Sample records for surface lava flows

  1. The Influence of Slope Breaks on Lava Flow Surface Disruption (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert


    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  2. Cooling of a channeled lava flow with non-Newtonian rheology: crust formation and surface radiance

    Directory of Open Access Journals (Sweden)

    Stefano Santini


    Full Text Available We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.

  3. Newberry Volcano's youngest lava flows (United States)

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.


    Most of Newberry Volcano's youngest lava flows are found within the Newberry National Volcanic Monument in central Oregon. Established November 5, 1990, the monument is managed by the U.S. Forest Service as part of the Deschutes National Forest. Since 2011, a series of aerial surveys over the monument collected elevation data using lidar (light detection and ranging) technology, which uses lasers to directly measure the ground surface. These data record previously unseen detail in the volcano’s numerous lava flows and vents. On average, a laser return was collected from the ground’s surface every 2.17 feet (ft) with ±1.3 inches vertical precision.

  4. Lava flows are fractals (United States)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.


    Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.

  5. Studies of fluid instabilities in flows of lava and debris

    International Nuclear Information System (INIS)

    Fink, J.H.


    At least two instabilities have been identified and utilized in lava flow studies: surface folding and gravity instability. Both lead to the development of regularly spaced structures on the surfaces of lava flows. The geometry of surface folds have been used to estimate the rheology of lava flows on other planets. One investigation's analysis assumed that lava flows have a temperature-dependent Newtonian rheology, and that the lava's viscosity decreased exponentially inward from the upper surface. The author reviews studies by other investigators on the analysis of surface folding, the analysis of Taylor instability in lava flows, and the effect of surface folding on debris flows

  6. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications (United States)

    Pressline, N.; Trusdell, F.A.; Gubbins, David


    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  7. InSAR observations of ground surface deformation and lava flow emplacement at Pacaya volcano, Guatemala (United States)

    Schaefer, L. N.; Lu, Z.; Oommen, T.


    Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May, 2010, violent VEI-3 eruptions caused significant topographic changes to the edifice, including the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a ~5.4 km long lava flow, and 3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR) images (interferograms) processed from both spaceborne Advanced Land Observing Satellite (ALOS) and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data were used to measure post-eruptive deformation events. Interferograms suggest four distinct deformation processes after the May 2010 eruption: (1) magma intrusion near the vents of the 2010 lava flow; (2) subsidence of the 2010 lava flow; (3) slow deflation of an elongated magma source near the summit, and; (4) settlement of the material involved in the co-eruptive slope movement. Our results provide insights into Pacaya's complex magmatic plumbing system and the postemplacement behavior of lava flows. The detection of several different deformation events emphasizes the utility of measuring volcanic deformation using high-resolution remote sensing techniques with broad spatial coverage.

  8. Channel overflows of the Pōhue Bay flow, Mauna Loa, Hawai'i: examples of the contrast between surface and interior lava (United States)

    Jurado-Chichay, Zinzuni; Rowland, Scott K.


    A number of overflows from a large lava channel and tube system on the southwest rift zone of Mauna Loa were studied. Initial overflows were very low viscosity gas-rich pāhoehoe evidenced by flow-unit aspect ratios and vesicle sizes and contents. Calculated volumetric flow-rates in the channel range between 80 and 890 m3/s, and those of the overflows between 35 and 110 m3/s. After traveling tens to hundreds of meters the tops of these sheet-like overflows were disrupted into a surface composed of clinker and pāhoehoe fragments. After these 'a'ā overflows came to rest, lava from the interiors was able to break out on to the surface as pāhoehoe. The surface structure of a lava flow records the interaction between the differential shear rate (usually correlated with the volumetric flow-rate) and viscosity-induced resistance to flow. However, the interior of a flow, being better insulated, may react differently or record a later set of emplacement conditions. Clefts of toothpaste lava occurring within fields of clinker on proximal-type 'a'ā flows also record different shear rates during different times of flow emplacement. The interplay between viscosity and shear rate determines the final morphological lava type, and although no specific portion of lava ever makes a transition from 'a'ā back to pāhoehoe, parts of a flow can appear to do so.

  9. The Payun-Matru lava field: a source of analogues for Martian long lava flows (United States)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.


    The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated

  10. Rubbly Pahoehoe Lavas: An Important Component of Icelandic Basaltic Lava Flows (United States)

    Guilbaud, M.; Self, S.; Blake, S.; Thordarson, T.; Keyzthelyi, L.


    Eruptions at rift zones often produce basaltic lava flows. Structural and textural study of historic and prehistoric flows gives important clues about emplacement processes. The 1783-4 eruption of Laki produced 14.7 km3 of lava from a fissure that opened along the Eastern Volcanic Zone of Iceland. The resulting 600 km2 lava flow-field presents a wide range of surface morphologies that we explored to study emplacement mechanisms. We present results from preliminary field, macroscopic, and microscopic analysis. Field observations show that along a single flow surface morphologies change from (1) flat (with a coherent continuous, pahoehoe(phh)-like crust), to (2) slabby (with a disrupted surface made of phh-like slabs), to (3) rubbly (with a rough surface covered by loose vesicular blocks), and then to (4) folded rubbly (with ridges of rubble several meters high). Features characteristic of flow growth by inflation are abundant. The changes are unidirectional in the above order but the sequence can be repeated. This occurred if the fluid lava stored within the core of the flow broke through the front. Field relationships indicate that the majority of the flows were initially emplaced as small lobes of phh-type lava that gradually changed into slabby phh and then rubbly phh through progressive disruption, shearing and compression of the surface. During its entire advance, the lava flow never reached the point of incessant surface renewal with formation of aa-type clinker, neither did it extensively develop the smooth filamentous surface common in Hawaiian phh flows. Thus, Laki lavas are intermediate flows. Microtexture analysis of samples collected along single flows will tell us what caused this evolution, such as crystallinity due to degassing or viscosity change. This flow type has been recognized on Reykjanes Peninsula in young fissure-fed lava flow-fields and in the Columbia River Basalts and Kerguelen Plateau flows. It is therefore an important component of many

  11. Diverting lava flows in the lab (United States)

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat


    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  12. Rheology Of Natural Dacitic Rocks: Lava Dome Versus Lava Flow (United States)

    Avard, G.; Whittington, A. G.


    Dacitic volcanoes are not only known for their blasts that decapitate the edifice - Bezymianny 1956, Mount Saint Helens 1980 or Pinatubo 1996 - but also for growing large lava domes after the main explosion, which corresponds to the “effusive” stage of their activity. In this range of composition and temperature, the magma is too viscous to flow very far, and therefore a dome forms. Santa-Maria volcano, Guatemala, experienced a cataclysmic eruption in 1902, and since 1922 has grown a complex of four dacitic domes, called Santiaguito. However, Caliente, the currently active dome, extruded a 4-km long lava flow between 1999 and 2004. Several shorter lava flows have been observed on other domes, particularly on Brujo, another dome of the Santiaguito complex, and at Bezymianny, in Kamchatka. One important question is whether the change in eruption style is due in part to changes in the rheology of the lavas, which depends on composition, crystal fraction, temperature, volatile content and strain rate. We studied 5 different natural rocks collected on Santiaguito (1 dome spine and 1 flow), Mount Saint Helens (2004 dome) and Bezymianny (1 bomb and 1 flow). All are crystal-rich dacites composed of up to 30% plagioclase and pyroxene phenocrysts in a rhyolitic matrix that ranges between 72 and 77 wt.% silica, and they contain up to 30 vol.% bubble fraction. Their apparent viscosity was measured using a parallel plate viscometer on cylindrical cores under uniaxial compression, at atmospheric pressure and in the temperature range 880 to 1040°C. Applied stresses were between 0.13 MPa and 0.43 MPa, and resulting strain rates were between 6×10-8 and 2×10-2 s-1. More than thirty experiments were performed, at durations up to ten days, and the amount of shortening varied from 1.8% to over 35%. We were particularly aiming to quantify the yield strength of these natural rocks and the effect of temperature, stress, strain rate, compaction and vesicle content on the apparent

  13. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies (United States)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.


    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  14. Gigantic self-confined pahoehoe inflated lava flows in Argentina (United States)

    Pasquare', G.; Bistacchi, A.


    The largest lava flows on Earth are pahoehoe basalts emplaced by inflation, a process which can change lava lobes initially a few decimetres thick into large lava sheets several metres thick. Inflation involves the initial formation of a thin, solidified, viscoelastic crust, under which liquid lava is continually added. This thermally efficient endogenous growth process explains the spread of huge volumes of lava over large, almost flat areas, as in the sheet flows which characterise the distal portions of Hawaiian volcanoes or some continental flood basalt provinces. Long, narrow, inflated pahoehoe flows have occasionally been described, either emplaced along pre-existing river channels or confined within topographic barriers. In this contribution we present previously unknown inflated pahoehoe lava flows following very long, narrow pathways over an almost flat surface, with no topographic confinement. Lava, which erupted in Late Quaternary times from the eastern tip of a 60 km long volcanic fissure in Argentina, formed several discrete flows extending as far as 180 km from the source. This fissure was characterized by a long-lasting and complex activity. Alkali-basaltic lava flows were emitted at the two extremities of the fissure system. In the intermediate section of the fissure, the Payun Matru, a great trachitic composite volcano, developed, giving rise to a large caldera which produced large pyroclastic flows. Alkali-basalts predate and postdate the trachitic activity, in fact at the end of the trachitic activity, new basaltic lava flows (mainly aa) were emitted from both ends of the fissure. We studied in details the youngest of the gigantic flows (Pampas Onduladas lava flow), which progressively develops through differing thermally-efficient flow mechanisms. The flow created a large shield volcanic structure at the eastern tip of the E-W fissure and spread to the E forming a very large and thick inflated pahoehoe sheet flow. Leaving the flanks of the

  15. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska (United States)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.


    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  16. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland (United States)

    Rossi, Matti J.


    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and

  17. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.


    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  18. Lava flow materials in the Tharsis region of Mars (United States)

    Schaber, G. G.; Horstman, K. C.; Dial, A. L., Jr.


    Lava-flow materials in the Tharsis region of Mars were studied from moderate-resolution (100-280 m/pixel) Viking Orbiter imagery. Individual eruptive sequences were recognized primarily by stratigraphic relations, density of superimposed impact craters, flow morphology, flow trend, and variations in surface albedo. Nine detailed maps of lava flows based on delineation of flow scarps were compiled for a total area of 7.25 million sq km. Two thirds of this area was covered by mappable flows representing at least 14 distinct eruptive sequences. Assuming a rate of crater production twice that of the moon, the observed range of superimposed crater densities (90 to 3200 craters at least 1 km in diameter per sq km) indicates an age range of 100 m.y. to several billion years for these flows. The youngest lavas are associated with flood lavas filling the depression surrounding the Olympus Mons shield. Flow thicknesses range from less than 5 meters to 20 meters on steeper shield slopes (0.5 to 4.5 deg) and from 20 to 65 meters on relatively flat (less than 0.5 deg slope) terrain.

  19. Thermophysical Modeling of Recent Lava Flows in Daedalia Planum, Mars (United States)

    Ramsey, M. S.; Simurda, C.; Crown, D. A.


    Mantling by eolian-derived material (i.e., dust and sand) can hinder compositional analysis of the Martian surface by obscuring the spectral signature of underlying coarser grained materials and bedrock. However, checkboard style mixing of larger lava outcrops plus fine-grained material in low-lying regions can also result in a spectrum similar to that of a continuous, optically-thin layer of fine material. Multiple datasets with either high spatial or spectral resolution were used to identify these mixing relationships on the flow surfaces in Daedalia Planum in hope of discerning the spectral signature of the lava. Daedalia Planum contains a flow apron originating from the SW flank of Arsia Mons, the southernmost Tharsis shield volcano, and was selected for its coverage by multiple datasets and extensive basaltic lava flow fields. CTX and HiRISE images were used to visually identify flow boundaries, superposition relationships, and surface morphology. THEMIS derived thermal inertia (TI) was compared with THEMIS infrared (IR) day and night brightness temperature (PBT) to determine the thermophysical response of individual flows. Statistical analysis (including ANOVA) of regions of interest (ROIs) in the TI and PBT data was performed to also assess the variability across the entire flow field. Four categories were defined based on these results. Finally, these THEMIS-defined categories, TI, and surface morphology were compared to identify possible unmantled outcrops. Analyses of thermophysical properties and flow morphology reveal that individual flows respond differently to diurnal heating, suggesting the presence of different roughness distributions or mixing relationships between the mantling material and lava outcrops. Statistical analysis reveals that flows with rugged surfaces are most likely to have a checkboard mixing distribution. The identification of the flows with minimally-mantled lava outcrops will next be used with TI modeling to determine its

  20. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models (United States)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.


    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  1. Observing Lava Flows with Spaceborne Microwave Radiometry (United States)

    Lorenz, R. D.


    The interpretation of infrared observations of lava flows is well-established, both on Earth and Io, to establish flow areas and temperatures, and thereby constrain eruption rates. However, the detection of such radiation from space requires lava temperatures that are high enough to be incandescent, and a relatively clear atmosphere. The former condition is met only for a short period after eruption as the top millimeters of lava cool quickly. The latter condition may fail due to ash or water clouds on Earth, or the persistent thick clouds on Venus. Microwave radiometry, which in principle probes to depths of centimeters to decimeters, offers the prospect of detecting older flows. It furthermore is minimally sensitive to cloud.The challenge, however, is that spaceborne microwave instruments have relatively large footprints (sometimes 100km) such that the emission from relatively small flows is heavily diluted and therefore difficult to detect. Here we describe models of microwave remote sensing of recent volcanics on Earth, Venus and Titan, and present some preliminary observational studies of terrestrial volcanoes with the SMAP (Soil Moisture Active Passive) radiometer. This spacecraft has a large antenna to yield a relatively narrow observation footprint, and a long wavelength to penetrate into volcanic rock, and thus offers the best prospects yet for volcano surveillance in microwave radiometry.

  2. New Constraints on Martian Lava Flow Rheologies From MOLA (United States)

    Glaze, L. S.; Baloga, S. M.; Stofan, E. R.; McColley, S. M.


    The field of physical lava flow modeling (terrestrial and planetary) has long suffered from the paucity of data on flow dimensions. Even Earth lacks high resolution digital topographic information. Data for planetary flows are traditionally even more meager than terrestrial data. We generally have only the planimetric view to work with and crude estimates of slope. Now, with the tremendous volume of Mars Orbiter Laser Altimeter (MOLA) data available (and due to be available in the near future), we are presented with the first opportunity to measure the full three-dimensional character of lava flows on the surface of Mars. The 3-D character of a lava flow is comprised of both longitudinal and transverse profiles, and is influenced by estimates of underlying slope. All of these can be measured with very fine precision and accuracy from the raw MOLA profile data. From such data, we can determine how a lava flow thickens and spreads laterally with distance. This is a very exciting prospect because, for the first time, the high quality dimensional data should allow us to distinguish between differing physics models for lava flow emplacement. This information can be used to assess rheologic changes along the path of the flow and to distinguish between changes due to rheology and slope. We have already begun analysis of several Martian lava flows, through comparison of dimensional data with predicted profiles from physics models in the literature. Based on flow morphology, we can choose from models that describe rapid emplacement (Baloga et al., 1995), loss of material to levees (Baloga et al., 1998; Glaze and Baloga, 1998), degassing (Baloga et al., 2001), lateral spreading (Bruno et al., 1996), cumulative topographic effects, and others. Refs: Baloga, SM, PD Spudis, and JE Guest (1995) JGR 100:24,509-24,519. Baloga, SM, LS Glaze, JA Crisp, and SA Stockman (1998) JGR 103:5133-5142. Baloga, SM, LS Glaze, MN Peitersen, and JA Crisp (2001) JGR 106:13,395-13,405. Bruno, BC

  3. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue (United States)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.


    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  4. Geology of the Tyrrhenus Mons Lava Flow Field, Mars (United States)

    Crown, David A.; Mest, Scott C.


    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  5. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico


    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  6. A flexible open-source toolkit for lava flow simulations (United States)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu


    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  7. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars (United States)

    Crown, David A.; Ramsey, Michael S.


    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows

  8. RIS4E at Kilauea's December 1974 Flow: Lava Flow Texture LiDAR Signatures (United States)

    Whelley, P.; Garry, W. B.; Scheidt, S. P.; Bleacher, J. E.; Hamilton, C.


    High-resolution point clouds and digital terrain models (DTMs) are used to investigate lava textures on the Big Island of Hawaii. Lava texture (e.g., ´áā and pāhoehoe) depends significantly on eruption conditions, and it is therefore instructive, if accurately determined. In places where field investigations are prohibitive (e.g., on other planets and remote regions of Earth) lava texture must be assessed from remote sensing data. A reliable method for doing so remains elusive. The December 1974 flow from Kilauea, in the Kau desert, presents an excellent field site to develop techniques for identifying lava texture. The eruption is young and the textures are well preserved. We present results comparing properties of lava textures observed in Terrestrial Laser Scanning (TLS) data. The authors collected the TLS data during May 2014 and June 2015 field seasons. Scans are a quantitative representation of what a geologist, or robotic system, sees "on the ground" and provides "ground truth" for airborne or orbital remote sensing analysis by enabling key parameters of lava morphology to be quantified. While individual scans have a heterogeneous point density, multiple scans are merged such that sub-cm lava textures can be quantified. Results indicate that TLS-derived surface roughness (i.e., de-trended RMS roughness) is useful for differentiating lava textures and assists volcanologic interpretations. As many lava types are quite rough, it is not simply roughness that is the most advantageous parameter for differentiating lava textures; rather co-occurrence patterns in surface roughness are used. Gradually forming textures (e.g., pāhoehoe) are elevated in statistics that measure smoothness (e.g., homogeneity) while lava with disrupted crusts (e.g., slabby and platy flow) have more random distributions of roughness (i.e., high entropy). A similar technique will be used to analyze high-resolution DTMs of martian lava flows using High Resolution Imaging Science

  9. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.


    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  10. The Active Lava Flows of Kilauea Volcano, Hawaii

    Indian Academy of Sciences (India)

    . After erupting from the crater at the top of the cone, the lava flows downslope and towards the ocean, just as normal rivers (of water) would do. The lava mixing with sea water immediately quenches and shatters, and makes new land.

  11. Improvement of a 2D numerical model of lava flows (United States)

    Ishimine, Y.


    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  12. Dynamics of a fluid flow on Mars: Lava or mud? (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.


    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  13. Fractal analysis: A new remote sensing tool for lava flows (United States)

    Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.


    Many important quantitative parameters have been developed that relate to the rheology and eruption and emplacement mechanics of lavas. This research centers on developing additional, unique parameters, namely the fractal properties of lava flows, to add to this matrix of properties. There are several methods of calculating the fractal dimension of a lava flow margin. We use the 'structured walk' or 'divider' method. In this method, we measure the length of a given lava flow margin by walking rods of different lengths along the margin. Since smaller rod lengths transverse more smaller-scaled features in the flow margin, the apparent length of the flow outline will increase as the length of the measuring rod decreases. By plotting the apparent length of the flow outline as a function of the length of the measuring rod on a log-log plot, fractal behavior can be determined. A linear trend on a log-log plot indicates that the data are fractal. The fractal dimension can then be calculated from the slope of the linear least squares fit line to the data. We use this 'structured walk' method to calculate the fractal dimension of many lava flows using a wide range of rod lengths, from 1/8 to 16 meters, in field studies of the Hawaiian islands. We also use this method to calculate fractal dimensions from aerial photographs of lava flows, using lengths ranging from 20 meters to over 2 kilometers. Finally, we applied this method to orbital images of extraterrestrial lava flows on Venus, Mars, and the Moon, using rod lengths up to 60 kilometers.

  14. NVP melt/magma viscosity: insight on Mercury lava flows (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina


    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  15. Possible lava tube system in a hummocky lava flow at Daund ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Keywords. Pahoehoe; lava tube; inflation; emplacement; Deccan Volcanic Province. Proc. Indian Acad. Sci. (Earth Planet. Sci.), 113, No. 4, December 2004, pp. 819–829 ... vesicles and a core with numerous vesicle cylin- ders. ..... Figure 4. Primitive mantle normalized Rare Earth Element concentration of the Daund flow.

  16. Possible lava tube system in a hummocky lava flow at Daund ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Swanson 1973). This indicates that at least the local transport of lava in the Deccan may have been affected by tubes. Hum- mocky pahoehoe flows are also known from other parts of the DVP i.e., from Saurashtra, Malwa and. Amarkantak areas.

  17. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue (United States)

    Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.


    We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.

  18. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS (United States)

    Golder, K.; Burr, D. M.; Tran, L.


    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  19. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin (United States)

    Embley, Robert W.; Rubin, Kenneth H.


    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  20. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia


    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  1. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows (United States)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline


    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  2. Investigating lava-substrate interactions through flow experiments with syrup, wax, and molten basalt (United States)

    Rumpf, M. E.; Lev, E.


    Among the many factors influencing the complex process of lava flow emplacement, the interaction with the substrate onto which flow is emplaced plays a central role. Lava flows are rarely emplaced onto smooth or regular surfaces. For example, at Kīlauea Volcano, Hawai'i, lava flows regularly flow over solid rock, vegetation, basaltic or silica sand, and man-made materials, including asphalt and concrete. In situ studies of lava-substrate interactions are inherently difficult, and often dangerous, to carry-out, requiring the design of controllable laboratory experiments. We investigate the effects of substrate grain size, cohesion, and roughness on flow mobility and morphology through a series of flow experiments using analog materials and molten basalt. We have developed a series of experiments that allow for adjustable substrate parameters and analyze their effects on lava flow emplacement. The first set of experiments are performed at the Fluids Mechanics Laboratory at the Lamont-Doherty Earth Observatory and focus on two analog materials: polyethylene glycol (PEG), a commercially available wax, and corn syrup. The fluids were each extruded onto a series of scaled substrate beds to replicate the emplacement of lava in a natural environment. Preliminary experiments demonstrated that irregular topography, particularly topography with a height amplitude similar to that of the flow itself, can affect flow morphology, width, and velocity by acting as local barriers or culverts to the fluid. This is expected from observations of fluid flow in natural environments. A follow-up set of experiments will be conducted in Fall 2015 at the Syracuse University (SU) Lava Project Lab. In this set, we will pour molten basalt directly onto a series of substrates representing natural environments found on the Earth and other rocky bodies in the Solar System. These experiments will allow for analysis of the effects of basaltic composition and high temperatures on lava-substrate heat

  3. The Active Lava Flows of Kilauea Volcano, Hawaii

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 6. The Active Lava Flows of Kilauea Volcano, Hawaii. Hetu Sheth. General Article Volume 8 Issue 6 June 2003 pp 24-33. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  4. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement (United States)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.


    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  5. MrLavaLoba: A new probabilistic model for the simulation of lava flows as a settling process (United States)

    de'Michieli Vitturi, Mattia; Tarquini, Simone


    A new code to simulate lava flow spread, MrLavaLoba, is presented. In the code, erupted lava is itemized in parcels having an elliptical shape and prescribed volume. New parcels bud from existing ones according to a probabilistic law influenced by the local steepest slope direction and by tunable input settings. MrLavaLoba must be accounted among the probabilistic codes for the simulation of lava flows, because it is not intended to mimic the actual process of flowing or to provide directly the progression with time of the flow field, but rather to guess the most probable inundated area and final thickness of the lava deposit. The code's flexibility allows it to produce variable lava flow spread and emplacement according to different dynamics (e.g. pahoehoe or channelized-'a'ā). For a given scenario, it is shown that model outputs converge, in probabilistic terms, towards a single solution. The code is applied to real cases in Hawaii and Mt. Etna, and the obtained maps are shown. The model is written in Python and the source code is available at

  6. Thermal infrared data of active lava surfaces using a newly-developed camera system (United States)

    Thompson, J. O.; Ramsey, M. S.


    Our ability to acquire accurate data during lava flow emplacement greatly improves models designed to predict their dynamics and down-flow hazard potential. For example, better constraint on the physical property of emissivity as a lava cools improves the accuracy of the derived temperature, a critical parameter for flow models that estimate at-vent eruption rate, flow length, and distribution. Thermal infrared (TIR) data are increasingly used as a tool to determine eruption styles and cooling regimes by measuring temperatures at high temporal resolutions. Factors that control the accurate measurement of surface temperatures include both material properties (e.g., emissivity and surface texture) as well as external factors (e.g., camera geometry and the intervening atmosphere). We present a newly-developed, field-portable miniature multispectral thermal infrared camera (MMT-Cam) to measure both temperature and emissivity of basaltic lava surfaces at up to 7 Hz. The MMT-Cam acquires emitted radiance in six wavelength channels in addition to the broadband temperature. The instrument was laboratory calibrated for systematic errors and fully field tested at the Overlook Crater lava lake (Kilauea, HI) in January 2017. The data show that the major emissivity absorption feature (around 8.5 to 9.0 µm) transitions to higher wavelengths and the depth of the feature decreases as a lava surface cools, forming a progressively thicker crust. This transition occurs over a temperature range of 758 to 518 K. Constraining the relationship between this spectral change and temperature derived from this data will provide more accurate temperatures and therefore, more accurate modeling results. This is the first time that emissivity and its link to temperature has been measured in situ on active lava surfaces, which will improve input parameters of flow propagation models and possibly improve flow forecasting.

  7. Constraining Eruptive Conditions From Lava Flow Morphometry: A Case Study With Field Evidence (United States)

    Bowles, Z. R.; Clarke, A.; Greeley, R.


    Volcanism is widely recognized as one of the primary factors affecting the surfaces of solid planets and satellites throughout the solar system. Basaltic lava is thought to be the most common composition based on observed features typical of basaltic eruptions found on Earth. Lava flows are one of the most easily recognizable landforms on planetary surfaces and their features may provide information about eruption dynamics, lava rheology, and potential hazards. More recently, researchers have taken a multi-faceted approach to combine remote sensing, field observations and quantitative modeling to constrain volcanic activity on Earth and other planets. Here we test a number of published models, including empirically derived relationships from Mt. Etna and Kilauea, models derived from laboratory experiments, and theoretical models previously applied to remote sensing of planetary surfaces, against well-documented eruptions from the literature and field observations. We find that the Graetz (Hulme and Felder, 1977, Phil.Trans., 285, 227 - 234) method for estimating effusion rates compares favorably with published eruption data, while, on the other hand, inverting lava flow length prediction models to estimate effusion rates leads to several orders of magnitude in error. The Graetz method also better constrains eruption duration. Simple radial spreading laws predict Hawaiian lava flow lengths quite well, as do using the thickness of the lava flow front and chilled crust. There was no observed difference between results from models thought to be exclusive to aa or pahoehoe flow fields. Interpreting historic conditions should therefore follow simple relationships to observable morphologies no matter the composition or surface texture. We have applied the most robust models to understand the eruptive conditions and lava rheology of the Batamote Mountains near Ajo, AZ, an eroded shield volcano in southern Arizona. We find effusion rates on the order of 100 - 200 cubic

  8. Rheology of lava flows on Mercury: An analog experimental study (United States)

    Sehlke, A.; Whittington, A. G.


    We experimentally determined the rheological evolution of three basaltic analog compositions appropriate to Mercury's surface, during cooling, and crystallization. Investigated compositions are an enstatite basalt, and two magnesian basalts representing the compositional end-members of the northern volcanic plains with 0.19 wt % (NVP) and 6.26 wt % Na2O (NVP-Na). The viscosity-strain rate dependence of lava was quantified using concentric cylinder viscometry. We measured the viscosities of the crystal-free liquids from 1600°C down to the first detection of crystals. Liquidus temperatures of the three compositions studied are around 1360°C, and all three compositions are more viscous than Hawaiian basalt at the same temperature. The onset of pseudoplastic behavior was observed at crystal fractions ~0.05 to 0.10, which is consistent with previous studies on mafic lavas. We show that all lavas develop detectable yield strengths at crystal fractions around 0.20, beyond which the two-phase suspensions are better described as Herschel-Bulkley fluids. By analogy with the viscosity-strain rate conditions at which the pahoehoe to `a`a transition occurs in Kilauea basalt, this transition is predicted to occur at ~1260 ± 10°C for the enstatite basalt, at ~1285 ± 20°C for the NVP, and at ~1240 ± 40°C for the NVP-Na lavas. Our results indicate that Mercury lavas are broadly similar to terrestrial ones, which suggests that the extensive smooth lava plains of Mercury could be due to large effusion rates (flood basalts) and not to unusually fluid lavas.

  9. Dating Young Lava Flows with Cosmogenic 36Cl: AN Example from the Late Pleistocene - Early Holocene ERCİYES Monogenetic Lava Domes in Central Turkey (United States)

    Akif Sarıkaya, M.; Çiner, Attila; Şen, Erdal; Ersoy, Orkun; Zreda, Marek


    Precise dating of young lava flows is generally problematic because of the limiting factors of the applied technique. In-situ produced cosmogenic nuclides can be used to date very young lava flows if they show simple exposure histories and proper geochemistries. The Erciyes stratovolcano in the central Turkey has several dacite-rhyodacite monogenic parasitic lava domes that show clear exposure histories. Four young volcanic domes on the flanks of Erciyes Volcano have fresh-looking surfaces that are datable by cosmogenic surface exposure dating. We collected 36 cosmogenic samples from four lava flows namely Karagüllü, Perikartını, Dikkartın and Çarık, and obtained 36Cl exposure ages, all around Early Holocene, except for Çarık Lava flow which gave much older ages. Karagüllü, Perikartını and Dikkartın eruptions yielded average exposure ages at around 7.2±0.9 ka (n=11), 7.7±0.4 ka (n=6) and 8.8±0.6 ka (n=9), respectively. Two different eruption histories were determined from the Çarık Lava flow. They were centred at around 98.4±3.6 ka (n=7) and 36.1±1.1 ka (n=3). We also tested our results by an independent dating method. The Perikartını eruption generated a pyroclastic flow that buried trees that were converted to charcoal. Two charcoal samples found in this flow were dated using the 14C method, and yielded an average age of 9735±155 years BP (calibrated using Calib 7.1). Our results show that the cosmogenic 36Cl ages from Perikartını flow (7.7±0.4 ka) are younger than the radiocarbon ages (9.7±0.2 ka). This discrepancy might be related either to the high Cl content (963 ppm) of the lava flow or high nucleogenic production of 36Cl due to the above average U (5.1 ppm) and Th (15.6 ppm) concentrations. The high Cl content of the samples may result erroneously (>20%) underestimated the low-energy neutron capture (epithermal and thermal) production rates. On the other hand, the calculated nucleogenic 36Cl makes up almost one-third of the

  10. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela


    We develop a two-dimensional particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fueled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength > 1.62 MPa, and at flow rates of 3 m3/s) for magma with lower relative yield strengths ( 1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  11. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow (United States)

    Park, S.; Iversen, J. D.


    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  12. A brief comparison of lava flows from the Deccan Volcanic Province ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    effects of cooling. The possibility of an insulating mode of transport was not considered. Such a mode of transport, however, was well characterised for young lava flows, especially in Hawaii. The growth of pahoehoe lava flows by endogenous growth or inflation, and thermally efficient transport through lava tubes had been ...

  13. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i (United States)

    Patrick, Matthew R.; Orr, Tim R.


    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  14. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image (United States)

    Li, Long; Solana, Carmen; Canters, Frank; Kervyn, Matthieu


    Mapping lava flows using satellite images is an important application of remote sensing in volcanology. Several volcanoes have been mapped through remote sensing using a wide range of data, from optical to thermal infrared and radar images, using techniques such as manual mapping, supervised/unsupervised classification, and elevation subtraction. So far, spectral-based mapping applications mainly focus on the use of traditional pixel-based classifiers, without much investigation into the added value of object-based approaches and into advantages of using machine learning algorithms. In this study, Nyamuragira, characterized by a series of > 20 overlapping lava flows erupted over the last century, was used as a case study. The random forest classifier was tested to map lava flows based on pixels and objects. Image classification was conducted for the 20 individual flows and for 8 groups of flows of similar age using a Landsat 8 image and a DEM of the volcano, both at 30-meter spatial resolution. Results show that object-based classification produces maps with continuous and homogeneous lava surfaces, in agreement with the physical characteristics of lava flows, while lava flows mapped through the pixel-based classification are heterogeneous and fragmented including much "salt and pepper noise". In terms of accuracy, both pixel-based and object-based classification performs well but the former results in higher accuracies than the latter except for mapping lava flow age groups without using topographic features. It is concluded that despite spectral similarity, lava flows of contrasting age can be well discriminated and mapped by means of image classification. The classification approach demonstrated in this study only requires easily accessible image data and can be applied to other volcanoes as well if there is sufficient information to calibrate the mapping.

  15. Role of viscous dissipation in the dynamics of lava flows with power-law rheology (United States)

    Piombo, A.; Dragoni, M.


    We model a lava flow as a one-dimensional flow of a pseudoplastic fluid with viscous dissipation. The flow is horizontally unbounded and is driven downslope by the gravity force. We consider a power-law constitutive equation and we take into account the temperature dependence of the rheological parameters. Given an effusion rate and an initial temperature at the eruption vent, the flow is assumed to cool down by heat radiation. We calculate the heat produced by viscous dissipation as a function of lava temperature and effusion rate. The cooling rate is calculated as a function of the surface temperature and flow rate. Viscous dissipation reduces the cooling rate by an amount which is independent of flow rate. We evaluate the effect of viscous dissipation on the flow thickness and velocity. The effect of dissipation is to decrease the flow thickness and to increase the flow velocity. The effect on flow thickness is greater for smaller flow rates, while the effect on velocity is greater for larger effusion rates. In principle, the model provides a method for estimating the flow rate from in-field measurements of distances and temperatures.

  16. Extended SO2 outgassing from the 2014-2015 Holuhraun lava flow field, Iceland (United States)

    Simmons, Isla C.; Pfeffer, Melissa A.; Calder, Eliza S.; Galle, Bo; Arellano, Santiago; Coppola, Diego; Barsotti, Sara


    The 2014-2015 Holuhraun eruption was the largest fissure eruption in Iceland in the last 200 years. This flood basalt eruption produced 1.6 km3 of lava, forming a lava flow field covering an area of 84 km2. Over the 6-month course of the eruption, 11 Mt of SO2 were released from the eruptive vents as well as from the cooling lava flow field. This work examines the post-eruption SO2 flux emitted by the Holuhraun lava flow field, providing the first study of the extent and relative importance of the outgassing of a lava flow field after emplacement. We use data from a scanning differential optical absorption spectroscopy (DOAS) instrument installed at the eruption site to monitor the flux of SO2. In this study, we propose a new method to estimate the SO2 emissions from the lava flow field, based on the characteristic shape of the scanned column density distribution of a homogenous source close to the ground. Post-eruption outgassing of the lava flow field continued for at least 3 months after the end of the eruption, with SO2 flux between < 1 and 9 kg/s. The lava flow field post-eruption emissions were not a significant contributor to the total SO2 released during the eruption; however, the lava flow field was still an important polluter and caused high concentrations of SO2 at ground level after lava effusion ceased.

  17. Lava Flow Lengths and Historic Eruptive Parameters: Implications for the Volcanic History of the Batamote Mountains, Ajo, Arizona (United States)

    Bowles, Z. R.; Clarke, A.; Greeley, R.


    Lava flow lengths and morphology depend on (1) initial viscocity, (2) rate of effusion, (3) total volume of lava extruded, (4) duration of extrusion, (5) slope of underlying surface, (6) topography, (7) rate of cooling, (8) formation of crust, and (9) other special circumstances such as ponding and flowing into water. Lava flow lengths and assumptions on lava type contain all the information needed to make educated constraints on the eruptive history of a particular volcano. By no means is this a definitive claim of eruptive histories based on present day observations, but an approximation of what might have occurred may be obtained. Lava flow lengths were measured in the Batamote Mountains in Ajo, Arizona and it was determined that this 18 million year old shield volcano erupted with effusion rates of 5 to 10 cubic meters per second, volumes of 0.00001 cubic kilometers, eruption durations on the order of days, lava yield strengths of 5000 Pa, and flow thicknesses of approximately 3 to 6 meters. These calculations add to the body of knowledge covering Arizona historical volcanism and related Basin and Range extension, but conflict with observations of basaltic volcanic fields in this region.

  18. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia


    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  19. Possible lava tube system in a hummocky lava flow at Daund ...

    Indian Academy of Sciences (India) Keywords. Pahoehoe; lava tube; inflation; emplacement; Deccan Volcanic Province. Abstract. A hummocky flow characterised by the presence of toes, lobes, tumuli and possible lava tube system is exposed near Daund, western Deccan Volcanic Province, India.

  20. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement (United States)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald


    Galileo data and numerical modeling were used to investigate the summer 1977 eruption at Pillan Patera on Io. This event, now defined as "Pillanian" eruption style, included a high-temperature (greater than 1600 C), possible ultrabasic , 140-km-high plume eruption that deposited dark, orthopyroxene-rich pyroclastic material over greater than 125,000 sq km, followed by emplacement of dark flow-like material over greater than 3100 sq km to the north of the caldera. We estimate that the high-temperature, energetic episode of this eruption had a duration of 52 - 167 days between May and September 1997, with peak eruption temperatures around June 28, 1997. Galileo 20 m/pixel images of part of the Pillan flow field show a wide-spread, rough, pitted surface that is unlike any flow surface we have seen before. We suggest that this surface may have resulted from: 1. A fractured lava crust formed during rapid, low-viscosity lava surging, perhaps including turbulent flow emplacement. 2. Disruption of the lava flow by explosive interaction with a volatile-rich substrate. or 3. A combination of 1 and 2 with or without accumulation of pyroclastic material on the surface. Well-developed flow lobes are observed, suggesting that this is a relatively distant part of the flow field.Shadow measurements at flow margins indicate a thickness of-8 - 10 m. We have modeled the emplacement of putative ultrabasic flow from the summer 1997 Pillan eruption using constraints from new Galileo data. Results suggest that either laminar sheet flows or turbulent channelized flows could have traveled 50 - 150 km on a flat, unobstructed surface, which is consistent with the estimated length of the Pillan flow field (approx. 60 km). Our modeling suggests low thermal erosion rates (less than 4.1 m/d), and that the formation of deep (greater than 20 m) erosion channels was unlikely, especially distal to the source. We calculate a volumetric flow rate of approx. 2 - 7 x 10(exp 3)cu m/s, which is greater

  1. Dielectric properties of lava flows west of Ascraeus Mons, Mars (United States)

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.


    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  2. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.


    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  3. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments (United States)

    Peters, S.; Clarke, A. B.


    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  4. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.


    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  5. Recent advances in the GPUSPH model for the thermal and rheological evolution of lava flows (United States)

    Zago, Vito; Bilotta, Giuseppe; Cappello, Annalisa; Dalrymple, Robert A.; Fortuna, Luigi; Ganci, Gaetana; Herault, Alexis; Del Negro, Ciro


    GPUSPH is a fully three-dimensional model for the simulation of the thermal and rheological evolution of lava flows that relies on the Smoothed Particle Hydrodynamics (SPH) numerical method. Thanks to the Lagrangian, meshless nature of SPH, the model incorporates a more complete physical description of the emplacement process and rheology of lava that considers the free surface, the irregular boundaries represented by the topography, the solidification fronts and the non-Newtonian rheology. Because of the very high degree of parallelism, GPUSPH is implemented very efficiently on high-performance graphics processing units (GPUs) employing the Compute Unified Device Architecture (CUDA), a parallel programming language developed by NVIDIA for GPU computing. GPUSPH follows the very general Herschel-Bulkley rheological model, which encompasses Newtonian, power-law and Bingham flow behaviour and can thus be used to explore in detail the impact of rheology on the behaviour of lava flows and on their emplacement. We present here the first validation tests of the GPUSPH model against well known analytical problems, considering the different rheological models, heat exchanges by thermal conduction and radiation, and providing the relative error estimates.

  6. Mineral chemistry of lava flows from Linga area of the Eastern ...

    Indian Academy of Sciences (India)

    Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four ...

  7. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.


    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  8. The influence of cooling on the advance of lava flows: insights from analogue experiments on the feedbacks between flow dynamics and thermal structure (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.


    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and the eruptive mass flux. These two parameters are not known a priori during an eruption and a key question is how to evaluate them in near real-time (rather than afterwards.) There is no generic macroscopic model for the rheology of an advancing lava flow, and analogue modelling is a precious tool to empirically estimate the rheology of a complex flow. We investigate through laboratory experiments the simultaneous spreading and cooling of horizontal currents fed at constant rate from a point source. The materials used are silicone oil (isoviscous), and poly-ethylene glycol (PEG) wax injected in liquid state and solidiying during its advance. In the isoviscous case, the temperature field is a passive tracer of the flow dynamics, whereas in the PEG experiments there is a feedback between the cooling of the flow and its effective rheology. We focus on the evolution of the current area and of the surface thermal structure, imaged with an infrared camera, to assess how the thermal structure can be related to the flow rate. The flow advance is continuous in the viscous case, and follows the predictions of Huppert (1982); in that case the surface temperature become steady after a transient time and the radiated heat flux is shown to be proportional to the input rate. For the PEG experiments, the spreading occurs through an alternation of stagnation and overflow phases, with a mean spreading rate decreasing as the experiment goes on. As in the case of lava flows, these experiments can exhibit a compound flow field, solid levees, thermal erosion, liquid overflows and channelization. A key observation is that the effective rheology of the solifying PEG material depends on the input flow rate, with high input rates yielding a rheology closer to the

  9. Microtopographic evolution of lava flows at Cima volcanic field, Mojave Desert, California (United States)

    Farr, Tom G.


    Microtopographic profiles were measured and power spectra calculated for dated lava flow surfaces at Cima volcanic field in the eastern Mojave Desert of California in order to quantify changes in centimeter- to meter-scale roughness as a function of age. For lava flows younger than about 0.8 m.y., roughness over all spatial scales decreases with age, with meter-scale roughness decreasing slightly more than centimeter scales. Flows older than about 0.8 m.y. show a reversal of this trend, becoming as rough as young flows at these scales. Modeling indicates that eolian deposition can explain most of the change observed in the offset, or roughness amplitude, of power spectra of flow surface profiles up to 0.8 m.y. Other processes, such as rubbing and stone pavement development, appear to have a minor effect in this age range. Changes in power spectra of surfaces older than about 0.8 m.y. are consistent with roughening due to fluvial dissection. These results agree qualitatively with a process-response model that attributes systematic changes in flow surface morphology to cyclic changes in the rates of eolian, soil formation, and fluvial processes. Identification of active surficial processes and estimation of the extent of their effects, or stage of surficial evolution, through measurement of surface roughness will help put the correlation of surficial units on a quantitative basis. This may form the basis for the use of radar remote sensing data to help in regional correlations of surficial units.

  10. Role of heat advection in a channeled lava flow with power law, temperature-dependent rheology (United States)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele


    The cooling of a lava flow, both in the transient and the steady state, is investigated considering that lava rheology is pseudoplastic and dependent on temperature. Lava exits from the vent with constant velocity and flows down a slope under the effect of gravity force inside a channel of rectangular cross section. We consider that cooling of lava is caused by thermal radiation into the atmosphere and thermal conduction at the channel walls and at the ground. The heat equation is solved numerically in a 3-D computational domain, and the solution is tested to evaluate the numerical errors. We study the steady state and the initial transient period of lava cooling. Results indicate that the advective heat transport significantly modifies the cooling rate of lava, slowing down the cooling process. Since the lava velocity depends on temperature, the cooling rate depends on the effusion temperature. Velocity profiles are modified during cooling showing two marginal static zones where the crust can form and remain stable. The fraction of crust coverage is calculated under the assumption that the solid lava is a plastic body with temperature-dependent yield strength. We numerically confirm that heat advection cannot be neglected in the mechanism of formation of lava tubes.

  11. Investigating lava flows at Quizapu Volcano, on the ground and in the air (United States)

    Lev, E.; Ruprecht, P.; Moon, R. S.


    The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the

  12. Mapping gullies, dunes, lava fields, and landslides via surface roughness (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan


    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  13. Dynamics and viscosity of `a'a and pahoehoe lava flows of the 2012-2013 eruption of Tolbachik volcano, Kamchatka (Russia) (United States)

    Belousov, Alexander; Belousova, Marina


    The 2012-2013 flank eruption of Tolbachik volcano (Kamchatka) lasted 9 months and produced 0.54 km3 of basaltic trachyandesite lava, thus becoming one of the most voluminous historical lava effusions of basic composition in subduction-related environments globally. From March to July 2013, the volcano monotonously erupted lava of constant composition (SiO2 = 52 wt%) with a nearly stable effusion rate of 18 m3/s. Despite the uniform eruptive and emplacement conditions, the dominant style of lava propagation throughout that time gradually changed from `a'a to pahoehoe. We report results of instrumental field measurements of the `a'a and pahoehoe flow dynamics (documented with time-lapse cameras) as well as the lava viscosity determined by flow rate and shear stress (using penetrometer) methods. Maximal propagation velocities of the `a'a fronts ranged from 2 to 25 mm/s, and those of the pahoehoe from 0.5 to 6 mm/s. The flow front velocities of both lava types experienced short-period fluctuations that were caused by complex flow mechanics of the advancing flow lobes. Minimal viscosities of lava of the `a'a lobes ranged from 1.3 × 105 to 3.3 × 107 Pa s (flow rate method), and those of the pahoehoe from to 5 × 103 to 5 × 104 Pa s (shear stress method). Our data include the first ever measured profiles of viscosity through the entire thickness of actively advancing pahoehoe lava lobes. We have found that both the `a'a and pahoehoe flows were fed by identical parental lava, which then developed contrasting rheological properties, owing to differences in the process of lava transport over the ground surface. The observed transition from the dominant `a'a to the dominant pahoehoe propagation styles occurred due to gradual elongation and branching of the lava tube system throughout the course of the eruption. Such evolution became possible because the growing lava field, composed of semisolidified flows, provided an environment for shallow subsurface intrusions and

  14. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field (United States)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.


    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  15. Imaging the Laguna del Maule Volcanic Field, central Chile using magnetotellurics: Evidence for crustal melt regions laterally-offset from surface vents and lava flows (United States)

    Cordell, Darcy; Unsworth, Martyn J.; Díaz, Daniel


    Magnetotelluric (MT) data were collected at the Laguna del Maule volcanic field (LdMVF), located in central Chile (36°S, 70.5°W), which has been experiencing unprecedented upward ground deformation since 2007. These data were used to create the first detailed three-dimensional electrical resistivity model of the LdMVF and surrounding area. The resulting model was spatially complex with several major conductive features imaged at different depths and locations around Laguna del Maule (LdM). A near-surface conductor (C1; 0.5 Ωm) approximately 100 m beneath the lake is interpreted as a conductive smectite clay cap related to a shallow hydrothermal reservoir. At 4 km depth, a strong conductor (C3; 0.3 Ωm) is located beneath the western edge of LdM. The proximity of C3 to the recent Pleistocene-to-Holocene vents in the northwest LdMVF and nearby hot springs suggests that C3 is a hydrous (>5 wt% H2O), rhyolitic partial melt with melt fraction >35% and a free-water hydrothermal component. C3 dips towards, and is connected to, a deeper conductor (C4; 1 Ωm). C4 is located to the north of LdM at >8 km depth below surface and is interpreted as a long-lived, rhyolitic-to-andesitic magma reservoir with melt fractions less than 35%. It is hypothesized that the deeper magma reservoir (C4) is providing melt and hydrothermal fluids to the shallower magma reservoir (C3). A large conductor directly beneath the LdMVF is not imaged with MT suggesting that any mush volume beneath LdM must be anhydrous (10 km) as it moves from the deep magma reservoir (C4) to create small, ephemeral volumes of eruptible melt (C3). It is hypothesized that there may be a north-south contrast in physical processes affecting the growth of melt-rich zones since major conductors are imaged in the northern LdMVF while no major conductors are detected beneath the southern vents. The analysis and interpretation of features directly beneath the lake is complicated by the surface conductor C1 which attenuates

  16. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages (United States)

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur


    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  17. Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses (United States)

    Byrnes, Jeffrey Myer


    This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed

  18. Satellite-driven modeling approach for monitoring lava flow hazards during the 2017 Etna eruption (United States)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.; Zago, V.


    The integration of satellite data and modeling represents an efficient strategy that may provide immediate answers to the main issues raised at the onset of a new effusive eruption. Satellite-based thermal remote sensing of hotspots related to effusive activity can effectively provide a variety of products suited to timing, locating, and tracking the radiant character of lava flows. Hotspots show the location and occurrence of eruptive events (vents). Discharge rate estimates may indicate the current intensity (effusion rate) and potential magnitude (volume). High-spatial resolution multispectral satellite data can complement field observations for monitoring the front position (length) and extension of flows (area). Physics-based models driven, or validated, by satellite-derived parameters are now capable of fast and accurate forecast of lava flow inundation scenarios (hazard). Here, we demonstrate the potential of the integrated application of satellite remote-sensing techniques and lava flow models during the 2017 effusive eruption at Mount Etna in Italy. This combined approach provided insights into lava flow field evolution by supplying detailed views of flow field construction (e.g., the opening of ephemeral vents) that were useful for more accurate and reliable forecasts of eruptive activity. Moreover, we gave a detailed chronology of the lava flow activity based on field observations and satellite images, assessed the potential extent of impacted areas, mapped the evolution of lava flow field, and executed hazard projections. The underside of this combination is the high sensitivity of lava flow inundation scenarios to uncertainties in vent location, discharge rate, and other parameters, which can make interpreting hazard forecasts difficult during an effusive crisis. However, such integration at last makes timely forecasts of lava flow hazards during effusive crises possible at the great majority of volcanoes for which no monitoring exists.

  19. Detection of high-silica lava flows and lava morphology at the Alarcon Rise, Gulf of California, Mexico using automated classification of the morphological-compositional relationship in AUV multibeam bathymetry and sonar backscatter (United States)

    Maschmeyer, C.; White, S. M.; Dreyer, B. M.; Clague, D. A.


    An automated compositional classification by adaptive neuro-fuzzy inference system (ANFIS) was developed to study volcanic processes that create high-silica lava at oceanic ridges. The objective of this research is to determine the existence of a relationship between lava morphology and composition. Researchers from the Monterey Bay Aquarium Research Institute (MBARI) recorded morphologic observations and collected samples for geochemical analysis during ROV dives at the Alarcon Rise in 2012 and 2015. The Alarcon Rise is a unique spreading ridge environment where composition ranges from basaltic to rhyolitic, making it an ideal location to examine the compositional-morphologic relationship of lava flows. Preliminary interpretation of field data indicates that high-silica lavas are typically associated with 3-5 m, blocky pillows at the heavily faulted north end of the Alarcon. Visual analysis of multibeam bathymetry and side-scan sonar backscatter from MBARI AUV D. Allen B. and gridded at 1 m suggests that lava flow morphology (pillow, lobate, sheet) can be distinguished by seafloor roughness. Bathymetric products used by ANFIS to quantify the morphologic-compositional relationship were slope, aspect, and bathymetric position index (BPI, a measure of local height relative to the adjacent terrain). Sonar backscatter intensity is influenced by surface roughness and previously used to distinguish lava morphology. Gray-level co-occurrence matrices (GLCM) were applied to backscatter to create edge-detection filters that recognized faults and fissures. Input data are slope, aspect, bathymetric value, BPI at 100 m scale, BPI at 500 m scale, backscatter intensity, and the first principle component of backscatter GLCM. After lava morphology was classified on the Alarcon Rise map, another classification was completed to detect locations of high-silica lava. Application of an expert classifier like ANFIS to distinguish lava composition may become an important tool in oceanic

  20. SHARAD Constrains on Lava Flow Properties at Southeastern Utopia Planitia (United States)

    Nunes, D. C.


    The volcanic flows originated at the southwestern flanks of Elysium Mons extend over 1,000 km into Utopia Planitia and overlie the knobby and polygonally cracked Vastitas Borealis Formation (VBF). These flows display rough and smooth lobate morphologies (RL and SL) morphologies and occur in conjunction with sinuous channels (SC). Russell and Head [2003] described these morphologies and hypothesized that RL correspond to debris flows that arose as lahars from the interaction between magma and ground water or ice. The mapping of Tanaka et al. [2003] identified these features similarly, attributing them to volcanoclastic flows formed from magma-volatile interactions. Crater counts by Werner et al. [2011] support surface ages between 1 and 2 Gyr for these flows. Analysis of the radargrams acquired throughout this area o show unambiguous subsurface reflectors that, individually, are relatively short and laterally intermittent. As a group, however, these reflectors are distributed sparsely over the flow field and correlate very well with the SL units. Delays to reflectors beneath the surface are generally in the order of < ~1 μs. In one locale with a high concentration of subsurface reflectors, centered at 117.61°E and 31.31°N, a sequence of smooth lobate flows overlie a smooth volcanic unit. The lobate flow in immediate contact with the smooth unit possesses subsurface reflections that correlate well with the flow edges, and where this flow is overlain by another lobate flow these reflections vanish. We interpret these reflections as a reflector that corresponds to the interface between the lobate flow and smooth unit. The average delay to this reflector is 0.68 - 0.71 μs along its length. The thickness of this lobate flow, estimated from MOLA elevation data, ranges between 35 and 40 m. The thickness estimate from MOLA and the delay to reflector from SHARAD together constrain the relative permittivity of the flow to between 6.5 and 9.5. These values are consistent

  1. Measuring effusion rates of obsidian lava flows by means of satellite thermal data (United States)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.


    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  2. Flow dynamics of dacite lava flow - AMS, microstructure and porosity case study (United States)

    Závada, Prokop; Kusbach, Vladimír; Machek, Matěj; Staněk, Martin; Špičák, Aleš


    Pyroclastic flows derived from flow frontal collapse of highly viscous "block lavas" formed by andesite or dacite belong to the most serious volcano-related hazards for surrounding populations. The threat results from abrupt transition of lava flow from ductile flow to gravitational failure of the front, which exposes their overpressurized interior and triggers devastating pyroclastic flows. The goal of the study is to quantify the microfabrics and dynamic porosity in a lava flow to constrain the cavitation process (development and coalescence of dynamic porosity). Pleistocene dacite flow body situated on the slope of Middle Sister Volcano (OR, USA) was studied by means of field-based structural analysis, anisotropy of magnetic susceptibility (AMS), microstructural analysis and mercury injection porosimetry (MIP). The 500 m exposure of the flow is associated with a vertical feeding dyke at the beginning of the flow, 40 m upslope. The flow shows occasional layers, 5-15 cm thick, marked by evenly spaced and up to 10 cm long, lenticular to sigmoidal cracks often developed in the vicinity of the clasts/phenocrysts. These cracks frequently dip against the slope of the flow and show 15-50° difference with the layering. At the feeding dyke, highly oblate magnetic fabric shows subvertical foliations with horizontal lineations oriented parallel to the dyke walls. Middle part of the flow revealed highly prolate fabrics with subhorizontal magnetic foliations and lineations parallel to the flow direction. At the downslope limit of the flow, magnetic foliations are perpendicular to the flow direction. The dynamic porosity was studied in detail on larger sample from the central part of the flow. The sample contains three layers with different density of porosity and average crack length. All the cracks were oriented about 45° to the layer boundaries and alignment of the groundmass crystals. MIP data revealed total connected porosities between 11 and 15 %. Throat

  3. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France) (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia


    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  4. Application of Bistatic TanDEM-X Interferometry to Measure Lava Flow Volume and Lava Extrusion Rates During the 2012-13 Tolbachik, Kamchatka Fissure Eruption (United States)

    Kubanek, J.; Westerhaus, M.; Heck, B.


    Aerial imaging methods are a well approved source for mapping lava flows during eruptions and can serve as a base to assess the eruption dynamics and to determine the affected area. However, clouds and smoke often hinder optical systems like the Earth Observation Advanced Land Imager (EO-1-ALI, operated by NASA) to map lava flows properly, which hence affects its reliability. Furthermore, the amount of lava that is extruded during an eruption cannot be determined from optical images - however, it can significantly contribute to assess the accompanying hazard and risk. One way to monitor active lava flows is to quantify the topographic changes over time while using up-to-date high-resolution digital elevation models (DEMs). Whereas photogrammetric methods still fail when clouds and fume obstruct the sight, innovative radar satellite missions have the potential to generate high-resolution DEMs at any time. The innovative bistatic TanDEM-X (TerraSAR-X Add-on for Digital Elevation Measurements) satellite mission enables for the first time generating high-resolution DEMs from synthetic aperture radar satellite data repeatedly with reasonable costs and high resolution. The satellite mission consists of the two nearly identical satellites TerraSAR-X and TanDEM-X that build a large synthetic aperture radar interferometer with adaptable across- and along-track baselines aiming to generate topographic information globally. In the present study, we apply the TanDEM-X data to study the lava flows that were emplaced during the 2012-13 Tolbachik, Kamchatka fissure eruption. The eruption was composed of very fluid lava flows that effused along a northeast-southwest trending fissure. We used about fifteen bistatic data pairs to generate DEMs prior to, during, and after the eruption. The differencing of the DEMs enables mapping the lava flow field at different times. This allows measuring the extruded volume and to derive the changes in lava extrusion over time.

  5. Eruptive history of the Karoo lava flows and their impact on early Jurassic environmental change (United States)

    Moulin, M.; Fluteau, F.; Courtillot, V.; Marsh, J.; Delpech, G.; Quidelleur, X.; Gérard, M.


    This paper reports new paleomagnetic and geochronologic data from a 1500 m thick composite section belonging to the Drakensberg group, the thickest remnant of the Karoo lavas in Northern Lesotho. Flow-by-flow analysis of paleomagnetic directions reveals 21 magnetic directional groups, corresponding to single eruptive events, and 16 individual lava flows. The new age determinations of lava flows range from 180.1 ± 1.4 to 182.8 ± 2.6 Ma. These data, combined with previous results, allow us to propose that the main part of the Drakensberg group and the Karoo intrusive complex dated around 181-183 Ma may have been erupted over a period as short as 250 kyr and may have coincided with the two main phases of extinction in the Early Toarcian. This scenario agrees well with the discontinuous rhythm of environmental and biotic perturbations in the Late Pliensbachian-Toarcian interval.

  6. Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis (United States)

    Castruccio, A.; Rust, A.; Sparks, R. S.


    We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of

  7. Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina (United States)

    Bernardi, Mauro I.; Bertotto, Gustavo W.; Jalowitzki, Tiago L. R.; Orihashi, Yuji; Ponce, Alexis D.


    The El Corcovo lava flow, from the Huanul shield volcano in the southern Mendoza province (central-western Argentina) traveled a distance of 70 km and covered a minimum area of ~ 415 km2. The flow emplacement was controlled both by extrinsic (e.g., topography) and intrinsic (e.g., lava supply rate, lava physicochemical characteristics) factors. The distal portion of the lava flow reached the Colorado River Valley, in La Pampa Province, where it spread and then was confined by earlier river channels. Cross-sections through the flow surveyed at several localities show two vesicular layers surrounding a dense central section, where vesicles are absent or clustered in sheet-shaped and cylindrical-shaped structures. Lavas of the El Corcovo flow are alkaline basalts with low values of viscosity. The morphological and structural characteristics of the flow and the presence of landforms associated with lava accumulation are the evidence of inflation. This process involved the formation of a tabular sheet flow up to 4 m of thick with a large areal extent in the proximal sectors, while at terminal sectors frontal lobes reached inflation values up to 10 m. The numerous swelling structures present at these portions of the flow suggest the movement of lava in lava tubes. We propose that this aspect and the low viscosity of the lava allowed the flow travel to a great distance on a gentle slope relief.

  8. Emplacement and inflation of natrocarbonatitic lava flows during the March-April 2006 eruption of Oldoinyo Lengai, Tanzania (United States)

    Mattsson, Hannes B.; Vuorinen, Jaana


    The most voluminous eruption of natrocarbonatite lava hitherto recorded on Earth occurred at Oldoinyo Lengai in March-April 2006. The lava flows produced in this eruption range from blocky 'a'a type to smooth-surfaced inflated pahoehoe. We measured lava inflation features (i.e. one tumulus and three pressure ridges) that formed in the various pahoehoe flows emplaced in this event. The inflation features within the main crater of Oldoinyo Lengai are relatively small-scale, measuring 1-5 m in width, 2.5-24.4 m in length and with inflation clefts less than 0.4 m deep. Their small sizes are in contrast to a tumulus that formed on the northwestern slope of the volcano (situated ~1140 m below the crater floor). The tumulus is roughly circular, measures 17.5 × 16.0 m, and is cut by a 4.4 m deep axial inflation cleft exposing two separate flow units. We measured the elastic properties (i.e. shear- and bulk moduli) of natrocarbonatitic crust and find that these are similar to those reported for basaltic crust, and that there is no direct correlation between magmastatic head and pressure required to form tumuli. All inflated flows in the 2006 event were confined by lateral barriers (main crater, erosional channel or erosional gully) suggesting that the two most important factors for endogenous growth in natrocarbonatitic lava flows are (1) lateral barriers that prevent widening of the flow, and (2) influx of new material beneath the viscoelastic and brittle crust.

  9. A three-dimensional dynamical model for channeled lava flow with nonlinear rheology (United States)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele


    Recent laboratory studies on the rheology of lava samples from different volcanic areas have highlighted that the apparent viscosity depends on a power of the strain rate. Several authors agree in attributing this dependence to the crystal content of the sample and to temperature. Starting from these results, in this paper we studied the effect of a power law rheology on a gravity-driven lava flow. The equation of motion is nonlinear in the diffusion term, and an analytical solution does not seem to be possible. The finite-volume method has been applied to solve numerically the equation governing the fully developed laminar flow of a power law non-Newtonian fluid in an inclined rectangular channel. The convergence, the stability, and the order of approximation were tested for the Newtonian rheology case, comparing the numerical solution with the available analytical solution. Results indicate that the assumption on the rheology, whether linear or nonlinear, strongly affects the velocity and/or the thickness of the lava channel both for channels with fixed geometry and for channels with constant flow rate. Results on channels with fixed geometry are confirmed by some simulations for real lava channels. Finally, the study of the Reynolds number indicates that gravity-driven lava channel flows are always in laminar regime, except for strongly nonlinear pseudoplastic fluids with low fluid consistency and at high slopes.

  10. Volcanic risk: mitigation of lava flow invasion hazard through optimized barrier configuration (United States)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Napoleoni, Q.; Del Negro, C.; Proietti, C.; Vicari, A.


    In order to mitigate the destructive effects of lava flows along volcanic slopes, the building of artificial barriers is a fundamental action for controlling and slowing down the lava flow advance, as experienced during a few recent eruptions of Etna. The simulated lava path can be used to define an optimize project to locate the work but for a timely action it is also necessary to quickly construct a barrier. Therefore this work investigates different type of engineering work that can be adopted to build up a lava containing barrier for improving the efficiency of the structure. From the analysis of historical cases it is clear that barriers were generally constructed by building up earth, lava blocks and incoherent, low density material. This solution implies complex operational constraints and logistical problems that justify the effort of looking for alternative design. Moreover for optimizing the barrier construction an alternative project of gabion-made barrier was here proposed. In this way the volume of mobilized material is lower than that for a earth barrier, thus reducing the time needed for build up the structure. A second crucial aspect to be considered is the geometry of the barrier which, is one of the few parameters that can be modulated, the others being linked to the morphological and topographical characteristics of the ground. Once the walls have been realized, it may be necessary to be able to expand the structure vertically. The use of gabion has many advantages over loose riprap (earthen walls) owing to their modularity and capability to be stacked in various shapes. Furthermore, the elements which are not inundated by lava can be removed and rapidly used for other barriers. The combination between numerical simulations and gabions will allow a quicker mitigation of risk on lava flows and this is an important aspect for a civil protection intervention in emergency cases.

  11. The role of unsteady effusion rates on inflation in long-lived lava flow fields (United States)

    Rader, E.; Vanderkluysen, L.; Clarke, A.


    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  12. Anisotropy of Magnetic Susceptibility Studies in Lava Flows of the Eastern Anatolia Region, Turkey (United States)

    Ucar, Hakan; Cengiz Cinku, Mualla


    Eastern Anatolia comprises one of the high plateaus of the Alpine-Himalaya mountain belt with an average elevation of 2 km above the sea level. Available geochronologic data indicate that the volcanism started in the south of the region around the north of Lake Van and continued towards the norths in a age interval of 15.0 Ma to 0.4 Ma. The products are exposed as stratovolcanoes like Agri, Tendurek, Suphan and Girekol with the eruption of andesitic to rhyolitic lavas, ignimbrites and basaltic lava flows. In this study, anisotropy of magnetic susceptibility measurements were carried out on different lava flows (Tendurek, Girekol and Suphan) to determine the flow direction of lavas. It has been shown that the direction of maximum susceptibility is associated with magma flow direction in the vertical direction, while a horizontal flow direction is predicted for the volcano structure of Suphan. Anisotropy of magnetic measurements show a trend of lineation towards the center of the projection and shallow-dipping foliations which are largely scattered.

  13. Mapping the vegetation colonization on recent lava flows using spectral unmixing of moderate spatial resolution satellite images: Nyamuragira volcano, D. R. Congo (United States)

    Li, Long; Kervyn, Matthieu; Canters, Frank


    . Results show that accuracy depends on the size of moving window of validation samples. We find a best fit (R2 >0.8) between the two datasets when using a 180 x 180 m2validation sample. We also find that vegetation proportion have a strong linear correlation with the normalized difference vegetation index (NDVI). When applied to the entire ALI scene, the proportion of vegetation on the recent flows is shown to be mostly controlled by the age of the lava surface and the proximity to the flow boundary. This technique opens the perspective to further characterize the dynamics of vegetation recovery on fresh volcanic surface.

  14. A rock- and paleomagnetic study of a Holocene lava flow in Central Mexico

    NARCIS (Netherlands)

    Vlag, P.; Alva-Valdivia, L.; Boer, C.B. de; Gonzalez, S.; Urrutia-Fucugauchi, J.


    Magnetic measurements of the Tres Cruces lava flow (ca. 8500 years BP, Central Mexico) show the presence of two remanence carriers, a Ti-rich titanomagnetite with a Curie temperature between 350 and 400 °C and a Ti-poor magnetite with a Curie temperature close to 580°C. Magnetic changes after

  15. A brief comparison of lava flows from the Deccan Volcanic Province ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    scenarios may hence not be pragmatic. If this is the case, then it has important implications for emplacement of planetary lava flows and for mass extinctions. The link between CFB provinces and mass extinctions hinges on catastrophic effects of volatile release during individual CFB eruptions. (Courtillot and Renne 2003).

  16. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.


    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  17. Risk from lava flow inundations in densely populated areas: the case of Etna volcano (United States)

    Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Herault, A.


    The ever-expanding use of areas near the volcano increases the potential impact of future eruptions on the regional economy and on the health and safety of the inhabitants. The increasing exposure of a larger population, which has almost tripled in the area around Mt. Etna during the last 150 years, is often derived from a poor assessment of the volcanic hazard, allowing inappropriate land use in vulnerable areas. Therefore, a correct assessment is an essential component in reducing the losses due to volcanic disasters. A detailed map showing areas that are likely to be inundated by future lava flows is extremely useful, allowing people living nearby to judge for themselves the relation between potentially dangerous areas and their daily lives. Here we quantify the lava flow risk at Etna volcano using a GIS-based methodology that integrates the hazard with the exposure of elements at stake. The hazard, showing the long-term probability related to lava flow inundation, is obtained combining three different kinds of information: the spatiotemporal probability for the future opening of new eruptive vents, the event probability associated with classes of expected eruptions, and the overlapping of lava flow paths simulated by the MAGFLOW model. Data including all elements at stake were gathered from different web portals and organized in four thematic layers: population, strategic buildings, other buildings and networks, and land use. The total exposure is given by a weighted linear combination of the four thematic layers, where weights are calculated using the Analytic Hierarchy Process (AHP). The resulting risk map shows the likely damage caused by a lava flow eruption, allowing rapidly visualizing the areas in which there would be the greatest amount of losses in case of a flank eruption occurs at Etna.

  18. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis (United States)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.


    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  19. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.


    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  20. 40Ar-39Ar age of a lava flow from the Bhimashankar Formation ...

    Indian Academy of Sciences (India)

    We report here a 40Ar-39Ar age of 66.0 ± 0.9Ma (2 ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2km thick bottom part of the exposed basalt flow sequence in the Western Ghats was ...

  1. 40Ar-39Ar age of a lava flow from the Bhimashankar Formation ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Ar age of 66.0 ± 0.9 Ma (2σ) for a reversely magnetised tholeiitic lava flow from the Bhimashankar Formation (Fm.), Giravali Ghat, western Deccan province, India. This age is consistent with the view that the 1.8–2 km thick bottom part of the exposed basalt flow sequence in the Western Ghats was extruded very close to 67.4 ...

  2. Modeling the 2012-2013 lava flows of Tolbachik, Russia using thermal infrared satellite data and PyFLOWGO (United States)

    Ramsey, M. S.; Chevrel, O.; Harris, A. J. L.


    Satellite-based thermal infrared (TIR) observations of new volcanic activity and ongoing lava flow emplacement become increasingly more detailed with improved spatial, spectral and/or temporal resolution data. The cooling of the glassy surface is directly imaged by TIR instruments in order to determine temperature, which is then used to initiate thermo-rheological-based models. Higher temporal resolution data (i.e., minutes to hours), are used to detect new eruptions and determine the time-averaged discharge rate (TADR). Calculation of the TADR along with new observations later in time and accurate digital elevation models (DEMs) enable modeling of the advancing flow's down-slope inundation area. Better spectral and spatial resolution data, on the other hand, allow the flow's composition, small-scale morphological changes and real-time DEMs to be determined, in addition to confirming prior model predictions. Combined, these data help improve the accuracy of models such as FLOWGO. A new adaptation of this model in python (PyFLOWGO) has been used to produce the best fit eruptive conditions to the final flow morphology for the 2012-2013 eruption of Tolbachik volcano, Russia. This was the largest and most thermally-intense flow-forming eruption in the past 50 years, producing longer lava flows than that of typical Kilauea or Etna eruptions. The progress of these flows were imaged by a multiple TIR sensors at various spatial, spectral and temporal scales throughout the flow field emplacement. We have refined the model based on the high resolution data to determine the TADR and make improved estimates of cooling, viscosity, velocity and crystallinity with distance. Understanding the cooling and dynamics of basaltic surfaces ultimately produces an improved hazard forecast capability. In addition, the direct connection of the final flow morphology to the specific eruption conditions that produced it allows the eruptive conditions of older flows to be estimated.

  3. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning


    Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... with a comparatively large fraction of multiple scattering. Other scattering mechanisms can not be recognized...

  4. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations (United States)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.


    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  5. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope (United States)

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.


    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  6. The Kilauea 1974 Flow: Quantitative Morphometry of Lava Flows using Low Altitude Aerial Image Data using a Kite-based Platform in the Field (United States)

    Scheidt, S. P.; Whelley, P.; Hamilton, C.; Bleacher, J. E.; Garry, W. B.


    The December 31, 1974 lava flow from Kilauea Caldera, Hawaii within the Hawaii Volcanoes National Park was selected for field campaigns as a terrestrial analog for Mars in support of NASA Planetary Geology and Geophysics (PGG) research and the Remote, In Situ and Synchrotron Studies for Science and Exploration (RIS4E) node of the Solar System Exploration Research Virtual Institute (SSERVI) program). The lava flow was a rapidly emplaced unit that was strongly influenced by existing topography, which favored the formation of a tributary lava flow system. The unit includes a diverse range of surface textures (e.g., pāhoehoe, ´áā, and transitional lavas), and structural features (e.g., streamlined islands, pits, and interactions with older tumuli). However, these features are generally below the threshold of visibility within previously acquired airborne and spacecraft data. In this study, we have generated unique, high-resolution digital images using low-altitude Kite Aerial Photography (KAP) system during field campaigns in 2014 and 2015 (National Park Service permit #HAVO-2012-SCI-0025). The kite-based mapping platform (nadir-viewing) and a radio-controlled gimbal (allowing pointing) provided similar data as from an unmanned aerial vehicle (UAV), but with longer flight time, larger total data volumes per sortie, and fewer regulatory challenges and cost. Images acquired from KAP and UAVs are used to create orthomosaics and DEMs using Multi-View Stereo-Photogrammetry (MVSP) software. The 3-Dimensional point clouds are extremely dense, resulting in a grid resolution of < 2 cm. Airborne Light Detection and Ranging (LiDAR) / Terrestrial Laser Scanning (TLS) data have been collected for these areas and provide a basis of comparison or "ground truth" for the photogrammetric data. Our results show a good comparison with LiDAR/TLS data, each offering their own unique advantages and potential for data fusion.

  7. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Directory of Open Access Journals (Sweden)

    Heryadi Rachmat


    Full Text Available DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  8. Cyclic spattering, seismic tremor, and surface fluctuation within a perched lava channel, Kīlauea Volcano (United States)

    Patrick, M.R.; Orr, T.; Wilson, D.; Dow, D.; Freeman, R.


    In late 2007, a perched lava channel, built up to 45 m above the preexisting surface, developed during the ongoing eruption near Pu‘u ‘Ō‘ō cone on Kīlauea Volcano’s east rift zone. The lava channel was segmented into four pools extending over a total of 1.4 km. From late October to mid-December, a cyclic behavior, consisting of steady lava level rise terminated by vigorous spattering and an abrupt drop in lava level, was commonly observed in pool 1. We use geologic observations, video, time-lapse camera images, and seismicity to characterize and understand this cyclic behavior. Spattering episodes occurred at intervals of 40–100 min during peak activity and involved small (5–10-m-high) fountains limited to the margins of the pool. Most spattering episodes had fountains which migrated downchannel. Each spattering episode was associated with a rapid lava level drop of about 1 m, which was concurrent with a conspicuous cigar-shaped tremor burst with peak frequencies of 4–5 Hz. We interpret this cyclic behavior to be gas pistoning, and this is the first documented instance of gas pistoning in lava well away from the deeper conduit. Our observations and data indicate that the gas pistoning was driven by gas accumulation beneath the visco-elastic component of the surface crust, contrary to other studies which attribute similar behavior to the periodic rise of gas slugs. The gas piston events typically had a gas mass of about 2,500 kg (similar to the explosions at Stromboli), with gas accumulation and release rates of about 1.1 and 5.7 kg s−1, respectively. The time-averaged gas output rate of the gas pistoning events accounted for about 1–2% of the total gas output rate of the east rift zone eruption.

  9. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars (United States)

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.


    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to

  10. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.


    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  11. Homogeneity of lava flows - Chemical data for historic Mauna Loan eruptions (United States)

    Rhodes, J. M.


    Chemical analyses of basalts collected from the major historic eruptions of Mauna Loa volcano show that many of the flow fields are remarkably homogeneous in composition. Despite their large size (lengths 9-85 km), large areal extents (13-114 sq km), and various durations of eruption (1-450 days), many of the flow fields have compositional variability that is within, or close to, the analytical error for most elements. The flow fields that are not homogeneous vary mainly in olivine content in an otherwise homogeneous melt. Some are composite flow fields made up of several, apparently homogeneous subunits erupted at different elevations along the active volcanic rifts. Not all volcanoes produce lavas that are homogeneous like those of Mauna Loa. If studies such as this are to be used to evaluate compositional diversity in lavas where there is a lack of sampling control, such as on other planets, it is necessary to understand why some flow units and flow fields are compositionally homogeneous and others are not, and to develop criteria for distinguishing between them.

  12. Topographic influence on thermo-rheologic modeling of the lava flows of Daedalia Planum, Mars (United States)

    Beauchamp, N.; Ramsey, M. S.


    Modeling of lava flow length relies on many factors including the relationship between the rheologic properties (e.g., yield strength, viscosity), mass eruption rate, erupted volume, and the topography over which it flows. In general, numerical modeling assumes that flows are either governed by the amount of erupted material (volume limited) or by the rate of heat loss (cooling limited), which determines their rheologic properties. One such cooling-limited model is FLOWGO, a 1-D thermo-rheologic approach developed to model open-channel lava flows. It uses the time averaged discharge rate (TADR) plus measurements of thickness and path slope to forecast the final flow length, defined as the point where the predicted velocity is equal to zero or the core temperature reaches the solidus. We have modified several of the model's input variables and assumed the rheologic properties of large basaltic flows on Earth, to make FLOWGO applicable to the Mars environment. The underlying slope of the flow path is one critical variable that is unknown for this older flow field, however the regional slope can be used as a proxy for pre-existing topography. Topographic data for Mars is provided by the Mars Orbiter Laser Altimeter (MOLA) instrument, which measured elevation with a vertical accuracy of 37.5 cm and horizontal accuracy of 100 m. Daedalia Planum, the region of Mars containing the flow field, is a plain that extends to the south of Arisa Mons volcano with an average slope of less than 0.5°. Results show that, in addition to the average slope, small variations in topography play an important role in the final flow length. For example, using the average slope of an assumed flow path produces modeled flows that are at least 10% longer than results using the measured slope variations. This work shows that interpolated gridded digital topographic data tend to smooth smaller-scale features, thus decreasing the final model accuracy.

  13. Primary succession of Hawaiian montane rain forest on a chronosequence of eight lava flows

    Energy Technology Data Exchange (ETDEWEB)

    Kitayama, K.; Mueller-Dombois, D. [Univ. of Hawaii at Manoa, Honolulu, HI, (United States) Dept. of Botany; Vitousek, P.M. [Stanford Univ., Stanford, CA (United States) Dept. of Biological Sciences


    The primary-successional sere of a Hawaiian montane rain forest was inferred from an age sequence of eight closely located `a`a flows (clinker type lava); 8, 50, 140, ca. 300, ca. 400, ca. 1400, ca. 3000 and ca.9000 yr, on a windward slope of Mauna Loa, Hawaii. All study sites (0.2 ha each) were at 1120-1250 m a.s.l. with 4000 mm mean annual rainfall. The 400-yr, 1400-yr, and 9000-yr flows had younger volcanic ash deposits, while the others were pure lava. Comparisons of tree size and foliar nutrients suggested that ash increased the availability of nitrogen, and subsequently standing biomass. An Unweighted Pair Group Cluster Analysis on the samples (flows) using quantitative vascular species composition revealed that clusters were correlated with age regardless of the substrate types (pure lava vs. ash), and an indirect ordination on the samples suggested that the sequence of sample scores along axis 1 was perfectly correlated with the age sequence. Although ash deposits increased biomass, they did not affect the sequence of the successional sere. Both pubescent and glabrous varieties of Metrosideros polymorpha (Myrtaceae) dominated upper canopy layers on all flows {>=} 50 yr and {<=} 1400 yr, but the pubescent variety was replaced by the glabrous on the flows {>=} 3000 yr. Lower layers were dominated initially by a mated fern, Dicranopteris linearis, up to 300 yr, and subsequently by tree ferns, Cibotium spp., to 9000 yr. The cover of Cibotium declined sightly after 3000 yr, while other native herb and shrub species increased. 43 refs, 7 figs, 4 tabs

  14. Secular variation of the Earth magnetic field recorded in Holocene lava flows from Chile (United States)

    Roperch, Pierrick; Chauvin, Annick; Lara, Luis; Moreno, Hugo


    The recent secular variation of the Earth's magnetic field is mainly characterized by the large growth of the South Atlantic Magnetic Anomaly during the last three centuries, first documented in the geomagnetic field model GUFM (Jackson et al., 2000). This present-day magnetic anomaly is characterized in Chile by low magnetic inclinations and low intensities of the geomagnetic field (-40° and 25.7µT at 40°S). In order to better describe the secular variation during the Holocene, we sampled 21 dated lava flows or pyroclastic flows from several Chilean volcanoes (Lonquimay, Llaima, Solipulli, Villarrica, Mocho-Choshuenco, Osorno, Calbuco). Juvenile clasts from basaltic-andesitic pyroclastic flow deposits provide reliable paleomagnetic results (Roperch et al, 2014). We also sampled 56 sites in Holocene lava flows with only relative ages with respect of the dated units. Paleomagnetic results were obtained from several sites in two well-dated historic lava flows; 9 sites and 11 paleointensity results (PI) from the 1835AD eruption of the Osorno volcano and 8 sites and 23 PIs from the 1751AD eruption of the Llaima volcano. In addition, 14 PIs were obtained in bricks from shelters built along the main path across the Andes from Santiago (Chile) to Mendoza (Argentina) in 1768AD. These results confirm the high reliability of the global geomagnetic model GUFM for the last three centuries. At Villarrica, results from 10 sites in lava flows (calibrated age 1440AD±30) provide paleomagnetic directions that are different from the CALS3k.4 model (Korte et al., 2011) indicating that more paleomagnetic results in well dated lava flows are necessary to improve the robustness of global geomagnetic models prior to 1700AD. The steepest inclination of the geomagnetic field (-71.6°) and the highest intensity (70µT±5) are found in the time range 850-900AD. This observation is made from paleomagnetic results from a pyroclastic flow from the Osorno volcano (calibrated age range of 782

  15. Lava Flow Emplacement Processes and Eruptive Characteristics of the Ontong Java Plateau: Inferences from High-Precision Glass Analysis (United States)

    Trowbridge, S. R.; Michael, P. J.


    High-precision major and volatile element analyses were performed on natural basaltic glass from ODP Leg 192 Sites 1185 and 1187 of the Ontong Java Plateau (OJP) as a way to correlate lava flows within and between ODP drill sites. The ultimate goal is to estimate the dimensions, emplacement style, and eruption characteristics of the high-MgO Kroenke-type lavas: the youngest known flows at the two sites. The 122-Ma Ontong Java Plateau is the largest known magmatic event in Earth's history, yet little is known of the emplacement style (e.g. flow dimensions and durations) of OJP lavas due to its submarine nature and burial beneath hundreds of meters of sediment. Basalt samples were recovered from 110- and 130-m thick core sections from Sites 1185B and 1187A, respectively. Total Kroenke-type lava thickness is 125 m at 1185B and >136 m at 1187. Site 1187A is located 146 km north of Site 1185B and lies ≈50 m shallower than Site 1187. Remarkably, all of the glass compositions from both sites fall on a common liquid line of descent, suggesting that all lavas were the product of a single eruption from a common magma chamber. The range of MgO compositions reflects a 20ºC range in temperature, representing ~1.9% crystallization of olivine + spinel. Using measured phenocryst abundance, we examine whether this crystallization occurred within the magma chamber or during long transport of lavas on the seafloor. More primitive lavas are present in the upper 30 m of Site 1185B (average of ~9.54 wt. % MgO), overlying more fractionated lavas (average of ~9.06 wt. % MgO). Lavas from Site 1187A bridge the gap between the high- and low-MgO groups of 1185B. In contrast to MORB, OJP glasses have no vesicles, suggesting they remained liquid for much longer during flow. Paleoeruption depths calculated from H2O and CO2 contents of glasses show no systematic variation with depth in Core 1185B, and range from ~2130-2650 mbsl, while Site 1187 shows deeper eruption depths of ~2410-3040 mbsl

  16. Difficulties in Forecasting Flow Paths During the 2014-2015 Lava Flow Crisis at Kīlauea Volcano (Hawaíi) (United States)

    Patrick, M. R.; Orr, T. R.; Trusdell, F.; Llewellin, E. W.; Kauahikaua, J. P.


    Kīlauea's East Rift Zone (ERZ) eruptive activity at Púu ´Ō´ō shifted to a new vent in June 2014, sparking a lava flow crisis that threatened critical infrastructure near the town of Pāhoa in east Hawaíi. The lava flow proved to be challenging to forecast because of the influence of ground cracks on flow direction, frequent fluctuations in lava supply, and the subtle interplay between ground slope and confining topography that prevented the flow from spreading laterally. After its onset, the "June 27th" flow, named informally for its start date, advanced northeast at up to several hundred m/day. The flow's path through heavy forest was forecast using steepest-descent paths derived from a digital elevation model (DEM). Flow path uncertainties were minimized using a multiple-run technique and built-in random DEM errors (modified from Favalli et al., 2005). In mid-August, the flow encountered and entered one of many deep, discontinuous ground cracks along Kīlauea's middle ERZ. The flow continued to advance out of sight in the crack, as inferred from a forward-progressing line of steam. A week later, lava spilled from the crack 1.3 km downslope, advancing along a different flow path than was forecast. By early September, the flow had entered and exited three more cracks sequentially, carrying the flow across slope, thus making flow path forecasts unreliable. Moreover, lava-occupied cracks dilated by up to 3 m. The lava accumulating in the ground cracks forced immense, but apparently mobile, blocks to shift. Thus, while an open crack was required to capture the lava, the lava was able to force its way beyond where the crack closed. In this way, the lava flow acted as an intruding dike. The flow eventually advanced beyond the area of cracks and onto a steepest-descent path that guided the flow toward the town of Pāhoa, where it destroyed one house, reached to within ~155 m of the main street in Pāhoa, and threatened the main highway and shopping center serving

  17. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars (United States)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.


    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  18. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.


    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  19. Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    International Nuclear Information System (INIS)

    D'Ambrosio, D.; Spataro, W.; Di Gregorio, S.; Calabria Univ., Cosenza; Crisci, G.M.; Rongo, R.; Calabria Univ., Cosenza


    Cellular Automata are highly nonlinear dynamical systems which are suitable far simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed far the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model far the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, far the parameters optimisation of the model SCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm far the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations

  20. Paleomagnetic study of an historical lava flow from the Llaima volcano, Chile (United States)

    Di Chiara, A.; Moncinhatto, T.; Hernandez Moreno, C.; Pavón-Carrasco, F. J.; Trindade, R. I. F.


    The understanding of the paleosecular variations (PSV) of the geomagnetic field in South America is still biased by the scarcity of data. Especially, the recent geomagnetic PSV is characterized by the large growth of the South Atlantic Magnetic Anomaly (SAMA) during the last centuries, first documented by the geomagnetic model gufm1 (Jackson et al., 2000). A large amount of data is required to understand the time and geographic distribution of this primary feature, and the Andean Pleistocene and Holocene volcanoes are an excellent recorder of instant local changes in SV. Here we present a preliminary study from 18 paleomagnetic samples collected during 2015 on what it was supposed to be the 1750 or the 1957-58 AD lava flow on the Llaima Volcano (38.692° S; 71.729° W), one of the most active centers of the Chilean Andes, in the Southern Volcanic Zone. A detailed paleomagnetic study was performed in order to recover the Declination and Inclination of the geomagnetic field, obtain the paleointensity and define the magnetic mineralogy. AF demagnetization until 1 T yielded an average vector at Dec/Inc 2.3°/-33.1° with α95 of 2.4°. This direction is carried by titanomagnetite grains with 40-45% ulvospinel as revealed by thermomagnetic curves. Paleointensity estimates were obtained following the IZZI-Thellier protocol. Seven specimens from 5 samples provided reliable results (success rate of 35%), giving an average paleointensity for these specimens of 30.88 ± 2.39 μT. The full magnetic vector obtained here was compared to archaeomagnetic reference curves and the IGRF suggest that the lava flow has the age of 1957-58 AD.

  1. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA. (United States)

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.


    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  2. Topographic Constraints on Lava Flow Patterns: the December 2010 Eruption of Piton de La Fournaise (La Réunion) (United States)

    Soldati, A.; Harris, A. J. L.; Gurioli, L.; Villeneuve, N.; Whittington, A. G.; Rhéty, M.


    The December 2010 lava flow of Piton de La Fournaise consists of four separate branches, all fed by the same fissure over about 15 hours, but then flowing in slightly different directions. This provided us a unique chance to address the long-standing question of how pre-existing topography controls lava flow patterns. Each flow branch was mapped and sampled from vent to toe. The morphology of all branches can be described using a combination of three basic cross-section types (perpendicular to flow direction): (1) single, stable channel; (2) unstable, braided channels; and (3) dispersed flow. These flow morphologies depend on pre-existing underlying topography, so that a steep slope results in a stable channel, while a gentle slope results in a braided channel. Downflow slope variations can drive the flow morphology to switch back and forth between a single stable channel and multiple braided channels several times along its length. However, in our volume-limited study case, if slope falls below a critical threshold the flow becomes dispersed and stops shortly thereafter. The exact transition values from stable to braided channel and vice-versa depend on parameters other than topography, such as magma effusion rate, as illustrated by the comparative analyses of the different flow branches. The findings of this study allow us to interpret and explain the observed flow patterns on the basis of pre-existing volcano topography and effusion rates estimates.

  3. Emplacement of subaerial pahoehoe lava sheet flows into water: 1990 Kūpaianaha flow of Kilauea volcano at Kaimū Bay, Hawai`i (United States)

    Umino, Susumu; Nonaka, Miyuki; Kauahikaua, James P.


    Episode 48 of the ongoing eruption of Kilauea, Hawai`i, began in July 1986 and continuously extruded lava for the next 5.5 years from a low shield, Kūpaianaha. The flows in March 1990 headed for Kalapana and inundated the entire town under 15–25 m of lava by the end of August. As the flows advanced eastward, they entered into Kaimū Bay, replacing it with a plain of lava that extends 300 m beyond the original shoreline. The focus of our study is the period from August 1 to October 31, 1990, when the lava buried almost 406,820 m2 of the 5-m deep bay. When lava encountered the sea, it flowed along the shoreline as a narrow primary lobe up to 400 m long and 100 m wide, which in turn inflated to a thickness of 5–6 m. The flow direction of the primary lobes was controlled by the submerged delta below the lavas and by damming up lavas fed at low extrusion rates. Breakout flows through circumferential and axial inflation cracks on the inflating primary lobes formed smaller secondary lobes, burying the lows between the primary lobes and hiding their original outlines. Inflated flow lobes eventually ruptured at proximal and/or distal ends as well as mid-points between the two ends, feeding new primary lobes which were emplaced along and on the shore side of the previously inflated lobes. The flow lobes mapped with the aid of aerial photographs were correlated with daily observations of the growing flow field, and 30 primary flow lobes were dated. Excluding the two repose periods that intervened while the bay was filled, enlargement of the flow field took place at a rate of 2,440–22,640 square meters per day in the bay. Lobe thickness was estimated to be up to 11 m on the basis of cross sections of selected lobes measured using optical measurement tools, measuring tape and hand level. The total flow-lobe volume added in the bay during August 1–October 31 was approximately 3.95 million m3, giving an average supply rate of 0.86 m3/s.

  4. Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars

    Directory of Open Access Journals (Sweden)

    Mark A. Price


    example. Accurate identification of non-mantled lava surfaces within an apparently well-mantled flow field on either planet provides locations to extract important mineralogical constraints on the individual flows using TIR data.

  5. Thermal Modeling of the Cooling History of a Basalt Lava Flow: Effect of Flow Shape and Thermal Perturbations Induced by Inflation Fissures (United States)

    Schaefer, C. J.; Kattenhorn, S. A.


    Thermal modeling of cooling basalt lava flows has typically been undertaken using 1-D analytical heat flow models for an infinite plane. In such models, flows are conceptualized as having a finite thickness, but are infinitely wide and infinitely long (i.e., "sheet flows"). These analytical models typically accounted only for conductive heat loss, or attempted to approximate the effect of a sudden convective heat loss by redefining the conduction boundary conditions at some point during the cooling history. Although such models have proven useful for the examination of sheet flows such as those of the Columbia River flood basalts, they are inadequate for considering the cooling history of low-volume flows having small (meters to a few 10s of meters) in-plane dimensions (i.e., small aspect ratios, or width/thickness). In such flows, cross-sectional flow shape exerts a strong control on the thermal evolution of the flow during cooling, and hence on the cooling fracture patterns that develop in response to thermal stresses. The advent of numerical thermal models has recently enabled other researchers to predict isotherm patterns in lava flows with in-plane lateral peripheries. We build on these numerical modeling efforts by examining the effect of variable flow shape on lava flow cooling history. We also explicitly model the effects of convective heat loss through inflation fissures that develop in response to inflation of the lava flow during extrusion. This choice of controlling factors is predicated by observations of flow shapes and fracture characteristics of low-volume basalt flows of the Eastern Snake River Plain (ESRP), Idaho. We use the finite element code ABAQUS to model the thermal evolution of small aspect ratio flows, both with and without an inflation fissure. The program accounts for radiation of heat and convection at exposed boundaries, latent heat of crystallization, and conduction of heat into the underlying substrate. In models that do not include

  6. Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement (United States)

    Gottsmann, Joachim; Harris, Andrew J. L.; Dingwell, Donald B.


    We have investigated the thermal history of glassy pāhoehoe crusts across their glass transition. Ten different samples obtained between 1993 and 2003 from the active flow field of the Pu'u 'O'o-Kupaianaha eruption on Hawaii (USA) have been analysed using relaxation geospeedometry. This method employs differential scanning calorimetry to quantify the enthalpic relaxation of the glass to monitor the natural time-temperature (t-T) path followed by the melt during cooling across its glass transition. Cooling rates across the glass transition interval (at 1000- 900 K) have been found to vary between 8 and 140 K/min. The associated glass transition temperatures are up to 400 K, lower than previously anticipated by others. Melt viscosities at the glass transition for these crusts range from 10 9.4 to 10 10.7 Pa s. We have compared the t-T paths quantified via relaxation geospeedometry with those obtained from direct measurements on the active flow field. The calorimetrically determined cooling rates are consistent with either simple cooling from eruption temperatures to temperatures below the glass transition or more complex cooling paths, including periods of reheating and short-term annealing within the glass transition interval. By quantifying the relaxation times associated with these contrasting cooling histories, we show that secondary vesiculation of pāhoehoe flow crusts may be favoured by complex, nonlinear t-T paths within the glass transition. These constraints also allow us to evaluate the time scales associated with the crystallisation and inflation of flow lobes at the glass transition for different pāhoehoe lava flow types. Our results provide important quantifications of rheological parameters at the lower temperature range of viscoelastic deformation in basaltic lava flows. As such, the results may be helpful in refining models for the generation of continental flood basalt flows, as well as models of basaltic lava flow propagation for hazard

  7. Insights on the 2010 Lava Flows of Piton de la Fournaise Using Cosmo-SkyMed and TanDEM-X Data: Lava Displacement Rates, Thicknesses, and Volume Estimates (United States)

    Bato, M. G.; Froger, J. L.; Harris, A. J. L.; Villeneuve, N.


    Characterization of lava flow after its emplacement provides volume and constraints for lava flow emplacement simulations that help assess pending volcanic hazards. Additionally, it gives us better insights in understanding the dynamics of the underlying magmatic plumbing system and the possible mechanism of the eruption. In this work, we developed a technique using monostatic Cosmo-SkyMed and bistatic TanDEM-X data to calculate the volume, measure the thickness, and the horizontal and vertical displacements immediately after the emplacement of the October 2010 lava flow at Piton de la Fournaise. Results show that the thickest part of the October 2010 lava flow is about 13 to 16 m and the DRE volume is estimated to fall within the range of 1.71 to 3.00 x 106 m3 (±1σ), depending on which InSAR database was used. We also observe that the October 2010 lava flow is subsiding at a maximum rate of 14 cm yr-1. Apart from the vertical displacement, joint sliding and centripetal displacement were also identified with a maximum rate of 4.0 cm yr-1. We cross-validated our InSAR results with the mixed-pixel technique of Harris [1997] in terms of the estimated volumes. Our analysis shows that the volume derived using a few TanDEM-X interferograms fitted well within the range of volume given by the mixed-pixel technique as compared to the huge monostatic Cosmo-SkyMed database. In addition to the October 2010 lava flow, we also characterized the thin lava flow deposit of the December 2010 eruption, however using only bistatic TanDEM-X data. In this case of thin lava deposits, we expect that TanDEM-X are best to use in deriving the thickness and estimating the volume as these type of data are more sensitive to topographic change. Reference: Harris AJL, Blake S, Rothery DA, Stevens NF., 1997. A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. Geophys. Res. Lett. 102:7985-8003.

  8. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon (United States)

    Fink, Jonathan H.; Anderson, Steven W.


    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  9. Channelled flow of lava with temperature dependent pseudoplastic rheology: condition for tube formation (United States)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele


    Conditions for crust and tube formation are studied assuming for lava a pseudoplastic rheology dependent on temperature (Sonder, pers. Comm.). The pseudoplasticity is the rheological model which, from recent laboratory studies, better describes the behaviour of basaltic lava (e.g. Sonder et al., 2006). The pseudoplastic rheology belongs to the power law rheology and the constitutive equation for a power law fluid is the following: σij = 2kdot en-1dot eij (1) where k is the fluid consistency, n is the power law exponent and e depends on the second invariant of the deformation rate tensor. For a pseudoplastic fluid we have that n

  10. Hawaii Volcanism: Lava Forms (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes...

  11. Geomorphology and petrography of the Angeles lava flow and the Monte de la Cruz cinder cone, Barva Volcano, Costa Rica

    International Nuclear Information System (INIS)

    Rojas, Vanessa; Barahona, Dione; Alvarado, Guillermo E


    A geomorphological and pretrographic study was carried out at the lava flow Angeles and the Monte de la Cruz cone in the foothills of the Volcan Barva in Costa Rica. The 1967 aerial photographs at scale 1: 17,000 and 1: 13,000, 1992 at scale 1: 60,000 and TERRA 1997 at scale 1: 40,000 were used for the photogeological study, supplemented with the analysis of the eastern sector of the Hoja Topografica Barva (1: 50 000) of the Instituto Geografico Nacional (IGN) and other topographic maps at different scales (1: 25 000 and 1: 10 000), in addition to the digital elevation models developed through Sistemas de Informacion Geografica (SIG). The information extracted from the wells of the Sistema Nacional de Aguas Subterraneas, Riego y Avenamiento (SENARA) for underground control was reinterpreted. In the field work thicknesses were measured and an estimation of the volumes, dimensions of the cast and other associated geoforms was made. Likewise, 9 samples of rock were selected for the elaboration of thin sections and for their respective petrographic analysis, which allowed to define the main lava flow units and their possible flows. As a result of the volcanic activity of the cone, two flow units of the Angeles wash were identified, the Lower Angels unit and the Superior Angels unit. Petrographically, Angeles Inferior was reciprocated with an andesitic vesical basaltic lava with a porphyritic to slightly glomeroporphyric hypocrystalline texture, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. On the other hand, Superior Angeles has been vesicular andesitic with a hypocrystalline texture, glomeroporfiritica to serial glomeroporfiritica, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. Morphologically, kipukas and levees were observed. Regionally, it was observed that the Monte de la Cruz cone, along with other smaller satellite cones, are aligned N19 O W along 8.5 km, evidencing an origin associated with a

  12. Holuhraun 2014-2015 Eruption Site on Iceland: A Flood Lava Analogue for Mars (United States)

    Voigt, J.; Hamilton, C. W.; Scheidt, S. P.; Bonnefoy, L. E.; Jónsdóttir, I.; Höskuldsson, A.; Thordarson, T.


    The Holuhraun eruption 2014-2015 is the largest flood lava flow in Iceland since the Laki eruption in 1783-1784. We here present the first facies map of the whole Holuhraun lava flow, which we linked to the chronological emplacement history. Furthermore the facies we identify at Holuhraun are common on the Martian surface, especially at Marte Vallis and Rahway Valles. It therefore provides unique insights into the emplacement of flood lavas on Earth and other planetary bodies.

  13. A brief comparison of lava flows from the Deccan Volcanic Province ...

    Indian Academy of Sciences (India)

    The nature and style of emplacement of Continental Flood Basalt (CFB) lava flows has been a atter of great interest as well as considerable controversy in the recent past. However, even a cursory review of published literature reveals that the Columbia River Basalt Group (CRBG) and Hawaiian volcanoes provide most of ...

  14. Pioneer microbial communities of the Fimmvörðuháls lava flow, Eyjafjallajökull, Iceland. (United States)

    Kelly, Laura C; Cockell, Charles S; Thorsteinsson, Thorsteinn; Marteinsson, Viggó; Stevenson, John


    Little is understood regarding the phylogeny and metabolic capabilities of the earliest colonists of volcanic rocks, yet these data are essential for understanding how life becomes established in and interacts with the planetary crust, ultimately contributing to critical zone processes and soil formation. Here, we report the use of molecular and culture-dependent methods to determine the composition of pioneer microbial communities colonising the basaltic Fimmvörðuháls lava flow at Eyjafjallajökull, Iceland, formed in 2010. Our data show that 3 to 5 months post eruption, the lava was colonised by a low-diversity microbial community dominated by Betaproteobacteria, primarily taxa related to non-phototrophic diazotrophs such as Herbaspirillum spp. and chemolithotrophs such as Thiobacillus. Although successfully cultured following enrichment, phototrophs were not abundant members of the Fimmvörðuháls communities, as revealed by molecular analysis, and phototrophy is therefore not likely to be a dominant biogeochemical process in these early successional basalt communities. These results contrast with older Icelandic lava of comparable mineralogy, in which phototrophs comprised a significant fraction of microbial communities, and the non-phototrophic community fractions were dominated by Acidobacteria and Actinobacteria.

  15. Surface tension driven processes densify and retain permeability in magma and lava (United States)

    Kennedy, Ben M.; Wadsworth, Fabian B.; Vasseur, Jérémie; Ian Schipper, C.; Mark Jellinek, A.; von Aulock, Felix W.; Hess, Kai-Uwe; Kelly Russell, J.; Lavallée, Yan; Nichols, Alexander R. L.; Dingwell, Donald B.


    densification and permits continued outgassing. We propose a regime diagram of the relative dominance of surface tension and gravitational compaction that illustrates the interplay between viscosity, permeability, lengthscale and timescale. We contend that surface tension-driven magma densification is an as-yet overlooked phenomenon that extends our volcanological, geothermal and hydrothermal knowledge of how gas can escape densifying volcanic plugs and why dense lavas remain permeable.

  16. Simulating the lava flow formed during the 2014-2015 Holuhraun eruption (Bardarbunga volcanic system, Iceland) by using the new F-L probabilistic code (United States)

    Tarquini, Simone; de'Michieli Vitturi, Mattia; Jensen, Esther H.; Barsotti, Sara; Pedersen, Gro B. M.; Coppola, Diego


    The 2014-2015 fissure eruption in Holuhraun started when a new code (named F-L) was being developed. The availability of several digital Elevation Models of the area inundated by the lava and the availability of continuously updated maps of the flow (collected in the field and through remote sensing imagery) provided an excellent opportunity for testing and calibrating the new code against an evolving flow field. Remote sensing data also provided a constrain on the effusion rate. Existing numerical codes for the simulation of lava flow emplacement are based either on the solution of some simplification of the physical governing equations of this phenomenon (the so-called "deterministic codes" - e.g. Hidaka et al. 2005; Crisci et al. 2010), or, instead, on the evidence that lava flows tend to follow the steepest descent path from the vent downhill (the so-called "probabilistic codes" - e.g. Favalli et al. 2005). F-L is a new code for the simulation of lava flows, which rests on an approach similar to the one introduced by Glaze and Baloga (2013), and can be ascribed to the "probabilistic family" of lava flow simulation codes. Nevertheless, in contrast with other probabilistic codes (e.g. Favalli et al. 2005), this code explicitly tackles not only the direction of expansion of the growing flow and the area covered, but also the volume of the emplaced lava over time, and hence the supply rate. As a result, this approach bridges the stochastic point of view of a plain probabilistic code with one of the most critical among the input parameters considered by deterministic codes, which is the effusion rate during the course of an eruption. As such, a similar code, in principle, can tackle several aspects which were previously not addressed within the probabilistic approach, which are: (i) the 3D morphology of the flow field (i.e. thickness), (ii) the implications of the effusion rate in the growth of the flow field, and (iii) the evolution of the lava coverage over time

  17. Comparative analysis between Payen and Daedalia Planum lava fields (United States)

    Giacomini, Lorenza; Massironi, Matteo; Pasquarè, Giorgio; Carli, Cristian; Martellato, Elena; Frigeri, Alessandro; Cremonese, Gabriele; Bistacchi, Andrea; Federico, Costanzo

    The Payen volcanic complex is a large Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). From the eastern portion of this volcanic structure huge pahoehoe lava flows were emitted, extending more than 180 km from the feeding vents. These huge flows propagated over the nearly flat surface of the Pampean foreland (ca 0.3° slope). The very low viscosity of the olivine basalt lavas, coupled with the inflation process are the most probable explanation for their considerable length. In an inflation process a thin viscoelastic crust, produced at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The inflation shows some typical morphological fingerprints like tumuli, lava lobes, lava rises and lava ridges. In order to compare the morphology of the Argentinean Payen flows with lava flows on Mars, MOLA, THEMIS, MOC, MRO/HIRISE, and MEX/OMEGA data have been analysed, providing a multi-scale characterisation of Martian flows. Mars Global Surveyor/MOLA data were used to investigate the topographic environment over which flows propagated on Mars in order to detect very low angle slopes where possibly inflation processes could have developed. Then Mars Odyssey/THEMIS and Mars Global Surveyor's MOC data were used to detect Martian lava flows with inflation "fingerprints", whereas OMEGA data were used to obtain some inferences about their composition. Finally the MRO/HIRISE images recently acquired, can provide further details and constraints on surface morphologies and lava fronts. All these data were used to analyze Daedalia Planum lava field, at about 300 km southwest of Arsia Mons, and clear morphological similarities with the longest flows of the Payen lava fields were found. These striking morphological analogies suggest that inflation process is quite common also for the Daedalia field. This is also supported by

  18. Voluminous lava flow from Axial Seamount's south rift constrains extension rate on northern Vance Segment (United States)

    Le Saout, M.; Clague, D. A.; Paduan, J. B.


    Axial Seamount is characterized by a robust magma supply resulting from the interaction between the Cobb hotspot and the Juan de Fuca Ridge. During the last two decades, magmatic activity was focused within the summit caldera and upper and middle portions of the two rift zones, with eruptions in 1998, 2011, and 2015. However, the distal ends of both rift zones have experienced numerous eruptions in the past. The most voluminous flows are located near the extreme ends, greater than 40 kilometers from the caldera. Where Axial's South Rift Zone overlaps with the Vance Segment of the Juan de Fuca Ridge, the 2015 MBARI expedition mapped 16 km2 of the seafloor with our AUV, and collected 33 rocks and 33 sediment cores during two ROV dives. The data were used to confirm the boundaries of an extensive flow tentatively identified using modern ship based bathymetry. This flow is 18 km wide and 6 km long for a total surface area of 63 km2. The flow is modified by superficial ( 5 m deep) and deep (25 to 45 m deep) subsidence pits, with the deepest pits giving an indication of the minimum thickness of the flow. The maximum thickness of 100 m is measured at the margins of the flow. We thus estimate a volume between 2.5 and 6 km3, making this flow the most voluminous known on the global mid ocean ridge system. The minimum volume is equivalent to the present volume of the summit caldera. Radiocarbon ages of foraminifera from the basal sections of sediment cores suggest that this flow is 1000 years old. This flow travelled east and partially filled the axial valley of the adjacent Vance Segment. Since emplacement, this part of the flow has experienced deformation by fissures and faults aligned with the trend of the Vance Segment. The horizontal extension across these features allows us to estimate a local deformation rate of 3 cm/yr of tectonic extension on the northern end of Vance Segment during the last 1000 years.

  19. The mechanism of flow and fabric development in mechanically anisotropic trachyte lava

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Schulmann, K.; Lexa, O.; Hrouda, F.; Haloda, J.; Týcová, P.


    Roč. 31, č. 11 (2009), s. 1295-1307 ISSN 0191-8141 R&D Projects: GA AV ČR KJB301110703 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : trachyte * anisotropy of magnetic susceptibility * fibre-slip mechanism * lava dome * mechanical anisotropy * sanidine Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.732, year: 2009

  20. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i (United States)

    Orr, T.R.


    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  1. Measuring Lava Flows With ArcticDEM: Application to the 2012-2013 Eruption of Tolbachik, Kamchatka (United States)

    Dai, Chunli; Howat, Ian M.


    ArcticDEM is an open-access collection of high-resolution (2 m), repeat, digital surface models, created from submeter resolution, stereoscopic satellite imagery, covering the entire Arctic landmass. To demonstrate the application of this powerful new data source for measuring Earth surface change, we measure elevation changes resulting from the 2012-2013 eruption of Tolbachik volcano in Kamchatka, Russia, which reveals detailed variations in lava thickness. We estimate a total lava volume of 0.573 ± 0.007 km3 emplaced over an area of 45.8 km2 at a mean rate of 21 m3/s. Furthermore, the size and timing of eruptions over the past 2,000 years support the hypothesis that the combined eruptions of 1976-77 and 2012-2013 ejected much or all of the magma stored over the previous 1,000 years, so that a multicentury repose is expected. The approaches developed in this study will guide future, expanded applications of ArcticDEM to mapping terrain change.

  2. Geomagnetic field for the past 5 Myr recorded in lava flows from British Columbia, Patagonia, and Mexico (United States)

    Mejia, Victoria


    Paleosecular variation (PSV) and time averaged field (TAF) results recorded in lava flows younger than 5 million years are presented. The targeted areas of studies are several volcanic fields from British Columbia (mainly the Silverthrone, Garibaldi, and Wells Park volcanic fields), Southern Patagonia (the Pali-Aike volcanic field and Meseta Viscachas lavas), and Mexico (the Trans-Mexican volcanic belt and several volcanic areas in San Luis Potosi). The purpose of this investigation was to obtain high quality paleomagetic data suitable to test the presence or absence of permanent non dipolar components of the field that have been interpreted from studies carried out with less rigor. The mean directions in the areas of British Columbia and Patagonia (roughly at 50° N and 50° S latitude) coincide with the expected geocentric axial dipole (GAD) at these areas. The presence of a quadrupolar component of the field is difficult to discard because it is expected to produce only about 1° shallower inclinations. The mean direction in the area of Mexico coincides with a GAD plus a 5% quadrupole. The VGP scatter in the three areas of study coincides with Model G. The asymmetry between the northern and southern hemisphere of the present magnetic field and particularly the 20° inclination anomaly relative to GAD in Patagonia, are not observed in the paleomagnetic data obtained, implying that the present field configuration is relatively recent. The results confirm that axial components prevail in the time-averaged field.

  3. Leaching of lava and tephra from the Oldoinyo Lengai volcano (Tanzania): Remobilization of fluorine and other potentially toxic elements into surface waters of the Gregory Rift (United States)

    Bosshard-Stadlin, Sonja A.; Mattsson, Hannes B.; Stewart, Carol; Reusser, Eric


    Volcanic ash leachate studies have been conducted on various volcanoes on Earth, but few have been done on African volcanoes until now. Tephra emissions may affect the environment and the health of people living in this area, and therefore we conducted a first tephra (ash and lapilli sized) leachate study on the Oldoinyo Lengai volcano, situated in northern Tanzania. The recent explosive eruption in 2007-2008 provided us with fresh samples from the first three weeks of the eruption which were used for this study. In addition, we also used a natrocarbonatitic sample from the activity prior to the explosive eruption, as the major activity at Oldoinyo Lengai is natrocarbonatitic. To compare the leaching process affecting the natrocarbonatitic lavas and the tephras from Oldoinyo Lengai, the 2006 natrocarbonatitic lava flow was resampled 5 years after the emplacement and compared to the initial, unaltered composition. Special interest was given to the element fluorine (F), since it is potentially toxic to both humans and animals. A daily intake of fluoride (F-) in drinking water of > 1.5 mg/l can lead to dental fluorosis, and higher concentrations lead to skeletal fluorosis. For this reason, a guideline value for fluoride in drinking water was set by the WHO (2011) to 1.5 mg/l. However, surface waters and groundwaters in the Gregory Rift have elevated fluoride levels of up to 9.12 mg/l, and as a consequence, an interim guideline value for Tanzania has been set at 8 mg/l. The total concentration of fluorine in the samples from the natrocarbonatitic lava flow is high (3.2 wt%), whereas we observed a significant decrease of the fluorine concentration (between 1.7 and 0.5 wt%) in the samples collected three days and three weeks after the onset of the explosive 2007-08 eruption. However, the total amount of water-extractable fluoride is lower in the natrocarbonatitic lavas (319 mg/l) than in the nephelinitic tephra (573-895 mg/l). This is due to the solubility of the

  4. Lava Flow Morphologies and Structural Features Along the Axis of the South Rift Zone of Loihi Seamount, Hawaii (United States)

    Deemer, J. L.; Kurz, M. D.; Fornari, D. J.


    In an effort to document the morphology of the deep South Rift Zone of the Loihi Seamount, we report new observations collected in 2008 using ROV Jason2 on the R/V Thomas G. Thompson (C. Moyer and K. Edwards, chief scientists). The South Rift Zone extends more than 20 kilometers from 4950 meters depth at its base to Loihi’s summit at 980 meters. To date, there are few studies of the deep Loihi South Rift Zone and this work provides important geologic context for ongoing microbiological studies of Loihi (Fe-Oxidizing Microbial Observatory Project). Existing EM300 multibeam bathymetry provides the broader context necessary for interpreting smaller-scale Loihi South Rift features mapped using Jason2. Three Jason2 dives included continuous low-altitude (indicated by the ubiquitous presence of glassy flows and a complete absence of sediment cover, with the exception of microbial mats in the deepest section (FeMO Deep). Flows are predominantly lobate and pillow types. Pyroclastic deposits are expressed as loose volcanic sand in localized depressions, and are found at depths as great as 4909 meters. Distinct meter-scale flow morphologies were identified and constrained, and this information can be used to determine rudimentary stratigraphic relationships of individual flows. The compilation of lava flow morphologies from the ROV data, in conjunction with along-axis structure, bathymetry, and distribution of talus and pyroclastic deposits, will be presented.

  5. The Influence of Shear-Thinning and Crustal Yield Strength on Lava Flow Evolution: a Case Study from Volcanoes of the Southern Andes of Chile (United States)

    Castruccio, A.; Contreras, M.; Gho, R.


    Lava flow modeling is a complex challenge as the advance and emplacement of these flows is controlled by parameters that are constantly evolving such as the effusion rate, topography, rheology and cooling effects. Current models of lava flows use a Bingham rheology and assume that the main retarding force is the internal rheology that is changing downstream and trough time due to cooling effects. However, field evidence from active lava flows and the resulting deposits indicates that an external crust forms due to cooling processes. Very few works have addressed the influence of the crust on the dynamics and advance rate of lava flows but increasing evidence suggests that it cannot be neglected. On the other hand, numerous works during the last decade has shown that crystal-bearing magmas have a complex rheology with a strain-rate dependence on viscosity and consequently, the Bingham model can represent accurately the rheology of lava only over a limited range of conditions. In this work we studied the lava flow evolution and deposits of several historical eruptions from Villarrica (2 cases), Llaima, Mirador, Calbuco and Lonquimay volcanoes in the Southern Andes of Chile. We used a simple 2-D model that simulates the evolution of the front of the flow that is being fed by lava pouring down from a fixed-wall channel at the back of the frontal zone. We used a Herschel-Bulkley rheology as it captures yield strength and shear-thinning behavior. We also included in the analysis the evolution of a set of well-documented eruptions from Hawaii and Etna using published data. Our results indicate that short-lived eruptions, with effusion rates greater than 100 m^3/s that last only a couple of days are controlled by an almost constant rheology of the front as the apparent increasing in viscosity through time can be explained by the shear-thinning behavior, because when effusion rate decreases, the velocity and consequently the strain-rate of the flow decreases, implying an

  6. Palaeomagnetic intensities from 14C-dated lava flows on the Big Island, Hawaii: 0-21 kyr (United States)

    Pressling, Nicola; Laj, Carlo; Kissel, Catherie; Champion, Duane E.; Gubbins, David


    Thellier–Thellier experiments were carried out on 216 lava samples collected by the USGS on the Big Island. 35 individual flows from the Kilauea, Mauna Loa and Hualalai volcanoes are represented and independent radiocarbon dating of the flows yields absolute ages ranging from 290 to 20,240 yrs old. The palaeomagnetic analysis was carried out at the Laboratoire des Sciences du Climat et de l'Environnement in Gif-sur-Yvette, France, in two custom built, large capacity furnaces that have been specifically designed to minimise oxidation. The temperature steps were adapted to accommodate the characteristic loss of magnetisation at low temperatures seen in the Curie balance results and the use of half-size samples allowed secondary experiments to be carried out where necessary. The strict PICRIT-03 selection criteria were rigorously applied to the data and a high success rate of 53% has been achieved on a sample level. The flow averaged results almost double the existing 14C-dated palaeointensity dataset for this time window and confirm a period of high intensity over the past 4 kyr preceded by a period in which the dipole moment was weaker. However, the values attained in this study are on average higher than previously published data; reliability of these values is discussed.

  7. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology (United States)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.


    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  8. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories (United States)

    Lodge, Robert W. D.; Lescinsky, David T.


    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  9. Terrestrial analogs and thermal models for Martian flood lavas (United States)

    Keszthelyi, L.; McEwen, A. S.; Thordarson, T.


    The recent flood lavas on Mars appear to have a characteristic ``platy-ridged'' surface morphology different from that inferred for most terrestrial continental flood basalt flows. The closest analog we have found is a portion of the 1783-1784 Laki lava flow in Iceland that has a surface that was broken up and transported on top of moving lava during major surges in the eruption rate. We suggest that a similar process formed the Martian flood lava surfaces and attempt to place constraints on the eruption parameters using thermal modeling. Our conclusions from this modeling are (1) in order to produce flows >1000 km long with flow thicknesses of a few tens of meters, the thermophysical properties of the lava should be similar to fluid basalt, and (2) the average eruption rates were probably of the order of 104m3/s, with the flood-like surges having flow rates of the order of 105-106m3/s. We also suggest that these high eruption rates should have formed huge volumes of pyroclastic deposits which may be preserved in the Medusae Fossae Formation, the radar ``stealth'' region, or even the polar layered terrains.

  10. Surface obstacles in pulsatile flow (United States)

    Carr, Ian A.; Plesniak, Michael W.


    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e., constant velocity, unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigate the wake of two canonical obstacles: a cube and a circular cylinder with an aspect ratio of unity. Our previous studies of a surface-mounted hemisphere in pulsatile flow are used as a baseline for these two new, more complex geometries. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings.

  11. Factors controlling permeability and fluid flow within the 2004-2008 Mount St Helens lava dome complex (United States)

    Gaunt, H. E.; Meredith, P. G.; Sammonds, P.; Smith, R.; Kilburn, C.


    Magma degassing is an important control on whether an eruption will be explosive or effusive. Although the process of gas exsolution has been well-studied, the factors that determine how gases subsequently escape are still poorly understood, especially from high-viscosity magmas with evolved compositions, such as dacite. A preferred model for viscous magmas is that shear fracturing during ascent can occur along conduit margins and lead to the development of a permeable fracture network. Such fracture networks facilitate gas escape and the effusion of magma as a lava dome or flow. The model, however, has yet to be tested against direct laboratory measurements on the potential for magma to develop permeable networks of fractures. Between 2004 and 2008, dacite magma was extruded almost continuously from Mount St Helens (Cascade Range, USA) as a succession of gas-poor and solidified lava spines. The dacite is thought to have solidified about 1 km below the vent and to have experienced intense strain localisation at the conduit margins during ascent. The most prominent of all the spines, Spine 4, formed a smooth 'whaleback' feature and had a distinct internal structure analogous to that of a tectonic fault zone. Extruded dacite lava was coated with a thick (~1m) layer of fault gouge, containing multiple sets of sub-parallel slickensides and shear bands orientated preferentially in the direction of spine growth. To investigate the controls on degassing processes, we have measured how permeability varied progressively with increasing temperature and deformation on samples from the 2004-2008 dome at Mount St Helens. Permeability was measured on cylindrical samples, 25 mm in diameter, in a hydrostatic permeameter at confining pressures up to 30 MPa (a depth of c.1.2 km) and, also, in a high temperature deformation apparatus at temperatures up to 900oC, confining pressures of 12 MPa and pore fluid pressures of 4 MPa. Samples of intact dacite from the interior of Spine 4 were

  12. Surface obstacles in pulsatile flow (United States)

    Carr, Ian A.; Plesniak, Michael W.


    Flows past obstacles mounted on flat surfaces have been widely studied due to their ubiquity in nature and engineering. For nearly all of these studies, the freestream flow over the obstacle was steady, i.e. constant velocity unidirectional flow. Unsteady, pulsatile flows occur frequently in biology, geophysics, biomedical engineering, etc. Our study is aimed at extending the comprehensive knowledge base that exists for steady flows to considerably more complex pulsatile flows. Beyond the important practical applications, characterizing the vortex and wake dynamics of flows around surface obstacles embedded in pulsatile flows can provide insights into the underlying physics in all wake and junction flows. In this study, we experimentally investigated the wake of four canonical surface obstacles: hemisphere, cube, and circular cylinders with aspect ratio of 1:1 and 2:1. Phase-averaged PIV and hot-wire anemometry are used to characterize the dynamics of coherent structures in the wake and at the windward junction of the obstacles. Complex physics occur during the deceleration phase of the pulsatile inflow. We propose a framework for understanding these physics based on self-induced vortex propagation, similar to the phenomena exhibited by vortex rings. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Centeor Biomimetics and Bioinspired Engineering (COBRE).

  13. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas (United States)

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.


    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  14. The geomagnetic field intensity in New Zealand: palaeointensities from Holocene lava flows of the Tongariro Volcanic Centre (United States)

    Greve, Annika; Hill, Mimi J.; Turner, Gillian M.; Nilsson, Andreas


    Very few absolute palaeointensity data exist from Holocene-aged rocks in New Zealand. Here we present a new suite of high-quality palaeointensities, supported by detailed rock magnetic investigations. Samples from 23 sites representing 10 distinct eruptive units of the Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand, were studied. Both traditional double heating and microwave palaeointensity methods were employed. The reliability of the palaeointensity data varies with rock magnetic properties of the samples, corresponding, in particular, to their positions within the lava flows. The highest success rates are from samples obtained from near the flow tops where a significant proportion of the remanence unblocked at intermediate temperatures (200-350 °C). By contrast, samples from flow centres, particularly the parts showing platey fracturing, have the lowest success rates. Reliable, high-quality palaeointensity results ranging from 32.4 ± 5.1 μT to 72.1 ± 4.7 μT were obtained from six flows with ages between c. 12 800 yr BP and the present. These correspond to virtual dipole moments that increase from 52 ± 10 ZAm2 in the early Holocene and peak at 112 ± 14 ZAm2 about 300 yr ago. The data agree well with calibrated relative palaeointensities from New Zealand lake sediments. The volcanic and sedimentary data together yield a Holocene virtual axial dipole moment curve that fits the global average variation well in the early Holocene, but which differs significantly in recent millennia. This difference is associated with recent migration of the southern high latitude core-mantle boundary flux lobe towards New Zealand, as is seen in global field models.

  15. Axial Seamount 2015 Eruption: A 127 m Thick, Microbially-Covered Lava Flow (United States)

    Kelley, D. S.; Delaney, J. R.; Chadwick, W.; Philip, B. T.; Merle, S. G.


    On April 24th, Axial Seamount on the Juan de Fuca Ridge erupted. This site now hosts the most advanced submarine volcanic observatory with a diverse, multidisciplinary array of 48 cabled instruments at its summit and base, and an instrumented state-of-the-art shallow profiling mooring providing real-time data to shore as part of NSF's Ocean Observatory Initiative (Delaney et al., AGU-2015). The onset of the eruption was marked by more than 8000 earthquakes (Wilcock et al., AGU-2015; Garcia et al., AGU-2015) and a drop in the seafloor of 2.4 m (Nooner et al., AGU-2015). Follow-on analyses of hydrophone data (Tolstoy et al., AGU-2015) pointed to the location of the eruption as the Northern Rift zone. During the OOI-NSF-UW Cabled Array maintenance cruise, the Northern Rift and eastern side of the caldera was mapped using the R/V Thompson's EM302 system at. Differencing of 2007 (Hydrosweep) and 2013 EM302 bathymetric data indicated that the flow was ~ 7 km in length and up to 127 m thick, where it filled in a preexisting small depression. On July 26th, the ROV ROPOS dove near the toe of the northeastern lobe of the flow, the location of the highest bathymetric difference. The steep north face of this lobe is composed of glassy pillow flows: ROPOS ascended ~ 85 m before reaching the summit. Immediately upon reaching the summit, the vehicle was engulfed in a blizzard of biologically-produced 'snowblower' material issuing from distributed small sites of diffuse flow that reached 18°C. These areas hosted white filamentous bacteria, presumably methane metabolizers. Extensive areas of the flow summit were covered with orange microbial mats that completely masked the underlying pillows flows. Particle-poor diffuse fluids issued from microbially-covered collapse features along the summit, assumed to mark the main feeder channels. This eruption was markedly different than the Axial April 2011 eruption, which was characterized by vast sheet flows and extensive collapse zones.

  16. Geomagnetic field secular variation in Pacific Ocean: A Bayesian reference curve based on Holocene Hawaiian lava flows (United States)

    Tema, E.; Herrero-Bervera, E.; Lanos, Ph.


    Hawaii is an ideal place for reconstructing the past variations of the Earth's magnetic field in the Pacific Ocean thanks to the almost continuous volcanic activity during the last 10 000 yrs. We present here an updated compilation of palaeomagnetic data from historic and radiocarbon dated Hawaiian lava flows available for the last ten millennia. A total of 278 directional and 66 intensity reference data have been used for the calculation of the first full geomagnetic field reference secular variation (SV) curves for central Pacific covering the last ten millennia. The obtained SV curves are calculated following recent advances on curve building based on the Bayesian statistics and are well constrained for the last five millennia while for older periods their error envelopes are wide due to the scarce number of reference data. The new Bayesian SV curves show three clear intensity maxima during the last 3000 yrs that are accompanied by sharp directional changes. Such short-term variations of the geomagnetic field could be interpreted as archaeomagnetic jerks and could be an interesting feature of the geomagnetic field variation in the Pacific Ocean that should be further explored by new data.

  17. Yield strengths of flows on the earth, Mars, and moon. [application of Bingham plastic model to lava flows (United States)

    Moore, H. J.; Arthur, D. W. G.; Schaber, G. G.


    Dimensions of flows on the earth, Mars, and moon and their topographic gradients obtained from remote measurements are used to calculate yield strengths with a view to explore the validity of the Bingham plastic model and determine whether there is a relation between yield strengths and silica contents. Other factors are considered such as the vagaries of natural phenomena that might contribute to erroneous interpretations and measurements. Comparison of yield strengths of Martian and lunar flows with terrestrial flows suggests that the Martian and lunar flows are more akin to terrestrial basalts than they are to terrestrial andesites, trachytes, and rhyolites.

  18. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes (United States)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.


    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  19. High-resolution topography of 1974 Mount Etna lava flow based on Unmanned Aerial Vehicle (UAV) surveys and Structure from Motion (SfM) photogrammetry (United States)

    Fornaciai, Alessandro; Favalli, Massimiliano; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline


    The production of high resolution Digital Elevation Models (DEMs) of lava is of increasing interest in volcanology because the time scales of change are fast and involve vertical and planimetric changes of millimeters to meters. Among the wide range of terrestrial and aerial methods available to collect topographic data, the use of unmanned aerial vehicle (UAV) acquiring platform and structure from motion (SfM) photogrammetric technique is especially useful because it allow collecting data of inaccessible, kilometer scale areas, with low cost and minimal hazard to personnel. This study presents the application of UAV-SfM method to generate a high-resolution DEMs and orthomosaic of the 1974 Mount Etna lava field. The UAV was flown over lava field at flight altitude to about 70 m above ground level (AGL) and acquired 2781 photographs. SfM-photogrammetry applied to these images enabled the extraction of very (20 cm) high-resolution DEMs and 3 cm orthomosaic for a total area of 1.35 square kilometers. The data produced by the UAV-SfM was compared with airborne LiDAR data. Such comparison gives a root mean squared error between the two DEMs of 0.24 m. The unprecedented topographic resolution obtained with UAV-SfM methods enabled us to derive morphometry of sub-meter-scale lava features, such as folds, blocks, and cracks, over kilometric scale areas. The 3 cm orthomosaic allowed us to further push the analysis to dm-scale grain distribution of the lava surface. This study shows that SfM and UAV platforms can be effectively used for mapping volcanic features producing topographic data in a manner not possible with the 1-m LiDAR-derived DEM. The spectral analysis of surface folding support this analysis showing a much larger spectrum of frequencies of the SfM-derived DEM than the LiDAR DEM.

  20. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.


    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  1. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii (United States)

    Trusdell, Frank A.; Zoeller, Michael H.


    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  2. Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy) (United States)

    Calvo, Manuel; Prévot, Michel; Perrin, Mireille; Riisager, Janna


    A refined palaeointensity experiment, accompanied by rock-magnetic studies, has been carried out on six lava flows from 1910 and 1928 from Mt. Etna. The purpose of the study was to try to understand why these very young basaltic flows are generally unable to provide a correct estimate of the magnitude of the ambient magnetic field during flow cooling. Susceptibility versus temperature curves and ore microscopic studies show that 3 types of magnetic minerals (phases `h ', `m ' and `l') are present in these flows, some samples containing a single largely dominant magnetic phase while others contain a mixture of several phases. Phase `h ' is a thermally stable, near magnetite phase resulting from titanomagnetite oxyexsolution. Phase `l' is a thermally stable titanomagnetite with a Curie temperature of approximately 200°C. Phase `m ' is a titanomagnetite phase of Curie temperature between 450-490°C which is unstable at temperatures above 400°C. In addition to the usual reliability checks of the Thellier method (NRM-TRM linearity, pTRM checks), our palaeointensity experiments included additional heating allowing determination of the MD or PSD-SD character of each pTRM and determination of CRM or transdomain remanences possibly acquired during heating. From the 28 samples studied 20 provide a linear NRM-TRM plot over about 1/4 or more of total NRM. However, only six of them, all containing near-magnetite as a single phase, display positive pTRM checks. Nevertheless, these six samples yield a mean palaeointensity of about 52 μT, which exceeds the real field palaeomagnitude (42 μT) by some 25 per cent. The reasons for this almost-total failure of palaeointensity experiments are diverse. For samples with a dominant `l' phase, pTRMs present a behaviour typical of large MD grains, with as much as 1/3 of remanence with unblocking temperatures exceeding the blocking range. No CRM is acquired. Yet a remanence does develop during heating in a field (followed by cooling in

  3. Environmental implication of subaqueous lava flows from a continental Large Igneous Province: Examples from the Moroccan Central Atlantic Magmatic Province (CAMP) (United States)

    El Ghilani, S.; Youbi, N.; Madeira, J.; Chellai, E. H.; López-Galindo, A.; Martins, L.; Mata, J.


    The Late Triassic-Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province (CAMP) of Morocco is classically subdivided into four stratigraphic units: the Lower, Middle, Upper and Recurrent Formations separated by intercalated sediments deposited during short hiatuses in volcanic activity. Although corresponding to a Large Igneous Province formed in continental environment, it contains subaqueous lava flows, including dominant pillowed flows but also occasional sheet flows. We present a study of the morphology, structure and morphometry of subaqueous lava flows from three sections located at the Marrakech High-Atlas (regions of Aït-Ourir, Jbel Imzar and Oued Lhar-Herissane), as well as an analysis of the sediments, in order to characterize them and to understand their environmental meaning. The analysis of clays by the diffraction method X-ray revealed the presence of illite, mica, phengite, céladonite, talc and small amounts of quartz, hematite, calcite and feldspar, as well as two pairs of interbedded irregular (chlorite Smectite/chlorite-Mica). Fibrous minerals such as sepiolite and palygorskite were not detected. The peperite of Herissane region (Central High Atlas) provided an excellent overview on the factors favoring the magma-sediment interaction. These are the products of a mixture of unconsolidated or poorly consolidated sediments, low permeability with a low viscosity magma. The attempt of dating palynology proved unfortunately without results.

  4. Singularities in Free Surface Flows (United States)

    Thete, Sumeet Suresh

    Free surface flows where the shape of the interface separating two or more phases or liquids are unknown apriori, are commonplace in industrial applications and nature. Distribution of drop sizes, coalescence rate of drops, and the behavior of thin liquid films are crucial to understanding and enhancing industrial practices such as ink-jet printing, spraying, separations of chemicals, and coating flows. When a contiguous mass of liquid such as a drop, filament or a film undergoes breakup to give rise to multiple masses, the topological transition is accompanied with a finite-time singularity . Such singularity also arises when two or more masses of liquid merge into each other or coalesce. Thus the dynamics close to singularity determines the fate of about-to-form drops or films and applications they are involved in, and therefore needs to be analyzed precisely. The primary goal of this thesis is to resolve and analyze the dynamics close to singularity when free surface flows experience a topological transition, using a combination of theory, experiments, and numerical simulations. The first problem under consideration focuses on the dynamics following flow shut-off in bottle filling applications that are relevant to pharmaceutical and consumer products industry, using numerical techniques based on Galerkin Finite Element Methods (GFEM). The second problem addresses the dual flow behavior of aqueous foams that are observed in oil and gas fields and estimates the relevant parameters that describe such flows through a series of experiments. The third problem aims at understanding the drop formation of Newtonian and Carreau fluids, computationally using GFEM. The drops are formed as a result of imposed flow rates or expanding bubbles similar to those of piezo actuated and thermal ink-jet nozzles. The focus of fourth problem is on the evolution of thinning threads of Newtonian fluids and suspensions towards singularity, using computations based on GFEM and experimental

  5. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS (United States)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges


    The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite "lava flows" formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive

  6. Discrete Fracture Network Modeling and Simulation of Subsurface Transport for the Topopah Springs and Lava Flow Aquifers at Pahute Mesa, FY 15 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Makedonska, Nataliia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kwicklis, Edward Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Harrod, Jeremy Ashcraft [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This progress report for fiscal year 2015 (FY15) describes the development of discrete fracture network (DFN) models for Pahute Mesa. DFN models will be used to upscale parameters for simulations of subsurface flow and transport in fractured media in Pahute Mesa. The research focuses on modeling of groundwater flow and contaminant transport using DFNs generated according to fracture characteristics observed in the Topopah Spring Aquifer (TSA) and the Lava Flow Aquifer (LFA). This work will improve the representation of radionuclide transport processes in large-scale, regulatory-focused models with a view to reduce pessimistic bounding approximations and provide more realistic contaminant boundary calculations that can be used to describe the future extent of contaminated groundwater. Our goal is to refine a modeling approach that can translate parameters to larger-scale models that account for local-scale flow and transport processes, which tend to attenuate migration.

  7. Textural variations and fragmentation processes in peperite formed between felsic lava flow and wet substrate: An example from the Cretaceous Buan Volcanics, southwest Korea (United States)

    Gihm, Yong Sik; Kwon, Chang Woo


    Multiple exposures of peperite within the Cretaceous Buan Volcanics, southwest Korea, have been examined in order to determine variations in their textural characteristics and to investigate their mode of formation. Along undulating boundaries between rhyolite (lava flow) and deformed host sediment expressed as a series of load and flame structures, exposures commonly contain two distinct types of peperite. Type-1 peperites are composed mostly of rounded juvenile clasts at their base and polyhedral juvenile clasts at their upper levels, interpreted to have formed via a two-stage process. Firstly, abrasion of juvenile clasts occurred after their fragmentation due to shear stress imparted by the overlying and still-moving lava flow, forming rounded juvenile clasts. Subsequent in situ quenching fragmentation of the lava flow produced clasts with platy to polyhedral shapes immediately after emplacement of the lava flow. Type-2 peperites laterally extend into the interior of featureless rhyolite as layers that decrease in thickness with increasing distance away from the flame zone. These layers exhibit horizontal textural variations, ranging from poorly sorted mixtures of ash- to block-sized angular juvenile clasts in the proximal zone, to closely packed polyhedral and tabular juvenile clasts with jigsaw-crack textures in the middle and distal zones. Type-2 peperite are inferred to have formed due to internal steam explosions that resulted from an expansion of heated pore water (leading to an increase in pore fluid pressure) that had been vertically injected into the interior of the rhyolite from the flame zone. The proximal zone, composed mainly of poorly sorted mixtures of juvenile clasts, represents the explosion sites. Juvenile clasts in the middle and distal zones are interpreted to have formed due to three separate processes: the development of fractures in the rhyolite during the internal steam explosions, injection of the host sediment through the fractures, and

  8. Morphometric study of pillow-size spectrum among pillow lavas (United States)

    Walker, George P. L.


    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  9. Formation processes of the 1909 Tarumai and the 1944 Usu lava domesin Hokkaido, Japan

    Directory of Open Access Journals (Sweden)

    I. Yokoyama


    Full Text Available The formation of the two particular lava domes in Hokkaido, Japan is described and interpreted mainly from geophysical viewpoints. The 1909 eruption of Tarumai volcano was not violent but produced a lava dome over four days. The growth rate of the dome is discussed under the assumption that the lava flow was viscous and plastic fluid during its effusion. By Hagen-Poiseuille?s Law, the length of the conduit of the lava dome is rather ambiguously determined as a function of viscosity of the magma and diameter of the conduit. The 1944 Usu dome extruded as a parasitic cone of Usu volcano, not in the crater, but in a flat cornfield at the foot of the volcano. From the beginning to the end for more than 17 months, seismometric and geodetic observations of the dome activity were carried out by several pioneering geophysicists. Utilizing their data, pseudo growth curves of the dome at each stage can be drawn. The lava ascended rather uniformly, causing uplift of the ground surface until half-solidified lava reached the surface six months after the deformation began. Thereafter, the lava dome added lateral displacements and finally achieved its onion structure. These two lava domes are of contrasting character, one is andesitic and formed quickly while the other is dacitic and formed slowly, but both of them behaved as viscous and plastic flows during effusion. It is concluded that both the lava domes formed by uplift of magma forced to flow through the conduits, analogous to squeezing toothpaste out of a tube.

  10. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.


    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  11. Transition of basaltic lava from pahoehoe to aa, Kilauea Volcano, Hawaii: Field observations and key factors (United States)

    Peterson, Donald W.; Tilling, Robert I.


    Nearly all Hawaiian basaltic lava erupts as pahoehoe, and some changes to aa during flowage and cooling; factors governing the transition involve certain critical relations between viscosity and rate of shear strain. If the lava slows, cools, and stops in direct response to concomitant increase in viscosity before these critical relations are reached, it remains pahoehoe. But, if flow mechanics (flow rate, flow dimensions, slope, momentum, etc.) impel the lava to continue to move and deform even after it has become highly viscous, the critical relations may be reached and the lava changes to aa.Typical modes of transition from pahoehoe to aa include: (1) spontaneous formation of relatively stiff clots in parts of the flowing lava where shear rate is highest; these clots grow into discrete, rough, sticky masses to which the remaining fluid lava incrementally adheres; (2) fragmentation and immersion of solid or semi-solid surface crusts of pahoehoe by roiling movements of the flow, forming cores of discrete, tacky masses; (3) sudden renewed movement of lava stored and cooled within surface reservoirs to form clots. The masses, fragments, and clots in these transition modes are characterized by spinose, granulated surfaces; as flow movement continues, the masses and fragments aggregate, fracture, and grind together, completing the transition to aa.Observations show that the critical relation between viscosity and rate of shear strain is inverse: if viscosity is low, a high rate of shear is required to begin the transition to aa; conversely, if viscosity is high, a much lower rate of shear will induce the transition. These relations can be demonstrated qualitatively with simple graphs, which can be used to examine the flow history of any selected finite lava element by tracing the path represented by its changing viscosity and shear rate. A broad, diffuse “transition threshold zone” in these graphs portrays the inverse critical relation between viscosity and shear

  12. Volcanism on Mercury (dikes, lava flows, pyroclastics): Crust/mantle density contrasts, the evolution of compressive stress and the presence of mantle volatiles (United States)

    Wilson, L.; Head, J. W., III


    Background. There is great uncertainty about the internal structure of Mercury and the composition of the mantle [e.g., 1, 2]. The high mean density of the body suggests that it may have lost parts of its crust and mantle in a giant impact at some stage after most of its initial accretion was sufficiently complete that at least partial separation of a core had occurred. It is the uncertainty about the timing of the giant impact, and hence the physico-chemical state of proto-Mercury at the time that it occurred, that leads to difficulties in predicting the interior structure and mantle composition. However, it seems reasonable to assume that the Mercury we see today has some combination of a relatively low-density crust and a relatively highdensity mantle; uncertainty remains about the presence and types of volatiles [2]. The second uncertainty is the nature of the surface plains units, specifically, are these lava flows and pyroclastics erupted from the interior, or impact-reworked earlier crust [3-5] (Figs. 1-2)? The detection of candidate pyroclastic deposits [4] has very important implications for mantle volatiles. Furthermore, whatever the surface composition, the presence of planet-wide systems of wrinkle ridges and thrust faults implies that a compressive crustal stress regime became dominant at some stage in the planet's history [3, 6]. If the plains units are indeed lava flows, then the fact that the products of the compressive regime deform many plains units suggests that the development of the compressive stresses may have played a vital role in determining when and if surface eruptions of mantle-derived magmas could occur. This would be analogous to the way in which the change with time from extensional to compressive global stresses in the lithosphere of the Moon influenced the viability of erupting magmas from deep mantle sources [7-9]. Analysis: To investigate the relationship between lithospheric stresses and magma eruption conditions [e.g., 9-11] we

  13. Lava delta deformation as a proxy for submarine slope instability (United States)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola


    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  14. Compositionally Constraining Elysium Lava Fields (United States)

    Karunatillake, S.; Button, N. E.; Skok, J. R.


    Chemical provinces of Mars defined recently [1-3] became possible with the maps of elemental mass fractions generated with Mars Odyssey Gamma and Neutron Spectrometer (GS) data [4,5]. These provide a unique perspective by representing compositional signatures distinctive of the regolith vertically at decimeter depths and laterally at hundreds of kilometer scale. Some provinces overlap compellingly with regions highlighted by other remote sensing observations, such as the Mars Radar Stealth area [3]. The spatial convergence of mutually independent data with the consequent highlight of a region provides a unique opportunity of insight not possible with a single type of remote sensing observation. Among such provinces, previous work [3] highlighted Elysium lava flows as a promising candidate on the basis of convergence with mapped geologic units identifying Elysium's lava fields generally, and Amazonian-aged lava flows specifically. The South Eastern lava flows of Elysium Mons, dating to the recent Amazonian epoch, overlap compellingly with a chemical province of K and Th depletion relative to the Martian midlatitudes. We characterize the composition, geology, and geomorphology of the SE Elysium province to constrain the confluence of geologic and alteration processes that may have contributed to its evolution. We compare this with the North Western lava fields, extending the discussion on chemical products from the thermal evolution of Martian volcanism as discussed by Baratoux et al. [6]. The chemical province, by regional proximity to Cerberus Fossae, may also reflect the influence of recently identified buried flood channels [7] in the vicinity of Orcus Patera. Despite the compelling chemical signature from γ spectra, fine grained unconsolidated sediment hampers regional VNTIR (Visible, Near, and Thermal Infrared) spectral analysis. But some observations near scarps and fresh craters allow a view of small scale mineral content. The judicious synthesis of

  15. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy) (United States)

    Lanzafame, Gabriele; Ferlito, Carmelo


    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  16. Lava flows and cinder cones at Barren Island volcano, India (2005-2017): a spatio-temporal analysis using satellite images (United States)

    Martha, Tapas R.; Roy, Priyom; Vinod Kumar, K.


    Barren Island volcano erupted during January-February 2017. Located near the Andaman trench and over a subduction zone, it is the only active volcano in India. It comprises a prominent caldera within which there is a polygenetic intra-caldera cinder cone system, with a record of eruptive events which date back to eighteenth century (1787-1832). Major eruptions occurred in 1991, 1994-1995, 2005 and, since 2008, the volcano has been showing near continuous activity with periodic eruptions. We used coarse spatial resolution "fire" products (Band I4) from Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite to detect days of eruption during the January-February 2017 period. Moderate spatial resolution (23.5 m) short-wavelength infrared (SWIR) data of Resourcesat-2 Linear Imaging Self Scanning Sensor-III available for specific days during this period were used to verify signatures of volcanic eruption. Thermal infrared band data from the Landsat series over the 2005-2017 periods were used to estimate the brightness temperature and location of the active vent within the polygenetic cinder cone field. High-spatial resolution images (1-5.8 m) in the visible bands (Resourcesat-2 LISS-IV, Cartosat-1 and 2) were used to delineate the changes in overall morphology of the volcano and to identify an inner crater ring fault, new paths of lava flow and the formation of a new cinder cone on the old crater. These multi-temporal data sets show significant changes in the paths of lava flows from 2005 to 2017. The observations also document periodic shifts in the location of effusive vents. Morphogenetic changes in recent eruptive phases of the Barren Island volcano were successfully delineated using a combination of multi-temporal and multi-resolution satellite images in visible, SWIR and thermal infrared regions of the electromagnetic spectrum.

  17. Application of photogrammetry to surface flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, N.; Venkatakrishnan, L. [Council of Scientific and Industrial Research, Experimental Aerodynamics Division, National Aerospace Laboratories, Delhi (India)


    The construction of three-dimensional surface flow fields is an extremely difficult task owing largely to the fragmented information available in the form of 2D images. Here, the method of photogrammetric resection based on a comprehensive camera model has been used to map oil flow visualization images on to the surface grid of the model. The data exported in the VRML format allow for user interaction in a manner not possible with 2D images. The technique is demonstrated here using the surface oil flow visualization images of a simplified landing gear model at low speed in a conventional wind tunnel without any specialized rigs for photogrammetry. The results are not limited to low-speed regimes and show that this technique can have significant impact on understanding the flow physics associated with the surface flow topology of highly three-dimensional separated flows on complex models. (orig.)

  18. Application of photogrammetry to surface flow visualization (United States)

    Karthikeyan, N.; Venkatakrishnan, L.


    The construction of three-dimensional surface flow fields is an extremely difficult task owing largely to the fragmented information available in the form of 2D images. Here, the method of photogrammetric resection based on a comprehensive camera model has been used to map oil flow visualization images on to the surface grid of the model. The data exported in the VRML format allow for user interaction in a manner not possible with 2D images. The technique is demonstrated here using the surface oil flow visualization images of a simplified landing gear model at low speed in a conventional wind tunnel without any specialized rigs for photogrammetry. The results are not limited to low-speed regimes and show that this technique can have significant impact on understanding the flow physics associated with the surface flow topology of highly three-dimensional separated flows on complex models.

  19. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da


    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  20. What factors control superficial lava dome explosivity? (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.


    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  1. Lava penetrating water: the different behaviours of pāhoehoe and `a`ā at the Nesjahraun, Þingvellir, Iceland (United States)

    Stevenson, John Alexander; Mitchell, Neil Charles; Mochrie, Fiona; Cassidy, Michael; Pinkerton, Harry


    The Nesjahraun is a basaltic lava flow erupted from a subaerial fissure, extending NE along the Þingvellir graben from the Hengill central volcano that produced pāhoehoe lava followed by `a`ā. The Nesjahraun entered Iceland's largest lake, Þingvallavatn, along its southern shore during both phases of the eruption and exemplifies lava flowing into water in a lacustrine environment in the absence of powerful wave action. This study combines airborne light detection and ranging, sidescan sonar and Chirp seismic data with field observations to investigate the behaviour of the lava as it entered the water. Pāhoehoe sheet lava was formed during the early stages of the eruption. Along the shoreline, stacks of thin (5-20 cm thick), vesicular, flows rest upon and surround low (piles of coarse, unconsolidated, variably oxidised spatter. Clefts within the lava run inland from the lake. These are 2-5 m wide, >2 m deep, ˜50 m long, spaced ˜50 m apart and have sub-horizontal striations on the walls. They likely represent channels or collapsed tubes along which lava was delivered into the water. A circular rootless cone, Eldborg, formed when water infiltrated a lava tube. Offshore from the pāhoehoe lavas, the gradient of the flow surface steepens, suggesting a change in flow regime and the development of a talus ramp. Later, the flow was focused into a channel of `a`ā lava, ˜200-350 m wide. This split into individual flow lobes 20-50 m wide along the shore. `A`ā clinker is exposed on the water's edge, as well as glassy sand and gravel, which has been locally intruded by small (<1 m), irregularly shaped, lava bodies. The cores of the flow lobes contain coherent, but hackly fractured lava. Mounds consisting predominantly of scoria lapilli and the large paired half-cone of Grámelur were formed in phreatomagmatic explosions. The `a`ā flow can be identified underwater over 1 km offshore, and the sidescan data suggest that the flow lobes remained coherent flowing down a

  2. The eruptive history of the Trous Blancs pit craters, La Réunion Island: The origin of a 24 km long lava flow (United States)

    Walther, Georg; Frese, Ingmar; Di Muro, Andrea; Kueppers, Ulrich; Michon, Laurent; Métrich, Nicole


    The assessment of volcanic hazards is strongly based on the past eruptive behaviour of volcanoes and its morphological parameters. Since past eruption characteristics and their frequency provide the best probabilities of such eruptions for the future, understanding the complete eruptive history of a volcano is one of the most powerful tools in assessing the potential hazards or eruptions. At Piton de la Fournaise (PdF) volcano (La Réunion, Indian Ocean), the most frequent style of activity is the effusion of lava flows, which pose the greatest hazard by invasion of inhabited areas and destruction of human property. Here we examined the eruptive history of a previously uninvestigated area, believed to be the origin of a 24 km long lava flow. The eruptions recurrence time of PdF is about one eruption every 9 months in the central caldera. Besides this central activity, eruptive vents have been built along three main rift zones cutting the edifice during the last 50 kyrs. In this study we focused on the largest rift zone of about 15 km width and 20 km length, which extends in a north westerly direction between PdF and the nearby Piton des Neiges volcanic complex. This rift zone is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, indicative of high fluid pressures (up to 5 kbar) and large volume eruptions. Our area of investigation focused on four consecutively aligned pit craters called the Trous Blancs. These have been identified [1] as the source area of one of the youngest (ca. 6 kyrs) and largest lava field, which extends for 24 km from a height of 1800m asl, passing Le Tampon and Saint Pierre city, until it reaches the coast. To gain insight into the development of this eruption and possible future similar activity, we collected new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruptive products). Fieldwork revealed that the eruption initiated with intense

  3. Magnetic links among lava flows, tuffs and the underground plumbing system in a monogenetic volcano, derived from magnetics and paleomagnetic studies (United States)

    Urrutia-Fucugauchi, Jaime; Trigo-Huesca, Alfonso; Pérez-Cruz, Ligia


    A combined study using magnetics and paleomagnetism of the Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a 'magnetic' link between the lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that the lava and ash tuff carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.

  4. Surface Textures and Features Indicative of Endogenous Growth at the McCartys Flow Field, NM, as an Analog to Martian Volcanic Plains (United States)

    Bleacher, Jacob E.; Crumpler, L. S.; Garry, W. B.; Zimbelman, J. R.; Self, S.; Aubele, J. C.


    Basaltic lavas typically form channels or tubes, which are recognized on the Earth and Mars. Although largely unrecognized in the planetary community, terrestrial inflated sheet flows also display morphologies that share many commonalities with lava plains on Mars. The McCartys lava flow field is among the youngest (approx.3000 yrs) basaltic flows in the continental United States. The southwest sections of the flow displays smooth, flat-topped plateaus with irregularly shaped pits and hummocky inter-plateau units that form a polygonal surface. Plateaus are typically elongate in map view, up to 20 m high and display lineations within the glassy crust. Lineated surfaces occasionally display small < 1m diameter lava coils. Lineations are generally straight and parallel each other, sometimes for over 100 meters. The boundaries between plateaus and depressions are also lineated and tilted to angles sometimes approaching vertical. Plateau-parallel cracks, sometimes containing squeeze-ups, mark the boundary between tilted crust and plateau. Some plateau depressions display level floors with hummocky surfaces, while some are bowl shaped with floors covered in broken lava slabs. The lower walls of pits sometimes display lateral, sagged lava wedges. Infrequently, pit floors display the upper portion of a tumulus from an older flow. In some places the surface crust has been disrupted forming a slabby texture. Slabs are typically on the scale of a meter or less across and no less than 7-10 cm thick. The slabs preserve the lineated textures of the undisturbed plateau crust. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within preferred regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Rough surfaces represent inflation-related disruption of pahoehoe lava and not a a lava. Depressions are often the result of non-inflation and can be clearly identified by lateral

  5. Polygon formation and surface flow on a rotating fluid surface

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Tophøj, Laust Emil Hjerrild; Homan, T. A. M.


    We present a study of polygons forming on the free surface of a water flow confined to a stationary cylinder and driven by a rotating bottom plate as described by Jansson et al. (Phys. Rev. Lett., vol. 96, 2006, 174502). In particular, we study the case of a triangular structure, either completely......, we measure the surface flows by particle image velocimetry (PIV) and show that there are three vortices present, but that the strength of these vortices is far too weak to account for the rotation velocity of the polygon. We show that partial blocking of the surface flow destroys the polygons and re...

  6. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.


    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  7. Analysis of Fluid Flow over a Surface (United States)

    McCloud, Peter L. (Inventor)


    A method, apparatus, and computer program product for modeling heat radiated by a structure. The flow of a fluid over a surface of a model of the structure is simulated. The surface has a plurality of surface elements. Heat radiated by the plurality of surface elements in response to the fluid flowing over the surface of the model of the structure is identified. An effect of heat radiated by at least a portion of the plurality of surface elements on each other is identified. A model of the heat radiated by the structure is created using the heat radiated by the plurality of surface elements and the effect of the heat radiated by at least a portion of the plurality of surface elements on each other.

  8. Using thermal remanent magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991-1995 lava dome eruption at Mt. Unzen Volcano, Japan (United States)

    Uehara, D.; Cas, R. A. F.; Folkes, C.; Takarada, S.; Oda, H.; Porreca, M.


    The 1991-1995 Mt. Unzen eruption (Kyushu, Japan) produced 13 lava domes, approximately 9400 block and ash pyroclastic flows (BAF) resulting from lava dome collapse events and syn- and post-dome collapse debris flow (DF) events. In the field, it can be very difficult to distinguish from field facies characteristics which deposits are primary hot BAF, cold BAF or rock avalanche, or secondary DF deposits. In this study we use a combination of field observations and thermal remanent magnetisation (TRM) analysis of juvenile, lava dome derived clasts from seven deposits of the 1991-1995 Mt. Unzen eruption in order to distinguish between primary BAF deposits and secondary DF deposits and to determine their emplacement temperature. Four major TRM patterns were identified: (1) Type I: clasts with a single magnetic component oriented parallel to the Earth's magnetic field at time and site of emplacement. This indicates that these deposits were deposited at very high temperature, between the Curie temperature of magnetite (~ 540 °C) and the glass transition temperature of the lava dome (~ 745 °C). These clasts are found in high temperature BAF deposits. (2) Type II: clasts with two magnetic components of magnetisation. The lower temperature magnetic components are parallel to the Earth's magnetic field at time of the Unzen eruption. Temperature estimations for these deposits can range from 80 to 540 °C. We found this paleomagnetic behaviour in moderate temperature BAF or warm DF deposits. (3) Type III: clasts with three magnetic components, with a lower temperature component oriented parallel to the Earth's magnetic field at Unzen. The individual clast temperatures estimated for this kind of deposit are usually less than 300 °C. We interpret this paleomagnetic behaviour as the effect of different thermal events during their emplacement history. There are several interpretations for this paleomagnetic behaviour including remobilisation of moderate temperature BAF, warm DF

  9. Surface degassing and modifications to vesicle size distributions in active basalt flows (United States)

    Cashman, K.V.; Mangan, M.T.; Newman, S.


    The character of the vesicle population in lava flows includes several measurable parameters that may provide important constraints on lava flow dynamics and rheology. Interpretation of vesicle size distributions (VSDs), however, requires an understanding of vesiculation processes in feeder conduits, and of post-eruption modifications to VSDs during transport and emplacement. To this end we collected samples from active basalt flows at Kilauea Volcano: (1) near the effusive Kupaianaha vent; (2) through skylights in the approximately isothermal Wahaula and Kamoamoa tube systems transporting lava to the coast; (3) from surface breakouts at different locations along the lava tubes; and (4) from different locations in a single breakout from a lava tube 1 km from the 51 vent at Pu'u 'O'o. Near-vent samples are characterized by VSDs that show exponentially decreasing numbers of vesicles with increasing vesicle size. These size distributions suggest that nucleation and growth of bubbles were continuous during ascent in the conduit, with minor associated bubble coalescence resulting from differential bubble rise. The entire vesicle population can be attributed to shallow exsolution of H2O-dominated gases at rates consistent with those predicted by simple diffusion models. Measurements of H2O, CO2 and S in the matrix glass show that the melt equilibrated rapidly at atmospheric pressure. Down-tube samples maintain similar VSD forms but show a progressive decrease in both overall vesicularity and mean vesicle size. We attribute this change to open system, "passive" rise and escape of larger bubbles to the surface. Such gas loss from the tube system results in the output of 1.2 ?? 106 g/day SO2, an output representing an addition of approximately 1% to overall volatile budget calculations. A steady increase in bubble number density with downstream distance is best explained by continued bubble nucleation at rates of 7-8/cm3s. Rates are ???25% of those estimated from the vent

  10. Directional change during a Miocene R-N geomagnetic polarity reversal recorded by mafic lava flows, Sheep Creek Range, north central Nevada, USA (United States)

    Bogue, S. W.; Glen, J. M. G.; Jarboe, N. A.


    Recurring transitional field directions during three Miocene geomagnetic reversals provide evidence that lateral inhomogeneity of the lower mantle affects flow in the outer core. We compare new paleomagnetic results from a composite sequence of 15.2 Ma lava flows in north central Nevada (Sheep Creek Range; 40.7°N, 243.2°E), erupted during a polarity reversal, to published data from Steens Mountain (250 km to the northwest in Oregon) and the Newberry Mountains (650 km to the south in California) that document reversals occurring millions of years and many polarity switches earlier. Alternating field demagnetization, followed by thermal demagnetization in half the samples, clearly isolated the primary thermoremanent magnetization of Sheep Creek Range flows. We correlated results from our three sampled sections to produce a composite record that begins with a single virtual geomagnetic pole (VGP) at low latitude in the Atlantic, followed by two VGPs situated near latitude 30°N in NE Africa. After jumping to 83°N (one VGP), the pole moves to equatorial South America (one VGP), back to NE Africa (three VGPs), to high southern latitudes (two VGPs), back to equatorial South America (three VGPs), and finally to high northern latitudes (nine VGPs). The repeated visits of the transitional VGP to positions in South America and near NE Africa, as well as the similar behavior recorded at Steens Mountain and the Newberry Mountains, suggest that lower mantle or core-mantle boundary features localize core flow structures, thereby imparting a discernible regional structure on the transitional geomagnetic field that persists for millions of years.

  11. Rheology and thermal budget of lunar basalts: an experimental study and its implications for rille formation of non-Newtonian lavas on the Moon (United States)

    Sehlke, A.; Whittington, A. G.


    Sinuous lava channels are a characteristic feature observed on the Moon. Their formation is assumed to be due to a combination of mechanical and thermal erosion of the lava into the substrate during emplacement as surface channels, or due to collapsed subsurface lava tubes after the lava has evacuated. The viscosity (η) of the lava plays an important role, because it controls the volume flux of the emplaced lava that governs the mechanical and thermal erosion potential of the lava flow. Thermal properties, such as heat capacity (Cp) and latent heat of crystallization (ΔHcryst) are important parameters in order for the substrate to melt and causing thermal buffering during crystallization of the flowing lava. We experimentally studied the rheological evolution of analog lavas representing the KREEP terrain and high-Ti mare basalts during cooling and crystallization. We find that the two lavas behave very differently. High-Ti mare lava begins to crystallize around 1300 ºC with a viscosity of 8.6±0.6 Pa s and crystal content around 2 vol%. On cooling to 1169 ºC, the effective viscosity of the crystal-melt suspension is increased to only 538±33 Pa s (at a strain rate of 1 s-1) due to crystallization of 14±1 vol% blocky magnetite and acicular ulvöspinel-rich magnetite. The flow behavior of these suspensions depends on the strain rate, where flow curves below strain rates of 10 s-1show shear-thinning character, but resemble Bingham behavior at greater strain rates. In contrast, the KREEP lava crystallizes rapidly over a narrow temperature interval of ~ 30 degrees. The first crystals detected were ulvospinel-rich magnetites at 1204 ºC with ~2 vol% and a viscosity of 90±2 Pa s. On cooling to 1178 ºC, anorthite and enstatite appears, so that the crystal-melt suspension has become strongly pseudoplastic at a crystal content of 22±2 vol% with a flow index (n) of 0.63 and an effective viscosity of 1600±222 Pa s at a strain rate of 1 s-1. We are currently measuring

  12. Lunar Lava Tube Sensing (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas


    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  13. Effects of lava heating on volatile-rich slopes on Io (United States)

    Dundas, Colin M.


    The upper crust of Io may be very rich in volatile sulfur and SO2. The surface is also highly volcanically active, and slopes may be warmed by radiant heat from the lava. This is particularly the case in paterae, which commonly host volcanic eruptions and long-lived lava lakes. Paterae slopes are highly variable, but some are greater than 70°. I model the heating of a volatile slope for two end-member cases: instantaneous emplacement of a large sheet flow, and persistent heating by a long-lived lava lake. In general, single flows can briefly raise sulfur to the melting temperature, or drive a modest amount of sublimation of SO2. Persistently lava-covered surfaces will drive much more significant geomorphic effects, with potentially significant sublimation and slope retreat. In addition to the direct effects, heating is likely to weaken slope materials and may trigger mass wasting. Thus, if the upper crust of Io is rich in these volatile species, future missions with high-resolution imaging are likely to observe actively retreating slopes around lava lakes and other locations of frequent eruptions.

  14. Analysis of Separated Flow over Blocked Surface

    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, the separated flow over flat and blocked surfaces was investigated experimentally. Velocity and turbulence intensity measurements were carried out by a constanttemperature hot wire anemometer and static pressure measurements by a micro-manometer. The flow separations and reattachments were occurred before the first block, on the first block, between blocks and after the last block, and the presence of the blocks significantly increased the turbulent intensity

  15. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.


    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  16. Surface roughness effects on turbulent Couette flow (United States)

    Lee, Young Mo; Lee, Jae Hwa


    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  17. Gravity-capillary free-surface flows

    CERN Document Server

    Vanden-Broeck, Jean-Marc


    Free surface problems occur in many aspects of science and of everyday life such as the waves on a beach, bubbles rising in a glass of champagne, melting ice, pouring flows from a container and sails billowing in the wind. Consequently, the effect of surface tension on gravity-capillary flows continues to be a fertile field of research in applied mathematics and engineering. Concentrating on applications arising from fluid dynamics, Vanden-Broeck draws upon his years of experience in the field to address the many challenges involved in attempting to describe such flows mathematically. Whilst careful numerical techniques are implemented to solve the basic equations, an emphasis is placed upon the reader developing a deep understanding of the structure of the resulting solutions. The author also reviews relevant concepts in fluid mechanics to help readers from other scientific fields who are interested in free boundary problems.

  18. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.


    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  19. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.


    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  20. Highly stable superhydrophobic surfaces under flow conditions (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin


    We synthesized hydrophobic anodic aluminum oxide nanostructures with pore diameters of 35, 50, 65, and 80 nm directly on quartz crystal microresonators, and the stability of the resulting superhydrophobicity was investigated under flow conditions by measuring changes in the resonance frequency and dissipation factor. When the quartz substrates were immersed in water, their hydrophobic surfaces did not wet due to the presence of an air interlayer. The air interlayer was gradually replaced by water over time, which caused decreases in the resonance frequency (i.e., increases in mass) and increases in the dissipation factor (i.e., increases in viscous damping). Although the water contact angles of the nanostructures increased with increasing pore size, the stability of their superhydrophobicity increased with decreasing pore size under both static conditions (without flow) and dynamic conditions (with flow); this increase can be attributed to an increase in the solid surface area that interacts with the air layer above the nanopores as the pore size decreases. Further, the effects of increasing the flow rate on the stability of the superhydrophobicity were quantitatively determined.

  1. Visualization of space competition and plume formation with complex potentials for multiple source flows : Some examples and novel application to Chao lava flow (Chile)

    NARCIS (Netherlands)

    Weijermars, R.


    Fluid displacement in a continuum pressured by a variable constellation of source flows can be visualized as solutions of line integrals. The algorithms are based on complex potentials that provide exact solutions of the Navier-Stokes equation and allow users to specify both the location and flux

  2. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E


    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  3. Surface Effects on Nanoscale Gas Flows (United States)

    Beskok, Ali; Barisik, Murat


    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  4. Turbulent Flow past High Temperature Surfaces (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald


    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  5. Detecting short period variations in lava flux (United States)

    James, M. R.; Pinkerton, H.


    Although the underpinning processes that govern the flow of lava have been recognized for some time, modeling the evolution of lava flow fields remains problematic due to the difficulties in fully constraining inputs to flow models. One of the main parameters controlling the evolution of individual flows is effusion rate, and long period effusion rate changes, such as flow-waning prior to the cessation of an eruption, can now be routinely incorporated in simulations. However, effusion rates commonly vary over a wide range of timescales (from years to minutes) and, for short period changes, neither the cause nor the effects are well understood. Nevertheless, short period changes can result in inaccuracies in the input data for simulations and can be responsible for altering flow directions by either building or breaching flow levees. Hence, understanding the processes involved in such changes is important for flow modeling and, furthermore, could eventually provide insight into flow instabilities within the conduit or variability within degassing processes. Observations of short period (e.g. identified in effusion rate data because of the generally low sampling frequency of such data. During the last week of July 2008, trail cameras were used to obtain dense time series imagery of the active lava flow at Mount Etna, Sicily. The trail cameras were modified to capture timelapse imagery by adding an interval timer which triggered image capture every 10 minutes. During daylight, the cameras collected 5 M-pixel colour images and, during nighttime, they automatically switched to a 2 M-pixel camera which collected (uncalibrated) black and white infrared images. For the color images, haze, cloud and sunglare combined with the low contrast between the active lava and its surroundings, prevented useful analysis. However, the infrared images captured at night clearly indicated the active flow areas and nighttime sequences covering the two main proximal lava channels detected

  6. Tachylyte in Cenozoic basaltic lavas from the Czech Republic and Iceland: contrasting compositional trends (United States)

    Ulrych, Jaromír; Krmíček, Lukáš; Teschner, Claudia; Řanda, Zdeněk; Skála, Roman; Jonášová, Šárka; Fediuk, Ferry; Adamovič, Jiří; Pokorný, Richard


    Tachylytes from rift-related volcanic rocks were recognized as: (i) irregular veinlets in host alkaline lava flows of the Kozákov volcano, Czech Republic, (ii) (sub)angular xenoliths in alkaline lava of the feeding channel of the Bukovec volcano, Czech Republic, and (iii) paleosurface of a tholeiitic lava flow from Hafrafell, Iceland. The tachylyte from Kozákov is phonotephrite to tephriphonolite in composition while that from Bukovec corresponds to trachyandesite to tephriphonolite. Both glass and host rock from Hafrafell are of tholeiitic basalt composition. The tachylyte from Kozákov, compared with the host rock, revealed a substantial enrichment in major elements such as Si, Al and alkalis along with Rb, Sr, Ba, Nb, Zr, REE, Th and U. The tachylyte from Bukovec displays contrasting trends in the incompatible element contents. The similarity in composition of the Hafrafell tachylyte paleosurface layer and parental tholeiitic basalt is characteristic for lavas. The host/parent rocks and tachylytes have similar initial Sr-Nd characteristics testifying for their co-magmatic sources. The initial ɛNd values of host/parent rocks and tachylytes from the Bohemian Massif (+3.4 to +3.9) and those from Iceland (+6.3) are interpreted as primary magma values. Only the tachylyte from Bukovec shows a different ɛNd value of -2.1, corresponding to a xenolith of primarily sedimentary/metamorphic origin. The tachylyte from Kozákov is a product of an additional late magmatic portion of fluids penetrating through an irregular fissure system of basaltic lava. The Bukovec tachylyte is represented by xenoliths originated during the interaction of ascending basaltic melt with granitoids or orthogneisses, whereas the Hafrafell tachylyte is a product of a rapid cooling on the surface of a basalt flow.

  7. Evidence for Late Amazonian explosive volcanism in the Tharsis Region of Mars: Photogeology of the "Stealth" radar feature and discovery of a dune field among the lava flows west of Arsia Mons (United States)

    Edgett, Kenneth S.; Butler, Bryan J.; Zimbelman, James R.; Hamilton, Victoria E.


    INTRODUCTION: Extensive volcanic ash deposits blanketing the youngest geomorphic units on Mars would imply that major explosive volcanic events occurred relatively late in martian history. Discovery of the radar "Stealth" region that extends westward of Arsia and Pavonis Montes has led to the conclusion that the surfaces with "Stealth" characteristics are mantled by fine-grained volcanic ash [1-3]. In our present study, we have examined data sets that further illuminate the nature and origin of "Stealth": maps of albedo, thermal inertia, and rock abundance derived from Viking Thermal Infrared Mapper (IRTM) data [4-6], plus Viking images that range in resolution from 15 to 200 m/pixel. RADAR STEALTH: The Stealth region was discovered in bistatic 3.5-cm radar observations [1]. It is defined as a region in which the backscatter cross section at normal incidence is very low (nearly zero, or below the 1-sigma noise value) [2]. "Stealth" is likely caused by the presence of an extremely underdense surface material containing no scatterers to some depth [1]. Stealth is at least 2 to 3 m thick, and might be 7 to 15 m thick [1-3]. The Stealth feature extends more than 2,000 km along the equator between Arsia Mons and Nicholson Crater, and it appears to be part of a region of generally low radar signal return that extends from Pavonis Mons westward to the Elysium Basin [2]. STEALTH IN RELATION TO GEOLOGIC FEATURES: To be observed from Earth, the radar Stealth area must consist of a material that is physically on top of (and therefore younger than) the lava flows, craters, and other features seen in the western equatorial Tharsis region. The youngest units overlain by Stealth are among the youngest on Mars (Late Amazonian). For example, Stealth overlies the Medusae Fossae Formation (units "Amu" and "Amm" in map by Scott and Tanaka [7]), which consists of gently undulating smooth and wind-sculpted (yardangs) surfaces interpreted by some to be volcanic ash deposits [8, 9

  8. RIPPLE: A new model for incompressible flows with free surfaces (United States)

    Kothe, D. B.; Mjolsness, R. C.


    A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the Continuum Surface Force (CSF) model which represents surface tension as a (strongly) localized volume force. Other features include a high-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE'S unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods.

  9. RIPPLE - A new model for incompressible flows with free surfaces (United States)

    Kothe, D. B.; Mjolsness, R. C.


    A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the continuum surface force model which represents surface tension as a (strongly) localized volume force. Other features include a higher-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE's unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods.

  10. Surface roughness influences on the behaviour of flow inside microchannels (United States)

    Farias, M. H.; Castro, C. S.; Garcia, D. A.; Henrique, J. S.


    This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

  11. Finite Element Model of a Two-Phase Non-Newtonian Thixotropic Fluid: Mount St. Helens Lava Dome (United States)

    Vincent, P.; Zevada, P.


    Extrusion of highly viscous lavas that spread laterally and form lava domes in the craters of large volcanoes is associated with significant volcanic hazards. Gas overpressure driven fragmentation of the lava dome or collapse and slumping of marginal sections or the entire mass of the dome can trigger dangerous pyroclastic flows that threaten surrounding populations up to tens of kilometers away. The rate of lava dome growth in the mature state of the dome evolution is often oscillatory. Relatively quiescent episodes are terminated by renewed extrusion and emplacement of exogenous "lobes" or "spines" of lava on the surface of the dome. Emplacement of new lobes is preceded by pressurization of magma in the magmatic conduit that can trigger volcanic eruptions and is preceded by crater floor deformation (e.g. Swanson and Holcombe, 1990). This oscillatory behavior was previously attributed primarily to crystallization kinetics and gas exsolution generating cyclic overpressure build-ups. Analogue modeling of the lava domes has revealed that the oscillatory growth rate can be reproduced by extrusion of isothermal, pseudoplastic and thixotropic plaster of Paris (analogue material for the magma) on a sand layer (analogue material for the unconsolidated deposits of the crater floor). The patterns of dome growth of these models closely correspond to both the 1980-1985 and 2004-2005 growth episodes of Mt. St. Helens lava dome (Swanson and Holcombe, 1990; Major et al., 2005). They also suggest that the oscillatory growth dynamics of the lavas can be explained by the mechanical interaction of the non-Newtonian magma with the frictional and deformable substrate below the lava dome rather than complex crystallization kinetics (e.g. Melnik and Sparks, 1999). In addition, these results suggest that the renewed growth episode of Mt. St. Helens dome in 2006 could be associated with an even higher degree of magma pressurization in the conduit than occurred during the 1980 - 1986

  12. Lunar Lava Tubes as Potential Human Settlements and Refuge Sites (United States)

    Lemke, K. A.; Mardon, A. A.


    Lava tubes have been detected on the surface of Earth's moon via satellite images. Upon further exploration of these caves through robotic technology and other means, a refuge place for astronauts may be installed.

  13. Viscous flows stretching and shrinking of surfaces

    CERN Document Server

    Mehmood, Ahmer


    This authored monograph provides a detailed discussion of the boundary layer flow due to a moving plate. The topical focus lies on the 2- and 3-dimensional case, considering axially symmetric and unsteady flows. The author derives a criterion for the self-similar and non-similar flow, and the turbulent flow due to a stretching or shrinking sheet is also discussed. The target audience primarily comprises research experts in the field of boundary layer flow, but the book will also be beneficial for graduate students.

  14. Controls on lava-snow interactions from propogation styles during the 2012-13 Tolbachik eruption (United States)

    Edwards, Benjamin; Belousov, Alexander; Belousov, Marina


    Knowledge of how volcanism interacts with hydrosphere/cryosphere is critical for understanding the functioning and evolution of the Earth, establishing volcanism-climate linkages, and estimations of related hazards. Until now, no special studies have been focused on interactions between snowpack and advancing incandescent lava during volcanic eruptions, even though snow is the most widely distributed form of solid H2O on the planet. It was thought a priori that snow might melt rapidly in front of active lava flows producing vigorous floods. Here we present results of unique field observations made in the snowpack in front of advancing basaltic lava flows during the 2012-13 eruption at Tolbachik volcano, Kamchatka, Russia. Our observations in the first time demonstrate that in reality heat transfer through lava/snow boundary occurs relatively slowly, so that melting of the majority of the snow pack occurs over the span of several hours-days after emplacement of the lava flows, producing only local and sporadic meltwater floods. Two fundamentally different styles of lava propagation result in two strikingly different responses of snowpack: i) 'a'a lava advancing in a rolling caterpillar-track motion propagates on top of snowpack; the melt water accumulates in (saturates) the layer of snow buried underneath the lava flow and does not interact notably with the lava material, and ii) pahoehoe lava advancing as inflating lobes propagates beneath/inside snowpack, locally generating slowly growing 'snow-domes'; the melt water precipitates down into incandescent lava producing chilling and local thermal shock/quench fragmentation (minor hyaloclastite production). Our observations show that lava-snow interactions can vary significantly depending on styles of flow front advance. Lava flows emplaced over areas covered with snow bear features that can be distinguished in old stratigraphic sequences and used for paleoclimatic reconstructions on Earth, Mars and other planets.

  15. Basalt models for the Mars penetrator mission: Geology of the Amboy Lava Field, California (United States)

    Greeley, R.; Bunch, T. E.


    Amboy lava field (San Bernardino County, California) is a Holocene basalt flow selected as a test site for potential Mars Penetrators. A discussion is presented of (1) the general relations of basalt flow features and textures to styles of eruptions on earth, (2) the types of basalt flows likely to be encountered on Mars and the rationale for selection of the Amboy lava field as a test site, (3) the general geology of the Amboy lava field, and (4) detailed descriptions of the target sites at Amboy lava field.

  16. New advection schemes for free surface flows

    International Nuclear Information System (INIS)

    Pavan, Sara


    The purpose of this thesis is to build higher order and less diffusive schemes for pollutant transport in shallow water flows or 3D free surface flows. We want robust schemes which respect the main mathematical properties of the advection equation with relatively low numerical diffusion and apply them to environmental industrial applications. Two techniques are tested in this work: a classical finite volume method and a residual distribution technique combined with a finite element method. For both methods we propose a decoupled approach since it is the most advantageous in terms of accuracy and CPU time. Concerning the first technique, a vertex-centred finite volume method is used to solve the augmented shallow water system where the numerical flux is computed through an Harten-Lax-Van Leer-Contact Riemann solver. Starting from this solution, a decoupled approach is formulated and is preferred since it allows to compute with a larger time step the advection of a tracer. This idea was inspired by Audusse, E. and Bristeau, M.O. [13]. The Monotonic Upwind Scheme for Conservation Law, combined with the decoupled approach, is then used for the second order extension in space. The wetting and drying problem is also analysed and a possible solution is presented. In the second case, the shallow water system is entirely solved using the finite element technique and the residual distribution method is applied to the solution of the tracer equation, focusing on the case of time-dependent problems. However, for consistency reasons the resolution of the continuity equation must be considered in the numerical discretization of the tracer. In order to get second order schemes for unsteady cases a predictor-corrector scheme is used in this work. A first order but less diffusive version of the predictor-corrector scheme is also introduced. Moreover, we also present a new locally semi-implicit version of the residual distribution method which, in addition to good properties in

  17. Local grid refinement for free-surface flow simulations

    NARCIS (Netherlands)

    van der Plas, Peter


    The principal goal of the current study is to explore and investigate the potential of local grid refinement for increasing the numerical efficiency of free-surface flow simulations in a practical context. In this thesis we propose a method for local grid refinement in the free-surface flow model

  18. Wetting Controls Separation of Inertial Flows from Solid Surfaces (United States)

    Duez, Cyril; Ybert, Christophe; Clanet, Christophe; Bocquet, Lydéric


    We investigate the flow of liquids around solid surfaces in the inertial regime, a situation commonly encountered with the so-called “teapot effect”, the annoying tendency for a liquid to trickle down the outside of a receptacle after pouring. We demonstrate that surface wettability is an unexpected key factor in controlling flow separation and trickling, the latter being completely suppressed in the limit of superhydrophobic substrates. This unforeseen coupling is rationalized in terms of an inertial-capillary adhesion framework, which couples inertial flows to surface wettability effects. This description of flow separation successfully captures the observed dependence on the various experimental parameters, wettability, flow velocity, solid surface edge curvature. As a further illustration of this coupling, a real-time control of flow separation is demonstrated using electrowetting for contact angle actuation.

  19. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.


    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  20. Liquid flow along a solid surface reversibly alters interfacial chemistry. (United States)

    Lis, Dan; Backus, Ellen H G; Hunger, Johannes; Parekh, Sapun H; Bonn, Mischa


    In nature, aqueous solutions often move collectively along solid surfaces (for example, raindrops falling on the ground and rivers flowing through riverbeds). However, the influence of such motion on water-surface interfacial chemistry is unclear. In this work, we combine surface-specific sum frequency generation spectroscopy and microfluidics to show that at immersed calcium fluoride and fused silica surfaces, flow leads to a reversible modification of the surface charge and subsequent realignment of the interfacial water molecules. Obtaining equivalent effects under static conditions requires a substantial change in bulk solution pH (up to 2 pH units), demonstrating the coupling between flow and chemistry. These marked flow-induced variations in interfacial chemistry should substantially affect our understanding and modeling of chemical processes at immersed surfaces. Copyright © 2014, American Association for the Advancement of Science.

  1. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.


    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  2. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.


    -like structures and jumbled sheet flows on the floors suggest the eruption was on-going when the ponds emptied. 14C-dating of foraminifera from basal sediments on the pond floors gives a minimum age for the ponds of ~1500 years, which is older than any of the surface flows in Axial's summit caldera. Limu o Pele was abundant. Glass contents of the recovered lavas are 7.6 to 8.0 wt% MgO with few exceptions, and other than being plagioclase-phyric, the chemistry is similar to the majority of lavas at the summit. Lava samples from the floors of several ponds have a few tenths of a weight percent lower MgO than the nearby levees, suggesting the pond's molten interior or resupplied lavas had some time to cool. The varying levee rim heights and abundance of ponds in the vicinity suggest this type of activity occurred many times in this area, but it is an unusual eruption style for mid-ocean ridges. Another lava pond complex with even higher levees occurs on the north rift of Axial Volcano. Formation of these ponds requires long-lived, steady, moderate-eruption-rate lava effusion on nearly horizontal seafloor and may occur only on deep distal rift zones of central volcanoes.

  3. Side Flow Effect on Surface Generation in Nano Cutting. (United States)

    Xu, Feifei; Fang, Fengzhou; Zhang, Xiaodong


    The side flow of material in nano cutting is one of the most important factors that deteriorate the machined surface quality. The effects of the crystallographic orientation, feed, and the cutting tool geometry, including tool edge radius, rake angle and inclination angle, on the side flow are investigated employing molecular dynamics simulation. The results show that the stagnation region is formed in front of tool edge and it is characterized by the stagnation radius R s and stagnation height h s . The side flow is formed because the material at or under the stagnation region is extruded by the tool edge to flow to the side of the tool edge. Higher stagnation height would increase the size of the side flow. The anisotropic nature of the material which partly determines the stagnation region also influences the side flow due to the different deformation mechanism under the action of the tool edge. At different cutting directions, the size of the side flow has a great difference which would finally affect the machined surface quality. The cutting directions of {100} , {110} , and {110}  are beneficial to obtain a better surface quality with small side flow. Besides that, the side flow could be suppressed by reducing the feed and optimizing the cutting tool geometry. Cutting tool with small edge radius, large positive rake angle, and inclination angle would decrease the side flow and consequently improve the machined surface quality.

  4. Controlling inertia dominated flows with super-repellent surfaces (United States)

    Ybert, Christophe


    The possibility to affect liquid flows through surface properties was naturally put forward by the recent emergence of small-scales fluidic devices, as downsizing invariably emphasizes the role of surfaces, with respect to bulk properties. Such strategy of flow modification by surface effects is a priori restricted to the natural scales setting the interactions between the surface and the nearby liquid that is, essentially to nanometric scales. In this context, super-repellent surfaces have emerged as possessing not only remarkable (non-)wetting properties but also unique dynamical properties. The latter manifest on their ability to promote large boundary slippage, characterized by slip lengths from 1 to hundreds of microns, that make them capable of modifying flows up such micro-scales. More fundamentally, this raises the question of how far this strategy of flow control through surfaces can be pushed, and of how deep the modification of liquid flows close to super-repellent surface is: can it persist at large scales or large velocities? After briefly going through the properties of super-repellent surfaces in laminar viscous flows, I will discuss their impact on different macro-scale experimental configurations involving inertia-dominated flows. Focusing on splashing and dripping phenomena - the latter being associated to the well-known teapot effect- I will show that although surface effects are usually ignored in such situations, in view of the large values of the Weber number, it is still possible to shape the liquid flows by tailoring surface properties, with optimized effects obtained for super-repellent surfaces.

  5. The role of porosity in thermal inertia variations on basaltic lavas (United States)

    Zimbelman, James R.


    Thermal inertia, defined as the square root of the product of thermal conductivity, density, and specific heat, has been noted to vary in inverse proportion to porosity in Hawaiian basalts. It is presently suggested that porosities of the order of more than 80 percent are required if the low thermal inertias observed in Martian shield volcanoes are the result of pristine lava flow surface properties. An aeolian origin is held to be most likely in view of thermal measurements on Mars; the volcanic surfaces in question are anticipated to have a short lifetime in their environment.

  6. Surface capturing and multigrid for steady free-surface water flows

    NARCIS (Netherlands)

    Wackers, J.


    Surface capturing is a technique for modelling the water surface in numerical computations of water flow: the computational grid is not deformed, a separate surface model gives the location of the water surface in the grid. Surface capturing is generally applicable and can handle complicated ship

  7. Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling? (United States)

    Ji, Peng; Yuan, Xing; Liang, Xin-Zhong


    Hyperresolution land surface modeling provides an unprecedented opportunity to simulate locally relevant water and energy cycle, but lateral surface and/or subsurface flows that are essential at fine scale are often neglected by most one-dimensional land surface models (LSMs). To analyze effects of lateral flows across scales, a Conjunctive Surface-Subsurface Process model, which considers soil moisture-surface flow interaction and quasi-three-dimensional subsurface flow, is implemented over a mountainous HyperHydro test bed in southwestern USA at different resolutions. Validation over more than 70 International Soil Moisture Network stations shows that there are significant improvements in soil moisture simulations from 30 km to 4 km as finer soil property and precipitation data are used, with correlation increased by 5%-16% and error decreased by 5%. Lateral surface flow has a significant influence on surface soil moisture and ground evaporation even at coarse resolution. Effect of lateral subsurface flow on soil moisture is nontrivial at 1 km or finer resolution especially over wet areas. At 100 m resolution, topography-induced lateral subsurface flow causes drier peaks and wetter valleys, decreases latent heat by 8% at peaks, while increases it by 12% at valleys. Furthermore, influences of lateral subsurface flow on ground evaporation and vegetation transpiration are more significant during dry season due to a stronger coupling between soil moisture and evapotranspiration. Therefore, it is worthy to incorporate lateral flow processes in hyperresolution LSMs to better represent water and energy heterogeneity even with limited hyperresolution meteorological and surface data.

  8. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.


    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  9. Photogrammetric and Global Positioning System Measurements of Active Pahoehoe Lava Lobe Emplacement on Kilauea, Hawaii (United States)

    Hamilton, Christopher W.; Glaze, Lori S.; James, Mike R.; Baloga, Stephen M.; Fagents, Sarah A.


    Basalt is the most common rock type on the surface of terrestrial bodies throughout the solar system and -- by total volume and areal coverage -- pahoehoe flows are the most abundant form of basaltic lava in subaerial and submarine environments on Earth. A detailed understanding of pahoehoe emplacement processes is necessary for developing accurate models of flow field development, assessing hazards associated with active lava flows, and interpreting the significance of lava flow morphology on Earth and other planetary bodies. Here, we examine the active emplacement of pahoehoe lobes along the margins of the Hook Flow from Pu'u 'O'o on Kilauea, Hawaii. Topographic data were acquired between 21 and 23 February 2006 using stereo-imaging and differential global positing system (DGPS) measurements. During this time, the average discharge rate for the Hook Flow was 0.01-0.05 cubic m/s. Using stereogrammetric point clouds and interpolated digital terrain models (DTMs), active flow fronts were digitized at 1 minute intervals. These areal spreading maps show that the lava lobe grew by a series of breakouts tha t broadly fit into two categories: narrow (0.2-0.6 m-wide) toes that grew preferentially down-slope, and broad (1.4-3.5 m-wide) breakouts that formed along the sides of the lobe, nearly perpendicular to the down-flow axis. These lobes inflated to half of their final thickness within approx 5 minutes, with a rate of inflation that generally deceased with time. Through a combination of down-slope and cross-slope breakouts, lobes developed a parabolic cross-sectional shape within tens of minutes. We also observed that while the average local discharge rate for the lobe was generally constant at 0.0064 +/- 0.0019 cubic m/s, there was a 2 to 6 fold increase in the areal coverage rate every 4.1 +/- 0.6 minutes. We attribute this periodicity to the time required for the dynamic pressurization of the liquid core of the lava lobe to exceed the cooling-induced strength of the

  10. Degassing-induced crystallization in silicate melt inclusion: evaluating the role of post-entrapment changes in melt inclusion from the SW volcanic flows of Deccan Large Igneous Province (Deccan LIP) lava. (United States)

    Rani Choudhary, Babita


    Melt inclusions represent sampling of magma during their growth in magma chambers and during ascent to the surface. Several studies of melt inclusions in Large Igneous Provinces (LIPs) in different parts of the world have been documented in the literature (Sobolev et al. 2011; Kamenetsky et al. 2012). Melt inclusions study from Deccan LIP can provide new insights into the physio-chemical conditions and evolution of this important LIP. The Deccan LIP was fissure eruption mainly emplaced over a very short duration at 66 Ma (Schoene et al. 2015). To better characterize and explain the diversity in geochemical composition, petrogenesis and volatile degassing, melt inclusions studies have been carried out in clinopyroxene and plagioclase feldspar from a suite of samples in the Western Ghats section. Samples were obtained from the upper three formations (the Wai subgroup). The inclusions are primary and range in shape and size varies from a few microns, up to 100 microns. The inclusions are crystalline, and contain daughter phases. Some are glassy, with or without a shrinkage bubble. The melt inclusions show substantial variations in major element composition. Inclusions are significantly enriched in TiO2 (3.68 to 0.08 wt%) and FeO (18.3 to 2.63 wt%). SiO2 ranges from 43.4-66.8 wt% and classification diagrams of total alkali (Na2O+K2O) Vs. silica melt inclusions show that most inclusions are of sub-alkaline to mildly alkaline composition. Al2O3 ranges from 9.7- 22.4wt % and MgO 18.3-1.6. EPMA measurements demonstrated the presence of daughter crystals, such as magnetite and titanomagnetite, and high FeO, TiO2 and CaO within melt inclusions among the silicate daughter crystal clusters. Volatiles are determined have wide range in composition in both plagioclase- and pyroxene-hosted melt inclusions by using FTIR technique, values up to 2wt% H2Ototal and 1808 ppm CO2. Moreover the variability in composition and volatiles the melt from the samples in a single flow suggests

  11. Flow Structure and Surface Topology on a UCAV Planform (United States)

    Elkhoury, Michel; Yavuz, Metin; Rockwell, Donald


    Flow past a X-45 UCAV planform involves the complex generation and interaction of vortices, their breakdown and occurrence of surface separation and stall. A cinema technique of high-image-density particle image velocimetry, in conjunction with dye visualization, allows characterization of the time-averaged and instantaneous states of the flow, in terms of critical points of the near-surface streamlines. These features are related to patterns of surface normal vorticity and velocity fluctuation. Spectral analysis of the naturally occurring unsteadiness of the flow allows definition of the most effective frequencies for small-amplitude perturbation of the wing, which leads to substantial alterations of the aforementioned patterns of flow structure and topology adjacent to the surface.

  12. Orientation of fibres in suspensions flowing over a solid surface


    Carlsson, Allan


    The orientation of fibres suspended in a viscous fluid, flowing over a solid surface, has been studied experimentally. A shear layer was generated, by letting the suspension flow down an inclined plate. Far upstream from the measuring section the suspension was accelerated to obtain an initial orientation of the fibres aligned with the flow direction. A CCD-camera was used to visualise the fibres. The velocity profile of the fibres coincided with the theoretical expression for fully developed...

  13. Rotating polygon instability of a swirling free surface flow

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild; Bohr, Tomas; Mougel, J.


    and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain...

  14. Modeling of liquid flow in surface discontinuities (United States)

    Lobanova, I. S.; Meshcheryakov, V. A.; Kalinichenko, A. N.


    Polymer composite and metallic materials have found wide application in various industries such as aviation, rocket, car manufacturing, ship manufacturing, etc. Many design elements need permanent quality control. Ensuring high quality and reliability of products is impossible without effective nondestructive testing methods. One of these methods is penetrant testing using penetrating substances based on liquid penetration into defect cavities. In this paper, we propose a model of liquid flow to determine the rates of filling the defect cavities with various materials and, based on this, to choose optimal control modes.

  15. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  16. Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy. (United States)

    Mulligan, Sean; De Cesare, Giovanni; Casserly, John; Sherlock, Richard


    Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has been well explicated which classically exhibits successive instability phases manifested in so-called Taylor vortices. In this study, observations made on the turbulent free-surface vortex revealed distinguishable, time-dependent "Taylor-like" vortices in the secondary flow field similar to the Taylor-Couette flow system. The observations were enabled by an original application of 2D ultrasonic Doppler velocity profiling complemented with laser induced fluorescence dye observations. Additional confirmation was provided by three-dimensional numerical simulations. Using Rayleigh's stability criterion, we analytically show that a wall bounded free-surface vortex can indeed become unstable due to a centrifugal driving force in a similar manner to the Taylor-Couette flow. Consequently, it is proposed that the free-surface vortex can be treated analogously to the Taylor-Couette flow permitting advanced conclusions to be drawn on its flow structure and the various states of free-surface vortex flow stability.

  17. The hydrodynamics of surface tidal flow exchange in saltmarshes (United States)

    Young, David L.; Bruder, Brittany L.; Haas, Kevin A.; Webster, Donald R.


    Modeling studies of estuary circulation show great sensitivity to the water exchange into and out of adjacent marshes, yet there is significant uncertainty in resolving the processes governing marsh surface flow. The objective of this study is to measure the estuary channel-to-saltmarsh pressure gradient and to guide parameterization for how it affects the surface flow in the high marsh. Current meters and high-resolution pressure transducers were deployed along a transect perpendicular to the nearby Little Ogeechee River in a saltmarsh adjacent to Rose Dhu Island near Savannah, Georgia, USA. The vertical elevations of the transducers were surveyed with static GPS to yield high accuracy water surface elevation data. It is found that water level differences between the Little Ogeechee River and neighboring saltmarsh are up to 15 cm and pressure gradients are up to 0.0017 m of water surface elevation change per m of linear distance during rising and falling tides. The resulting Little-Ogeechee-River-to-saltmarsh pressure gradient substantially affects tidal velocities at all current meter locations. At the velocity measurement station located closest to the Little Ogeechee River bank, the tidal velocity is nearly perpendicular to the bank. At this location, surface flow is effectively modeled as a balance between the pressure gradient force and the drag force due to marsh vegetation and bottom stress using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow. The study thus provides a direct connection between the pressure gradient and surface flow velocity in the high marsh, thereby overcoming a long-standing barrier in directly relating flow-through-saltmarsh studies to flow-through-vegetation studies in the open channel flow literature.

  18. Drag reduction induced by superhydrophobic surfaces in turbulent pipe flow (United States)

    Costantini, Roberta; Mollicone, Jean-Paul; Battista, Francesco


    The drag reduction induced by superhydrophobic surfaces is investigated in a turbulent pipe flow. Wetted superhydrophobic surfaces are shown to trap gas bubbles in their asperities. This stops the liquid from coming in direct contact with the wall in that location, allowing the flow to slip over the air bubbles. We consider a well-defined texture with streamwise grooves at the walls in which the gas is expected to be entrapped. This configuration is modeled with alternating no-slip and shear-free boundary conditions at the wall. With respect to the classical turbulent pipe flow, a substantial drag reduction is observed which strongly depends on the grooves' dimension and on the solid fraction, i.e., the ratio between the solid wall surface and the total surface of the pipe's circumference. The drag reduction is due to the mean slip velocity at the wall which increases the flow rate at a fixed pressure drop. The enforced boundary conditions also produce peculiar turbulent structures which on the contrary decrease the flow rate. The two concurrent effects provide an overall flow rate increase as demonstrated by means of the mean axial momentum balance. This equation provides the balance between the mean pressure gradient, the Reynolds stress, the mean flow rate, and the mean slip velocity contributions.

  19. Wetting and free surface flow modeling for potting and encapsulation.

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Noble, David F. (David Frederick) (.; )); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James (Kansas City Plant, Kansas City, MO); Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael


    As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

  20. Rigorous bounds on buoyancy flux in surface driven flows (United States)

    Caulfield, C. P.


    Stably stratified shear flows, where both the velocity and density vary with height, are common in environmentally and geophysically relevant flows. An understanding of constraints on mixing processes is essential for an improved parameterization of geophysical turbulence, in particular for appropriate modelling of the budgets of heat, salinity and momentum in larger scale models. Flows that are principally driven by surface-localized stresses (e.g. caused by wind) are particularly prevalent in geophysical flows. In this talk, I will derive rigorous bounds on the long-time averaged buoyancy flux for a class of such flows, using the background method developed by Doering & Constantin. Interestingly, flows that maximize the buoyancy flux can be directly related to laminar flows with stronger forcing. This is qualitatively different from other stratified mixing problems, for example in stratified plane Couette flow. This result suggests that quasi-laminar mixing, which is typically much more efficient than strongly turbulent mixing, may be the dominant process by which irreversible changes in density occur within such surface driven flows.

  1. Local mesh refinement for incompressible fluid flow with free surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Terasaka, H.; Kajiwara, H.; Ogura, K. [Tokyo Electric Power Company (Japan)] [and others


    A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.

  2. The genesis of a lava cave in the Deccan Volcanic Province (Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Nikhil R. Pawar


    Full Text Available Lava tubes and channels forming lava distributaries have been recognized from different parts of western Deccan Volcanic Province (DVP. Openings of smaller dimension have been documented from the pāhoehoe flows around Pune, in the western DVP. A small lava cave is exposed in Ghoradeshwar hill, near Pune. Detailed field studies of the physical characteristics, structure and morphology of the flows hosting the lava tube has been carried out. This is the first detailed documentation of a lava cave from the DVP. The lava cave occurs in a compound pāhoehoe flow of Karla Formation, characterized by the presence of lobes, toes and small scale features like squeeze-ups. Field observations and measurements reveal that the dimensions of the cave are small, with low roof and a maximum width of 108 cm. The cave morphology along the 20 m passage varies from circular to semi-circular, with a twilight zone to the north. The gentle micro-topography at Ghoradeshwar controlled the advancement of pāhoehoe lobes and toes within the sheet lobe. The pre-flow gradients towards the north led to the progression of flow from the east, where the cave opening is presently seen. Dimensions and related morphology of the lava cave suggest that it can be best described as a small sub-crustal cave formed by draining of an inflated of pāhoehoe lava lobe. At Ghoradeshwar, besides the natural lava cave, Buddhist caves carved in pāhoehoe lava flows are also observed, indicating that early man took advantage of the existing openings in pāhoehoe flows and sculpted the caves to suit their requirements.

  3. Core surface flow modelling from high-resolution secular variation

    DEFF Research Database (Denmark)

    Holme, R.; Olsen, Nils


    -flux hypothesis, but the spectrum of the SV implies that a conclusive test of frozen-flux is not possible. We parametrize the effects of diffusion as an expected misfit in the flow prediction due to departure from the frozen-flux hypothesis; at low spherical harmonic degrees, this contribution dominates...... the expected departure of the SV predictions from flow to the observed SV, while at high degrees the SV model uncertainty is dominant. We construct fine-scale core surface flows to model the SV. Flow non-uniqueness is a serious problem because the flows are sufficiently small scale to allow flow around non......-series of magnetic data and better parametrization of the external magnetic field....

  4. Backward flow in a surface tension driven micropump

    International Nuclear Information System (INIS)

    Ju, Jongil; Park, Joong Yull; Lee, Sang-Hoon; Kim, Kyung Chun; Kim, Hyundong; Berthier, Erwin; Beebe, David J


    A surface tension driven micropump harnessing the pressure difference generated by drops of different curvature radii proves to be a simple and attractive passive method to drive fluid flow in microdevices. Here we observed the appearance of backward flow when the initial sizes of the droplets at the inlet and outlet ports are similar. To explain this phenomenon several hypotheses have been investigated. Consideration of the inertia of the fluid in the channel revealed that it alone is insufficient to explain the observed backward flow. We discovered that rotational flow inside the outlet droplet could be a source of inertia, explaining the generation of the backward flow. In addition, we have experimentally determined that the ratio of the volumes of the initial outlet drop and inlet drop correlates with the occurrence of the backward flow. (note)

  5. Real-time High-fidelity Surface Flow Simulation. (United States)

    Ren, Bo; Yuan, Tailing; Li, Chenfeng; Xu, Kun; Hu, Shi-Min


    Surface flow phenomena, such as rain water flowing down a tree trunk and progressive water front in a shower room, are common in real life. However, compared with the 3D spatial fluid flow, these surface flow problems have been much less studied in the graphics community. To tackle this research gap, we present an efficient, robust and high-fidelity simulation approach based on the shallow-water equations. Specifically, the standard shallow-water flow model is extended to general triangle meshes with a feature-based bottom friction model, and a series of coherent mathematical formulations are derived to represent the full range of physical effects that are important for real-world surface flow phenomena. In addition, by achieving compatibility with existing 3D fluid simulators and by supporting physically realistic interactions with multiple fluids and solid surfaces, the new model is flexible and readily extensible for coupled phenomena. A wide range of simulation examples are presented to demonstrate the performance of the new approach.

  6. Hydraulic investigation on free surface flow of windowless target

    International Nuclear Information System (INIS)

    Hu Chen; Gu Hanyang


    The formation and control of free surface are the most essential parts in the studies of windowless target in ACCELERATOR-DRIVEN sub-critical system (ADS). Water model experiments and 360° full scale three dimensional simulations were conducted. The experimental study demonstrates that the free surface is significantly affected by the inlet flow velocity and outlet pressure. The length of free surface decreases in the second order with the increase of inlet flow velocity, while it decreases linearly with the outlet pressure. The structure and feature of flow field were investigated. The results show that the free surface is vulnerable to the vortex movement. Transient simulations were performed with volume of fluid (VOF) method, large eddy simulation (LES) and the pressure implicit with splitting of operators (PISO) algorithm. The simulation results agree qualitatively well with the experimental data related to both free surface flow and flow field. These simulation models and methods are proved to be applicable in the hydraulic simulations of liquid heavy metal target. (authors)

  7. Applying isotope methods in flowing surface waters

    International Nuclear Information System (INIS)

    Mook, W.G.


    The most frequent application of natural or environmental isotopes to investigate surface water is as tracer. Especially the natural variations in the 18 O/ 16 O ratio in rainfall are traced in streams and rivers. The isotopes deuterium, 13 C and 14 C enable refined applications such as the investigation of geochemical processes in waters. 18 O analyses are fairly fast (20 samples per day can be carried out) and require little water (1 to 10 ml). Therefore, the natural variations in the 18 O/ 16 O ratio of water are treated. There is a certain connection between the 18 O/ 16 O and D/H ratios in rainfall waters. 18 O analyses are somewhat easier to perform so that this technique is generally preferred. Additional D analyses are of great use in detecting geochemical processes, e.g. evaporation. Although tritium is still an important agent in hydrological studies, the concentration variations in nature are now lower than for 18 O compared to the usual experimental error. Furthermore, they are not so important geochemically. Accurate tritium measurements require relatively much time (1 or 2 analyses per day), are expensive (50 DM to 150 DM) and require more material (10 to 500 ml water), depending on the desired accuracy. The stable and radioactive carbon isotopes are mainly used in special cases to study certain geochemical processes. (orig./HK) [de

  8. Gusev Rocks Solidified from Lava (3-D) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  9. Gusev Rocks Solidified from Lava (False Color) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  10. Late Pleistocene geomagnetic excursion in Icelandic lavas

    International Nuclear Information System (INIS)

    Levi, S.; Audunsson, H.; Duncan, R.A.; Kristjansson, L.; Jakobsson, S.P.


    In 1980 Kristjansson and Gudmundsson reported a late glacial geomagnetic excursion in three hills in the Reykjanes peninsula, Iceland, with shallow negative inclinations and westerly declinations. They named it the Skalamaelifell excursion. More extensive field work has identified the same excursional paleomagnetic direction (declination = 258deg, inclination = -15deg) at four additional outcrops in a 10x10 km area in the Reykjanes peninsula. The excursion lavas are olivine tholeiites with similar petrography and chemical compositions. Paleointensity determinations by the Thellier method average 4.2±0.2 μT for 8 samples, more than an order of magnitude weaker than the present geomagnetic field in Iceland. Together, these results suggest extrusion of the excursion lavas in a very brief span of time, probably less than a few hundred years. K-Ar dating of the excursion lavas gives a mean age for 19 determinations of 42.9±7.8 ka (2σ). Compilation of thirty K-Ar ages of the Laschamp and Olby flows by three laboratories yield a new age for the Laschamp excursion in France of 46.6±2.4 ka (2σ). The age of the excursion in southwestern Iceland is statistically indistinguishable from the Laschamp excursion at the 95% confidence level, and both have very low paleointensities. Therefore, we suggest that the Laschamp and Olby flows in France and the Skalamaelifell units of Iceland recorded essentially the same geomagnetic excursion. Differences in the virtual paleomagnetic poles (VGPs) of these excursions may be due to (1) the probable non-dipole character of the geomagnetic field during the excursion, (2) rapid geomagnetic secular variation and possible small age differences of the extrusive rocks in France and Iceland, and/or (3) crustal magnetic anomalies which might dominate the local geomagnetic field during the excursion at either or both locations. (orig.)

  11. The origin of Venusian channels: Modelling of thermal erosion by lava (United States)

    Bussey, D. B. J.; Sorensen, S-A.; Guest, J. E.


    Magellan imagery has revealed that channels, apparently volcanic in origin, are abundant on the surface of Venus. There has been much debate about the origin of these channels. Are they the result of erosional (either thermal or mechanical) or constructional processes? A common characteristic of the simple sinuous channels is that they show evidence of erosion near their source and then become purely constructional, forming levees and in some cases roofing over completely. One method of showing that thermal erosion is capable of producing the type of channels seen is to use computer modeling incorporating the physical conditions on Venus and the physical characteristics of the different types of lava that may have been erupted. It is possible to calculate, relatively easily, two channel parameters. The first is the erosion rate, which combined with eruption duration, gives depth. The second is for how long after leaving the source the erupted lava will continue to be capable of thermal erosion before constructional processes dominate. Making assumptions about the rheology of the lava (e.g., assume it behaves as a Bingham plastic) along with the slope angle yields a flow velocity and therefore a distance over which thermal erosion will take place. Due to the resolution (both vertical and horizontal) of the Magellan altimetric data, the distance from the source that the channel is erosional can be much more accurately measured than the depth of the channel. This will remain the case until stereo imagery becomes available for large areas of the planet.

  12. Dynamics and Instabilities of Free Surface and Vortex Flows

    DEFF Research Database (Denmark)

    Tophøj, Laust Emil Hjerrild


    This PhD thesis consists of two main parts. The first part describes the dynamics of an ideal fluid on a stationary free surface of a given shape. It turns out that one can formulate a set of self-contained equations of momentum conservation for the tangential flow, with no reference to the flow ......)]. Finally, an experimental work on elastic collisions of wet spheres is briefly discussed....

  13. Emplacement and erosive effects of the south Kasei Valles lava on Mars (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.


    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  14. Boundary conditions for soft glassy flows: slippage and surface fluidization. (United States)

    Mansard, Vincent; Bocquet, Lydéric; Colin, Annie


    We explore the question of surface boundary conditions for the flow of a dense emulsion. We make use of microlithographic tools to create surfaces with well controlled roughness patterns and measure using dynamic confocal microscopy both the slip velocity and the shear rate close to the wall, which we relate to the notion of surface fluidization. Both slippage and wall fluidization depend non-monotonously on the roughness. We interpret this behavior within a simple model in terms of the building of a stratified layer and the activation of plastic events by the surface roughness.

  15. Flow of viscous fluid along an exponentially stretching curved surface

    Directory of Open Access Journals (Sweden)

    N.F. Okechi

    Full Text Available In this paper, we present the boundary layer analysis of flow induced by rapidly stretching curved surface with exponential velocity. The governing boundary value problem is reduced into self-similar form using a new similarity transformation. The resulting equations are solved numerically using shooting and Runge-Kutta methods. The numerical results depicts that the fluid velocity as well as the skin friction coefficient increases with the surface curvature, similar trend is also observed for the pressure. The dimensionless wall shear stress defined for this problem is greater than that of a linearly stretching curved surface, but becomes comparably less for a surface stretching with a power-law velocity. In addition, the result for the plane surface is a special case of this study when the radius of curvature of the surface is sufficiently large. The numerical investigations presented in terms of the graphs are interpreted with the help of underlying physics of the fluid flow and the consequences arising from the curved geometry. Keywords: Boundary layer flow, Curved surface, Exponential stretching, Curvature

  16. Numerical simulations of viscoelastic flows with free surfaces

    DEFF Research Database (Denmark)

    Comminal, Raphaël; Spangenberg, Jon; Hattel, Jesper Henri


    We present a new methodology to simulate viscoelastic flows with free-surfaces. These simulations are motivated by the modelling of polymers manufacturing techniques, such as extrusion and injection moulding. One of the consequences of viscoelasticity is that polymeric materials have a “memory......” of their past deformations. This generates some numerical difficulties which are addressed with the log-conformation transformation. The main novelty of this work lies on the use of the volume-of-fluid method to track the free surfaces of the viscoelastic flows. We present some preliminary results of test case...

  17. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki


    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  18. Flow structure from a horizontal cylinder coincident with a free surface in shallow water flow

    Directory of Open Access Journals (Sweden)

    Kahraman Ali


    Full Text Available Vortex formation from a horizontal cylinder coincident with a free surface of a shallow water flow having a depth of 25.4 [mm] was experimentally investigated using the PIV technique. Instantaneous and time-averaged flow patterns in the wake region of the cylinder were examined for three different cylinder diameter values under the fully developed turbulent boundary layer condition. Reynolds numbers were in the range of 1124£ Re£ 3374 and Froude numbers were in the range of 0.41 £ Fr £ 0.71 based on the cylinder diameter. It was found that a jet-like flow giving rise to increasing the flow entrainment between the core and wake regions depending on the cylinder diameter was formed between the lower surface of the cylinder and bottom surface of the channel. Vorticity intensity, Reynolds stress correlations and the primary recirculating bubble lengths were grown to higher values with increasing the cylinder diameter. On the other hand, in the case of the lowest level of the jet-like flow emanating from the beneath of the smallest cylinder, the variation of flow characteristics were attenuated significantly in a shorter distance. The variation of the reattachment location of the separated flow to the free-surface is a strong function of the cylinder diameter and the Froude number.

  19. On the flow magnitude and field-flow alignment at Earth's core surface

    DEFF Research Database (Denmark)

    Finlay, Chris; Amit, H.

    We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models. An expr......We present a method to estimate the typical magnitude of flow close toEarth's core surface based on observational knowledge of the maingeomagnetic field (MF) and its secular variation (SV), together withprior information concerning field-flow alignment gleaned from numericaldynamo models...... geomagnetic field model gufm1for the interval 1840.0 - 1990.0, the method predicts temporalvariations in flow magnitude similar to those found in earlier studies.The calculations rely primarily on knowledge of the MF and SV spectra;by extrapolating these beyond observed scales the influence of smallscales...

  20. The Mechanisms and Dynamics of High-Energy Lava-Water Explosions (United States)

    Fitch, E. P.; Fagents, S. A.


    The study of explosive interactions between surface lava flows and water can provide context for understanding explosive magma-water interactions, without the competing effects of juvenile degassing-induced fragmentation. Explosive melt-water experiments and analysis of tephra produced during natural lava-water explosions (i.e. rootless tephra) indicate that the energy release during an explosion is proportional to the abundance of ash having undergone brittle fragmentation. This "blocky" ash contributes significant energy, even if the total mass of blocky ash is small relative to coarser ejecta, making it the thermodynamic driver of the explosion. Previous work has focused on relatively low-energy lava-water explosions, with a dispersal diameter of 150 m, but cones of rootless tephra (i.e. rootless cones) range in diameter from approximately 5 to 450 m, and an increase in explosion energy generally produces a more widely dispersed cone. Therefore, in order to identify processes occurring on the higher-energy end of the spectrum, we investigated the characteristics of tephra from a cone with a diameter of 400 m. In general, we find that coarser-grained beds contain a larger total abundance of fluidal grains (i.e. molten spatter) than finer-grained beds, consistent with previous work. However, some beds display an elevated abundance of fluidal ash, independent of the mean grain size of the deposit, which may be evidence of changing mixing conditions resulting in a different explosion type. Additionally, beds of the 400 m cone contain three to six times as much blocky ash as beds of the 150 m cone having similar grain-size distributions. We interpret this result to be a product of higher-energy explosions, in which ash-scale fragmentation is the most important, energetically. However, the potential effect of lava rheology will be constrained through additional analyses of tephra morphology, vesicle sizes and shapes, in addition to more detailed analysis of tephra

  1. LAVA Pressure Transducer Trade Study (United States)

    Oltman, Samuel B.


    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  2. Rankine models for time-dependent gravity spreading of terrestrial source flows over subplanar slopes

    NARCIS (Netherlands)

    Wijermars, R.; Dooley, T.P.; Jackson, M.P.A.; Hudec, M.R.


    Geological mass flows extruding from a point source include mud, lava, and salt issued from subsurface reservoirs and ice from surface feeders. The delivery of the material may occur via a salt stock, a volcanic pipe (for magma and mud flows), or a valley glacier (for ice). All these source flows

  3. Mechanics of fluid flow over compliant wrinkled polymeric surfaces (United States)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary


    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  4. Moving least squares simulation of free surface flows

    DEFF Research Database (Denmark)

    Felter, C. L.; Walther, Jens Honore; Henriksen, Christian


    In this paper a Moving Least Squares method (MLS) for the simulation of 2D free surface flows is presented. The emphasis is on the governing equations, the boundary conditions, and the numerical implementation. The compressible viscous isothermal Navier–Stokes equations are taken as the starting ...

  5. Nitrogen Transformation and Removal in Horizontal Surface Flow ...

    African Journals Online (AJOL)

    The potential use of Constructed Mangrove Wetlands (CMWs) as a cheaper, effective and appropriate method for Nitrogen removal from domestic sewage of coastal zone in peri-urban cities was investigated from August 2007 to. September, 2008. Field investigations were made on horizontal surface flow constructed ...

  6. Anatomy of a lava dome collapse: the 20 March 2000 event at Soufrière Hills Volcano, Montserrat (United States)

    Carn, S. A.; Watts, R. B.; Thompson, G.; Norton, G. E.


    A second extrusive phase of the currently ongoing 1995-2003 eruption of Soufrière Hills Volcano (SHV), Montserrat, commenced in mid-November 1999 following ˜19 months during which no fresh lava had reached the surface. By mid-March 2000, a new andesite lava dome constructed within a collapse scar girdled by remnants of the 1995-1998 dome complex had attained an estimated volume of ˜29±3 million m 3 (Mm 3). On 20 March 2000, during a period of heavy rainfall on the island, a significant collapse event ensued that removed ˜95% of the new lava dome (˜28±3 Mm 3) during ˜5 hours of activity that generated ˜40 pyroclastic flows and at least one magmatic explosion. The associated ash cloud reached an altitude of ˜9 km and deposited ash on the island of Guadeloupe to the southeast, and a number of lahars and debris flows occurred in valleys on the flanks of SHV. A large quantity of observational data, including contemporaneous field observations and continuous data from the broadband seismic network on Montserrat, allow a detailed reconstruction of this dome collapse event. In contrast to most of the large dome collapses at SHV, the 20 March 2000 event is distinguished by a lack of short-term precursory elevated seismicity at shallow depths beneath the lava dome. Broadband seismic amplitude data recorded during the event are used to infer the cumulative volume of collapsed dome as the collapse progressed. These data indicate that the high-velocity pyroclastic flows observed at the climax of the event removed by far the largest portion (˜68%) of the lava dome at peak discharge rates (estimated from the seismic record) of ˜2×10 4 m 3 s -1. Following the 20 March 2000 collapse, lava dome growth recommenced immediately and continued without significant interruption until another, larger dome collapse occurred on 29 July 2001. The 29 July 2001 event also coincided with heavy rainfall on Montserrat [Matthews et al. (2002) Geophys. Res. Lett. 29; DOI:10.1029/2002GL

  7. The 23,500 y 14C BP White Pumice Plinian eruption and associated debris avalanche and Tochimilco lava flow of Popocatépetl volcano, México (United States)

    Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna


    The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the

  8. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas


    eddy and separated flow. Assuming a variable radial velocity profile as in Karman-Pohlhausen's method, we obtain a system of two ordinary differential equations for stationary states that can smoothly go through the jump. Solutions of the system are in good agreement with experiments. For the flow down...... an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....

  9. Moonshot Laboratories' Lava Relief Google Mapping Project (United States)

    Brennan, B.; Tomita, M.


    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it.

  10. Incompressible flows of superfluid films on multiply-connected surfaces

    International Nuclear Information System (INIS)

    Corrada-Emmanuel, A.


    The theory of Riemann surfaces is applied to the problem of constructing quantized vortex flows in closed surfaces of arbitrary but finite genus. An in principle procedure for obtaining the lowest energy flow is presented. It is shown that quantized vortices in non-zero genus surfaces are, in general, not isomorphic to a Coulomb gas. This failure has a geometrical origin: the appearance in non-zero genus surfaces of closed curves that are not the boundary of any area. A theorem of Riemann is applied to the genus one surface, the torus, to show quantitatively how to construct the quantized vortices. Because of the breakdown in the isomorphism between quantized vortices and charges, a novel effect is possible: the violation of Earnshaw's theorem. On a torus a single vortex can be placed in local stable equilibrium. The uniform flows around the holes of the torus also lead to a new result: a non-vortex mechanism for the destruction of superfluidity in the film. An explicit formula is derived showing this effect by considering the response of a helium film to a rotation of the torus. The author predicts that torii of dissimilar proportions will exhibit different superfluid densities at the same temperature

  11. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.


    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of topographic plateaus and depressions. Some depressions display level floors with surfaces as described above, while some are bowl shaped with floors covered in broken lava slabs. Th e boundaries between plateaus and depressions are also typically smoo th, grooved surfaces that have been tilted to angles sometimes approaching vertical. The upper margin of these tilted surfaces displays lar ge cracks, sometimes containing squeeze-ups. The bottom boundary with smooth floored depressions typically shows embayment by younger lavas. It appears that this style of terrain represents the emplacement of an extensive sheet that experiences inflation episodes within prefer red regions where lateral spreading of the sheet is inhibited, thereby forming plateaus. Depressions are often the result of non-inflation and can be clearly identified by lateral squeeze-outs along the pit walls that form when the rising crust exposes the still liquid core of the sheet. Our current efforts are focused on.


    Mikucki, Michael; Zhou, Y C


    This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization.

  13. Characterizing developing adverse pressure gradient flows subject to surface roughness (United States)

    Brzek, Brian; Chao, Donald; Turan, Özden; Castillo, Luciano


    An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T ∞, U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41-60, surfaces with Reynolds number based on momentum thickness, 3,000 carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91-108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33-79, 1998a) scaling of the mean velocity deficit, U ∞δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.

  14. Estructura y organización de las coladas submarinas: características de las lavas almohadilladas de edad cretácica que afloran en la Cordillera Vasco- Cantábrica

    Directory of Open Access Journals (Sweden)

    Alonso, A.


    Full Text Available In the Basque-Cantabrian Basin, an important submarine volcanic activity of alkaline character was developed during the upper Cretaceous. This vulcanism was related to a rift and/or transform fault in the continental crust associated to the opening of the North Atlantic ocean. Pillow lava flows are noteworthy among the other volcanic materials by their volume and excellent preservation state. The lava flows are formed by the pile up of small flow-and cooling units, i.e. tubes or lava tubes, characterized by: i coarse cylindrical morphology with abundant constrictions, ii diameter less than 1 meter in a transversal section, iii smooth or striated surface, iv concentric and/or radial internal structure, and iv the branches and direction changes during the outflow. Lava flows/tubes shape and surface characteristics depend on the viscosity, effusion rate and the thickness of quenched crust during growth. The Tubes are moted directly on feeder dykes or are connected in tabular flows. The expanding and advancement of the tubes was the result of stretching or breaking of the quenched surface crust and spreading of the molten lava from the interior. Stretching features and cracks appear mainly at the flow front, but lobes of lava developed from the top and the flanks of the tubes are not uncommon. Only scarce pillowed lavas are truly isolated magma sacks separated from their sources. Related to the tabular flows and the biggest pillow lavas, some breccias were occasionally formed by the gravitational collapse of the roof of the draining tunnels.Durante el Cretácico superior se desarrolló en la Cuenca Vasco-Cantábrica una importante actividad volcánica submarina de naturaleza alcalina. Este vulcanismo estuvo relacionado con el funcionamiento de un rift y/o una falla transformante en corteza continental asociado a la apertura del Atlántico Norte. Entre los productos volcánicos destacan, por su notable volumen y excelente grado de preservación, las

  15. Age evaluation and causation of rock-slope failures along the western margin of the Antrim Lava Group (ALG), Northern Ireland, based on cosmogenic isotope (36Cl) surface exposure dating (United States)

    Southall, David W.; Wilson, Peter; Dunlop, Paul; Schnabel, Christoph; Rodés, Ángel; Gulliver, Pauline; Xu, Sheng


    The temporal pattern of postglacial rock-slope failure in a glaciated upland area of Ireland (the western margin of the Antrim Lava Group) was evaluated using both 36Cl exposure dating of surface boulders on run-out debris and 14C dating of basal organic soils from depressions on the debris. The majority of the 36Cl ages ( 21-15 ka) indicate that major failures occurred during or immediately following local deglaciation ( 18-17 ka). Other ages ( 14-9 ka) suggest some later, smaller-scale failures during the Lateglacial and/or early Holocene. The 14C ages (2.36-0.15 cal ka BP) indicate the very late onset of organic accumulation and do not provide close limiting age constraints. Rock-slope failure during or immediately following local deglaciation was probably in response to some combination of glacial debuttressing, slope steepening and paraglacial stress release. Later failures may have been triggered by seismic activity associated with glacio-isostatic crustal uplift and/or permafrost degradation consequent upon climate change. The 36Cl ages support the findings of previous studies that show the deglacial - Lateglacial period in northwest Ireland and Scotland to have been one of enhanced rock-slope failure. Table S2 Concentrations of main elements (as oxides) etc.

  16. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)


    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  17. Integral methods for shallow free-surface flows with separation

    DEFF Research Database (Denmark)

    Watanabe, S.; Putkaradze, V.; Bohr, Tomas


    an inclined plane we take a similar approach and derive a simple model in which the velocity profile is not restricted to a parabolic or self-similar form. Two types of solutions with large surface distortions are found: solitary, kink-like propagating fronts, obtained when the flow rate is suddenly changed......, and stationary jumps, obtained, for instance, behind a sluice gate. We then include time dependence in the model to study the stability of these waves. This allows us to distinguish between sub- and supercritical flows by calculating dispersion relations for wavelengths of the order of the width of the layer....


    Directory of Open Access Journals (Sweden)

    C. Wöhler


    Full Text Available The detection of lunar lava flows based on local morphology highly depends on the available images. The thickness of lava flows, however, has been studied by many researchers and lunar lava flows are shown to be as thick as 200 m. Lunar lava flows are supposed to be concentrated on the northwestern lunar nearside. In this study we present elemental abundance maps, a petrological map and a digital terrain model (DTM of a lava flow structure in northern Mare Serenitatis at (18.0° E, 32.4° N and two possible volcanic vents at (11.2° E, 24.6° N and (13.5° E, 37.5° N, respectively. Our abundance maps of the refractory elements Ca, Mg and our petrological map were obtained based on hyperspectral image data of the Moon Mineralogy Mapper (M3 instrument. Our DTM was constructed using GLD100 data in combination with a shape from shading based method to M3 and Lunar Reconnaissance Orbiter (LRO Narrow Angle Camera (NAC image data. The obtained NAC-based DEM has a very high effective resolution of about 1–2 m which comes close to the resolution of the utilized NAC images without requiring intricate processing of NAC stereo image pairs. As revealed by our elemental maps and DEM, the examined lava flow structure occurs on a boundary between basalts consisting of low-Ca/high-Mg pyroxene and high-Ca/low-Mg pyroxene, respectively. The total thickness of the lava flow is about 100 m, which is a relatively large value, but according to our DEM the lava flow may also be composed of two or more layers.

  19. Surface and Flow Field Measurements on the FAITH Hill Model (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.


    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  20. A moving boundary solution for solidification of lava lake and ...

    Indian Academy of Sciences (India)

    uniform rate from both the contact surfaces. The studies carried out using the above approaches highlighted the importance of the non- uniform cooling of an intrusion/lava lake. Worster et al (1993) suggested a reduction in the solidifi- cation time of ...

  1. A porous flow model for the geometrical form of volcanoes - Critical comments (United States)

    Wadge, G.; Francis, P.


    A critical evaluation is presented of the assumptions on which the mathematical model for the geometrical form of a volcano arising from the flow of magma in a porous medium of Lacey et al. (1981) is based. The lack of evidence for an equipotential surface or its equivalent in volcanoes prior to eruption is pointed out, and the preference of volcanic eruptions for low ground is attributed to the local stress field produced by topographic loading rather than a rising magma table. Other difficulties with the model involve the neglect of the surface flow of lava under gravity away from the vent, and the use of the Dupuit approximation for unconfined flow and the assumption of essentially horizontal magma flow. Comparisons of model predictions with the shapes of actual volcanoes reveal the model not to fit lava shield volcanoes, for which the cone represents the solidification of small lava flows, and to provide a poor fit to composite central volcanoes.

  2. Characterization of Sheet Fracture Patterns in Polygonal-Jointed Lavas at Kokostick Butte, OR, and Mazama Ridge, WA: Investigation and Interpretation of Their Formation and Significance (United States)

    Lodge, R. W.; Lescinsky, D. T.


    Polygonal joints in lava flows ("columns") are commonly equant leading to a model of formation associated with cooling in an isotropic stress field. This model, however, does not explain rectangular columns, sheet-like fractures, fractures with crosscutting relationships, and fractures with orientations other than perpendicular to the cooling surface. These fracture patterns are often observed at glaciated volcanoes. The presence of preferential fracture orientations suggests an applied stress component likely due to environmental conditions such as the presence of glaciers or flow dynamics such as down-slope settling or flow margin inflation. During this study we investigated the formation and significance of these non-equant fracture patterns to propose a model for their formation. These `abnormal' fracture patterns have not been discussed in the literature and may be important to better understanding the cooling conditions of such lava flows. To test these possibilities we studied Kokostick Butte dacite flow, OR (near South Sister), and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these flows have well developed sheet-like fractures and display evidence of ice-contact during eruption and emplacement. Sheet fractures are long and continuous fractures that have perpendicular connecting fractures forming rectangular columns. The sheet-like fractures are largely parallel to each other on the exposure surface and the connecting fractures vary locally from primary fractures (associated with cooling toward flow interior) to secondary fractures (associated with cooling by water infiltration). Detailed measurements of fracture orientations and spacing were collected at Kokostick Butte and Mazama Ridge to examine the relationship between the sheet fractures and flow geometry. Preliminary results support this relationship and suggest these patterns likely form due to shear associated with small amounts of flow advance by the rapidly cooling lava. Laboratory

  3. Turbulent flow over an interactive alternating land-water surface (United States)

    Van Heerwaarden, C.; Mellado, J. P.


    The alternating land-water surface is a challenging surface to represent accurately in weather and climate models, but it is of great importance for the surface energy balance in polar regions. The complexity of this surface lies in the fact that secondary circulations, which form at the boundary of water and land, interact strongly with the surface energy balance. Due to its large heat capacity, the water temperature adapts slowly to the flow, thus the properties of the atmosphere determine the uptake of energy from the water. In order to study this complex system in a simpler way, retaining only the most essential physics, we have simplified the full surface energy balance including radiation. We have derived a boundary condition that mimics the full balance and can be formulated as a so-called Robin boundary condition: a linear combination of Dirichlet (fixed temperature) and Neumann (fixed temperature gradient) ones. By spatially varying the coefficients, we are able to express land and water using this boundary condition. We have done a series of direct numerical simulations in which we generate artificial land-water patterns from noise created from a Gaussian spectrum centered around a dominant wave number. This method creates realistic random patterns, but we are still in control of the length scales. We show that the system can manifest itself in three regimes: micro-, meso- and macro-scale. In the micro-scale, we find perfect mixing of the near-surface atmosphere that results in identical air properties over water and land. In the meso-scale, secondary circulations alter the heat exchange considerably by advecting air between land and water. In addition, they bring the surface temperature of the land closer to that of the air, thereby modulating the energy loss due to outgoing longwave radiation. In the macro-scale regime, the flow over land and water become independent of each other and only the large scale forcings determine the energy balance.

  4. Measuring surface flow velocity with smartphones: potential for citizen observatories (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik


    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  5. Estimating Stream Surface Flow Velocities from Video Clips (United States)

    Weijs, S. V.; Brauchli, T.; Chen, Z.; Huwald, H.


    Measuring surface flow velocities in streams can provide important information on discharge. This information is independent of water level, the most commonly used proxy for discharge and therefore has significant potential to reduce uncertainties. Advances in cheap and commonly used imaging devices (e.g. smartphone cameras) and image processing techniques offer new opportunities to get velocity information. Short video clips of streams can be used in combination with optical flow algorithms to get proxies for stream surface velocities. Here some initial results are presented and the main challenges are discussed, especially in view of using these techniques in a citizen science context (specifically the "WeSenseIt" project, a citizen observatory of water), where we try to minimize the need for site preparation and additional equipment needed to take measurements.

  6. Velocity profiles of fluid flow close to a hydrophobic surface (United States)

    Fialová, Simona; Pochylý, František; Kotek, Michal; Jašíková, Darina

    The results of research on viscous liquid flow upon a superhydrophobic surface are presented in the paper. In the introduction, the degrees of surface hydrophobicity in correlation with an adhesion coefficient are defined. The usage of the adhesion coefficient for the definition of a new boundary condition is employed for expressing the slip of the liquid over the superhydrophobic surface. The slip of the liquid was identified on a special experimental device. The essence of the device consists of a tunnel of rectangular cross section whose one wall is treated with a superhydrophobic layer. The other walls are made of transparent organic glass whose surface is hydrophilic. Velocity profiles are measured by PIV. The methodology is drawn so that it allows the speed determination at the closest point to the wall. The measurements were performed for different Reynolds numbers for both laminar and turbulent flow. Based on the measured velocity profiles, marginal terms of use have been verified, expressing slippage of the liquid on the wall. New forms of velocity profiles considering superhydrophobic surfaces are shown within the work.

  7. Flow and heat transfer regimes during quenching of hot surfaces

    International Nuclear Information System (INIS)

    Barnea, Y.; Elias, E.


    Reflooding experiments have been performed to study flow and heat transfer regimes in a heated annular vertical channel under supercooled inlet conditions. A gamma densitometer was employed to determine the void fraction as a function of the distance from the quench front. Surface heat fluxes were determined by fast measurements of the temperature spatial distribution. Two quench front is shown to lie in the transition boiling region which spreads into the dry and wet segments of the heated surface. (authors) 5 refs, 3 figs

  8. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)



    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  9. The role of viscosity in the emplacement of high-temperature acidic flows of Serra Geral Formation in Torres Syncline (Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    Matheus Silva Simões

    Full Text Available The acidic flows from Serra Geral Formation in Torres Syncline, Rio Grande do Sul, Brazil, are on the top of a volcanic sequence composed by a complex facies association of compound, simple and rubbly pahoehoebasic flows, acidic lava domes, and tabular acidic lava flows. The origin and emplacement conditions of the acidic volcanic rocks are discussed in this paper based on petrology, on calculated apatite saturation thermometry temperatures, and on estimated viscosity data. The liquidus temperatures for metaluminous rhyodacite to rhyolite samples are about 1,067.5 ± 25ºC in average. The viscosity (η values vary from 105 to 106 Pas for anhydrous conditions, suggesting the emplacement of high-temperature - low-viscosity lava flows and domes. The occurrence of acidic lava domes above simple pahoehoe flows as flow-banded vitrophyres was under low effusion rates, in spite of their high temperature and low viscosities, which are reflected in their small height. The emplacement of lava domes has continued until the eruption of rubbly pahoehoe flows and the geometry of these deposits rugged the relief. Presence of tabular acidic lava flows covering the landscape indicates that it was under high effusion rates conditions and such flows had well-insulated cooled surface crusts. The capacity to attain greater distances and overpass relief obstacles is explained not only by high effusion rates, but also by very low viscosities at the time of emplacement.

  10. The origin of tubular lava stalactites and other related forms

    Directory of Open Access Journals (Sweden)

    Kevin Allred


    Full Text Available Tubular lava stalactites are often found in lava tubes. Field observations, sample analysis, and comparative studies indicate that these are segregations extruded during cooling from partially crystallized lava al about 1,070 - 1,000 °C. Retrograde boiling (gas pressure within the lava provides a mechanism to expel the interstitial liquid. In addition to tubular lava stalactites, a variety of other lava features can also result, such as lava helictites, lava coralloids, barnacle-like stretched lava, runners, runner channels, and some lava blisters and squeeze-ups.

  11. Solder flow over fine line PWB surface finishes

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Hernandez, C.L.


    The rapid advancement of interconnect technology has stimulated the development of alternative printed wiring board (PWB) surface finishes to enhance the solderability of standard copper and solder-coated surfaces. These new finishes are based on either metallic or organic chemistries. As part of an ongoing solderability study, Sandia National Laboratories has investigated the solder flow behavior of two azole-based organic solderability preservations, immersion Au, immersion Ag, electroless Pd, and electroless Pd/Ni on fine line copper features. The coated substrates were solder tested in the as-fabricated and environmentally-stressed conditions. Samples were processed through an inerted reflow machine. The azole-based coatings generally provided the most effective protection after aging. Thin Pd over Cu yielded the best wetting results of the metallic coatings, with complete dissolution of the Pd overcoat and wetting of the underlying Cu by the flowing solder. Limited wetting was measured on the thicker Pd and Pd over Ni finishes, which were not completely dissolved by the molten solder. The immersion Au and Ag finishes yielded the lowest wetted lengths, respectively. These general differences in solderability were directly attributed to the type of surface finish which the solder came in contact with. The effects of circuit geometry, surface finish, stressing, and solder processing conditions are discussed.

  12. Remote sensing of surface water for environmental flows (United States)

    Tulbure, M. G.; Kingsford, R.; Lucas, R.; Keith, D.


    Environmental flows represent water management activities that release flushes of water stored in dams on regulated rivers during dry periods. These flows aim to mimic natural flow and inundation regimes to maintain ecological health and function of rivers and wetlands. Assessment and understanding of the effectiveness of environmental flows requires quantification of temporal and spatial pattern of surface water and inundation dynamic in a synoptic yet detailed way and understanding dynamics of vegetation response to flooding. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia as a case study. The MDB is a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The basin covers 14% of the Australian continent and contains the nation's largest river system, important groundwater systems, and represents the most important agricultural area in the country. We used Landsat TM and ETM+ data time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm over decades. Within the basin-wide study area we carried out a detailed investigation of the largest river red gum forest in the world, a key site for environmental flow and conservation management. Here we tracked the response of vegetation community condition to flooding across space and time. Results show high interannual variability in number and size of flooded areas. Vegetation community response to flooding varied in space and time and with vegetation types, densities and location relative to areas frequently inundated by environmental water release. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the

  13. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System. (United States)

    Davies, A. G.


    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (temperatures close to lava eruption temperature. Skylights are therefore easily discernible against a cool background, and are detectable from great distances at night or with Io in eclipse with imagers covering the range 0.4 to 5.0 μm. To distinguish between ultramafic and mafic lavas, multispectral (or hyperspectral) observations with precise exposure timing and knowledge of filter response are needed in the range 0.4 to 0.8 μm, with (minimally) an additional model-constraining measurement at ~4-5 μm. As with many lava tube systems on Earth, skylights should be common on Io (for example, at Prometheus, Culann and Amirani). The possible superheating of lava prior to eruption complicates the analysis [4], but is likely to be significant only for deep- seated, often explosive, eruptions. Effusive activity at the aforementioned three locations is likely fed from shallow reservoirs [5], minimising superheating effects. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under

  14. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska (United States)

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.


    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4–May 4) produced blocky intermediate- to high-silica andesite lava (59–62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8–62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome.We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  15. Evidence for Amazonian highly viscous lavas in the southern highlands on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Platz, T.; Balme, M.


    Roč. 415, 1 April (2015), s. 200-212 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars surface * volcanology * lava dome Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.326, year: 2015

  16. Boundary layer flow of nanofluid over an exponentially stretching surface (United States)

    Nadeem, Sohail; Lee, Changhoon


    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  17. Boundary layer flow of nanofluid over an exponentially stretching surface. (United States)

    Nadeem, Sohail; Lee, Changhoon


    The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.

  18. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq


    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  19. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow. (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph


    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  20. Rotating channel flows over rough and smooth surfaces (United States)

    Piomelli, Ugo; Wu, Wen; Yuan, Junlin; Turbulence Simulation; Modelling Laboratory Team


    In wall-bounded flows rotating about the spanwise axis, if the signs of the rotation and mean vorticity vectors are the same, the flow tends to be de-stabilized; if they are opposite it may become more stable. In a channel, in which the vorticity has opposite signs near the two walls, one side is unstable and the other one stable. To investigate how roughness can change these dynamics, we performed DNS of channel flows with two rotation rates (Rob = 2 Ωδ /Ub = 0.42 and 1.0), over both smooth and rough surfaces. The roughness is modelled using an immersed-boundary method. At the high Rotation number, in the smooth case the Reynolds stresses vanish on the stable side, and the flow approaches 2D turbulence in the x - z plane. When the wall is rough, the increased momentum transfer due to the roughness results in significant and much more isotropic turbulent fluctuations. On the unstable side both rotation and roughness tend to de-stabilize the flow. Even at mild rotation rates Townsend's similarity hypothesis does not apply on the stable side, and only approximately on the unstable one. The role of production and redistribution due to rotation in the turbulent kinetic energy budget will be discussed. The authors acknowledge the support from Hydro-Québec and the NSERC Collaborative Research & Development program (CRDPJ 418786-11). The simulations were performed at CAC Queen't site. UP also thanks the support of Canada Research Chair Program.

  1. Topological Fluid Mechanics with Applications to Free Surfaces and Axisymmetric Flows

    DEFF Research Database (Denmark)

    Brøns, Morten


    Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow.......Topological fluid mechanics is the study of qualitative features of fluid patterns. We discuss applications to the flow beneath a stagnant surface film, and to patterns in axisymmetric flow....

  2. Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province (United States)

    Rossetti, Lucas M.; Lima, Evandro F.; Waichel, Breno L.; Scherer, Claiton M.; Barreto, Carla J.


    The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces

  3. SIPSON--simulation of interaction between pipe flow and surface overland flow in networks. (United States)

    Djordjević, S; Prodanović, D; Maksimović, C; Ivetić, M; Savić, D


    The new simulation model, named SIPSON, based on the Preissmann finite difference method and the conjugate gradient method, is presented in the paper. This model simulates conditions when the hydraulic capacity of a sewer system is exceeded, pipe flow is pressurized, the water flows out from the piped system to the streets, and the inlets cannot capture all the runoff. In the mathematical model, buried structures and pipelines, together with surface channels, make a horizontally and vertically looped network involving a complex interaction of flows. In this paper, special internal boundary conditions related to equivalent inlets are discussed. Procedures are described for the simulation of manhole cover loss, basement flooding, the representation of street geometry, and the distribution of runoff hydrographs between surface and underground networks. All these procedures are built into the simulation model. Relevant issues are illustrated on a set of examples, focusing on specific parameters and comparison with field measurements of flooding of the Motilal ki Chal catchment (Indore, India). Satisfactory agreement of observed and simulated hydrographs and maximum surface flooding levels is obtained. It is concluded that the presented approach is an improvement compared to the standard "virtual reservoir" approach commonly applied in most of the models.

  4. Non-integrability of geodesic flow on certain algebraic surfaces

    International Nuclear Information System (INIS)

    Waters, T.J.


    This Letter addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface xyz=1. We prove this is the case using the Morales–Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result. -- Highlights: ► The behaviour of geodesics on surfaces defined by algebraic expressions is studied. ► The non-integrability of the geodesic equations is rigorously proved using differential Galois theory. ► Morales–Ramis theory and Kovacic's algorithm is used and the normal variational equation is of Fuchsian type. ► Some extensions and limitations are discussed.

  5. Inflated flows on Daedalia Planum (Mars)? Clues from a comparative analysis with the Payen volcanic complex (Argentina) (United States)

    Giacomini, L.; Massironi, M.; Martellato, E.; Pasquarè, G.; Frigeri, A.; Cremonese, G.


    Inflation is an emplacement process of lava flows, where a thin visco-elastic layer, produced at an early stage, is later inflated by an underlying fluid core. The core remains hot and fluid for extended period of time due to the thermal-shield effect of the surface visco-elastic crust. Plentiful and widespread morphological fingerprints of inflation like tumuli and lava rises are found on the Payen volcanic complex (Argentina), where pahoehoe lava flows extend over the relatively flat surface of the Pampean foreland and reach at least 180 km in length. The morphology of the Argentinean Payen flows were compared with lava flows on Daedalia Planum (Mars), using Thermal Emission Imaging System (THEMIS), Mars Orbiter Laser Altimeter (MOLA), Mars Orbiter Camera (MOC), Mars Reconnaissance Orbiter (MRO)/High-Resolution Imaging Science Experiment (HiRISE). THEMIS images were used to map the main geological units of Daedalia Planum and determine their stratigraphic relationships. MOLA data were used to investigate the topographic surface over which the flows propagated and assess the thickness of lava flows. Finally, MOC and MRO/HIRISE images were used to identify inflations fingerprints and assess the cratering age of the Daedalia Planum' s youngest flow unit which were found to predate the caldera formation on top of the Arsia Mons. The identification of similar inflation features between the Daedalia Planum and the Payen lava fields suggests that moderate and long lasting effusion rates coupled with very efficient spreading processes could have cyclically occurred in the Arsia Mons volcano during its eruptive history. Consequently the effusion rates and rheological proprieties of Daedalia lava flows, which do not take into account the inflation process, can be overestimated. These findings raise some doubts about the effusion rates and lava rheological properties calculated on Martian flows and recommends that these should be used with caution if applied on flows not

  6. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David


    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  7. Thermodynamic analysis of shark skin texture surfaces for microchannel flow (United States)

    Yu, Hai-Yan; Zhang, Hao-Chun; Guo, Yang-Yu; Tan, He-Ping; Li, Yao; Xie, Gong-Nan


    The studies of shark skin textured surfaces in flow drag reduction provide inspiration to researchers overcoming technical challenges from actual production application. In this paper, three kinds of infinite parallel plate flow models with microstructure inspired by shark skin were established, namely blade model, wedge model and the smooth model, according to cross-sectional shape of microstructure. Simulation was carried out by using FLUENT, which simplified the computation process associated with direct numeric simulations. To get the best performance from simulation results, shear-stress transport k-omega turbulence model was chosen during the simulation. Since drag reduction mechanism is generally discussed from kinetics point of view, which cannot interpret the cause of these losses directly, a drag reduction rate was established based on the second law of thermodynamics. Considering abrasion and fabrication precision in practical applications, three kinds of abraded geometry models were constructed and tested, and the ideal microstructure was found to achieve best performance suited to manufacturing production on the basis of drag reduction rate. It was also believed that bionic shark skin surfaces with mechanical abrasion may draw more attention from industrial designers and gain wide applications with drag-reducing characteristics.

  8. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.


    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  9. Surface Ripples Generated in a Couette Flow with a Free Surface (United States)

    Masnadi, N.; Washuta, N.; Duncan, J. H.


    Free surface ripples created by subsurface turbulence in the gap between a vertical surface-piercing moving wall and a parallel fixed wall are studied experimentally. The moving wall is created with the aide of a meter-wide stainless steel belt that travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and forms the moving wall. The fixed wall is an acrylic plate located 4 cm from the belt surface. The water surface ripples are measured in a plane normal to the belt using a cinematic LIF technique. Measurements are done at a location about 100 gap widths downstream of the leading edge of the fixed plate in order to have a fully developed flow condition. It is found that the overall RMS surface fluctuations increase linearly with belt speed. The frequency-domain spectra of the surface height fluctuation and its temporal derivative are computed at locations across the gap width and are used to explore the physics of the free surface motions. The support of the Office of Naval Research is gratefully acknowledged.

  10. Emplacement of the youngest flood lava on Mars: A short, turbulent story (United States)

    Jaeger, W.L.; Keszthelyi, L.P.; Skinner, J.A.; Milazzo, M.P.; McEwen, A.S.; Titus, T.N.; Rosiek, M.R.; Galuszka, D.M.; Howington-Kraus, E.; Kirk, R.L.


    Recently acquired data from the High Resolution Imaging Science Experiment (HiRISE), Context (CTX) imager, and Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) spacecraft were used to investigate the emplacement of the youngest flood-lava flow on Mars. Careful mapping finds that the Athabasca Valles flood lava is the product of a single eruption, and it covers 250,000 km2 of western Elysium Planitia with an estimated 5000-7500 km3 of mafic or ultramafic lava. Calculations utilizing topographic data enhanced with MRO observations to refine the dimensions of the channel system show that this flood lava was emplaced turbulently over a period of only a few to several weeks. This is the first well-documented example of a turbulently emplaced flood lava anywhere in the Solar System. However, MRO data suggest that this same process may have operated in a number of martian channel systems. The magnitude and dynamics of these lava floods are similar to the aqueous floods that are generally believed to have eroded the channels, raising the intriguing possibility that mechanical erosion by lava could have played a role in their incision. ?? 2009.

  11. Smolt Responses to Hydrodynamic Conditions in Forebay Flow Nets of Surface Flow Outlets, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Richmond, Marshall C.; Hedgepeth, J. B.; Ploskey, Gene R.; Anderson, Michael G.; Deng, Zhiqun; Khan, Fenton; Mueller, Robert P.; Rakowski, Cynthia L.; Sather, Nichole K.; Serkowski, John A.; Steinbeck, John R.


    This study provides information on juvenile salmonid behaviors at McNary and The Dalles dams that can be used by the USACE, fisheries resource managers, and others to support decisions on long-term measures to enhance fish passage. We researched smolt movements and ambient hydrodynamic conditions using a new approach combining simultaneous acoustic Doppler current profiler (ADCP) and acoustic imaging device (AID) measurements at surface flow outlets (SFO) at McNary and The Dalles dams on the Columbia River during spring and summer 2007. Because swimming effort vectors could be computed from the simultaneous fish and flow data, fish behavior could be categorized as passive, swimming against the flow (positively rheotactic), and swimming with the flow (negatively rheotactic). We present bivariate relationships to provide insight into fish responses to particular hydraulic variables that engineers might consider during SFO design. The data indicate potential for this empirical approach of simultaneous water/fish measurements to lead to SFO design guidelines in the future.

  12. New Evidence for the Low-Pressure Origin of Lava-Hyaloclastite Sequences in South Iceland (United States)

    Banik, T.; Hoskuldsson, A.; Miller, C. F.; Furbish, D. J.; Wallace, P. J.


    In the Sida-Fljotshverfi District of south Iceland, Pleistocene basaltic lava forms flame-like apophyses, dikes, and disaggregation structures (cf. Bergh and Sigvaldason, 1991; Smellie, 2008) that invade overlying hyaloclastite. These features are exposed in valley walls composed of at least 14 (Bergh and Sigvaldason, 1991) paired basalt-hyaloclastite +/- diamictite depositional units. These units are dominated by hyaloclastite deposits that reach over 100 m in thickness, with underlying lava up to 50 m thick. Apophyses as well as underlying lavas show "kubbaberg" or cube jointing, indicating rapid cooling due to formation in a wet environment and suggesting that hyaloclastite and lava were emplaced virtually concurrently, while hyaloclastite was wet and weak. Dissolved volatile concentrations in glass give an indication of ambient pressure on quenching and cessation of degassing. Sulfur contents in basaltic glasses from chilled margins of lava and from hyaloclastite glasses obtained by electron microprobe (lava glasses range from 0-525 ppm with the majority of samples less than 300 ppm; hyaloclastite glasses have 0-900 ppm S) suggest degassing at shallow depths (pressures for over half of both the lava and the hyaloclastite samples were near atmospheric P. These data support an eruption that occurred under significantly lower-pressure conditions than previously proposed (Smellie, 2008). The presence of a large volume of hyaloclastite as well as extensive lava suggests the possibility of eruptions with both subglacial and subaerial phases. In one possible scenario, a subglacial eruption under a shallow glacier may have produced hyaloclastite that was incorporated into a meltwater lake-draining jökulhlaup. Ensuing subaerial lava from the ongoing eruption flowed onto still-plastic hyaloclastite and sank to its base. Thermal modeling suggests that influx of heat from the underlying lava resulted in increased fluid pressure in the hyaloclastite matrix. Fracturing of

  13. DNS of flows over superhydrophobic surfaces with small texture (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo


    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces with small texture sizes, comparable to those of practical application. Textures studied with DNS are usually much larger, as the cost of the simulations would otherwise be prohibitive. For this reason, a multi-block code that allows for finer resolution near the walls has been developed. We focus particularly on the pressure distribution at the wall. This distribution can cause the deformation of the gas pockets, which can ultimately lead to their loss and that of the drag reduction effect. The layout of the texture causes stagnation pressures which can contribute substantially to the wall pressure signal (Seo et al. JFM, under review). We study a range of different textures and their influence on these pressures.

  14. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars (United States)

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.


    The Athabasca Valles flood lava is among the most recent (Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  15. Scaling relationship for surface water transport in stream networks and sub-surface flow interaction (United States)

    Worman, A.


    Ground surface topography is known to control the circulation pattern of groundwater and also reflects the surface hydrological pathways through the landscape. This means that similar geometrical distributions typical to the landscape can be related physically-mathematically to the overall circulation of water and solute elements on land. Such understanding is needed in the management of water resources, especially on the watershed scale or larger. This paper outlines a theory by which we represent landscape topography in terms of its Fourier spectrum of a typical wave-function, formally relate this spectrum to the sub-surface flow of water and solute elements. Further, the stream network characteristics is analysed both in terms of the fractal distribution of individual stream lengths and the distribution of total transport distances in the watershed. Empirical relationships between the three types of distributions are established for two example watersheds in the middle and southern Sweden. Because the flow of water and solute elements in the stream network can also be described by convoluting unit solutions over the stream network, this paper describes an approach that relate lanscape topography to hydrological and geochemical circulation. The study shows that surface topography, stream network characteristics and thickness of quaternary deposits controls the circulation pattern of the deep groundwater. The water exchange is controlled by topography on both the continental scale as well as regional scale. The residence of deep groundwater in the stream network - before entering the coastal zone - is, therefore also controlled by the landscape topography.

  16. Using subdivision surfaces and adaptive surface simplification algorithms for modeling chemical heterogeneities in geophysical flows (United States)

    Schmalzl, JöRg; Loddoch, Alexander


    We present a new method for investigating the transport of an active chemical component in a convective flow. We apply a three-dimensional front tracking method using a triangular mesh. For the refinement of the mesh we use subdivision surfaces which have been developed over the last decade primarily in the field of computer graphics. We present two different subdivision schemes and discuss their applicability to problems related to fluid dynamics. For adaptive refinement we propose a weight function based on the length of triangle edge and the sum of the angles of the triangle formed with neighboring triangles. In order to remove excess triangles we apply an adaptive surface simplification method based on quadric error metrics. We test these schemes by advecting a blob of passive material in a steady state flow in which the total volume is well preserved over a long time. Since for time-dependent flows the number of triangles may increase exponentially in time we propose the use of a subdivision scheme with diffusive properties in order to remove the small scale features of the chemical field. By doing so we are able to follow the evolution of a heavy chemical component in a vigorously convecting field. This calculation is aimed at the fate of a heavy layer at the Earth's core-mantle boundary. Since the viscosity variation with temperature is of key importance we also present a calculation with a strongly temperature-dependent viscosity.

  17. A Rare Window Into Magmatic Conduit Processes: Time Series Observations From Active Lava Lakes (United States)

    Lev, E.; Ruprecht, P.; Patrick, M.; Oppenheimer, C.; Peters, N.; Spampinato, L.; Hernandez Perez, P. A.; Unglert, K.; Barreyre, T.


    Time-lapse thermal images of the lake surface are used to investigate the circulation and cooling patterns of three lava lakes: Kilauea's Halema'uma'u crater, Mount Erebus, and Nyiragongo. We report results for the time-dependent, two-dimensional velocity and temperature fields of the lake surface. These data sets constrain the locations of flow divergence (upwelling) and convergence (downwelling), the distribution of distinct "plates" and "rifts", the dominant time scales for changes in flow pattern at each lake, and the physical properties of the magma. Upwelling and downwelling locations are strikingly different between the three lakes. Upwelling at Nyiragongo and Erebus occurs dominantly in the interior of the lake, where it is occasionally interrupted by catastrophic downwellings. At Halema'uma'u upwelling and downwelling occur consistently along the perimeter. It remains to be seen whether these differences are dictated merely by the system's geometry or are indicative of intrinsic factors such as melt viscosity, temperature and volatile and crystal content, or of conduit processes such as gas pistoning or slug flow. The availability of high resolution data at Halema'uma'u allows as us to document the evolution of crustal plates and rifts and to investigate the physical properties of the lava and the crust. The physical properties of the lake's surface control lake cooling rates, and thus need to be included in lake circulation and thermal evolution models. We produce time-temperature cooling curves from surface temperature profiles normal to surface rifts and by tracking the cooling of intra-plate bubble bursts. By comparing observations to analytical cooling models, we estimate a porosity of > 80% during the high stand of the lake, slightly higher than estimates of 70% for the upper 120 meters based on gravity data, and close to the porosity of clasts ejected from the lake during recent minor explosions. Furthermore,we find that the number of surface plates

  18. Nonlinear dynamics and breakup of free-surface flows

    International Nuclear Information System (INIS)

    Eggers, J.


    Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems. copyright 1997 The American Physical Society

  19. Effects of confinement & surface roughness in electrorheological flows (United States)

    Helal, Ahmed; Telleria, Maria J.; Wang, Julie; Strauss, Marc; Murphy, Mike; McKinley, Gareth; Hosoi, A. E.


    Electrorheological (ER) fluids are dielectric suspensions that exhibit a fast, reversible change in rheological properties with the application of an external electric field. Upon the application of the electric field, the material develops a field-dependent yield stress that is typically modeled using a Bingham plastic model. ER fluids are promising for designing small, cheap and rapidly actuated hydraulic devices such as rapidly-switchable valves, where fluid flowing in a microchannel can be arrested by applying an external electric field. In the lubrication limit, for a Bingham plastic fluid, the maximum pressure the channel can hold, before yielding, is a function of the field-dependent yield stress, the length of the channel and the electrode gap. In practice, the finite width of the channel and the surface roughness of the electrodes could affect the maximum yield pressure but a quantitative understanding of these effects is currently lacking. In this study, we experimentally investigate the effects of the channel aspect ratio (width/height) and the effects of electrode roughness on the performance of ER valves. Based on this quantitative analysis, we formulate new performance metrics for ER valves as well as design rules for ER valves that will help guide and optimize future designs.

  20. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James


    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  1. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (western Turkey) using cosmogenic 3He and 10Be (United States)

    Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt


    The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A

  2. Lava entering water: the different behaviour of aa and pahoehoe at the Nesjahraun, Thingvellir, Iceland (United States)

    Stevenson, J. A.; Mitchell, N.; Mochrie, F.; Cassidy, M.; Pinkerton, H.


    The Nesjahraun is a basaltic lava flow that erupted 1800 years ago from a subaerial fissure extending NE from the Hengill central volcano along the Thingvellir graben. The Nesjahraun entered the lake "Thingvallavatn" on its southern shore and exemplifies lava flowing into water in a relatively sheltered, lacustrine environment. This study combines airborne LiDAR, sidescan sonar, and CHIRP seismic data with field observations to investigate the behaviour of the lava as it entered the water. The early stages of the eruption produced pahoehoe sheet lava that is exposed as stacks of thin, vesicular, flows (5-20 cm thick) resting upon and surrounding low (piles of coarse, unconsolidated, variably-oxidised spatter. Clefts, 2-5 m wide, spaced ~50 m apart, and with subhorizontal striations on the walls, extend <50 m inland from the lake. They likely represent channels or collapsed tubes along which lava was delivered into the water. A circular littoral cone, Eldborg, formed when water infiltrated a lava tube. Offshore, the water deepens quickly, suggesting that this part of the flow ends as a steep talus ramp. Later, the flow focussed into an aa channel that split along the shore into individual flow lobes 1-50 m wide. Aa clinker is exposed on the water's edge, as well as glassy sand and gravel containing irregularly-shaped intrusions. The cores of the flow lobes contain coherent, but hackly-fractured lava. Mounds of lapilli-sized scoria and the large double cone of Grámelur were formed in littoral explosions. The aa flow can be identified over 1 km offshore in the CHIRP and sidescan data, the latter suggesting that the flow lobes remained coherent while flowing down a gradient of <10 degrees. The Nesjahraun demonstrates that, even in the absence of ocean waves, littoral explosions are ubiquitous, that pahoehoe flows advance by construction of a talus ramp, and that with a high flux and shallow gradient, it is possible for aa flows to penetrate water and to remain

  3. Determination of averaged axisymmetric flow surfaces according to results obtained by numerical simulation of flow in turbomachinery

    Directory of Open Access Journals (Sweden)

    Bogdanović-Jovanović Jasmina B.


    Full Text Available In the increasing need for energy saving worldwide, the designing process of turbomachinery, as an essential part of thermal and hydroenergy systems, goes in the direction of enlarging efficiency. Therefore, the optimization of turbomachinery designing strongly affects the energy efficiency of the entire system. In the designing process of turbomachinery blade profiling, the model of axisymmetric fluid flows is commonly used in technical practice, even though this model suits only the profile cascades with infinite number of infinitely thin blades. The actual flow in turbomachinery profile cascades is not axisymmetric, and it can be fictively derived into the axisymmetric flow by averaging flow parameters in the blade passages according to the circular coordinate. Using numerical simulations of flow in turbomachinery runners, its operating parameters can be preliminarily determined. Furthermore, using the numerically obtained flow parameters in the blade passages, averaged axisymmetric flow surfaces in blade profile cascades can also be determined. The method of determination of averaged flow parameters and averaged meridian streamlines is presented in this paper, using the integral continuity equation for averaged flow parameters. With thus obtained results, every designer can be able to compare the obtained averaged flow surfaces with axisymmetric flow surfaces, as well as the specific work of elementary stages, which are used in the procedure of blade designing. Numerical simulations of flow in an exemplary axial flow pump, used as a part of the thermal power plant cooling system, were performed using Ansys CFX. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 kW to 1000 kW in the territory of South and Southeast Serbia

  4. Internal fabric development in complex lava domes

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Kratinová, Zuzana; Kusbach, V.; Schulmann, K.


    Roč. 466, č. 1-2 (2009), s. 101-113 ISSN 0040-1951 R&D Projects: GA AV ČR KJB301110703; GA AV ČR KJB300120702 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : analogue modeling * lava extrusion * exogenous growth * crystal-rich lava * AMS Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.935, year: 2009

  5. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik


    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper......-motor expansion valve. Two experimental designs (data point sets) are generated using a modified Central Composite Design for each valve and their response surfaces are compared using the quadratic model. Statistical information on the significant model terms are used to clarify whether the effect of fluid flow....... The response surface comparison reveals that the flow pulsations improves the time-averaged heat transfer coefficient by as much as 10 % at the smallest cycle time compared with continuous flow. On the other hand, at highest cycle time and heat flux, the reduction may be as much as 20 % due to significant dry...

  6. Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics (United States)

    Lissenden, Cliff J.; Arnold, Steven M.


    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification.

  7. Modeling Surface Water Flow in the Atchafalaya Basin (United States)

    Liu, K.; Simard, M.


    While most of the Mississippi River Delta is sinking due to insufficient sediment supply and subsidence, the stable wetlands and the prograding delta systems in the Atchafalaya Basin provide a unique opportunity to study the constructive interactions between riverine and marine forcings and their impacts upon coastal morphology. To better understand the hydrodynamics in this region, we developed a numerical modeling system for the water flow through the river channel - deltas - wetlands networks in the Atchafalaya Basin. Determining spatially varying model parameters for a large area composed of such diverse land cover types poses a challenge to developing an accurate numerical model. For example, the bottom friction coefficient can not be measured directly and the available elevation maps for the wetlands in the basin are inaccurate. To overcome these obstacles, we developed the modeling system in three steps. Firstly, we modeled river bathymetry based on in situ sonar transects and developed a simplified 1D model for the Wax Lake Outlet using HEC-RAS. Secondly, we used a Bayesian approach to calibrate the model automatically and infer important unknown parameters such as riverbank elevation and bottom friction coefficient through Markov Chain Monte Carlo (MCMC) simulations. We also estimated the wetland elevation based on the distribution of different vegetation species in the basin. Thirdly, with the lessons learnt from the 1D model, we developed a depth-averaged 2D model for the whole Atchafalaya Basin using Delft3D. After calibrations, the model successfully reproduced the water levels measured at five gauges in the Wax Lake Outlet and the modeled water surface profile along the channel agreed reasonably well with our LIDAR measurements. In addition, the model predicted a one-hour delay in tidal phase from the Wax Lake Delta to the upstream gauge. In summary, this project presents a procedure to initialize hydrology model parameters that integrates field

  8. Life development on the boundary lava-water (on the example of Palaeoproterozoic Ongeluk lavas of South Africa) (United States)

    Astafieva, M.; Cornell, D.; Rozanov, A.


    It is shown on the example of Early Proterozoic pillow-lavas of South-Africa that the boundary lava - water is very interesting from the point of view of bacterial paleontology. In the rocks, corresponding to this boundary, such forms as bacteria, including cyanobacteria, developed, cyanobacterial or bacterial mats formed and probably even such highly organized forms as eucaryots existed. Present-day microbial life is known both in surface rocks and deep underground. The main part of terrestrial microorganism biomass is underground. Microorganisms inhabit wet fissures in volcanogenic rocks and leave evidence of their existence as imprints in the rock or as the chemical remains of their vital functions. Under subsurface conditions, manifestations of recent microbial life are often in closely connected with the boundary between volcanogenic rock and water. The most ancient microfossils connected with this boundary, were described from Mezo-Archaean pillow-lavas from the Barberton Greenstone belt of South Africa. It is supposed that microbial life inhabited these underwater volcanogenic rocks just after their extrusion about 3.5 GA ago (Furnes et al., 2004). J. Schopf (1993) was the first to discover fossil filament microbes, resembling cyanobacteria, in the Early Archaean (3.465 Ga) of Western Australia. Another microbial discovery in volcanogenic rocks was in Archaean (3.235 Ga) volcanogenic massive sulphide deposits in the Pilbara Craton of Australia. In this case bacterial life was confined to a system of underwater thermal springs (Rasmussen, 2000). In this work samples were studied from pillow selvages of the Palaeoproterozoic Ongeluk lavas on the western margin of the Kaapvaal Craton of South Africa . A refinement of earlier dates for the Ongeluk-Hekpoort extrusion is a Pb-Pb isochron age of 2222±13 Ma. A rather diverse set of pseudomorphs of biogenic objects were found in these Early Proterozoic pillow-lavas. Among these forms are filaments, cocci and others

  9. Gas entrainment inception at the border of a flow-swollen liquid surface

    International Nuclear Information System (INIS)

    Madarame, Haruki; Chiba, Tamotsu


    A rapid liquid flow into a tank may impinge on the free surface, making it swell partially. The returning flow branches off from the free surface and re-submerges at the border of the swollen surface. If the flow velocity along the swollen surface is high enough, gas bubbles are formed at the border and entrained by the liquid flow. The conditions necessary for gas entrainment in a simple system are examined experimentally, using water and air as working fluids. The effect of surface tension is examined by adding a surface active agent to the water. The results show that gas entrainment inception is determined by the flow pattern in the system and the product of the Froude and Weber numbers based on the local velocity at the bubble formation point. (orig.)

  10. Enteric and indicator virus removal by surface flow wetlands. (United States)

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P


    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Two-dimensional free-surface flow under gravity: A new benchmark case for SPH method (United States)

    Wu, J. Z.; Fang, L.


    Currently there are few free-surface benchmark cases with analytical results for the Smoothed Particle Hydrodynamics (SPH) simulation. In the present contribution we introduce a two-dimensional free-surface flow under gravity, and obtain an analytical expression on the surface height difference and a theoretical estimation on the surface fractal dimension. They are preliminarily validated and supported by SPH calculations.

  12. Characteristics of Nitrogen Loss through Surface-Subsurface Flow on Red Soil Slopes of Southeast China (United States)

    Zheng, Haijin; Liu, Zhao; Zuo, Jichao; Wang, Lingyun; Nie, Xiaofei


    Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7-8.2 and 1.5-4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36-56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0-15, 2-9 and 76-96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83-86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.

  13. THE AESTHETICS AND DYNAMICS OF LAVA: An interdisciplinary course in which the volcano is brought to the students. (United States)

    Wysocki, R.; Karson, J. A.


    The power, fury, and nearly indescribably beauty of flowing lava has permeated the entirety of human existence. Being in the presence of flowing lava redefines the educational experience magnitudes beyond that of the classroom, online and/or an analog experiment. For the last 8 years the Syracuse University Lava Project (SULP) has presented this unique immersive experience nearly weekly year-round. It is through this intensely direct education experience that Pre-K to Post Doc students are exposed to a fundamental geomorphic mechanism: flowing lava. The SULP facility is located in the Syracuse Sculpture Studio and 1.1 Ga basalt is turned into 1200°C molten lava flowing from a reconfigured bronze furnace. Originally conceived as a means to find art material via scientific experiment the project has evolved into a truly one-of-a-kind interdisciplinary course "The Aesthetics and Dynamics of Lava," a course populated by students from across the academic spectrum. Students in this cross-listed course design their own investigations with lava- art or science or some combination - in the context of our background presentations as a launching point. Key benefits include interacting with faculty from very different backgrounds and with very different scholarly/funding systems and students with different outlooks, to engage in multiple modes of learning. Students use scientific tools and processes (FLIR camera, microprobe, thin sections, etc.) as well as those from art and design to produce reports in a variety of formats: traditional written reports, video projects, computer modeling, online presentations, sculpture, photography, etc. Our collaboration has truly blurred the lines between science and art, creating a learning environment in which students from across all academic disciplines work together to share their diverse impressions of lava flow events through shared projects, broadening their perspectives and enabling them to see one another's worlds from new points

  14. Thermally driven flows between a Leidenfrost solid and a ratchet surface. (United States)

    Hardt, Steffen; Tiwari, Sudarshan; Baier, Tobias


    The significance of thermally driven flows for the propulsion of Leidenfrost solids on a ratchet surface is studied based on a numerical solution of the Boltzmann equation. The resulting flow patterns are dominated by vortices developing at the edges of the ratchet teeth. In a previous analysis it had been claimed that thermally driven flows could cause the propulsion of Leidenfrost objects. In contrast to that analysis, it is found that such flows make an insignificant contribution to the thrust of Leidenfrost solids on ratchet surfaces, which is dominated by the pressure-driven flow due to the sublimating solid.

  15. Numerical analysis of choked converging nozzle flows with surface ...

    Indian Academy of Sciences (India)

    Variation of discharge coefficients for sonic nozzles with flow geometry and Reynolds num- ber was reported by Paik et al (2000), who determined higher discharge coefficients with the increase of mass flow rate. Lear et al (1997) modelled dissipative effects of heat trans- fer on the exit kinetic energy and on nozzle efficiency ...

  16. Measurement of the interaction between the flow and the free surface of a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Koji [Univ. of Tokyo, Ibaraki (Japan); Schmidl, W.D.; Philip, O.G. [Texas A& M Univ., College Station, TX (United States)


    The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.

  17. Gusev Rocks Solidified from Lava (Approximate True Color) (United States)


    In recent weeks, as NASA's Mars Exploration Rover Spirit has driven through the basin south of 'Husband Hill,' it has been traversing mainly sand and dune deposits. This week, though, Spirit has been maneuvering along the edge of an arc-shaped feature called 'Lorre Ridge' and has encountered some spectacular examples of basaltic rocks with striking textures. This panoramic camera (Pancam) image shows a group of boulders informally named 'FuYi.' These basaltic rocks were formed by volcanic processes and may be a primary constituent of Lorre Ridge and other interesting landforms in the basin. Spirit first encountered basalts at its landing site two years ago, on a vast plain covered with solidified lava that appeared to have flowed across Gusev Crater. Later, basaltic rocks became rare as Spirit climbed Husband Hill. The basaltic rocks that Spirit is now seeing are interesting because they exhibit many small holes or vesicles, similar to some kinds of volcanic rocks on Earth. Vesicular rocks form when gas bubbles are trapped in lava flows and the rock solidifies around the bubbles. When the gas escapes, it leaves holes in the rock. The quantity of gas bubbles in rocks on Husband Hill varies considerably; some rocks have none and some, such as several here at FuYi, are downright frothy. The change in textures and the location of the basalts may be signs that Spirit is driving along the edge of a lava flow. This lava may be the same as the basalt blanketing the plains of Spirit's landing site, or it may be different. The large size and frothy nature of the boulders around Lorre Ridge might indicate that eruptions once took place at the edge of the lava flow, where the lava interacted with the rocks of the basin floor. Scientists hope to learn more as Spirit continues to investigate these rocks. As Earth approaches the Chinese New Year (The Year of the Dog), the Athena science team decided to use nicknames representing Chinese culture and geography to identify rocks and

  18. Method of driving liquid flow at or near the free surface using magnetic microparticles (United States)

    Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL


    The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.

  19. Global positioning system measurements of ground deformation caused by magma intrusion and lava discharge: the 1990 1995 eruption at Unzendake volcano, Kyushu, Japan (United States)

    Nishi, K.; Ono, H.; Mori, H.


    Global positioning system (GPS) measurements made around Unzendake volcano, Kyushu, Japan, since January 1991 have detected ground deformation caused by magma intrusion and lava discharge. In the intermittent phreatic and phreatomagmatic eruption stage, the ground was inflating. After growth of the lava dome and following frequent pyroclastic flows at Unzendake volcano, the ground began deflating. These ground deformations are explained by the inflation and deflation of a Mogi's source model (a point source model) located about 6 km west of the active crater at a depth of 11 km, at an aseismic region. The observed horizontal displacement vectors pointed radially away from the estimated pressure source during inflation and pointed to the pressure source during deflation. The horizontal displacements at the reference GPS station calculated from contraction of the estimated pressure source coincide well with the actual horizontal displacements observed from other GPS baseline systems. These observations validate our estimates for the pressure source. Based on the relation between the deformation volume of the ground surface and the discharged volume of the lava, it is estimated that during the eruption there was magma supply from the deeper portion as well as magma discharge at the crater. Magma is estimated to be supplied to the reservoir at an average rate of 1.1×10 5 m 3/day; magma intrusion began in December 1989 at the latest and continued for 1.9×10 3 days.

  20. Radioisotope tracer application in surface and groundwater flow measurements

    International Nuclear Information System (INIS)

    Monev, E.


    The ''peak to peak'' method for measurement of water flow with the use of radioactive tracer was investigated. The theoretical basis for this method has been established. The experiments in the open channel have shown the applicability of the method. Groundwater flow was studied by injection of radioactive tracer into the bore-hole followed by gamma-logging in three different time intervals. Interpretation of gamma lows in terms of filtration velocity in various depths proved to be possible

  1. Petrology of the prehistoric lavas and dyke of the Barren Island ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    activity, whose deposits presently mantle inner and outer caldera walls, a new phase of intra- calderic Vulcanian activities took place. A prominent dyke in the SE inner side of the caldera wall was recognized. Petrographically the lava flows and dyke are similar but they differ in their chemical composition (viz., SiO2, MgO, Ni ...

  2. Shallowly driven fluctuations in lava lake outgassing (gas pistoning), Kīlauea Volcano (United States)

    Patrick, Matthew R.; Orr, Tim; Sutton, A. J.; Lev, Einat; Thelen, Wes; Fee, David


    Lava lakes provide ideal venues for directly observing and understanding the nature of outgassing in basaltic magmatic systems. Kīlauea Volcano's summit lava lake has persisted for several years, during which seismic and infrasonic tremor amplitudes have exhibited episodic behavior associated with a rise and fall of the lava surface (;gas pistoning;). Since 2010, the outgassing regime of the lake has been tied to the presence or absence of gas pistoning. During normal behavior (no gas pistoning), the lake is in a ;spattering; regime, consisting of higher tremor amplitudes and gas emissions. In comparison, gas piston events are associated with an abrupt rise in lava level (up to 20 m), during which the lake enters a ;non-spattering; regime with greatly decreased tremor and gas emissions. We study this episodic behavior using long-term multidisciplinary monitoring of the lake, including seismicity, infrasound, gas emission and geochemistry, and time-lapse camera observations. The non-spattering regime (i.e. rise phase of a gas piston cycle) reflects gas bubbles accumulating near the top of the lake, perhaps as a shallow foam, while spattering regimes represent more efficient decoupling of gas from the lake. We speculate that the gas pistoning might be controlled by time-varying porosity and/or permeability in the upper portions of the lava lake, which may modulate foam formation and collapse. Competing models for gas pistoning, such as deeply sourced gas slugs, or dynamic pressure balances, are not consistent with our observations. Unlike other lava lakes which have cyclic behavior that is thought to be controlled by deeply sourced processes, external to the lake itself, we show an example of lava lake fluctuations driven by cycles of activity at shallow depth and close to the lake's surface. These observations highlight the complex and unsteady nature of outgassing from basaltic magmatic systems.

  3. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows (United States)

    Legleiter, Carl; Mobley, Curtis D.; Overstreet, Brandon


    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  4. A framework for modeling connections between hydraulics, water surface roughness, and surface reflectance in open channel flows (United States)

    Legleiter, Carl J.; Mobley, Curtis D.; Overstreet, Brandon T.


    This paper introduces a framework for examining connections between the flow field, the texture of the air-water interface, and the reflectance of the water surface and thus evaluating the potential to infer hydraulic information from remotely sensed observations of surface reflectance. We used a spatial correlation model describing water surface topography to illustrate the application of our framework. Nondimensional relations between model parameters and flow intensity were established based on a prior flume study. Expressing the model in the spatial frequency domain allowed us to use an efficient Fourier transform-based algorithm for simulating water surfaces. Realizations for both flume and field settings had water surface slope distributions positively correlated with velocity and water surface roughness. However, most surface facets were gently sloped and thus unlikely to yield strong specular reflections; the model exaggerated the extent of water surface features, leading to underestimation of facet slopes. A ray tracing algorithm indicated that reflectance was greatest when solar and view zenith angles were equal and the sensor scanned toward the Sun to capture specular reflections of the solar beam. Reflected energy was concentrated in a small portion of the sky, but rougher water surfaces reflected rays into a broader range of directions. Our framework facilitates flight planning to avoid surface-reflected radiance while mapping other river attributes, or to maximize this component to exploit relationships between hydraulics and surface reflectance. This initial analysis also highlighted the need for improved models of water surface topography in natural rivers.

  5. Pressure-dependent surface viscosity and its surprising consequences in interfacial lubrication flows (United States)

    Manikantan, Harishankar; Squires, Todd M.


    The surface shear rheology of many insoluble surfactants depends strongly on the surface pressure (or concentration) of that surfactant. Here we highlight the dramatic consequences that surface-pressure-dependent surface viscosities have on interfacially dominant flows, by considering lubrication-style geometries within high Boussinesq (Bo) number flows. As with three-dimensional lubrication, high-Bo surfactant flows through thin gaps give high surface pressures, which in turn increase the local surface viscosity, further amplifying lubrication stresses and surface pressures. Despite their strong nonlinearity, the governing equations are separable, so that results from two-dimensional Newtonian lubrication analyses may be immediately adapted to treat surfactant monolayers with a general functional form of ηs(Π ) . Three paradigmatic systems are analyzed to reveal qualitatively new features: a maximum, self-limiting value for surfactant fluxes and particle migration velocities appears for Π -thickening surfactants, and kinematic reversibility is broken for the journal bearing and for suspensions more generally.

  6. Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations (United States)

    Zhang, Aoqi; Fu, Yunfei; Chen, Yilun; Liu, Guosheng; Zhang, Xiangdong


    The distribution and influence of precipitation over the southern Himalayas have been investigated on regional and global scales. However, previous studies have been limited by the insufficient emphasis on the precipitation triggers or the lack of droplet size distribution (DSD) data. Here, precipitating systems were identified using Global Precipitation Mission dual-frequency radar data, and then categorized into five classes according to surface flow from the European Centre for Medium-Range Weather Forecast Interim data. The surface flow is introduced to indicate the precipitation triggers, which is validated in this study. Using case and statistical analysis, we show that the precipitating systems with different surface flow had different precipitation characteristics, including spatio-temporal features, reflectivity profile, DSD, and rainfall intensity. Furthermore, the results show that the source of the surface flow influences the intensity and DSD of precipitation. The terrain exerts different impacts on the precipitating systems of five categories, leading to various distributions of precipitation characteristics over the southern Himalayas. Our results suggest that the introduction of surface flow and DSD for precipitating systems provides insight into the complex precipitation of the southern Himalayas. The different characteristics of precipitating systems may be caused by the surface flow. Therefore, future study on the orographic precipitations should take account the impact of the surface flow and its relevant dynamic mechanism.

  7. Episodic soil succession on basaltic lava fields in a cool, dry environment (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.


    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  8. Influence of surface tension changes on hydrodynamic flow induced by traveling chemical waves (United States)

    Matthiessen, Kai; Wilke, Hermann; Müller, Stefan C.


    Chemical waves in a thin layer of a Belousov-Zhabotinsky reaction solution induce convective flow in the reaction medium. The mechanism of this chemically driven convection is investigated with space-resolved velocimetry, and simulated numerically solving modified Oregonator model equations and the Navier-Stokes equation. To decide whether the flow is driven by surface tension gradients or density gradients the results of the simulations are compared with experimental data. Analysis of the vertical distribution of the horizontal flow velocity suggests that in the mechanism of flow generation surface effects are dominant.

  9. Control and optimzation of sub-surface flow

    NARCIS (Netherlands)

    Jansen, J.D.


    Controlling the flow of fluids (e.g. water, oil, natural gas or CO2) in subsurface porous media is a technical process with many mathematical challenges. The underlying physics can be described with coupled nearly-elliptic and nearly-hyperbolic nonlinear partial differential equations, which require

  10. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.


    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  11. Mass transfer from smooth alabaster surfaces in turbulent flows (United States)

    Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.


    The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.

  12. Model scale measurements of surface ship radiated flow noise

    NARCIS (Netherlands)

    Jong, C.A.F.; Bosschers, J.; Hasenpflug, H.


    Advances in weapon and sensor capabilities are driving an increased interest in the control of underwater signatures of naval platforms. The control of machinery and propeller noise is well understood, but there is a shortfall of knowledge of the mechanisms that govern noise due to the flow around

  13. Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces (United States)

    Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.


    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.

  14. Laminar flow drag reduction on a soft porous media surface (United States)

    Wu, Zhenxing; Tambasco, Michael; Mirbod, Parisa


    The ability to control flow reduction in microchannels could significantly advance microfluidic-based devices in a wide range of industrial applications including biomedical fields. The aim of this work is to understand the fundamental physics of the laminar skin friction coefficient and the related drag reduction due to the existence of porous media in the pressure-driven flow. We conducted an analytical framework to predict a laminar Newtonian fluid flow and corresponding drag reduction in a rectangular microchannel which coated with various soft random porous media. Specifically, we present predictions of the laminar skin friction coefficient, and drag reduction for pressure-driven flows. We found the laminar drag reduction is strongly depended on the Darcy permeability of porous medium, the thickness of the permeable layer, and the height of the microchannel. To verify the accuracy of our analytical predictions, several pressure-drop experiments were conducted. We chose various combinations of porous material and the morphology of the fibers to achieve a unique height ratio, between the height of two domains, and permeability parameter of porous media for each experiment. We found a good agreement between the experiments and analytical predictions of laminar drag reduction. Supported by NSF Grant CBET#1706766.

  15. Synthetic aperture radar (SAR-based mapping of volcanic flows: Manam Island, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    J. K. Weissel


    Full Text Available We present new radar-based techniques for efficient identification of surface changes generated by lava and pyroclastic flows, and apply these to the 1996 eruption of Manam Volcano, Papua New Guinea. Polarimetric L- and P-band airborne synthetic aperture radar (SAR data, along with a C-band DEM, were acquired over the volcano on 17 November 1996 during a major eruption sequence. The L-band data are analyzed for dominant scattering mechanisms on a per pixel basis using radar target decomposition techniques. A classification method is presented, and when applied to the L-band polarimetry, it readily distinguishes bare surfaces from forest cover over Manam volcano. In particular, the classification scheme identifies a post-1992 lava flow in NE Valley of Manam Island as a mainly bare surface and the underlying 1992 flow units as mainly vegetated surfaces. The Smithsonian's Global Volcanism Network reports allow us to speculate whether the bare surface is a flow dating from October or November in the early part of the late-1996 eruption sequence. This work shows that fully polarimetric SAR is sensitive to scattering mechanism changes caused by volcanic resurfacing processes such as lava and pyroclastic flows. By extension, this technique should also prove useful in mapping debris flows, ash deposits and volcanic landslides associated with major eruptions.

  16. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin


    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  17. Separation of sheet flow on the surface of a circular cylinder (United States)

    Isshiki, Hiroshi; Yoon, Bum-Sang; Yum, Deuk-Joon


    The shape of a spout of a pot is very important for the liquid to flow smoothly from the pot. This is known as the "teapot effect." Separation of flow must take place at the tip of the spout. Separation of sheet flow on the surface of a circular cylinder may provide an explanation as to why pot spouts have such a unique shape. As can be easily observed by a simple experiment, separation of sheet flow from the surface of a circular cylinder is a very interesting phenomenon beyond intuition. In the nonviscous case, the flow released at the top of the surface may proceed completely around the surface and come back to the flow start point without separation. In the present paper, effects of gravity and viscosity on sheet flow are theoretically explained and the theory is verified by experiments. The results of the theoretical model proposed in the present study were very similar to the experimental measurements. In the present study, the effects of viscosity on sheet flow on a circular cylinder, the location of flow separation, and other associated responses were investigated.

  18. Experimental Study on Momentum Transfer of Surface Texture in Taylor-Couette Flow (United States)

    Xue, Yabo; Yao, Zhenqiang; Cheng, De


    The behavior of Taylor-Couette (TC) flow has been extensively studied. However, no suitable torque prediction models exist for high-capacity fluid machinery. The Eckhardt-Grossmann-Lohse (EGL) theory, derived based on the Navier-Stokes equations, is proposed to model torque behavior. This theory suggests that surfaces are the significant energy transfer interfaces between cylinders and annular flow. This study mainly focuses on the effects of surface texture on momentum transfer behavior through global torque measurement. First, a power-law torque behavior model is built to reveal the relationship between dimensionless torque and the Taylor number based on the EGL theory. Second, TC flow apparatus is designed and built based on the CNC machine tool to verify the torque behavior model. Third, four surface texture films are tested to check the effects of surface texture on momentum transfer. A stereo microscope and three-dimensional topography instrument are employed to analyze surface morphology. Global torque behavior is measured by rotating a multi component dynamometer, and the effects of surface texture on the annular flow behavior are observed via images obtained using a high-speed camera. Finally, torque behaviors under four different surface conditions are fitted and compared. The experimental results indicate that surface textures have a remarkable influence on torque behavior, and that the peak roughness of surface texture enhances the momentum transfer by strengthening the fluctuation in the TC flow.

  19. Origin of phenocrysts and compositional diversity in pre-Mazama rhyodacite lavas, Crater Lake, Oregon (United States)

    Nakada, S.; Bacon, C.R.; Gartner, A.E.


    Phenocrysts in porphyritic volcanic rocks may originate in a variety of ways in addition to nucleation and growth in the matrix in which they are found. Porphyritic rhyodacite lavas that underlie the eastern half of Mount Mazama, the High Cascade andesite/dacite volcano that contains Crater Lake caldera, contain evidence that bears on the general problem of phenocryst origin. Phenocrysts in these lavas apparently formed by crystallization near the margins of a magma chamber and were admixed into convecting magma before eruption. About 20 km3 of pre-Mazama rhyodacite magma erupted during a relatively short period between ~400 and 500 ka; exposed pre-Mazama dacites are older and less voluminous. The rhyodacites formed as many as 40 lava domes and flows that can be assigned to three eruptive groups on the basis of composition and phenocryst content. -from Authors

  20. Response of surface buoy moorings in steady and wave flows

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Nayak, B.U.; SanilKumar, V.

    A numerical model has been developed to evaluate the dynamics of surface buoy mooring systems under wave and current loading. System tension response and variation of tension in the mooring line at various depths have been evaluated for deep water...

  1. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti


    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  2. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.


    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  3. Fine powder flow under humid environmental conditions from the perspective of surface energy. (United States)

    Karde, Vikram; Ghoroi, Chinmay


    The influence of humidity on surface energetics and flow behavior of fine pharmaceutical powders was investigated. Amorphous and crystalline fine powders with hydrophilic (Corn starch and Avicel PH105) and hydrophobic (ibuprofen) nature were considered for this study. The surface energy was determined using surface energy analyzer and flow behavior was measured in terms of unconfined yield stress (UYS) using a shear tester. The study showed that unlike hydrophobic ibuprofen powder, surface energy and flow of hydrophilic excipient powders were affected by relative humidity (RH). The Lifshitz-van der Waals dispersive (γ(LW)) component of surface energy barely changed with varying RH for all pharmaceutical powders. For hydrophilic excipients, the specific component of surface energy (γ(SP)) was found to increase with increasing RH. Furthermore, for these excipients, flow deterioration at elevated RH was observed due to increased capillary bridge formation. Detailed analysis showed that γ(SP) component of surface energy can be an effective indicator for flow behavior of fine powders under varying humid conditions. The present study also brought out the existence of different regimes of probable interparticle forces which dictate the bulk flow behavior of fine hydrophilic powder under humid conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Surface water quality deterioration during low-flow (United States)

    Hellwig, Jost; Stahl, Kerstin; Lange, Jens


    Water quality deterioration during low streamflow has mostly been linked to a lower dilution potential for pollutants. Some studies have also found spatial heterogeneities and a different behavior of different water quality parameters. Even though the general mechanisms that cause water quality changes during low-flow are well understood, only a few efforts have been made to explain the differences in the magnitudes of observed deteriorations. We investigated 72 catchments across the federal state of Baden-Wuerttemberg, Germany, for changes in water quality during low-flow events. Data from the state's water quality monitoring network provided seven water quality parameters (water temperature, electrical conductivity, concentrations of chloride, sodium, sulfate, nitrate and phosphate), which we statistically related to streamflow variability. Water temperatures increased during low flow in summer but decreased during low flow in winter. Nitrate concentrations revealed high spatial heterogeneity with about one third of the stations showing decreasing values during drought. For all other parameters concentrations rose during low-flow with only a few exceptions. Despite consistent trend directions, the magnitudes of changes with streamflow differed markedly across the state. Both multiple linear regression and a multiple analysis of variances were applied to explain these differences with the help of catchment characteristics. Results indicated that for sulfate and conductivity geology of the catchments was the most important control whereas for chloride, sodium and nitrate sewage treatment plants had largest influence. For phosphate no clear control could be identified. Independent from the applied method, land use was a less important control on river water quality during drought than geology or inflow from sewage treatment plants. These results show that the effects of diffuse and point sources, as well as those of natural and anthropogenic sources differ for

  5. Modeling of surface roughness effects on Stokes flow in circular pipes (United States)

    Song, Siyuan; Yang, Xiaohu; Xin, Fengxian; Lu, Tian Jian


    Fluid flow and pressure drop across a channel are significantly influenced by surface roughness on a channel wall. The present study investigates the effects of periodically structured surface roughness upon flow field and pressure drop in a circular pipe at low Reynolds numbers. The periodic roughness considered exhibits sinusoidal, triangular, and rectangular morphologies, with the relative roughness (i.e., ratio of the amplitude of surface roughness to hydraulic diameter of the pipe) no more than 0.2. Based upon a revised perturbation theory, a theoretical model is developed to quantify the effect of roughness on fully developed Stokes flow in the pipe. The ratio of static flow resistivity and the ratio of the Darcy friction factor between rough and smooth pipes are expressed in four-order approximate formulations, which are validated against numerical simulation results. The relative roughness and the wave number are identified as the two key parameters affecting the static flow resistivity and the Darcy friction factor.

  6. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    International Nuclear Information System (INIS)

    Srinivasulu, M.; Komaraiah, M.; Rao, C. S. Krishna Prasada


    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  7. Prediction of the surface roughness of AA6082 flow-formed tubes by design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasulu, M. [Government Polytechnic for Women Badangpet, Hyderabad (India); Komaraiah, M. [Sreenidhi Institute of Science and Technology, Hyderabad (India); Rao, C. S. Krishna Prasada [Bharat Dynamics Limited, Hyderabad (India)


    Flow forming is a modern, chipless metal forming process that is employed for the production of thin-walled seamless tubes. Experiments are conducted on AA6082 alloy pre-forms to flow form into thin-walled tubes on a CNC flow-forming machine with a single roller. Design of experiments is used to predict the surface roughness of flow-formed tubes. The process parameters selected for this study are the roller axial feed, mandrel speed, and roller radius. A standard response surface methodology (RSM) called the Box Behnken design is used to perform the experimental runs. The regression model developed by RSM successfully predicts the surface roughness of AA6082 flow-formed tubes within the range of the selected process parameters.

  8. Numerical study on cavitating flow due to a hydrofoil near a free surface

    Directory of Open Access Journals (Sweden)

    Ping-Chen Wu


    Full Text Available A numerical strategy is proposed for a viscous uniform flow past a 2-D partially cavitating hydrofoil placed at a finite depth from the free surface. The flow was modeled by the Reynolds-averaged Navier–Stokes (RANS equations. A finite-volume method with the SIMPLE scheme and k-ε turbulence model were employed for computations. The “full cavitation model,” which included the effects of vaporization, noncondensible gases and compressibility, was incorporated in the computation of cavitating flow. The cavity shape and free surface were updated iteratively till a reasonable convergence was reached. As for the determination of the free surface, the VOF approach was adopted. The test cases show the accuracy and stability of our procedure to capture the cavitating flow near the free surface.

  9. A Level Set Discontinuous Galerkin Method for Free Surface Flows - and Water-Wave Modeling

    DEFF Research Database (Denmark)

    Grooss, Jesper


    We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by a level set technique. We describe the discontinuous Galerkin method in general, and its application to the flow equations...... equations in time are discussed. We investigate theory of di erential algebraic equations, and connect the theory to current methods for solving the unsteady fluid flow equations. We explore the use of a semi-implicit spectral deferred correction method having potential to achieve high temporal order....... The deferred correction method is applied on the fluid flow equations and show good results in periodic domains. We describe the design of a level set method for the free surface modeling. The level set utilize the high order accurate discontinuous Galerkin method fully and represent smooth surfaces very...

  10. Scaling up ecohydrological processes: role of surface water flow in water-limited landscapes

    CSIR Research Space (South Africa)

    Popp, A


    Full Text Available microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, the authors derive transition probabilities from a fine-scale simulation model. They applied two versions of the landscape model, one that includes...

  11. Should blood flow during cardiopulmonary bypass be individualized more than to body surface area?

    DEFF Research Database (Denmark)

    Thomassen, Sisse Anette; Larsson, A; Andreasen, Jan Jesper

    Blood flow during cardiopulmonary bypass (CPB) is calculated on body surface area (BSA). Increasing comorbidity, age and weight of today's cardiac patients question this calculation as it may not reflect individual metabolic requirement. The hypothesis was that a measured cardiac index (CI) prior...... not improve cerebral and systemic oxygenation compared to a blood flow based on BSA....

  12. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework (United States)

    Accurate analysis of water flow pathways from rainfall to streams is critical for simulating water use, climate change impact, and contaminant transport. In this study, we developed a new scheme to simultaneously calibrate surface flow (SF) and baseflow (BF) simulations of Soil and Water Assessment ...

  13. Aluminum-contaminant transport by surface runoff and bypass flow from an acid sulphate soil

    NARCIS (Netherlands)

    Minh, L.Q.; Tuong, T.P.; Mensvoort, van M.E.F.; Bouma, J.


    Quantifying the process and the amount of acid-contaminant released to the surroundings is important in assessing the environmental hazards associated with reclaiming acid sulphate soils (ASS). The roles of surface runoff and bypass flow (i.e. the rapid downward flow of free water along macropores

  14. Simultaneous measurement of a fluid flow and the fluid's free surface using PIV

    International Nuclear Information System (INIS)

    Philip, O.G.; Hassan, Y.A.; Okamoto, K.


    The objective of this investigation is to study the interaction between a fluid flow and its free surface with an improved application of the flow measurement technique, particle image velocimetry (PIV). In this study, improvements in the data acquisition and tracking method of the PIV technique were developed

  15. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions (United States)

    Leveille, R.; Sobron, P.


    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  16. Measuring Io's Lava Eruption Temperatures with a Novel Infrared Detector and Digital Readout Circuit (United States)

    Davies, Ashley; Gunapala, Sarath; Rafol, B., Sir; Soibel, Alexander; Ting, David Z.


    One method of determining lava eruption temperature of Io's dominant silicate lavas is by measuring radiant flux at two or more wavelengths and fitting a black-body thermal emission function. Only certain styles of volcanic activity are suitable, those where thermal emission is from a restricted range of surface temperatures close to eruption temperature. Such processes include [1] large lava fountains; [2] fountaining in lava lakes; and [3] lava tube skylights. Problems that must be overcome are (1) the cooling of the lava between data acquisitions at different wavelengths; (2) the unknown magnitude of thermal emission, which often led to detector saturation; and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector [4] and an advanced digital readout circuit [5]. We have created an instrument model that allows different instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested so as to determine eruption detectability. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures exposed. Observations at 1 and 1.5 μm are sufficient to do this. Lava temperature determinations are also possible with a visible wavelength detector [3] so long as data at different wavelengths are obtained simultaneously and integration time is very short. This is especially important for examining the thermal emission from lava tube skylights [3] due to rapidly-changing viewing geometry during close flybys. References: [1] Davies et al., 2001, JGR, 106, 33079-33104. [2] Davies et al., 2011, GRL, 38, L21308. [3] Davies et al., 2016, Icarus, in press. [4

  17. Comparison of Experimental Surface and Flow Field Measurements to Computational Results of the Juncture Flow Model (United States)

    Roozeboom, Nettie H.; Lee, Henry C.; Simurda, Laura J.; Zilliac, Gregory G.; Pulliam, Thomas H.


    Wing-body juncture flow fields on commercial aircraft configurations are challenging to compute accurately. The NASA Advanced Air Vehicle Program's juncture flow committee is designing an experiment to provide data to improve Computational Fluid Dynamics (CFD) modeling in the juncture flow region. Preliminary design of the model was done using CFD, yet CFD tends to over-predict the separation in the juncture flow region. Risk reduction wind tunnel tests were requisitioned by the committee to obtain a better understanding of the flow characteristics of the designed models. NASA Ames Research Center's Fluid Mechanics Lab performed one of the risk reduction tests. The results of one case, accompanied by CFD simulations, are presented in this paper. Experimental results suggest the wall mounted wind tunnel model produces a thicker boundary layer on the fuselage than the CFD predictions, resulting in a larger wing horseshoe vortex suppressing the side of body separation in the juncture flow region. Compared to experimental results, CFD predicts a thinner boundary layer on the fuselage generates a weaker wing horseshoe vortex resulting in a larger side of body separation.

  18. RIS4E at Kilauea's December 1974 (D1974) Flow: Establishing the D1974 Flow as an Ideal Mars Analog (United States)

    Young, K. E.; Bleacher, J. E.; Rogers, D.; McAdam, A.; Garry, W. B.; Scheidt, S. P.; Carter, L. M.; Glotch, T. D.


    The Kīlauea December 1974 (D1974) flow was emplaced from a series of en echelon fissures southwest of Kīlauea Caldera. In 6.5 hours the D1974 flow was emplaced over the Keanakāko`i ash member as a rapidly emplaced sheet flow. This flow has previously been used as a location for radar roughness studies due to the exposure of abrupt changes in surface texture ranging between smooth pāhoehoe, rubbly and slabby lavas and ´áā lava. When viewed in visible remote sensing images, this flow field displays dark and light toned areas that reveal sinuous patterns, streamlined islands, and rafted lava slabs and plates. The flow is an ideal location to study lava textures, textural relationships and the formation of non-traditional channels and associated features as analogs to characterizing the formation of channel networks on the flanks of martian volcanoes or rilles in the lunar mare. The D1974 flow is also positioned downwind from Kīlauea Caldera along the volcano's SW rift zone. D1974 lavas flowed across older, active fumaroles and have since been exposed to acid fog, rain, and other plume related processes. In 2008 the Kīlauea Caldera experienced an explosive event along the wall of Halemáumáu and has since displayed an active lava lake, thereby elevating the flow's exposure to processes related to volcanic gasses. Alteration products have therefore formed both in and around the older fumaroles (at the solfatara site) as well as being deposited as thin coatings over the entire length of the flow. These products are reminiscent of sulfate-rich materials that have been identified on Mars by several groups. Though these martian deposits have been identified and analyzed, their formation mechanism remains somewhat ambiguous. The D1974 flow represents an ideal analog with which to test various formation scenarios using a variety of field portable technologies, designed to analyze the alteration products in situ (thereby preserving their initial structures and

  19. Surface tension gradient enhanced thin film flow for particle deposition (United States)

    Gilchrist, James; Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael


    We investigate the effect of varying concentration in binary mixtures of water and ethanol as the suspending medium for micron-scale silica particles on convective deposition. By pulling a suspension along a substrate, a thin film is created that results in enhanced evaporation of the solvent and capillary forces that order particles trapped in the thin film. In pure water or pure ethanol, assembly and deposition is easily understood by a simply flux balance first developed by Dimitrov and Nagayama in 1996. In solvent mixtures having only a few percent of ethanol, Marangoni stresses from the concentration gradient set by unbalanced solvent evaporation dominates the thin film flow. The thin film profile is similar to that found in ``tears of wine'' where the particles are deposited in the thin film between the tears and the reservoir. A simple model describes the 10x increase of deposition speed found in forming well-ordered monolayers of particles. At higher ethanol concentrations, lateral instabilities also generated by Marangoni stresses cause nonuniform deposition in the form of complex streaks that mirror sediment deposits in larger scale flows. We acknowledge funding from the NSF Scalable Nanomanufacturing Program under grant No. 1120399.

  20. "Active" and "Passive" Lava Resurfacing Processes on Io: A Comparative Study of Loki Patera and Prometheus (United States)

    Davies, A. G.; Matson, D. L.; Leone, G.; Wilson, L.; Keszthelyi, L. P.


    Studies of Galileo Near Infrared Mapping Spectrometer (NIMS) data and ground based data of volcanism at Prometheus and Loki Patera on Io reveal very different mechanisms of lava emplacement at these two volcanoes. Data analyses show that the periodic nature of Loki Patera s volcanism from 1990 to 2001 is strong evidence that Loki s resurfacing over this period resulted from the foundering of a crust on a lava lake. This process is designated passive , as there is no reliance on sub-surface processes: the foundering of the crust is inevitable. Prometheus, on the other hand, displays an episodicity in its activity which we designate active . Like Kilauea, a close analog, Prometheus s effusive volcanism is dominated by pulses of magma through the nearsurface plumbing system. Each system affords views of lava resurfacing processes through modelling.

  1. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.


    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  2. Experimental and theoretical studies of the streaming flow due to the adsorption of particles at a liquid surface (United States)

    Singh, P.; Musunuri, N.; Benouaguef, I.; Fischer, I.


    The particle image velocimetry (PIV) technique is used to study the streaming flow that is induced when particles are adsorbed at a liquid surface. The flow develops within a fraction of second after the adsorption of the particle. The fluid directly below the particle rises upward, and near the surface, it moves away from the particle. The flow causes powders sprinkled on a liquid surface to disperse on the surface. The flow strength, and the volume over which it extends, decreases with decreasing particle size. The streaming flow induced by the adsorption of two or more particles is a combination of the flows which they induce individually. Work supported by NSF.

  3. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan (United States)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.


    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (flow-induced shear arising from their rheological contrast. We showed the complicated

  4. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics. (United States)

    Jallo, Laila J; Dave, Rajesh N


    Powder flow involves particle-particle and particle-vessel contacts and separation resulting in electrostatic charging. This important phenomenon was studied for uncoated and dry-coated micronized acetaminophen (MAPAP) as a function of relative humidity. The main hypothesis is that by modifying powder surface energy via dry coating of MAPAP performed using magnetically assisted impaction coating, its charging tendency, flow can be controlled. The examination of the relationship between electrostatic charging, powder flow, and the surface energies of the powders revealed that an improvement in flow because of dry coating corresponded to a decrease in the charging of the particles. A general trend of reduction in both electrostatic charging and dispersive surface energy with dry coating and relative humidity were also observed, except that a divergent behavior was observed at higher relative humidities (≥55% RH). The uncoated powder was found to have strong electron acceptor characteristic as compared with the dry coated. The adhesion energy between the particles and the tubes used for the electrostatic charging qualitatively predicted the decreasing trend in electrostatic charging from plastic tubes to stainless steel. In summary, the surface energies of the powders and the vessel could explain the electrostatic charging behavior and charge reduction because of dry coating. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)


    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  6. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface. (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood


    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.

  7. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)


    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  8. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface. (United States)

    Kim, Hun; Lim, Hee-Chang


    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  9. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas


    the mass exchange between compartments. A benchmark test, which is based on a classic experimental data set on infiltration excess (Horton) overland flow, identified a feedback mechanism between surface runoff and soil air pressures. Our study suggests that air compression in soils amplifies surface runoff......This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...

  10. Stability analysis of a partitioned iterative method for steady free surface flow (United States)

    Demeester, Toon; Degroote, Joris; Vierendeels, Jan


    This note considers the steady free surface (FS) flow problem as encountered in the paper by van Brummelen et al. [1]. In that paper, steady flow of water in a two-dimensional slice of an infinitely wide open channel with a particular bottom wall is calculated as the first step in the development of a 3D surface fitting method for steady flow around ships. In these water-air flows, the influence of air is usually negligible due to the large difference in density. Contrary to surface capturing methods which are typically multiphase techniques (such as the volume-of-fluid method), fitting methods usually consider only the water phase. The latter approach requires appropriate FS boundary conditions. The dynamic boundary condition (DBC) used here assumes that the pressure is constant (atmospheric) at the FS and the shear stresses are zero. The kinematic boundary condition (KBC) states that the FS is impermeable.

  11. Inertia Effects in the Flow of a Herschel-Bulkley ERF between Fixed Surfaces of Revolution

    Directory of Open Access Journals (Sweden)

    A. Walicka


    Full Text Available Many electrorheological fluids (ERFs as fluids with microstructure demonstrate viscoplastic behaviours. Rheometric measurements indicate that some flows of these fluids may be modelled as the flows of a Herschel-Bulkley fluid. In this paper, the flow of a Herschel-Bulkley ER fluid—with a fractional power-law exponent—in a narrow clearance between two fixed surfaces of revolution with common axis of symmetry is considered. The flow is externally pressurized, and it is considered with inertia effect. In order to solve this problem, the boundary layer equations are used. The influence of inertia forces on the pressure distribution is examined by using the method of averaged inertia terms of the momentum equation. Numerical examples of externally pressurized ERFs flows in the clearance between parallel disks and concentric spherical surfaces are presented.

  12. Passive control of flow structure interaction between a sphere and free-surface

    Directory of Open Access Journals (Sweden)

    Akilli Huseyin


    Full Text Available Flow characteristics for both a smooth and a vented sphere such as velocity vectors, patterns of streamlines, vorticity contours, stream-wise fluctuations, cross-stream velocity fluctuations and Reynolds stress correlations between a sphere and free-surface for various submerged ratio at Re =5,000 are studied by using dye visualization and the particle image velocimetry technique. Passive control of flow structure interaction between sphere and free surface was examined by using a modified geometry which has a 15% sphere diameter hole passing through the sphere equator. Both of the spheres were separately placed beneath the free surface with different positions from touching to the free surface to two sphere diameters below the free surface. It is demonstrated that reattachment point of the separated flow to the free surface varies for both of the sphere cases as the sphere position alters vertically through the water flow while the flow structure for the vented sphere occurs considerably symmetrical due to forming of a pair of counter-rotating ring vortices.

  13. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J


    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  14. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.


    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  15. Modelling of a free-surface ferrofluid flow (United States)

    Habera, M.; Hron, J.


    The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results.

  16. Decaying lava extrusion rate at El Reventador Volcano, Ecuador measured using high-resolution satellite radar (United States)

    Arnold, D. W. D.; Biggs, J.; Anderson, Kyle R.; Vallejo Vargas, S.; Wadge, G.; Ebmeier, S. K.; Naranjo, M. F.; Mothes, P.


    Lava extrusion at erupting volcanoes causes rapid changes in topography and morphology on the order of tens or even hundreds of meters. Satellite radar provides a method for measuring changes in topographic height over a given time period to an accuracy of meters, either by measuring the width of radar shadow cast by steep sided features, or by measuring the difference in radar phase between two sensors separated in space. We measure height changes, and hence estimate extruded lava volume flux, at El Reventador, Ecuador, between 2011 and 2016, using data from the RADARSAT-2 and TanDEM-X satellite missions. We find that 39 new lava flows were extruded between 9 February 2012 and 24 August 2016, with a cumulative volume of 44.8M m3 dense rock equivalent and a gradually decreasing eruption rate. The average dense rock rate of lava extrusion during this time is 0.31 ± 0.02 m3 s−1, which is similar to the long-term average from 1972 to 2016. Apart from a volumetrically small dyke opening event between 9 March and 10 June 2012, lava extrusion at El Reventador is not accompanied by any significant magmatic ground deformation. We use a simple physics-based model to estimate that the volume of the magma reservoir under El Reventador is greater than 3 km3. Our lava extrusion data can be equally well fit by models representing a closed reservoir depressurising during the eruption with no magma recharge, or an open reservoir with a time-constant magma recharge rate of up to 0.35 ± 0.01 m3 s−1.

  17. Seasonal Greenland Ice Sheet ice flow variations in regions of differing bed and surface topography (United States)

    Sole, A. J.; Livingstone, S. J.; Rippin, D. M.; Hill, J.; McMillan, M.; Quincey, D. J.


    The contribution of the Greenland Ice Sheet (GrIS) to future sea-level rise is uncertain. Observations reveal the important role of basal water in controlling ice-flow to the ice sheet margin. In Greenland, drainage of large volumes of surface meltwater to the ice sheet bed through moulins and hydrofracture beneath surface lakes dominates the subglacial hydrological system and provides an efficient means of moving mass and heat through the ice sheet. Ice surface and bed topography influence where meltwater can access the bed, and the nature of its subsequent flow beneath the ice. However, no systematic investigation into the influence of topographic variability on Greenland hydrology and dynamics exists. Thus, physical processes controlling storage and drainage of surface and basal meltwater, and the way these affect ice flow are not comprehensively understood. This presents a critical obstacle in efforts to predict the future evolution of the GrIS. Here we present high-resolution satellite mapping of the ice-surface drainage network (e.g. lakes, channels and moulins) and measurements of seasonal variations in ice flow in south west Greenland. The region is comprised of three distinct subglacial terrains which vary in terms of the amplitude and wavelength and thus the degree to which basal topography is reflected in the ice sheet surface. We find that the distribution of surface hydrological features is related to the transfer of bed topography to the ice sheet surface. For example, in areas of thinner ice and high bed relief, moulins occur more frequently and are more uniformly dispersed, indicating a more distributed influx of surface-derived meltwater to the ice sheet bed. We investigate the implications of such spatial variations in surface hydrology on seasonal ice flow rates.

  18. Cave dwelling Onychophora from a Lava Tube in the Galapagos

    Directory of Open Access Journals (Sweden)

    Luis Espinasa


    Full Text Available A new population of velvet worms (Onychophora inhabiting a lava tube cave in the island of Santa Cruz, Galapagos, is reported here. The population size is large, suggesting that they may be troglophilic. Its members are darkly pigmented, with no obvious troglomorphic features. Their 16S rRNA sequence showed no differences when compared to an unidentified species of surface velvet worm from the same island, thus supporting cave and surface populations belong to the same species. Based on the 16S rRNA data, the Galapagos velvet worms derived from an Ecuadorian/Colombian clade, as would be expected of ease of dispersal from the nearest mainland to the Galapagos Islands.

  19. Generating Inviscid and Viscous Fluid-Flow Simulations over an Aircraft Surface Using a Fluid-Flow Mesh (United States)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)


    Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.

  20. Heat and fluid flow in microscale from micro and nano structured surfaces


    İzci, Türker; Izci, Turker


    The use of enhanced surfaces became one of the most popular studies in order to increase heat transfer performances of microsystems. There are various techniques/processes applied to surfaces to enhance excess heat removal from microsystems. In parallel to these research efforts, various micro and nano structured surfaces were evaluated in channel flow, jet impingement and pool boiling applications. In the first study, single micro pin-fins having the same chord thickness/diameter but differe...

  1. The Thermal Stealth Flows of Santiaguito: A Landsat 7 ETM+ Perspective (United States)

    Matias, O.; Matias, O.; Harris, A. J.; Flynn, L. P.; Rose, B. I.


    Thick, slow moving block lava flows are associated with extrusive activity at dacitic systems, where lava core depressurization during flow front collapse generate devastating block and ash flows. During January 2000 and 2001 we used two Landsat 7 ETM+ images along with ground-based observations to collect dimensional and rare thermal data for an active dacitic block flow at Santiaguito (Guatemala). This provided unique insights into block flow cooling and emplacement mechanisms. Flow velocity was low (12.5 m d-1), in spite of steep (>10\\deg) slopes, a result of high shear stress (>6 x 104 N m-2) and viscosity (>4 x 109 Pa s). The flow surface consisted of a thick (1.9-3.4 m), cool (40-111 \\degC) crust of meter-sized, sub-angular blocks. The flow surface was so cool that the flow was almost thermally invisible in the ETM+ data, requiring ground-based observations to guide image interpretation. The ETM+ data reveal that extremely effective insulation by the thick crust results in core cooling of 0.08 \\degC h-1. These low cooling rates make block flows the most thermally efficient of all styles of lava flow emplacement, allowing cooling limited flow lengths of several kilometers, in spite of low eruption rates (<0.5 m3 s-1). While low surface temperatures make block flows invisible to short wave infrared satellite-based sensors, the low velocity also contributes to the steathyness of these flows. Their stealthyness, however, masks the fact they can extend many kilometers, moving the block and ash flow source closer to vulnerable communities.

  2. MHD biconvective flow of Powell Eyring nanofluid over stretched surface (United States)

    Naseem, Faiza; Shafiq, Anum; Zhao, Lifeng; Naseem, Anum


    The present work is focused on behavioral characteristics of gyrotactic microorganisms to describe their role in heat and mass transfer in the presence of magnetohydrodynamic (MHD) forces in Powell-Eyring nanofluids. Implications concerning stretching sheet with respect to velocity, temperature, nanoparticle concentration and motile microorganism density were explored to highlight influential parameters. Aim of utilizing microorganisms was primarily to stabilize the nanoparticle suspension due to bioconvection generated by the combined effects of buoyancy forces and magnetic field. Influence of Newtonian heating was also analyzed by taking into account thermophoretic mechanism and Brownian motion effects to insinuate series solutions mediated by homotopy analysis method (HAM). Mathematical model captured the boundary layer regime that explicitly involved contemporary non linear partial differential equations converted into the ordinary differential equations. To depict nanofluid flow characteristics, pertinent parameters namely bioconvection Lewis number Lb, traditional Lewis number Le, bioconvection Péclet number Pe, buoyancy ratio parameter Nr, bioconvection Rayleigh number Rb, thermophoresis parameter Nt, Hartmann number M, Grashof number Gr, and Eckert number Ec were computed and analyzed. Results revealed evidence of hydromagnetic bioconvection for microorganism which was represented by graphs and tables. Our findings further show a significant effect of Newtonian heating over a stretching plate by examining the coefficient values of skin friction, local Nusselt number and the local density number. Comparison was made between Newtonian fluid and Powell-Eyring fluid on velocity field and temperature field. Results are compared of with contemporary studies and our findings are found in excellent agreement with these studies.

  3. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces (United States)

    Wang, Chi R.


    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  4. A field study of colloid transport in surface and subsurface flows (United States)

    Zhang, Wei; Tang, Xiang-Yu; Xian, Qing-Song; Weisbrod, Noam; Yang, Jae E.; Wang, Hong-Lan


    Colloids have been recognized to enhance the migration of strongly-sorbing contaminants. However, few field investigations have examined combined colloid transport via surface runoff and subsurface flows. In a headwater catchment of the upper Yangtze River, a 6 m (L) by 4 m (W) sloping (6°) farmland plot was built by cement walls to form no-flow side boundaries. The plot was monitored in the summer of 2014 for the release and transport of natural colloids via surface runoff and subsurface flows (i.e., the interflow from the soil-mudrock interface and fracture flow from the mudrock-sandstone interface) in response to rain events. The water sources of the subsurface flows were apportioned to individual rain events using a two end-member model (i.e., mobile pre-event soil water extracted by a suction-cup sampler vs. rainwater (event water)) based on δ18O measurements. For rain events with high preceding soil moisture, mobile pre-event soil water was the main contributor (generally >60%) to the fracture flow. The colloid concentration in the surface runoff was 1-2 orders of magnitude higher than that in the subsurface flows. The lowest colloid concentration was found in the subsurface interflow, which was probably the result of pore-scale colloid straining mechanisms. The rainfall intensity and its temporal variation govern the dynamics of the colloid concentrations in both surface runoff and subsurface flows. The duration of the antecedent dry period affected not only the relative contributions of the rainwater and the mobile pre-event soil water to the subsurface flows but also the peak colloid concentration, particularly in the fracture flow. The colloid size fraction accounted for more than 80% of the total suspended particles in the surface runoff, while the colloid size distributions of both the interflow and the fracture flow shifted towards larger diameters. These results highlight the need to avoid the application of strongly-sorbing agrochemicals (e

  5. Kilauea Iki lava lake experiment plans

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.C.; Hills, R.G.


    Twelve experimental studies are proposed to complete field laboratory work at Kilauea Iki lava lake. Of these twelve experiments, eleven do not require the presence of melt. Some studies are designed to use proven techniques in order to expand our existing knowledge, while others are designed to test new concepts. Experiments are grouped into three main categories: geophysics, energy extraction, and drilling technology. Each experiment is described in terms of its location, purpose, background, configuration, operation, and feasibility.

  6. Continuous terrestrial geodetic monitoring of the 2007 Lava Fan in the Sciara de Fuoco (Stromboli volcano, Italy) (United States)

    Puglisi, G.; Bonforte, A.; Cantarero, M.; Spata, A.


    At the end of the 2002-2003 eruption, a terrestrial monitoring system was set up to regularly measure the movements of benchmarks installed inside the Sciara del Fuoco (hereafter SdF) (Puglisi et al., 2005). This system, named THEODOROS, is based on a remotely controlled robotized Total Station installed near Punta Labronzo, on the northern border of the SdF. The 2007 eruption caused a dramatic change in the operations of THEODOROS. Indeed, the 2007 lava flows destroyed all the benchmarks installed on the northern part of the SdF, leaving only those on its central part. This eruption produced a lava fan at the base of the SdF, due to the rapid cooling of the lava flows on entering the sea. The continuous overlapping of several flows during the eruption built a thick lava body (the fan); it was emplaced on a very steep slope, partially originated during the landslides occurring in December 2002, producing a hazardous condition due to the potential sudden sliding of this fan into the sea. In order to monitor the stability of this lava fan, a new terrestrial geodetic network, was implemented on 6 April 2007, by installing 5 reflectors along a profile crossing the lava body, approximately over the old coastline. Later, in June 2007, 4 more reflectors were installed at higher and lower altitudes with respect to the previous profile, to obtain more information on the overall deformation of the lava body. Measurements were rather noisy during the first months, but a better definition of the reference system strongly improved the quality of the data. The position of the 9 benchmarks over the lava fan enable the areal distribution of the deformation to be drawn. The measurements carried out every 10 minutes allow following their motion with high temporal detail. The data collected since the end of the eruption highlighted a significant downslope motion of the entire lava fan, decreasing from the South to the North, where the body is buttressed by the rocky northern wall of

  7. Integrated Coupling of Surface and Subsurface Flow with HYDRUS-2D (United States)

    Hartmann, Anne; Šimůnek, Jirka; Wöhling, Thomas; Schütze, Niels


    Describing interactions between surface and subsurface flow processes is important to adequately define water flow in natural systems. Since overland flow generation is highly influenced by rainfall and infiltration, both highly spatially heterogeneous processes, overland flow is unsteady and varies spatially. The prediction of overland flow needs to include an appropriate description of the interactions between the surface and subsurface flow. Coupling surface and subsurface water flow is a challenging task. Different approaches have been developed during the last few years, each having its own advantages and disadvantages. A new approach by Weill et al. (2009) to couple overland flow and subsurface flow based on a generalized Richards equation was implemented into the well-known subsurface flow model HYDRUS-2D (Šimůnek et al., 2011). This approach utilizes the one-dimensional diffusion wave equation to model overland flow. The diffusion wave model is integrated in HYDRUS-2D by replacing the terms of the Richards equation in a pre-defined runoff layer by terms defining the diffusion wave equation. Using this approach, pressure and flux continuity along the interface between both flow domains is provided. This direct coupling approach provides a strong coupling of both systems based on the definition of a single global system matrix to numerically solve the coupled flow problem. The advantage of the direct coupling approach, compared to the loosely coupled approach, is supposed to be a higher robustness, when many convergence problems can be avoided (Takizawa et al., 2014). The HYDRUS-2D implementation was verified using a) different test cases, including a direct comparison with the results of Weill et al. (2009), b) an analytical solution of the kinematic wave equation, and c) the results of a benchmark test of Maxwell et al. (2014), that included several known coupled surface subsurface flow models. Additionally, a sensitivity analysis evaluating the effects

  8. The dynamic response of hyporheic zone redox zonation after surface flow perturbation (United States)

    Kaufman, M.; Zheng, L.; Cardenas, M. B.


    As water in a stream or river flows over ripples and other bedforms, differential surface pressures create bedform-induced hyporheic exchange. The oxygen, carbon, and nutrients carried into the bed by the surface water as well as those already existing in the bed material form the basis for microbial communities in the sediment.The resulting dissolved oxygen conditions are a critical control on the ecological function of the hyporheic zone (HZ), from both micro- and macro-biological habitat perspectives. Because hyporheic exchange rates are controlled by surface flow velocity, variations in surface flow have significant impact on the subsurface oxygen conditions. Most rivers are subject to flow velocity variations due to natural forcing including precipitation and variations in evapotranspiration as well as anthropogenic forces like dam releases. We use a large (10m x 0.7m x 0.3m) programmable flume instrumented with a bedform-scale high-resolution planar optode dissolved oxygen imaging system to observe the distribution of oxygenated sediment within the HZ over time. Using this system we characterize the rate at which hyporheic oxygen conditions reconfigure in response to changes in the surface flow velocity, particularly the time it takes for conditions to recover after a pulse of increased flow velocity. In addition, we make use of numerical models to further identify critical response time drivers. With these tools, we develop equations to describe the post-disturbance recovery time as a function of relative pulse magnitude and duration. Using these equations we can predict the time scale over which the hyporheic zone will recover following both natural and anthropogenic flow regime disturbances. Being able to predict the magnitude and duration of dissolved oxygen changes in the wake of flow perturbing events allows us to better understand the impact these disturbances have on the ecology of the hyporheic zone.

  9. Observations of flow path interactions with surface structures during initial soil development stage using irrigation experiments (United States)

    Bartl, Steffen; Biemelt, Detlef; Badorreck, Annika; Gerke, Horst H.


    Structures and processes are dynamically linked especially during initial stages of soil and ecosystem development. Here we assume that soil pore structures and micro topography determine the flow paths and water fluxes as well as further structure changes. Reports about flow path developments at the soil surface are still limited because of an insufficient knowledge of the changing micro topography at the surface. The objective of this presentation is to evaluate methods for parameterisation of surface micro topography for analysing interactions between infiltration and surface runoff. Complex irrigation experiments were carried out at an experimental site in the neighbourhood of the artificially created water catchment "Chicken Creek". The irrigation rates between 160 mm/h and 250 mm/h were held constant over a time period of 20 minutes. The incoming intensities were measured as well as the raindrop-velocity and -size distributions. The surface runoff was continuously registered, soil samples were taken, and soil water potential heads were monitored using tensiometers. Surface and subsurface flow paths were identified using different tracers. The soil surface structures were recorded using a high resolution digital camera before, during, and after irrigation. Micro topography was surveyed using close-range photogrammetry. With this experimental design both, flow paths on the surface and in the soil as well as structure and texture changes could be observed simultaneously. In 2D vertical cross-sections, the effect of initial sediment deposition structure on infiltration and runoff was observed. Image analysis of surface pictures allowed identifying structural and soil textural changes during the runoff process. Similar structural changes related to surface flow paths were found with the photogrammetric surface analysis. We found evidence for the importance of the initial structures on the flow paths as well as a significant influence of the system development

  10. Melt Channel Formation in Paraffin With Applications to Lava Channels (United States)

    Whitehead, J. A.; Mills, C. J.


    We present the results from laboratory experiments designed to explore channel formation caused by instabilities in fluid flow, and to provide a simple experimental basis to facilitate the extension of lava channel theory. Kelemen et. al. [1995] reported on a series of experiments that explored channel formation resulting from fluid instabilities caused by the ``reactive infiltration instability'' (RII). However, the material used in portions of their experiments was undesirable because of a poorly suited rheology. Therefore, our experiments were initiated as an extension of those earlier experiments, using instead a material with more robust rheological properties. The material chosen for this series of experiments is a paraffin with a freezing temperature of 4°C, which is transparent when liquid and opaque-white when frozen. The paraffin is pumped at a constant and controlled rate into a narrow gap between two circular plates, both with a diameter of ~51cm. The gap is open along the circumference of the plates, allowing the paraffin to flow out of the gap once it reaches the edge of the plate. The upper plate is constructed of Plexiglas to allow observation of the wax below, and it has a hole in the center through which the paraffin is pumped. The lower plate is constructed of aluminum, painted black, and kept at -5°C by circulating coolant through a reservoir below the it. As the paraffin, which is kept at 20°C before being pumped into the gap, flows over the cold lower plate, it begins to freeze and eventually fills up the gap between the plates. A single channel then forms, surrounded by solid paraffin, and the liquid being pumped in is transported via this channel to the edge of the plate. This is a stable state for all but the lowest flow rates attempted and verifies the results from the earlier work exploring the RII. We conducted experiments at different flows rates from 270mL/min to <30mL/min, and recorded the dimensions of the steady state channel

  11. A surface accumulator of Escherichia coli in water flow. (United States)

    Mayeed, M S; Al-Mekhnaqi, A M; Auner, G W; Newaz, G M


    The objective of this research is to design and optimise a mini/micro-channel based surface accumulator of Escherichia coli to be detected by acoustic wave biosensors. A computational research has been carried out using the state of the art software, CFD-ACE with water as bacteria bearing fluid. E. coli bacteria have been modelled as random discrete particles tracked by solving the Lagrangian equations. The design challenges are to achieve low shear force (pico-N), high concentration at accumulation and high enough Reynolds number to avoid bacteria swimming. A range of low Reynolds number (Re) from 28.2 to 58.3 has been considered along with the effects of particle-boundary interactions, gravity, Saffman lift and Magnus lift. About four orders of magnitude higher concentration at accumulation than the inlet concentration and lower shear force in the order of less than pico-N have been achieved in the optimised design with particles accumulating at a specific location under random particle-boundary interactions.

  12. Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine

    International Nuclear Information System (INIS)

    Fiereder, R; Riemann, S; Schilling, R


    This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.

  13. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein


    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  14. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein


    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  15. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow (United States)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team


    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  16. Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow

    DEFF Research Database (Denmark)

    Szlavik, Julie; Soares Paiva, Dionísio; Mørk, Nils


    Some strains of the food borne pathogen Listeria monocytogenes persist in food processing environments. The exact reason behind this phenomenon is not known, but strain differences in the ability to adhere to solid surfaces could offer an explanation. In the present work, initial adhesion of nine...... strains of L. monocytogenes was investigated under liquid flow at two levels of shear stress on six different surfaces using a flow chamber set-up with microscopy measurements. The surfaces tested were glass and PVC, and glass coated with beef extract, casein, and homogenised and unhomogenised milk....... In addition, the effect of prior environmental stress (5% NaCl, low nutrient availability) on initial adhesion was investigated. The hydrophobicity of the investigated surfaces was determined by contact angle measurements and the surface properties of the investigated L. monocytogenes strains were determined...

  17. Crystallization of tholeiitic basalt in Alae Lava Lake, Hawaii (United States)

    Peck, D.L.; Wright, T.L.; Moore, J.G.


    The eruption of Kilauea Volcano August 21-23, 1963, left 600,000 cubic meters of basaltic lava in a lava lake as much as 15 meters deep in Alae pit crater. Field studies of the lake began August 27 and include repeated core drilling, measurements of temperature in the crust and melt, and precise level surveys of the lake surface. The last interstitial melt in the lake solidified late in September 1964; by mid August 1965 the maximum temperature was 690??C at a depth of 11.5 meters. Pumice air-quenched from about 1140??C contains only 5 percent crystals - clinopyroxene, cuhedral olivine (Fo 80), and a trace of plagioclase, (An 70). Drill cores taken from the zone of crystallization in the lake show that olivine continued crystallizing to about 1070??C; below that it reacts with the melt, becoming corroded and mantled by pyroxene and plagioclase. Below 1070??C, pyroxene and plagioclase crystallized at a constant ratio. Ilmenite first appeared at about 1070??C and was joined by magnetite at about 1050??C; both increased rapidly in abundance to 1000??C. Apatite first appeared as minute needles in interstitial glass at 1000??C. Both the abundance and index of refraction of glass quenched from melt decreased nearly linearly with falling temperature. At 1070??C the quenched lava contains about 65 percent dark-brown glass with an index of 1.61; at 980??C it contains about 8 percent colorless glass with an index of 1.49. Below 980??C, the percentage of glass remained constant. Progressive crystallization forced exsolution of gases from the melt fraction; these formed vesicles and angular pores, causing expansion of the crystallizing lava and lifting the surface of the central part of the lake an average of 19.5 cm. The solidified basalt underwent pneumatolitic alteration, including deposition of cristobalite at 800??C, reddish alteration of olivine at 700??C, tarnishing of ilmenite at 550??C, deposition of anhydrite at 250??C, and deposition of native sulfur at 100??C

  18. Comprehensive study of flow and heat transfer at the surface of circular cooling fin (United States)

    Mityakov, V. Yu; Grekov, M. A.; Gusakov, A. A.; Sapozhnikov, S. Z.; Seroshtanov, V. V.; Bashkatov, A. V.; Dymkin, A. N.; Pavlov, A. V.; Milto, O. A.; Kalmykov, K. S.


    For the first time is proposed to combine heat flux measurements with thermal imaging and PIV (particle image velocimetry) for a comprehensive study of flow and heat transfer at the surface of the circular cooling fin. The investigated hollow fin is heated from within with saturated water steam; meanwhile the isothermal external surface simulates one of the perfect fin. Flow and heat transfer at the surface of the solid fin of the same size and shape, made of titanium alloy is investigated in the same regimes. Gradient Heat Flux Sensors (GHFS) were installed at different places of the fin surface. Velocity field around a cylinder, temperature field at the surface of the fin and heat flux for each rated time were obtained. Comprehensive method including heat flux measurement, PIV and thermal imaging allow to study flow and heat transfer at the surface of the fin in real time regime. The possibility to study flow and heat transfer for non-isothermal fins is shown; it is allow to improve traditional calculation of the cooling fins.

  19. Finite element analysis of transient viscous flow with free surface using filling pattern technique

    International Nuclear Information System (INIS)

    Kim, Ki Don; Yang, Dong Yol; Jeong, Jun Ho


    The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result

  20. Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai'i (United States)

    Kauahikaua, J.; Cashman, K.V.; Mattox, T.N.; Christina, Heliker C.; Hon, K.A.; Mangan, M.T.; Thornber, C.R.


    From 1986 to 1997, the Pu'u 'O'o-Kupaianaha eruption of Kilauea produced a vast pahoehoe flow field fed by lava tubes that extended 10-12 km from vents on the volcano's east rift zone to the ocean. Within a kilometer of the vent, tubes were as much as 20 m high and 10-25 m wide. On steep slopes (4-10??) a little farther away from the vent, some tubes formed by roofing over of lava channels. Lava streams were typically 1-2 m deep flowing within a tube that here was typically 5 m high and 3 m wide. On the coastal plain (core. The tubes start out with nearly elliptical cross-sectional shapes, many times wider than high. Broad, flat sheet flows evolve into elongate tumuli with an axial crack as the flanks of the original flow were progressively buried by breakouts. Temperature measurements and the presence of stalactites in active tubes confirmed that the tube walls were above the solidus and subject to melting. Sometimes, the tubes began downcutting. Progressive downcutting was frequently observed through skylights; a rate of 10 cm/d was measured at one skylight for nearly 2 months.

  1. Volcano-tectonic control of Merapi's lava dome splitting observed from high resolution TerraSAR-X data

    KAUST Repository

    Luehr, Birger-G.


    Volcanism at active andesite-dacite volcanoes is often associated with the formation and collapse of circular shaped protrusions of extruded, highly viscous lava, the so-called domes, which are emplaced in the near summit region. Growing domes may experience stable and instable structural phases, with a gradual transition in between. Dome collapse and the break-off of instable blocks of viscous lava may lead to pyroclastic flows, one of the most lethal hazards at stratovolcanoes. At Merapi volcano, Indonesia, nearly 50 % of all eruptions are accompanied by these phenomena. After the climactic eruption in 2010 which left an amphitheater in the summit region, a new dome started growing. Three years later, the dome reached a height of approximately 100 m and diameters of 220 and 190 m with a plateau-like surface area of 40,000m2 approximately. On 18/11/2013, an explosion occurred without identified precursors, leaving a major fracture cutting the complete dome structure. Based on high resolution TerraSAR-X satellite radar imagery, we could identify this linear fracture, traceable over ~200m in the long axis, and up to 40m width. After geocoding of the radar amplitude imagery, the fractures azimuthal trend could be compared to other structural lineaments, indicative of a significant NNW-SSE structural direction that has formed on Merapi volcano in the past. This alignment is also visible in a seismic velocity tomographic imagery for the upper crust, down to 15 km depth. The Merapi dome fractured in a NW-SE direction, and is consistent with the alignment of regional tectonic structures and of anticipated directions of pyroclastic flows. The fracture may be part of a larger volcano-tectonic system and may affect the dynamics and the stability of the Merapi dome.

  2. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)


    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.

  3. Surface coatings on carbon steel for prevention of flow accelerated corrosion under two phase flow conditions

    International Nuclear Information System (INIS)

    Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng; Kim, Seung Hyun; Kim, Ji Hyun


    Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B

  4. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i (United States)

    Edmonds, M.; Gerlach, T.M.


    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  5. Solutal Marangoni flows of miscible liquids drive transport without surface contamination (United States)

    Kim, Hyoungsoo; Muller, Koen; Shardt, Orest; Afkhami, Shahriar; Stone, Howard A.


    Mixing and spreading of different liquids are omnipresent in nature, life and technology, such as oil pollution on the sea, estuaries, food processing, cosmetic and beverage industries, lab-on-a-chip devices, and polymer processing. However, the mixing and spreading mechanisms for miscible liquids remain poorly characterized. Here, we show that a fully soluble liquid drop deposited on a liquid surface remains as a static lens without immediately spreading and mixing, and simultaneously a Marangoni-driven convective flow is generated, which are counterintuitive results when two liquids have different surface tensions. To understand the dynamics, we develop a theoretical model to predict the finite spreading time and length scales, the Marangoni-driven convection flow speed, and the finite timescale to establish the quasi-steady state for the Marangoni flow. The fundamental understanding of this solutal Marangoni flow may enable driving bulk flows and constructing an effective drug delivery and surface cleaning approach without causing surface contamination by immiscible chemical species.

  6. Effects of flow on corrosion and surface film formation on an alkali borosilicate glass

    International Nuclear Information System (INIS)

    Clark, D.E.; Christensen, H.; Hermansson, H.P.; Sundvall, S.B.; Werme, L.


    Samples of the Swedish KBS glass type ABS 39 have been leached in doubly distilled water for 28 days at 90 0 C under static and flow conditions. After leaching, pH, weight loss, and elemental mass loss were determined. Surface film formation was studied by using IRRS, SEM-EDS, and SIMS analyses. Increasing the flow rate resulted in a decreased attack on the glass surface. Na and B were depleted while Al, Fe, La, and U were enriched at the surfaces of all the samples. The depth of the extensively leached layer determined by SIMS was approximately 6 μm on the low-flow-rate sample and about 2 μm on the high-flow-rate sample. SEM analysis also showed some variations in the thickness of the leached layers, but in general, the thickness of the layer on the 0.5 mL/h samples was about 3 times greater than on the 90 mL/g samples. Small particles ( 2 for the static and 0.5 mL/h samples and 6 g/m 2 for the 90 mL/h samples. This factor of 3 difference in weight loss between the low and high flow rates correlates well with the factor of 3 difference in their leached depths. A model is proposed to explain the results based on the effectiveness of protective surface layers

  7. Gold nanorods for surface Plasmon resonance detection of mercury (II) in flow injection analysis. (United States)

    Trieu, Khang; Heider, Emily C; Brooks, Scott C; Barbosa, Fernando; Campiglia, Andres D


    This article investigates the flow injection analysis of mercury (II) ions in tap water samples via surface Plasmon resonance detection. Quantitative analysis of mercury (II) is based on the chemical interaction of metallic mercury with gold nanorods immobilized on a glass substrate. A new flow cell design is presented with the ability to accommodate the detecting substrate in the sample compartment of commercial spectrometers. Two alternatives are here considered for mercury (II) detection, namely stop-flow and continuous flow injection analysis modes. The best limit of detection (2.4 ng mL(-1)) was obtained with the continuous flow injection analysis approach. The accurate determination of mercury (II) ions in samples of unknown composition is demonstrated with a fortified tap water sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

    Directory of Open Access Journals (Sweden)

    Ishak Anuar


    Full Text Available Abstract The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.

  9. Numerical simulation of viscous flow and hydrodynamic noise in surface ship

    Directory of Open Access Journals (Sweden)

    YU Han


    Full Text Available [Objectives] The problem of noise caused by an unsteady flow field around a surface ship is a difficulty facing the stealth design of ship hulls, in which the existence of the free surface makes it different from submarine hydrodynamic noise calculation. To solve this problem,[Methods] the Volume of Fluid(VOF method and SST k-ω turbulence model are combined to simulate the unsteady flow field of the hull, and the free surface is given an air acoustic impedance to simulate the absorption boundary. The pulsating pressure of the hull surface is used as the source of the noise, and the underwater radiation noise of the surface ship is calculated with the acoustic finite element method.[Results] The results show high agreement with the experimental results and previous simulation results. The noise sources are mainly concentrated at the bow of the hull.[Conclusions] The results show that this calculation method can accurately simulate the flow field and sound field of a surface ship, and it can provides valuable reference for the acoustic stealth design of surface ships.

  10. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation (United States)

    Cao, Bing-Yang; Chen, Min; Guo, Zeng-Yuan


    Molecular dynamics simulations have been carried out to investigate the fluid wetting and flow in nanochannels whose surfaces are structured by an array of nanoscale triangular modules. We find that the surface nanostructures have a dual effect on the boundary slip and friction of the liquid nanoflow. On the one hand, the nanostructures can enhance the surface hydrophilicity for a hydrophilic liquid-solid interaction, and can increase the hydrophobicity for a hydrophobic interaction due to a nanoscale lotus effect. In particular, the nanostructured surface may show superhydrophobicity and lead to the large velocity slip of the liquid flow. On the other hand, simultaneously, the nanostructures distort the nanoscale streamlines of the liquid flow near the channel surfaces and block the nanoflow directly, which decreases the apparent slip length equivalently. The dual effect of the nanostructures on the surface wettability and the hydrodynamic disturbance results in a nonmonotonic dependence of the slip length on the nanostructure size. The simulations imply that the surface nanostructures can be applied to control the friction of liquid micro- and nanoflows.

  11. Nanoscale surface modifications to control capillary flow characteristics in PMMA microfluidic devices

    Directory of Open Access Journals (Sweden)

    Mukhopadhyay Subhadeep


    Full Text Available Abstract Polymethylmethacrylate (PMMA microfluidic devices have been fabricated using a hot embossing technique to incorporate micro-pillar features on the bottom wall of the device which when combined with either a plasma treatment or the coating of a diamond-like carbon (DLC film presents a range of surface modification profiles. Experimental results presented in detail the surface modifications in the form of distinct changes in the static water contact angle across a range from 44.3 to 81.2 when compared to pristine PMMA surfaces. Additionally, capillary flow of water (dyed to aid visualization through the microfluidic devices was recorded and analyzed to provide comparison data between filling time of a microfluidic chamber and surface modification characteristics, including the effects of surface energy and surface roughness on the microfluidic flow. We have experimentally demonstrated that fluid flow and thus filling time for the microfluidic device was significantly faster for the device with surface modifications that resulted in a lower static contact angle, and also that the incorporation of micro-pillars into a fluidic device increases the filling time when compared to comparative devices.

  12. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species. (United States)

    Shinderman, Matt


    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  13. Surface profiling of normally responding and nonreleasing basophils by flow cytometry

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Lars Kærgaard; Jensen, Bettina Margrethe

    a maximum release blood mononuclear cells were purified by density centrifugation and using flow cytometry, basophils, defined as FceRIa+CD3-CD14-CD19-CD56-,were analysed for surface expression of relevant markers. All samples were compensated and analysed in logicle display. All gates......c, C3aR, C5aR CCR3, FPR1, ST2, CRTH2 on anti-IgE respondsive and nonreleasing basophils by flow cytometry, thereby generating a surface profile of the two phenotypes. Methods Fresh buffy coat blood (

  14. A new facility for studying plasma interacting with flowing liquid lithium surface

    International Nuclear Information System (INIS)

    Cao, X.; Ou, W.; Tian, S.; Wang, C.; Zhu, Z.; Wang, J.; Gou, F.; Yang, D.; Chen, S.


    A new facility to study plasmas interacting with flowing liquid lithium surface was designed and is constructing in Sichuan University. The integrated setup includes the liquid lithium circulating part and linear high density plasma generator. The circulating part is consisted of main loop, on-line monitor system, lithium purification system and temperature programmed desorption system. In our group a linear high density plasma generator was built in 2012. Three coils were mounted along the vessel to produce an axial magnetic field inside. The magnetic field strength is up to 0.45 T and work continuously. Experiments on plasmas interacting with free flowing liquid lithium surface will be performed

  15. Shear induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Baker, S.M.; Smith, G.S.; Hayter, J.B.; Magid, L.J.; Pynn, R.


    We present the first clear evidence of a shear induced hexagonal phase in a polyionic fluid in flow past a plane quartz surface. The dilute surfactant solution studied is viscoelastic due to the formation and entanglement of highly extended charged threadlike micelles many thousands of A long, which are known to align along the flow direction under shear. Small-angle neutron diffraction data show that in the high shear region within a few tens of microns of the surface these micelles not only align, but form a remarkably well ordered hexagonal array separated by 370 A, 8 times their 46 A diameter

  16. Comparing two surface flow wetlands for removal of nutrients in agricultural drainage water

    DEFF Research Database (Denmark)

    Hoffmann, Carl Christian; Kjærgaard, Charlotte; Levesen, Bo

    In Denmark there is a growing interest for using constructed wetlands as a mean for removal of nutrients from agricultural run-off, such as drainage ditches and tile drainage systems. We have studied two surface flow constructed wetlands from district Vejle, Jutland, Denmark. The Vicarage Wetland.......020 mg P and unfiltered TP decreases with 75 % to 0.040 mg P l-1. The results from this study seem to indicate that constructed surface flow wetlands are able to remove nitrogen and retain phosphorus from agricultural drainage run-off although the nutrient concentrations are much lower as compared...

  17. Developing a chronostratigraphic tool for climatic archives: absolute dating (K/Ar and 40Ar/39Ar) and paleo-magnetism applied to lavas

    International Nuclear Information System (INIS)

    Sasco, Romain


    The understanding of climatic mechanisms and rapid climate changes requires a high-resolution, robust, and precise timescale which allows long-distance and multi-archives correlations.An appropriate tool to construct such a timescale is provided by the Earth magnetic field (EMF). The EMF is independent from climatic variations and its past evolution, global at the surface of the Earth, is recorded by most of the geological/climatic archives. Sedimentary sequences provide continuous records of relative intensities of the EMF on timescales usually based on ice core age models or orbital tuning. Lavas, though discontinuously emitted through time, record the absolute intensity of the EMF during their cooling at the surface of the Earth. Lavas are dated using 2 complementary methods: 40 Ar/ 39 Ar and K-Ar, both independent from climatic parameters. Lavas have therefore the potential to deliver tie-points (age - paleo-intensity couples) enabling the time calibration of sedimentary sequences and their transfer onto absolute intensity scale and chronological time scale. This timescale can then be transferred to other climatic archives. The present study focusses on the last 200 ka with lavas sampled from young volcanoes of Ardeche (South Massif Central, France) and recent phases of volcanism in the Canary Islands. Lava flows from Ardeche provided un-exploitable paleo-intensity results and ages with large uncertainties. Therefore, they failed to provide suitable tie-points. However, our geochronological results evidence how crucial the combination of both the K-Ar and 40 Ar/ 39 Ar methods is to test the accuracy and geological meaning of the ages. Ardeche lavas have abundant mantellic and crustal xenoliths, potential carriers of excess 40 Ar*. Our study suggests that the argon excess is located in sites that decrepitate at low temperature (≤600 C). Because 40 Ar/ 39 Ar ages are not affected by excess 40 Ar*, they provide reliable results. The new age dataset indicates

  18. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales (United States)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.


    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  19. Diversity of Ammonia Oxidation (amoA) and Nitrogen Fixation (nifH) Genes in Lava Caves of Terceira, Azores, Portugal. (United States)

    Hathaway, Jennifer J Marshall; Sinsabaugh, Robert L; Dapkevicius, Maria De Lurdes N E; Northup, Diana E

    Lava caves are an understudied ecosystem in the subterranean world, particularly in regard to nitrogen cycling. The diversity of ammonia oxidation ( amoA ) and nitrogen fixation ( nifH ) genes in bacterial mats collected from lava cave walls on the island of Terceira (Azores, Portugal) was investigated using denaturing gradient gel electrophoresis (DGGE). A total of 55 samples were collected from 11 lava caves that were selected with regard to surface land use. Land use types above the lava caves were categorized into pasture, forested, and sea/urban, and used to determine if land use influenced the ammonia oxidizing and nitrogen fixing bacterial communities within the lava caves. The soil and water samples from each lava cave were analyzed for total organic carbon, inorganic carbon, total nitrogen, ammonium, nitrate, phosphate and sulfate, to determine if land use influences either the nutrient content entering the lava cave or the nitrogen cycling bacteria present within the cave. Nitrosospira -like sequences dominated the ammonia-oxidizing bacteria (AOB) community, and the majority of the diversity was found in lava caves under forested land. The nitrogen fixation community was dominated by Klebsiella pneumoniae -like sequences, and diversity was evenly distributed between pasture and forested land, but very little overlap in diversity was observed. The results suggest that land use is impacting both the AOB and the nitrogen fixing bacterial communities.

  20. Theory for source-responsive and free-surface film modeling of unsaturated flow (United States)

    Nimmo, J.R.


    A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.

  1. Long-term lava extrusion after the 2011 Shinmoe-dake eruption detected by DInSAR observations (United States)

    Miyagi, Yousuke; Ozawa, Taku; Kozono, Tomofumi; Shimada, Masanobu


    In January 2011, the latest eruption began at Shinmoe-dake volcano, Japan, and lava accumulated in the crater. Differential interferometric synthetic aperture radar (DInSAR) observations after the end of main eruption indicated continuous uplift on the lava surface. We estimated the volume increase of lava, and the volume change rate has decreased exponentially. Results from long-term DInSAR processing indicate slow subsidence outside the crater. We interpret that this subsidence is caused by deflation of a shallow source located beneath the crater, which is a reaction to the extrusion of lava. Between Novem