate 1.63 times of anchored proteins on the second generation NTA/Ni 2+ as that on the first generation NTA/Ni 2+ monolayer.

  11. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  12. Surface modification of paclitaxel-loaded tri-block copolymer PLGA- b-PEG- b-PLGA nanoparticles with protamine for liver cancer therapy

    Science.gov (United States)

    Gao, Nansha; Chen, Zhihong; Xiao, Xiaojun; Ruan, Changshun; Mei, Lin; Liu, Zhigang; Zeng, Xiaowei

    2015-08-01

    In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide- co-glycolide)- b-poly(ethylene glycol)- b-poly(lactide- co-glycolide) (PLGA- b-PEG- b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA- b-PEG- b-PLGA was synthesized by ring-opening polymerization and characterized by 1H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol® as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol® did. All the results suggested that surface modification of PTX-loaded PLGA- b-PEG- b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

  13. Surface modification of paclitaxel-loaded tri-block copolymer PLGA-b-PEG-b-PLGA nanoparticles with protamine for liver cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Nansha [Chinese Academy of Science, Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology (China); Chen, Zhihong [Guangdong Medical College, Analysis Centre (China); Xiao, Xiaojun [Shenzhen University, Institute of Allergy and Immunology, School of Medicine (China); Ruan, Changshun [Chinese Academy of Science, Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology (China); Mei, Lin [Tsinghua University, The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen (China); Liu, Zhigang, E-mail: lzg@szu.edu.cn [Shenzhen University, Institute of Allergy and Immunology, School of Medicine (China); Zeng, Xiaowei, E-mail: zeng.xiaowei@sz.tsinghua.edu.cn [Tsinghua University, The Shenzhen Key Lab of Gene and Antibody Therapy, and Division of Life and Health Sciences, Graduate School at Shenzhen (China)

    2015-08-15

    In order to enhance the therapeutic effect of chemotherapy on liver cancer, a biodegradable formulation of protamine-modified paclitaxel-loaded poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) nanoparticles (PTX-loaded/protamine NPs) was prepared. Tri-block copolymer PLGA-b-PEG-b-PLGA was synthesized by ring-opening polymerization and characterized by {sup 1}H NMR spectroscopy and gel permeation chromatography. PTX-loaded and PTX-loaded/protamine NPs were characterized in terms of size, size distribution, zeta potential, surface morphology, drug encapsulation efficiency, and drug release. Confocal laser scanning microscopy showed that coumarin 6-loaded/protamine NPs were internalized by hepatocellular carcinoma cell line HepG2. The cellular uptake efficiency of NPs was obviously elevated after protamine modification. With commercial formulation Taxol{sup ®} as the reference, HepG2 cells were also used to study the cytotoxicity of the NPs. PTX-loaded/protamine NPs exhibited significantly higher cytotoxicity than PTX-loaded NPs and Taxol{sup ®} did. All the results suggested that surface modification of PTX-loaded PLGA-b-PEG-b-PLGA NPs with protamine boosted the therapeutic efficacy on liver cancer.

  14. SIMULATION OF TEMPERATURE AND TRANSPORT LOAD IMPACT ON FORMATION AND DEVELOPMENT OF CRACKS ON ASPHALT-CONCRETE ROAD SURFACES

    Directory of Open Access Journals (Sweden)

    I. S. Melnikova

    2012-01-01

    Full Text Available An analysis of statistical data has shown that about 60 % of all types of road surface destructions and damages in the Republic of Belarus are attributed to cracks (separate, frequent and cracks network. The process of cracks formation in the asphalt concrete pavement is rather complicated and it is affected by a number of factors. The most important and determining factors are character and value of traffic loads, temperature action, road pavement structure, properties of materials used for its layers. Some regularities of the cracks formation and development in the asphalt-concrete layers of the pavement have been established on the basis of the physical and mathematical modeling. Application of a finite  element  method for  calculations  has made it possible to determine  numerical values of compressive and tensile stresses arising due to temperature action and traffic load, deflection of road pavement constructive layers. The paper contains recommendations for a road pavement design and repair of asphalt-concrete pavements which have been made on the basis of the obtained data analysis.

  15. Investigation of the load on the lumbar region in nursing technique's movements - relation between twist and surface electromyogram.

    Science.gov (United States)

    Maekawa, Yasuko; Shiozaki, Akira; Majima, Yukie

    2009-01-01

    This study measured the twist angle of the lumbar region and the surface electromyogram (EMG) and examined their mutual relation to elucidate the degree and influence of factors of "twist" in nursing techniques as a cause of lower back pain. Using a goniometer (two-way angle and twist sensors) and an EMG(SX230; DKH Co., Ltd.), we conducted measurements by affixing the goniometer on the lumbar vertebral column and EMG sensor at four points of right and left sides of L2 and L4 (of the erector muscle of the spine). The measured nursing techniques were three common methods of "transferring a patient from bed to wheelchair," which is said to impart a heavy load on the lumbar region. Results show that the correlation value between the twist angle rate and mean energy is likely to be greater, suggesting that the magnitude of the load on the lumbar region should be related to the twist speed rather than to the twist angle of the movement itself.

  16. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    Science.gov (United States)

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-03-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.

  17. Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology.

    Science.gov (United States)

    Gidwani, Bina; Vyas, Amber

    2016-01-01

    The objective of the present study was to prepare solid lipid nanoparticles (SLNs) of altretamine (ALT) by the hot homogenization and ultrasonication method. The study was conducted using the Box-Behnken design (BBD), with a 3(3) design and a total of 17 experimental runs, performed in combination with response surface methodology (RSM). The SLNs were evaluated for mean particle size, entrapment efficiency, and drug-loading. The optimized formulation, with a desirability factor of 0.92, was selected and characterized. In vitro release studies showed a biphasic release pattern from the SLNs for up to 24 h. The results of % EE (93.21 ± 1.5), %DL (1.15 ± 0.6), and mean diameter of (100.6 ± 2.1) nm, were very close to the predicted values.

  18. Deep-subwavelength light routing in nanowire-loaded surface plasmon polariton waveguides: an alternative to the hybrid guiding scheme

    International Nuclear Information System (INIS)

    Bian, Yusheng; Gong, Qihuang

    2013-01-01

    Nanowire-loaded surface plasmon polariton waveguide is an extremely simple structure that can be naturally formed by directly dropping a dielectric cylinder onto a metallic substrate. However, despite the substantial emphasis devoted to its hybrid plasmonic counterparts, this waveguiding structure has been paid little attention to so far. Here in this paper, through comprehensive numerical analysis, we reveal that such a configuration can be leveraged to achieve deep-subwavelength field confinement with mode area more than one order of magnitude smaller than that of the conventional hybrid waveguide, while maintaining a moderate attenuation with propagation distance over tens of microns. Two-dimensional parameter mapping concerning physical dimension, shape and material of the nanowire as well as the refractive index of the cladding has disclosed the wide-range existence nature of this plasmonic mode and the feasibility to further balance its confinement and loss. (paper)

  19. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    Science.gov (United States)

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  20. A New Generalized Two-Stage Direct Power Conversion Topology to Independently Supply Multiple AC Loads from Multiple Power Grids with Adjustable Power Loading

    DEFF Research Database (Denmark)

    Klumpner, Christian; Blaabjerg, Frede

    2004-01-01

    ) and continuously adjust these power fractions will become a desired feature. This paper presents a generalized Direct Power Converter topology, which is able to connect to multiple AC supplies proving complete decoupling and no circulating power between the input ports and to independently control multiple AC...

  1. Predicting muscle fatigue: a response surface approximation based on proper generalized decomposition technique.

    Science.gov (United States)

    Sierra, M; Grasa, J; Muñoz, M J; Miana-Mena, F J; González, D

    2017-04-01

    A novel technique is proposed to predict force reduction in skeletal muscle due to fatigue under the influence of electrical stimulus parameters and muscle physiological characteristics. Twelve New Zealand white rabbits were divided in four groups ([Formula: see text]) to obtain the active force evolution of in vitro Extensor Digitorum Longus muscles for an hour of repeated contractions under different electrical stimulation patterns. Left and right muscles were tested, and a total of 24 samples were used to construct a response surface based in the proper generalized decomposition. After the response surface development, one additional rabbit was used to check the predictive potential of the technique. This multidimensional surface takes into account not only the decay of the maximum repeated peak force, but also the shape evolution of each contraction, muscle weight, electrical input signal and stimulation protocol. This new approach of the fatigue simulation challenge allows to predict, inside the multispace surface generated, the muscle response considering other stimulation patterns, different tissue weight, etc.

  2. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  3. The assessment of material-handling strategies in dealing with sudden loading: the effect of uneven ground surface on trunk biomechanical responses.

    Science.gov (United States)

    Zhou, Jie; Ning, Xiaopeng; Nimbarte, Ashish D; Dai, Fei

    2015-01-01

    As a major risk factor of low back injury, sudden loading often occurs when performing manual material-handling tasks on uneven ground surfaces. Therefore, the purpose of the current study was to investigate the effects of a laterally slanted ground on trunk biomechanical responses during sudden loading events. Thirteen male subjects were subjected to suddenly released loads of 3.4 and 6.8 kg, while standing on a laterally slanted ground of 0°, 15° and 30°. The results showed that 8.3% and 5.6% larger peak L5/S1 joint compression forces were generated in the 30° condition compared with the 0° and 15° conditions, respectively. The increase of L5/S1 joint moment in the 30° condition was 8.5% and 5.0% greater than the 0° and 15° conditions, respectively. Findings of this study suggest that standing on a laterally slanted ground could increase mechanical loading on the spine when experiencing sudden loading. Practitioner Summary: Sudden loading is closely related to occupational low back injuries. The results of this study showed that the increase of slanted ground angle and magnitude of load significantly increase the mechanical loading on the spine during sudden loading. Therefore, both of these two components should be controlled in task design.

  4. Multiobjective Aerodynamic Shape Optimization Using Pareto Differential Evolution and Generalized Response Surface Metamodels

    Science.gov (United States)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.

  5. Effect of type and loading of surface-modifying agent on mechanical properties of modified geothermal scale powder/stereolithography polymer composite

    Science.gov (United States)

    Tilendo, A. C.; Pajarito, B. B.

    2017-05-01

    This study investigated the effect of stearic acid (SA), glycerol monostearate (GMS) and 3-trimethoxysilylpropyl methacrylate (TSPM) at varied loadings on the hardness and flexural properties of modified geothermal scale powder (GSP)/stereolithography (SLA) polymer composite. TSPM-modified GSP/SLA composite has the highest value of hardness due to increased filler dispersion and crystallinity. Hardness of GSP/SLA composite increases with loading of surface-modifying agent due to increase filler dispersion. Pronounced effect of surface modification to flexural modulus is observed. While low loading of SA and GMS leads to reduction of flexural modulus, increasing loading enhances the said property. Further increase of SA deteriorates the property. TSPM-modified GSP enhances the modulus due to increased crystalline phase of the system owing to TSPM copolymerization. Likewise, addition of SA and GMS increases flexural strength due to efficient reduction of filler agglomerates. However, unreacted TSPM produces weak interfaces and poor adhesion between GSP and SLA matrix.

  6. Structural evolution of tungsten surface exposed to sequential low-energy helium ion irradiation and transient heat loading

    Directory of Open Access Journals (Sweden)

    G. Sinclair

    2017-08-01

    Full Text Available Structural damage due to high flux particle irradiation can result in significant changes to the thermal strength of the plasma facing component surface (PFC during off-normal events in a tokamak. Low-energy He+ ion irradiation of tungsten (W, which is currently the leading candidate material for future PFCs, can result in the development of a fiber form nanostructure, known as “fuzz”. In the current study, mirror-finished W foils were exposed to 100eV He+ ion irradiation at a fluence of 2.6 ×1024ionsm−2 and a temperature of 1200K. Then, samples were exposed to two different types of pulsed heat loading meant to replicate type-I edge-localized mode (ELM heating at varying energy densities and base temperatures. Millisecond (ms laser exposure done at 1200K revealed a reduction in fuzz density with increasing energy density due to the conglomeration and local melting of W fibers. At higher energy densities (∼ 1.5MJm−2, RT exposures resulted in surface cracking, while 1200K exposures resulted in surface roughening, demonstrating the role of base temperature on the crack formation in W. Electron beam heating presented similar trends in surface morphology evolution; a higher penetration depth led to reduced melt motion and plasticity. In situ mass loss measurements obtained via a quartz crystal microbalance (QCM found an exponential increase in particle emission for RT exposures, while the prevalence of melting from 1200K exposures yielded no observable trend.

  7. General

    Indian Academy of Sciences (India)

    Page S20: NMR compound 4i. Page S22: NMR compound 4j. General: Chemicals were purchased from Fluka, Merck and Aldrich Chemical Companies. All the products were characterized by comparison of their IR, 1H NMR and 13C NMR spectroscopic data and their melting points with reported values. General procedure ...

  8. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition.

    Science.gov (United States)

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-04-06

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.

  9. Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures.

    Science.gov (United States)

    Lee, Chang H; Hankus, Mikella E; Tian, Limei; Pellegrino, Paul M; Singamaneni, Srikanth

    2011-12-01

    We report a novel surface enhanced Raman scattering (SERS) substrate platform based on a common filter paper adsorbed with plasmonic nanostructures that overcomes many of the challenges associated with existing SERS substrates. The paper-based design results in a substrate that combines all of the advantages of conventional rigid and planar SERS substrates in a dynamic flexible scaffolding format. In this paper, we discuss the fabrication, physical characterization, and SERS activity of our novel substrates using nonresonant analytes. The SERS substrate was found to be highly sensitive, robust, and amiable to several different environments and target analytes. It is also cost-efficient and demonstrates high sample collection efficiency and does not require complex fabrication methodologies. The paper substrate has high sensitivity (0.5 nM trans-1,2-bis(4-pyridyl)ethene (BPE)) and excellent reproducibility (~15% relative standard deviation (RSD)). The paper substrates demonstrated here establish a novel platform for integrating SERS with already existing analytical techniques such as chromatography and microfluidics, imparting chemical specificity to these techniques.

  10. Sensitivity-Based Modeling of Evaluating Surface Runoff and Sediment Load using Digital and Analog Mechanisms

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2014-07-01

    Full Text Available Analyses of runoff- sediment measurement and evaluation using automated and convectional runoff-meters was carried out at Meteorological and Hydrological Station of Auchi Polytechnic, Auchi using two runoff plots (ABCDa and EFGHm of area 2m 2 each, depth 0.26 m and driven into the soil to the depth of 0.13m. Runoff depths and intensities were measured from each of the positioned runoff plot. Automated runoff-meter has a measuring accuracy of ±0.001l/±0.025 mm and rainfall depth-intensity was measured using tipping-bucket rainguage during the period of 14-month of experimentation. Minimum and maximum rainfall depths of 1.2 and 190.3 mm correspond to measured runoff depths (MRo of 0.0 mm for both measurement approaches and 60.4 mm and 48.9 mm respectively. Automated runoffmeter provides precise, accurate and instantaneous result over the convectional measurement of surface runoff. Runoff measuring accuracy for automated runoff-meter from the plot (ABCDa produces R 2 = 0.99; while R 2 = 0.96 for manual evaluation in plot (EFGHm. WEPP and SWAT models were used to simulate the obtained hydrological variables from the applied measurement mechanisms. The outputs of sensitivity simulation analysis indicate that data from automated measuring systems gives a better modelling index and such could be used for running robust runoff-sediment predictive modelling technique under different reservoir sedimentation and water management scenarios.

  11. Regional climates in the GISS general circulation model: Surface air temperature

    Science.gov (United States)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  12. A general rough-surface inversion algorithm: Theory and application to SAR data

    Science.gov (United States)

    Moghaddam, M.

    1993-01-01

    Rough-surface inversion has significant applications in interpretation of SAR data obtained over bare soil surfaces and agricultural lands. Due to the sparsity of data and the large pixel size in SAR applications, it is not feasible to carry out inversions based on numerical scattering models. The alternative is to use parameter estimation techniques based on approximate analytical or empirical models. Hence, there are two issues to be addressed, namely, what model to choose and what estimation algorithm to apply. Here, a small perturbation model (SPM) is used to express the backscattering coefficients of the rough surface in terms of three surface parameters. The algorithm used to estimate these parameters is based on a nonlinear least-squares criterion. The least-squares optimization methods are widely used in estimation theory, but the distinguishing factor for SAR applications is incorporating the stochastic nature of both the unknown parameters and the data into formulation, which will be discussed in detail. The algorithm is tested with synthetic data, and several Newton-type least-squares minimization methods are discussed to compare their convergence characteristics. Finally, the algorithm is applied to multifrequency polarimetric SAR data obtained over some bare soil and agricultural fields. Results will be shown and compared to ground-truth measurements obtained from these areas. The strength of this general approach to inversion of SAR data is that it can be easily modified for use with any scattering model without changing any of the inversion steps. Note also that, for the same reason it is not limited to inversion of rough surfaces, and can be applied to any parameterized scattering process.

  13. A Framework for Dynamic Modeling of Surface-Structure Patches on Bed Load Transport in Coarse Grained Reaches

    Science.gov (United States)

    Strom, K. B.

    2010-12-01

    Mountain streams are the first link in the fluvial system and often have complex bed morphologies which make it difficult to develop simple quantitative expressions for sediment mass flux and stream flow resistance. Such expressions are important for landscape evolution modeling as well as stream management and restoration practices and efforts. Part of the difficulty lies in the fact that stream beds can have large variations in particle size and structural organization - both of which lead to variations in bed strength that can change as a function of time. This study presents a mathematical framework to account for the dynamic impact of surface-structure patches on bed strength and bed load transport under simplified conditions. The framework is based on conservation principles for tracking the exchange of mass between structured and unstructured surface patches in the bed during structure formation and breakup. Two main transport equations are solved for the mobile and stationary phases, and the exchange between the two is modeled using particle collision theory and a simple breakup model (figure 1). The experiments of Strom et al. (2004) are used to parameterize the model initial conditions, and calculated and experimentally observed transport rates are compared as a function of time. Conceptual sketch of the modeling framework for: (A) a gravel bed, and (B) an idealized bed of uniform spherical particles. Mass conservation equations are written for each phase (structured and unstructured) and then solved with time under varying conditions.

  14. Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces

    Science.gov (United States)

    Billó, M.; D'Adda, A.; Provero, P.

    2000-06-01

    We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U (1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U (1) N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.

  15. Comparison of designing simple steel frame & coaxial brace systems by contrast of blast, using two methods of load & resistance coefficients & performance surfaces

    OpenAIRE

    P. Hassanvand; M. H. Rasoul Abadi; A. S. Moghadam; M. Hosseini

    2016-01-01

    Nowadays, because of the increasing terrorist attacks around the urban areas, designing buildings by contrast of resulted loads of blast came into consideration particularly in some sensitive buildings & vital arteries. When a blast occurs, the resulted emissions in environment leads to appearance of several penalties and endangers to the human life. Steel structures generally are designed on the basis of standard seismic and gravity loads, it is necessary to investigate the implantation of t...

  16. KIR content genotypes associate with carriage of hepatitis B surface antigen, e antigen and HBV viral load in Gambians.

    Directory of Open Access Journals (Sweden)

    Louis-Marie Yindom

    Full Text Available Hepatocellular carcinoma (HCC causes over 800,000 deaths worldwide annually, mainly in low income countries, and incidence is rising rapidly in the developed world with the spread of hepatitis B (HBV and C (HCV viruses. Natural Killer (NK cells protect against viral infections and tumours by killing abnormal cells recognised by Killer-cell Immunoglobulin-like Receptors (KIR. Thus genes and haplotypes encoding these receptors may be important in determining both outcome of initial hepatitis infection and subsequent chronic liver disease and tumour formation. HBV is highly prevalent in The Gambia and the commonest cause of liver disease. The Gambia Liver Cancer Study was a matched case-control study conducted between September 1997 and January 2001 where cases with liver disease were identified in three tertiary referral hospitals and matched with out-patient controls with no clinical evidence of liver disease.We typed 15 KIR genes using the polymerase chain reaction with sequence specific primers (PCR-SSP in 279 adult Gambians, 136 with liver disease (HCC or Cirrhosis and 143 matched controls. We investigated effects of KIR genotypes and haplotypes on HBV infection and associations with cirrhosis and HCC.Homozygosity for KIR group A gene-content haplotype was associated with HBsAg carriage (OR 3.7, 95% CI 1.4-10.0 whilst telomeric A genotype (t-AA was associated with reduced risk of e antigenaemia (OR 0.2, 95% CI 0.0-0.6 and lower viral loads (mean log viral load 5.2 vs. 6.9, pc = 0.022. One novel telomeric B genotype (t-ABx2 containing KIR3DS1 (which is rare in West Africa was also linked to e antigenaemia (OR 8.8, 95% CI 1.3-60.5. There were no associations with cirrhosis or HCC.Certain KIR profiles may promote clearance of hepatitis B surface antigen whilst others predispose to e antigen carriage and high viral load. Larger studies are necessary to quantify the effects of individual KIR genes, haplotypes and KIR/HLA combinations on long

  17. KIR content genotypes associate with carriage of hepatitis B surface antigen, e antigen and HBV viral load in Gambians.

    Science.gov (United States)

    Yindom, Louis-Marie; Mendy, Maimuna; Bodimeade, Christopher; Chambion, Caroline; Aka, Peter; Whittle, Hilton C; Rowland-Jones, Sarah L; Walton, Robert

    2017-01-01

    Hepatocellular carcinoma (HCC) causes over 800,000 deaths worldwide annually, mainly in low income countries, and incidence is rising rapidly in the developed world with the spread of hepatitis B (HBV) and C (HCV) viruses. Natural Killer (NK) cells protect against viral infections and tumours by killing abnormal cells recognised by Killer-cell Immunoglobulin-like Receptors (KIR). Thus genes and haplotypes encoding these receptors may be important in determining both outcome of initial hepatitis infection and subsequent chronic liver disease and tumour formation. HBV is highly prevalent in The Gambia and the commonest cause of liver disease. The Gambia Liver Cancer Study was a matched case-control study conducted between September 1997 and January 2001 where cases with liver disease were identified in three tertiary referral hospitals and matched with out-patient controls with no clinical evidence of liver disease. We typed 15 KIR genes using the polymerase chain reaction with sequence specific primers (PCR-SSP) in 279 adult Gambians, 136 with liver disease (HCC or Cirrhosis) and 143 matched controls. We investigated effects of KIR genotypes and haplotypes on HBV infection and associations with cirrhosis and HCC. Homozygosity for KIR group A gene-content haplotype was associated with HBsAg carriage (OR 3.7, 95% CI 1.4-10.0) whilst telomeric A genotype (t-AA) was associated with reduced risk of e antigenaemia (OR 0.2, 95% CI 0.0-0.6) and lower viral loads (mean log viral load 5.2 vs. 6.9, pc = 0.022). One novel telomeric B genotype (t-ABx2) containing KIR3DS1 (which is rare in West Africa) was also linked to e antigenaemia (OR 8.8, 95% CI 1.3-60.5). There were no associations with cirrhosis or HCC. Certain KIR profiles may promote clearance of hepatitis B surface antigen whilst others predispose to e antigen carriage and high viral load. Larger studies are necessary to quantify the effects of individual KIR genes, haplotypes and KIR/HLA combinations on long

  18. Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study.

    Science.gov (United States)

    Ganeles, Jeffrey; Zöllner, Axel; Jackowski, Jochen; ten Bruggenkate, Christiaan; Beagle, Jay; Guerra, Fernando

    2008-11-01

    Immediate and early loading of implants can simplify treatment and increase patient satisfaction. This 3-year randomized-controlled trial will therefore evaluate survival rates and bone-level changes with immediately and early loaded Straumann implants with the SLActive surface. Partially edentulous patients >or=18 years of age were enrolled. Patients received a temporary restoration (single crown or two to four unit fixed partial denture) out of occlusal contact either immediately (immediate loading) or 28-34 days later (early loading group), with permanent restorations placed 20-23 weeks after surgery. The primary endpoint was change in crestal bone level from baseline (implant placement) to 12 months; the secondary variables were implant survival and success rates. A total of 383 implants (197 immediate and 186 early) were placed in 266 patients; 41.8% were placed in type III and IV bone. The mean patient age was 46.3+/-12.8 years. Four implants failed in the immediate loading group and six in the early loading group, giving implant survival rates of 98% and 97%, respectively (P=NS). There were no implant failures in type IV bone. The overall mean bone level change from baseline to 12 months was 0.77+/-0.93 mm (0.90+/-0.90 and 0.63+/-0.95 mm in the immediate and early groups, respectively; PStraumann implants with the SLActive surface are safe and predictable when used in immediate and early loading procedures. Even in poor-quality bone, survival rates were comparable with those from conventional or delayed loading. The mean bone-level change was not deemed to be clinically significant and compared well with the typical bone resorption observed in conventional implant loading.

  19. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  20. Balancing an accurate representation of the molecular surface in generalized Born formalisms with integrator stability in molecular dynamics simulations

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Feig, M.

    2006-01-01

    Roč. 27, č. 6 (2006), s. 719-729 ISSN 0192-8651 Keywords : molecular surface * generalized Born formalisms * molecular dynamic simulations Subject RIV: CC - Organic Chemistry Impact factor: 4.893, year: 2006

  1. Stability analysis on the free surface phenomena of a magnetic fluid for general use

    International Nuclear Information System (INIS)

    Mizuta, Yo

    2011-01-01

    This paper presents an analysis for elucidating a variety of physical processes on the interface (free surface) of magnetic fluid. The present analysis is composed of the magnetic and the fluid analysis, both of which have no limitations concerning the interface elevation or its profile. The magnetic analysis provides rigorous interface magnetic field under arbitrary distributions of applied magnetic field. For the fluid analysis, the equation for interface motion includes all nonlinear effects. Physical quantities such as the interface magnetic field or the interface stresses, obtained first as the wavenumber components, facilitate confirming the relations with those by the conventional theoretical analyses. The nonlinear effect is formulated as the nonlinear mode coupling between the interface profile and the applied magnetic field. The stability of the horizontal interface profile is investigated by the dispersion relation, and summarized as the branch line. Furthermore, the balance among the spectral components of the interface stresses are shown, within the sufficient range of the wavenumber space. - Research Highlights: → General, rigorous but compact analysis for free surface phenomena is shown. → Analysis is applied without limitations on the interface elevation or its profile. → Nonlinear effects are formulated as the nonlinear mode coupling. → Bifurcation of stability is summarized as the branch line. → Balance among the interface stresses are shown in the wavenumber space.

  2. Does Pressure Accentuate General Relativistic Gravitational Collapse and Formation of Trapped Surfaces?

    Science.gov (United States)

    Mitra, Abhas

    2013-04-01

    It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.

  3. General load function in geo-mechanics: application to underground works; Fonction de charge generale en geomecanique: application aux travaux souterrains

    Energy Technology Data Exchange (ETDEWEB)

    Maiolino, S

    2006-04-15

    This work deals both with the behavioral and numerical aspects of the mechanical response of a rock massif to the digging out of a tunnel. The comparison between existing criteria has permitted to stress on some key points, like the dependence of the criterion to the average stress and the extension ratio. A load function, easily identifiable with tests, with regular and convex properties, has been proposed which allows to take into account the shape of the Mohr envelope of the criterion and the extension ratio. Regularized forms of Mohr-Coulomb and Hoek-Brown criteria can thus be achieved. The development of this new criterion has been completed by the proposal of a numerical charts method which greatly speeds up the resolution. For the proposed criterion, the physical problem is equivalent to a purely geometrical problem in polar coordinates in the plan. Numerical charts can thus be built which allow to find immediately the value of plastic deformations and to greatly reduce the processing time. Tunnel calculation methods have been the object of a bibliographic synthesis, specifying the domains and limitations of use of tunnel dimensioning methods used by engineers. The modeling of tunnels excavation has been performed with the stationary algorithm designed for the calculation of systems submitted to mobile loads. This algorithm has been adapted to integrate the new criterion and the numerical charts system. These tools have been validated using a real case study and data supplied by the French national agency of radioactive waste management (ANDRA) in the framework of the MODEX-REP European project (5. Euratom plan). The study of these data has permitted to define a rock wear variable, easily identifiable and allowing to parameterize the damaged rock criterion. (J.S.)

  4. Immediately loaded machined versus rough surface dental implants in edentulous jaws: One-year postloading results of a pilot randomised controlled trial.

    Science.gov (United States)

    Esposito, Marco; Felice, Pietro; Barausse, Carlo; Pistilli, Roberto; Grandi, Giovanni; Simion, Massimo

    2015-01-01

    To compare the effectiveness of immediately loaded total prostheses supported by implants with a roughened surface versus implants with a machined/turned surface. Fifty edentulous or to-be-rendered edentulous patients requiring an implant-supported cross-arch prosthesis, were randomised either to receive four to eight implants with a roughened surface (25 patients) or with a machined/turned surface (25 patients). Provisional metal-reinforced acrylic prostheses were delivered 48 h after implant placement. Provisional prostheses were replaced after 4 months, by definitive screw-retained metal-resin cross-arch restorations. Outcome measures were prosthesis and implant failures, any complications and peri-implant marginal bone level changes. Patients were followed 1 year after loading. One year after loading no patient dropped out. No prosthesis failed, but two machined implants were found to be mobile at definitive impression taking in 1 patient (Fisher's exact test: P = 0.312; difference in proportions = 4%; 95% Cl: -10 to 18). No complications occurred. Both groups presented a significant peri-implant marginal bone loss at 1 year after loading (P < 0.0001), -0.64 ± 0.20 mm for rough implants and -0.68 ± 0.23 mm for turned implants, respectively, with no statistically significant differences between the two groups (P = 0.482; mean difference = 0.04 mm; 95% Cl: -0.17 to 0.25). Up to 1 year after immediate loading, both implant surfaces provided good and similar results, however, the only two implants which failed early in the same patient had a machined surface. These preliminary results must be confirmed by larger trials with longer follow-ups.

  5. Modeling of Axially Loaded Nanowires Embedded in Elastic Substrate Media with Inclusion of Nonlocal and Surface Effects

    Directory of Open Access Journals (Sweden)

    Suchart Limkatanyu

    2013-01-01

    Full Text Available Nonlocal and surface effects are incorporated into a bar-elastic substrate element to account for small-scale and size-dependent effects on axial responses of nanowires embedded in elastic substrate media. The virtual displacement principle, employed to consistently derive the governing differential equation as well as the boundary conditions, forms the core of the displacement-based finite element formulation of the nanowire-elastic substrate element. The element displacement shape functions, analytically derived based on homogeneous solution to the governing differential equilibrium equation of the problem, result in the exact element stiffness matrix and equivalent load vector. Two numerical simulations employing the proposed model are performed to study characteristics and behavior of the nanowire-substrate system. The first simulation involves investigation of responses of the wire embedded in elastic substrate. The second examines influences of several system parameters on the contact stiffness and reveals the size-dependent effect on the effective Young's modulus of the system.

  6. A study of plasma facing tungsten components with electrical discharge machined surface exposed to cyclic thermal loads

    International Nuclear Information System (INIS)

    Seki, Yohji; Ezato, Koichiro; Suzuki, Satoshi; Yokoyama, Kenji; Yamada, Hirokazu; Hirayama, Tomoyuki

    2016-01-01

    Through R&D for a plasma facing units (PFUs) in an outer vertical target of an ITER full-tungsten (W) divertor, Japan Atomic Energy Agency succeeded in demonstrating the durability of the W divertor shaped by an electrical discharge machining (EDM). To prevent melting of W armors in the PFUs, an adequate technology to meet requirements of a geometrical shape and a tolerance is one of the most important key issues in a manufacturing process. From the necessity, the EDM has been evaluated to control the final shape of the W armor. Though the EDM was known to be advantages such as an easy workability, a potential disadvantage of presence of micro-cracks on the W surface appeared. In order to examine a potential effect of the micro-crack on a heat removal durability, a high heat flux testing was carried out for the W divertor mock-up with the polish and the EDM. As the result, all of the W armors endured the repetitive heat load of 1000 cycles at an absorbed heat flux of more than 20 MW/m 2 , which strongly encourages the realization of the PFUs of the ITER full-W divertor with the various geometrical shape and the high accuracy tolerance.

  7. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    Directory of Open Access Journals (Sweden)

    Shrivastava Sachin

    2015-01-01

    Full Text Available The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI in unidirectional fibrous laminates using Genetic-Algorithms (GA under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT. The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  8. Design and analysis of drum lathe for manufacturing large-scale optical microstructured surface and load characteristics of aerostatic spindle

    Science.gov (United States)

    Wu, Dongxu; Qiao, Zheng; Wang, Bo; Wang, Huiming; Li, Guo

    2014-08-01

    In this paper, a four-axis ultra-precision lathe for machining large-scale drum mould with microstructured surface is presented. Firstly, because of the large dimension and weight of drum workpiece, as well as high requirement of machining accuracy, the design guidelines and component parts of this drum lathe is introduced in detail, including control system, moving and driving components, position feedback system and so on. Additionally, the weight of drum workpiece would result in the structural deformation of this lathe, therefore, this paper analyses the effect of structural deformation on machining accuracy by means of ANSYS. The position change is approximately 16.9nm in the X-direction(sensitive direction) which could be negligible. Finally, in order to study the impact of bearing parameters on the load characteristics of aerostatic journal bearing, one of the famous computational fluid dynamics(CFD) software, FLUENT, is adopted, and a series of simulations are carried out. The result shows that the aerostatic spindle has superior performance of carrying capacity and stiffness, it is possible for this lathe to bear the weight of drum workpiece up to 1000kg since there are two aerostatic spindles in the headstock and tailstock.

  9. Design and Optimization of a Composite Canard Control Surface of an Advanced Fighter Aircraft under Static Loading

    Science.gov (United States)

    Shrivastava, Sachin; Mohite, P. M.

    2015-01-01

    The minimization of weight and maximization of payload is an ever challenging design procedure for air vehicles. The present study has been carried out with an objective to redesign control surface of an advanced all-metallic fighter aircraft. In this study, the structure made up of high strength aluminum, titanium and ferrous alloys has been attempted to replace by carbon fiber composite (CFC) skin, ribs and stiffeners. This study presents an approach towards development of a methodology for optimization of first-ply failure index (FI) in unidirectional fibrous laminates using Genetic-Algorithms (GA) under quasi-static loading. The GAs, by the application of its operators like reproduction, cross-over, mutation and elitist strategy, optimize the ply-orientations in laminates so as to have minimum FI of Tsai-Wu first-ply failure criterion. The GA optimization procedure has been implemented in MATLAB and interfaced with commercial software ABAQUS using python scripting. FI calculations have been carried out in ABAQUS with user material subroutine (UMAT). The GA's application gave reasonably well-optimized ply-orientations combination at a faster convergence rate. However, the final optimized sequence of ply-orientations is obtained by tweaking the sequences given by GA's based on industrial practices and experience, whenever needed. The present study of conversion of an all metallic structure to partial CFC structure has led to 12% of weight reduction. Therefore, the approach proposed here motivates designer to use CFC with a confidence.

  10. Model test setup and program for experimental estimation of surface loads of the SSG Kvitsoey pilot plant from extreme wave conditions[Seawave Slot-cone Generators

    Energy Technology Data Exchange (ETDEWEB)

    Juul Larsen, B.; Kofoed, J.P.

    2005-10-15

    The purpose of the tests is to find the wave induced surface loads on the SSG pilot plant when exposed to extreme wave conditions, ie. the design loads. The design sea states used in the model tests are found through a study of the wave climate from a number of different sources, as described in chapter 2. Based on the hereby obtained extreme wave data for the SSG pilot plant location a test program has been designed to establish the surface loads on the SSG pilot plant in various relevant sea states, see chapter 3. A description of the test setup and the model is made in detail including a description of the instrumentation and data acquisition and also the data analysis. (au)

  11. A 5-year prospective multicenter study on 1-stage smooth-surface Branemark System implants with early loading in edentulous mandibles

    NARCIS (Netherlands)

    Friberg, Bertil; Raghoebar, Gerry M.; Grunert, Ingrid; Hobkirk, John A.; Tepper, Gabor

    2008-01-01

    Purpose: The purpose of the current prospective multicenter Study was to evaluate the 5-year implant success and peri-implant conditions of smooth-surface Branemark System implants when using a novel technique including a 1-stage surgical procedure with early loading in edentulous mandibles.

  12. Exploring the biomechanical load of a sliding on the skin: understanding the acute skin injury mechanism of player-surface interaction

    NARCIS (Netherlands)

    Eijnde, W.A.J. van den; Meijer, K.; Lamers, E.; Peppelman, M.; Erp, P.E. van

    2017-01-01

    BACKGROUND: Currently, there is a shortage of biomechanical data regarding acute skin injury mechanisms that are involved in player-surface contact in soccer on artificial turf. It is hypothesized that peak loads on the skin during the landing phase are an important factor in causing an acute skin

  13. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.

    Directory of Open Access Journals (Sweden)

    Scott C Sibole

    Full Text Available Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method's generalized nature also allows for substitution of any macro

  14. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Science.gov (United States)

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro

  15. Magnetic loading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    International Nuclear Information System (INIS)

    Hu, Xinyue; Yang, Juan; Zhang, Jingdong

    2011-01-01

    Highlights: ► Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. ► Magnetically attached TSF electrode shows high photoelectrochemical activity. ► Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. ► Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO 2 /SiO 2 /Fe 3 O 4 (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  16. THE STRESS-STRAIN STATE OF ELASTIC HALF-SPACE FROM RUNNING LINEAR LOAD ACTING ON THE LIMITED AND UNLIMITED EXTENT OVER ITS SURFACE

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-02-01

    Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.

  17. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    Directory of Open Access Journals (Sweden)

    W. An

    2015-01-01

    Full Text Available Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10° with and without their usual running shoes. Vertical average rate (VALR and instantaneous loading rate (VILR were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p0.382. There was no difference (p>0.413 in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p>0.15. Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p<0.011.

  18. Dynamics of Nitrogen loads in surface water of an agricultural watershed by modelling approach, the Save, Southwest France.

    Science.gov (United States)

    Ferrant, S.; Oeurng, C.; Sauvage, S.; Durand, P.; Probst, J. L.; Sanchez-Perez, J. M.

    2009-04-01

    Agriculture is known to have a great impact of nutrients enrichment on continental water resources. In south-West of France (Gascogne region), water resource are essentially surface water and shallow aquifer. Nitrogen dynamic in river is complex and highly variable throughout season and year, depending on hydrology, landuse, removal in stream. In this context, agricultural impacts on nitrogen concentration are a matter of concern for agricultural decision-maker. In order to introduce sustainable land use concepts in this hilly, clayey and agricultural shallow soil context, the hydrological simulation model SWAT2005 has been tested as a valuable tool to evaluate the consequences of such land use changes on water and nutrient balance components. This semi-distributed hydrological model coupled with agronomical model EPIC is able to simulate the impact of each agricultural landuse at the outlet of the Save catchment (1100 km2). Hydrological parameters model are calibrated based on 14-year historical record (1994-2008). Nitrogen losses have been measured during 2 years (2006-2008) at the outlet and are used to validate the model calibration. Agricultural data at communal scale coupled with Spot image analyses have been used to evaluate agricultural distribution and pressure in SWAT. The aim of this modelling exercise is to simulate nitrogen cycle in whole agricultural Hydrological Response Units (HRU), depending on plant growth and culture rotation, to simulate accurately nitrate load in river. The ability of SWAT to reproduce nitrogen transfert and transformation at this scale and in this agricultural context will be evaluated by a discussion of importance of each nitrogen cycle process in nitrogen losses. SWAT could be a useful tool to test agricultural scenario to improve the nitrogen management in river.

  19. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Liu Cao

    2017-01-01

    Full Text Available The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF magnetic stimulation on surface electromyography (SEMG signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects. The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject’s deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS, median frequency (MDF, and sample entropy (SampEn, were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant (p0.05. In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p<0.001 and MDF and SampEn were significantly smaller (all p<0.001.

  20. Effects of Force Load, Muscle Fatigue, and Magnetic Stimulation on Surface Electromyography during Side Arm Lateral Raise Task: A Preliminary Study with Healthy Subjects.

    Science.gov (United States)

    Cao, Liu; Wang, Ying; Hao, Dongmei; Rong, Yao; Yang, Lin; Zhang, Song; Zheng, Dingchang

    2017-01-01

    The aim of this study was to quantitatively investigate the effects of force load, muscle fatigue, and extremely low-frequency (ELF) magnetic stimulation on surface electromyography (SEMG) signal features during side arm lateral raise task. SEMG signals were recorded from 18 healthy subjects on the anterior deltoid using a BIOSEMI ActiveTwo system during side lateral raise task (with the right arm 90 degrees away from the body) with three different loads on the forearm (0 kg, 1 kg, and 3 kg; their order was randomized between subjects). The arm maintained the loads until the subject felt exhausted. The first 10 s recording for each load was regarded as nonfatigue status and the last 10 s before the subject was exhausted was regarded as fatigue status. The subject was then given a five-minute resting between different loads. Two days later, the same experiment was repeated on every subject, and this time the ELF magnetic stimulation was applied to the subject's deltoid muscle during the five-minute rest period. Three commonly used SEMG features, root mean square (RMS), median frequency (MDF), and sample entropy (SampEn), were analyzed and compared between different loads, nonfatigue/fatigue status, and ELF stimulation and no stimulation. Variance analysis results showed that the effect of force load on RMS was significant ( p 0.05). In comparison with nonfatigue status, for all the different force loads with and without ELF stimulation, RMS was significantly larger at fatigue (all p < 0.001) and MDF and SampEn were significantly smaller (all p < 0.001).

  1. Can storage reduce electricity consumption? A general equation for the grid-wide efficiency impact of using cooling thermal energy storage for load shifting

    Science.gov (United States)

    Deetjen, Thomas A.; Reimers, Andrew S.; Webber, Michael E.

    2018-02-01

    This study estimates changes in grid-wide, energy consumption caused by load shifting via cooling thermal energy storage (CTES) in the building sector. It develops a general equation for relating generator fleet fuel consumption to building cooling demand as a function of ambient temperature, relative humidity, transmission and distribution current, and baseline power plant efficiency. The results present a graphical sensitivity analysis that can be used to estimate how shifting load from cooling demand to cooling storage could affect overall, grid-wide, energy consumption. In particular, because power plants, air conditioners and transmission systems all have higher efficiencies at cooler ambient temperatures, it is possible to identify operating conditions such that CTES increases system efficiency rather than decreasing it as is typical for conventional storage approaches. A case study of the Dallas-Fort Worth metro area in Texas, USA shows that using CTES to shift daytime cooling load to nighttime cooling storage can reduce annual, system-wide, primary fuel consumption by 17.6 MWh for each MWh of installed CTES capacity. The study concludes that, under the right circumstances, cooling thermal energy storage can reduce grid-wide energy consumption, challenging the perception of energy storage as a net energy consumer.

  2. Distribution load estimation (DLE)

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, A.; Lehtonen, M. [VTT Energy, Espoo (Finland)

    1998-08-01

    The load research has produced customer class load models to convert the customers` annual energy consumption to hourly load values. The reliability of load models applied from a nation-wide sample is limited in any specific network because many local circumstances are different from utility to utility and time to time. Therefore there is a need to find improvements to the load models or, in general, improvements to the load estimates. In Distribution Load Estimation (DLE) the measurements from the network are utilized to improve the customer class load models. The results of DLE will be new load models that better correspond to the loading of the distribution network but are still close to the original load models obtained by load research. The principal data flow of DLE is presented

  3. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model

    Science.gov (United States)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-01

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India (the Indo-Gangetic plain, central India, south India, and northwest India), southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Météorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest

  4. The relationship between sea surface temperature anomalies and atmospheric circulation in general circulation model experiments

    International Nuclear Information System (INIS)

    Kharin, V.V.

    1994-01-01

    Several multi-year integrations of the Hamburg version of the ECMWF/T21 general circulation model driven by the sea surface temperature (SST) observed in the period 1970-1988 were examined to study the extratropical response of the atmospheric circulation to SST anomalies in the Northern Hemisphere in winter. In the first 19-years run SST anomalies were prescribed globally (GAGO run), and in two others SST variability was limited to extratropical regions (MOGA run) and to tropics (TOGA run), respectively. A canonical correlation analysis was applied to the monthly means to find the best correlated patterns of SST anomalies in the Atlantic and Pacific Oceans and the Northern Hemisphere atmospheric flow. Contrary to expectation, the extratropical response in the GAGO run is not equal to the linear combination of the responses in the MOGA and TOGA runs. In the GAGO integration with globally prescribed SST the best correlated atmospheric pattern is global and is characterized by dipole structures of the same polarity in the North Atlantic and the North Pacific sectors. In the MOGA and TOGA experiments the atmospheric response is more local with main centers in the North Atlantic and North Pacific, respectively. The atmospheric modes found by the CCA were compared with the normal modes of the barotropic vorticity equation linearized about the 500 mb winter climate of the control integration driven by the climatological SST. The normal modes with smallest eigenvalues are similar to the canonical patterns of 500 mb geopotential height. The corresponding eigenvectors of the adjoint operator, which represent an external forcing optimal for exciting normal modes, have a longitudinal structure with maxima in regions characterized by enhanced high frequency baroclinic activity over both oceans. It was suggested that variability of storm tracks could play an important role in variability of the barotropic normal modes. (orig.)

  5. Simultaneous ultrasound-assisted ternary adsorption of dyes onto copper-doped zinc sulfide nanoparticles loaded on activated carbon: optimization by response surface methodology.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Hajati, Shaaker; Goudarzi, Alireza; Bazrafshan, Ali Akbar

    2015-06-15

    The simultaneous and competitive ultrasound-assisted removal of Auramine-O (AO), Erythrosine (Er) and Methylene Blue (MB) from aqueous solutions were rapidly performed onto copper-doped zinc sulfide nanoparticles loaded on activated carbon (ZnS:Cu-NP-AC). ZnS:Cu nanoparticles were studied by FESEM, XRD and TEM. First, the effect of pH was optimized in a one-at-a-time procedure. Then the dependency of dyes removal percentage in their ternary solution on the level and magnitude of variables such as sonication time, initial dyes concentrations and adsorbent dosage was fully investigated and optimized by central composite design (CCD) under response surface methodology (RSM) as well as by regarding desirability function (DF) as a good and general criterion. The good agreement found between experimental and predicted values supports and confirms the suitability of the present model to predict adsorption state. The applied ultrasound strongly enhanced mass transfer process and subsequently performance. Hence, a small amount of the adsorbent (0.04 g) was capable to remove high percentage of dyes, i.e. 100%, 99.6% and 100% for MB, AO and Er, respectively, in very short time (2.5 min). The experimental equilibrium data fitting to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models showed that the Langmuir model applies well for the evaluation and description of the actual behavior of adsorption. The small amount of proposed adsorbent (0.015 g) was applicable for successful removal of dyes (RE>99.0%) in short time (2.5 min) with high adsorption capacity in single component system (123.5 mg g(-1) for MB, 123 mg g(-1) for AO and 84.5 mg g(-1) for Er). Kinetics evaluation of experiments at various time intervals reveals that adsorption processes can be well predicated and fitted by pseudo-second-order and Elovich models. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Postthaw survival of in vitro-produced bovine blastocysts loaded onto the inner surface of a plastic vitrification straw.

    Science.gov (United States)

    Ha, A-Na; Park, Han-Seul; Jin, Jong-In; Lee, Sang-Ho; Ko, Dae-Hwan; Lee, Dong-Suk; White, Kenneth L; Kong, Il-Keun

    2014-02-01

    In this study, we investigated whether vitrification of an embryo by attachment to the inner surface of a plastic straw, which requires a small volume of vitrification solution, improves the survival of thawed embryos. In vitro-produced Korean native cattle blastocysts were randomly assigned into four groups: (1) blastocysts attached to the inner surface of a plastic straw (aV); (2) blastocysts loaded into the column of a plastic straw (cV); (3) blastocysts directly dropped into liquid nitrogen (dV); and (4) nonvitrified blastocysts (control). The postthaw recovery rate did not significantly differ among the aV, dV, and cV groups (98.3% vs. 81.5% vs. 91.4%). The postthaw survival rate was greater in the control, aV, and dV groups than in the cV group (100%, 87.7%, and 81.8% vs. 26.4%, P < 0.05), but did not significantly differ among the control, aV, and dV groups. The total number of cells per blastocyst did not significantly differ among the groups (134.4 ± 38.9 in control vs. 114 ± 48.1 in aV, 105.6 ± 33.9 in dV, and 102 ± 35.1 in cV group). However, the number of apoptotic cells per blastocyst was higher in the dV and cV groups than in the control group (10.9 ± 9.6 and 14.5 ± 9.5 vs. 0.4 ± 1.4; P < 0.05), but did not significantly differ between the control and aV groups (0.4 ± 1.4 vs. 6.6 ± 9.5). In addition, the blastocoel of each blastocyst was left intact or was mechanically punctured to reduce its volume, and the blastocysts were then vitrified using the aV method. At 12 hours after thawing, the re-expansion rate did not significantly differ among the control, punctured aV, and nonpunctured aV groups (93.3% vs. 85.2% vs. 82.8%). However, at 24 hours after thawing, the hatching rate was greater in the control and punctured aV groups than in the nonpunctured aV group (75% and 62.9% vs. 37.1%; P < 0.05). The total number of cells per blastocyst was greater in the control group than in the nonpunctured aV group (143 ± 37.2 vs. 94.5 ± 18.6; P < 0

  7. [Wear intensity and surface roughness of microhybrid composite and ceramic occlusal veneers on premolars after the thermocycling and cyclic mechanical loading tests].

    Science.gov (United States)

    Zhang, H Y; Jiang, T; Cheng, M X; Zhang, Y W

    2018-02-18

    To evaluate the wear intensity and surface roughness of occlusal veneers on premolars made of microhybrid composite resin or two kinds of ceramics in vitro after the thermocycling and cyclic mechanical loading tests. In the study,24 fresh extracted human premolars without root canal treatment were prepared (cusps reduction of 1.5 mm in thickness to simulate middle to severe tooth wear, the inclinations of cusps were 20°). The prepared teeth were restored with occlusal veneers made of three different materials: microhybrid composite, heat-pressed lithium disilicate ceramic and computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic in the thickness of 1.5 mm. The occlusal veneers were cemented with resin cement. The specimens were fatigued using the thermocycling and cyclic mechanical loading tests after being stored in water for 72 h. The wear of specimens was measured using gypsum replicas and 3D laser scanner before and after the thermocycling and cyclic mechanical loading tests and the mean lost distance (mm) was used to indicate the level of wear. The surfaces of occlusal contact area were observed and the surface roughness was recorded using 3D laser scanning confocal microscope before and after the fatigue test. Differences between the groups were compared using ONE-way ANOVA(Pmechanical loading tests. The mean wear of microhybrid composite group, heat-pressed lithium disilicate ceramic group, and CAD/CAM lithium disilicate ceramic group was (-0.13±0.03) mm, (-0.05±0.01) mm and (-0.05±0.01) mm, the wear of microhybrid composite was significantly higher than the two ceramic groups(PCAD/CAM lithium disilicate ceramic (P=0.010). From the view of wear speed, microhybrid composite was significantly higher than the two kinds of ceramics, but it was similar to enamel when the opposing tooth was natural. The surface roughness before the themocycling and cyclic mechanical loading test of microhybrid composite was significantly

  8. A new multi-domain method based on an analytical control surface for linear and second-order mean drift wave loads on floating bodies

    Science.gov (United States)

    Liang, Hui; Chen, Xiaobo

    2017-10-01

    A novel multi-domain method based on an analytical control surface is proposed by combining the use of free-surface Green function and Rankine source function. A cylindrical control surface is introduced to subdivide the fluid domain into external and internal domains. Unlike the traditional domain decomposition strategy or multi-block method, the control surface here is not panelized, on which the velocity potential and normal velocity components are analytically expressed as a series of base functions composed of Laguerre function in vertical coordinate and Fourier series in the circumference. Free-surface Green function is applied in the external domain, and the boundary integral equation is constructed on the control surface in the sense of Galerkin collocation via integrating test functions orthogonal to base functions over the control surface. The external solution gives rise to the so-called Dirichlet-to-Neumann [DN2] and Neumann-to-Dirichlet [ND2] relations on the control surface. Irregular frequencies, which are only dependent on the radius of the control surface, are present in the external solution, and they are removed by extending the boundary integral equation to the interior free surface (circular disc) on which the null normal derivative of potential is imposed, and the dipole distribution is expressed as Fourier-Bessel expansion on the disc. In the internal domain, where the Rankine source function is adopted, new boundary integral equations are formulated. The point collocation is imposed over the body surface and free surface, while the collocation of the Galerkin type is applied on the control surface. The present method is valid in the computation of both linear and second-order mean drift wave loads. Furthermore, the second-order mean drift force based on the middle-field formulation can be calculated analytically by using the coefficients of the Fourier-Laguerre expansion.

  9. Comparison of designing simple steel frame & coaxial brace systems by contrast of blast, using two methods of load & resistance coefficients & performance surfaces

    Directory of Open Access Journals (Sweden)

    P. Hassanvand

    2016-12-01

    Full Text Available Nowadays, because of the increasing terrorist attacks around the urban areas, designing buildings by contrast of resulted loads of blast came into consideration particularly in some sensitive buildings & vital arteries. When a blast occurs, the resulted emissions in environment leads to appearance of several penalties and endangers to the human life. Steel structures generally are designed on the basis of standard seismic and gravity loads, it is necessary to investigate the implantation of these structures under the impact of the loads originated from blast. This article presents numerical studies of two-dimensional structural models with 2 and 5 stories which are including simple steel frame system in addition to CBF. The models were analyzed by nonlinear dynamic analysis method using the instruction UFC 3-340-02 in two adverse levels of blast loads by SAP 2000 software. In this study structural models are designed and analyzed using two designing methods: the basic performance design, and Load and Resistance Factor Design (LRFD. Finally, two set of results are compared in detail.

  10. Theory of aberration fields for general optical systems with freeform surfaces.

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P

    2014-11-03

    This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.

  11. The mechanics of American football cleats on natural grass and infill-type artificial playing surfaces with loads relevant to elite athletes.

    Science.gov (United States)

    Kent, Richard; Forman, Jason L; Lessley, David; Crandall, Jeff

    2015-06-01

    This study quantified the mechanical interactions of 19 American football cleats with a natural grass and an infill-type artificial surface under loading conditions designed to represent play-relevant manoeuvres of elite athletes. Variation in peak forces and torques was observed across cleats when tested on natural grass (2.8-4.2 kN in translation, 120-174 Nm in rotation). A significant (p force and torque on natural grass. Almost all of the cleats caused shear failure of the natural surface, which generated a divot following a test. This is a force-limiting cleat release mode. In contrast, all but one of the cleat types held fast in the artificial turf, resulting in force and torque limited by the prescribed input load from the test device (nom. 4.8 kN and 200 Nm). Only one cleat pattern, consisting of small deformable nubs, released on the artificial surface and generated force (3.9 kN) comparable to the range observed with natural grass. These findings (1) should inform the design of cleats intended for use on natural and artificial surfaces and (2) suggest a mechanical explanation for a higher lower-limb injury rate in elite athletes playing on artificial surfaces.

  12. Safety and effectiveness of early loaded maxillary titanium implants with a novel nanostructured calcium-incorporated surface (Xpeed): 3-year results from a pilot multicenter randomised controlled trial.

    Science.gov (United States)

    Felice, Pietro; Grusovin, Maria Gabriella; Barausse, Carlo; Grandi, Giovanni; Esposito, Marco

    2015-01-01

    To evaluate clinical safety and effectiveness of a novel calcium-incorporated titanium implant surface (Xpeed, MegaGen Implant Co., Gyeongbuk, South Korea). Sixty patients were randomised to receive one to six implants in the maxilla with either calcium-incorporated (Xpeed) or control resorbable blasted media (RBM) surfaces, according to a parallel group design at two centres. Implants were submerged and exposed at three different endpoints in equal groups of 20 patients, each at 12, 10 and 8 weeks, respectively. Within 2 weeks, implants were functionally loaded with provisional or definitive prostheses. Outcome measures were prosthesis failures, implant failures, any complications and peri-implant marginal bone level changes. Thirty patients received 45 calcium-incorporated implants and 30 patients received 42 control titanium implants. Three years after loading four patients dropped-out from the Xpeed group and one from the RBM group. No prosthesis or implant failures occurred. There were no statistically significant differences between the groups for complications (P = 0.91; difference in proportions = 0.79 %; 95% CI -0.71 to 2.29) and mean marginal bone level changes (P = 0.88; mean difference = -0.02 mm; 95% CI -0.26 to 0.22). Both implant surfaces provided good clinical results and no significant difference was found when comparing titanium implants with a nanostructured calcium-incorporated surface versus implants with RBM surfaces.

  13. Two or three machined vs roughened surface dental implants loaded immediately supporting total fixed prostheses: 1-year results from a randomised controlled trial.

    Science.gov (United States)

    Cannizzaro, Gioacchino; Gastaldi, Giorgio; Gherlone, Enrico; Vinci, Raffaele; Loi, Ignazio; Trullenque-Eriksson, Anna; Esposito, Marco

    To compare implants with machined vs roughened surfaces placed flapless in totally edentulous jaws and immediately restored with metal-resin screw-retained cross-arch prostheses. Mandibles were rehabilitated with two implants (Fixed-on-2 or Fo2) and maxillae with three implants (Fixed-on-3 or Fo3). Forty edentulous or to be rendered edentulous patients (20 in the mandible and 20 in the maxilla) were randomised to the machined group (20 patients: 10 mandibles and 10 maxillae) and to the roughened group (20 patients: 10 mandibles and 10 maxillae) according to a parallel group design. To be immediately loaded implants had to be inserted with a minimum torque of 60 Ncm. Outcome measures were prosthesis and implant failures, complications and peri-implant marginal bone level changes evaluated up to 1 year post-loading. Flaps were raised in four patients from the machined group. Four prostheses on machined implants and three on roughened implants were delayed for loading because a sufficient insertion torque was not obtained. There were no dropouts 1 year after loading. Two maxillary machined implants were lost in two patients (difference in proportions = 0.10; 95% CI = -0.03 to 0.23; P (Fisher's exact test) = 0.487); one maxillary Fo3 prosthesis on machined implants and one mandibular Fo2 prosthesis on roughened implants had to be remade (difference in proportions = 0; 95% CI = -0.14 to 0.14; P (Fisher's exact test) = 1.000). Five patients with machined implants had six complications vs seven patients who had eight complications at roughened implants (difference in proportions = -0.10; 95% CI = -0.38 to 0.18; P (Fisher's exact test) = 0.731). There were no statistically significant differences for implant failures, prosthetic failures or complications between groups. There were no statistically significant differences for marginal peri-implant bone levels between the two groups (estimate of the difference = -0.06 mm; 95% CI = -0.23 to 0.10; P (ANCOVA) = 0.445), with

  14. Modeling Aircraft Wing Loads from Flight Data Using Neural Networks

    Science.gov (United States)

    Allen, Michael J.; Dibley, Ryan P.

    2003-01-01

    Neural networks were used to model wing bending-moment loads, torsion loads, and control surface hinge-moments of the Active Aeroelastic Wing (AAW) aircraft. Accurate loads models are required for the development of control laws designed to increase roll performance through wing twist while not exceeding load limits. Inputs to the model include aircraft rates, accelerations, and control surface positions. Neural networks were chosen to model aircraft loads because they can account for uncharacterized nonlinear effects while retaining the capability to generalize. The accuracy of the neural network models was improved by first developing linear loads models to use as starting points for network training. Neural networks were then trained with flight data for rolls, loaded reversals, wind-up-turns, and individual control surface doublets for load excitation. Generalization was improved by using gain weighting and early stopping. Results are presented for neural network loads models of four wing loads and four control surface hinge moments at Mach 0.90 and an altitude of 15,000 ft. An average model prediction error reduction of 18.6 percent was calculated for the neural network models when compared to the linear models. This paper documents the input data conditioning, input parameter selection, structure, training, and validation of the neural network models.

  15. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  16. A Workflow to Model Microbial Loadings in Watersheds

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  17. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  18. Early Bone Formation around Immediately Loaded Transitional Implants Inserted in the Human Posterior Maxilla: The Effects of Fixture Design and Surface

    Directory of Open Access Journals (Sweden)

    Carlo Mangano

    2017-01-01

    Full Text Available Aim. To evaluate the effects of fixture design and surface on the early bone formation around immediately loaded implants inserted in the human posterior maxilla. Materials and Methods. Ten totally edentulous subjects received two transitional implants: one tapered implant with knife-edge threads/nanostructured calcium-incorporated surface (test: Anyridge®, Megagen, Gyeongbuk, South Korea and one cylindrical implant with self-tapping threads/sandblasted surface (control: EZPlus®, Megagen. The implants were placed according to a split-mouth design and immediately loaded to support an interim complete denture; after 8 weeks, they were removed for histologic/histomorphometric analysis. The bone-to-implant contact (BIC% and the bone density (BD% were calculated. The Wilcoxon test was used to evaluate the differences. Results. With test implants, a mean BIC% and BD% of 35.9 (±9.1 and 31.8 (±7.5 were found. With control implants, a mean BIC% and BD% of 29.9 (±7.6 and 32.5 (±3.9 were found. The mean BIC% was higher with test implants, but this difference was not significant (p=0.16. Similar BD% were found in the two groups (p=0.9. Conclusions. In the posterior maxilla, under immediate loading conditions, implants with a knife-edge thread design/nanostructured calcium-incorporated surface seem to increase the peri-implant endosseous healing properties, when compared to implants with self-tapping thread design/sandblasted surface.

  19. Early Bone Formation around Immediately Loaded Transitional Implants Inserted in the Human Posterior Maxilla: The Effects of Fixture Design and Surface

    Science.gov (United States)

    Pires, Jefferson Trabach; Luongo, Giuseppe; Piattelli, Adriano

    2017-01-01

    Aim. To evaluate the effects of fixture design and surface on the early bone formation around immediately loaded implants inserted in the human posterior maxilla. Materials and Methods. Ten totally edentulous subjects received two transitional implants: one tapered implant with knife-edge threads/nanostructured calcium-incorporated surface (test: Anyridge®, Megagen, Gyeongbuk, South Korea) and one cylindrical implant with self-tapping threads/sandblasted surface (control: EZPlus®, Megagen). The implants were placed according to a split-mouth design and immediately loaded to support an interim complete denture; after 8 weeks, they were removed for histologic/histomorphometric analysis. The bone-to-implant contact (BIC%) and the bone density (BD%) were calculated. The Wilcoxon test was used to evaluate the differences. Results. With test implants, a mean BIC% and BD% of 35.9 (±9.1) and 31.8 (±7.5) were found. With control implants, a mean BIC% and BD% of 29.9 (±7.6) and 32.5 (±3.9) were found. The mean BIC% was higher with test implants, but this difference was not significant (p = 0.16). Similar BD% were found in the two groups (p = 0.9). Conclusions. In the posterior maxilla, under immediate loading conditions, implants with a knife-edge thread design/nanostructured calcium-incorporated surface seem to increase the peri-implant endosseous healing properties, when compared to implants with self-tapping thread design/sandblasted surface. PMID:28280731

  20. [A field study on the work load and muscle fatigue at neck-shoulder in female sewing machine operators by using surface electromyography].

    Science.gov (United States)

    Zhang, Fei-ruo; Wang, Sheng; He, Li-hua; Zhang, Ying; Wu, Shan-shan; Li, Jing-yun; Hu, Guang-yi; Ye, Kang-ping

    2011-03-01

    To study neck and shoulder work-related muscle fatigue of female sewing machine operators. 18 health female sewing machine operators without musculoskeletal disorders work in Beijing garment industry factory as volunteers in participate of this study. The maximal voluntary contraction (MVC) and 20% MVC of bilateral upper trapezium and cervical erectors spinae was tested before sewing operations, then the whole 20 time windows (1 time window = 10 min) sewing machine operations was monitored and the surface electromyography (sEMG) signals simultaneously was recorded after monitoring the 20%MVC was tested. Use amplitude analysis method to reduction recorded EMG signals. During work, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezium (LUT) and right upper trapezium (RUT) respectively was 6.78 ± 1.05, 6.94 ± 1.12, 5.68 ± 2.56 and 6.47 ± 3.22, work load of right is higher than the left; static load analysis indicated the value of RMS(20%MVC) before work was higher than that value after work, the increase of right CES and UT RMS(20%MVC) was more; the largest 20%MVE of bilateral CES occurred at 20th time window, and that of bilateral UT happened at 16th. The work load of female sewing machine operators is sustained "static" load, and work load of right neck-shoulder is higher than left, right neck-shoulder muscle is more fatigable and much serious once fatigued.

  1. INFLUENCE OF POSTURE ON THE RELATION BETWEEN SURFACE ELECTROMYOGRAM AMPLITUDE AND BACK MUSCLE MOMENT - CONSEQUENCES FOR THE USE OF SURFACE ELECTROMYOGRAM TO MEASURE BACK LOAD

    NARCIS (Netherlands)

    MOUTON, LJ; HOF, AL; DEJONGH, HJ; EISMA, WH

    1991-01-01

    The aim of the study was to analyse the effect of posture on the relation between EMG amplitude and moment of the back muscles in different subjects, in order to gain a better insight into the possibilities of EMG as a means of measuring individual back load. Eight healthy subjects participated in

  2. Pressure sources versus surface loads : Analyzing volcano deformation signal composition with an application to Hekla volcano, Iceland

    NARCIS (Netherlands)

    Grapenthin, R.; Ófeigsson, B.G.; Sigmundsson, F.; Sturkell, E.; Hooper, A.J.

    2010-01-01

    The load of lava emplaced over periods of decades to centuries induces a gradual viscous response of the Earth resulting in measurable deformation. This effect should be considered in source model inversions for volcanic areas with large lava production and flow emplacement in small centralized

  3. The influence of pendant carboxylic acid loading on surfaces of statistical poly(4-hydroxystyrene)-co-styrene)s

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hvilsted, Søren

    2008-01-01

    . In particular, aliphatic and aromatic pendant groups differ by 92°C in Tg• Contact angle measurements onspin coated films have shown a maximum effect of the functional groups in the advancing contact angle at a 75/100 copolymer loading. In addition to this, X-ray photoelectron spectroscopy shows the presence...

  4. Metal Ni-loaded g-C3N4 for enhanced photocatalytic H2 evolution activity: the change in surface band bending.

    Science.gov (United States)

    Bi, Lingling; Xu, Dandan; Zhang, Lijing; Lin, Yanhong; Wang, Dejun; Xie, Tengfeng

    2015-11-28

    A series of Ni@g-C3N4 composites were synthesized by a simple solvent thermal method using melamine and acetylacetone nickel as precursors. The results of X-ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy indicate that Ni was successfully loaded on g-C3N4. And the Ni loaded greatly enhances the photocatalytic H2 evolution activity of g-C3N4 compared to the pure g-C3N4. In order to study the role of Ni, the surface photovoltage, the surface photocurrent and photoluminescence measurements were used to investigate the photogenerated charge properties of g-C3N4. What is more, Mott-Schottky plots and work function measurements confirmed the surface band bending change of g-C3N4 contacting with Ni. Those results demonstrate that Ni coating deepens surface band bending of g-C3N4, resulting in higher separation efficiency of photogenerated charge carriers, which is contributed to the enhanced photocatalytic H2 evolution activity.

  5. Surface energy balances of three general circulation models: Current climate and response to increasing atmospheric CO2

    International Nuclear Information System (INIS)

    Gutowski, W.J.; Gutzler, D.S.; Portman, D.; Wang, W.C.

    1988-04-01

    The surface energy balance simulated by state-of-the-art general circulation models at GFDL, GISS and NCAR for climates with current levels of atmospheric CO 2 concentration (control climate) and with twice the current levels. The work is part of an effort sponsored by the US Department of Energy to assess climate simulations produced by these models. The surface energy balance enables us to diagnose differences between models in surface temperature climatology and sensitivity to doubling CO 2 in terms of the processes that control surface temperature. Our analysis compares the simulated balances by averaging the fields of interest over a hierarchy of spatial domains ranging from the entire globe down to regions a few hundred kilometers across

  6. MICROBIAL LOAD AND MULTIPLE DRUG RESISTANCE OF PATHOGENIC BACTERIA ISOLATED FROM FEACES AND BODY SURFACES OF COCKROACHES IN AN URBAN AREA OF SOUTHWESTERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Monsuru Adebayo Adeleke

    2012-06-01

    Full Text Available This study investigates the microbial load and antibiotic susceptibility pattern of pathogenic bacteria isolated from the faeces and body surfaces of cockroaches in Osogbo, Southwestern Nigeria. The cockroaches collected from residential areas and hospital vicinities were screened for microbial load and antibiotic susceptibility pattern using standard protocols. A total of twenty- three microorganisms namely Klebsiella aerogenes, Bacillius cereus, Proteus spp, Staphyloccocus aureus, S. saprophyticus, Enteroccocus faecalis, Staphylococus epididermis, E. coli, Listeria monoctogene, Proteus mirabilis, Citrobacter species, Pseudomonas aeruginosa, Psuedomonas species, Seretia mensence, Candida albicans, Candida spp., Aspergilius spp., A. flavus, A. fumigates, Mucor species and Penicilium species were isolated. The microbial load of the microorganisms was significantly higher in the isolates from hospital as compared with the residential area (p<0.05 with the exception of Canidida species, Mucor and Penicillium which had higher or equal microbial load at the residential areas. All the pathogenic bacteria isolated had multiple resistance to antibiotics most importantly, Ampicillin, Augumentin, Amoxicillin and Septrin (30μg. Efforts geared towards controlling the insects will be indispensable in curbing the wide spread of multi-drug resistant pathogens in the study area.

  7. Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands

    Science.gov (United States)

    Hendriks, Rob F. A.; van den Akker, Jan J. A.

    2017-04-01

    Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather

  8. Finite size effects of ionic species sensitively determine load bearing capacities of lubricated systems under combined influence of electrokinetics and surface compliance.

    Science.gov (United States)

    Naik, Kaustubh Girish; Chakraborty, Suman; Chakraborty, Jeevanjyoti

    2017-09-27

    The behaviour and health of lubricated systems in various natural and artificial settings are often characterized by their load bearing capacity. This capacity stemming from the lift force associated with confined fluid flow can be significantly altered due to surface compliance and electrokinetic effects. Here, we highlight the influence of finite size of the ionic species participating in electrokinetic transport with substrate compliance in determining the electromechanical characteristics of lubricated systems. With these new considerations, anomalous trends previously observed for the load bearing capacity corresponding to high values of zeta potential are corrected. Simultaneously, trends associated with the finite ionic size are also found to be reversed, but fall in line with the consistent theory. Importantly, despite an intricate interplay among the various influences - electrokinetic, hydrodynamic, geometric, and elastic - previously established trends due to geometric (non-parallel slider geometry) and elastic effects are found to persist. Specifically, in the presence of electrokinetic effects, an increase in the obliqueness of the slider geometry results in lower values of load bearing capacity while an increase in the stiffness leads to higher values. These results point to a certain robustness in the overall theory and it is hoped that they can contribute to better practical designs of slider bearings and an improved understanding of lubricated sliding surfaces in biological settings.

  9. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  10. A Computer Solution for the Dynamic Load, Lubricant Film Thickness and Surface Temperatures in Spiral Bevel Gears.

    Science.gov (United States)

    1987-07-01

    of contact ( bsg = 0) and the curvature in the x-axis direction of this generator surface (a sg) can be derived based on the geometry shown in Figure 2...3 2.1 Introduction .................................... 3 2.2 Determination of Tooth Surfaces for Generated Spiral Gears...intent of this research to extend the existing surface geometry analysis, known as the Tooth Contact Analysis (TCA), to generate additional quantities

  11. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  12. An analytical solution for the elastic response to surface loads imposed on a layered, transversely isotropic and self-gravitating Earth

    DEFF Research Database (Denmark)

    Pan, E.; Chen, J.Y.; Bevis, M.

    2015-01-01

    We present an analytical solution for the elastic deformation of an elastic, transversely isotropic, layered and self-gravitating Earth by surface loads. We first introduce the vector spherical harmonics to express the physical quantities in the layered Earth. This reduces the governing equations...... the correctness of our solution and the implementation. We also calculate the load Love numbers (LLNs) of the PREM Earth for different degrees of the Legendre function for both isotropic and transversely isotropic, layered mantles with different core models, demonstrating for the first time the effect of Earth...... to a linear system of equations for the expansion coefficients. We then solve for the expansion coefficients analytically under the assumption (i.e. approximation) that in the mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the gravity is constant and that in the core...

  13. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Nørskov, Jens Kehlet

    2005-01-01

    A simple scheme for the estimation of oxygen binding energies on transition metal surface alloys is presented. It is shown that a d-band center model of the alloy surfaces is a convenient and appropriate basis for this scheme; variations in chemical composition, strain effects, and ligand effects...... are all incorporated into the binding energy analysis through this parameter. With few exceptions, the agreement of the results from the simple model with full DFT calculations on hundreds of binary surface alloys is remarkable. The scheme should therefore provide a fast and effective method...... for the estimation of oxygen binding energies on a wide variety of transition metal alloys. (c) 2005 Elsevier B.V. All rights reserved....

  14. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    International Nuclear Information System (INIS)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-01-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  15. ALE finite volume method for free-surface Bingham plastic fluids with general curvilinear coordinates

    Science.gov (United States)

    Nagai, Katsuaki; Ushijima, Satoru

    2010-06-01

    A numerical prediction method has been proposed to predict Bingham plastic fluids with free-surface in a two-dimensional container. Since the linear relationships between stress tensors and strain rate tensors are not assumed for non-Newtonian fluids, the liquid motions are described with Cauchy momentum equations rather than Navier-Stokes equations. The profile of a liquid surface is represented with the two-dimensional curvilinear coordinates which are represented in each computational step on the basis of the arbitrary Lagrangian-Eulerian (ALE) method. Since the volumes of the fluid cells are transiently changed in the physical space, the geometric conservation law is applied to the finite volume discretizations. As a result, it has been shown that the present method enables us to predict reasonably the Bingham plastic fluids with free-surface in a container.

  16. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.

    Science.gov (United States)

    Leonardi, Natalia M; Tesán, Fiorella C; Zubillaga, Marcela B; Salgueiro, María J

    2014-12-01

    In accord with as-low-as-reasonably-achievable and good-manufacturing-practice concepts, the present study evaluated the efficiency of radioactivity decontamination of materials commonly used in laboratory surfaces and whether solvent spills on these materials affect the findings. Four materials were evaluated: stainless steel, a surface comprising one-third acrylic resin and two-thirds natural minerals, an epoxy cover, and vinyl-based multipurpose flooring. Radioactive material was eluted from a (99)Mo/(99m)Tc generator, and samples of the surfaces were control-contaminated with 37 MBq (100 μL) of this eluate. The same procedure was repeated with samples of surfaces previously treated with 4 solvents: methanol, methyl ethyl ketone, acetone, and ethanol. The wet radioactive contamination was allowed to dry and then was removed with cotton swabs soaked in soapy water. The effectiveness of decontamination was defined as the percentage of activity removed per cotton swab, and the efficacy of decontamination was defined as the total percentage of activity removed, which was obtained by summing the percentages of activity in all the swabs required to complete the decontamination. Decontamination using our protocol was most effective and most efficacious for stainless steel and multipurpose flooring. Moreover, treatment with common organic solvents seemed not to affect the decontamination of these surfaces. Decontamination of the other two materials was less efficient and was interfered with by the organic solvents; there was also great variability in the overall results obtained for these other two materials. In expanding our laboratory, it is possible for us to select those surface materials on which our decontamination protocol works best. © 2014 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... on the centimeter level, station corrections regarding the Earth tides and the ocean tidal loading have to be applied. Models for global corrections esp. for the body tides are available and sufficient, but local corrections regarding the effect of the adjacent shelf area still have to be inferred from additional...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  18. Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA

    Science.gov (United States)

    Domagalski, Joseph L.; Weston, Donald P.; Zhang, Minghua; Hladik, Michelle L.

    2010-01-01

    Pyrethroid insecticide use in California, USA, is growing, and there is a need to understand the fate of these compounds in the environment. Concentrations and toxicity were assessed in streambed sediment of the San Joaquin Valley of California, one of the most productive agricultural regions of the United States. Concentrations were also measured in the suspended sediment associated with irrigation or storm‐water runoff, and mass loads during storms were calculated. Western valley streambed sediments were frequently toxic to the amphipod, Hyalella azteca, with most of the toxicity attributable to bifenthrin and cyhalothrin. Up to 100% mortality was observed in some locations with concentrations of some pyrethroids up to 20 ng/g. The western San Joaquin Valley streams are mostly small watersheds with clay soils, and sediment‐laden irrigation runoff transports pyrethroid insecticides throughout the growing season. In contrast, eastern tributaries and the San Joaquin River had low bed sediment concentrations (pyrethroids in irrigation and storm water runoff. Esfenvalerate, fenpropathrin, and resmethrin were also detected. All sampled streams contributed to the insecticide load of the San Joaquin River during storms, but some compounds detected in the smaller creeks were not detected in the San Joaquin River. The two smallest streams, Ingram and Hospital Creeks, which had high sediment toxicity during the irrigation season, accounted for less than 5% of the total discharge of the San Joaquin River during storm conditions, and as a result their contribution to the pyrethroid mass load of the larger river was minimal. 

  19. Groundwater impact on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NARCIS (Netherlands)

    Yu, L.; Rozemeijer, J.; Breukelen, B.M. van; Ouboter, M.; Vlugt, C. van der; Broers, H.P.

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and

  20. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments : Monitoring the greater Amsterdam area

    NARCIS (Netherlands)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, B.M.; Ouboter, Maarten; Van Der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage,

  1. Linking Surface Precipitation in Fe-Au Alloys to Its Self-healing Potential During Creep Loading

    NARCIS (Netherlands)

    Sun, W. W.; Fang, H.; van Dijk, N.H.; van der Zwaag, S.; Hutchinson, C. R.

    2017-01-01

    The precipitation of Au-rich precipitates on the external surfaces of Fe-Au alloys has been studied by scanning and transmission electron microscopy. The surface precipitates formed at elevated temperatures are found to self-organize in regular patterns and their growth rate is determined

  2. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  3. Estimates of effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads and effective elastic thickness of subduction zones

    Science.gov (United States)

    Yang, A.; Yongtao, F.

    2016-12-01

    The effective elastic thickness (Te) is an important parameter that characterizes the long term strength of the lithosphere, which has great significance on understanding the mechanical properties and evolution of the lithosphere. In contrast with many controversies regarding elastic thickness of continent lithosphere, the Te of oceanic lithosphere is thought to be in a simple way that is dependent on the age of the plate. However, rescent studies show that there is no simple relationship between Te and age at time of loading for both seamounts and subduction zones. As subsurface loading is very importand and has large influence in the estimate of Te for continent lithosphere, and many oceanic features such as subduction zones also have considerable subsurface loading. We introduce the method to estimate the effective elastic thickness of oceanic lithosphere using model including surface and subsurface loads by using free-air gravity anomaly and bathymetric data, together with a moving window admittance technique (MWAT). We use the multitaper spectral estimation method to calculate the power spectral density. Through tests with synthetic subduction zone like bathymetry and gravity data show that the Te can be recovered in an accurance similar to that in the continent and there is also a trade-off between spatial resolution and variance for different window sizes. We estimate Te of many subduction zones (Peru-Chile trench, Middle America trench, Caribbean trench, Kuril-Japan trench, Mariana trench, Tonga trench, Java trench, Ryukyu-Philippine trench) with an age range of 0-160 Myr to reassess the relationship between elastic thickness and the age of the lithosphere at the time of loading. The results do not show a simple relationship between Te and age.

  4. Effect of energy source, salt concentration and loading force on colloidal interactions between Acidithiobacillus ferrooxidans cells and mineral surfaces.

    Science.gov (United States)

    Diao, Mengxue; Nguyen, Tuan A H; Taran, Elena; Mahler, Stephen M; Nguyen, Anh V

    2015-08-01

    The surface appendages and extracellular polymeric substances of cells play an important role in the bacterial adhesion process. In this work, colloidal forces and nanomechanical properties of Acidithiobacillus ferrooxidans (A. f) interacted with silicon wafer and pyrite (FeS2) surfaces in solutions of varying salt concentrations were quantitatively examined using the bacterial probe technique with atomic force microscopy. A. f cells were cultured with either ferrous sulfate or elemental sulfur as key energy sources. Our results show that A. f cells grown with ferrous ion and elemental sulfur exhibit distinctive retraction force vs separation distance curves with stair-step and saw tooth shapes, respectively. During the approach of bacterial probes to the substrate surfaces, surface appendages and biopolymers of cells are sequentially compressed. The conformations of surface appendages and biopolymers are significantly influenced by the salt concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Clinical and Radiographic Evaluation of Brånemark Implants with an Anodized Surface following Seven-to-Eight Years of Functional Loading

    Directory of Open Access Journals (Sweden)

    David Gelb

    2013-01-01

    Full Text Available The aim of this study was to evaluate the clinical and radiographic long-term outcomes of dental implants with an anodized TiUnite surface, placed in routine clinical practice. Two clinical centers participated in the study. One hundred and seven implants (80 in the maxilla and 27 in the mandible in 52 patients were followed in the long term. Both one- and two-stage techniques were used for 38 and 69 implants, respectively. Thirty-eight single tooth restorations and 22 fixed partial prostheses were delivered, according to a delayed loading protocol, within 4 to 12 months since implant placement. All implants were stable at insertion and at the long-term follow-up visit, which occurred between 7 and 8 years of functional loading. The mean followup was 7.33±0.47 years. The mean marginal bone level change at the long-term followup as compared to baseline was 1.49±1.03 mm. No implant failure occurred. Healthy peri-implant mucosa was found around 95% of implants, whereas 91% of implants showed no visible plaque at the implant surfaces at the long-term followup. The study showed that dental implants with the TiUnite anodized surface demonstrate excellent long-term clinical and radiographic outcomes.

  6. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    Science.gov (United States)

    Ghoreishian, Seyed Majid; Badii, Khashayar; Norouzi, Mohammad; Malek, Kaveh

    2016-03-01

    In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  7. Correlations of Optical Absorption, Charge Trapping, and Surface Roughness of TiO2 Photoanode Layer Loaded with Neat Ag-NPs for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Yang, Dongwook; Jang, Jae Gyu; Lim, Joohyun; Lee, Jin-Kyu; Kim, Sung Hyun; Hong, Jong-In

    2016-08-24

    We systematically investigated the effect of silver nanoparticles (Ag-NPs) on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Neat, spherical Ag-NPs at loading levels of 0.0, 0.5, 1.0, and 2.0 wt % were embedded into the titanium dioxide (TiO2) photoanode layer. The plasmonic effect of the Ag-NPs strongly enhanced the incident light absorption over a wide range of the visible wavelength region in addition to the inherent absorbance of the perovskite sensitizer. The low conduction energy level of the Ag-NPs compared to that of TiO2 provides trap sites for free charge carriers. Thus, the correlation between the enhancement of the optical absorption and the number of charge traps provided by the Ag-NPs is critical to determine the device performance, especially current density (Jsc) and PCE. This is confirmed by the quantitative comparison of the incident light absorption and the time-resolved photoluminescence decay according to the loading levels of the Ag-NPs in the TiO2 layer. The absorption enhancement from 380 to 750 nm in the UV-visible spectrum is proportional to the increase in the loading levels of the Ag-NPs. However, the Jsc increases with the device with 0.5 wt % Ag-NPs and gradually decreases with increases in the loading level above 0.5 wt % because of the different contributions to the absorbance and the charge trapping by different Ag-NP loading levels. In addition, the suppression of the surface roughness with dense packing by the Ag-NPs helps to improve the Jsc and the following PCE. Consequently, the PCE of the PSC with 0.5 wt % Ag-NPs is increased to 11.96%. These results are attributed to the balance between increased absorbance by the localized surface plasmon resonance and the decreased charge trapping as well as the decreased surface roughness of the TiO2 layer with the Ag-NPs.

  8. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    It is common practice to assume a uniform thickness reduction for general corrosion. Since the actual corroded plate has rough surfaces, to estimate the remaining strength of corroded structures, typically a much higher level of accuracy is required. The main aim of present work is to study plastic collapse load of corroded ...

  9. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  10. Propagation of waves from an arbitrary shaped surface-A generalization of the Fresnel diffraction integral

    Science.gov (United States)

    Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.

    2018-04-01

    Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.

  11. Codimension-2 surfaces and their Hilbert spaces: low-energy clues for holography from general covariance

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, Yakov, E-mail: yashula@gmail.co [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2009-12-21

    We argue that the holographic principle may be hinted at already from low-energy considerations, assuming diffeomorphism invariance, quantum mechanics and Minkowski-like causality. We consider the states of finite spacelike hypersurfaces in a diffeomorphism-invariant QFT. A low-energy regularization is assumed. We note a natural dependence of the Hilbert space on a codimension-2 boundary surface. The Hilbert product is defined dynamically, in terms of transition amplitudes which are described by a path integral. We show that a canonical basis is incompatible with these assumptions, which opens the possibility for a smaller Hilbert-space dimension than canonically expected. We argue further that this dimension may decrease with surface area at constant volume, hinting at holographic area proportionality. We draw comparisons with other approaches and setups, and propose an interpretation for the non-holographic space of graviton states at asymptotically Minkowski null infinity.

  12. A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Lili; Tian, Li; Wang, Desheng

    2008-10-31

    In this paper, we present a residual-based a posteriori error estimate for the finite volume discretization of steady convection– diffusion–reaction equations defined on surfaces in R3, which are often implicitly represented as level sets of smooth functions. Reliability and efficiency of the proposed a posteriori error estimator are rigorously proved. Numerical experiments are also conducted to verify the theoretical results and demonstrate the robustness of the error estimator.

  13. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone nanoparticles

    Directory of Open Access Journals (Sweden)

    Sathyamoorthy Nandhakumar

    2017-12-01

    Full Text Available The biokinetic fate of polymeric nanoparticles in the physiological milieu is strongly influenced by its properties such as size, surface charge and surface affinity. The electrostatic properties of the polymeric nanoparticles and, thereby, the reliant properties such as cellular interactions, reactivity and toxicity, can be tailored by modulating the surface charge. Therefore, the present study aimed at studying the influence of surface charge on the physicochemical properties, in vitro protein adsorption and cell cytotoxicity of poly(ε-caprolactone (PCL nanoparticles (NPs. Paclitaxel loaded PCL nanoparticles were obtained by emulsion solvent evaporation extraction technique and differently charged using ionic surfactants. The NPs were characterized for size, zeta potential, morphology, entrapment and release. In vitro protein adsorption and cytotoxicity of NPs with different surface charge was investigated. The prepared NPs were rounded with a smooth surface and had a particle size less than 250 nm with narrow distribution and high entrapment efficiency (>80%. The zeta potential of the particles varied between −22 mV and +16 mV depending on its composition. The in vitro protein adsorption studies revealed that positively charged NPs adsorbed more proteins than other formulations. The cytotoxicity studies on MCF-7 cells exhibited that positively charged NPs engender the highest cell inhibition due to preferential uptake based on electrostatic interactions with cell membranes. The results suggest that surface charge could be undeniably significant in determining the protein adsorption and cellular interactions and must be intently considered during the design of colloidal particles to impart better performance in the physiological system. Keywords: Poly(ε-caprolactone, Nanoparticles, Surface charge, Protein adsorption, Cytotoxicity

  14. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.

    2013-07-01

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  15. Surface cracking and melting of different tungsten grades under transient heat and particle loads in a magnetized coaxial plasma gun

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-15

    Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W–Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (∼0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ∼0.3 MJ m{sup −2}, while a W–Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ∼0.3 MJ m{sup −2}, although surface melting and cracks in the resolidification layer occurred at higher energy density of ∼0.9 MJ m{sup −2}. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.

  16. Influence of CAD-CAM diamond bur deterioration on surface roughness and maximum failure load of Y-TZP-based restorations.

    Science.gov (United States)

    Corazza, Pedro Henrique; de Castro, Humberto Lago; Feitosa, Sabrina Alves; Kimpara, Estevão Tomomitsu; Della Bona, Alvaro

    2015-04-01

    To investigate the influence of CAD-CAM diamond bur deterioration on surface roughness (Ra) and maximum failure load (Lf) of Y-TZP-based ceramic (YZ) substructures (SB) veneered with a feldspathic porcelain. Two sets of burs (B1 and B2) were used to fabricate 30 YZ SB each in a CAD/CAM system (Cerec InLab). The SB were identified (1-30) according to the milling sequence (MS). SEM images of the burs were recorded before milling, and after milling 15 and 30 SB. The SB Ra was measured. All SB were veneered, cemented onto a fiber reinforced epoxy resin die, and loaded to failure. Specimens from B1 group were cyclic fatigued (106 cycles) before loading to failure. Fractographic analysis was performed. Data were statistically analyzed using Student's t-test, Weibull analysis, Pearson's correlation and ANOVA (α= 0.05). The mean Ra value of B1 specimens was statistically greater than B2. Weibull modulus of B1 and B2 were statistically similar. The correlation between MS and Lf was not statistically significant for the groups. MS and Ra had significant correlation for both groups (B1: r= -0.514, P= 0.015; B2: r= -0.462, P= 0.03). Although the visual aspect (SEM) of the burs was similar after 30 millings, the mean Ra values were significantly different after 27 millings for B1 and 24 millings for B2.

  17. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    International Nuclear Information System (INIS)

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity — sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing. In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.

  18. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  19. Non-uniqueness of quantum transition state theory and general dividing surfaces in the path integral space.

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A

    2017-05-07

    Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.

  20. Scanning tunneling microscopy I general principles and applications to clean and absorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1994-01-01

    Since the first edition of "Scanning 'funneling Microscopy I" has been pub­ lished, considerable progress has been made in the application of STM to the various classes of materials treated in this volume, most notably in the field of adsorbates and molecular systems. An update of the most recent develop­ ments will be given in an additional Chapter 9. The editors would like to thank all the contributors who have supplied up­ dating material, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers. Hamburg, July 1994 R. Wiesendanger Preface to the First Edition Since its invention in 1981 by G. Binnig, H. Rohrer and coworkers at the IBM Zurich Research Laboratory, scanning tunneling microscopy (STM) has devel­ oped into an invaluable surface analytical technique allowing the investigation of real-space surface structures at th...

  1. Long term kinetic measurements revealing precision and general performance of surface plasmon resonance biosensors.

    Science.gov (United States)

    Steinicke, Franziska; Oltmann-Norden, Imke; Wätzig, Hermann

    2017-08-01

    This work presents an extensive parameter list that facilitates a survey of biosensor performance using Biacore instruments for kinetic binding studies. Six long term measurements were performed using a strongly interacting antigen-antibody (β2 microglobulin) system. Both Single Cycle Kinetic (SCK) and Multi Cycle Kinetic (MCK) were executed each with five different analyte concentrations. The overall comparison of the long term monitored parameters, like the dissociation constant (K D with approximately 3-6% relative percental standard deviation), the association and dissociation rate constants (k a , k d ), the analyte binding capacity (R max ), chi 2 and the sum of the absolute values of the residuals, revealed the delicate factors that make the system performance vulnerable. The main influential factors on kinetic performance were the regeneration conditions, the quality of the sensor surface, the usage time and alteration of the sensor surface, the dilution series and the number of run cycles (about 250-600 per chip). Moreover the direct comparison of MCK and SCK uncovered distinct differences in the accuracy of the K D values. The study of sensor chips from two manufacturers showed distinct differences in the precision of the data. Using control charts for the surveillance of these parameters contributes to an overall better system performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quantify work load and muscle functional activation patterns in neck-shoulder muscles of female sewing machine operators using surface electromyogram.

    Science.gov (United States)

    Zhang, Fei-Ruo; He, Li-Hua; Wu, Shan-Shan; Li, Jing-Yun; Ye, Kang-Pin; Wang, Sheng

    2011-11-01

    Work-related musculoskeletal disorders (WMSDs) have high prevalence in sewing machine operators employed in the garment industry. Long work duration, sustained low level work and precise hand work are the main risk factors of neck-shoulder disorders for sewing machine operators. Surface electromyogram (sEMG) offers a valuable tool to determine muscle activity (internal exposure) and quantify muscular load (external exposure). During sustained and/or repetitive muscle contractions, typical changes of muscle fatigue in sEMG, as an increase in amplitude or a decrease as a shift in spectrum towards lower frequencies, can be observed. In this paper, we measured and quantified the muscle load and muscular activity patterns of neck-shoulder muscles in female sewing machine operators during sustained sewing machine operating tasks using sEMG. A total of 18 healthy women sewing machine operators volunteered to participate in this study. Before their daily sewing machine operating task, we measured the maximal voluntary contractions (MVC) and 20%MVC of bilateral cervical erector spinae (CES) and upper trapezius (UT) respectively, then the sEMG signals of bilateral UT and CES were monitored and recorded continuously during 200 minutes of sustained sewing machine operating simultaneously which equals to 20 time windows with 10 minutes as one time window. After 200 minutes' work, we retest 20%MVC of four neck-shoulder muscles and recorded the sEMG signals. Linear analysis, including amplitude probability distribution frequency (APDF), amplitude analysis parameters such as roof mean square (RMS) and spectrum analysis parameter as median frequency (MF), were used to calculate and indicate muscle load and muscular activity of bilateral CES and UT. During 200 minutes of sewing machine operating, the median load for the left cervical erector spinae (LCES), right cervical erector spinae (RCES), left upper trapezius (LUT) and right upper trapezius (RUT) were 6.78%MVE, 6.94%MVE, 6

  3. In situ loading of CuS nanoflowers on rutile TiO{sub 2} surface and their improved photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.Y.; Zhang, Y.Y. [College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning (China); Zhang, J., E-mail: jingzhang_dicp@live.cn [College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun 113001, Liaoning (China); Shi, Y. [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Li, Z., E-mail: lizhi@mail.ipc.ac.cn [Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Z.C.; Li, C. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023 (China)

    2016-05-01

    Graphical abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} (CuS/TiO{sub 2}) at low temperature. In photocatalytic degradation of MB or 4-CP, it is found that the surface modification with CuS can enhance the photocatalytic efficiency of TiO{sub 2}. The promotion of photocatalytic performance is mainly ascribed to the enhanced charge separation originating from the well-matched heterostructure between CuS and rutile TiO{sub 2}. - Highlights: • CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} at low temperature. • In the photo-degradation studies of MB and 4-CP, surface modification with CuS can enhance the photocatalytic efficiency of rutile TiO{sub 2}. • CuS/TiO{sub 2} composite materials show the good repeatability of the photocatalytic activity. • This work provides a facile method to design and fabricate the effective composites photocatalyst. - Abstract: CuS nanoflowers, fabricated by an element-direct-reaction route using copper and sulfur powder, were loaded on rutile TiO{sub 2} (CuS/TiO{sub 2}) at low temperature. CuS/TiO{sub 2} composites were utilized as the photocatalysts for the degradation of Methylene Blue (MB) and 4-chlorophenol (4-CP). X-ray diffraction (XRD), UV Raman spectroscopy, transmission electron microscopy (TEM), XPS, and UV-visible diffuse reflectance spectra were used to characterize the crystalline phase, morphology, particle size, and the optical properties of CuS/TiO{sub 2} samples. It is found that CuS/TiO{sub 2} photocatalyst, which CuS are loaded on the surface of rutile TiO{sub 2}, exhibited enhanced photocatalytic degradation of MB (or 4-CP) than TiO{sub 2} or CuS. This indicates that CuS can enhance effectively the photocatalytic activity of rutile TiO{sub 2} by forming heterojunction between CuS and rutile TiO{sub 2}, which is confirmed by

  4. Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

    DEFF Research Database (Denmark)

    Goutam, Shovon; Timmermans, Jean-Marc; Omar, Noshin

    2014-01-01

    This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel...

  5. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    Science.gov (United States)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  6. A Randomized Case-Series Study Comparing the Stability of Implant with Two Different Surfaces Placed in Fresh Extraction Sockets and Immediately Loaded

    Directory of Open Access Journals (Sweden)

    Leonardo Vanden Bogaerde

    2016-01-01

    Full Text Available Background. Hydrophilic and moderately rough implant surfaces have been proposed to enhance the osseointegration response. Aim. The aim of this study was to compare early changes of stability for two implants with identical macrodesign but with different surface topographies. Materials and Methods. In 11 patients, a total of 22 implants (11 bimodal (minimally rough, control and 11 proactive (moderately rough and hydrophilic, test, Neoss Ltd., Harrogate, UK were immediately placed into fresh extraction sockets and immediately loaded. The peak insertion torque (IT was measured in Ncm at placement. Resonance Frequency Analysis (RFA measurements were made at baseline and 2, 4, 6, and 12 weeks after surgery. Results. The two implant types showed similar IT and RFA values at placement (NS. A dip of RFA values after 2 weeks followed by an increase was observed, where the test implant showed a less pronounced decrease and a more rapid recovery than the control implant. The test implants were significantly more stable than the control ones after 12 weeks. Conclusions. The results from the present study indicated that the hydrophilic and rougher test implant was more resistant to immediate loading and showed a significantly higher stability than the smoother control implant after 12 weeks.

  7. Implants with an Oxidized Surface Placed Predominately in Soft Bone Quality and Subjected to Immediate Occlusal Loading: Results from an 11-Year Clinical Follow-Up.

    Science.gov (United States)

    Glauser, Roland

    2016-06-01

    The purpose of this clinical follow-up was to document the 11-year outcome of implants with a moderately rough oxidized surface subjected to immediate occlusal loading. Twenty-six of 38 patients enrolled in a 5-year prospective study were available for this follow-up analysis, with 33 restorations supported by 66 slightly tapered implants (Brånemark System MkIV, Nobel Biocare, Gothenburg, Sweden). The majority of implants were placed in posterior regions (88%) and into soft bone (76%). Parameters included cumulative survival rate (CSR), radiographic marginal bone level, bleeding on probing (BOP), intrasulcular counts of perio-pathogenic markers (DNA probes), and total bacterial load (TBL). The CSR was 97.1% at 11.2 years mean follow-up. Mean marginal bone remodeling was 0.47 mm (SD 1.09, n = 65) from 1 year postplacement to 11-year follow-up. BOP was absent at most sites (63.6%). No statistically significant differences in TBL or perio-pathogenic marker species were observed at implants and teeth. The results of the present follow-up show high long-term survival, stable marginal bone levels, and soft tissue outcomes of oxidized surface implants placed predominately in posterior regions and soft bone. The quantity and quality of intrasulcular microbiota were comparable at implants and teeth. © 2015 Wiley Periodicals, Inc.

  8. How Important Is Connectivity for Surface Water Fluxes? A Generalized Expression for Flow Through Heterogeneous Landscapes

    Science.gov (United States)

    Larsen, Laurel G.; Ma, Jie; Kaplan, David

    2017-10-01

    How important is hydrologic connectivity for surface water fluxes through heterogeneous floodplains, deltas, and wetlands? While significant for management, this question remains poorly addressed. Here we adopt spatial resistance averaging, based on channel and patch configuration metrics quantifiable from aerial imagery, to produce an upscaled rate law for discharge. Our model suggests that patch coverage largely controls discharge sensitivity, with smaller effects from channel connectivity and vegetation patch fractal dimension. However, connectivity and patch configuration become increasingly important near the percolation threshold and at low water levels. These effects can establish positive feedbacks responsible for substantial flow change in evolving landscapes (14-36%, in our Everglades case study). Connectivity also interacts with other drivers; flow through poorly connected hydroscapes is less resilient to perturbations in other drivers. Finally, we found that flow through heterogeneous patches is alone sufficient to produce non-Manning flow-depth relationships commonly observed in wetlands but previously attributed to depth-varying roughness.

  9. Unified first law and some general prescription. A redefinition of surface gravity

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Sourav; Bhattacharjee, Sudipto; Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2017-09-15

    The paper contains an extensive study of the unified first law (UFL) in the Friedmann-Robertson-Walker spacetime model. By projecting the UFL along the Kodama vector the second Friedmann equation can be obtained. Also studying the UFL on the event horizon it is found that the Clausius relation cannot be obtained from the UFL by projecting it along the tangent to the event horizon as it can be for the trapping horizon. However, it is shown in the present work that Clausius relation can be obtained by projecting the UFL along the Kodama vector on the horizon and the result is found to be true for any horizon. Finally motivated by the Unruh temperature for the Rindler observer, surface gravity is redefined and a Clausius relation is obtained from the UFL by projecting it along a vector analogous to the Kodama vector. (orig.)

  10. FE Calculations of J-Integrals in a Constrained Elastomeric Disk with Crack Surface Pressure and Isothermal Load

    National Research Council Canada - National Science Library

    Ching, H. K; Liu, C. T; Yen, S. C

    2004-01-01

    .... For the linear analysis, material compressibility was modeled with Poisson's varying form 0.48 to 0.4999. In addition, with the presence of the crack surface pressure, the J-integral was modified by including an additional line integral...

  11. Assessing the Magnitude of Polycyclic Aromatic Hydrocarbon Loading from Road Surfaces and Its Effect on Algal Productivity

    Science.gov (United States)

    2010-06-01

    The hypotheses of the study were that PAHs washing off roads would retard the growth of aquatic life-supporting algae and promote the growth of harmful, toxin-producing algae in estuaries, such as the Chesapeake Bay. Runoff from various road surfaces...

  12. A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface

    NARCIS (Netherlands)

    Cochran, D.L.; Jackson, J.M.; Bernard, J.P.; ten Bruggenkate, C.M.; Buser, D.; Taylor, T.D.; Weingart, D.; Schoolfield, J.D.; Jones, A.A.; Oates, T.W

    2011-01-01

    PURPOSE: For dental implants to be successful, osseointegration must occur, but it is unknown how much time must pass for osseointegration to be established. Preclinical studies suggested that titanium implants with a sandblasted and acid-etched (SLA) surface were more osteoconductive and allowed

  13. Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications

    NARCIS (Netherlands)

    Zhang, Wuyuan; Martinelli, Jonathan; Peters, Joop A.; Hengst, Van Jacob M.A.; Bouwmeester, Hans; Kramer, Evelien; Bonnet, Célia S.; Szeremeta, Frédéric; Tóth, Éva; Djanashvili, Kristina

    2017-01-01

    Surface PEGylation of nanoparticles designed for biomedical applications is a common and straightforward way to stabilize the materials for in vivo administration and to increase their circulation time. This strategy becomes less trivial when MRI active porous nanomaterials are concerned as their

  14. Natural fiber reinforced polystyrene composites: Effect of fiber loading, fiber dimensions and surface modification on mechanical properties

    International Nuclear Information System (INIS)

    Singha, A.S.; Rana, Raj K.

    2012-01-01

    Highlights: ► Preparation of Agave fiber reinforced polystyrene composites. ► Effect of fiber content, fiber dimensions and surface treatment on the mechanical properties of composites. ► Composites with 20% by weight fiber content exhibited optimum mechanical properties. ► Composites reinforced with MMA grafted fibers exhibited better mechanical strength as compared to raw fibers. ► SEM of fractured surfaces of samples showed better interface in particle reinforced composites. -- Abstract: Natural fibers have been found to be excellent reinforcing materials for preparing polymer matrix based composites. In the present study both raw and surface modified Agave fiber reinforced polystyrene matrix based composites were prepared in order to explore the effect of reinforcement on the mechanical properties of the matrix. The surface modification of Agave fiber was carried out by graft copolymerization of methyl methacrylate (MMA) onto it in the presence of ceric ammonium nitrate (CAN) as initiator. For preparing these composites different fiber contents of both raw and grafted fibers (10–30% by weight) have been used. It has been found that 20% fiber content gives optimum mechanical properties. The effect of different fiber dimensions (particle, short and long fibers) on the mechanical properties of the composites has also been investigated. It has been found that particle reinforcement gives better mechanical properties than short and long fiber reinforcement. The composites thus prepared have been characterized by Fourier transform infra red (FT-IR) spectroscopy, Scanning electron microscopy (SEM) and TGA/DTA techniques. Further the surface modified fiber reinforced composites have been found to be thermally more stable than that of raw fiber reinforced composites.

  15. Water-only hydrothermal method: a generalized route for environmentally-benign and cost-effective construction of superhydrophilic surfaces with biomimetic micronanostructures on metals and alloys.

    Science.gov (United States)

    Li, Lingjie; Zhang, Yuezhong; Lei, Jinglei; He, Jianxin; Lv, Rong; Li, Nianbing; Pan, Fusheng

    2014-07-18

    The present work demonstrates a generalized strategy using water-only hydrothermal oxidation to construct complex biomimetic micronanostructures on a series of metals and alloys, resulting in superhydrophilic surfaces. This general approach is environmentally-benign and cost-effective, which offers a unique clue for the rational fabrication of micronanoscale architectures and superhydrophilic surfaces.

  16. Comprehensive nonlocal analysis of piezoelectric nanobeams with surface effects in bending, buckling and vibrations under magneto-electro-thermo-mechanical loading

    Science.gov (United States)

    Ebrahimi-Nejad, Salman; Boreiry, Mahya

    2018-03-01

    The bending, buckling and vibrational behavior of size-dependent piezoelectric nanobeams under thermo-magneto-mechano-electrical environment are investigated by performing a parametric study, in the presence of surface effects. The Gurtin-Murdoch surface elasticity and Eringen’s nonlocal elasticity theories are applied in the framework of Euler–Bernoulli beam theory to obtain a new non-classical size-dependent beam model for dynamic and static analyses of piezoelectric nanobeams. In order to satisfy the surface equilibrium equations, cubic variation of stress with beam thickness is assumed for the bulk stress component which is neglected in classical beam models. Results are obtained for clamped - simply-supported (C-S) and simply-supported - simply-supported (S-S) boundary conditions using a proposed analytical solution method. Numerical examples are presented to demonstrate the effects of length, surface effects, nonlocal parameter and environmental changes (temperature, magnetic field and external voltage) on deflection, critical buckling load and natural frequency for each boundary condition. Results of this study can serve as benchmarks for the design and analysis of nanostructures of magneto-electro-thermo-elastic materials.

  17. Study of pollutant transport in surface boundary layer by generalized integral transform technique

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Jesus S.P.; Heilbron Filho, Paulo F.L. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Pimentel, Luiz C.G. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Meteorologia. Lab. de Modelagem de Processos Marinhos e Atmosfericos (LAMMA); Cataldi, Marcio [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE)

    2001-07-01

    A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)

  18. Study of pollutant transport in surface boundary layer by generalized integral transform technique

    International Nuclear Information System (INIS)

    Guerrero, Jesus S.P.; Heilbron Filho, Paulo F.L.; Pimentel, Luiz C.G.; Cataldi, Marcio

    2001-01-01

    A theoretical study was developed to obtain solutions of the atmospheric diffusion equation for various point source, considering radioactive decay and axial diffusion, under neutral atmospheric conditions. It was used an algebraic turbulence model available in the literature, based on Monin-Obukhov similarity theory, for the representation of the turbulent transport in the vertical direction, in the longitudinal directions was considered a constant mass eddy diffusivity . The bi-dimensional transient partial differential equation, representative of the physical phenomena, was transformed into a coupled one-dimensional transient equation system by applying the Generalized Integral Transform Technique. The coupled system was solved numerically using a subroutine based in the lines method. In order to evaluate the computational algorithm were analyzed some representative physical situations. (author)

  19. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  20. Silica-forming articles having engineered surfaces to enhance resistance to creep sliding under high-temperature loading

    Science.gov (United States)

    Lipkin, Don Mark; Johnson, Curtis Alan; Meschter, Peter Joel; Sundaram, Sairam; Wan, Julin

    2017-02-07

    An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least one outer layer with the silicon-containing region through the constituent layer.

  1. Effect of cold plasma pre-treatment on photocatalytic activity of 3D fabric loaded with nano-photocatalysts: Response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghoreishian, Seyed Majid, E-mail: m.ghoreishian.1985@gmail.com [Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Badii, Khashayar [Department of Environmental Researches, Institute for Color Science and Technology (ICST), Tehran (Iran, Islamic Republic of); Norouzi, Mohammad [Graduate Program of Biomedical Engineering, University of Manitoba, Winnipeg, MB (Canada); Malek, Kaveh [Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-03-01

    Graphical abstract: - Highlights: • The potential of immobilized TiO{sub 2} and ZnO nanophotocatalysts for the removal of reactive dye was investigated. • Optimum decolorization conditions have been determined. • The immobilized nanophotocatalysts decolorized azo dyes completely from a textile effluent within 60 min. • Photocatalytic decolorization rates obeyed the pseudo-first-order rate. - Abstract: In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO{sub 2} nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box–Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R{sup 2} = 0.9996, Adjusted R{sup 2} = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir–Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

  2. Self-assembly of nanoparticles onto the surfaces of polystyrene spheres with a tunable composition and loading.

    Science.gov (United States)

    Pilapil, Brandy K; Wang, Michael C P; Paul, Michael T Y; Nazemi, Amir; Gates, Byron D

    2015-02-06

    Functional colloidal materials were prepared by design through the self-assembly of nanoparticles (NPs) on the surfaces of polystyrene (PS) spheres with control over NP surface coverage, NP-to-NP spacing, and NP composition. The ability to control and fine tune the coating was extended to the first demonstration of the co-assembly of NPs of dissimilar composition onto the same PS sphere, forming a multi-component coating. A broad range of NP decorated PS (PS@NPs) spheres were prepared with uniform coatings attributed to electrostatic and hydrogen bonding interactions between stabilizing groups on the NPs and the functionalized surfaces of the PS spheres. This versatile two-step method provides more fine control than methods previously demonstrated in the literature. These decorated PS spheres are of interest for a number of applications, such as catalytic reactions where the PS spheres provide a support for the dispersion, stabilization, and recovery of NP catalysts. The catalytic properties of these PS@NPs spheres were assessed by studying the catalytic degradation of azo dyes, an environmental contaminant detrimental to eye health. The PS@NPs spheres were used in multiple, sequential catalytic reactions while largely retaining the NP coating.

  3. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    Science.gov (United States)

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  4. Chemical loading into surface water along a hydrological, biogeochemical, and land use gradient: A holistic watershed approach

    Science.gov (United States)

    Barber, L.B.; Murphy, S.F.; Verplanck, P.L.; Sandstrom, M.W.; Taylor, Howard E.; Furlong, E.T.

    2006-01-01

    Identifying the sources and impacts of organic and inorganic contaminants at the watershed scale is a complex challenge because of the multitude of processes occurring in time and space. Investigation of geochemical transformations requires a systematic evaluation of hydrologic, landscape, and anthropogenic factors. The 1160 km2 Boulder Creek Watershed in the Colorado Front Range encompasses a gradient of geology, ecotypes, climate, and urbanization. Streamflow originates primarily as snowmelt and shows substantial annual variation. Water samples were collected along a 70-km transect during spring-runoff and base-flow conditions, and analyzed for major elements, trace elements, bulk organics, organic wastewater contaminants (OWCs), and pesticides. Major-element and trace-element concentrations were low in the headwaters, increased through the urban corridor, and had a step increase downstream from the first major wastewater treatment plant (WWTP). Boron, gadolinium, and lithium were useful inorganic tracers of anthropogenic inputs. Effluent from the WWTP accounted for as much as 75% of the flow in Boulder Creek and was the largest chemical input. Under both hydrological conditions, OWCs and pesticides were detected in Boulder Creek downstream from the WWTP outfall as well as in the headwater region, and loads of anthropogenic-derived contaminants increased as basin population density increased. This report documents a suite of potential endocrine-disrupting chemicals in a reach of stream with native fish populations showing indication of endocrine disruption.

  5. Analysis of bacterial contamination on surface of general radiography equipment and CT equipment in emergency room of radiology

    International Nuclear Information System (INIS)

    Hong, Dong Hee; KIm, Hyeong Gyun

    2016-01-01

    We aim to offer basic materials about infection management through conducting bacterial contamination test about general radiography equipment and CT equipment installed in ER of three general hospitals with 100 sickbeds or more located in Gyeongsangbuk-do Province, and suggest management plan. It had been conducted from 1st December 2015 to 31st December, and objects were general radiography equipment and CT equipment of emergency room located in Gyeongsangbuk-do Province. For general radiography equipment, sources were collected from 4 places such as upper side of control box which employees use most, upper side of exposure button, whole upper side of table which is touching part of patient's skin, upper side of stand bucky's grid, and where patients put their jaws on. For CT equipment, sources were collected from 3 places such as upper side of control box which radiography room employees use most, X-ray exposure button, whole upper side of table which is touching part of patient's skin, and gantry inner. Surface contamination strain found at general radiography equipment in emergency room of radiology are Providencia stuartii(25%), Stenotrophomonas maltophilia(18%), Enterobacter cloacae(8%), Pseudomonas species(8%), Staphylococcus epidermidis(8%), Gram negative bacilli(8%), and ungrown bacteria at incubator after 48 hours of incubation (67%) which is the biggest. Most bacteria were found at upper side of stand bucky-grid and stand bucky of radiology's general radiography equipment, and most sources of CT equipment were focused at patient table, which means it is contaminated by patients who have various diseases, and patients who have strains with decreased immunity may get severe diseases. Thus infection prevention should be made through 70% alcohol disinfection at both before test and after test

  6. Analysis of bacterial contamination on surface of general radiography equipment and CT equipment in emergency room of radiology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Dong Hee; KIm, Hyeong Gyun [Dept. of Radiological Science, Far East University, Eumseong (Korea, Republic of)

    2016-09-15

    We aim to offer basic materials about infection management through conducting bacterial contamination test about general radiography equipment and CT equipment installed in ER of three general hospitals with 100 sickbeds or more located in Gyeongsangbuk-do Province, and suggest management plan. It had been conducted from 1st December 2015 to 31st December, and objects were general radiography equipment and CT equipment of emergency room located in Gyeongsangbuk-do Province. For general radiography equipment, sources were collected from 4 places such as upper side of control box which employees use most, upper side of exposure button, whole upper side of table which is touching part of patient's skin, upper side of stand bucky's grid, and where patients put their jaws on. For CT equipment, sources were collected from 3 places such as upper side of control box which radiography room employees use most, X-ray exposure button, whole upper side of table which is touching part of patient's skin, and gantry inner. Surface contamination strain found at general radiography equipment in emergency room of radiology are Providencia stuartii(25%), Stenotrophomonas maltophilia(18%), Enterobacter cloacae(8%), Pseudomonas species(8%), Staphylococcus epidermidis(8%), Gram negative bacilli(8%), and ungrown bacteria at incubator after 48 hours of incubation (67%) which is the biggest. Most bacteria were found at upper side of stand bucky-grid and stand bucky of radiology's general radiography equipment, and most sources of CT equipment were focused at patient table, which means it is contaminated by patients who have various diseases, and patients who have strains with decreased immunity may get severe diseases. Thus infection prevention should be made through 70% alcohol disinfection at both before test and after test.

  7. A facile precursor route to highly loaded metal/ceramic nanofibers as a robust surface-enhanced Raman template

    Science.gov (United States)

    Park, Jay Hoon; Joo, Yong Lak

    2017-09-01

    We report silver (Ag)/ceramic nanofibers with highly robust and sensitive optical sensory capabilities that can withstand harsh conditions. These nanofibers are fabricated by first electrospinning solutions of poly vinyl alcohol (PVA) and metal precursor polymers, followed by subsequent series of heat treatment. The reported fabrication method demonstrate the effects of (i) the location of Ag crystals, (ii) crystal size and shape, and (iii) constituents of the ceramic matrix as surface-enhanced Raman spectroscopy (SERS) templates with 10-6 M 4-mercaptobenzoic acid (4-MBA). Notably, these silver/ceramic nanofibers preserved most of their highly sensitive localized surface plasmon resonance (LSPR) even under high temperature of 400 °C, in contrast to preformed Ag nanoparticles (NPs) in PVA nanofibers which lost most of its optical property presumably due to (i) Ag oxidation and (ii) loss of the matrix material. Among the ceramic substrates of ZrO2, Al2O3, and ZnO with silver crystals, we discovered that the ZnO substrate showed the most consistent and the strongest signal strength owing to the synergistic chemical and optical properties of the ZnO substrate. Moreover, the pure Ag nanofiber proved to be the best heat-resistant SERS template, owing to its (i) anisotropic morphology and (ii) thicker diameter when compared with other conventional Ag nanomaterials. These results demonstrated simple yet highly controllable fabrication of robust SERS templates, with potential applications in a catalytic sensory which is often exposed to harsh conditions.

  8. Anion-π Catalysis of Enolate Chemistry: Rigidified Leonard Turns as a General Motif to Run Reactions on Aromatic Surfaces.

    Science.gov (United States)

    Cotelle, Yoann; Benz, Sebastian; Avestro, Alyssa-Jennifer; Ward, Thomas R; Sakai, Naomi; Matile, Stefan

    2016-03-18

    To integrate anion-π, cation-π, and ion pair-π interactions in catalysis, the fundamental challenge is to run reactions reliably on aromatic surfaces. Addressing a specific question concerning enolate addition to nitroolefins, this study elaborates on Leonard turns to tackle this problem in a general manner. Increasingly refined turns are constructed to position malonate half thioesters as close as possible on π-acidic surfaces. The resulting preorganization of reactive intermediates is shown to support the disfavored addition to enolate acceptors to an absolutely unexpected extent. This decisive impact on anion-π catalysis increases with the rigidity of the turns. The new, rigidified Leonard turns are most effective with weak anion-π interactions, whereas stronger interactions do not require such ideal substrate positioning to operate well. The stunning simplicity of the motif and its surprisingly strong relevance for function should render the introduced approach generally useful. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Investigations of nitrogen oxide plasmas: Fundamental chemistry and surface reactivity and monitoring student perceptions in a general chemistry recitation

    Science.gov (United States)

    Blechle, Joshua M.

    Part I of this dissertation focuses on investigations of nitrogen oxide plasma systems. With increasing concerns over the environmental presence of NxOy species, there is growing interest in utilizing plasma-assisted conversion techniques. Advances, however, have been limited because of the lack of knowledge regarding the fundamental chemistry of these plasma systems. Understanding the kinetics and thermodynamics of processes in these systems is vital to realizing their potential in a range of applications. Unraveling the complex chemical nature of these systems, however, presents numerous challenges. As such, this work serves as a foundational step in the diagnostics and assessment of these NxOy plasmas. The partitioning of energy within the plasma system is essential to unraveling these complications as it provides insight into both gas and surface reactivity. To obtain this information, techniques such as optical emission spectroscopy (OES), broadband absorption spectroscopy (BAS), and laser induced fluorescence (LIF) were utilized to determine species energetics (vibrational, rotational, translational temperatures). These temperature data provide mechanistic insight and establish the relationships between system parameters and energetic outcomes. Additionally, these data are also correlated to surface reactivity data collected with the Imaging of Radicals Interacting with Surfaces (IRIS) technique. IRIS data demonstrate the relationship between internal temperatures of radicals and their observed surface scatter coefficients (S), the latter of which is directly related to surface reactivity (R) [R = 1-S]. Furthermore, time-resolved (TR) spectroscopic techniques, specifically TR-OES, revealed kinetic trends in NO and N2 formation from a range of precursors (NO, N2O, N2/O2). By examining the rate constants associated with the generation and destruction of various plasma species we can investigate possible mechanistic implications. All told, such data provides

  10. Research on the impact of surface properties of particle on damping effect in gear transmission under high speed and heavy load

    Science.gov (United States)

    Xiao, Wangqiang; Chen, Zhiwei; Pan, Tianlong; Li, Jiani

    2018-01-01

    The vibration and noise from gear transmission have great damage on the mechanical equipment and operators. Through inelastic collisions and friction between particles, the energy can be dissipated in gear transmission. A dynamic model of particle dampers in gear transmission was put forward in this paper. The performance of particle dampers in centrifugal fields under different rotational speeds and load was investigated. The surface properties such as the impact of coefficient of restitution and friction coefficient of the particle on the damping effect were analyzed and the total energy loss was obtained by discrete element method (DEM). The vibration from time-varying mesh stiffness was effectively reduced by particle dampers and the optimum coefficient of restitution was discovered under different rotational speeds and load. Then, a test bench for gear transmission was constructed, and the vibration of driven gear and driving gear were measured through a three-directional wireless acceleration sensor. The research results agree well with the simulation results. While at relatively high speed, smaller coefficient of restitution achieves better damping effect. As to friction coefficient, at relatively high speed, the energy dissipation climbs up and then declines with the increase of the friction coefficient. The results can provide guidelines for the application of particle damper in gear transmission.

  11. Mobile load simulators - A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces

    Science.gov (United States)

    Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L. D.; Furger, M.; Buchmann, B.

    2010-12-01

    Mechanically produced abrasion particles and resuspension processes are responsible for a significant part of the PM10 emissions of road traffic. However, specific differentiation between PM10 emissions due to abrasion and resuspension from road pavement is very difficult due to their similar elemental composition and highly correlated variation in time. In this work Mobile Load Simulators were used to estimate PM10 emission factors for pavement abrasion and resuspension on different pavement types for light and heavy duty vehicles. From the experiments it was derived that particle emissions due to abrasion from pavements in good condition are quite low in the range of only a few mg·km -1 per vehicle if quantifiable at all. Considerable abrasion emissions, however, can occur from damaged pavements. Resuspension of deposited dust can cause high and extremely variable particle emissions depending strongly on the dirt load of the road surface. Porous pavements seem to retain deposited dust better than dense pavements, thus leading to lower emissions due to resuspension compared to pavements with a dense structure (e.g. asphalt concrete). Tyre wear seemed not to be a quantitatively significant source of PM10 emissions from road traffic.

  12. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A modification to linearized theory for prediction of pressure loadings on lifting surfaces at high supersonic Mach numbers and large angles of attack

    Science.gov (United States)

    Carlson, H. W.

    1979-01-01

    A new linearized-theory pressure-coefficient formulation was studied. The new formulation is intended to provide more accurate estimates of detailed pressure loadings for improved stability analysis and for analysis of critical structural design conditions. The approach is based on the use of oblique-shock and Prandtl-Meyer expansion relationships for accurate representation of the variation of pressures with surface slopes in two-dimensional flow and linearized-theory perturbation velocities for evaluation of local three-dimensional aerodynamic interference effects. The applicability and limitations of the modification to linearized theory are illustrated through comparisons with experimental pressure distributions for delta wings covering a Mach number range from 1.45 to 4.60 and angles of attack from 0 to 25 degrees.

  14. Model Test Setup and Program for Experimental Estimation of Surface Loads of the SSG Kvitsøy Pilot Plant from Extreme Wave Conditions

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Larsen, Brian Juul

    This report presents the preparations done prior to model tests planned for November 2005 focusing on experimental estimation of the surface loads on the wave energy convert (WEC) Seawave Slot-Cone Generator (SSG) due to extreme wave conditions. SSG is a WEC utilizing wave overtopping in multiple...... the planned pilot plant site is also modeled. The tests will be carried out at Dept. of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank....... reservoirs. In the present SSG setup three reservoirs have been used. Model tests are planned using a model (length scale 1:60) of the SSG prototype at the planned location of a pilot plant at the west coast of the island Kvitsøy near Stavanger, Norway. The properties of the coastal area surrounding...

  15. Performance and design considerations for an anaerobic moving bed biofilm reactor treating brewery wastewater: Impact of surface area loading rate and temperature.

    Science.gov (United States)

    di Biase, A; Devlin, T R; Kowalski, M S; Oleszkiewicz, J A

    2017-06-05

    Three 4 L anaerobic moving bed biofilm reactors (AMBBR) treated brewery wastewater with AC920 media providing 680 m 2 protected surface area per m 3 of media. Different hydraulic retention times (HRT; 24, 18, 12, 10, 8 and 6 h) at 40% media fill and 35 °C, as well as different temperatures (15, 25 and 35 °C) at 50% media fill and 18 h HRT were examined. Best performance at 35 °C and 40% media fill was observed when HRT was 18 h, which corresponded with 92% removal of soluble COD (sCOD). Organic loading rates (OLR) above 24 kg-COD m -3 d -1 decreased performance below 80% sCOD removal at 35 °C and 40% media fill. The reason was confirmed to be that surface area loading rates (SALR) above 50 g-sCOD m -2 d -1 caused excessive biofilm thickness that filled up internal channels of the media, leading to mass transfer limitations. Temperature had a very significant impact on process performance with 50% media fill and 18 h HRT. Biomass concentrations were significantly higher at lower temperatures. At 15 °C the mass of volatile solids (VS) was more than three times higher than at 35 °C for the same OLR. Biofilms acclimated to 25 °C and 15 °C achieved removal of 80% sCOD at SALR of 10 g-sCOD m -2 d -1 and 1.0 g-sCOD m -2 d -1 , respectively. Even though biomass concentrations were higher at lower temperature, biofilm acclimated to 25 °C and 15 °C performed significantly slower than that acclimated to 35 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Estimating global air-sea fluxes from surface properties and from climatological flux data using an oceanic general circulation model

    Science.gov (United States)

    Tziperman, Eli; Bryan, Kirk

    1993-12-01

    A simple method is presented and demonstrated for estimating air-sea fluxes of heat and fresh water with the aid of a general circulation model (GCM), using both sea surface temperature and salinity data and climatological air-sea flux data. The approach is motivated by a least squares optimization problem in which the various data sets are combined to form an optimal solution for the air-sea fluxes. The method provides estimates of the surface properties and air-sea flux data that are as consistent as possible with the original data sets and with the model physics. The calculation of these estimates involves adding a simple equation for calculating the air-sea fluxes during the model run and then running the model to a steady state. The proposed method was applied to a coarse resolution global primitive equation model and annually averaged data sets. Both the spatial distribution of the global air-sea fluxes and the meridional fluxes carried by the ocean were estimated. The resulting air-sea fluxes seem smoother and significantly closer to the climatological flux estimates than do the air-sea fluxes obtained from the GCM by simply specifying the surface temperature and salinity. The better fit to the climatological fluxes was balanced by a larger deviation from the surface temperature and salinity. These surface fields were still close to the observations within the measurement error in most regions, except western boundary areas. The inconsistency of the model and data in western boundary areas is probably related to the inability of the coarse resolution GCM to appropriately simulate the large transports there. The meridional fluxes calculated by the proposed method differ very little from those obtained by simply specifying the surface temperature and salinity. We suggest therefore that these meridional fluxes are strongly influenced by the interior model dynamics; in particular, the too-weak model meridional circulation cell seems to be the reason for

  17. Determinants of spontaneous surface antigen loss in hepatitis B e antigen-negative patients with a low viral load.

    Science.gov (United States)

    Tseng, Tai-Chung; Liu, Chun-Jen; Yang, Hung-Chih; Su, Tung-Hung; Wang, Chia-Chi; Chen, Chi-Ling; Kuo, Stephanie Fang-Tzu; Liu, Chen-Hua; Chen, Pei-Jer; Chen, Ding-Shinn; Kao, Jia-Horng

    2012-01-01

    Loss of hepatitis B surface antigen (HBsAg) usually indicates the cure of hepatitis B virus (HBV) infection. In spontaneous hepatitis B e antigen (HBeAg) seroconverters, lower serum HBsAg and HBV DNA levels have been shown to be associated with HBsAg loss over time. However, little is known about their impacts on HBsAg loss in HBeAg-negative patients with limited viral replication. A total of 688 HBeAg-negative patients with baseline serum HBV DNA levels loss were investigated. In a mean follow-up of 11.6 years, the average annual rate of HBsAg loss was 1.6%. Baseline HBsAg and HBV DNA levels were inversely associated with subsequent HBsAg loss. When compared to patients who had HBsAg levels >1000 IU/mL, the rates of HBsAg loss were significantly higher in patients with HBsAg levels of 100-999, 10-99, and loss was 13.2 (95% CI, 7.8-22.1) for HBsAg level loss. In HBeAg-negative patients with HBV genotype B or C infection who have HBV DNA level loss. Copyright © 2011 American Association for the Study of Liver Diseases.

  18. Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads

    Science.gov (United States)

    Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng

    2017-12-01

    The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.

  19. Experimental study of acoustic loads on an upper-surface-blown STOL airplane configuration. [Langley full-scale wind tunnel tests

    Science.gov (United States)

    Willis, C. M.; Schoenster, J. A.

    1979-01-01

    Fluctuating pressure levels were measured on the flap and fuselage of an upper-surface-blown jet-flap airplane configuration in a wind tunnel. The model tested had turbofan engines with a bypass ratio of 3 and a thrust rating of 10 kN. Rectangular nozzles were mounted flush with the upper surface at 35 percent of the wing chord. Test parameters were flap deflection angle, jet impingement angle, angle of attack, free-stream velocity, spanwise location of the engine, and jet dynamic pressure. Load levels were high throughout the jet impingement region, with the highest levels (about 159 dB) occurring on the fuselage and near the knee of the flap. The magnitude of the forward-velocity effect appeared to depend upon the ratio of free-stream and jet velocities. Good agreement was obtained between fluctuating pressure spectra measured at jet dynamic pressures of 7 and 22 kPa when the spectra were scaled by nondimensional functions of dynamic pressure, velocity, and the empirical relationship between dynamic pressure and overall fluctuating pressure level.

  20. General Fit-Basis Functions and Specialized Coordinates in an Adaptive Density-Guided Approach to Potential Energy Surfaces

    DEFF Research Database (Denmark)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide

    . This results in a decreased number of single point calculations required during the potential construction. Especially the Morse-like fit-basis functions are of interest, when combined with rectilinear hybrid optimized and localized coordinates (HOLCs), which can be generated as orthogonal transformations......The overall shape of a molecular energy surface can be very different for different molecules and different vibrational coordinates. This means that the fit-basis functions used to generate an analytic representation of a potential will be met with different requirements. It is therefore worthwhile...... single point calculations when constructing the molecular potential. We therefore present a uniform framework that can handle general fit-basis functions of any type which are specified on input. This framework is implemented to suit the black-box nature of the ADGA in order to avoid arbitrary choices...

  1. Deposition, characterization, and in vivo performance of parylene coating on general-purpose silicone for examining potential biocompatible surface modifications

    International Nuclear Information System (INIS)

    Chou, Chia-Man; Shiao, Chiao-Ju; Chung, Chi-Jen; He, Ju-Liang

    2013-01-01

    In this study, a thorough investigation of parylene coatings was conducted, as follows: microstructure (i.e., X-ray diffractometer (XRD) and cold field emission scanning electron microscope (FESEM)), mechanical property (i.e., pencil hardness and cross-cut adhesion test), surface property (i.e., water contact angle measurement, IR, and X-ray photoelectron spectroscopy (XPS)), and biocompatibility tests (i.e., fibroblast cell culture, platelet adhesion, and animal studies). The results revealed that parylene, a crystalline and brittle coating, exhibited satisfactory film adhesion and relative hydrophobicity, thereby contributing to its effective barrier properties. Fibroblast cell culturing on the parylene-deposited specimen demonstrated improved cell proliferation and equivalent to or superior blood compatibility than that of the medical-grade silicone (currently used clinically). In the animal study, parylene coatings exhibited similar subcutaneous inflammatory reactions compared with the medical-grade silicone. Both in vitro and in vivo tests demonstrated the satisfactory biocompatibility of parylene coatings. - Highlights: • A complete investigation to identify the characteristics of parylene coatings on general-purpose silicones. • Microstructures, surface properties and mechanical properties of parylene coatings were examined. • In vitro (Cell culture, platelet adhesion) tests and animal studies revealed satisfactory biocompatibility. • An alternative of medical-grade silicones is expected to be obtained

  2. Optimization of the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage

    Directory of Open Access Journals (Sweden)

    Elena Chau Loo Kung

    2013-09-01

    Full Text Available This research work had as main objective optimizing the general acceptability though affective tests and response surface methodology of a dry cacao powder mixture based beverage. We obtained formulations of mixtures of cacao powder with different concentrations of 15%, 17.5% and 20%, as well as lecithin concentrations of 0.1%; 0.3%; and 0.5% maintaining a constant content of sugar (25 %, Vanillin (1% that included cacao powder with different pH values: natural (pH 5 and alkalinized (pH 6.5 and pH 8 and water by difference to 100%, generating a total of fifteen treatments to be evaluated, according to the Box-Behnen design for three factors. The treatments underwent satisfaction level tests to establish the general acceptability. The treatment that included cacao powder with a concentration of 17.5 %, pH 6.5 and lecithin concentration of 0.3 % obtained the best levels of acceptability. The software Statgraphics Plus 5.1 was used to obtain the treatment with maximum acceptability that corresponded to cacao powder with pH 6.81, with a concentration of 18.24 % and soy lecithin in 0.28% with a tendency to what was obtained in the satisfaction levels tests. Finally we characterized in a physical-chemistry and microbiological way the optimum formulation as well as evaluated sensitively obtaining an acceptability of 6.17.

  3. Evaluation and use of U.S. Environmental Protection Agency Clean Watersheds Needs Survey data to quantify nutrient loads to surface water, 1978–2012

    Science.gov (United States)

    Ivahnenko, Tamara

    2017-12-07

    Changes in municipal and industrial point-source discharges over time have been an important factor affecting nutrient trends in many of the Nation’s streams and rivers. This report documents how three U.S. Environmental Protection Agency (EPA) national datasets—the Permit Compliance System, the Integrated Compliance Information System, and the Clean Watersheds Needs Survey—were evaluated for use in the U.S. Geological Survey National Water-Quality Assessment project to assess the causes of nutrient trends. This report also describes how a database of total nitrogen load and total phosphorous load was generated for select wastewater treatment facilities in the United States based on information reported in the EPA Clean Watersheds Needs Survey. Nutrient loads were calculated for the years 1978, 1980, 1982, 1984, 1986, 1988, 1990, 1992, 1996, 2000, 2004, 2008, and 2012 based on average nitrogen and phosphorous concentrations for reported treatment levels and on annual reported flow values.The EPA Permit Compliance System (PCS) and Integrated Compliance Information System (ICIS), which monitor point-source facility discharges, together are the Nation’s most spatially comprehensive dataset for nutrients released to surface waters. However, datasets for many individual facilities are incomplete, the PCS/ICIS historical data date back only to 1989, and historical data are available for only a limited number of facilities. Additionally, inconsistencies in facility reporting make it difficult to track or identify changes in nutrient discharges over time. Previous efforts made by the U.S. Geological Survey to “fill in” gaps in the PCS/ICIS data were based on statistical methods—missing data were filled in through the use of a statistical model based on the Standard Industrial Classification code, size, and flow class of the facility and on seasonal nutrient discharges of similar facilities. This approach was used to estimate point-source loads for a single

  4. Influence of Laser-Lok surface on immediate functional loading of implants in single-tooth replacement: a 2-year prospective clinical study.

    Science.gov (United States)

    Farronato, Davide; Mangano, Francesco; Briguglio, Francesco; Iorio-Siciliano, Vincenzo; Riccitiello, Francesco; Guarnieri, Renzo

    2014-01-01

    The purpose of this study was to evaluate the influence of a Laser-Lok microtexturing surface on clinical attachment level and crestal bone remodeling around immediately functionally loaded implants in single-tooth replacement. Seventy-seven patients were included in a prospective, randomized study and divided into two groups. Group 1 (control) consisted of non-Laser-Lok type implants (n = 39), while in group 2 (test), Laser-Lok type implants were used (n = 39). Crestal bone loss (CBL) and clinical parameters including clinical attachment level (CAL), Plaque Index (PI), and bleeding on probing were recorded at baseline examinations and at 6, 12, and 24 months after loading with the final restoration. One implant was lost in the control group and one in the test group, giving a total survival rate of 96.1% after 2 years. PI and BOP outcomes were similar for both implant types without statistical differences. A mean CAL loss of 1.10 ± 0.51 mm was observed during the first 2 years in group 1, while the mean CAL loss observed in group 2 was 0.56 ± 0.33 mm. Radiographically, group 1 implants showed a mean crestal bone loss of 1.07 ± 0.30 mm compared with 0.49 ± 0.34 mm for group 2. The type of implant did not influence the survival rate, whereas Laser-Lok implants resulted in greater CAL and in shallower radiographic peri-implant CBL than non-Laser-Lok implants.

  5. LOADING SIMULATION PROGRAM C

    Science.gov (United States)

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  6. Quasi-monolithic silicon load cell for loads up to 1000 kg with insensitivity to non-homogeneous load distributions

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Zwijze, A.F.; Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Elwenspoek, Michael Curt

    In this paper, a micromachined silicon load cell (force sensor) is presented for measuring loads up to 1000 kg. The sensitive surface of 1 cm2 contains a matrix of capacitive sensing elements to make the load cell insensitive to non-homogeneous load distributions. The load cell has been realized and

  7. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  8. Loads and loads and loads: the influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Science.gov (United States)

    Meier, Beat; Zimmermann, Thomas D.

    2015-01-01

    In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load (OTL) can affect prospective memory performance. The existence of multiple target events increases prospective load (PL) and adding complexity to the to-be-remembered action increases retrospective load (RL). In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of PL on costs in the ongoing task for categorical targets (Experiment 2), but not for specific targets (Experiment 1). RL and OTL both affected remembering the retrospective component of the prospective memory task. We suggest that PL can enhance costs in the ongoing task due to additional monitoring requirements. RL and OTL seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially. PMID:26082709

  9. Microbial contaminants isolated from items and work surfaces in the post- operative ward at Kawolo general hospital, Uganda.

    Science.gov (United States)

    Sserwadda, Ivan; Lukenge, Mathew; Mwambi, Bashir; Mboowa, Gerald; Walusimbi, Apollo; Segujja, Farouk

    2018-02-06

    Nosocomial infections are a major setback in the healthcare delivery system especially in developing countries due to the limited resources. The roles played by medical care equipment and work surfaces in the transmission of such organisms have inevitably contributed to the elevated mortality, morbidity and antibiotic resistances. A total 138 samples were collected during the study from Kawolo general hospital. Swab samples were collected from various work surfaces and fomites which consisted of; beds, sink taps, infusion stands, switches, work tables and scissors. Cultures were done and the susceptibility patterns of the isolates were determined using Kirby Bauer disc diffusion method. Data was analyzed using Stata 13 and Microsoft Excel 2013 packages. A total of 44.2% (61/138) of the collected swab specimens represented the overall bacterial contamination of the sampled articles. Staphylococcus aureus and Klebsiella pneumoniae accounted for the highest bacterial contaminants constituting of 75.4% (46/61) and 11.5% (7/61) respectively. Infusion stands and patient beds were found to have the highest bacterial contamination levels both constituting 19.67% (12/61). The highest degree of transmission of organisms to patients was found to be statistically significant for patient beds with OR: 20.1 and P-value 8X10 - 4 . Vancomycin, ceftriaxone and ciprofloxacin were the most effective antibiotics with 100%, 80% and 80% sensitivity patterns among the isolates respectively. Multi-drug resistant (MDR) Staphylococcus aureus accounted for 52% (24/46) with 4% (1/24) classified as a possible extensively drug resistant (XDR) whereas Gram negative isolates had 27% (4/15) MDR strains out of which 50%(2/4) were classified as possible pan-drug resistant (PDR). The high prevalence of bacterial contaminants in the hospital work environment is an indicator of poor or ineffective decontamination. The study findings reiterate the necessity to formulate drug usage policies and re

  10. Design, characterization, and in vitro cellular inhibition and uptake of optimized genistein-loaded NLC for the prevention of posterior capsular opacification using response surface methodology.

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Sun, Xiao; Kong, Jun; Yang, Xinggang; Pan, Weisan; Li, Sanming

    2013-09-15

    This study was to design an innovative nanostructured lipid carrier (NLC) for drug delivery of genistein applied after cataract surgery for the prevention of posterior capsular opacification. NLC loaded with genistein (GEN-NLC) was produced with Compritol 888 ATO, Gelucire 44/14 and Miglyol 812N, stabilized by Solutol(®) HS15 by melt emulsification method. A 2(4) central composite design of 4 independent variables was performed for optimization. Effects of drug concentration, Gelucire 44/14 concentration in total solid lipid, liquid lipid concentration, and surfactant concentration on the mean particle size, polydispersity index, zeta potential and encapsulation efficiency were investigated. Analysis of variance (ANOVA) statistical test was used to assess the optimization. The optimized GEN-NLC showed a homogeneous particle size of 90.16 nm (with PI=0.33) of negatively charged surface (-25.08 mv) and high encapsulation efficiency (91.14%). Particle morphology assessed by TEM revealed a spherical shape. DSC analyses confirmed that GEN was mostly entrapped in amorphous state. In vitro release experiments indicated a prolonged and controlled genistein release for 72 h. In vitro growth inhibition assay showed an effective growth inhibition of GEN-NLCs on human lens epithelial cells (HLECs). Preliminary cellular uptake test proved a enhanced penetration of genistein into HLECs when delivered in NLC. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO2 nanotube arrays for photocatalytic CO2 reduction

    Science.gov (United States)

    Low, Jingxiang; Qiu, Shuoqi; Xu, Difa; Jiang, Chuanjia; Cheng, Bei

    2018-03-01

    Surface plasmon resonance (SPR) effect has been utilized in many solar conversion applications because of its ability to convert visible photons into "hot electron" energy. However, the direct evidence and enhancement of this unique effect are still great challenges, limiting its practical applications. Here we present the direct evidence and enhancement of SPR effect using TiO2 nanotube arrays (TNTAs) loaded with Ag nanoparticles (NPs) as a proof-of-concept example. Particularly, electrochemical deposition method is applied to deposit Ag NPs into the inner space of TNTAs for enhancing SPR effect of Ag NPs, as demonstrated by Raman and light absorption spectroscopies. This enhanced SPR effect is because multi-scattered light within TNTAs can be effectively utilized by Ag NPs in the inner space of TNTAs. Moreover, combining synchronous-illumination X-ray photoelectron and electrochemical impedance spectroscopy characterization, we confirm that the SPR effect of Ag NPs can enhance photocatalytic performance of TNTAs mainly from two aspects: (i) injection of "hot electrons" from Ag NPs to TNTAs and (ii) acceleration of charge carrier migration on the TNTAs through a unique near field effect. The direct evidence and enhancement of SPR effect open new perspectives in design of functional plasmonic nanomaterials with high solar conversion efficiency.

  12. A Framework for Optimal Control Allocation with Structural Load Constraints

    Science.gov (United States)

    Frost, Susan A.; Taylor, Brian R.; Jutte, Christine V.; Burken, John J.; Trinh, Khanh V.; Bodson, Marc

    2010-01-01

    Conventional aircraft generally employ mixing algorithms or lookup tables to determine control surface deflections needed to achieve moments commanded by the flight control system. Control allocation is the problem of converting desired moments into control effector commands. Next generation aircraft may have many multipurpose, redundant control surfaces, adding considerable complexity to the control allocation problem. These issues can be addressed with optimal control allocation. Most optimal control allocation algorithms have control surface position and rate constraints. However, these constraints are insufficient to ensure that the aircraft's structural load limits will not be exceeded by commanded surface deflections. In this paper, a framework is proposed to enable a flight control system with optimal control allocation to incorporate real-time structural load feedback and structural load constraints. A proof of concept simulation that demonstrates the framework in a simulation of a generic transport aircraft is presented.

  13. Integration of the Response Surface Methodology with the Compromise Decision Support Problem in Developing a General Robust Design Procedure

    Science.gov (United States)

    Chen, Wei; Tsui, Kwok-Leung; Allen, Janet K.; Mistree, Farrokh

    1994-01-01

    In this paper we introduce a comprehensive and rigorous robust design procedure to overcome some limitations of the current approaches. A comprehensive approach is general enough to model the two major types of robust design applications, namely, robust design associated with the minimization of the deviation of performance caused by the deviation of noise factors (uncontrollable parameters), and robust design due to the minimization of the deviation of performance caused by the deviation of control factors (design variables). We achieve mathematical rigor by using, as a foundation, principles from the design of experiments and optimization. Specifically, we integrate the Response Surface Method (RSM) with the compromise Decision Support Problem (DSP). Our approach is especially useful for design problems where there are no closed-form solutions and system performance is computationally expensive to evaluate. The design of a solar powered irrigation system is used as an example. Our focus in this paper is on illustrating our approach rather than on the results per se.

  14. Immediate loading of bimaxillary total fixed prostheses supported by five flapless-placed implants with machined surfaces: A 6-month follow-up prospective single cohort study.

    Science.gov (United States)

    Cannizzaro, Gioacchino; Felice, Pietro; Loi, Ignazio; Viola, Paolo; Ferri, Vittorio; Leone, Michele; Collivasone, Dario; Esposito, Marco

    2016-01-01

    To evaluate the clinical outcome of fully edentulous patients rehabilitated with immediately loaded bimaxillary screw-retained metal-resin prostheses supported by five implants placed flapless: two in the mandible and three in the maxillae. Twenty-five consecutively treated patients were recruited. To be immediately loaded, implants had to be inserted with a minimum torque of 80 Ncm. Outcome measures were prosthesis and implant failures, and complications. Six months after loading no patients dropped out and no prosthesis or implant failed. Two maxillary prostheses were loaded early at 8 weeks because implants were inserted with a torque inferior to 45 Ncm. Three complications occurred in two patients but they were all successfully treated. Six months after loading, immediately loaded bimaxillary cross-arch prostheses can be supported by only two mandibular and three maxillary flapless-placed dental implants. Longer follow-ups of approximately 10 years are needed to understand the prognosis of this treatment modality.

  15. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels.

    Science.gov (United States)

    Mekkawy, Aml I; El-Mokhtar, Mohamed A; Nafady, Nivien A; Yousef, Naeima; Hamad, Mostafa A; El-Shanawany, Sohair M; Ibrahim, Ehsan H; Elsabahy, Mahmoud

    2017-01-01

    In the present study, silver nanoparticles (AgNPs) were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle). The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG) 6000, sodium dodecyl sulfate (SDS), and β-cyclodextrin (β-CD). The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and β-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus ) and Gram-negative bacteria ( Escherichia coli ) by determination of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). MIC and MBC values were in the range of 0.93-7.5 and 3.75-15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated-AgNPs dispersions using several gelling agents (sodium carboxymethyl cellulose [Na CMC], sodium alginate, hydroxypropylmethyl cellulose, Pluronic F-127, and chitosan). The prepared formulations were evaluated for their viscosity, spreadability, in vitro drug release, and antibacterial activity, and the combined effect of the type of surface coating and the polymers utilized to form the gel was studied. The in vivo wound-healing activity and antibacterial efficacy of Na CMC hydrogel loaded with PEG-coated AgNPs in comparison to the commercially available silver sulfadiazine cream (Dermazin ® ) were evaluated. Superior antibacterial activity and wound-healing capability, with normal skin appearance and hair growth, were demonstrated for the hydrogel formulations, as compared to the silver

  16. Arginylglycylaspartic Acid-Surface-Functionalized Doxorubicin-Loaded Lipid-Core Nanocapsules as a Strategy to Target Alpha(V Beta(3 Integrin Expressed on Tumor Cells

    Directory of Open Access Journals (Sweden)

    Michelli B. Antonow

    2017-12-01

    Full Text Available Doxorubicin (Dox clinical use is limited by dose-related cardiomyopathy, becoming more prevalent with increasing cumulative doses. Previously, we developed Dox-loaded lipid-core nanocapsules (Dox-LNC and, in this study, we hypothesized that self-assembling and interfacial reactions could be used to obtain arginylglycylaspartic acid (RGD-surface-functionalized-Dox-LNC, which could target tumoral cells overexpressing αvβ3 integrin. Human breast adenocarcinoma cell line (MCF-7 and human glioblastoma astrocytoma (U87MG expressing different levels of αvβ3 integrin were studied. RGD-functionalized Dox-LNC were prepared with Dox at 100 and 500 mg·mL−1 (RGD-MCMN (Dox100 and RGD-MCMN (Dox500. Blank formulation (RGD-MCMN had z-average diameter of 162 ± 6 nm, polydispersity index of 0.11 ± 0.04, zeta potential of +13.2 ± 1.9 mV and (6.2 ± 1.1 × 1011 particles mL−1, while RGD-MCMN (Dox100 and RGD-MCMN (Dox500 showed respectively 146 ± 20 and 215 ± 25 nm, 0.10 ± 0.01 and 0.09 ± 0.03, +13.8 ± 2.3 and +16.4 ± 1.5 mV and (6.9 ± 0.6 × 1011 and (6.1 ± 1.0 × 1011 particles mL−1. RGD complexation was 7.73 × 104 molecules per nanocapsule and Dox loading were 1.51 × 104 and 7.64 × 104 molecules per nanocapsule, respectively. RGD-functionalized nanocapsules had an improved uptake capacity by U87MG cells. Pareto chart showed that the cell viability was mainly affected by the Dox concentration and the period of treatment in both MCF-7 and U87MG. The influence of RGD-functionalization on cell viability was a determinant factor exclusively to U87MG.

  17. Testing Machine for Biaxial Loading

    Science.gov (United States)

    Demonet, R. J.; Reeves, R. D.

    1985-01-01

    Standard tensile-testing machine applies bending and tension simultaneously. Biaxial-loading test machine created by adding two test fixtures to commercial tensile-testing machine. Bending moment applied by substrate-deformation fixture comprising yoke and anvil block. Pneumatic tension-load fixture pulls up on bracket attached to top surface of specimen. Tension and deflection measured with transducers. Modified test apparatus originally developed to load-test Space Shuttle surface-insulation tiles and particuarly important for composite structures.

  18. Intelligence Tests with Higher G-Loadings Show Higher Correlations with Body Symmetry: Evidence for a General Fitness Factor Mediated by Developmental Stability

    Science.gov (United States)

    Prokosch, M.D.; Yeo, R.A.; Miller, G.F.

    2005-01-01

    Just as body symmetry reveals developmental stability at the morphological level, general intelligence may reveal developmental stability at the level of brain development and cognitive functioning. These two forms of developmental stability may overlap by tapping into a ''general fitness factor.'' If so, then intellectual tests with higher…

  19. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  20. Magnetic loading of TiO{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xinyue; Yang, Juan [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China); Zhang, Jingdong, E-mail: zhangjd@mail.hust.edu.cn [College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Magnetic TSF nanoparticles are immobilized on electrode surface with aid of magnet. Black-Right-Pointing-Pointer Magnetically attached TSF electrode shows high photoelectrochemical activity. Black-Right-Pointing-Pointer Diclofenac is effectively degraded on TSF-loaded electrode by photoelectrocatalysis. Black-Right-Pointing-Pointer Photoelectrocatalytic degradation of diclofenac is monitored with voltammetry. - Abstract: A novel magnetic nanomaterials-loaded electrode developed for photoelectrocatalytic (PEC) treatment of pollutants was described. Prior to electrode fabrication, magnetic TiO{sub 2}/SiO{sub 2}/Fe{sub 3}O{sub 4} (TSF) nanoparticles were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and FT-IR measurements. The nanoparticles were dispersed in ethanol and then immobilized on a graphite electrode surface with aid of magnet to obtain a TSF-loaded electrode with high photoelectrochemical activity. The performance of the TSF-loaded electrode was tested by comparing the PEC degradation of methylene blue in the presence and absence of magnet. The magnetically attached TSF electrode showed higher PEC degradation efficiency with desirable stability. Such a TSF-loaded electrode was applied to PEC degradation of diclofenac. After 45 min PEC treatment, 95.3% of diclofenac was degraded on the magnetically attached TSF electrode.

  1. Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach

    Science.gov (United States)

    Johnes, P. J.

    1996-09-01

    A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley.

  2. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  3. Rotor blade assembly having internal loading features

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  4. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels

    Directory of Open Access Journals (Sweden)

    Mekkawy AI

    2017-01-01

    -AgNPs dispersions using several gelling agents (sodium carboxymethyl cellulose [Na CMC], sodium alginate, hydroxypropylmethyl cellulose, Pluronic F-127, and chitosan. The prepared formulations were evaluated for their viscosity, spreadability, in vitro drug release, and antibacterial activity, and the combined effect of the type of surface coating and the polymers utilized to form the gel was studied. The in vivo wound-healing activity and antibacterial efficacy of Na CMC hydrogel loaded with PEG-coated AgNPs in comparison to the commercially available silver sulfadiazine cream (Dermazin® were evaluated. Superior antibacterial activity and wound-healing capability, with normal skin appearance and hair growth, were demonstrated for the hydrogel formulations, as compared to the silver sulfadiazine cream. Histological examination of the treated skin was performed using light microscopy, whereas the location of AgNPs in the skin epidermal layers was visualized using transmission electron microscopy. Keywords: silver nanoparticles, green synthesis, coating agents, hydrogel, wound healing, antibacterial activity

  5. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    Energy Technology Data Exchange (ETDEWEB)

    Celani, F.; Spallone, A.; Di Gioacchino, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Marini, P.; Di Stefano, V.; Nakamura, M. [EURESYS, Rome (Italy); Pace, S. [Salerno Univ., Salerno (Italy). Dept. of Physics, Istituto Nazionale per la Fisica della Materia; Mancini, A. [ORIM S.r.l., Piediripa, MC (Italy); Tripodi, P. [Stanford Research Institut International, Stanford, CA (United States)

    2000-07-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA).

  6. Evaluation And Characterization Of Trace Metals Contamination In The Surface Sediment Using Pollution Load Index PLI And Geo-Accumulation Index Igeo Of Ona River Western Nigeria

    Directory of Open Access Journals (Sweden)

    Andem

    2015-01-01

    Full Text Available Abstract Evaluation and Characterization of Trace Metal Contamination in the Surface Sediment Using Pollution Load Index PLI and Geo-accumulation Index Igeo Index of Ona River was conducted for six months. From the result of this study the mean values of lead ranged between 0.004 mgkg and 0.330 mgkg while the mean iron was highest 5.05 mgkg in station 4 and lowest 2.26 mgkg in station 5. The mean chromium value ranged from 0.007 mgkg station 1 and 2 to 0.021 mgkg station 3 and 4. The mean copper was highest 3.97 mgkg in station 1 and lowest 0.008 mgkg in station 2. Analysis of variance ANOVA revealed the same trend in spatial variation of these heavy metals. There was a significant difference P 0.05 in lead chromium and copper among the study sampling stations and insignificant difference P0.05 in iron among the study sampling station. The PLI values recorded for all the stations were below 1. Thus the sediment of the study stretch that Ona River is unpolluted. The Igeo values for chromium and iron fall in class 0 in all the five sampling stations indicating that there is no pollution from these metals in the Ona River sediments lead fall in class 3 in station 4indicating moderately to heavily contaminated condition and class 0in station 1 2 3 and 5 and copper fall in class 3 in station 4 and 5 in class 6 in station 3 indicating extremely contaminated condition. The Igeo values were consistent with those derived for PLI. All trace metals had concentrations below the EPA regulatory limits for sediment except iron. From the results of this study sediment quality reflects the impacts of anthropogenic activities on quality of the river. However the continuous build-up of the metal contaminants can be checked if relevant government agencies ensure strict compliant of industrial standards which stipulate treatment of industrial waste before discharging such contaminated effluentswastes into River. Therefore perpetual assessment is highly recommended

  7. Evaluating the Effect of Surface Roughness on Titanium Dioxide Nanoparticle Deposition using a Combined Quartz Crystal Microbalance with Dissipation (QCM-D) and Generalized Ellipsometry (GE) Technique

    Science.gov (United States)

    Kananizadeh, N.; Lee, J.; Rodenhausen, K. B.; Sekora, D.; Schubert, M.; Schubert, E.; Bartelt-Hunt, S.; Li, Y.

    2016-12-01

    Quantification and characterization of nanoparticles in soils and sediments are very challenging because they will interact not only with soil-water chemistry but also with highly heterogeneous soil and sediment surfaces. In this work, we measured the interaction of Titanium dioxide nanoparticles (nTiO2), the most extensively manufactured engineered materials, with engineered rough surfaces under varied ionic strength conditions. Innovative three-dimensional Silicon nanostructured surfaces, referred to here as slanted columnar thin films (SCTFs), were used to generate surface roughness with controlled heights of 50nm, 100nm, and 200nm. Using atomic layer deposition technique (ALD), surfaces of SCTF were coated with either silicon dioxide or aluminum oxides to represent the most abundant silica aquifer materials and metal oxide impurities, respectively. The interaction between nTiO2 and model rough surfaces was measured using quartz crystal microbalance with dissipation monitoring (QCM-D). The data were analyzed using a model that couples the viscoelastic effect with the surface roughness effect. No nTiO2 deposition was observed on neither flat nor rough silicon dioxide surfaces under ionic strength ranged from 0 to 100 mM NaCl. On the other hand, the deposition of nTiO2 on the aluminum oxides coated surfaces increased as the height of roughness increased. In parallel with QCM-D, a Generalized Ellipsometry (GE) was used to measure the mass of deposited nTiO2. The combination of QCM-D and GE revealed that the properties (i.e. porosity and rigidness) of attached nTiO2 layer on the QCM-D surfaces were dependent on ionic strength and surface roughness.

  8. Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA

    Directory of Open Access Journals (Sweden)

    Alyaa Mohammed

    2018-01-01

    Full Text Available Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP strip utilization and the load-bearing capacity of the near-surface mounted (NSM CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

  9. Influence of response prepotency strength, general working memory resources, and specific working memory load on the ability to inhibit predominant responses: A comparison of young and elderly participants

    OpenAIRE

    Grandjean, Julien; Collette, Fabienne

    2011-01-01

    One conception of inhibitory functioning suggests that the ability to successfully inhibit a predominant response depends mainly on the strength of that response, the general functioning of working memory processes, and the working memory demand of the task (Roberts, Hager, and Heron, 1994). The proposal that inhibition and functional working memory capacity interact was assessed in the present study using two motor inhibition tasks (Go/No-Go and response incompatibility) in young and older p...

  10. Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods

    OpenAIRE

    Casanovas Massana, Arnau; Gómez Doñate, Marta; Sánchez, David; Belanche Muñoz, Luis Antonio; Muniesa, Maite; Blanch, Anicet R.

    2015-01-01

    In this study we use a machine learning software (Ichnaea) to generate predictive models for water samples with different concentrations of fecal contamination (point source, moderate and low). We applied several MST methods (host-specific Bacteroides phages, mitochondrial DNA genetic markers, Bifidobacterium adolescentis and Bifidobacterium dentium markers, and bifidobacterial host-specific qPCR), and general indicators (Escherichia colt, enterococci and somatic coliphages) to evaluate the s...

  11. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    Remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS) are used to estimate biological heating rate and investigate the biological modulation of the sea surface temperature (SST) in a bulk mixed layer model...

  12. Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: interim results from a prospective multicenter randomized-controlled study.

    Science.gov (United States)

    Zöllner, Axel; Ganeles, Jeffrey; Korostoff, Jonathan; Guerra, Fernando; Krafft, Tim; Brägger, Urs

    2008-05-01

    Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (Pimplants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups

  13. On a model for the prediction of the friction coefficient in mixed lubrication based on a load-sharing concapt with measured surface roughness

    NARCIS (Netherlands)

    Akchurin, Aydar; Bosman, Rob; Lugt, Pieter Martin; van Drogen, Mark

    2015-01-01

    A new model was developed for the simulation of the friction coefficient in lubricated sliding line contacts. A half-space-based contact algorithm was linked with a numerical elasto-hydrodynamic lubrication solver using the load-sharing concept. The model was compared with an existing asperity-based

  14. Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods.

    Science.gov (United States)

    Casanovas-Massana, Arnau; Gómez-Doñate, Marta; Sánchez, David; Belanche-Muñoz, Lluís A; Muniesa, Maite; Blanch, Anicet R

    2015-03-15

    In this study we use a machine learning software (Ichnaea) to generate predictive models for water samples with different concentrations of fecal contamination (point source, moderate and low). We applied several MST methods (host-specific Bacteroides phages, mitochondrial DNA genetic markers, Bifidobacterium adolescentis and Bifidobacterium dentium markers, and bifidobacterial host-specific qPCR), and general indicators (Escherichia coli, enterococci and somatic coliphages) to evaluate the source of contamination in the samples. The results provided data to the Ichnaea software, that evaluated the performance of each method in the different scenarios and determined the source of the contamination. Almost all MST methods in this study determined correctly the origin of fecal contamination at point source and in moderate concentration samples. When the dilution of the fecal pollution increased (below 3 log10 CFU E. coli/100 ml) some of these indicators (bifidobacterial host-specific qPCR, some mitochondrial markers or B. dentium marker) were not suitable because their concentrations decreased below the detection limit. Using the data from source point samples, the software Ichnaea produced models for waters with low levels of fecal pollution. These models included some MST methods, on the basis of their best performance, that were used to determine the source of pollution in this area. Regardless the methods selected, that could vary depending on the scenario, inductive machine learning methods are a promising tool in MST studies and may represent a leap forward in solving MST cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Titanium Surface Priming with Phase-Transited Lysozyme to Establish a Silver Nanoparticle-Loaded Chitosan/Hyaluronic Acid Antibacterial Multilayer via Layer-by-Layer Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Xue Zhong

    Full Text Available The formation of biofilm around implants, which is induced by immediate bacterial colonization after installation, is the primary cause of post-operation infection. Initial surface modification is usually required to incorporate antibacterial agents on titanium (Ti surfaces to inhibit biofilm formation. However, simple and effective priming methods are still lacking for the development of an initial functional layer as a base for subsequent coatings on titanium surfaces. The purpose of our work was to establish a novel initial layer on Ti surfaces using phase-transited lysozyme (PTL, on which multilayer coatings can incorporate silver nanoparticles (AgNP using chitosan (CS and hyaluronic acid (HA via a layer-by-layer (LbL self-assembly technique.In this study, the surfaces of Ti substrates were primed by dipping into a mixture of lysozyme and tris(2-carboxyethylphosphine (TCEP to obtain PTL-functionalized Ti substrates. The subsequent alternating coatings of HA and chitosan loaded with AgNP onto the precursor layer of PTL were carried out via LbL self-assembly to construct multilayer coatings on Ti substrates.The results of SEM and XPS indicated that the necklace-like PTL and self-assembled multilayer were successfully immobilized on the Ti substrates. The multilayer coatings loaded with AgNP can kill planktonic and adherent bacteria to 100% during the first 4 days. The antibacterial efficacy of the samples against planktonic and adherent bacteria achieved 65%-90% after 14 days. The sustained release of Ag over 14 days can prevent bacterial invasion until mucosa healing. Although the AgNP-containing structure showed some cytotoxicity, the toxicity can be reduced by controlling the Ag release rate and concentration.The PTL priming method provides a promising strategy for fabricating long-term antibacterial multilayer coatings on titanium surfaces via the LbL self-assembly technique, which is effective in preventing implant-associated infections

  16. Time-domain analysis of surface-plasmon-polariton propagation in Ag nano-films using a generalized polarization approach

    KAUST Repository

    Al-Jabr, Ahmad

    2010-01-01

    A time-domain analysis of the propagation properties of surface-plasmon-polaritons (SPP) in Silver nanostructures is presented. The analysis is based on a simulation algorithm that unifies the formulation of different dispersion models and multi-pole relations into one form. The main objective of this work is to perform a comparative analysis between different dispersion models used for Silver, including Debye, Drude and multi-pole Lorentz-Drude models. The quantities that are used in the comparison are the SPP propagation length and propagation speed. Experimental results reported in literature are used to support the conclusions.

  17. Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls

    Science.gov (United States)

    Zhuo, Yaobin; Zhou, Xiaojun; Yang, Chenlong

    2014-11-01

    In this paper, a three degrees of freedom (dof) model was established for a double-row self-aligning ball bearing (SABB) system, and was applied to study the dynamic behavior of the system during starting process and constant speed rotating process. A mathematical model was developed concerning stiffness and damping characteristics of the bearing, as well as three-dimensional applied load, rotor centrifugal force, etc. Balls and races were all considered as nonlinear springs, and the contact force between ball and race was calculated based on classic Hertzian elastic contact deformation theory and deformation compatibility theory. The changes of each ball's contact force and loaded angle of each row were taken into account. In order to solve the nonlinear dynamical equilibrium equations of the system, these equations were rewritten as differential equations and the fourth order Runge-Kutta method was used to solve the equations iteratively. In order to verify accuracy of the dynamical model and correctness of the numerical solution method, a kind of SABB-BRF30 was chosen for case studies. The effects of several important governing parameters, such as radial and axial applied loads, normal internal, inner and outer races waviness, and number of balls were investigated. These parametric studies led to a complete characterization of the shaft-bearing system vibration transmission. The research provided a theoretical reference for new type bearing design, shaft-bearing system kinetic analysis, optimal design, etc.

  18. Design and construction of a strain gage compression load cell to measure rolling forces

    International Nuclear Information System (INIS)

    Schoeffer, L.; Borchardt, I.G.; Carvalho, L.F.A.

    1978-05-01

    A complete detailed mechanical desion of a strain gauge compression load cell is presented. This cell was specialy designed to measure rolling forces at conventional duo or trio industrial roughing stands. The stands, in general, have little space (height) to adjust to the cells. Moreover the contact stands surfaces are very rough. Do to this facts, load cells of elastic cilindrical geometries are not recommended for accuracies better than 8%. This work describes the complete design and the construction of a circular (membrane) steel plate load cell. A prototype of 300 KN (approximately 30t) capacity, with 2% accuracies and with a height of 6 cm was constructed and tested. The design proposed is a general one and permits the construction of small load cells to measure any compression load [pt

  19. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  20. Generalized Temporal Acceleration Scheme for Kinetic Monte Carlo Simulations of Surface Catalytic Processes by Scaling the Rates of Fast Reactions.

    Science.gov (United States)

    Dybeck, Eric C; Plaisance, Craig P; Neurock, Matthew

    2017-04-11

    A novel algorithm is presented that achieves temporal acceleration during kinetic Monte Carlo (KMC) simulations of surface catalytic processes. This algorithm allows for the direct simulation of reaction networks containing kinetic processes occurring on vastly disparate time scales which computationally overburden standard KMC methods. Previously developed methods for temporal acceleration in KMC were designed for specific systems and often require a priori information from the user such as identifying the fast and slow processes. In the approach presented herein, quasi-equilibrated processes are identified automatically based on previous executions of the forward and reverse reactions. Temporal acceleration is achieved by automatically scaling the intrinsic rate constants of the quasi-equilibrated processes, bringing their rates closer to the time scales of the slow kinetically relevant nonequilibrated processes. All reactions are still simulated directly, although with modified rate constants. Abrupt changes in the underlying dynamics of the reaction network are identified during the simulation, and the reaction rate constants are rescaled accordingly. The algorithm was utilized here to model the Fischer-Tropsch synthesis reaction over ruthenium nanoparticles. This reaction network has multiple time-scale-disparate processes which would be intractable to simulate without the aid of temporal acceleration. The accelerated simulations are found to give reaction rates and selectivities indistinguishable from those calculated by an equivalent mean-field kinetic model. The computational savings of the algorithm can span many orders of magnitude in realistic systems, and the computational cost is not limited by the magnitude of the time scale disparity in the system processes. Furthermore, the algorithm has been designed in a generic fashion and can easily be applied to other surface catalytic processes of interest.

  1. Employing general fit-bases for construction of potential energy surfaces with an adaptive density-guided approach

    Science.gov (United States)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove

    2018-02-01

    We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.

  2. Aging does not affect generalized postural motor learning in response to variable amplitude oscillations of the support surface.

    Science.gov (United States)

    Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B

    2010-08-01

    Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.

  3. Combined quartz crystal microbalance with dissipation (QCM-D) and generalized ellipsometry (GE) to characterize the deposition of titanium dioxide nanoparticles on model rough surfaces.

    Science.gov (United States)

    Kananizadeh, Negin; Rice, Charles; Lee, Jaewoong; Rodenhausen, Keith B; Sekora, Derek; Schubert, Mathias; Schubert, Eva; Bartelt-Hunt, Shannon; Li, Yusong

    2017-01-15

    Measuring the interactions between engineered nanoparticles and natural substrates (e.g. soils and sediments) has been very challenging due to highly heterogeneous and rough natural surfaces. In this study, three-dimensional nanostructured slanted columnar thin films (SCTFs), with well-defined roughness height and spacing, have been used to mimic surface roughness. Interactions between titanium dioxide nanoparticles (TiO 2 NP), the most extensively manufactured engineered nanomaterials, and SCTF coated surfaces were measured using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, in-situ generalized ellipsometry (GE) was coupled with QCM-D to simultaneously measure the amount of TiO 2 NP deposited on the surface of SCTF. While GE is insensitive to effects of mechanical water entrapment variations in roughness spaces, we found that the viscoelastic model, a typical QCM-D model analysis approach, overestimates the mass of deposited TiO 2 NP. This overestimation arises from overlaid frequency changes caused by particle deposition as well as additional water entrapment and partial water displacement upon nanoparticle adsorption. Here, we demonstrate a new approach to model QCM-D data, accounting for both viscoelastic effects and the effects of roughness-retained water. Finally, the porosity of attached TiO 2 NP layer was determined by coupling the areal mass density determined by QCM-D and independent GE measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Safety and effectiveness of maxillary early loaded titanium implants with a novel nanostructured calcium-incorporated surface (Xpeed): 1-year results from a pilot multicenter randomised controlled trial.

    Science.gov (United States)

    Esposito, Marco; Grusovin, Maria Gabriella; Pellegrino, Gerardo; Soardi, Elisa; Felice, Pietro

    2012-01-01

    To evaluate clinical safety and effectiveness of a novel calcium-incorporated titanium implant (Xpeed, MegaGen Implant Co. Limited, Gyeongbuk, South Korea). Sixty patients were randomised to receive either 1 to 6 calcium-incorporated or control titanium implants in the maxilla according to a parallel group design at 2 different centres. Implants were submerged and exposed at 3 different endpoints in equal groups of 20 patients each at 12, 10 and 8 weeks, respectively. Within 2 weeks, implants were functionally loaded with provisional or definitive prostheses. Outcome measures were prosthesis failures, implant failures, any complications and peri-implant marginal bone level changes. Thirty patients received 45 calcium-incorporated implants and 30 patients received 42 control titanium implants. One year after loading, no drop-outs and no prosthesis or implant failures occurred. There were no statistically significant differences between groups for complications (P = 0.61; difference in proportions = -0.27; 95% CI -0.71 to 0.18) and mean marginal bone level changes (P = 0.64; mean difference -0.04 mm; 95% CI -0.22 to 0.13). Nanostructured calcium-incorporated titanium implants seem to be at least as effective and safe as conventional titanium implants.

  5. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  6. Microarc-oxidized titanium surfaces functionalized with microRNA-21-loaded chitosan/hyaluronic acid nanoparticles promote the osteogenic differentiation of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Zhongshan; Wu, Guangsheng; Feng, Zhihong; Bai, Shizhu; Dong, Yan; Wu, Guofeng; Zhao, Yimin

    2015-01-01

    Dental implants have been widely used for the replacement of missing teeth in the clinic, but further improvements are needed to meet the clinical demands for faster and tighter osseointegration. In this study, we fabricated safe and biocompatible chitosan (CS)/hyaluronic acid (HA) nanoparticles to deliver microRNA-21 (miR-21) and thereby accelerate osteogenesis in human bone marrow mesenchymal stem cells (hBMMSCs). The CS/HA/miR-21 nanoparticles were cross-linked with 0.2% gel solution onto microarc oxidation (MAO)-treated titanium (Ti) surfaces to fabricate the miR-21-functionalized MAO Ti surface, resulting in the development of a novel coating for reverse transfection. To characterize the CS/HA/miR-21 nanoparticles, their particle size, zeta potential, surface morphology, and gel retardation ability were sequentially investigated. Their biological effects, such as cell viability, cytotoxicity, and expression of osteogenic genes by hBMMSCs on the miR-21-functionalized MAO Ti surfaces, were evaluated. Finally, we explored appropriate CS/HA/miR-21 nanoparticles with a CS/HA ratio of 4:1 and N/P ratio 20:1 for transfection, which presented good spherical morphology, an average diameter of 160.4±10.75 nm, and a positive zeta potential. The miR-21-functionalized MAO Ti surfaces demonstrated cell viability, cytotoxicity, and cell spreading comparable to those exhibited by naked MAO Ti surfaces and led to significantly higher expression of osteogenic genes. This novel miR-21-functionalized Ti implant may be used in the clinic to allow more effective and robust osseointegration.

  7. A comparative study of the effectiveness of early and delayed loading of short tissue-level dental implants with hydrophilic surfaces placed in the posterior section of the mandible-A preliminary study.

    Science.gov (United States)

    Makowiecki, Arkadiusz; Botzenhart, Ute; Seeliger, Julia; Heinemann, Friedhelm; Biocev, Peter; Dominiak, Marzena

    2017-07-01

    The objective of the present study was to compare the primary and secondary stability of tissue-level short dental titanium implants with polished necks and hydrophilic surfaces of two different designs and manufacturers. The first implant system used (SPI ® ELEMENT RC INICELL titanium implants, Thommen Medical AG, Grenchen, Switzerland), allowed functional loading 6 weeks after its placement, whereas the second implant system (RN SLActiv ® tissue-level titanium implants, Straumann GmbH, Fribourg, Germany), was loaded after 15 weeks. The degree of primary and secondary stability was determined using an Osstell ISQ measuring device. Marginal bone loss (MBL) was evaluated radiographically 12 and 24 weeks after implantation and the Wachtel's healing index as well as the patient's satisfaction with the treatment was registered on a VAS scale. The intergroup comparison revealed significant differences in terms of primary stability as well as differences in MBL 3 months after the procedure, but no significant differences could be found after 6 months and for secondary stability. The primary stability was significantly higher for Thommen ® compared to Straumann ® implants. Insertion of short dental implants with a hydrophilic conditioned surface significantly shortens patient treatment time. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance

    NARCIS (Netherlands)

    Beusen, A.H.W.; van Beek, L.P.H.; Bouwman, Lex; Mogollon, J.M.; Middelburg, J.B.M.

    2015-01-01

    The Integrated Model to Assess the Global Environment–Global Nutrient Model (IMAGE–GNM) is a global distributed, spatially explicit model using hydrology as the basis for describing nitrogen (N) and phosphorus (P) delivery to surface water, transport and in-stream retention in rivers, lakes,

  9. High-resolution monitoring of nutrients in groundwater and surface waters: Process understanding, quantification of loads and concentrations, and management applications

    NARCIS (Netherlands)

    Geer, F.C. van; Kronvang, B.; Broers, H.P.

    2016-01-01

    Four sessions on "Monitoring Strategies: temporal trends in groundwater and surface water quality and quantity" at the EGU conferences in 2012, 2013, 2014, and 2015 and a special issue of HESS form the background for this overview of the current state of high-resolution monitoring of

  10. Mining soil phosphorus by zero P-application: an effective method to reduce the risk of P loading to surface water

    NARCIS (Netherlands)

    Salm, van der C.; Chardon, W.J.; Koopmans, G.F.

    2007-01-01

    This study aims to find field evidence for the effectiveness of P-mining to reduce the risk of P leaching to surface water. In 2002, a P-mining was conducted on four grassland sites in the Netherlands on sand (two sites), peat and clay soils. The mining plots received no P and an annual N surplus of

  11. Wind-tunnel investigation of aerodynamic performance, steady amd vibratory loads, surface temperatures, and acoustic characteristics of a large-scale twin-engine upper-surface blown jet-flap configuration

    Science.gov (United States)

    1976-01-01

    Static and wind-on tests were conducted to determine the aerodynamic characteristics of and the effects of jet impingement on the wing of a large scale upper surface blown configuration powered with an actual turbine engine. The wing and flaps were instrumented with experimental dual-sensing transducer units consisting of a fluctuating pressure gage, a vibratory accelerometer, and a surface mounted alumel thermocouple. Noise directivity and spectral content measurements were obtained for various flap configurations and various engine thrust settings to provide baseline noise data for other upper surface blown configurations.

  12. Friction Surfacing In Steel 304

    OpenAIRE

    S. Godwin Barnabas; Anantharam; Shyam sundar; B.S.Aravind T.Prabhu

    2016-01-01

    Surface engineering deals with the surface of the solid matter and it is sub-discipline of The surface phase of a solid interacts with the surrounding environment. This interaction can degrade the surface phase over time, may result in loss of material from its surface. Environmental degradation of the surface phase over time can be caused by wear, corrosion, creep, fatigue loads, shear loads, tensile loads, cutting forces or when exposed to higher temperature. Wear can be minimiz...

  13. The effect of high-flux H plasma exposure with simultaneous transient heat loads on tungsten surface damage and power handling

    Czech Academy of Sciences Publication Activity Database

    van Eden, G.G.; Morgan, T.W.; van der Meiden, H.J.; Matějíček, Jiří; Chráska, Tomáš; Wirtz, M.; De Temmerman, G.

    2014-01-01

    Roč. 54, č. 12 (2014), s. 123010-123010 ISSN 0029-5515 R&D Projects: GA ČR(CZ) GA14-12837S Institutional support: RVO:61389021 Keywords : ELMs * tungsten * thermal shock * melting * surface analysis * laser * hydrogen Subject RIV: JG - Metallurgy Impact factor: 3.062, year: 2014 http://iopscience.iop.org/0029-5515/54/12/123010/pdf/0029-5515_54_12_123010.pdf

  14. Radio-immunoconjugated, Dox-loaded, surface-modified superparamagnetic iron oxide nanoparticles (SPIONs) as a bioprobe for breast cancer tumor theranostics

    International Nuclear Information System (INIS)

    Hamidreza Zolata; Hossein Afarideh; Fereydoun Abbasi-Davani

    2014-01-01

    In this research, we develop dual modality molecular imaging and also radio-immunotherapy (RIT) bioprobes, in the form of modified superparamagnetic iron oxide nanoparticles (SPIONs) conjugated to radiolabeled antibodies, for PET and MRI of HER2 expressing cancers as well as a PH sensitive drug carrier by embedded an anticancer agent for cancer therapeutic applications. The bioprobes were developed by conjugating 64 Cu labeled trastuzumab (herceptin) and rituximab (Anti CD-20) antibodies to modified SPIONs. The SPIONs were modified with carboxymethyl chitosan and functionalized with acrylic acid (AA). Also, with the purpose of identifying more effective bifunctional chelator (BFC), we compared the properties of novel BFC, p-NO 2 -Bn-PCTA with the commonly used DOTA-NHS for radio-immunoconjugate preparations. Moreover, a chemotherapy drug, doxorubicin, was then loaded onto engineered nanoparticles for targeted intracellular drug delivery and selective cancer cell killing. Resulting radio-immunoconjugated-SPIONs were evaluated for molecular imaging and effective targeting of the HER2+ receptors in SKBR3 cell lines and breast tumor bearing Balb/C mice. Therefore, our biocompatible SPIONs could serve as a promising multifunctional theranostics nanoplatform in dual modality imaging guided RIT of HER2 overexpressing cancer applicable to drug delivery and controlled drug release for trigger both intrinsic and extrinsic pathways of apoptosis. (author)

  15. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...... of windhe interaction between wind and structures, where it is shown that wind loading depends strongly on this interaction...

  16. Edmonston Measles Virus Prevents Increased Cell Surface Expression of Peptide-Loaded Major Histocompatibility Complex Class II Proteins in Human Peripheral Monocytes

    OpenAIRE

    Yilla, Mamadi; Hickman, Carole; McGrew, Marcia; Meade, Elizabeth; Bellini, William J.

    2003-01-01

    Gamma interferon (IFN-γ) induces expression of the gene products of the major histocompatibility complex (MHC), whereas IFN-α/β can interfere with or suppress class II protein expression. In separate studies, measles virus (MV) was reported to induce IFN-α/β and to up-regulate MHC class II proteins. In an attempt to resolve this paradox, we examined the surface expression of MHC class I and class II proteins in MV-infected peripheral monocytes in the presence and absence of IFN-α/β. Infection...

  17. Kinetics of Accumulation of Damage in Surface Layers of Lithium-Containing Aluminum Alloys in Fatigue Tests with Rigid Loading Cycle and Corrosive Effect of Environment

    Science.gov (United States)

    Morozova, L. V.; Zhegina, I. P.; Grigorenko, V. B.; Fomina, M. A.

    2017-07-01

    High-resolution methods of metal physics research including electron, laser and optical microscopy are used to study the kinetics of the accumulation of slip lines and bands and the corrosion damage in the plastic zone of specimens of aluminum-lithium alloys 1441 and B-1469 in rigid-cycle fatigue tests under the joint action of applied stresses and corrosive environment. The strain parameters (the density of slip bands, the sizes of plastic zones near fracture, the surface roughness in singled-out zones) and the damage parameters (the sizes of pits and the pitting area) are evaluated.

  18. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    Science.gov (United States)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  19. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants.

    Science.gov (United States)

    Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen

    2014-11-01

    In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Theoretical and photo-electrochemical studies of surface plasmon induced visible light absorption of Ag loaded TiO2 nanotubes for water splitting

    Science.gov (United States)

    Gross, P. A.; Javahiraly, N.; Geraldini Sabat, N.; Cottineau, T.; Savinova, E. R.; Keller, V.

    2016-10-01

    Vertically aligned TiO2 nanotubes (TiO2-NTs), obtained by anodization in organic electrolyte, are decorated with 15 nm Ag nanoparticles prepared by a micro-wave assisted polyol synthesis. The Ag/TiO2 system is characterized by electronic microscopies in order to build a Finite Differential Time Domain (FDTD) model to simulate the interaction of light with the system. By combining UV-visible spectroscopy and FDTD simulations, the observed red shift in the surface plasmon resonance wavelength of the Ag nanoparticles, deposited on TiO2, is explained. The Ag/TiO2-NT system is used as photoanode in a photoelectrochemical water splitting setup and shows an increasing Incident Photon to Current Conversion Efficiency (IPCE) in the visible light domain with an increasing amount of deposited Ag. The spectral position of this activity enhancement coincides with the one expected from the FDTD calculations for the surface plasmon resonance of the Ag nanoparticles deposited on TiO2.

  1. The new versatile general purpose surface-muon instrument (GPS) based on silicon photomultipliers for μSR measurements on a continuous-wave beam.

    Science.gov (United States)

    Amato, A; Luetkens, H; Sedlak, K; Stoykov, A; Scheuermann, R; Elender, M; Raselli, A; Graf, D

    2017-09-01

    We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

  2. Generalized adsorption isotherms for molecular and dissociative adsorption of a polar molecular species on two polar surface geometries: Perovskite (100) (Pm-3m) and fluorite (111) (Fm-3m)

    Science.gov (United States)

    Danielson, Thomas; Hin, Celine; Savara, Aditya

    2016-08-01

    Lattice based kinetic Monte Carlo simulations have been used to determine a functional form for the second order adsorption isotherms on two commonly investigated crystal surfaces: the (111) fluorite surface and the (100) perovskite surface which has the same geometric symmetry as the NaCl (100) surface. The functional form is generalized to be applicable to all values of the equilibrium constant by a shift along the pressure axis. Functions have been determined for estimating the pressure at which a desired coverage would be achieved and, conversely, for estimating the coverage at a certain pressure. The generalized form has been calculated by investigating the surface adsorbate coverage across a range of thermodynamic equilibrium constants that span the range 10-26 to 1013. The equations have been shown to be general for any value of the adsorption equilibrium constant.

  3. Low elastic modulus Ti–Ta alloys for load-bearing permanent implants: Enhancing the biodegradation resistance by electrochemical surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kesteven, Jazmin [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Walter, Rhys; Khakbaz, Hadis [Biomaterials and Engineering Materials (BEM) Laboratory, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Choe, Han-Choel [Department of Dental Materials, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-01-01

    In this study, the in vitro degradation behaviour of titanium–tantalum (Ti–Ta) alloys (10–30 wt.% Ta) was investigated and compared with conventional implant materials, i.e., commercially pure titanium (Cp-Ti) and titanium–aluminium–vanadium (Ti6Al4V) alloy. Among the three Ti–Ta alloys studied, the Ti20Ta (6.3 × 10{sup −4} mm/y) exhibited the lowest degradation rate, followed by Ti30Ta (1.2 × 10{sup −3} mm/y) and Ti10Ta (1.4 × 10{sup −3} mm/y). All the Ti–Ta alloys exhibited lower degradation rate than that of Cp-Ti (1.8 × 10{sup −3} mm/y), which suggests that Ta addition to Ti is beneficial. As compared to Ti6Al4V alloy (8.1 × 10{sup −4} mm/y), the degradation rate of Ti20Ta alloy was lower by ∼ 22%. However, the Ti30Ta alloy, which has closer elastic modulus to that of natural bone, showed ∼ 48% higher degradation rate than that of Ti6Al4V alloy. Hence, to improve the degradation performance of Ti30Ta alloy, an intermediate thin porous layer was formed electrochemically on the alloy followed by calcium phosphate (CaP) electrodeposition. The coated Ti30Ta alloy (3.8 × 10{sup −3} mm/y) showed ∼ 53% lower degradation rate than that of Ti6Al4V alloy. Thus, the study suggests that CaP coated Ti30Ta alloy can be a viable material for load-bearing permanent implants. - Highlights: • In vitro degradation of titanium–tantalum (Ti–Ta) alloys was studied. • Ta addition to Ti is beneficial for better degradation resistance. • Ti–Ta alloys perform better than commercially pure Ti. • Calcium phosphate coated Ti–Ta alloy is superior to Ti6Al4V alloy.

  4. Preparation of surface multiple-coated polylactide acid drug-loaded nanoparticles for intranasal delivery and evaluation on its brain-targeting efficiency.

    Science.gov (United States)

    Bian, Junjie; Yuan, Zhixiang; Chen, Xiaoliang; Gao, Yuan; Xu, Chaoqun; Shi, Jianyou

    2016-01-01

    To prepare a mixture of multiple-coated aniracetam nasal polylactic-acid nanoparticles (M-C-PLA-NP) and evaluate its stability preliminarily in vitro and its brain-targeting efficiency in vivo. The solvent diffusion-evaporation combined with magnetic stirring method has been chosen for the entrapment of aniracetam. The M-C-PLA-NP was characterized with respect to its morphology, particle size, size distribution and aniracetam entrapment efficiency. The in vivo distribution was studied in male SD rats after an intranasal administration. In vitro release of M-C-PLA-NP showed two components with an initial rapid release due to the surface-associated drug and followed by a slower exponential release of aniracetam, which was dissolved in the core. The AUC0 → 30 min of M-C-PLA-NP in brain tissues resulted in a 5.19-fold increase compared with aniracetam solution. The ratios of AUC in brain to that in other tissues obtained after nasal application of M-C-PLA-NP were significantly higher than those of aniracetam solution. Therefore, it can be concluded that M-C-PLA-NP demonstrated its potential on increasing the brain-targeting efficiency of drugs and will be used as novel brain-targeting agent for nasal drug delivery.

  5. Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C Data

    Directory of Open Access Journals (Sweden)

    Jun Xia

    2008-02-01

    Full Text Available On the basis of the radiative transfer theory, this paper addressed the estimate ofLand Surface Temperature (LST from the Chinese first operational geostationarymeteorological satellite-FengYun-2C (FY-2C data in two thermal infrared channels (IR1,10.3-11.3 μ m and IR2, 11.5-12.5 μ m , using the Generalized Split-Window (GSWalgorithm proposed by Wan and Dozier (1996. The coefficients in the GSW algorithmcorresponding to a series of overlapping ranging of the mean emissivity, the atmosphericWater Vapor Content (WVC, and the LST were derived using a statistical regressionmethod from the numerical values simulated with an accurate atmospheric radiativetransfer model MODTRAN 4 over a wide range of atmospheric and surface conditions.The simulation analysis showed that the LST could be estimated by the GSW algorithmwith the Root Mean Square Error (RMSE less than 1 K for the sub-ranges with theViewing Zenith Angle (VZA less than 30° or for the sub-rangs with VZA less than 60°and the atmospheric WVC less than 3.5 g/cm2 provided that the Land Surface Emissivities(LSEs are known. In order to determine the range for the optimum coefficients of theGSW algorithm, the LSEs could be derived from the data in MODIS channels 31 and 32 provided by MODIS/Terra LST product MOD11B1, or be estimated either according tothe land surface classification or using the method proposed by Jiang et al. (2006; and theWVC could be obtained from MODIS total precipitable water product MOD05, or beretrieved using Li et al.’ method (2003. The sensitivity and error analyses in term of theuncertainty of the LSE and WVC as well as the instrumental noise were performed. Inaddition, in order to compare the different formulations of the split-window algorithms,several recently proposed split-window algorithms were used to estimate the LST with thesame simulated FY-2C data. The result of the intercomparsion showed that most of thealgorithms give

  6. The support of long wavelength loads on Venus

    Science.gov (United States)

    Benerdt, W. B.; Saunders, R. S.

    1985-04-01

    One of the great surprises of the Pioneer Venus mission was the high degree of correlation between topography and gravity found at all wavelengths. This implies a close relationship between topography and lateral subsurface density anomalies, such as those due to passive or dynamic compensation. Sleep-Phillips type compensation model with a variable crustal thickness and a variable upper mantle density was developed. The thin shell theory was used to investigate three end member cases: (1) loading by topographic construction, resulting in a downward deflection of the surface (no mantle support); (2) completely compensated support of a constructional load (no surface deflection); and (3) topography due entirely to upward deflection of the surface supported by a low density upper mantle (no surface load). In general, the models imply relatively thick crust and dense upper mantle for Ishtar Terra and Ovda Regio (western Aphrodite), thinned crust and buoyant upper mantle for Tethus Regio and regions near Sappho and Alpha Regio, and a nearly uniform crust with a buoyant upper mantle for Beta Regio and Atla Regio (eastern Aphrodite).

  7. Crane-Load Contact Sensor

    Science.gov (United States)

    Youngquist, Robert; Mata, Carlos; Cox, Robert

    2005-01-01

    An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact

  8. 14 CFR 23.341 - Gust loads factors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Gust loads factors. 23.341 Section 23.341... loads factors. (a) Each airplane must be designed to withstand loads on each lifting surface resulting... criteria of § 23.333(c). (c) In the absence of a more rational analysis, the gust load factors must be...

  9. High thermal load component

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1996-01-01

    A cooling tube made of a pure copper is connected to the inner portion of an armour (heat resistant member) made of an anisotropic carbon/carbon composite (CFC) material. The CFC material has a high heat conductivity in longitudinal direction of fibers and has low conductivity in perpendicular thereto. Fibers extending in the armour from a heat receiving surface just above the cooling tube are directly connected to the cooling tube. A portion of the fibers extending from a heat receiving surface other than portions not just above the cooling tube is directly bonded to the cooling tube. Remaining fibers are disposed so as to surround the cooling tube. The armour and the cooling tube are soldered using an active metal flux. With such procedures, high thermal load components for use in a thermonuclear reactor are formed, which are excellent in a heat removing characteristic and hardly causes defects such as crackings and peeling. (I.N.)

  10. Numerical prediction of slamming loads

    DEFF Research Database (Denmark)

    Seng, Sopheak; Jensen, Jørgen J; Pedersen, Preben T

    2012-01-01

    It is important to include the contribution of the slamming-induced response in the structural design of large vessels with a significant bow flare. At the same time it is a challenge to develop rational tools to determine the slamming-induced loads and the prediction of their occurrence. Today...... it is normal practice to apply a standard sea-keeping procedure to determine the relative velocity distribution between the water surface and the hull and then to estimate the bottom slamming loads and the bow-flare slamming loads based on two-dimensional formulations similarly to water-entry problems....... The pressure distribution as well as the total force is then determined by integration over a pseudo-three-dimensional presentation of the hull geometry.In this paper the evaluation of the slamming load is taken one step further by performing direct three-dimensional, fully non-linear numerical calculations...

  11. Mass balance approaches to assess critical loads and target loads of heavy metals for terrestrial and aquatic ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Posch, M.

    2015-01-01

    Critical loads of heavy metals address not only ecotoxicological effects on organisms in soils and surface waters, but also food quality in view of public health. A critical load for metals is the load resulting at steady state in a metal concentration in a compartment (e.g. soil solution, surface

  12. Influence of a Laser-Lok Surface on Immediate Functional Loading of Implants in Single-Tooth Replacement: Three-Year Results of a Prospective Randomized Clinical Study on Soft Tissue Response and Esthetics.

    Science.gov (United States)

    Guarnieri, Renzo; Grande, Maurizio; Ippoliti, Stefano; Iorio-Siciliano, Vincenzo; Riccitiello, Francesco; Farronato, Davide

    2015-01-01

    The purpose of the present prospective randomized study was to evaluate the influence of Laser-Lok microtextured surface on soft tissue peri-implant parameters and esthetics around immediate, functionally loaded implants for single-tooth replacement in the esthetic zone. This study included 77 patients divided into two groups based on different implants used: the control group had BioHorizons tapered internal non-Laser-Lok-type implants (NLL; n = 39) and the test group had BioHorizons tapered internal Laser-Lok-type implants (LL; n = 39). Outcome measures were survival, radiographic marginal bone-level changes, soft tissue parameters, and esthetics. One implant was lost in the test group and one in the control group, for a total survival rate of 96.1% after 3 years. Radiographically, mean crestal bone loss ± standard deviation was 0.59 ± 0.27 mm in the LL group compared with 1.17 ± 0.31 mm in the NLL group. A mean gain in papilla level of 0.41 ± 0.34 mm and 0.17 ± 0.36 mm was observed in the LL and the NLL groups, respectively, while the level of the midfacial peri-implant mucosa remained stable in both groups with no statistically significant differences (0.08 ± 0.42 mm for the LL group vs 0.06 ± 0.36 mm for the NLL group). The mean probing depth values in the LL and NLL groups were 0.58 ± 0.2 mm and 1.89 ± 0.3 mm, respectively. Within the limitations of this study, it was demonstrated that the clinical and esthetic outcome of immediate functional loading was more favorable for LL implants than for NLL implants.

  13. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  14. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  15. General predictive model of friction behavior regimes for metal contacts based on the formation stability and evolution of nanocrystalline surface films.

    Energy Technology Data Exchange (ETDEWEB)

    Argibay, Nicolas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Cheng, Shengfeng [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sawyer, W. G. [Univ. of Florida, Gainesville, FL (United States); Michael, Joseph R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandross, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-09-01

    The prediction of macro-scale friction and wear behavior based on first principles and material properties has remained an elusive but highly desirable target for tribologists and material scientists alike. Stochastic processes (e.g. wear), statistically described parameters (e.g. surface topography) and their evolution tend to defeat attempts to establish practical general correlations between fundamental nanoscale processes and macro-scale behaviors. We present a model based on microstructural stability and evolution for the prediction of metal friction regimes, founded on recently established microstructural deformation mechanisms of nanocrystalline metals, that relies exclusively on material properties and contact stress models. We show through complementary experimental and simulation results that this model overcomes longstanding practical challenges and successfully makes accurate and consistent predictions of friction transitions for a wide range of contact conditions. This framework not only challenges the assumptions of conventional causal relationships between hardness and friction, and between friction and wear, but also suggests a pathway for the design of higher performance metal alloys.

  16. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    Energy Technology Data Exchange (ETDEWEB)

    Farberovich, Oleg V. [School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Voronezh State University, Voronezh 394000 (Russian Federation); Mazalova, Victoria L., E-mail: mazalova@sfedu.ru [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation); Soldatov, Alexander V. [Research Center for Nanoscale Structure of Matter, Southern Federal University, Zorge 5, 344090 Rostov-on-Don (Russian Federation)

    2015-11-15

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals J{sub ij} of the nanosystem Ni{sub 7}–Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni{sub 7}-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy

  17. Harmful loading of water courses caused by precipitation. Phase 2. Part project 8: Loading of harmful substances by precipitation. Pt. A, B, and C. Pt. A: Harmful substances introduced by atmospheric deposition dust.Pt. B: Sources and mobility of harmful substances. Pt. C: Load of harmful substances from roof and road surfaces; NIEDERschlagsbedingte SCHadstoffbeLAstung der Gewaesser - Phase 2. Teilprojekt 8: Schadstoffbelastung durch Niederschlag. T. A, B und C. T. A: Schadstoffeintrag durch atmosphaerische Staubdeposition. T. B: Quellen und Mobilitaet von Schadstoffen. T. C: Schadstofffrachten von Dach- und Strassenflaechen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Luetzner, K.; Grothkopp, H.; Gebhard, V.; Rennert, S.; Huth, B.

    1997-02-28

    The heavy metal loading of flow from roofs depends, on the one hand, on the deposited load of dust and on the other hand, on the material used. The resulting solution process are especially prominent if the pH values are low and there is limitation of particulate material, together with a missing ability to buffer. For roads in town areas, the loading of the surface flows does not only depend on the traffic density. This applies most for particle loading regarding some elements. Driving behaviour, eg: Frequent starting and braking, is also important here. The background loading, flushing of unsolidified surfaces and other activities (eg: Intensive building work) also affect the loading of side streets. During the precipitation events examined, after about 6 mm of precipitation, the washing out of the layer of air near the ground was ended. After rain of 15 mm has fallen, the nearly complete flushing of the particulate load was found for two events. About 80% of heavy metal loading (for Cu only about 50%) of the catchment area is caused by emission from road traffic. Copper roofs emit about 40% of the CU load. The heavy metal load of flow from roofs is mainly contained in the liquid phase (except Pb, Fe), however the load from flow from roads in 90% bount to particles. Reduction of this heavy metal load could therefore occur via the AFS reduction. From the calculation carried out on the basis of known mean values, the city cleaning at Dresden at present removes about half of the total FE and Ni load and about 40% of the total Cu, Pb and Zn load of the catchment area. (orig./AJ) [Deutsch] Die Schwermetallbelastung von Dachabfluessen ist einerseits abhaengig von der deponierten Staubfracht, andererseits vom verwendeten Material. Die daraus resultierenden Loesungsvorgaenge treten insbesondere dann in den Vordergrund, wenn die pH-Werte gering sind und Limitierung von partikulaerem Material auftritt, verbunden mit fehlendem Pufferungsvermoegen. Bei Strassen in

  18. Nutrient loadings from urban catchments under climate change scenarios: case studies in Stockholm, Sweden.

    Science.gov (United States)

    Wu, Jiechen; Malmström, Maria E

    2015-06-15

    Anthropogenic nutrient emissions and associated eutrophication of urban lakes are a global problem. Future changes in temperature and precipitation may influence nutrient loadings in lake catchments. A coupling method, where the Generalized Watershed Loading Functions method was tested in combination with source quantification in a Substance Flow Analysis structure, was suggested to investigate diffuse nutrient sources and pathways and climate change effects on the loadings to streamflow in urban catchments. This method may, with an acceptable level of uncertainty, be applied to urban catchments for first-hand estimations of nutrient loadings in the projected future and to highlight the need for further study and monitoring. Five lake catchments in Stockholm, Sweden (Råcksta Träsk, Judarn, Trekanten, Långsjön and Laduviken) were employed as case studies and potential climate change effects were explored by comparing loading scenarios in two periods (2000-2009 and 2021-2030). For the selected cases, the dominant diffuse sources of nutrients to urban streamflow were found to be background atmospheric concentration and vehicular traffic. The major pathways of the nitrogen loading were suggested to be from both developed areas and natural areas in the control period, while phosphorus was indicated to be largely transported through surface runoff from natural areas. Furthermore, for nitrogen, a modest redistribution of loadings from surface runoff and stormwater between seasons and an increase in the annual loading were suggested for the projected future climate scenarios as compared to the control period. The model was, due to poor monitoring data availability, only able to set an upper limit to nutrient transport by groundwater both in the control period and the future scenarios. However, for nitrogen, groundwater appeared to be the pathway most sensitive to climate change, with a considerable increase and seasonal redistribution of loadings. For phosphorus

  19. Effect of loading parameter on fretting fatigue

    Science.gov (United States)

    Kowser, Md. Arefin; Chowdhury, Mohammad Asaduzzaman; Shah, Quazi Md. Zobaer

    2017-06-01

    Fretting fatigue has become one of the major concern in the recent few decades since developed designs both structure's and complex engineering are facing with fatigue accompanied by friction. In this study, load factors as normal and bending forces influence on stress distribution along contact surface as well as fatigue life has been experimented by FEM analysis. Fatigue life is influenced prominently by variable fretting loads than variable tensile loadings. Maximum Von mises Stress and strain shows uniform horizontal straight line is found for maximum loading while for both type of bending, minimum loads yield the same character. It has been observed that stress distribution is more uniform for varying bending loads when variable fretting loads yield stress singularity nearer to the tip of contact between fretting pad and beam.

  20. Plastic collapse load of corroded steel plates

    Indian Academy of Sciences (India)

    The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear finite element method by using computer code ANSYS was employed to determine plastic collapse load. By comparing the results with uniform thickness assumption, a reduction factor was.

  1. Critical loads of heavy metals for soils

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Lofts, S.; Tipping, E.; Posch, M.

    2012-01-01

    To enable a precautionary risk assessment for future inputs of metals, steady-state methods have been developed to assess critical loads of metals avoiding long-term risks to food quality and eco-toxicological effects on organisms in soils and surface waters. A critical load for metals equals the

  2. Generalized Free-Surface Effect and Random Vibration Theory: a new tool for computing moment magnitudes of small earthquakes using borehole data

    Science.gov (United States)

    Malagnini, Luca; Dreger, Douglas S.

    2016-07-01

    Although optimal, computing the moment tensor solution is not always a viable option for the calculation of the size of an earthquake, especially for small events (say, below Mw 2.0). Here we show an alternative approach to the calculation of the moment-rate spectra of small earthquakes, and thus of their scalar moments, that uses a network-based calibration of crustal wave propagation. The method works best when applied to a relatively small crustal volume containing both the seismic sources and the recording sites. In this study we present the calibration of the crustal volume monitored by the High-Resolution Seismic Network (HRSN), along the San Andreas Fault (SAF) at Parkfield. After the quantification of the attenuation parameters within the crustal volume under investigation, we proceed to the spectral correction of the observed Fourier amplitude spectra for the 100 largest events in our data set. Multiple estimates of seismic moment for the all events (1811 events total) are obtained by calculating the ratio of rms-averaged spectral quantities based on the peak values of the ground velocity in the time domain, as they are observed in narrowband-filtered time-series. The mathematical operations allowing the described spectral ratios are obtained from Random Vibration Theory (RVT). Due to the optimal conditions of the HRSN, in terms of signal-to-noise ratios, our network-based calibration allows the accurate calculation of seismic moments down to Mw < 0. However, because the HRSN is equipped only with borehole instruments, we define a frequency-dependent Generalized Free-Surface Effect (GFSE), to be used instead of the usual free-surface constant F = 2. Our spectral corrections at Parkfield need a different GFSE for each side of the SAF, which can be quantified by means of the analysis of synthetic seismograms. The importance of the GFSE of borehole instruments increases for decreasing earthquake's size because for smaller earthquakes the bandwidth available

  3. Surface thermodynamics

    International Nuclear Information System (INIS)

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  4. Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study

    Science.gov (United States)

    Gonzalez-Gonzalez, Ignacio; Martin-Fernandez, Elena; Brizuela-Velasco, Aritza; Ellacuria-Echebarria, Joseba

    2017-01-01

    PURPOSE The aim of this study is to evaluate and compare the stress distribution in Locator attachments in mandibular two-implant overdentures according to implant locations and different loading conditions. MATERIALS AND METHODS Four three-dimensional finite element models were created, simulating two osseointegrated implants in the mandible to support two Locator attachments and an overdenture. The models simulated an overdenture with implants located in the position of the level of lateral incisors, canines, second premolars, and crossed implant. A 150 N vertical unilateral and bilateral load was applied at different locations and 40 N was also applied when combined with anterior load at the midline. Data for von Mises stresses in the abutment (matrix) of the attachment and the plastic insert (patrix) of the attachment were produced numerically, color-coded, and compared between the models for attachments and loading conditions. RESULTS Regardless of the load, the greatest stress values were recorded in the overdenture attachments with implants at lateral incisor locations. In all models and load conditions, the attachment abutment (matrix) withstood a much greater stress than the insert plastic (patrix). Regardless of the model, when a unilateral load was applied, the load side Locator attachments recorded a much higher stress compared to the contralateral side. However, with load bilateral posterior alone or combined at midline load, the stress distribution was more symmetrical. The stress is distributed primarily in the occlusal and lateral surface of the insert plastic patrix and threadless area of the abutment (matrix). CONCLUSION The overdenture model with lateral incisor level implants is the worst design in terms of biomechanical environment for the attachment components. The bilateral load in general favors a more uniform stress distribution in both attachments compared to a much greater stress registered with unilateral load in the load side

  5. Sex differences in muscular load among house painters performing identical work tasks

    DEFF Research Database (Denmark)

    Meyland, Jacob; Heilskov-Hansen, Thomas; Alkjær, Tine

    2014-01-01

    PURPOSE: The present study aimed to estimate possible differences in upper body muscular load between male and female house painters performing identical work tasks. Sex-related differences in muscular load may help explain why women, in general, have more musculoskeletal complaints than men....... METHODS: In a laboratory setting, 16 male and 16 female house painters performed nine standardised work tasks common to house painters. Unilateral electromyography (EMG) recordings were obtained from the supraspinatus muscle by intramuscular electrodes and from the trapezius, extensor and flexor carpi...... radialis muscles by surface electrodes. Relative muscular loads in %EMGmax as well as exerted force in Newton, based on ramp calibrations, were assessed. Sex differences were tested using a mixed model approach. RESULTS: Women worked at about 50% higher relative muscular loads than men in the supraspinatus...

  6. Wound healing in immediately loaded implants.

    Science.gov (United States)

    Romanos, Georgios E

    2015-06-01

    The orthopedic field has accumulated ample evidence that bone formation is related to functional loading and in general to physical activity. However, despite evidence that immediately loaded implants can be predictably successful, many clinicians still use the classical (delayed loading) treatment protocol. This paper examines the effects of loading on dental implants and discusses the advantages of immediate loading. The role of loading on augmented alveolar ridges is also addressed and provides evidence that early bone resorption may be controlled when bone is functionally loaded. Similar data are emerging for advanced augmentation techniques in order to control crestal bone loss. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Entrance surface dose and image quality: Comparison of adult chest and abdominal X-ray examinations in general practitioner clinics, public and private hospitals in Malaysia

    International Nuclear Information System (INIS)

    Hambali, A. S.; Ng, K. H.; Abdullah, B. J. J.; Wang, H. B.; Jamal, N.; Spelic, D. C.; Suleiman, O. H.

    2009-01-01

    This study was undertaken to compare the entrance surface dose (ESD) and image quality of adult chest and abdominal X-ray examinations conducted at general practitioner (GP) clinics, and public and private hospitals in Malaysia. The surveyed facilities were randomly selected within a given category (28 GP clinics, 20 public hospitals and 15 private hospitals). Only departmental X-ray units were involved in the survey. Chest examinations were done at all facilities, while only hospitals performed abdominal examinations. This study used the x-ray attenuation phantoms and protocols developed for the Nationwide Evaluation of X-ray Trends (NEXT) survey program in the United States. The ESD was calculated from measurements of exposure and clinical geometry. An image quality test tool was used to evaluate the low-contrast detectability and high-contrast detail performance under typical clinical conditions. The median ESD value for the adult chest X-ray examination was the highest (0.25 mGy) at GP clinics, followed by private hospitals (0.22 mGy) and public hospitals (0.17 mGy). The median ESD for the adult abdominal X-ray examination at public hospitals (3.35 mGy) was higher than that for private hospitals (2.81 mGy). Results of image quality assessment for the chest X-ray examination show that all facility types have a similar median spatial resolution and low-contrast detectability. For the abdominal X-ray examination, public hospitals have a similar median spatial resolution but larger low-contrast detectability compared with private hospitals. The results of this survey clearly show that there is room for further improvement in performing chest and abdominal X-ray examinations in Malaysia. (authors)

  8. Plutonium immobilization -- Can loading

    International Nuclear Information System (INIS)

    Kriikku, E.

    2000-01-01

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed

  9. Circular mats under arbitrary loading

    International Nuclear Information System (INIS)

    Banerjee, A.; Jankov, Z.D.

    1975-01-01

    The analysis of mats as in nuclear power plants may become difficult when the large number of features are intended to be accounted for. Circular mats and arbitrary loadings are only a few of these that are considered. If the subgrade reaction can be represented as the function of subgrade displacement as given by Winkler's, Boussinesq's, or two elastic characteristic approaches, the general numerical method is then possible. Boussinesq's approach was treated in more detail when applied on circular mat with arbitrary loadings. Full polar grid formation that must be used when liftoff occurs is compared to harmonic formulation. The possibility of taking into account the superstructure restraint is indicated

  10. The Effects of Load Distribution and Gradient on Load Carriage

    Science.gov (United States)

    2010-12-01

    while 11 participants walked on a smooth level surface. EMG is a medical technique used to measure the response of muscle and nerve activity to...Expert Infantryman’s Badge EMG Electromyography ESQ Environmental Symptoms Questionnaire HFE Human Factors Engineering HR Heart Rate HRV...factors can directly and indirectly affect the efficiency of load carriage as it relates to exposure to injury, fatigue , and ability to complete a

  11. Behaviour of Cohesionless Soils During Cyclic Loading

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    Offshore wind turbine foundations are typically subjected to cyclic loading from both wind and waves, which can lead to unacceptable deformations in the soil. However, no generally accepted standardised method is currently available, when accounting for cyclic loading during the design of offshore...... wind turbine foundations. Therefore a literature study is performed in order to investigate existing research treating the behaviour of cohesionless soils, when subjected to cyclic loading. The behaviour of a soil subjected to cyclic loading is found to be dependent on; the relative density, mean...

  12. Ultimate loading of wind turbines

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Ronold, K.; Ejsing Jørgensen, Hans

    1999-01-01

    An extreme loading study has been conducted comprising a general wind climate analysis as well as a wind turbine reliability study. In the wind climate analysis, the distribution of the (horizontal) turbulence standard deviation, conditioned on the meanwind speed, has been approximated by fitting......, a design turbulence intensity for off-shore application is proposed which, in the IEC code framework, is applicable for extreme as well as for fatigue loaddetermination. In order to establish a rational method to analyse wind turbine components with respect to failure in ultimate loading, and in addition...... to the event of failure in ultimate loading in flapwise bending in the normal operating condition of a site-specific turbine....

  13. The DEMO wall load challenge

    Czech Academy of Sciences Publication Activity Database

    Wenninger, R.; Albanese, R.; Ambrosino, R.; Arbeiter, F.; Aubert, J.; Bachmann, C.; Barbato, L.; Barrett, T.; Beckers, M.; Biel, W.; Boccaccini, L.; Carralero, D.; Coster, D.; Eich, T.; Fasoli, A.; Federici, G.; Firdaouss, M.; Graves, J.; Horáček, Jan; Kovari, M.; Lanthaler, S.; Loschiavo, V.; Lowry, C.; Lux, H.; Maddaluno, G.; Maviglia, F.; Mitteau, R.; Neu, R.; Pfefferle, D.; Schmid, K.; Siccinio, M.; Sieglin, B.; Silva, C.; Snicker, A.; Subba, F.; Varje, J.; Zohm, H.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046002. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : DEMO * power loads * first wall Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa4fb4

  14. 14 CFR 23.395 - Control system loads.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system loads. 23.395 Section 23.395... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Control Surface and System Loads § 23.395 Control system loads. (a) Each flight control system and its supporting structure must be...

  15. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  16. Autonomous Propellant Loading Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  17. Fuel pellet loading apparatus

    International Nuclear Information System (INIS)

    1980-01-01

    Apparatus is described for loading a predetermined amount of nuclear fuel pellets into nuclear fuel elements and particularly for the automatic loading of fuel pellets from within a sealed compartment. (author)

  18. Repetitive plasma loads typical for ITER Type-I ELMS; simulation in QSPA Kh-50

    International Nuclear Information System (INIS)

    Tereshin, V.I.; Bandura, A.N.; Byrka, O.V.; Chebotarev, V.V.; Garkusha, I.E.; Makhlaj, V.A.; Solyakov, D.G.; Tsarenko, A.V.; Landman, I.

    2005-01-01

    The power loads on current tokamaks associated with the Type I ELMs generally do not affect the lifetime of divertor elements. However, the ITER ELMs may lead to unacceptable lifetime; their loads are estimated as QELM(1-3) MJ/m 2 at t = 0.1-1 ms and the repetition frequency of an order of 1 Hz (∼ 400 ELMs during each ITER pulse). Such plasma energy loads expected for ITER ELMs are not achieved in existing tokamaks. Therefore powerful plasma accelerators are used at present for study of plasma-target interaction and for numerical models validation. Quasi-steady-state plasma accelerators (QSPA), which characterized by essentially longer duration of plasma stream generation in comparison with pulsed plasma guns, became especially attractive facilities for investigations of plasma-surface interaction in conditions of high heat loads simulating the ITER disruptions and ELMs. The paper presents experimental study of energy characteristics of the plasma streams generated with quasi-steady-state plasma accelerator QSPA Kh-50 and the main features of plasma interaction with material surfaces in dependence on plasma heat loads. The samples of pure sintered tungsten of EU trademark have been exposed to hydrogen plasma streams produced by the accelerator. To estimate the range of tolerable loads the effects of ELMs on the lifetime of plasma facing components have been experimentally simulated for large numbers of impacts with varying energy density. The experiments were performed with up to 450 pulses of the duration of 0.25 ms and the heat loads in the range of 0.5 - 1.2 MJ/m 2 . At this calorimetry (both at plasma stream and at the target surface), piezo-detectors as well as spectroscopy and interferometry measurements were applied to determine the impacting plasma parameters in different regimes of operation. A threshold character of morphological changes on the tungsten surface under the melting in respect to the pulses number is demonstrated. The number of initial

  19. Limit loads in nozzles

    International Nuclear Information System (INIS)

    Zouain, N.

    1983-01-01

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author) [pt

  20. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    Science.gov (United States)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  1. Pellet-press-to-sintering-boat nuclear fuel pellet loading system

    International Nuclear Information System (INIS)

    Bucher, G.D.

    1988-01-01

    This patent describes a system for loading nuclear fuel pellets into a sintering boat from a pellet press which ejects newly made the pellets from a pellet press die table surface. The system consists of: (a) a bowl having an inner surface, a longitudinal axis, an open and generally circular top of larger diameter, and an open and generally circular bottom of smaller diameter; (b) means for supporting the bowl in a generally upright position such that the bowl is rotatable about its longitudinal axis; (c) means for receiving the ejected pellets proximate the die table surface of the pellet press and for discharging the received pellets into the bowl at a location proximate the inner surface towards the top of the bowl with a pellet velocity having a horizontal component which is generally tangent to the inner surface of the bowl proximate the location; (d) means for rotating the bowl about the longitudinal axis such that the bowl proximate the location has a velocity generally equal, in magnitude and direction, to the horizontal component of the pellet velocity at the location; and (e) means for moving the sintering boat generally horizontally beneath and proximate the bottom of the bowl

  2. Analysis on the uniformly loaded rectangular cross-section cantilever by a modified load-deflection model

    Science.gov (United States)

    Tsai, Shang-Hsi; Wang, Yeng-Tseng; Kan, Heng-Chuan

    2009-02-01

    The load-deflection relationship of the uniformly loaded rectangular cross-section cantilever is analysed by a modified mechanical model, which exhibits its conformity to the physical situation by considering both the tangential and normal surface stresses. The analytical solution of the modelling equation is solved and presented in terms of the first and the second kinds of the Airy functions in association with Scorer's function. The resultant deflection profile contains an inflection point due to the restoring bending moment contributed by the critical surface loadings. The relationships of the tip deflection and the loading scenario are investigated, which reveal the fact that various loading scenarios can result in different deflection profiles, albeit with the same tip deflection. A numerical algorithm is given in the appendix to solve the loading scenario, by which the surface loadings can formally be determined for the designated applications for the devices utilizing the cantilever structure.

  3. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects

    International Nuclear Information System (INIS)

    Yan, Z; Jiang, L Y

    2011-01-01

    In this work, the influence of surface effects, including residual surface stress, surface elasticity and surface piezoelectricity, on the vibrational and buckling behaviors of piezoelectric nanobeams is investigated by using the Euler-Bernoulli beam theory. The surface effects are incorporated by applying the surface piezoelectricity model and the generalized Young-Laplace equations. The results demonstrate that surface effects play a significant role in predicting these behaviors. It is found that the influence of the residual surface stress and the surface piezoelectricity on the resonant frequencies and the critical electric potential for buckling is more prominent than the surface elasticity. The nanobeam boundary conditions are also found to influence the surface effects on these parameters. This study also shows that the resonant frequencies can be tuned by adjusting the applied electrical load. The present study is envisaged to provide useful insights for the design and applications of piezoelectric-beam-based nanodevices.

  4. Cognitive Load and Cooperation

    DEFF Research Database (Denmark)

    Døssing, Felix Sebastian; Piovesan, Marco; Wengström, Erik Roland

    2017-01-01

    We study the effect of intuitive and reflective processes on cooperation using cognitive load. Compared with time constraint, which has been used in the previous literature, cognitive load is a more direct way to block reflective processes, and thus a more suitable way to study the link between...... intuition and cooperation. Using a repeated public goods game, we study the effect of different levels of cognitive load on contributions. We show that a higher cognitive load increases the initial level of cooperation. In particular, subjects are significantly less likely to fully free ride under high...... cognitive load....

  5. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  6. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO2 from CO2-N2 and CO2-CH4 gas mixtures with high CO2 loading.

    Science.gov (United States)

    Pal, Arun; Chand, Santanu; Elahi, Syed Meheboob; Das, Madhab C

    2017-11-14

    A microporous MOF {[Zn(SDB)(L) 0.5 ]·S} n (IITKGP-5) with a polar pore surface has been constructed by the combination of a V-shaped -SO 2 functionalized organic linker (H 2 SDB = 4,4'-sulfonyldibenzoic acid) with an N-rich spacer (L = 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene), forming a network with sql(2,6L1) topology. IITKGP-5 is characterized by TGA, PXRD and single crystal X-ray diffraction. The framework exhibits lozenge-shaped channels of an approximate size of 4.2 × 5.6 Å 2 along the crystallographic b axis with a potential solvent accessible volume of 26%. The activated IITKGP-5a revealed a CO 2 uptake capacity of 56.4 and 49 cm 3 g -1 at 273 K/1 atm and 295 K/1 atm, respectively. On the contrary, it takes up a much smaller amount of CH 4 (17 cm 3 g -1 at 273 K and 13.6 cm 3 g -1 at 295 K) and N 2 (5.5 cm 3 g -1 at 273 K; 4 cm 3 g -1 at 295 K) under 1 atm pressure exhibiting its potential for a highly selective adsorption of CO 2 from flue gas as well as a landfill gas mixture. Based on the ideal adsorbed solution theory (IAST), a CO 2 /N 2 selectivity of 435.5 and a CO 2 /CH 4 selectivity of 151.6 have been realized at 273 K/100 kPa. The values at 295 K are 147.8 for CO 2 /N 2 and 23.8 for CO 2 /CH 4 gas mixtures under 100 kPa. In addition, this MOF nearly approaches the target values proposed for PSA and TSA processes for practical utility exhibiting its prospect for flue gas separation with a CO 2 loading capacity of 2.04 mmol g -1 .

  7. 14 CFR 25.397 - Control system loads.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system loads. 25.397 Section 25.397... STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Control Surface and System Loads § 25.397 Control system...) and to be reacted at the attachment of the control system to the control surface horn. (b) Pilot...

  8. MODELING OF THE SNOW LOAD ON THE ROOFS OF INDUSTRIAL BUILDINGS

    Directory of Open Access Journals (Sweden)

    Zolina Tat’yana Vladimirovna

    2016-08-01

    Full Text Available When designing load-bearing framework structures using the method of limiting states it is necessary to determine the maximum possible value of snow load for the entire period of operation of an industrial building for the possibility of transition. The magnitude of the snow load is randomly changed over the time, and therefore the most appropriate form of its display is a probabilistic model of random process. The authors have identified the most preferable approach to modeling of snow load. It consists in presenting a selective sequence of the year maximums in the form of a continuous random variable distributed according to the Gumbel law. Its parameters are expressed through the mathematical expectation and the standard sample set of meteorological observations. According to the calculated values of the parameters the authors have built a graphic interpretation of the law of distribution of this random variable. When building a model of the total snow load on the roof of a building the influence of various factors should be considered, such as: • snow shedding at a given roof slope; • snow movement caused by wind; • distribution of snow depending on the roof shape; • snow melting depending on the thermal characteristics of the roof; • the ability to drain meltwater from the surface of the roof. The resulting model of snow load is adapted for implementation using software complex “DINCIB-new” developed by the authors. The proposed approach to the modeling of the snow load on the roof of an industrial building allows correlating the repeatability period of its limit calculated value with the residual life of the research object. This has become possible due to the multiple implementation of an automated algorithm for calculating an industrial building, which was developed by the authors, with account of the varying values of snow load in relation to the corresponding mathematical expectation, with registering the quantities of

  9. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    Science.gov (United States)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  10. Surface decontamination in the old storage shed number 99 of the General Plan of IPEN/CNEN-SP, containing production equipment of natural uranium hexafluoride (UF6), aiming at its decommissioning

    International Nuclear Information System (INIS)

    Almeida, Claudio C. de; Cambises, Paulo B.S.; Paiva, Julio E. de; Paiva, Julio E. de; Silva, Teresina M.; Rodrigues, Demerval L.

    2013-01-01

    This paper presents the steps adopted in the operation planned for the decontamination of surfaces in the old storage shed number 99 the general layout of the Energy Research and Nuclear IPEN-CNEN/SP, Brazil, and contained various types of equipment originating from production hexafluoride natural uranium (UF6). This operation involved the planning, training of operators of the facility, analysis of workplaces and radiometric surveys for monitoring of external radiation and surface contamination. The training involved the procedures for decontamination of surfaces, segregation of materials and practical procedures for individual monitoring of contamination outside of the body. Were also established rules for the transport of radioactive materials in the internal and external facility and release of material and sites already decontaminated

  11. Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask

    Energy Technology Data Exchange (ETDEWEB)

    Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

    2001-11-20

    The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

  12. Optimisation of load control

    Energy Technology Data Exchange (ETDEWEB)

    Koponen, P. [VTT Energy, Espoo (Finland)

    1998-08-01

    Electricity cannot be stored in large quantities. That is why the electricity supply and consumption are always almost equal in large power supply systems. If this balance were disturbed beyond stability, the system or a part of it would collapse until a new stable equilibrium is reached. The balance between supply and consumption is mainly maintained by controlling the power production, but also the electricity consumption or, in other words, the load is controlled. Controlling the load of the power supply system is important, if easily controllable power production capacity is limited. Temporary shortage of capacity causes high peaks in the energy price in the electricity market. Load control either reduces the electricity consumption during peak consumption and peak price or moves electricity consumption to some other time. The project Optimisation of Load Control is a part of the EDISON research program for distribution automation. The following areas were studied: Optimization of space heating and ventilation, when electricity price is time variable, load control model in power purchase optimization, optimization of direct load control sequences, interaction between load control optimization and power purchase optimization, literature on load control, optimization methods and field tests and response models of direct load control and the effects of the electricity market deregulation on load control. An overview of the main results is given in this chapter

  13. A methodology for Electric Power Load Forecasting

    Directory of Open Access Journals (Sweden)

    Eisa Almeshaiei

    2011-06-01

    Full Text Available Electricity demand forecasting is a central and integral process for planning periodical operations and facility expansion in the electricity sector. Demand pattern is almost very complex due to the deregulation of energy markets. Therefore, finding an appropriate forecasting model for a specific electricity network is not an easy task. Although many forecasting methods were developed, none can be generalized for all demand patterns. Therefore, this paper presents a pragmatic methodology that can be used as a guide to construct Electric Power Load Forecasting models. This methodology is mainly based on decomposition and segmentation of the load time series. Several statistical analyses are involved to study the load features and forecasting precision such as moving average and probability plots of load noise. Real daily load data from Kuwaiti electric network are used as a case study. Some results are reported to guide forecasting future needs of this network.

  14. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  15. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  16. Early diagnostic of concurrent gear degradation processes progressing under time-varying loads

    Science.gov (United States)

    Guilbault, Raynald; Lalonde, Sébastien

    2016-08-01

    This study develops a gear diagnostic procedure for the detection of multi- and concurrent degradation processes evolving under time-varying loads. Instead of a conventional comparison between a descriptor and an alarm level, this procedure bases its detection strategy on a descriptor evolution tracking; a lasting descriptor increase denotes the presence of ongoing degradation mechanisms. The procedure works from time domain residual signals prepared in the frequency domain, and accepts any gear conditions as reference signature. To extract the load fluctuation repercussions, the procedure integrates a scaling factor. The investigation first examines a simplification assuming a linear connection between the load and the dynamic response amplitudes. However, while generally valuable, the precision losses associated with large load variations may mask the contribution of tiny flaws. To better reflect the real non-linear relation, the paper reformulates the scaling factor; a power law with an exponent value of 0.85 produces noticeable improvements of the load effect extraction. To reduce the consequences of remaining oscillations, the procedure also includes a filtering phase. During the validation program, a synthetic wear progression assuming a commensurate relation between the wear depth and friction assured controlled evolutions of the surface degradation influence, whereas the fillet crack growth remained entirely determined by the operation conditions. Globally, the tested conditions attest that the final strategy provides accurate monitoring of coexisting isolated damages and general surface deterioration, and that its tracking-detection capacities are unaffected by severe time variations of external loads. The procedure promptly detects the presence of evolving abnormal phenomena. The tests show that the descriptor curve shapes virtually describe the constant wear progression superimposed on the crack length evolution. At the tooth fracture, the mean values of

  17. Laterally loaded masonry

    DEFF Research Database (Denmark)

    Raun Gottfredsen, F.

    In this thesis results from experiments on mortar joints and masonry as well as methods of calculation of strength and deformation of laterally loaded masonry are presented. The strength and deformation capacity of mortar joints have been determined from experiments involving a constant compressive...... stress and increasing shear. The results show a transition to pure friction as the cohesion is gradually destroyed. An interface model of a mortar joint that can take into account this aspect has been developed. Laterally loaded masonry panels have also been tested and it is found to be characteristic...... that laterally loaded masonry exhibits a non-linear load-displacement behaviour with some ductility....

  18. Electrical load modeling

    Energy Technology Data Exchange (ETDEWEB)

    Valgas, Helio Moreira; Pinto, Roberto del Giudice R.; Franca, Carlos [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Lambert-Torres, Germano; Silva, Alexandre P. Alves da; Pires, Robson Celso; Costa Junior, Roberto Affonso [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1994-12-31

    Accurate dynamic load models allow more precise calculations of power system controls and stability limits, which are critical mainly in the operation planning of power systems. This paper describes the development of a computer program (software) for static and dynamic load model studies using the measurement approach for the CEMIG system. Two dynamic load model structures are developed and tested. A procedure for applying a set of measured data from an on-line transient recording system to develop load models is described. (author) 6 refs., 17 figs.

  19. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  20. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  1. Numerical Analyses of Plate Loading Test

    Directory of Open Access Journals (Sweden)

    Ionuţ-Ovidiu Toma

    2009-01-01

    Full Text Available A numerical simulation of plate loading test, in order to underlines the size effect on settlements and derived values of geotechnical parameters, is shown. The study is based on the comparison between the results obtained by Finite Element Method (FEM using the Mohr-Coulomb soil model and by some observations from literature. The obtained numerical results revealed that the subgrade reaction coefficient is strictly dependent on parameters like size of the loaded area and loading magnitude, and thus completely general and generic, and not a fundamental material property of soil that can somehow be determined rationally, as often one claims to be.

  2. Design Load Basis for Offshore Wind turbines

    DEFF Research Database (Denmark)

    Natarajan, Anand; Hansen, Morten Hartvig; Wang, Shaofeng

    2016-01-01

    DTU Wind Energy is not designing and manufacturing wind turbines and does therefore not need a Design Load Basis (DLB) that is accepted by a certification body. However, to assess the load consequences of innovative features and devices added to existing offshore turbine concepts or new offshore...... turbine concept developed in our research, it is useful to have a full DLB that follows the current design standard and is representative of a general DLB used by the industry. It will set a standard for the offshore wind turbine design load evaluations performed at DTU Wind Energy, which is aligned...

  3. Recent increase in aerosol loading over the Australian arid zone

    Directory of Open Access Journals (Sweden)

    R. M. Mitchell

    2010-02-01

    Full Text Available Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997–2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 years of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24. The aerosol scale height is broadly distributed with a mode typically between 2–3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003–2007 relative to 1997–2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake Eyre Basin may be a significant contributor to changes in the aerosol budget of the continent.

  4. Surface decontamination

    International Nuclear Information System (INIS)

    Silva, S. da; Teixeira, M.V.

    1986-06-01

    The general methods of surface decontamination used in laboratory and others nuclear installations areas, as well as the procedures for handling radioactive materials and surfaces of work are presented. Some methods for decontamination of body external parts are mentioned. The medical supervision and assistance are required for internal or external contamination involving or not lesion in persons. From this medical radiation protection decontamination procedures are determined. (M.C.K.) [pt

  5. Immediate implant loading with fixed dental restorations: An animal model study

    Directory of Open Access Journals (Sweden)

    Špadijer-Gostović Aleksandra

    2012-01-01

    Full Text Available Background/Aim. Immediate loading is considered to be the most innovative technique in contemporary implant dentistry. Recent clinical and experimental findings have demonstrated that only implants with high primary stability can be subjected to immediate loading protocol with predictable results. It is generally accepted that the most important prerequsite for successful osseointegration is achievement and maintenance of implant stability. The aim of this in vivo study was to investigate the possibility for successful application of immediate loading protocol in implant systems with different surface properties. Methods. In the experimental study 2 mongrel dogs were edentulated bilaterally in the mandibular and maxillary premolar areas. After 3 months implants were placed in a pattern 4 different commercially available implants per quadrant (n = 32: Mk III TiUnite (Nobel Biocare, Sweden, ITI TPS (Straumann, Switzerland, 3IOsseotite (Implant Innovation, USA and XiVE Cell-Plus (Friadent, Germany. Implants were subjected to immediate loading with 4 unit gold cast bridges, 2 days post implantation. The assessment of implant stability and immediate loading possibilities were done by performing Resonance frequency analysis (RFA. Results. After a 6- month loading period all bridges were in function and all implants occurred well osseointegrated. When summarizing the Implant Stability Quotient (ISQ values, it was noted that resonance frequency was significantly higher for mandibular implants. The results of this experimental setting showed that all evaluated surfaces achieved good implant stability. Increase of ISQ values was found for all implants in the mandible and partially decrease of ISQ values for maxillary implants after 6 months of functional loading with 4 unit bridges. Conclusions. Investigated endooseal implants did not show different degree of osseointegration, because there was not statisticaly significant difference among observed

  6. From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Andryieuski, Andrei; Sipe, John E.

    2014-01-01

    of the structure by a generalized resonance pole of a reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high- k band existence in two important cases: the well-known metal...... and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials....

  7. Simple method for estimating soil mass loading onto plant surface using magnetic material content as a soil indicator - Influence of soil adhesion to vegetation on radioactive cesium concentration in forage.

    Science.gov (United States)

    Sunaga, Yoshihito; Harada, Hisatomi

    2016-11-01

    A simple technique for estimating soil mass loading on vegetation was developed using magnetic material content as an indicator of soil adhesion. Magnetic material contents in plant and soil samples were determined by a magnetic analyzer. High recovery rates of 85-97% were achieved in a recovery test in which additional soil was added to powdered plant materials [stem of forage corn (Zea mays L.), aboveground part of Italian ryegrass (Lolium multiflorum Lam.)] at addition rates of 12.3-200 g dry soil kg -1 dry plant material including soil. Samples of different Japanese cultivated soils were tested and showed a range of magnetic contents of 1.27-16.1 g kg -1 on a dry weight basis. These levels are considered adequate for determining soil contamination in plant materials. Then, we applied this method for confirming the effect of soil adhesion on radioactive cesium concentrations in plant samples obtained at the area affected by the 2011 nuclear accident in Japan. The mean soil mass loading (±standard deviation) on forage rye (Secale cereale L.) showing mild lodging was 0.8 ± 0.6 g kg -1 , but was 7.4 ± 5.0 g kg -1 for plants with serious lodging. No soil loading was detected on rye plants that showed no lodging. Radioactive cesium concentrations in the rye samples increased linearly with the increase in soil mass loading caused by plant lodging, and consequently mean radioactive cesium concentration for rye plants with serious lodging was about 2.7 times higher than that with no lodging. Cesium radioactivity in forage was affected by variations in soil mass loading onto forage plants caused by changes in plant growth and differences between plant species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    Science.gov (United States)

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    In cooperation with the Bureau of Land Management, groundwater levels in wells located in the northern Green River Basin in Wyoming, an area of ongoing energy development, were measured by the U.S. Geological Survey from 2010 to 2014. The wells were completed in the uppermost aquifers of the Green River Basin lower Tertiary aquifer system, which is a complex regional aquifer system that provides water to most wells in the area. Except for near perennial streams, groundwater-level altitudes in most aquifers generally decreased with increasing depth, indicating a general downward potential for groundwater movement in the study area. Drilled depth of the wells was observed as a useful indicator of depth to groundwater such that deeper wells typically had a greater depth to groundwater. Comparison of a subset of wells included in this study that had historical groundwater levels that were measured during the 1960s and 1970s and again between 2012 and 2014 indicated that, overall, most of the wells showed a net decline in groundwater levels.

  9. A general low frequency acoustic radiation capability for NASTRAN

    Science.gov (United States)

    Everstine, G. C.; Henderson, F. M.; Schroeder, E. A.; Lipman, R. R.

    A new capability called NASHUA is described for calculating the radiated acoustic sound pressure field exterior to a harmonically-excited arbitrary submerged 3-D elastic structure. The surface fluid pressures and velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior fluid. After the fluid impedance is calculated, most of the required matrix operations are performed using the general matrix manipulation package (DMAP) available in NASTRAN. Far field radiated pressures are then calculated from the surface solution using the Helmholtz exterior integral equation. Other output quantities include the maximum sound pressure levels in each of the three coordinate planes, the rms and average surface pressures and normal velocities, the total radiated power and the radiation efficiency. The overall approach is illustrated and validated using known analytic solutions for submerged spherical shells subjected to both uniform and nonuniform applied loads.

  10. Electronic Load Bank

    Science.gov (United States)

    Huston, Steven W.

    1992-01-01

    Electronic load-bank circuit provides pulsed or continuous low-resistance load to imitate effect of short circuit on Ni/H2 or other electrochemical power cells. Includes safety/warning feature and taps for measurement of cell-output voltage and current.

  11. Load Balancing in Hypergraphs

    Science.gov (United States)

    Delgosha, Payam; Anantharam, Venkat

    2018-03-01

    Consider a simple locally finite hypergraph on a countable vertex set, where each edge represents one unit of load which should be distributed among the vertices defining the edge. An allocation of load is called balanced if load cannot be moved from a vertex to another that is carrying less load. We analyze the properties of balanced allocations of load. We extend the concept of balancedness from finite hypergraphs to their local weak limits in the sense of Benjamini and Schramm (Electron J Probab 6(23):13, 2001) and Aldous and Steele (in: Probability on discrete structures. Springer, Berlin, pp 1-72, 2004). To do this, we define a notion of unimodularity for hypergraphs which could be considered an extension of unimodularity in graphs. We give a variational formula for the balanced load distribution and, in particular, we characterize it in the special case of unimodular hypergraph Galton-Watson processes. Moreover, we prove the convergence of the maximum load under some conditions. Our work is an extension to hypergraphs of Anantharam and Salez (Ann Appl Probab 26(1):305-327, 2016), which considered load balancing in graphs, and is aimed at more comprehensively resolving conjectures of Hajek (IEEE Trans Inf Theory 36(6):1398-1414, 1990).

  12. Structural load combinations

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane eqrthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10 -6 or 1.0 x 10 -5 during a lifetime of 40 years. 23 refs., 9 tabs

  13. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.

    Science.gov (United States)

    Cresswell, A G

    1993-01-01

    The purpose of this study was to determine and compare interactions between the abdominal musculature and intra-abdominal pressure (IAP) during controlled dynamic and static trunk muscle loading. Myoelectric activity was recorded in six subjects from the rectus abdominis, obliquus externus, obliquus internus, transversus abdominis and erector spinae muscles using surface and intra-muscular fine-wire electrodes. The IAP was recorded intra-gastrically. Trunk flexions and extensions were performed lying on one side on a swivel table. An adjustable brake provided different friction loading conditions, while adding weights to an unbraked swivel table afforded various levels of inertial loading. During trunk extensions at all friction loads, IAP was elevated (1.8-7.2 kPa) with concomitant activity in transversus abdominis and obliquus internus muscles--little or no activity was seen from rectus abdominis and obliquus externus muscles. For inertia loading during trunk extension, IAP levels were somewhat lower (1.8-5.6 kPa) and displayed a second peak when abdominal muscle activity occurred in the course of decelerating the movement. For single trunk flexions with friction loading, IAP was higher than that seen in extension conditions and increased with added resistance. For inertial loading during trunk flexion, IAP showed two peaks, the larger first peak matched peak forward acceleration and general abdominal muscle activation, while the second corresponded to peak deceleration and was accompanied by activity in transversus abdominis and erector spinae muscles. It was apparent that different loading strategies produced markedly different patterns of response in both trunk musculature and intra-abdominal pressure.

  14. Identification of error sources in fatigue analyses for thermal loadings

    International Nuclear Information System (INIS)

    Binder, Franz; Gantz, Dieter

    2006-09-01

    To identify thermal loadings (thermal shocks and thermal stratification), in German NPPs, special fatigue monitoring systems have been installed. The detailed temperature measurement uses sheathed thermocouples, which are located on the external component surface. Tightening straps are used for the widespread method of locking the thermocouples into position. The calculation of material fatigue for a loading sequence has to be carried out based on the measured temperature profile of the outer component surface. Should the analysis comply with the ASME III code, Section NB, alternatively the Articles NB-3200 or NB-3600 can be applied. In fatigue analyses based on the outer-surface temperature, the thermal situation at the inner-surface has to be determined (inverse temperature-field calculation). This leading analysis step is not regulated in the ASME III code. Using general purpose finite element programs, this problem cannot be explicitly solved, because it requires knowledge of the thermal situation at all boundaries (temperature or heat transfer). In the frequently practiced method in a finite element calculation, the inner surface temperature profile is varied until a satisfactory compliance of the calculated outer surface temperature with the measured profile is obtained. Since the input parameters are derived from a variable field, the variation process is large-scale and non-explicit (another input-configuration may cause a similar outer surface temperature). Furthermore, the remaining deviation cannot be quantified regarding the resulting error in the calculated material fatigue. Five typical thermocouple installation methods existing in German LWRs were compared and evaluated regarding the quality of outer surface temperature acquisition. With the evaluation of the experimental data, the essential finding is that for the test transients the maximum of the true outer surface temperature change rate is registered incorrectly with all thermocouple

  15. Load flow analysis using decoupled fuzzy load flow under critical ...

    African Journals Online (AJOL)

    user

    The conventional load flow methods like Newton-Raphson load flow (NRLF), Fast Decoupled load flow (FDLF) provide poor performance under critical conditions such as high R/X ratio, heavily loading condition etc. Exploiting the decoupling properties of power system, reliable fuzzy load flow is developed to overcome the ...

  16. The M-2 ocean tide loading wave in Alaska: vertical and horizontal displacements, modelled and observed

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Scherneck, H.G.

    2003-01-01

    Crustal deformations caused by surface load due to ocean tides are strongly dependent on the surface load closest to the observing site. In order to correctly model this ocean loading effect near irregular coastal areas, a high-resolution coastline is required. A test is carried out using two GPS...

  17. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  18. Simple model for dice loading

    Science.gov (United States)

    Nagler, Jan; Richter, Peter H.

    2010-03-01

    Dice tossing is commonly believed to be random. However, throwing a fair cube is a dissipative process that is well described by deterministic classical mechanics. In Nagler and Richter (2008 Phys. Rev. E 78 036207; featured in 2008 Nature 455 434), we proposed a simplified model to analyze the origin of the pseudorandomness: a barbell with two masses at its tips with only two final outcomes. In order to keep things simple, we focused on the symmetrical case of equal masses. Here, we complete the picture by considering the general asymmetric case of unequal masses. We show how, depending on the initial conditions, dissipation during bounces, and mass asymmetry, the degree of unpredictability varies. Our analysis reveals, for the simplest possible non-trivial dice throwing model, the effect of dice loading. A surprising consequence of dynamical resonances is that an experienced player may benefit sometimes more from an unloaded than from a loaded barbell. In addition, we investigate the influence of loading on the symmetry breaking process causing one mass to come to rest earlier than the others.

  19. Determination of the pipe stemming load

    International Nuclear Information System (INIS)

    Cowin, S.C.

    1979-01-01

    A mechanical model for the emplacement pipe system is developed. The model is then employed to determine the force applied to the surface collar of the emplacement pipe, the pipe-stemming load, and the stress along the emplacement pipe as a function of stemming height. These results are presented as integrals and a method for their numerical integration is given

  20. General Editorial

    Indian Academy of Sciences (India)

    Volume 19 Issue 1 January 2014 pp 1-2 General Editorial. General Editorial on Publication Ethics · R Ramaswamy · More Details Fulltext PDF. Volume 19 Issue 1 January 2014 pp 3-3 General Editorial. Academy Policy on Plagiarism · More Details Fulltext PDF. Volume 22 Issue 1 January 2017 pp 1-3 General Editorial.