WorldWideScience

Sample records for surface laser scanning

  1. Facial recognition and laser surface scan: a pilot study

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Clausen, Maja-Lisa; Kristoffersen, Agnethe May

    2009-01-01

    Surface scanning of the face of a suspect is presented as a way to better match the facial features with those of a perpetrator from CCTV footage. We performed a simple pilot study where we obtained facial surface scans of volunteers and then in blind trials tried to match these scans with 2D...... photographs of the faces of the volunteers. Fifteen male volunteers were surface scanned using a Polhemus FastSCAN Cobra Handheld Laser Scanner. Three photographs were taken of each volunteer's face in full frontal, profile and from above at an angle of 45 degrees and also 45 degrees laterally. Via special...

  2. Surface modification of ceramic and metallic alloy substrates by laser raster-scanning

    Science.gov (United States)

    Ramos Grez, Jorge Andres

    This work describes the feasibility of continuous wave laser-raster scan-processing under controlled atmospheric conditions as employed in three distinct surface modification processes: (a) surface roughness reduction of indirect-Selective Laser Sintered 420 martensitic stainless steel-40 wt. % bronze infiltrated surfaces; (b) Si-Cr-Hf-C coating consolidation over 3D carbon-carbon composites cylinders; (c) dendritic solidification structures of Mar-M 247 confined powder precursor grown from polycrystalline Alloy 718 substrates. A heat transfer model was developed to illustrate that the aspect ratio of the laser scanned pattern and the density of scanning lines play a significant role in determining peak surface temperature, heating and cooling rates and melt resident times. Comprehensive characterization of the surface of the processed specimens was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), optical metallography, X-ray diffraction (XRD), and, in certain cases, tactile profilometry. In Process (a), it was observed that a 24% to 37% roughness Ra reduction could be accomplished from the as-received value of 2.50+/-0.10 microns for laser energy densities ranging from 350 to 500 J/cm2. In Process (b), complete reactive wetting of carbon-carbon composite cylinders surface was achieved by laser melting a Si-Cr-Hf-C slurry. Coatings showed good thermal stability at 1000°C in argon, and, when tested in air, a percent weight reduction rate of -6.5 wt.%/hr was achieved. A soda-glass overcoat applied over the coated specimens by conventional means revealed a percent weight reduction rate between -1.4 to -2.2 wt.%/hr. Finally, in Process (c), microstructure of the Mar-M 247 single layer deposits, 1 mm in height, grown on Alloy 718 polycrystalline sheets, resulted in a sound metallurgical bond, low porosity, and uniform thickness. Polycrystalline dendrites grew preferentially along the [001] direction from the substrate up to 400

  3. [Application Progress of Three-dimensional Laser Scanning Technology in Medical Surface Mapping].

    Science.gov (United States)

    Zhang, Yonghong; Hou, He; Han, Yuchuan; Wang, Ning; Zhang, Ying; Zhu, Xianfeng; Wang, Mingshi

    2016-04-01

    The booming three-dimensional laser scanning technology can efficiently and effectively get spatial three-dimensional coordinates of the detected object surface and reconstruct the image at high speed,high precision and large capacity of information.Non-radiation,non-contact and the ability of visualization make it increasingly popular in three-dimensional surface medical mapping.This paper reviews the applications and developments of three-dimensional laser scanning technology in medical field,especially in stomatology,plastic surgery and orthopedics.Furthermore,the paper also discusses the application prospects in the future as well as the biomedical engineering problems it would encounter with.

  4. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  5. A novel near real-time laser scanning device for geometrical determination of pleural cavity surface.

    Science.gov (United States)

    Kim, Michele M; Zhu, Timothy C

    2013-02-02

    During HPPH-mediated pleural photodynamic therapy (PDT), it is critical to determine the anatomic geometry of the pleural surface quickly as there may be movement during treatment resulting in changes with the cavity. We have developed a laser scanning device for this purpose, which has the potential to obtain the surface geometry in real-time. A red diode laser with a holographic template to create a pattern and a camera with auto-focusing abilities are used to scan the cavity. In conjunction with a calibration with a known surface, we can use methods of triangulation to reconstruct the surface. Using a chest phantom, we are able to obtain a 360 degree scan of the interior in under 1 minute. The chest phantom scan was compared to an existing CT scan to determine its accuracy. The laser-camera separation can be determined through the calibration with 2mm accuracy. The device is best suited for environments that are on the scale of a chest cavity (between 10cm and 40cm). This technique has the potential to produce cavity geometry in real-time during treatment. This would enable PDT treatment dosage to be determined with greater accuracy. Works are ongoing to build a miniaturized device that moves the light source and camera via a fiber-optics bundle commonly used for endoscopy with increased accuracy.

  6. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    International Nuclear Information System (INIS)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A.; Shivanna, Kiran H.; Magnotta, Vincent A.; Grosland, Nicole M.

    2008-01-01

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  7. Validation of phalanx bone three-dimensional surface segmentation from computed tomography images using laser scanning

    Energy Technology Data Exchange (ETDEWEB)

    DeVries, Nicole A.; Gassman, Esther E.; Kallemeyn, Nicole A. [The University of Iowa, Department of Biomedical Engineering, Center for Computer Aided Design, Iowa City, IA (United States); Shivanna, Kiran H. [The University of Iowa, Center for Computer Aided Design, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Department of Radiology, Center for Computer Aided Design, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Department of Orthopaedics and Rehabilitation, Center for Computer Aided Design, Iowa City, IA (United States)

    2008-01-15

    To examine the validity of manually defined bony regions of interest from computed tomography (CT) scans. Segmentation measurements were performed on the coronal reformatted CT images of the three phalanx bones of the index finger from five cadaveric specimens. Two smoothing algorithms (image-based and Laplacian surface-based) were evaluated to determine their ability to represent accurately the anatomic surface. The resulting surfaces were compared with laser surface scans of the corresponding cadaveric specimen. The average relative overlap between two tracers was 0.91 for all bones. The overall mean difference between the manual unsmoothed surface and the laser surface scan was 0.20 mm. Both image-based and Laplacian surface-based smoothing were compared; the overall mean difference for image-based smoothing was 0.21 mm and 0.20 mm for Laplacian smoothing. This study showed that manual segmentation of high-contrast, coronal, reformatted, CT datasets can accurately represent the true surface geometry of bones. Additionally, smoothing techniques did not significantly alter the surface representations. This validation technique should be extended to other bones, image segmentation and spatial filtering techniques. (orig.)

  8. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  9. Surface characterization of weathered wood using a laser scanning system

    International Nuclear Information System (INIS)

    Arnold, M.; Lemaster, R.L.; Dost, W.A.

    1992-01-01

    Most of the existing methods to assess the effect of weathering on wood surfaces have some drawbacks that limit their use to specific tasks. The amount of surface erosion is often used as a measure for the weathering action. The application of a laser scanning system to reproduce surface profiles and to measure weathering erosion was tested on various samples and was found to be a very useful and superior alternative to existing methods. Further improvements of the system used can be made by refinements of the calibration procedures and by more comprehensive profile analyses. (author)

  10. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    International Nuclear Information System (INIS)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat; Sriwilas, Patiyut; Midtboe, Marit

    2017-01-01

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm"2) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth

  11. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  12. Investigating and understanding the effects of multiple femtosecond laser scans on the surface topography of stainless steel 304 and titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Edwin Jee Yang, E-mail: edwin.ling@mail.mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada); Saïd, Julien, E-mail: julien.said@ecl2015.ec-lyon.fr [Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada); Brodusch, Nicolas, E-mail: nicolas.brodusch@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada); Gauvin, Raynald, E-mail: raynald.gauvin@mcgill.ca [Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada); Servio, Phillip, E-mail: phillip.servio@mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada); Kietzig, Anne-Marie, E-mail: anne.kietzig@mcgill.ca [Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 0C5 (Canada)

    2015-10-30

    Highlights: • Effect of multiple femtosecond laser scans on stainless steel. • Ellipsoidal cones, columnar and chaotic structures observed on irradiated surface. • Chemical, crystallographic, and topographical analyses of ellipsoidal cones. • Developed mechanism for formation and growth of ellipsoidal cones. - Abstract: The majority of studies performed on the formation of surface features by femtosecond laser radiation focuses on single scan procedures, i.e. manipulating the laser beam once over the target area to fabricate different surface topographies. In this work, the effect of scanning stainless steel 304 multiple times with femtosecond laser pulses is thoroughly investigated over a wide range of fluences. The resultant laser-induced surface topographies can be categorized into two different regimes. In the low fluence regime (F{sub Σline,max} < 130 J/cm{sup 2}), ellipsoidal cones (randomly distributed surface protrusions covered by several layers of nanoparticles) are formed. Based on chemical, crystallographic, and topographical analyses, we conclude that these ellipsoidal cones are composed of unablated steel whose conical geometry offers a significant degree of fluence reduction (35–52%). Therefore, the rest of the irradiated area is preferentially ablated at a higher rate than the ellipsoidal cones. The second, or high fluence regime (F{sub Σline,max} > 130 J/cm{sup 2}) consists of laser-induced surface patterns such as columnar and chaotic structures. Here, the surface topography showed little to no change even when the target was scanned repeatedly. This is in contrast to the ellipsoidal cones, which evolve and grow continuously as more laser passes are applied.

  13. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    International Nuclear Information System (INIS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-01-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  14. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    Science.gov (United States)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  15. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  16. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  17. HOVE-Wedge-Filtering of Geomorphologic Terrestrial Laser Scan Data

    Directory of Open Access Journals (Sweden)

    Helmut Panholzer

    2018-02-01

    Full Text Available Terrestrial laser scanning has become an important surveying technique in many fields such as natural hazard assessment. To analyse earth surface processes, it is useful to generate a digital terrain model originated from laser scan point cloud data. To determine the terrain surface as precisely as possible, it is often necessary to filter out points that do not represent the terrain surface. Examples are vegetation, vehicles, and animals. In mountainous terrain with a small-structured topography, filtering is very difficult. Here, automatic filtering solutions usually designed for airborne laser scan data often lead to unsatisfactory results. In this work, we further develop an existing approach for automated filtering of terrestrial laser scan data, which is based on the assumption that no other surface point can be located in the area above a direct line of sight between scanner and another measured point. By taking into account several environmental variables and a repetitive calculation method, the modified method leads to significantly better results. The root-mean-square-error (RSME for the same test measurement area could be reduced from 5.284 to 1.610. In addition, a new approach for filtering and interpolation of terrestrial laser scanning data is presented using a grid with horizontal and vertical angular data and the measurement length.

  18. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    Science.gov (United States)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  19. A walk by the river: three-dimensional reconstruction of surface sedimentology and topography using wearable laser scanning

    Science.gov (United States)

    Williams, R.; Lamy, M. L.; Stott, E.; Maniatis, G.

    2017-12-01

    In the last two decades, quantification of fluvial topography has been transformed by a number of geomatics technologies that have enabled the acquisition of data with unprecedented spatial resolution. Hyperscale surveys with spatial extents of <1 km2 have been widely demonstrated, by means of Terrestrial Laser Scanning (TLS) and Structure-from-Motion (SfM) photogrammetry. Recent advances in the development and integration of GNSS, IMU, lightweight laser scanning and SLAM technologies are now resulting in the emergence of wearable, mobile laser scanning systems that have the potential to increase data acquisition and processing rates by 1-2 orders of magnitude compared to TLS/SfM, and thus challenge the recent dominance of these two geomatics technologies. In this study we describe the methods and results of a comparison between a wearable laser scanning survey, using a Leica Pegasus Backpack, and a multi-station static TLS survey, using a Riegl VZ-1000 scanner. The evaluation is undertaken on a 600 m long reach of the braided River Feshie, Scotland, using data acquired in June 2017. Comparison between the DEMs produced from static and mobile laser scanning, across non-vegetated areas, revealed a Mean Error (ME) of -0.002 m and a Standard Deviation Error (SDE) of 0.109 m. Comparison to 100 independent check point resulted in a similar ME and SDE for static (ME = 0.061m; SDE = 0.030 m) and mobile (ME = 0.044 m; SDE = 0.029 m) laser scanning. Empirical relationships between sub-metre topographic variability and median sediment grain size (10-100 mm), across 14 grid-by-number samples, were similar and demonstrate that surface roughness from wearable laser scanning can be used to derive reach-scale maps of median grain size. These results demonstrate that wearable laser scanning generates hyperscale topographic models that are comparable in quality to more time-consuming multi-station TLS setups. Wearable laser scanning is likely to be commonly adopted for fluvial

  20. Real time detection of antibody-antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system

    International Nuclear Information System (INIS)

    Zhang Hong-Yan; Yang Li-Quan; Ning Ting-Yin; Liu Wei-Min; Sun Jia-Yu; Wang Peng-Fei; Meng Lan; Nie Jia-Cai

    2012-01-01

    A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science. (general)

  1. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  2. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  3. Laser machining micro-structures on diamond surface with a sub-nanosecond pulsed laser

    Science.gov (United States)

    Wu, Mingtao; Guo, Bing; Zhao, Qingliang

    2018-02-01

    Micro-structure surface on diamond material is widely used in a series of industrial and scientific applications, such as micro-electromechanical systems (MEMS), nanoelectromechanical systems (NEMS), microelectronics, textured or micro-structured diamond machining tools. The efficient machining of micro-structure on diamond surface is urgently demanded in engineering. In this paper, laser machining square micro-structure on diamond surface was studied with a sub-nanosecond pulsed laser. The influences of laser machining parameters, including the laser power, scanning speed, defocusing quantity and scanning pitch, were researched in view of the ablation depth, material removal rate and machined surface topography. Both the ablation depth and material removal rate increased with average laser power. A reduction of the growth rate of the two parameters was induced by the absorption of the laser plasma plume at high laser power. The ablation depth non-linearly decreased with the increasing of the scanning speed while the material removal rate showed an opposite tendency. The increasing of the defocusing quantity induced complex variation of the ablation depth and the material removal rate. The maximum ablation depth and material removal rate were achieved at a defocusing position. The ablation depth and material removal rate oppositely varied about the scanning pitch. A high overlap ratio was meaningful for achieving a smooth micro-structure surface topography. Laser machining with a large defocusing quantity, high laser power and small scanning pitch was helpful for acquiring the desired micro-structure which had a large depth and smooth micro-structure surface topography.

  4. EFFECTIVE DETECTION OF SUB-SURFACE ARCHEOLOGICAL FEATURES FROM LASER SCANNING POINT CLOUDS AND IMAGERY DATA

    Directory of Open Access Journals (Sweden)

    A. Fryskowska

    2017-08-01

    Full Text Available The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  5. Effective Detection of Sub-Surface Archeological Features from Laser Scanning Point Clouds and Imagery Data

    Science.gov (United States)

    Fryskowska, A.; Kedzierski, M.; Walczykowski, P.; Wierzbicki, D.; Delis, P.; Lada, A.

    2017-08-01

    The archaeological heritage is non-renewable, and any invasive research or other actions leading to the intervention of mechanical or chemical into the ground lead to the destruction of the archaeological site in whole or in part. For this reason, modern archeology is looking for alternative methods of non-destructive and non-invasive methods of new objects identification. The concept of aerial archeology is relation between the presence of the archaeological site in the particular localization, and the phenomena that in the same place can be observed on the terrain surface form airborne platform. One of the most appreciated, moreover, extremely precise, methods of such measurements is airborne laser scanning. In research airborne laser scanning point cloud with a density of 5 points/sq. m was used. Additionally unmanned aerial vehicle imagery data was acquired. Test area is located in central Europe. The preliminary verification of potentially microstructures localization was the creation of digital terrain and surface models. These models gave an information about the differences in elevation, as well as regular shapes and sizes that can be related to the former settlement/sub-surface feature. The paper presents the results of the detection of potentially sub-surface microstructure fields in the forestry area.

  6. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  7. In-situ investigation of laser surface modifications of WC-Co hard metals inside a scanning electron microscope

    Science.gov (United States)

    Mueller, H.; Wetzig, K.; Schultrich, B.; Pompe, Wolfgang; Chapliev, N. I.; Konov, Vitaly I.; Pimenov, S. M.; Prokhorov, Alexander M.

    1989-05-01

    The investigation of laser interaction with solid surfaces and of the resulting mechanism of surface modification are of technical interest to optimize technological processes, and they are also of fundamental scientific importance. Most instructive indormation is available with the ail of the in-situ techniques. For instance, measuring of the photon emission of the irradiated surface ane the plasma torch (if it is produced) simultaneously to laser action, makes it possible to gain a global characterization of the laser-solid interaction. In order to obtain additional information about surface and structure modifications in microscopic detail , a laser and scanning electron microscope were combined in to a tandem equipment (LASEM). Inside this eqiipment the microscopic observation is carried out directly at the laser irradiated area without any displacement of the sample. In this way, the stepwise development of surface modification during multipulse irradiation is visible in microscopic details and much more reliable information about the surface modification process is obtainable in comparison to an external laser irradiation. Such kind of equipments were realized simultaneously and independently in the Institut of General Physics (Moscow) and the Central Institute of Solid State Physics and Material Research (Dresden) using a CO2 and a LTd-glass-laser, respectively. In the following the advantages and possibilities of a LASEM shall be demonstrated by some selected investigations of WC-CO hardmeta. The results were obtained in collaboration by both groups with the aid of the pulsed CO2-laser. The TEA CO2 laser was transmitted through a ZnSe-window into the sample chamber of the SEM and focused ofAo tfte sample surface. It was operated in TEM - oo mode with a repetition rate of about 1 pulse per second. A peak power density of about 160 MW/cm2 was achieved in front of the sample surface.

  8. Laser melting treatment of Ni-P surface alloys on mild steel. Influence of initial coating thickness and laser scanning rate

    Directory of Open Access Journals (Sweden)

    García-Alonso, M. C.

    1997-08-01

    Full Text Available Different thickness Ni-P coatings deposited on mild steel are submitted to laser surface melting at different scanning rates. The microstructure of the alloys is characterized by optical and scanning electron microscopy and microprobe analysis. It is shown that both the initial coating thickness and the laser scanning rate have an influence on the shape, extent and size of the different structures resulting from the solidification process. Thus, when the laser scanning rate increases a progressive refinement of the structure takes place that could even totally block the dendritic growth produced during solidification for a high initial coating thickness.

    Recubrimientos de Ni-P, con distinto espesor, depositados sobre un acero microaleado fueron tratados con láser a diferentes velocidades de barrido. La microestructura, tanto del recubrimiento como del acero base, ha sido caracterizada por microscopía óptica y electrónica y por microanálisis. En el proceso de solidificación se han obtenido distintas estructuras que varían en cuanto a la forma, extensión y tamaño dependiendo del espesor inicial de recubrimiento y de la velocidad de barrido del haz láser. A medida que la velocidad del haz aumenta, se produce un refinamiento progresivo de la microestructura dendrítica y, en casos extremos de alto espesor de recubrimiento y velocidades grandes, este crecimiento dendrítico se bloquea.

  9. Surface Laser Scanning Measurements for the n_TOF spallation target

    CERN Document Server

    Vlachoudis, V; Cennini, P; Lebbos, E; Lettry, J

    2010-01-01

    The n_TOF spallation target is made of pure lead immersed into cooling water. The target was operating normally from 2001 until august 2004, when an increased transfer of radioactive products from the spallation target to the cooling circuit has been observed. The target was considered damaged by the safety commission (SC/RP), and an investigation campaign started to verify the actual status of the target. According to FLUKA and Ansys calculations the target was working in the elastoplastic regime of the lead material, therefore a deformation might be expected. The present paper describes a laser photographic method and the results of a possible such deformation. The target had a surface activity of the order of 20 mSv/h, therefore we were forced to perform the measurement from distance. The used method, is based on a linelaser and a high resolution digital camera for retrieving the 3D position of the surface of the lead target. Similar methods are used in the film industry and animation studios for scanning ...

  10. Handbook of optical and laser scanning

    CERN Document Server

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  11. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    Directory of Open Access Journals (Sweden)

    A. Nurunnabi

    2013-10-01

    Full Text Available A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y values are used to get a new fit of the (lower surface (line. The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  12. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  13. Surface wettability of silicon substrates enhanced by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Shih-Feng [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China); Hsiao, Wen-Tse; Huang, Kuo-Cheng; Hsiao, Sheng-Yi [National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu (China); Chen, Ming-Fei [National Changhua University of Education, Department of Mechatronics Engineering, Changhua (China); Lin, Yung-Sheng [Hungkuang University, Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Taichung (China); Chou, Chang-Pin [National Chiao Tung University, Department of Mechanical Engineering, Hsinchu (China)

    2010-11-15

    Laser-ablation techniques have been widely applied for removing material from a solid surface using a laser-beam irradiating apparatus. This paper presents a surface-texturing technique to create rough patterns on a silicon substrate using a pulsed Nd:YAG laser system. The different degrees of microstructure and surface roughness were adjusted by the laser fluence and laser pulse duration. A scanning electron microscope (SEM) and a 3D confocal laser-scanning microscope are used to measure the surface micrograph and roughness of the patterns, respectively. The contact angle variations between droplets on the textured surface were measured using an FTA 188 video contact angle analyzer. The results indicate that increasing the values of laser fluence and laser pulse duration pushes more molten slag piled around these patterns to create micro-sized craters and leads to an increase in the crater height and surface roughness. A typical example of a droplet on a laser-textured surface shows that the droplet spreads very quickly and almost disappears within 0.5167 s, compared to a contact angle of 47.9 on an untextured surface. This processing technique can also be applied to fabricating Si solar panels to increase the absorption efficiency of light. (orig.)

  14. Femtosecond laser-induced surface wettability modification of polystyrene surface

    Science.gov (United States)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  15. Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Clemens Nothegger

    2011-12-01

    Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.

  16. [INVITED] Laser treatment of Inconel 718 alloy and surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Aqeeli, N.; Karatas, C.

    2016-04-01

    Laser surface texturing of Inconel 718 alloy is carried out under the high pressure nitrogen assisting gas. The combination of evaporation and melting at the irradiated surface is achieved by controlling the laser scanning speed and the laser output power. Morphological and metallurgical changes in the treated surface are analyzed using the analytical tools including optical, electron scanning, and atomic force microscopes, energy dispersive spectroscopy, and X-ray diffraction. Microhardnes and friction coefficient of the laser treated surface are measured. Residual stress formed in the surface region is determined from the X-ray diffraction data. Surface hydrophobicity of the laser treated layer is assessed incorporating the sessile drop method. It is found that laser treated surface is free from large size asperities including cracks and the voids. Surface microhardness increases significantly after the laser treatment process, which is attributed to the dense layer formation at the surface under the high cooling rates, dissolution of Laves phase in the surface region, and formation of nitride species at the surface. Residual stress formed is compressive in the laser treated surface and friction coefficient reduces at the surface after the laser treatment process. The combination of evaporation and melting at the irradiated surface results in surface texture composes of micro/nano-poles and pillars, which enhance the surface hydrophobicity.

  17. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    Science.gov (United States)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  18. Surface modifications induced by pulsed-laser texturing—Influence of laser impact on the surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Costil, S., E-mail: sophie.costil@utbm.fr [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Lamraoui, A.; Langlade, C. [IRTES-LERMPS, Université de Technologie de Belfort - Montbéliard, site de Sévenans, 90010 Belfort Cedex (France); Heintz, O.; Oltra, R. [ICB, Université de Bourgogne, 21078 Dijon Cedex (France)

    2014-01-01

    Laser cleaning technology provides a safe, environmentally friendly and very cost effective way to improve cleaning and surface preparation of metallic materials. Compared with efficient cleaning processes, it can avoid the disadvantages of ductile materials prepared by conventional technologies (cracks induced by sand-blasting for example) and treat only some selected areas (due to the optical fibers). By this way, laser technology could have several advantages and expand the range of thermal spraying. Moreover, new generations of lasers (fiber laser, disc laser) allow the development of new methods. Besides a significant bulk reduction, no maintenance, low operating cost, laser fibers can introduce alternative treatments. Combining a short-pulse laser with a scanner allows new applications in terms of surface preparation. By multiplying impacts using scanning laser, it is possible to shape the substrate surface to improve the coating adhesion as well as the mechanical behaviour. In addition, during the interactions of the laser beam with metallic surfaces, several modifications can be induced and particularly thermal effects. Indeed, under ambient conditions, a limited oxidation of the clean surface can occur. This phenomenon has been investigated in detail for silicon but few works have been reported concerning metallic materials. This paper aims at studying the surface modifications induced on aluminium alloy substrates after laser texturing. After morphological observations (SEM), a deeper surface analysis will be performed using XPS (X-ray photoelectron spectroscopy) measures and microhardness testing.

  19. Accuracy and benefits of 3D bone surface modelling: a comparison of two methods of surface data acquisition reconstructed by laser scanning and computed tomography outputs

    Czech Academy of Sciences Publication Activity Database

    Brzobohatá, Hana; Prokop, J.; Horák, M.; Jančárek, A.; Velemínská, J.

    2012-01-01

    Roč. 36, č. 3 (2012), s. 801-806 ISSN 0350-6134 Grant - others:GA UK(CZ) 613012 Keywords : frontal bone * three-dimensional imaging * laser scanning * surface registration Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 0.414, year: 2012

  20. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods.

    Science.gov (United States)

    Kim, Changjae; Habib, Ayman; Pyeon, Muwook; Kwon, Goo-rak; Jung, Jaehoon; Heo, Joon

    2016-01-22

    Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1) reduces the dimensions of the attribute space; (2) considers the attribute similarity and the proximity of the laser point simultaneously; and (3) works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes' high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  1. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    DEFF Research Database (Denmark)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter

    2011-01-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 x 1 m resolution over a 300 x 300 m area. Data were separated into l...

  2. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    Science.gov (United States)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  3. Micropatterning on cylindrical surfaces via electrochemical etching using laser masking

    International Nuclear Information System (INIS)

    Cho, Chull Hee; Shin, Hong Shik; Chu, Chong Nam

    2014-01-01

    Highlights: • Various micropatterns were fabricated on the cylindrical surface of a stainless steel shaft. • Selective electrochemical dissolution was achieved via a series process of laser masking and electrochemical etching. • Laser masking characteristics on the non-planar surface were investigated. • A uniform mask layer was formed on the cylindrical surface via synchronized laser line scanning with a rotary system. • The characteristics of electrochemical etching on the non-planar surface were investigated. - Abstract: This paper proposes a method of selective electrochemical dissolution on the cylindrical surfaces of stainless steel shafts. Selective electrochemical dissolution was achieved via electrochemical etching using laser masking. A micropatterned recast layer was formed on the surface via ytterbium-doped pulsed fiber laser irradiation. The micropatterned recast layer could be used as a mask layer during the electrochemical etching process. Laser masking condition to form adequate mask layer on the planar surface for etching cannot be used directly on the non-planar surface. Laser masking condition changes depending on the morphological surface. The laser masking characteristics were investigated in order to form a uniform mask layer on the cylindrical surface. To minimize factors causing non-uniformity in the mask layer on the cylindrical surface, synchronized laser line scanning with a rotary system was applied during the laser masking process. Electrochemical etching characteristics were also investigated to achieve deeper etched depth, without collapsing the recast layer. Consequently, through a series process of laser masking and electrochemical etching, various micropatternings were successfully performed on the cylindrical surfaces

  4. Study on the high-frequency laser measurement of slot surface difference

    Science.gov (United States)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  5. 3D Laser Scanning Assisted by Ordinary Plane Mirror for Non-direct Viewing Area

    Directory of Open Access Journals (Sweden)

    ZHANG Fan

    2017-12-01

    Full Text Available Terrestrial 3D laser scanning is one of principal methods to get the geometric information of object surface,and the integrity of the scanned object is a basic requirement in data acquisition. In order to solve the missing point cloud problem due to the scanning dead angle caused by confined working space,this paper proposes a method using ordinary plane mirror to obtain laser scanning data for non-direct viewing area according to the plane mirror reflection principle,analyzes the influence mechanism of the ordinary plane mirror on the propagation path and distance of laser beam,deduces the coordinate equation of the object point corresponding to the image point reflected by ordinary plane mirror in laser scanning. Given the laser scanning characteristic,this paper introduces a mirror reflection system included target balls and ordinary plane mirror,and expounds the system construction,system calibration and constructing method of system coordinate system. The feasibility and precision of the method are verified by experiments.

  6. Structured-Light Based 3d Laser Scanning of Semi-Submerged Structures

    Science.gov (United States)

    van der Lucht, J.; Bleier, M.; Leutert, F.; Schilling, K.; Nüchter, A.

    2018-05-01

    In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  7. STRUCTURED-LIGHT BASED 3D LASER SCANNING OF SEMI-SUBMERGED STRUCTURES

    Directory of Open Access Journals (Sweden)

    J. van der Lucht

    2018-05-01

    Full Text Available In this work we look at 3D acquisition of semi-submerged structures with a triangulation based underwater laser scanning system. The motivation is that we want to simultaneously capture data above and below water to create a consistent model without any gaps. The employed structured light scanner consist of a machine vision camera and a green line laser. In order to reconstruct precise surface models of the object it is necessary to model and correct for the refraction of the laser line and camera rays at the water-air boundary. We derive a geometric model for the refraction at the air-water interface and propose a method for correcting the scans. Furthermore, we show how the water surface is directly estimated from sensor data. The approach is verified using scans captured with an industrial manipulator to achieve reproducible scanner trajectories with different incident angles. We show that the proposed method is effective for refractive correction and that it can be applied directly to the raw sensor data without requiring any external markers or targets.

  8. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    Directory of Open Access Journals (Sweden)

    Changjae Kim

    2016-01-01

    Full Text Available Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1 reduces the dimensions of the attribute space; (2 considers the attribute similarity and the proximity of the laser point simultaneously; and (3 works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.

  9. Nano-pulsed laser irradiation scanning system for phase-change materials

    International Nuclear Information System (INIS)

    Kim, Sookyung; Li Xuezhe; Lee, Sangbin; Kim, Kyung-Ho; Lee, Seung-Yop

    2008-01-01

    Recently, the demand of a laser irradiation tester is increasing for phase change random access memory (PRAM) as well as conventional optical storage media. In this study, a nano-pulsed laser irradiation system is developed to characterize the optical property and writing performance of phase-change materials, based on a commercially available digital versatile disk (DVD) optical pick-up. The precisely controlled focusing and scanning on the material's surface are implemented using the auto-focusing mechanism and a voice coil motor (VCM) of the commercial DVD pick-up. The laser irradiation system provides various writing and reading functions such as adjustable laser power, pulse duration, recording pattern (spot, line and area), and writing/reading repetition, phase transition, and in situ reflectivity measurement before/after irradiation. Measurements of power time effect (PTE) diagram and reflectivity map of Ge 2 Sb 2 Te 5 samples show that the proposed laser irradiation system provides the powerful scanning tool to quantify the optical characteristics of phase-change materials

  10. Laser scanning of experimental solar cells

    Science.gov (United States)

    Plunkett, B. C.; Lasswell, P. G.

    1980-01-01

    A description is presented of a laser scanning instrument which makes it possible to display and measure the spatial response of a solar cell. Examples are presented to illustrate the use of generated micrographs in the isolation of flaws and features of the cell. The laser scanner system uses a 4 mW, CW helium-neon laser, operating a wavelength of 0.633 micrometers. The beam is deflected by two mirror galvanometers arranged to scan in orthogonal directions. After being focused on the solar cell by the beam focusing lens, the moving light spot raster scans the specimen. The current output of the photovoltaic device under test, as a function of the scan dot position, can be displayed in several modes. The laser scanner has proved to be a very useful diagnostic tool in optimizing the process design of transparent metal film photovoltaic devices on Zn3P2, a relatively new photovoltaic material.

  11. A Two-stage Improvement Method for Robot Based 3D Surface Scanning

    Science.gov (United States)

    He, F. B.; Liang, Y. D.; Wang, R. F.; Lin, Y. S.

    2018-03-01

    As known that the surface of unknown object was difficult to measure or recognize precisely, hence the 3D laser scanning technology was introduced and used properly in surface reconstruction. Usually, the surface scanning speed was slower and the scanning quality would be better, while the speed was faster and the quality would be worse. In this case, the paper presented a new two-stage scanning method in order to pursuit the quality of surface scanning in a faster speed. The first stage was rough scanning to get general point cloud data of object’s surface, and then the second stage was specific scanning to repair missing regions which were determined by chord length discrete method. Meanwhile, a system containing a robotic manipulator and a handy scanner was also developed to implement the two-stage scanning method, and relevant paths were planned according to minimum enclosing ball and regional coverage theories.

  12. Capturing and modelling high-complex alluvial topography with UAS-borne laser scanning

    Science.gov (United States)

    Mandlburger, Gottfried; Wieser, Martin; Pfennigbauer, Martin

    2015-04-01

    Due to fluvial activity alluvial forests are zones of highest complexity and relief energy. Alluvial forests are dominated by new and pristine channels in consequence of current and historic flood events. Apart from topographic features, the vegetation structure is typically very complex featuring, both, dense under story as well as high trees. Furthermore, deadwood and debris carried from upstream during periods of high discharge within the river channel are deposited in these areas. Therefore, precise modelling of the micro relief of alluvial forests using standard tools like Airborne Laser Scanning (ALS) is hardly feasible. Terrestrial Laser Scanning (TLS), in turn, is very time consuming for capturing larger areas as many scan positions are necessary for obtaining complete coverage due to view occlusions in the forest. In the recent past, the technological development of Unmanned Arial Systems (UAS) has reached a level that light-weight survey-grade laser scanners can be operated from these platforms. For capturing alluvial topography this could bridge the gap between ALS and TLS in terms of providing a very detailed description of the topography and the vegetation structure due to the achievable very high point density of >100 points per m2. In our contribution we demonstrate the feasibility to apply UAS-borne laser scanning for capturing and modelling the complex topography of the study area Neubacher Au, an alluvial forest at the pre-alpine River Pielach (Lower Austria). The area was captured with Riegl's VUX-1 compact time-of-flight laser scanner mounted on a RiCopter (X-8 array octocopter). The scanner features an effective scan rate of 500 kHz and was flown in 50-100 m above ground. At this flying height the laser footprint is 25-50 mm allowing mapping of very small surface details. Furthermore, online waveform processing of the backscattered laser energy enables the retrieval of multiple targets for single laser shots resulting in a dense point cloud of

  13. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  14. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  15. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    Science.gov (United States)

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ˜1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  16. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  17. Registration area and accuracy when integrating laser-scanned and maxillofacial cone-beam computed tomography images.

    Science.gov (United States)

    Sun, LiJun; Hwang, Hyeon-Shik; Lee, Kyung-Min

    2018-03-01

    The purpose of this study was to examine changes in registration accuracy after including occlusal surface and incisal edge areas in addition to the buccal surface when integrating laser-scanned and maxillofacial cone-beam computed tomography (CBCT) dental images. CBCT scans and maxillary dental casts were obtained from 30 patients. Three methods were used to integrate the images: R1, only the buccal and labial surfaces were used; R2, the incisal edges of the anterior teeth and the buccal and distal marginal ridges of the second molars were used; and R3, labial surfaces, including incisal edges of anterior teeth, and buccal surfaces, including buccal and distal marginal ridges of the second molars, were used. Differences between the 2 images were evaluated by color-mapping methods and average surface distances by measuring the 3-dimensional Euclidean distances between the surface points on the 2 images. The R1 method showed more discrepancies between the laser-scanned and CBCT images than did the other methods. The R2 method did not show a significant difference in registration accuracy compared with the R3 method. The results of this study indicate that accuracy when integrating laser-scanned dental images into maxillofacial CBCT images can be increased by including occlusal surface and incisal edge areas as registration areas. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Characterization of a Laser Surface-Treated Martensitic Stainless Steel.

    Science.gov (United States)

    Al-Sayed, S R; Hussein, A A; Nofal, A A; Hassab Elnaby, S I; Elgazzar, H

    2017-05-29

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min-1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  19. A study of laser surface treatment in bonded repair of composite aircraft structures.

    Science.gov (United States)

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  20. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    OpenAIRE

    S.R. Al-Sayed; A.A. Hussein; A.A. Nofal; S.I. Hassab Elnaby; H. Elgazzar

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m?min?1) was adopted to reach the op...

  1. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  2. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser

    Science.gov (United States)

    Song, Yuxin; Wang, Cong; Dong, Xinran; Yin, Kai; Zhang, Fan; Xie, Zheng; Chu, Dongkai; Duan, Ji'an

    2018-06-01

    In this study, a facile and detailed strategy to fabricate superhydrophobic aluminum surfaces with controllable adhesion by femtosecond laser ablation is presented. The influences of key femtosecond laser processing parameters including the scanning speed, laser power and interval on the wetting properties of the laser-ablated surfaces are investigated. It is demonstrated that the adhesion between water and superhydrophobic surface can be effectively tuned from extremely low adhesion to high adhesion by adjusting laser processing parameters. At the same time, the mechanism is discussed for the changes of the wetting behaviors of the laser-ablated surfaces. These superhydrophobic surfaces with tunable adhesion have many potential applications, such as self-cleaning surface, oil-water separation, anti-icing surface and liquid transportation.

  3. On the surface topography of ultrashort laser pulse treated steel surfaces

    International Nuclear Information System (INIS)

    Vincenc Obona, J.; Ocelík, V.; Skolski, J.Z.P.; Mitko, V.S.; Römer, G.R.B.E.; Huis in’t Veld, A.J.; De Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the fluence applied. It is shown that these features appear due to solid-liquid and liquid-gas transitions within surface layer irradiated by intense laser light. The observations are confronted to the theory of short-pulsed laser light-matter interactions, including interference, excitation of electrons, electron-phonon coupling as well as subsequent ablation. It is shown that the orientation of small ripples does not always depend on the direction of the polarization of laser light.

  4. Multicolor Scanning Laser Imaging in Diabetic Retinopathy.

    Science.gov (United States)

    Ahmad, Mohammad S Z; Carrim, Zia Iqbal

    2017-11-01

    Diabetic retinopathy is a common cause of blindness in individuals younger than 60 years. Screening for retinopathy is undertaken using conventional color fundus photography and relies on the identification of hemorrhages, vascular abnormalities, exudates, and cotton-wool spots. These can sometimes be difficult to identify. Multicolor scanning laser imaging, a new imaging modality, may have a role in improving screening outcomes, as well as facilitating treatment decisions. Observational case series comprising two patients with known diabetes who were referred for further examination after color fundus photography revealed abnormal findings. Multicolor scanning laser imaging was undertaken. Features of retinal disease from each modality were compared. Multicolor scanning laser imaging provides superior visualization of retinal anatomy and pathology, thereby facilitating risk stratification and treatment decisions. Multicolor scanning laser imaging is a novel imaging technique offering the potential for improving the reliability of screening for diabetic retinopathy. Validation studies are warranted.

  5. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  6. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  7. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    S.R. Al-Sayed

    2017-05-01

    Full Text Available Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m•min−1 was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique.

  8. Laser scanning endoscope via an imaging fiber bundle for fluorescence imaging

    Science.gov (United States)

    Yeboah, Lorenz D.; Nestler, Dirk; Steiner, Rudolf W.

    1994-12-01

    Based on a laser scanning endoscope via an imaging fiber bundle, a new approach for a tumor diagnostic system has been developed to assist physicians in the diagnosis before the actual PDT is carried out. Laser induced, spatially resolved fluorescence images of diseased tissue can be compared with images received by video endoscopy using a white light source. The set- up is required to produce a better contrast between infected and healthy tissue and might serve as a constructive diagnostic help for surgeons. The fundamental idea is to scan a low-power laser beam on an imaging fiber bundle and to achieve a spatially resolved projection on the tissue surface. A sufficiently high laser intensity from the diode laser is concentrated on each single spot of the tissue exciting fluorescence when a dye has previously been accumulated. Subsequently, video image of the tissue is recorded and stored. With an image processing unit, video and fluorescence images are overlaid producing a picture of the fluorescence intensity in the environment of the observed tissue.

  9. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  10. Surface Roughness of a 3D-Printed Ni-Cr Alloy Produced by Selective Laser Melting: Effect of Process Parameters.

    Science.gov (United States)

    Hong, Min-Ho; Son, Jun Sik; Kwon, Tae-Yub

    2018-03-01

    The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 μm) was fabricated at a scan line spacing of 60 μm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

  11. Permeability Study of Austenitic Stainless Steel Surfaces Produced by Selective Laser Melting

    Directory of Open Access Journals (Sweden)

    Emmanuel Segura-Cardenas

    2017-11-01

    Full Text Available Selective laser melting (SLM is emerging as a versatile process for fabricating different metal components with acceptable mechanical properties and geometrical accuracy. The process has been used in the manufacturing of several parts (e.g., aerospace or biomedical components, and offers the capability to tailor the performance of several surface and mechanical properties. In this work, permeability properties and surface roughness of stainless steel (SS316L surfaces were evaluated through experimentation with three different laser scanning patterns (chessboard, meander, and stripe, and different sloping angles between the fabricated surface and the laser beam incident on the process. Results showed that for each scanning pattern, the roughness decreased as the sloping angle increased consistently in all experimental trials. Furthermore, in the case of the permeability evaluation, the manufactured surfaces showed changes in properties for each series of experiments performed with different scanning patterns. The chessboard pattern showed a change of 67° to 107° in contact angle, while the meander and stripe patterns showed a variation in contact angle in a range of 65° to 85°. The different scanning strategies in the SLM process resulted in an alternative method for surface enhancement with different hydrophobicity properties, valuable for designing the most appropriate permeability characteristics for specific applications.

  12. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (industrial mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  13. On the role of melt flow into the surface structure and porosity development during selective laser melting

    International Nuclear Information System (INIS)

    Qiu, Chunlei; Panwisawas, Chinnapat; Ward, Mark; Basoalto, Hector C.; Brooks, Jeffery W.; Attallah, Moataz M.

    2015-01-01

    In this study, the development of surface structure and porosity of Ti–6Al–4V samples fabricated by selective laser melting under different laser scanning speeds and powder layer thicknesses has been studied and correlated with the melt flow behaviour through both experimental and modelling approaches. The as-fabricated samples were investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The interaction between laser beam and powder particles was studied by both high speed imaging observation and computational fluid dynamics (CFD) calculation. It was found that at a high laser power and a fixed powder layer thickness (20 μm), the samples contain particularly low porosity when the laser scanning speeds are below 2700 mm/s. Further increase of scanning speed led to increase of porosity but not significantly. The porosity is even more sensitive to powder layer thickness with the use of thick powder layers (above 40 μm) leading to significant porosity. The increase of porosity with laser scanning speed and powder layer thickness is not inconsistent with the observed increase in surface roughness complicated by increasingly irregular-shaped laser scanned tracks and an increased number of discontinuity and cave-like pores on the top surfaces. The formation of pores and development of rough surfaces were found by both high speed imaging and modelling, to be strongly associated with unstable melt flow and splashing of molten material

  14. Inspection of surface defects for cladding tube with laser

    International Nuclear Information System (INIS)

    Senoo, Shigeo; Igarashi, Miyuki; Satoh, Masakazu; Miura, Makoto

    1978-01-01

    This paper presents the results of experiment on mechanizing the visual inspection of surface defects of cladding tubes and improving the reliability of surface defect inspection. Laser spot inspection method was adopted for this purpose. Since laser speckle pattern includes many informations about surface aspects, the method can be utilized as an effective means for detection or classification of the surface defects. Laser beam is focussed on cladding tube surfaces, and the reflected laser beam forms typical stellar speckle patterns on a screen. Sample cladding tubes are driven in longitudinal direction, and a photo-detector is placed at a position where secondary reflection will fall on the detector. Reflected laser beam from defect-free surfaces shows uniform distribution on the detector. When the incident focussed laser beam is directed to defects, the intensity of the reflected light is reduced. In the second method, laser beam is scanned by a rotating cube mirror. As the results of experiment, the typical patterns caused by defects were observed. It is clear that reflection patterns change with the kinds of defects. The sensitivity of defect detection decreases with the increase in laser beam diameter. Surface defect detection by intensity change was also tested. (Kato, T.)

  15. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    Science.gov (United States)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S. A.

    2013-01-01

    D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  16. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    International Nuclear Information System (INIS)

    Yasavol, N.; Abdollah-zadeh, A.; Ganjali, M.; Alidokht, S.A.

    2013-01-01

    Highlights: ► Melted zone contained fine dendrites in the bottom and equiaxed grains on the top. ► Microstructural refinements of PLSM led to microhardness enhancement. ► Higher scanning rate and lower laser energy were more effective to refine the microstructure. - Abstract: D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2–4 times over that of the base metal.

  17. Microstructure and mechanical behavior of pulsed laser surface melted AISI D2 cold work tool steel

    Energy Technology Data Exchange (ETDEWEB)

    Yasavol, N. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Abdollah-zadeh, A., E-mail: zadeh@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Ganjali, M. [Materials and Energy Research Center, P.O. Box 14155-4777, Karaj (Iran, Islamic Republic of); Alidokht, S.A. [Department of Materials Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Melted zone contained fine dendrites in the bottom and equiaxed grains on the top. Black-Right-Pointing-Pointer Microstructural refinements of PLSM led to microhardness enhancement. Black-Right-Pointing-Pointer Higher scanning rate and lower laser energy were more effective to refine the microstructure. - Abstract: D2 cold work tool steel (CWTS) was subjected to pulse laser surface melting (PLSM) at constant frequency of 20 Hz Nd: YAG laser with different energies, scanning rate and pulse durations radiated to the surface. Characterizing the PLSM, with optical and field emission scanning electron microscopy, electron backscattered diffraction and surface hardness mapping technique was used to evaluate the microhardness and mechanical behavior of different regions of melting pool. Increasing laser energy and reducing the laser scanning rate results in deeper melt pool formation. Moreover, PLSM has led to entirely dissolution of the carbides and re-solidification of cellular/dendritic structure of a fine scale surrounded by a continuous interdendritic network. This caused an increase in surface microhardness, 2-4 times over that of the base metal.

  18. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  19. Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser.

    Science.gov (United States)

    Grunewald, Sonja; Bodendorf, Marc Oliver; Zygouris, Alexander; Simon, Jan Christoph; Paasch, Uwe

    2014-01-01

    Alexandrite and diode lasers are commonly used for hair removal. To date, the available spot sizes and repetition rates are defining factors in terms of penetration depth, treatment speed, and efficacy. Still, larger treatment areas and faster systems are desirable. To compare the efficacy, tolerability, and subject satisfaction of a continuously linear-scanning 808 nm diode laser with an alexandrite 755 nm laser for axillary hair removal. A total of 31 adults with skin types I-IV received 6 treatments at 4-week intervals with a 755 nm alexandrite laser (right axilla) and a continuously linear-scanning 808 nm diode laser (left axilla). Axillary hair density was assessed using a computerized hair detection system. There was a significant reduction in axillary hair after the 6th treatment (P lasers was not significant, but both were persistant at 18 months follow-up (left: hair clearance of 73.71%; right: hair clearance of 71.90%). Erythema and perifollicular edema were more common after alexandrite laser treatment, but all side effects were transient. While 62.50% of patients reported more pain in response to treatment with the new diode laser, all patients rated treatment with either laser tolerable. Treatment with either the alexandrite or the linear-scanning diode laser results in significant, comparable, persistent (at least 18 months) axillary hair reduction among individuals with skin types I-IV. © 2013 Wiley Periodicals, Inc.

  20. A laser sheet self-calibration method for scanning PIV

    Science.gov (United States)

    Knutsen, Anna N.; Lawson, John M.; Dawson, James R.; Worth, Nicholas A.

    2017-10-01

    Knowledge of laser sheet position, orientation, and thickness is a fundamental requirement of scanning PIV and other laser-scanning methods. This paper describes the development and evaluation of a new laser sheet self-calibration method for stereoscopic scanning PIV, which allows the measurement of these properties from particle images themselves. The approach is to fit a laser sheet model by treating particles as randomly distributed probes of the laser sheet profile, whose position is obtained via a triangulation procedure enhanced by matching particle images according to their variation in brightness over a scan. Numerical simulations and tests with experimental data were used to quantify the sensitivity of the method to typical experimental error sources and validate its performance in practice. The numerical simulations demonstrate the accurate recovery of the laser sheet parameters over range of different seeding densities and sheet thicknesses. Furthermore, they show that the method is robust to significant image noise and camera misalignment. Tests with experimental data confirm that the laser sheet model can be accurately reconstructed with no impairment to PIV measurement accuracy. The new method is more efficient and robust in comparison with the standard (self-) calibration approach, which requires an involved, separate calibration step that is sensitive to experimental misalignments. The method significantly improves the practicality of making accurate scanning PIV measurements and broadens its potential applicability to scanning systems with significant vibrations.

  1. Inspection of float glass using a novel retroreflective laser scanning system

    Science.gov (United States)

    Holmes, Jonathan D.

    1997-07-01

    Since 1988, Image Automation has marketed a float glass inspection system using a novel retro-reflective laser scanning system. The (patented) instrument scans a laser beam by use of a polygon through the glass onto a retro-reflective screen, and collects the retro-reflected light off the polygon, such that a stationary image of the moving spot on the screen is produced. The spot image is then analyzed for optical effects introduced by defects within the glass, which typically distort and attenuate the scanned laser beam, by use of suitable detectors. The inspection system processing provides output of defect size, shape and severity, to the factory network for use in rejection or sorting of glass plates to the end customer. This paper briefly describes the principles of operation, the system architecture, and limitations to sensitivity and measurement repeatability. New instruments based on the retro-reflective scanning method have recently been developed. The principles and implementation are described. They include: (1) Simultaneous detection of defects within the glass and defects in a mirror coating on the glass surface using polarized light. (2) A novel distortion detector for very dark glass. (3) Measurement of optical quality (flatness/refractive homogeneity) of the glass using a position sensitive detector.

  2. Structural monitoring of tunnels using terrestrial laser scanning

    NARCIS (Netherlands)

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid

  3. Towards Robust Self-Calibration for Handheld 3d Line Laser Scanning

    Science.gov (United States)

    Bleier, M.; Nüchter, A.

    2017-11-01

    This paper studies self-calibration of a structured light system, which reconstructs 3D information using video from a static consumer camera and a handheld cross line laser projector. Intersections between the individual laser curves and geometric constraints on the relative position of the laser planes are exploited to achieve dense 3D reconstruction. This is possible without any prior knowledge of the movement of the projector. However, inaccurrately extracted laser lines introduce noise in the detected intersection positions and therefore distort the reconstruction result. Furthermore, when scanning objects with specular reflections, such as glossy painted or metalic surfaces, the reflections are often extracted from the camera image as erroneous laser curves. In this paper we investiagte how robust estimates of the parameters of the laser planes can be obtained despite of noisy detections.

  4. Application of Laser Scanning for Creating Geological Documentation

    Directory of Open Access Journals (Sweden)

    Buczek Michał

    2018-01-01

    Full Text Available A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud in combination with the photographs. The results were compared with the geological cross-section.

  5. Deriving structural forest parameters using airborne laser scanning

    International Nuclear Information System (INIS)

    Morsdorf, F.

    2011-01-01

    Airborne laser scanning is a relatively young and precise technology to directly measure surface elevations. With today's high scanning rates, dense 3-D pointclouds of coordinate triplets (xyz) can be provided, in which many structural aspects of the vegetation are contained. The challenge now is to transform this data, as far as possible automatically, into manageable information relevant to the user. In this paper we present two such methods: the first extracts automatically the geometry of individual trees, with a recognition rate of over 70% and a systematic underestimation of tree height of only 0.6 metres. The second method derives a pixel map of the canopy density from the pointcloud, in which the spatial patterns of vegetation cover are represented. These patterns are relevant for habitat analysis and ecosystem studies. The values derived by this method correlate well with field measurements, giving a measure of certainty (R 2 ) of 0.8. The greatest advantage of airborne laser scanning is that it provides spatially extensive, direct measurements of vegetation structure which show none of the extrapolation errors of spot measurements. A large challenge remains in integrating these new products into the user's processing chains and workflows, be it in the realm of forestry or in that of ecosystem research. (author) [de

  6. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available from any defects like micro-porosities or cracks. Furthermore, the average surface roughness was increased from 7.5 ?m to 15 ?m when the scan speed of laser was decreased from 0.04 to 0.012 m/s. The increased surface roughness at a lower scan speed... width from one corner to other evidences that there is no deflection of laser beam. Presence of micro-pores was also observed on the surface with the presence of few unmelted particles on the surface causing formation of rough surface. The defect...

  7. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity

    OpenAIRE

    Ciovati, G.; Anlage, Steven M.; Baldwin, C.; Cheng, G.; Flood, R.; Jordan, K.; Kneisel, P.; Morrone, M.; Nemes, G.; Turlington, L.; Wang, H.; Wilson, K.; Zhang, S.

    2012-01-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about one order of magnitude better than with earlier methods and surface resistance resolution of ~ 1 micro-Ohm at 3.3 GHz. A signal-to-noise ratio of about 10 dB was...

  8. Effects of Root Debridement With Hand Curettes and Er:YAG Laser on Chemical Properties and Ultrastructure of Periodontally-Diseased Root Surfaces Using Spectroscopy and Scanning Electron Microscopy

    Science.gov (United States)

    Amid, Reza; Gholami, Gholam Ali; Mojahedi, Masoud; Aghalou, Maryam; Gholami, Mohsen; Mirakhori, Mahdieh

    2017-01-01

    Introduction: The efficacy of erbium-doped yttrium aluminum garnet (Er:YAG) laser for root debridement in comparison with curettes has been the subject of many recent investigations. Considering the possibility of chemical and ultra-structural changes in root surfaces following laser irradiation, this study sought to assess the effects of scaling and root planing (SRP) with curettes and Er:YAG laser on chemical properties and ultrastructure of root surfaces using spectroscopy and scanning electron microscopy (SEM). Methods: In this in vitro experimental study, extracted sound human single-rooted teeth (n = 50) were randomly scaled using manual curettes alone or in conjunction with Er:YAG laser at 100 and 150 mJ/pulse output energies. The weight percentages of carbon, oxygen, phosphorous and calcium remaining on the root surfaces were calculated using spectroscopy and the surface morphology of specimens was assessed under SEM. Data were analyzed using one-way analysis of variance (ANOVA). Results: No significant differences (P > 0.05) were noted in the mean carbon, oxygen, phosphorous and calcium weight percentages on root surfaces following SRP using manual curettes with and without laser irradiation at both output energies. Laser irradiation after SRP with curettes yielded rougher surfaces compared to the use of curettes alone. Conclusion: Although laser irradiation yielded rougher surfaces, root surfaces were not significantly different in terms of chemical composition following SRP using manual curettes with and without Er:YAG laser irradiation. Er:YAG laser can be safely used as an adjunct to curettes for SRP. PMID:28652898

  9. Corrosion behaviour of laser surface melted magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Taltavull, C.; Torres, B.; Lopez, A.J.; Rodrigo, P.; Otero, E.; Atrens, A.; Rams, J.

    2014-01-01

    A high power diode laser (HPDL) was used to produce laser surface melting (LSM) treatments on the surface of the Mg alloy AZ91D. Different treatments with different microstructures were produced by varying the laser-beam power and laser-scanning speed. Corrosion evaluation, using hydrogen evolution and electrochemical measurements, led to a relationship between microstructure and corrosion. Most corrosion rates for LSM treated specimens were within the scatter of the as-received AZ91D, whereas some treatments gave higher corrosion rates and some of the samples had corrosion rates lower than the average of the corrosion rate for AZ91D. There were differences in corroded surface morphology. Nevertheless laser treatments introduced surface discontinuities, which masked the effect of the microstructure. Removing these surface defects decreased the corrosion rate for the laser-treated samples. - Highlights: • Corrosion behavior of AZ91D Mg alloys is intimately related with its microstructure. • Laser surface melting treatments allows surface modification of the microstructure. • Different laser parameters can achieve different microstructures. • Controlling laser parameters can produce different corrosion rates and morphologies. • Increase of surface roughness due to laser treatment is relevant to the corrosion rate

  10. The laser surface alloying of the surface layer of the plain carbon steel

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.

    2003-01-01

    The paper describes the microstructure and properties (chemical composition, microhardness and the effect of tribological test of the surface laser alloyed layer with tantalum. Scanning electron microscopy examinations show structure, which consist of martensite and Ta2C carbides. Samples covered with Ta and the carbon containing binder showed after laser alloying higher hardness than in case of using silicon-containing binder. (author)

  11. Effect of Laser Power and Scan Speed on Melt Pool Characteristics of Commercially Pure Titanium (CP-Ti)

    Science.gov (United States)

    Kusuma, Chandrakanth; Ahmed, Sazzad H.; Mian, Ahsan; Srinivasan, Raghavan

    2017-07-01

    Selective laser melting (SLM) is an additive manufacturing technique that creates complex parts by selectively melting metal powder layer-by-layer using a laser. In SLM, the process parameters decide the quality of the fabricated component. In this study, single beads of commercially pure titanium (CP-Ti) were melted on a substrate of the same material using an in-house built SLM machine. Multiple combinations of laser power and scan speed were used for single bead fabrication, while the laser beam diameter and powder layer thickness were kept constant. This experimental study investigated the influence of laser power, scan speed, and laser energy density on the melt pool formation, surface morphology, geometry (width and height), and hardness of solidified beads. In addition, the observed unfavorable effect such as inconsistency in melt pool width formation is discussed. The results show that the quality, geometry, and hardness of solidified melt pool are significantly affected by laser power, scanning speed, and laser energy density.

  12. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications

    Science.gov (United States)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2014-10-01

    Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

  13. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  14. NIMONIC 263 microstructure and surface characterization after laser shock peening

    Directory of Open Access Journals (Sweden)

    P. Drobnjak

    2015-07-01

    Full Text Available The Laser Shock Peening (LSP is applied to the surface of Nimonic 263 alloy. The changes in microstructure and surface topography are observed and analyzed by Scanning Electron Microscopy (SEM, profilometer and microhardness tester. Various laser regimes are chosen which provoke effects of both mechanical and thermo-mechanical treatments of the sample surface. The optimal process parameters, that result in the finest microstructure, smooth and clean surface, are determined. Some wanted and unwanted phases leading to the crack formation are observed.

  15. Scanning laser microscope for imaging nanostructured superconductors

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-01-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  16. Scanning laser microscope for imaging nanostructured superconductors

    Science.gov (United States)

    Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen

    2010-10-01

    The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.

  17. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  18. Analysis and optimisation of vertical surface roughness in micro selective laser melting

    International Nuclear Information System (INIS)

    Abele, Eberhard; Kniepkamp, Michael

    2015-01-01

    Surface roughness is a major disadvantage of many additive manufacturing technologies like selective laser melting (SLM) compared to established processes like milling or drilling. With recent advancements the resolution of the SLM process could be increased to layer heights of less than 10 μm leading to a new process called micro selective laser melting (μSLM). The purpose of this paper is to analyze the influence of the μSLM process parameters and exposure strategies on the morphology of vertical surfaces. Contour scanning using varying process parameters was used to increase the surface quality. It is shown that it is possible to achieve average surface roughness of less than 1.7 μm using low scan speeds compared to 8–10 μm without contour scanning. Furthermore it is shown that a contour exposure prior to the core exposure leads to surface defects and thus increased roughness. (paper)

  19. Tritium Removal from Codeposits on Carbon Tiles by a Scanning Laser

    International Nuclear Information System (INIS)

    C.H. Skinner; C.A. Gentile; A. Carpe; G. Guttadora; S. Langish; K.M. Young; W.M. Shu; H. Nakamura

    2001-01-01

    A novel method for tritium release has been demonstrated on codeposited layers on graphite and carbon-fiber-composite tiles from the Tokamak Fusion Test Reactor (TFTR). A scanning continuous wave Nd laser beam heated the codeposits to a temperature of 1200-2300 degrees C for 10 to 200 milliseconds in an argon atmosphere. The temperature rise of the codeposit was significantly higher than that of the manufactured tile material (e.g., 1770 degrees C cf. 1080 degrees C). A major fraction of tritium was thermally desorbed with minimal change to the surface appearance at a laser intensity of 8 kW/cm(superscript ''2''), peak temperatures above 1230 degrees C and heating duration 10-20 milliseconds. In two experiments, 46% and 84% of the total tritium was released during the laser scan. The application of this method for tritium removal from a tokamak reactor appears promising and has significant advantages over oxidative techniques

  20. On the surface topography of ultrashort laser pulse treated steel surfaces

    NARCIS (Netherlands)

    Obona, J. Vincenc; Ocelik, V.; Skolski, J. Z. P.; Mitko, V. S.; Romer, G. R. B. E.; in't Veld, A. J. Huis; De Hosson, J. Th M.; Römer, G.R.B.E.; Huis in’t Veld, A.J.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  1. On the surface topography of ultrashort laser pulse treated steel surface

    NARCIS (Netherlands)

    Vincenc Obona, J.; Ocelik, V.; Skolski, J.Z.P.; Mitko, V.S.; Mitko, S.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; de Hosson, J.Th.M.

    2011-01-01

    This paper concentrates on observations of the surface topography by scanning electron microscopy (SEM) on alloyed and stainless steels samples treated by ultrashort laser pulses with duration of 210 fs and 6.7 ps. Globular-like and jet-like objects were found depending on the various levels of the

  2. Virtual environment assessment for laser-based vision surface profiling

    Science.gov (United States)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  3. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  4. Assessment of root surfaces of apicected teeth: A scanning electron ...

    African Journals Online (AJOL)

    Objectives: The aim of this study was to determine the apical surface characteristics and presence of dental cracks in single‑rooted premolars, resected 3.0 mm from the root apex, using the Er: YAG laser, tungsten carbide bur, and diamond‑coated tip, by scanning electron microscopy (SEM). Experimental design: Thirty ...

  5. Surface laser marking optimization using an experimental design approach

    Science.gov (United States)

    Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.

    2017-04-01

    Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.

  6. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-01-01

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced

  7. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 and Tecnun, University of Navarra, Manuel Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  8. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  9. Reduction of secondary electron yield for E-cloud mitigation by laser ablation surface engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valizadeh, R., E-mail: reza.valizadeh@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Malyshev, O.B. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wang, S. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sian, T. [ASTeC, STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); The Photon Science Institute, The University of Manchester, Manchester M13 9PL (United Kingdom); Cropper, M.D. [Department of Physics, Loughborough University, Loughborough LE11 3TU (United Kingdom); Sykes, N. [Micronanics Ltd., Didcot, Oxon OX11 0QX (United Kingdom)

    2017-05-15

    Highlights: • SEY below 1 can be achieved with Laser ablation surface engineering. • SEY <1 surface can be produced with different types of nanosecond lasers. • Both microstructure (groves) and nano-structures are playing a role in reducing SEY. - Abstract: Developing a surface with low Secondary Electron Yield (SEY) is one of the main ways of mitigating electron cloud and beam-induced electron multipacting in high-energy charged particle accelerators. In our previous publications, a low SEY < 0.9 for as-received metal surfaces modified by a nanosecond pulsed laser was reported. In this paper, the SEY of laser-treated blackened copper has been investigated as a function of different laser irradiation parameters. We explore and study the influence of micro- and nano-structures induced by laser surface treatment in air of copper samples as a function of various laser irradiation parameters such as peak power, laser wavelength (λ = 355 nm and 1064 nm), number of pulses per point (scan speed and repetition rate) and fluence, on the SEY. The surface chemical composition was determined by x-ray photoelectron spectroscopy (XPS) which revealed that heating resulted in diffusion of oxygen into the bulk and induced the transformation of CuO to sub-stoichiometric oxide. The surface topography was examined with high resolution scanning electron microscopy (HRSEM) which showed that the laser-treated surfaces are dominated by microstructure grooves and nanostructure features.

  10. Distribution and avoidance of debris on epoxy resin during UV ns-laser scanning processes

    Science.gov (United States)

    Veltrup, Markus; Lukasczyk, Thomas; Ihde, Jörg; Mayer, Bernd

    2018-05-01

    In this paper the distribution of debris generated by a nanosecond UV laser (248 nm) on epoxy resin and the prevention of the corresponding re-deposition effects by parameter selection for a ns-laser scanning process were investigated. In order to understand the mechanisms behind the debris generation, in-situ particle measurements were performed during laser treatment. These measurements enabled the determination of the ablation threshold of the epoxy resin as well as the particle density and size distribution in relation to the applied laser parameters. The experiments showed that it is possible to reduce debris on the surface with an adapted selection of pulse overlap with respect to laser fluence. A theoretical model for the parameter selection was developed and tested. Based on this model, the correct choice of laser parameters with reduced laser fluence resulted in a surface without any re-deposited micro-particles.

  11. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    OpenAIRE

    Zhuo Wang; Quanzhong Zhao; Chengwei Wang

    2015-01-01

    We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS) on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade) steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures...

  12. BENCHMARKING MOBILE LASER SCANNING SYSTEMS USING A PERMANENT TEST FIELD

    Directory of Open Access Journals (Sweden)

    H. Kaartinen

    2012-07-01

    Full Text Available The objective of the study was to benchmark the geometric accuracy of mobile laser scanning (MLS systems using a permanent test field under good coverage of GNSS. Mobile laser scanning, also called mobile terrestrial laser scanning, is currently a rapidly developing area in laser scanning where laser scanners, GNSS and IMU are mounted onboard a moving vehicle. MLS can be considered to fill the gap between airborne and terrestrial laser scanning. Data provided by MLS systems can be characterized with the following technical parameters: a point density in the range of 100-1000 points per m2 at 10 m distance, b distance measurement accuracy of 2-5 cm, and c operational scanning range from 1 to 100 m. Several commercial, including e.g. Riegl, Optech and others, and some research mobile laser scanning systems surveyed the test field using predefined driving speed and directions. The acquired georeferenced point clouds were delivered for analyzing. The geometric accuracy of the point clouds was determined using the reference targets that could be identified and measured from the point cloud. Results show that in good GNSS conditions most systems can reach an accuracy of 2 cm both in plane and elevation. The accuracy of a low cost system, the price of which is less than tenth of the other systems, seems to be within a few centimetres at least in ground elevation determination. Inaccuracies in the relative orientation of the instruments lead to systematic errors and when several scanners are used, in multiple reproductions of the objects. Mobile laser scanning systems can collect high density point cloud data with high accuracy. A permanent test field suits well for verifying and comparing the performance of different mobile laser scanning systems. The accuracy of the relative orientation between the mapping instruments needs more attention. For example, if the object is seen double in the point cloud due to imperfect boresight calibration between two

  13. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Yao Jianwu; Zhang Chengyun; Liu Haiying; Dai Qiaofeng; Wu Lijun [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Photonic Information Technology, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Gopal, Achanta Venu [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Trofimov, Vyacheslav A.; Lysak, Tatiana M. [Department of Computational Mathematics and Cybernetics, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-07-15

    Ripples with a subwavelength period were induced on the surface of a stainless steel (301 L) foil by femtosecond laser pulses. By optimizing the irradiation fluence of the laser pulses and the scanning speed of the laser beam, ripples with large amplitude ({approx}150 nm) and uniform period could be obtained, rendering vivid structural colors when illuminating the surface with white light. It indicates that these ripples act as a surface grating that diffracts light efficiently. The strong dependence of the ripple orientation on the polarization of laser light offers us the opportunity of decorating different regions of the surface with different types of ripples. As a result, different patterns can be selectively displayed with structural color when white light is irradiated on the surface from different directions. More interestingly, we demonstrated the possibility of decorating the same region with two or more types of ripples with different orientations. In this way, different patterns with spatial overlapping can be selectively displayed with structural color. This technique may find applications in the fields of anti-counterfeiting, color display, decoration, encryption and optical data storage.

  14. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Antero Kukko

    2008-09-01

    Full Text Available Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  15. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  16. Inexpensive laser-induced surface modification in bismuth thin films

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, A. Reyes [Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca, Ixtlahuaca Kilómetro 15.5, C.P. 50200 Edo. de México (Mexico); Hautefeuille, M., E-mail: mathieu_h@ciencias.unam.mx [Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Circuito Exterior S/N, Coyoacán, Ciudad Universitaria, C.P. 04510 D.F. Mexico (Mexico); García, A. Esparza [Fotofísica y Películas Delgadas, Departamento de Tecnociencias, CCADET-UNAM, Circuito exterior s/n C.P. 04510 Cd. Universitaria, D.F. Mexico (Mexico); Mejia, O. Olea [Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Unidad El Rosedal, 50200 San Cayetano, Estado de México (Mexico); López, M.A. Camacho [Facultad de Química, Universidad Autónoma del Estado de México, Tollocan s/n, esq. Paseo Colón, Toluca, Estado de México 50110 (Mexico)

    2015-05-01

    Highlights: • Laser-induced microbumps were formed on bismuth films using a simple, low-cost, laser setup. • The patterns, similar to those typically obtained with high-power lasers, were characterized. • Control of laser ablation conditions is critical in the fabrication of surface microbumps. - Abstract: In this work, we present results on texturing a 500 nm thick bismuth film, deposited by sputtering onto a glass slide using a low-cost homemade, near-infrared pulsed laser platform. A 785 nm laser diode of a CD–DVD pickup head was precisely focused on the sample mounted on a motorized two-axis translation stage to generate localized surface microbumps on the bismuth films. This simple method successfully transferred desired micropatterns on the films in a computer-numerical control fashion. Irradiated zones were characterized by atomic force microscopy and scanning electron microscopy. It was observed that final results are strongly dependent on irradiation parameters.

  17. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    Science.gov (United States)

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  18. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    International Nuclear Information System (INIS)

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave

  19. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    Science.gov (United States)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  20. Influence of spatial and temporal spot distribution on the ocular surface quality and maximum ablation depth after photoablation with a 1050 Hz excimer laser system.

    Science.gov (United States)

    Mrochen, Michael; Schelling, Urs; Wuellner, Christian; Donitzky, Christof

    2009-02-01

    To investigate the effect of temporal and spatial distributions of laser spots (scan sequences) on the corneal surface quality after ablation and the maximum ablation of a given refractive correction after photoablation with a high-repetition-rate scanning-spot laser. IROC AG, Zurich, Switzerland, and WaveLight AG, Erlangen, Germany. Bovine corneas and poly(methyl methacrylate) (PMMA) plates were photoablated using a 1050 Hz excimer laser prototype for corneal laser surgery. Four temporal and spatial spot distributions (scan sequences) with different temporal overlapping factors were created for 3 myopic, 3 hyperopic, and 3 phototherapeutic keratectomy ablation profiles. Surface quality and maximum ablation depth were measured using a surface profiling system. The surface quality factor increased (rough surfaces) as the amount of temporal overlapping in the scan sequence and the amount of correction increased. The rise in surface quality factor was less for bovine corneas than for PMMA. The scan sequence might cause systematic substructures at the surface of the ablated material depending on the overlapping factor. The maximum ablation varied within the scan sequence. The temporal and spatial distribution of the laser spots (scan sequence) during a corneal laser procedure affected the surface quality and maximum ablation depth of the ablation profile. Corneal laser surgery could theoretically benefit from smaller spot sizes and higher repetition rates. The temporal and spatial spot distributions are relevant to achieving these aims.

  1. Multicolor pattern scan laser for diabetic retinopathy with cataract

    Institute of Scientific and Technical Information of China (English)

    Takao; Hirano; Yasuhiro; Iesato; Toshinori; Murata

    2014-01-01

    · AIM: To evaluate the ability of various laser wavelengths in delivering sufficient burns to the retina in eyes with cataract using a new multicolor pattern scan laser with green(532 nm), yellow(577 nm), and red(647 nm)lasers.·METHODS: The relationship between the Emery-Little(EL) degree of cataract severity and the laser wavelength required to deliver adequate burns was investigated in102 diabetic eyes. Treatment time, total number of laser shots, and intra-operative pain were assessed as well.·RESULTS: All EL-1 grade eyes and 50% of EL-2 eyes were successfully treated with the green laser, while 50%of EL-2 eyes, 96% of EL-3 eyes, and 50% of EL-4 eyes required the yellow laser. The red laser was effective in the remaining 4% of EL-3 and 50% of EL-4 eyes.·CONCLUSION: Longer wavelength lasers are more effective in delivering laser burns through cataract when we use a multicolor pattern scan laser system.

  2. Wetting and other physical characteristics of polycarbonate surface textured using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Yilbas, B.S., E-mail: bsyilbas@kfupm.edu.sa [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Khaled, M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Abu-Dheir, N.; Al-Aqeeli, N.; Said, S.A.M. [ME Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Ahmed, A.O.M. [CHEM Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Varanasi, K.K.; Toumi, Y.K. [Mechanical Engineering, Massachusetts Institute of Technology, Boston (United States)

    2014-11-30

    Highlights: • Laser causes micro/nano size pores and shallow fine-size cavities. • Crystallinity at surface is 18% after laser treatment increasing hydrophobicity. • Surface hydrophobicity improves after laser treatment. • Microhardness increases twofold after laser treatment process. • Residual stress is compressive and scratch hardness is 110 ± 11 MPa. • Optical transmittance reduces by 15% after laser treatment. - Abstract: Surface texturing of polycarbonate glass is carried out for improved hydrophobicity via controlled laser ablation at the surface. Optical and physical characteristics of the laser treated layer are examined using analytical tools including optical, atomic force, and scanning electron microscopes, Fourier transform infrared spectroscopy, and X-ray diffraction. Contact angle measurements are carried out to assess the hydrophobicity of the laser treated surface. Residual stress in the laser ablated layer is determined using the curvature method, and microhardnes and scratch resistance are analyzed using a micro-tribometer. Findings reveal that textured surfaces compose of micro/nano pores with fine cavities and increase the contact angle to hydrophobicity such a way that contact angles in the range of 120° are resulted. Crystallization of the laser treated surface reduces the optical transmittance by 15%, contributes to residual stress formation, and enhances the microhardness by twice the value of untreated polycarbonate surface. In addition, laser treatment improves surface scratch resistance by 40%.

  3. Multiplatform Mobile Laser Scanning: Usability and Performance

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2012-08-01

    Full Text Available Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  4. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  5. Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Romero da Silva, Murillo, E-mail: murilloromero_@hotmail.com [Postgraduate Program in Materials Science and Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gargarella, Piter [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Gustmann, Tobias [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Botta Filho, Walter José; Kiminami, Claudio S. [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstraße 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria); Pauly, Simon [IFW Dresden, Institute for Complex Materials, Helmholtzstraße 20, d-01069 Dresden (Germany); Bolfarini, Claudemiro [Department of Materials Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, São Carlos, SP 13565-905 (Brazil)

    2016-04-20

    Cu-based shape memory alloys (SMAs) show better thermal and electrical conductivity, lower cost and are easier to process than traditional Ti-based SMAs, but they exhibit a lower ductility and lower fatigue life. These properties can be improved by decreasing the grain size and reducing microstructural segregations, which may be obtained using laser surface remelting treatments. The aim of the present work was to produce and characterize laser remelted Cu-11.85Al-3.2Ni-3Mn SMA plates. Twelve plates with the dimensions of 50×10×1.5 mm were produced by suction casting in a first step. The surface of the plates was remelted afterwards with a laser beam power of 300 W, hatching of 50% and using three different scanning speeds: 100, 300 and 500 mm/s. The plates were characterized by optical and scanning electron microscopy, X-ray diffraction, differential scanning calorimetry as well as by tensile and microhardness tests. The remelted region showed a T morphology, with average thickness of 52, 29 and 23 µm for the plates remelted with scanning speeds of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s, some pores were found around the center of the track, due to the keyhole instability. The same phase formed in the as-cast sample was obtained in the laser remelted coatings: the monoclinic β′{sub 1} martensitic phase with zig-zag morphology. However, the laser treated samples exhibit lower transformation temperatures than the as-cast sample, due to grain refinement at the surface. They also show an improvement in the mechanical properties, with an increase of up to 162 MPa in fracture stress, up to 2.2% in ductility and up to 20.9 HV in microhardness when compared with the as-cast sample, which makes the laser surface remelting a promising method for improving the mechanical properties of Cu-based SMAs.

  6. Laser scanning camera inspects hazardous area

    International Nuclear Information System (INIS)

    Fryatt, A.; Miprode, C.

    1985-01-01

    Main operational characteristics of a new laser scanning camera are presented. The camera is intended primarily for low level high resolution viewing inside nuclear reactors. It uses a He-Ne laser beam raster; by detecting the reflected light by means of a phomultiplier, the subject under observation can be reconstructed in an electronic video store and reviewed on a conventional monitor screen

  7. Two-photon excitation laser scanning microscopy of rabbit nasal septal cartilage following Nd:YAG-laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-04-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within rabbit nasal septal cartilage tissue over a 12-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation. During laser irradiation surface temperature, stress relaxation, and diffuse reflectance, were measured dynamically. Each specimen received one or two sequential laser exposures. The cartilage reached a peak surface temperature of about 61 degrees C during irradiation. Cartilage denatured in 50 percent EtOH was used as a positive control. TPM was performed to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns, immediately following laser exposure, and also following 12 days in culture. Few differences in the pattern or intensity of fluorescence was observed between controls and irradiated specimens imaged immediately following exposure, regardless of the number of laser pulses. However, following twelve days in tissue culture, the irradiated specimens increase, whereas the native tissue diminishes, in intensity and distribution of fluorescence in the cytoplasm. In contrast, the positive control shows only extracellular matrices and empty lacuna, feature consistent with cell membrane lysis.

  8. Femtosecond laser induced tunable surface transformations on (111) Si aided by square grids diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weina; Jiang, Lan; Li, Xiaowei, E-mail: lixiaowei@bit.edu.cn; Liu, Yang [Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Lu, Yongfeng [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0511 (United States)

    2015-12-21

    We report an extra freedom to modulate the femtosecond laser energy distribution to control the surface ablated structures through a copper-grid mask. Due to the reduced deposited pulse energy by changing the scanning speed or the pulse fluence, a sequential evolution of three distinctly different surface patterns with periodic distributions is formed, namely, striped ripple lines, ripple microdots, and surface modification. By changing the scanning speed, the number of the multiple dots in a lattice can be modulated. Moreover, by exploring the ablation process through the copper grid mask, it shows an abnormal enhanced ablation effect with strong dependence of the diffraction-aided fs laser ablated surface structures on polarization direction. The sensitivity shows a quasi-cosinusoid-function with a periodicity of π/2. Particularly, the connection process of striped ripple lines manifests a preferential formation direction with the laser polarization.

  9. Laser surface graphitization to control friction of diamond-like carbon coatings

    Science.gov (United States)

    Komlenok, Maxim S.; Kononenko, Vitaly V.; Zavedeev, Evgeny V.; Frolov, Vadim D.; Arutyunyan, Natalia R.; Chouprik, Anastasia A.; Baturin, Andrey S.; Scheibe, Hans-Joachim; Shupegin, Mikhail L.; Pimenov, Sergei M.

    2015-11-01

    To study the role of laser surface graphitization in the friction behavior of laser-patterned diamond-like carbon (DLC) films, we apply the scanning probe microscopy (SPM) in the lateral force mode (LFM) which allows to obtain simultaneously the lateral force and topography images and to determine local friction levels in laser-irradiated and original surface areas. Based on this approach in the paper, we report on (1) laser surface microstructuring of hydrogenated a-C:H and hydrogen-free ta-C films in the regime of surface graphitization using UV laser pulses of 20-ns duration and (2) correlation between the structure and friction properties of the laser-patterned DLC surface on micro/nanoscale using SPM/LFM technique. The SPM/LFM data obtained for the surface relief gratings of graphitized microstructures have evidenced lower friction forces in the laser-graphitized regions. For the hydrogenated DLC films, the reversible frictional behavior of the laser-graphitized micropatterns is found to take place during LFM imaging at different temperatures (20 and 120 °C) in ambient air. It is revealed that the lateral force distribution in the laser-graphitized areas is shifted to higher friction levels (relative to that of the unirradiated surface) at temperature 120 °C and returned back to the lower friction during the sample cooling to 20 °C, thus confirming an influence of adsorbed water layers on the nanofriction properties of laser-graphitized micropatterns on the film surface.

  10. Aggregate surface areas quantified through laser measurements for South African asphalt mixtures

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2012-02-01

    Full Text Available design. This paper introduces the use of a three-dimensional (3D) laser scanning method to directly measure the surface area of aggregates used in road pavements in South Africa. As an application of the laser-based measurements, the asphalt film...

  11. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    Science.gov (United States)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  12. A NEW APPROACH FOR SUBWAY TUNNEL DEFORMATION MONITORING: HIGH-RESOLUTION TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    J. Li

    2012-07-01

    Full Text Available With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400. There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  13. [INVITED] Laser gas assisted treatment of Ti-alloy: Analysis of surface characteristics

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Karatas, C.

    2016-04-01

    Laser gas assisted treatment of Ti6Al4V alloy surface is carried out and nitrogen/oxygen mixture with partial pressure of PO2/PN2=1/3 is introduced during the surface treatment process. Analytical tools are used to characterize the laser treated surfaces. The fracture toughness at the surface and the residual stress in the surface region of the laser treated layer are measured. Scratch tests are carried out to determine the friction coefficient of the treated surface. It is found that closely spaced regular laser scanning tracks generates a self-annealing effect in the laser treated layer while lowering the stress levels in the treated region. Introducing high pressure gas mixture impingement at the surface results in formation of oxide and nitride species including, TiO, TiO2, TiN and TiOxNy in the surface region. A dense layer consisting of fine size grains are formed in the surface region of the laser treated layer, which enhances the microhardness at the surface. The fracture toughness reduces after the laser treatment process because of the microhardness enhancement at the surface. The residual stress formed is comprehensive, which is in the order of -350 MPa.

  14. Selective Removal of Residual Orthodontic Composite Using a Rapidly Scanned Carbon Dioxide Laser with Spectral Feedback

    Science.gov (United States)

    Hirasuna, Krista

    Background and Objective: Excessive heat accumulation within the tooth, incomplete removal of composite, and variable damage to the enamel are shortcomings of using conventional burs to remove residual orthodontic composite after debonding fixed appliances. The objective of this study was to determine if composite could be selectively removed from the enamel surface using a rapidly scanned carbon dioxide laser controlled by spectral feedback. Materials and Methods: A carbon dioxide laser operating at a wavelength of 9.3 microm with a pulse duration of 10-15 micros and a pulse repetition rate of ˜ 200 Hz was used to selectively remove composite from the buccal surfaces of 21 extracted teeth. GrenGloo(TM) composite was used to better visualize residual composite and the amount of enamel lost was measured with optical microscopy. A spectral feedback system utilizing a miniature spectrometer was used to control the laser scanning system. Pulpal temperature measurements were performed during composite removal to determine if there was excessive heat accumulation. Results: The amount of enamel lost averaged 22.7microm +/- 8.9 and 25.3 microm +/- 9.4 for removal at 3.8 and 4.2 J/cm2, respectively. An average maximum temperature rise of 1.9°C +/- 1.5 was recorded, with no teeth approaching the critical value of 5.5°C. The average time of composite removal was 19.3 +/- 4.1 seconds. Conclusions: Residual orthodontic composite can be rapidly removed from the tooth surface using a rapidly scanned CO2 laser with spectral feedback, with minimal temperature rise within the pulp and with minimal damage to the underlying enamel surface.

  15. High Heat Flux Interactions and Tritium Removal from Plasma Facing Components by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Hassanein, A.

    2002-01-01

    A new technique for studying high heat flux interactions with plasma facing components is presented. The beam from a continuous wave 300 W neodymium laser was focused to 80 W/mm2 and scanned at high speed over the surface of carbon tiles. These tiles were previously used in the TFTR [Tokamak Fusion Test Reactor] inner limiter and have a surface layer of amorphous hydrogenated carbon that was codeposited during plasma operations. Laser scanning released up to 84% of the codeposited tritium. The temperature rise of the codeposit on the tiles was significantly higher than that of the manufactured material. In one experiment, the codeposit surface temperature rose to 1,770 C while for the same conditions, the manufactured surface increased to only 1,080 C. The peak temperature did not follow the usual square-root dependence on heat pulse duration. Durations of order 100 ms resulted in brittle destruction and material loss from the surface, while a duration of approximately 10 ms showed minimal change. A digital microscope imaged the codeposit before, during, and after the interaction with the laser and revealed hot spots on a 100-micron scale. These results will be compared to analytic modeling and are relevant to the response of plasma facing components to disruptions and vertical displacement events (VDEs) in next-step magnetic fusion devices

  16. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    International Nuclear Information System (INIS)

    Bal, S; Kruithof, A C; Bouwstra, J; Liebl, H; Tomerius, M; Lademann, J; Meinke, M

    2010-01-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface

  17. In vivo visualization of microneedle conduits in human skin using laser scanning microscopy

    Science.gov (United States)

    Bal, S.; Kruithof, A. C.; Liebl, H.; Tomerius, M.; Bouwstra, J.; Lademann, J.; Meinke, M.

    2010-03-01

    Solid microneedles enhance the penetration of drugs into the viable skin but little is known about the geometry of the conduits in vivo. Therefore, laser scanning microscopy was used to visualize the conduits of a microneedle system with needles at a length of 300 μm in 6 healthy subjects over a period of time. The model drug, a fluorescent dye was applied before and after piercing. Laser scanning microscopy was evaluated as being an excellent method to monitor the geometry and closure of the conduits over time. The used microneedle system was evaluated as suitable to enhance the transport of model drugs into the viable epidermis without bleeding and a short closure time of the conduits at the skin surface.

  18. Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics

    Science.gov (United States)

    Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru

    2018-05-01

    Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.

  19. Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.

    Science.gov (United States)

    Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo

    2016-12-31

    Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.

  20. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints

    KAUST Repository

    Alfano, Marco; Lubineau, Gilles; Furgiuele, Franco M.; Paulino, Glá ucio Hermogenes

    2012-01-01

    In this work we investigate the effect of laser irradiation on the bond toughness of aluminum/epoxy bonded joints. The evolution of substrate surface morphology and wettability, for various sets of laser process parameters (i.e. laser power, line spacing, scan speed), was investigated by means of Scanning Electron Microscopy (SEM) and contact angle measurements. A proper combination of power, line spacing and scan speed was then selected and adhesive bonded Al/epoxy T-peel joints were prepared and tested. For comparison, similar samples were produced using substrates with classical grit blasting surface treatment. Finally, post-failure SEM analyses of fracture surfaces were performed, and in order to typify the increase in bond toughness of the joints, finite element simulations were carried out using a potential based cohesive zone model of fracture. © 2012 Elsevier Ltd.

  1. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints

    KAUST Repository

    Alfano, Marco

    2012-12-01

    In this work we investigate the effect of laser irradiation on the bond toughness of aluminum/epoxy bonded joints. The evolution of substrate surface morphology and wettability, for various sets of laser process parameters (i.e. laser power, line spacing, scan speed), was investigated by means of Scanning Electron Microscopy (SEM) and contact angle measurements. A proper combination of power, line spacing and scan speed was then selected and adhesive bonded Al/epoxy T-peel joints were prepared and tested. For comparison, similar samples were produced using substrates with classical grit blasting surface treatment. Finally, post-failure SEM analyses of fracture surfaces were performed, and in order to typify the increase in bond toughness of the joints, finite element simulations were carried out using a potential based cohesive zone model of fracture. © 2012 Elsevier Ltd.

  2. Femtosecond laser-induced periodic surface nanostructuring of sputtered platinum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Ainara, E-mail: airodriguez@ceit.es [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain); Morant-Miñana, Maria Carmen; Dias-Ponte, Antonio; Martínez-Calderón, Miguel; Gómez-Aranzadi, Mikel; Olaizola, Santiago M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 & Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián (Spain)

    2015-10-01

    Highlights: • Femtosecond laser-induced surface nanostructures on sputtered platinum thin films. • Three types of structures obtained: random nanostructures, LSFL and HSFL. • Two different modification regimes have been established based on laser fluence. - Abstract: In this work, submicro and nanostructures self-formed on the surface of Platinum thin films under femtosecond laser-pulse irradiation are investigated. A Ti:Sapphire laser system was used to linearly scan 15 mm lines with 100 fs pulses at a central wavelength of 800 nm with a 1 kHz repetition rate. The resulting structures were characterized by scanning electron microscopy (SEM) and 2D-Fast Fourier Transform (2D-FFT) analysis. This analysis of images revealed different types of structures depending on the laser irradiation parameters: random nanostructures, low spatial frequency LIPSS (LSFL) with a periodicity from about 450 to 600 nm, and high spatial frequency LIPSS (HSFL) with a periodicity from about 80 to 200 nm. Two different modifications regimes have been established for the formation of nanostructures: (a) a high-fluence regime in which random nanostructures and LSFL are obtained and (b) a low-fluence regime in which HSFL and LSFL are obtained.

  3. ANALYSIS OF MOBILE LASER SCANNING DATA AND MULTI-VIEW IMAGE RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    C. Briese

    2012-07-01

    Full Text Available The combination of laser scanning (LS, active, direct 3D measurement of the object surface and photogrammetry (high geometric and radiometric resolution is widely applied for object reconstruction (e.g. architecture, topography, monitoring, archaeology. Usually the results are a coloured point cloud or a textured mesh. The geometry is typically generated from the laser scanning point cloud and the radiometric information is the result of image acquisition. In the last years, next to significant developments in static (terrestrial LS and kinematic LS (airborne and mobile LS hardware and software, research in computer vision and photogrammetry lead to advanced automated procedures in image orientation and image matching. These methods allow a highly automated generation of 3D geometry just based on image data. Founded on advanced feature detector techniques (like SIFT (Scale Invariant Feature Transform very robust techniques for image orientation were established (cf. Bundler. In a subsequent step, dense multi-view stereo reconstruction algorithms allow the generation of very dense 3D point clouds that represent the scene geometry (cf. Patch-based Multi-View Stereo (PMVS2. Within this paper the usage of mobile laser scanning (MLS and simultaneously acquired image data for an advanced integrated scene reconstruction is studied. For the analysis the geometry of a scene is generated by both techniques independently. Then, the paper focuses on the quality assessment of both techniques. This includes a quality analysis of the individual surface models and a comparison of the direct georeferencing of the images using positional and orientation data of the on board GNSS-INS system and the indirect georeferencing of the imagery by automatic image orientation. For the practical evaluation a dataset from an archaeological monument is utilised. Based on the gained knowledge a discussion of the results is provided and a future strategy for the integration of

  4. In Situ Laser Coating of Calcium Phosphate on TC4 Surface for Enhancing Bioactivity

    Institute of Scientific and Technical Information of China (English)

    DENG Chi; WANG Yong; ZHANG Ya-ping; GAO Jia-cheng

    2007-01-01

    Titanium alloy has been a successful implant material owing to its excellent ratio of strength to weight,toughness, and bio-inert oxide surface. Significant progress has been made in improving the bioactivity of titanium alloy by coating its oxide surface with calcium phosphates. In the present study, in situ coating was reported on Ti6Al4V(TC4) surface with calcium phosphate (Ca-P) bioceramics synthesized and synchronously cladded by laser beam. This coating was grown by first preplacing directly the raw powders, which contain 80% of CaHPO4 ·2H2O, 20% of CaCO3, and dram of rare earth (RE), on the TC4 surfaces, and then exposing the surfaces to the laser beam with a power density of 12. 73-15.27 MW · m-2 and a scanning velocity of 10. 5 m/s. The resultant coating was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis and Different-thermal Scanning (TG-DSC), and Energy Dispersive X-ray Detection (EDX). The results show that these laser ceramics include hydroxyapatite (HA), tricalcium phosphate (TCP), Ca2P2O7, and other Ca-P phases, and the interface between the coating and the TC4 substrate has tighter fixation, in which the chemical bonding is approved. These laser hybrid coatings are useful in enhancing the bioactivity of titanium alloy surfaces.

  5. Investigations on femtosecond laser modified micro-textured surface with anti-friction property on bearing steel GCr15

    Science.gov (United States)

    Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang

    2018-03-01

    This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.

  6. RANSAC approach for automated registration of terrestrial laser scans using linear features

    Directory of Open Access Journals (Sweden)

    K. Al-Durgham

    2013-10-01

    Full Text Available The registration process of terrestrial laser scans (TLS targets the problem of how to combine several laser scans in order to attain better information about features than what could be obtained through single scan. The main goal of the registration process is to estimate the parameters which determine geometrical variation between the origins of datasets collected from different locations. Scale, shifts, and rotation parameters are usually used to describe such variation. This paper presents a framework for the registration of overlapping terrestrial laser scans by establishing an automatic matching strategy that uses 3D linear features. More specifically, invariant separation characteristics between 3D linear features extracted from laser scans will be used to establish hypothesized conjugate linear features between the laser scans. These candidate matches are then used to geo-reference scans relative to a common reference frame. The registration workflow simulates the well-known RANndom Sample Consensus method (RANSAC for determining the registration parameters, whereas the iterative closest projected point (ICPP is utilized to determine the most probable solution of the transformation parameters from several solutions. The experimental results prove that the proposed methodology can be used for the automatic registration of terrestrial laser scans using linear features.

  7. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    Science.gov (United States)

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  8. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2003-01-01

    Attempts have been made to evaluate the changes in physical and chemical properties of the polyethylene terephthalate (PET) surface due to laser irradiation. These changes have been investigated from viewpoints of microstructuring and its effect on fibroblast cell behavior. The surfaces of PET were irradiated using CO 2 and KrF excimer pulsed laser. The changes were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The data from ATR-FTIR spectra showed that the crystallinity in the surface region decreased due to the CO 2 and excimer laser irradiation. SEM observations showed that specific microstructures were created on the PET surface due to laser irradiation. In order to study biocompatibility and cell behavior, we utilized standard in vitro L929-fibroblast cell culture system. Fibroblast cell adhesion and spreading were significantly correlated to the morphology and wettability of the laser irradiated PET surface

  9. Tritium Removal from JET and TFTR Tiles by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Bekris, N.; Coad, J.P.; Gentile, C.A.; Glugla, M.

    2002-01-01

    Fast and efficient tritium removal is needed for future D-T machines with carbon plasma-facing components. A novel method for tritium release has been demonstrated on co-deposited layers on tiles retrieved from the Tokamak Fusion Test Reactor (TFTR) and from the Joint European Torus (JET). A scanning continuous wave neodymium laser beam was focused to =100 W/mm2 and scanned at high speed over the co-deposits, heating them to temperatures =2000 C for about 10 ms in either air or argon atmospheres. Fiber optic coupling between the laser and scanner was implemented. Up to 87% of the co-deposited tritium was thermally desorbed from the JET and TFTR samples. This technique appears to be a promising in-situ method for tritium removal in a next-step D-T device as it avoids oxidation, the associated de-conditioning of the plasma-facing surfaces, and the expense of processing large quantities of tritium oxide

  10. Evaluation of 3-D Laser Scanning Equipment : 2018 Final Report

    Science.gov (United States)

    2018-05-01

    As a follow-up to ICT Project R27-030, Evaluation of 3-D Laser Scanning, this report provides findings of an evaluation of 3-D laser scanning equipment to determine the tangible costs versus benefits and the manpower savings realized by using the equ...

  11. USE OF LASER SCANNING FOR CULTURAL HERITAGE DOCUMENTATION

    Directory of Open Access Journals (Sweden)

    Gulhan BENLI

    2013-01-01

    Full Text Available In terms of raising an awareness of the historical, national and cultural properties in our country and ensuring a transfer of information to posterity, it is of vital importance to take inventory of the cultural and natural real properties located in protected sites. Many fields, such as medical science, construction, ground engineering, geodetic engineering, and architecture, make use of the present-day laser scanning technology. Even if contemporary and current scientific methods are used for the inventory and documentation studies related to cultural and natural real properties in the PROTECTED SITES in the field of architecture; acquiring data of the entirety of a protected site using these methods is a time consuming process. Among the scientific methods applied, laser scanning technology has the utmost importance in the latest years. The laser scanning devices for the detection of cultural, natural and historical properties in archeological, historical, urban or mixed protected sites in Turkey, eliminate challenges such as the enormity of sites, the difficulty of working in the sites, intense work hours, and the necessity of having a thorough knowledge of the site. In the scope of this study, the usage, application, facilities, advantages and attainments of geodetic laser scanning systems in conducting surveys on facade, street or avenue silhouettes in the protected sites, where historical buildings within field of architecture are widespread, will be examined.

  12. Laser-based structural sensing and surface damage detection

    Science.gov (United States)

    Guldur, Burcu

    Damage due to age or accumulated damage from hazards on existing structures poses a worldwide problem. In order to evaluate the current status of aging, deteriorating and damaged structures, it is vital to accurately assess the present conditions. It is possible to capture the in situ condition of structures by using laser scanners that create dense three-dimensional point clouds. This research investigates the use of high resolution three-dimensional terrestrial laser scanners with image capturing abilities as tools to capture geometric range data of complex scenes for structural engineering applications. Laser scanning technology is continuously improving, with commonly available scanners now capturing over 1,000,000 texture-mapped points per second with an accuracy of ~2 mm. However, automatically extracting meaningful information from point clouds remains a challenge, and the current state-of-the-art requires significant user interaction. The first objective of this research is to use widely accepted point cloud processing steps such as registration, feature extraction, segmentation, surface fitting and object detection to divide laser scanner data into meaningful object clusters and then apply several damage detection methods to these clusters. This required establishing a process for extracting important information from raw laser-scanned data sets such as the location, orientation and size of objects in a scanned region, and location of damaged regions on a structure. For this purpose, first a methodology for processing range data to identify objects in a scene is presented and then, once the objects from model library are correctly detected and fitted into the captured point cloud, these fitted objects are compared with the as-is point cloud of the investigated object to locate defects on the structure. The algorithms are demonstrated on synthetic scenes and validated on range data collected from test specimens and test-bed bridges. The second objective of

  13. Evaluation of Wear on Macro-Surface Textures Generated by ns Fiber Laser

    Science.gov (United States)

    Harish, V.; Soundarapandian, S.; Vijayaraghavan, L.; Bharatish, A.

    2018-03-01

    The demand for improved performance and long term reliability of mechanical systems dictate the use of advanced materials and surface engineering techniques. A small change in the surface topography can lead to substantial improvements in the tribological behaviour of the contact surfaces. One way of altering the surface topography is by surface texturing by introducing dimples or channels on the surfaces. Surface texturing is already a successful technique which finds a wide area of applications ranging from heavy industries to small scale devices. This paper reports the effect of macro texture shapes generated using a nanosecond fiber laser on wear of high carbon chromium steel used in large size bearings having rolling contacts. Circular and square shaped dimples were generated on the surface to assess the effect of sliding velocities on friction coefficient. Graphite was used as solid lubricant to minimise the effect of wear on textured surfaces. The laser parameters such as power, scan speed and passes were optimised to obtain macro circular and square dimples which was characterised using a laser confocal microscope. The friction coefficients of the circular and square dimples were observed to lie in the same range due to minimum wear on the surface. On the contrary, at medium and higher sliding velocities, square dimples exhibited lower friction coefficient values compared to circular dimples. The morphology of textured specimen was characterised using Scanning Electron Microscope.

  14. Keypoint-based 4-Points Congruent Sets - Automated marker-less registration of laser scans

    Science.gov (United States)

    Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad

    2014-10-01

    We propose a method to automatically register two point clouds acquired with a terrestrial laser scanner without placing any markers in the scene. What makes this task challenging are the strongly varying point densities caused by the line-of-sight measurement principle, and the huge amount of data. The first property leads to low point densities in potential overlap areas with scans taken from different viewpoints while the latter calls for highly efficient methods in terms of runtime and memory requirements. A crucial yet largely unsolved step is the initial coarse alignment of two scans without any simplifying assumptions, that is, point clouds are given in arbitrary local coordinates and no knowledge about their relative orientation is available. Once coarse alignment has been solved, scans can easily be fine-registered with standard methods like least-squares surface or Iterative Closest Point matching. In order to drastically thin out the original point clouds while retaining characteristic features, we resort to extracting 3D keypoints. Such clouds of keypoints, which can be viewed as a sparse but nevertheless discriminative representation of the original scans, are then used as input to a very efficient matching method originally developed in computer graphics, called 4-Points Congruent Sets (4PCS) algorithm. We adapt the 4PCS matching approach to better suit the characteristics of laser scans. The resulting Keypoint-based 4-Points Congruent Sets (K-4PCS) method is extensively evaluated on challenging indoor and outdoor scans. Beyond the evaluation on real terrestrial laser scans, we also perform experiments with simulated indoor scenes, paying particular attention to the sensitivity of the approach with respect to highly symmetric scenes.

  15. Microstructure and corrosion behavior of laser surface-treated AZ31B Mg bio-implant material.

    Science.gov (United States)

    Wu, Tso-Chang; Ho, Yee-Hsien; Joshi, Sameehan S; Rajamure, Ravi S; Dahotre, Narendra B

    2017-05-01

    Although magnesium and magnesium alloys are considered biocompatible and biodegradable, they suffer from poor corrosion performance in the human body environment. In light of this, surface modification via rapid surface melting of AZ31B Mg alloy using a continuous-wave Nd:YAG laser was conducted. Laser processing was performed with laser energy ranging from 1.06 to 3.18 J/mm 2 . The corrosion behavior in simulated body fluid of laser surface-treated and untreated AZ31B Mg alloy samples was evaluated using electrochemical technique. The effect of laser surface treatment on phase and microstructure evolution was evaluated using X-ray diffraction and scanning electron microscopy. Microstructure examination revealed grain refinement as well as formation and uniform distribution of Mg 17 Al 12 phase along the grain boundary for laser surface-treated samples. Evolution of such unique microstructure during laser surface treatment indicated enhancement in the corrosion resistance of laser surface-treated samples compared to untreated alloy.

  16. Laser texturing of Hastelloy C276 alloy surface for improved hydrophobicity and friction coefficient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.

    2016-03-01

    Laser treatment of Hastelloy C276 alloy is carried out under the high pressure nitrogen assisting gas environment. Morphological and metallurgical changes in the laser treated layer are examined using the analytical tools including, scanning electron and atomic force microscopes, X-ray diffraction, energy dispersive spectroscopy, and Fourier transform infrared spectroscopy. Microhardness is measured and the residual stress formed in the laser treated surface is determined from the X-ray data. The hydrophibicity of the laser treated surface is assessed using the sessile drop method. Friction coefficient of the laser treated layer is obtained incorporating the micro-tribometer. It is found that closely spaced laser canning tracks create a self-annealing effect in the laser treated layer and lowers the thermal stress levels through modifying the cooling rates at the surface. A dense structure, consisting of fine size grains, enhances the microhardness of the surface. The residual stress formed at the surface is compressive and it is in the order of -800 MPa. Laser treatment improves the surface hydrophobicity significantly because of the formation of surface texture composing of micro/nano-pillars.

  17. Pavement cracking measurements using 3D laser-scan images

    International Nuclear Information System (INIS)

    Ouyang, W; Xu, B

    2013-01-01

    Pavement condition surveying is vital for pavement maintenance programs that ensure ride quality and traffic safety. This paper first introduces an automated pavement inspection system which uses a three-dimensional (3D) camera and a structured laser light to acquire dense transverse profiles of a pavement lane surface when it carries a moving vehicle. After the calibration, the 3D system can yield a depth resolution of 0.5 mm and a transverse resolution of 1.56 mm pixel −1 at 1.4 m camera height from the ground. The scanning rate of the camera can be set to its maximum at 5000 lines s −1 , allowing the density of scanned profiles to vary with the vehicle's speed. The paper then illustrates the algorithms that utilize 3D information to detect pavement distress, such as transverse, longitudinal and alligator cracking, and presents the field tests on the system's repeatability when scanning a sample pavement in multiple runs at the same vehicle speed, at different vehicle speeds and under different weather conditions. The results show that this dedicated 3D system can capture accurate pavement images that detail surface distress, and obtain consistent crack measurements in repeated tests and under different driving and lighting conditions. (paper)

  18. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    Science.gov (United States)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  19. Investigation of Selective Laser Melting Surface Alloyed Aluminium Metal Matrix Dispersive Reinforced Layers

    Science.gov (United States)

    Kamburov, V. V.; Dimitrova, R. B.; Kandeva, M. K.; Sofronov, Y. P.

    2018-01-01

    The aim of the paper is to investigate the improvement of mechanical properties and in particular wear resistance of laser surface alloyed dispersive reinforced thin layers produced by selective laser melting (SLM) technology. The wear resistance investigation of aluminium matrix composite layers in the conditions of dry friction surface with abrasive particles and nanoindentation tests were carried out. The process parameters (as scan speed) and their impact on the wear resistant layers have been evaluated. The alloyed layers containing metalized SiC particles were studied by Optical and Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray microanalysis (EDX). The obtained experimental results of the laser alloyed thin layers show significant development of their wear resistance and nanohardness due to the incorporated reinforced phase of electroless nickel coated SiC particles.

  20. Centimeter-scale MEMS scanning mirrors for high power laser application

    Science.gov (United States)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  1. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  2. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  3. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  4. SURFACE MODIFICATIONS WITH LASER SYNTHESIZED Mo MODIFIED COATING

    OpenAIRE

    LU SUN; HAO CHEN; BO LIU

    2013-01-01

    Mg–Cu–Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg–Cu–Al–B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. ...

  5. Characterizing the geomorphic setting of precariously balanced rocks using terrestrial laser scanning technology

    Science.gov (United States)

    Haddad, D. E.; Arrowsmith, R.

    2009-12-01

    Terrestrial laser scanning (TLS) technology is rapidly becoming an effective three-dimensional imaging tool. Precariously balanced rocks are a subset of spheroidally weathered boulders. They are balanced on bedrock pedestals and are formed in upland drainage basins and pediments of exhumed plutons. Precarious rocks are used as negative evidence of earthquake-driven extreme ground motions. Field surveys of PBRs are coupled with cosmogenic radionuclide (CRN) surface exposure dating techniques to determine their exhumation rates. These rates are used in statistical simulations to estimate the magnitudes and recurrences of earthquake-generated extreme ground shaking as a means to physically validate seismic hazard analyses. However, the geomorphic setting of PBRs in the landscape is poorly constrained when interpreting their exhumation rates from CRN surface exposure dates. Are PBRs located on steep or gentle hillslopes? Are they located near drainages or hillslope crests? What geomorphic processes control the spatial distribution of PBRs in a landscape, and where do these processes dominate? Because the fundamental hillslope transport laws are largely controlled by local hillslope gradient and contributing area, the location of a PBR is controlled by the geomorphic agents and their rates acting on it. Our latest efforts involve using a combination of TLS and airborne laser swath mapping (ALSM) to characterize the geomorphic situation of PBRs. We used a Riegl LPM 800i (LPM 321) terrestrial laser scanner to scan a ~1.5 m tall by ~1 m wide precariously balanced rock in the Granite Dells, central Arizona. The PBR was scanned from six positions, and the scans were aligned to a point cloud totaling 3.4M points. We also scanned a ~50 m by ~150 m area covering PBR hillslopes from five scan positions. The resulting 5.5M points were used to create a digital terrain model of precarious rocks and their hillslopes. Our TLS- and ALSM-generated surface models and DEMs provide a

  6. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning

    Directory of Open Access Journals (Sweden)

    Sébastien Bauwens

    2016-06-01

    Full Text Available The application of static terrestrial laser scanning (TLS in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS with two TLS approaches (single scan: SS, and multi scan: MS for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm with the HMLS leading to the best results for DBH estimates (bias of −0.08 cm and RMSE of 1.11 cm, compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.

  7. Modifying a Rodenstock scanning laser ophthalmoscope for imaging densitometry.

    Science.gov (United States)

    Tornow, R P; Beuel, S; Zrenner, E

    1997-08-01

    The necessary modifications and technical requirements are described for using a commercially available scanning laser ophthalmoscope (Rodenstock Model 101 SLO) as an imaging densitometer to assess human photopigment distribution. The main requirements are a linear detector amplifier, fast shutters for the laser beams, and a trigger unit. Images must be compensated for varying laser intensity. Both rod and cone photopigments are measured with the 514-nm argon laser of the SLO. Discrimination is possible owing to the different spatial distribution. The cone pigment density peaks in the foveal center (D = 0.40) with a steep decrease with increasing eccentricity E (full width at half-maximum, 2.5 degrees ). Rod photopigment increases with increasing eccentricity (D = 0.23 for E = 11 degrees ). These values are in agreement with previous reported results obtained with scanning laser ophthalmoscopes specially designed for retinal densitometry and high stability.

  8. Laser surface modification of boronickelized medium carbon steel

    Science.gov (United States)

    Bartkowska, Aneta; Pertek, Aleksandra; Kulka, Michał; Klimek, Leszek

    2015-11-01

    A two-step process was applied to produce the multicomponent boride layers. Boronickelizing consisted of nickel plating and diffusion boriding. Two different methods of heat treatment of boronickelized C45 steel were used: a typical through-hardening, and a laser surface modification with remelting. Microstructure and some mechanical properties of these layers were examined. Microstructural characterization was studied using optical microscope, Scanning Electron Microscope, energy-dispersive X-ray microanalysis, Electron Back-Scatter Diffraction and X-ray diffraction. The laser modification improved wear resistance, cohesion as well as low-cycle fatigue of the boronickelized layer. Compressive stresses, occurring after laser remelting, could be the reason for the advantageous mechanical behavior of the layer.

  9. Laser shock wave assisted patterning on NiTi shape memory alloy surfaces

    Science.gov (United States)

    Seyitliyev, Dovletgeldi; Li, Peizhen; Kholikov, Khomidkhodza; Grant, Byron; Karaca, Haluk E.; Er, Ali O.

    2017-02-01

    An advanced direct imprinting method with low cost, quick, and less environmental impact to create thermally controllable surface pattern using the laser pulses is reported. Patterned micro indents were generated on Ni50Ti50 shape memory alloys (SMA) using an Nd:YAG laser operating at 1064 nm combined with suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities which generates pressure pulses up to 10 GPa on the surface was focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the NiTi surface. Scanning electron microscope (SEM) and optical microscope images of square pattern with different sizes were studied. One dimensional profile analysis shows that the depth of the patterned sample initially increase linearly with the laser energy until 125 mJ/pulse where the plasma further absorbs and reflects the laser beam. In addition, light the microscope image show that the surface of NiTi alloy was damaged due to the high power laser energy which removes the graphite layer.

  10. Fabrication of multi-functional silicon surface by direct laser writing

    Science.gov (United States)

    Verma, Ashwani Kumar; Soni, R. K.

    2018-05-01

    We present a simple, quick and one-step methodology based on nano-second laser direct writing for the fabrication of micro-nanostructures on silicon surface. The fabricated surfaces suppress the optical reflection by multiple reflection due to light trapping effect to a much lower value than polished silicon surface. These textured surfaces offer high enhancement ability after gold nanoparticle deposition and then explored for Surface Enhanced Raman Scattering (SERS) for specific molecular detection. The effect of laser scanning line interval on optical reflection and SERS signal enhancement ability was also investigated. Our results indicate that low optical reflection substrates exhibit uniform SERS enhancement with enhancement factor of the order of 106. Furthermore, this methodology provide an alternative approach for cost-effective large area fabrication with good control over feature size.

  11. SOME ASPECTS OF SCANNING LASER OPHTHALMOSCOPY IN THE DIAGNOSTICS OF OPHTHALMOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    S. A. Kochergin

    2017-01-01

    Full Text Available The exact diagnosis of the fundus pathology requires the most modern equipment use. This is mandatory for the selection of the most complete therapy and monitoring of ongoing treatment. At present, the method of scanning laser ophthalmoscopy is widely spread. However, for the earliest detection of the smallest pathological changes, data of the normal ocular fundus state using a scanning laser ophthalmoscope is necessary. Thus, the purpose of our research becomes relevant. Purpose: to give a characteristic of the fundus in patients without concomitant pathology with using various modes of a scanning laser ophthalmoscope. Patients and methods. 116 people (232 eyes at the age from 17 to 71 years (mean age 32.5±12 years were examined. The patients were divided into two groups. Group I: 81 patients (162 eyes with different ophthalmopathology. Group II: 35 people (70 eyes — practically healthy and did not have an anamnesis of consulting an ophthalmologist. Diagnosis of the patients’ fundus was performed using a scanning laser ophthalmoscopy with retro-mode imaging and autofluorescence registration. Results. After the conducted research features and regularities of the reflectivity distribution of laser beams from the fundus structures are revealed. Also a characteristic of various anatomical formations and zones of the fundus in the normal conditions is given when examined by a scanning laser ophthalmoscope. An algorithm for examining patients and analyzing the images was developed. Conclusion. The use of scanning laser ophthalmoscopy made possible to take a fresh look at the algorithms of diagnosing patients with fundus pathology. Understanding the normal conditions ofundus allowed an earlier detection of the smallest pathological changes in the retina. 

  12. Laser bioengineering of glass-titanium implants surface

    Science.gov (United States)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  13. Body surface area determined by whole-body CT scanning: need for new formulae?

    DEFF Research Database (Denmark)

    Villa, Chiara; Primeau, Charlotte; Hesse, Ulrik

    2017-01-01

    Calculation of the estimated body surface area (BSA) by body height and weight has been a challenge in the past centuries due to lack of a well-documented gold standard. More recently, available techniques such as 3D laser surface scanning and CT scanning may be expected to quantify the BSA...... Mimics software, and BSA values were automatically extracted from the program. They were compared with nine predictive equations from the literature. Remarkably, close correlations (r > 0·90) were found between BSA values from CT scans and those from the predictive formulae. A mean BSA of the 54 cadavers...... equations, with the CT scan determination as gold standard. It is concluded that DuBois and DuBois' equation can be safely used in normal-weight male subjects with high accuracy, but it seems likely that BSA is underestimated in underweight subjects and overestimated in overweight individuals. Creation...

  14. Surveying a fossil oyster reef using terrestrial laser scanning

    Science.gov (United States)

    Haring, A.; Exner, U.; Harzhauser, M.

    2009-04-01

    The Korneuburg Basin, situated north-west of Vienna, is well known to contain a rich variety of fossils from the Early Miocene (16.5 ma) and therefore has been investigated extensively by scientists in the past decades. An exceptional discovery was made in 2005: a large fossil oyster reef has been excavated and documented carefully during the last years. Aside from the giant-sized oyster (Crassostrea gryphoides), the excavation site contains numerous species of molluscs along with teeth of sharks and rays and even isolated bones of sea cows. The oysters, having lengths of up to 80 cm, are protruding from the ground surface, which is more or less a tilted plane (25˚ ) with a size of about 300 m2. The entire site is crosscut by a network of geological faults, often also offsetting individual oyster shells. Displacements along the normal faults do not exceed ~ 15 cm. The faulted fossils offer a unique opportunity to measure displacement distribution along the faults in great detail and provide insight in deformation mechanisms in porous, barely lithified sediments. In order to get a precise 3D model of the oyster reef, the terrestrial laser scanner system Leica HDS 6000 is used. It is a phase-based laser scanner, i.e. the distance measurement is performed using the phase-shift principle. Compared to the time-of-flight principle, this method is generally more appropriate to projects like this one, where the distances to be measured are relatively small (< 35 m) and where a high point density (point spacing of about 1 cm) and precision (some mm) is required for capturing the oysters adequately. However, due to fact that they occlude each other, one single scan is not sufficient to get all sides of their surface. Therefore, scans from different positions had to be acquired. These scans have to be merged, which involves the problem of sensor orientation as well as sampling of the entire 3D point cloud. Furthermore, a representation of the surface data is required that

  15. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    Science.gov (United States)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  16. Tritium Removal from JET and TFTR Tiles by a Scanning Laser; TOPICAL

    International Nuclear Information System (INIS)

    C.H. Skinner; N. Bekris; J.P. Coad; C.A. Gentile; M. Glugla

    2002-01-01

    Fast and efficient tritium removal is needed for future D-T machines with carbon plasma-facing components. A novel method for tritium release has been demonstrated on co-deposited layers on tiles retrieved from the Tokamak Fusion Test Reactor (TFTR) and from the Joint European Torus (JET). A scanning continuous wave neodymium laser beam was focused to=100 W/mm2 and scanned at high speed over the co-deposits, heating them to temperatures=2000 C for about 10 ms in either air or argon atmospheres. Fiber optic coupling between the laser and scanner was implemented. Up to 87% of the co-deposited tritium was thermally desorbed from the JET and TFTR samples. This technique appears to be a promising in-situ method for tritium removal in a next-step D-T device as it avoids oxidation, the associated de-conditioning of the plasma-facing surfaces, and the expense of processing large quantities of tritium oxide

  17. CO-REGISTRATION OF DSMs GENERATED BY UAV AND TERRESTRIAL LASER SCANNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. A. Persad

    2016-06-01

    Full Text Available An approach for the co-registration of Digital Surface Models (DSMs derived from Unmanned Aerial Vehicles (UAVs and Terrestrial Laser Scanners (TLS is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  18. Morphological evaluation of cavity preparation surface after duraphat and Er:YAG laser treatment by scanning electronic microscopy

    International Nuclear Information System (INIS)

    Rodrigues, Luciane Borelli

    2002-01-01

    The treatment of dental surface using different lasers to prevent dental caries has been studied for several on last years. The purpose of this in vitro study was to evaluate the morphological changes on dentin surface from pulpal wall of cavity preparations performed by high-speed drill, treated with 2,26% fluoride varnish (Duraphat) and Er:YAG laser, and then submitted after receiving or not to EDTA 15% treatment. Twenty Class V cavities were performed on ten humans molars. The specimens were randomly divided in to 4 groups: group 1- treatment with Duraphat followed by Er:YAG laser irradiation (120 mJ/ 4 Hz); group 2: Er:YAG laser irradiation, same parameters, followed by Duraphat treatment; group 3- same group 1 followed by immersion in EDTA (5 min); group 4 - same as group 2 followed by immersion in EDTA (5 min). The specimens were processed for SEM analysis. The micrographs showed that Duraphat treatment promoted morphological changes on dentin, closing dentinal tubules; the specimens treated by Duraphat and Er:YAG laser and immersed in EDTA (group 3) showed homogeneous surface, closed and protected dentinal tubules, maintenance of the fluoride varnish on the dentin surface and around the dentinal tubules, showing feasible and efficiency of these therapies the feasibility.(author)

  19. Volumetric evolution of Surtsey, Iceland, from topographic maps and scanning airborne laser altimetry

    Science.gov (United States)

    Garvin, J.B.; Williams, R.S.; Frawley, J.J.; Krabill, W.B.

    2000-01-01

    The volumetric evolution of Surtsey has been estimated on the basis of digital elevation models derived from NASA scanning airborne laser altimeter surveys (20 July 1998), as well as digitized 1:5,000-scale topographic maps produced by the National Land Survey of Iceland and by Norrman. Subaerial volumes have been computed from co-registered digital elevation models (DEM's) from 6 July 1968, 11 July 1975, 16 July 1993, and 20 July 1998 (scanning airborne laser altimetry), as well as true surface area (above mean sea level). Our analysis suggests that the subaerial volume of Surtsey has been reduced from nearly 0.100 km3 on 6 July 1968 to 0.075 km3 on 20 July 1998. Linear regression analysis of the temporal evolution of Surtsey's subaerial volume indicates that most of its subaerial surface will be at or below mean sea-level by approximately 2100. This assumes a conservative estimate of continuation of the current pace of marine erosion and mass-wasting on the island, including the indurated core of the conduits of the Surtur I and Surtur II eruptive vents. If the conduits are relatively resistant to marine erosion they will become sea stacks after the rest of the island has become a submarine shoal, and some portions of the island could survive for centuries. The 20 July 1998 scanning laser altimeter surveys further indicate rapid enlargement of erosional canyons in the northeastern portion of the partial tephra ring associated with Surtur I. Continued airborne and eventually spaceborne topographic surveys of Surtsey are planned to refine the inter-annual change of its subaerial volume.

  20. Chromium surface alloying of structural steels during laser treatment

    International Nuclear Information System (INIS)

    Kurov, I.E.; Nagornykh, S.N.; Sivukhin, G.A.; Solenov, S.V.

    1987-01-01

    Results of matrix alloying from the surface layer and creation of considerably increased chromium concentration in the depth which permits to increase the efficiency of laser treatment of steels (12Kh18N10T and 38KhN3M) in the process of their further mechanical polishing, are presented. The treatment was realized by continuous CO 2 -laser at different power densities and scanning rates are presented. A model describing the creation of anomalous distributions of the alloying element in steels is plotted

  1. Using a laser scanning camera for reactor inspection

    International Nuclear Information System (INIS)

    Armour, I.A.; Adrain, R.S.; Klewe, R.C.

    1984-01-01

    Inspection of nuclear reactors is normally carried out using TV or film cameras. There are, however, several areas where these cameras show considerable shortcomings. To overcome these difficulties, laser scanning cameras have been developed. This type of camera can be used for general visual inspection as well as the provision of high resolution video images with high ratio on and off-axis zoom capability. In this paper, we outline the construction and operation of a laser scanning camera and give examples of how it has been used in various power stations, and indicate future potential developments. (author)

  2. Analysis of polymer grafted inside the porous hydrogel using confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available Graft polymerization of glycidyl methacrylate onto the pore surface of polyacrylamide macroporous gel was implemented in DMSO-aqueous solution using diperiodatocuprate(III complexes as an initiator. The grafting densities up to 410% were achieved. The graft polymerization was confirmed by gravimetrical methods and FTIR. The graft polymerization of polymer inside the pores of the macroporous gel resulted in increased flow resistance through the gel matrix. The distribution of grafted polymer on the gel pore surface material was studied by scanning electron microscopy (SEM and confocal laser scanning microscopy (CLSM. CLSM is an alternative method for studying morphology of gel surface with grafted polymer having the advantages over the SEM allowing to investigate the distribution of grafted polymer inside the hydrogel in a native hydrated state. The microscopic techniques demonstrated uneven distribution of the grafted polymer inside the gel pores as a result of initiating the graft polymerization by insoluble initiator deposited on the pore surface.

  3. Polarization controlled deep sub-wavelength periodic features written by femtosecond laser on nanodiamond thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Kuntumalla, Mohan; Srikanth, Vadali V. S. S., E-mail: vvsssse@uohyd.ernet.in [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rajamudili, Kuladeep; Rao Desai, Narayana [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-04-21

    Deep sub-wavelength (Λ/λ = ∼0.22) periodic features are induced uniformly on a nanodiamond (ND) thin film surface using femtosecond (fs) laser irradiation (pulse duration = ∼110 fs and central wavelength of ∼800 nm). The topography of the surface features is controlled by the laser polarization. Orientation of features is perpendicular to laser polarization. Periodicity (spatial periodicity of < λ/4) of the surface features is less than the laser wavelength. This work gives an experimental proof of polarization controlled surface plasmon-fs laser coupling mechanism prompting the interaction between fs laser and solid matter (here ND thin film) which in turn is resulting in the periodic surface features. Scanning electron microscopy in conjunction with micro Raman scattering, X-ray diffraction, and atomic force microscopy are carried out to extract surface morphology and phase information of the laser irradiated regions. This work demonstrates an easy and efficient surface fabrication technique.

  4. Optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy in retinal nerve fiber layer measurements of glaucoma patients.

    Science.gov (United States)

    Fanihagh, Farsad; Kremmer, Stephan; Anastassiou, Gerasimos; Schallenberg, Maurice

    2015-01-01

    To determine the correlations and strength of association between different imaging systems in analyzing the retinal nerve fiber layer (RNFL) of glaucoma patients: optical coherence tomography (OCT), scanning laser polarimetry (SLP) and confocal scanning laser ophthalmoscopy (CSLO). 114 eyes of patients with moderate open angle glaucoma underwent spectral domain OCT (Topcon SD-OCT 2000 and Zeiss Cirrus HD-OCT), SLP (GDx VCC and GDx Pro) and CSLO (Heidelberg Retina Tomograph, HRT 3). Correlation coefficients were calculated between the structural parameters yielded by these examinations. The quantitative relationship between the measured RNFL thickness globally and for the four regions (superior, inferior, nasal, temporal) were evaluated with different regression models for all used imaging systems. The strongest correlation of RNFL measurements was found between devices using the same technology like GDx VCC and GDx Pro as well as Topcon OCT and Cirrus OCT. In glaucoma patients, the strongest associations (R²) were found between RNFL measurements of the two optical coherence tomography devices Topcon OCT and Cirrus OCT (R² = 0.513) and between GDx VCC and GDx Pro (R² = 0.451). The results of the OCTs and GDX Pro also had a strong quantitative relationship (Topcon OCT R² = 0.339 and Cirrus OCT R² = 0.347). GDx VCC and the OCTs showed a mild to moderate association (Topcon OCT R² = 0.207 and Cirrus OCT R² = 0.258). The confocal scanning laser ophthalmoscopy (HRT 3) had the lowest association to all other devices (Topcon OCT R² = 0.254, Cirrus OCT R² = 0.158, GDx Pro R² = 0.086 and GDx VCC R² = 0.1). The measurements of the RNFL in glaucoma patients reveal a high correlation of OCT and GDx devices because OCTs can measure all major retinal layers and SLP can detect nerve fibers allowing a comparison between the results of this devices. However, CSLO by means of HRT topography can only measure height values of the retinal surface but it cannot distinguish

  5. Microstructure and properties of high chrome steel roller after laser surface melting

    International Nuclear Information System (INIS)

    Li Meiyan; Wang Yong; Han Bin; Zhao Weimin; Han Tao

    2009-01-01

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO 2 laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M 23 C 6 carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  6. Volumetry of human taste buds using laser scanning microscopy.

    Science.gov (United States)

    Just, T; Srur, E; Stachs, O; Pau, H W

    2009-10-01

    In vivo laser scanning confocal microscopy is a relatively new, non-invasive method for assessment of oral cavity epithelia. The penetration depth of approximately 200-400 microm allows visualisation of fungiform papillae and their taste buds. This paper describes the technique of in vivo volumetry of human taste buds. Confocal laser scanning microscopy used a diode laser at 670 nm for illumination. Digital laser scanning confocal microscopy equipment consisted of the Heidelberg Retina Tomograph HRTII and the Rostock Cornea Module. Volume scans of fungiform papillae were used for three-dimensional reconstruction of the taste bud. This technique supplied information on taste bud structure and enabled measurement and calculation of taste bud volume. Volumetric data from a 23-year-old man over a nine-day period showed only a small deviation in values. After three to four weeks, phenomenological changes in taste bud structures were found (i.e. a significant increase in volume, followed by disappearance of the taste bud and appearance of a new taste bud). The data obtained indicate the potential application of this non-invasive imaging modality: to evaluate variation of taste bud volume in human fungiform papillae with ageing; to study the effects of chorda tympani nerve transection on taste bud volume; and to demonstrate recovery of taste buds in patients with a severed chorda tympani nerve who show recovery of gustatory sensibility after surgery.

  7. Reduction of Friction of Metals Using Laser-Induced Periodic Surface Nanostructures

    Directory of Open Access Journals (Sweden)

    Zhuo Wang

    2015-10-01

    Full Text Available We report on the effect of femtosecond-laser-induced periodic surface structures (LIPSS on the tribological properties of stainless steel. Uniform periodic nanostructures were produced on AISI 304L (American Iron and Steel Institute steel grade steel surfaces using an 800-nm femtosecond laser. The spatial periods of LIPSS measured by field emission scanning electron microscopy ranged from 530 to 570 nm. The tribological properties of smooth and textured surfaces with periodic nanostructures were investigated using reciprocating ball-on-flat tests against AISI 440C balls under both dry and starved oil lubricated conditions. The friction coefficient of LIPSS covered surfaces has shown a lower value than that of the smooth surface. The induced periodic nanostructures demonstrated marked potential for reducing the friction coefficient compared with the smooth surface.

  8. Experimental and numerical investigation of laser forming of cylindrical surfaces with arbitrary radius of curvature

    Directory of Open Access Journals (Sweden)

    Mehdi Safari

    2016-09-01

    Full Text Available In this work, laser forming of cylindrical surfaces with arbitrary radius of curvature is investigated experimentally and numerically. For laser forming of cylindrical surfaces with arbitrary radius of curvature, a new and comprehensive method is proposed in this paper. This method contains simple linear irradiating lines and using an analytical method, required process parameters for laser forming of a cylindrical surface with a specific radius of curvature is proposed. In this method, laser output power, laser scanning speed and laser beam diameter are selected based on laser machine and process limitations. As in the laser forming of a cylindrical surface, parallel irradiating lines are needed; therefore key parameter for production of a cylindrical surface with a specific radius of curvature is the number of irradiating lines. Hence, in the proposed analytical method, the required number of irradiating lines for production of a cylindrical surface with a specific radius of curvature is suggested. Performance of the proposed method for production of cylindrical surface with a specific radius of curvature is verified with experimental tests. The results show that using proposed analytical method, cylindrical surfaces with any radius of curvature can be produced successfully.

  9. Test field for airborne laser scanning in Finland

    Science.gov (United States)

    Ahokas, E.; Kaartinen, H.; Kukko, A.; Litkey, P.

    2014-11-01

    Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km × 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest-northeast and northwest-southeast, will be flown both in opposite directions.

  10. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  11. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration...... procedure for the sFPI-LDV and investigate the effect of different degrees of laser frequency noise between the FL and the SL on the velocimeter’s performance...

  12. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Science.gov (United States)

    Cunha, Alexandre; Elie, Anne-Marie; Plawinski, Laurent; Serro, Ana Paula; Botelho do Rego, Ana Maria; Almeida, Amélia; Urdaci, Maria C.; Durrieu, Marie-Christine; Vilar, Rui

    2016-01-01

    The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method for endowing dental and orthopedic titanium implants with antibacterial properties, reducing the risk of implant-associated infections without requiring immobilized antibacterial substances, nanoparticles or coatings.

  13. A comparative scanning electron microscopy study between hand instrument, ultrasonic scaling and erbium doped:Yttirum aluminum garnet laser on root surface: A morphological and thermal analysis

    Directory of Open Access Journals (Sweden)

    Mitul Kumar Mishra

    2013-01-01

    Full Text Available Background and Objectives: Scaling and root planing is one of the most commonly used procedures for the treatment of periodontal diseases. Removal of calculus using conventional hand instruments is incomplete and rather time consuming. In search of more efficient and less difficult instrumentation, investigators have proposed lasers as an alternative or as adjuncts to scaling and root planing. Hence, the purpose of the present study was to evaluate the effectiveness of erbium doped: Yttirum aluminum garnet (Er:YAG laser scaling and root planing alone or as an adjunct to hand and ultrasonic instrumentation. Subjects and Methods: A total of 75 freshly extracted periodontally involved single rooted teeth were collected. Teeth were randomly divided into five treatment groups having 15 teeth each: Hand scaling only, ultrasonic scaling only, Er:YAG laser scaling only, hand scaling + Er:YAG laser scaling and ultrasonic scaling + Er:YAG laser scaling. Specimens were subjected to scanning electron microscopy and photographs were evaluated by three examiners who were blinded to the study. Parameters included were remaining calculus index, loss of tooth substance index, roughness loss of tooth substance index, presence or absence of smear layer, thermal damage and any other morphological damage. Results: Er:YAG laser treated specimens showed similar effectiveness in calculus removal to the other test groups whereas tooth substance loss and tooth surface roughness was more on comparison with other groups. Ultrasonic treated specimens showed better results as compared to other groups with different parameters. However, smear layer presence was seen more with hand and ultrasonic groups. Very few laser treated specimens showed thermal damage and morphological change. Interpretation and Conclusion: In our study, ultrasonic scaling specimen have shown root surface clean and practically unaltered. On the other hand, hand instrument have produced a plane surface

  14. Il laser scanning e CloudCUBE per le grotte di Naica

    Directory of Open Access Journals (Sweden)

    Erminio Paolo Canevese

    2008-03-01

    Full Text Available Laser scanning and CloudCube for Naica caves On May 2007, Virtualgeo, a geomatic software development and communication company, took part in the first official expedition to Mexico. The Project, coined "Naica", involves researchers from ten universities, four companies and several laboratories. Virtualgeo carried out the survey by applying laser scanning technology to hypogeal caves covered with selenite crystals. The data was processed using CloudCUBE, a proprietary software designed to manage and model 3D point clouds. The first results of the laser scanning survey of a spectacular “forest of crystals” are presented here.

  15. Il laser scanning e CloudCUBE per le grotte di Naica

    Directory of Open Access Journals (Sweden)

    Erminio Paolo Canevese

    2008-03-01

    Full Text Available Laser scanning and CloudCube for Naica cavesOn May 2007, Virtualgeo, a geomatic software development and communication company, took part in the first official expedition to Mexico. The Project, coined "Naica", involves researchers from ten universities, four companies and several laboratories. Virtualgeo carried out the survey by applying laser scanning technology to hypogeal caves covered with selenite crystals. The data was processed using CloudCUBE, a proprietary software designed to manage and model 3D point clouds. The first results of the laser scanning survey of a spectacular “forest of crystals” are presented here.

  16. Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Lednev, V. N.; Pershin, S. M.; Rudenko, A. A.; Ionin, A. A.

    2018-05-01

    Single-shot IR femtosecond-laser ablation of gold surfaces in ambient air and liquid isopropyl alcohol was studied by scanning electron microscopy characterization of crater topographies and time-resolved optical emission spectroscopy of ablative plumes in regimes, typical for non-filamentary and non-fragmentation laser production of nanoparticle sols. Despite one order of magnitude shorter (few nanoseconds) lifetimes and almost two orders of magnitude lower intensities of the quenched ablative plume emission in the alcohol ambient at the same peak laser fluence, craters for the dry and wet conditions appeared with rather similar nanofoam-like spallative topographies and the same thresholds. These facts envision the underlying surface spallation as one of the basic ablation mechanisms relevant for both dry and wet advanced femtosecond laser surface nano/micro-machining and texturing, as well as for high-throughput femtosecond laser ablative production of colloidal nanoparticles by MHz laser-pulse trains via their direct nanoscale jetting from the nanofoam in air and fluid environments.

  17. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  18. Laser-induced plasma spectrometry: truly a surface analytical tool

    International Nuclear Information System (INIS)

    Vadillo, Jose M.; Laserna, J.

    2004-01-01

    For a long period, analytical applications of laser induced plasma spectrometry (LIPS) have been mainly restricted to overall and quantitative determination of elemental composition in bulk, solid samples. However, introduction of new compact and reliable solid state lasers and technological development in multidimensional intensified detectors have made possible the seeking of new analytical niches for LIPS where its analytical advantages (direct sampling from any material irrespective of its conductive status without sample preparation and with sensitivity adequate for many elements in different matrices) could be fully exploited. In this sense, the field of surface analysis could take advantage from the cited advantages taking into account in addition, the capability of LIPS for spot analysis, line scan, depth-profiling, area analysis and compositional mapping with a single instrument in air at atmospheric pressure. This review paper outlines the fundamental principles of laser-induced plasma emission relevant to sample surface studies, discusses the experimental parameters governing the spatial (lateral and in-depth) resolution in LIPS analysis and presents the applications concerning surface examination

  19. Microstructure and properties of high chrome steel roller after laser surface melting

    Energy Technology Data Exchange (ETDEWEB)

    Li Meiyan, E-mail: lmy_102411@163.com [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China); Wang Yong; Han Bin; Zhao Weimin; Han Tao [College of Electromechanical Engineering, China University of Petroleum, 271 Bei' er Road, Dongying 257061 (China)

    2009-06-15

    Laser surface melting of high chrome steels was achieved by a 5 kW continuous wave CO{sub 2} laser. The microstructure of the laser surface-melted steels was investigated by scanning electron microscopy, transmission electron microscopy and X-ray diffractometry, and the hardness profiles were determined by a Vickers hardness tester. The corrosion behavior in 3.5% NaCl solution was studied by electrochemical corrosion equipment. The large carbides of high chrome steels are completely dissolved and ultrafine dendrites of austenite with submicroscopic M{sub 23}C{sub 6} carbides precipitation are formed in the melted zone. The austenite in the melted zone has a high tempering stability. The corrosion resistance of the laser surface-melted steels is significantly improved due to the dissolution of carbides and the increase of the alloying elements in the solid solution as well as the large amount of austenite.

  20. TESTING OF LAND COVER CLASSIFICATION FROM MULTISPECTRAL AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    K. Bakuła

    2016-06-01

    Full Text Available Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images, spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and

  1. Local annealing of shape memory alloys using laser scanning and computer vision

    Science.gov (United States)

    Hafez, Moustapha; Bellouard, Yves; Sidler, Thomas C.; Clavel, Reymond; Salathe, Rene-Paul

    2000-11-01

    A complete set-up for local annealing of Shape Memory Alloys (SMA) is proposed. Such alloys, when plastically deformed at a given low temperature, have the ability to recover a previously memorized shape simply by heating up to a higher temperature. They find more and more applications in the fields of robotics and micro engineering. There is a tremendous advantage in using local annealing because this process can produce monolithic parts, which have different mechanical behavior at different location of the same body. Using this approach, it is possible to integrate all the functionality of a device within one piece of material. The set-up is based on a 2W-laser diode emitting at 805nm and a scanner head. The laser beam is coupled into an optical fiber of 60(mu) in diameter. The fiber output is focused on the SMA work-piece using a relay lens system with a 1:1 magnification, resulting in a spot diameter of 60(mu) . An imaging system is used to control the position of the laser spot on the sample. In order to displace the spot on the surface a tip/tilt laser scanner is used. The scanner is positioned in a pre-objective configuration and allows a scan field size of more than 10 x 10 mm2. A graphical user interface of the scan field allows the user to quickly set up marks and alter their placement and power density. This is achieved by computer controlling X and Y positions of the scanner as well as the laser diode power. A SMA micro-gripper with a surface area less than 1 mm2 and an opening of the jaws of 200(mu) has been realized using this set-up. It is electrically actuated and a controlled force of 16mN can be applied to hold and release small objects such as graded index micro-lenses at a cycle time of typically 1s.

  2. Simple laser vision sensor calibration for surface profiling applications

    Science.gov (United States)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  3. Bus bays inventory using a terrestrial laser scanning system

    Directory of Open Access Journals (Sweden)

    Bobkowska Katarzyna

    2017-01-01

    Full Text Available This article presents the use of laser scanning technology for the assessment of bus bay geo-location. Ground laser scanning is an effective tool for collecting three-dimensional data. Moreover, the analysis of a point cloud dataset can be a source of a lot of information. The authors have outlined an innovative use of data collection and analysis using the TLS regarding information on the flatness of bus bays. The results were finalized in the form of colour three-dimensional maps of deviations and pavement type.

  4. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  5. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Alexandre [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Elie, Anne-Marie [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Plawinski, Laurent [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Serro, Ana Paula [Instituto Superior Técnico, Universidade de Lisboa, CQE-Centro de Química Estrutural, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Botelho do Rego, Ana Maria [Instituto Superior Técnico, Universidade de Lisboa, CQFM-Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology - IN, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Almeida, Amélia [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Urdaci, Maria C. [Bordeaux University, CBMN UMR 5248, CNRS, Bordeaux Science Agro, 1 Rue du G. de Gaulle, 33170 Gradignan (France); Durrieu, Marie-Christine [Bordeaux University, Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN UMR 5248, CNRS), European Institute of Chemistry and Biology, 2 Rue Robert Escarpit, 33607 Pessac (France); Vilar, Rui, E-mail: rui.vilar@tecnico.ulisboa.pt [Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2016-01-01

    Graphical abstract: - Highlights: • The short-term adhesion of Staphylococcus aureus onto femtosecond laser textured surfaces of titanium was investigated. • The laser textured surfaces consist of laser-induced periodic surface structures (LIPSS) and nanopillars. • The laser treatment enhances the hydrophilicity and the surface free energy of the material. • The laser treatment reduces significantly the adhesion of S. aureus and biofilm formation. • Femtosecond laser surface texturing of titanium is a simple and promising method for endowing dental and orthopedic implants with antibacterial properties. - Abstract: The aim of the present work was to investigate the possibility of using femtosecond laser surface texturing as a method to reduce the colonization of Grade 2 Titanium alloy surfaces by Staphylococcus aureus and the subsequent formation of biofilm. The laser treatments were carried out with a Yb:KYW chirped-pulse-regenerative amplification laser system with a central wavelength of 1030 nm and a pulse duration of 500 fs. Two types of surface textures, consisting of laser-induced periodic surface structures (LIPSS) and nanopillars, were produced. The topography, chemical composition and phase constitution of these surfaces were investigated by atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. Surface wettability was assessed by the sessile drop method using water and diiodomethane as testing liquids. The response of S. aureus put into contact with the laser treated surfaces in controlled conditions was investigated by epifluorescence microscopy and scanning electron microscopy 48 h after cell seeding. The results achieved show that the laser treatment reduces significantly the bacterial adhesion to the surface as well as biofilm formation as compared to a reference polished surfaces and suggest that femtosecond laser texturing is a simple and promising method

  6. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  7. Retinal nerve fiber layer assessment by scanning laser polarimetry and standardized photography

    NARCIS (Netherlands)

    Niessen, A. G.; van den Berg, T. J.; Langerhorst, C. T.; Greve, E. L.

    1996-01-01

    To determine whether, in a clinical setting, scanning laser polarimetry and retinal nerve fiber layer photography provide equivalent information on the retinal nerve fiber layer. We prospectively studied 60 patients with glaucoma or ocular hypertension and 24 healthy subjects. With scanning laser

  8. Laser surface texturing for high control of interference fit joint load bearing

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2017-10-01

    Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.

  9. Laser Ultrasound Spectroscopy Scanning for 3D Printed Parts

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Guendalyn Kendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-04

    One of the challenges of additive manufacturing is quality control due to the possibility of unseen flaws in the final product. The current methods of inspection are lacking in detail, too slow for practical use, or unable to validate internal structure. This report examines the use of laser ultrasound spectroscopy in layer by layer scans of 3D printed parts as they are created. The result is fast and detailed quality control. An additional advantage of this method is the ability to cancel a print as soon as a defect is detected, therefore saving materials and time. This technique, though simple in concept, has been a challenge to implement. I discuss tweaking the 3D printer configuration, and finding the optimal settings for laser scanning small parts made of ABS plastic, as well as the limits of how small of a detail the laser can detect. These settings include the frequency of the ultrasonic transducer, the speed of the laser, and the distance from the laser to the part.

  10. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  11. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  12. RADIOMETRIC CALIBRATION OF AIRBORNE LASER SCANNING DATA

    OpenAIRE

    Pilarska Magdalena

    2016-01-01

    Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 106 4 and 1550 nm) th...

  13. Method for quantifying percentage wood failure in block-shear specimens by a laser scanning profilometer

    Science.gov (United States)

    C. T. Scott; R. Hernandez; C. Frihart; R. Gleisner; T. Tice

    2005-01-01

    A new method for quantifying percentage wood failure of an adhesively bonded block-shear specimen has been developed. This method incorporates a laser displacement gage with an automated two-axis positioning system that functions as a highly sensitive profilometer. The failed specimen is continuously scanned across its width to obtain a surface failure profile. The...

  14. Application of laser scan microscopy in vivo for wound healing characterization

    International Nuclear Information System (INIS)

    Czaika, V; Koch, S; Alborova, A; Sterry, W; Lademann, J

    2010-01-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control

  15. Application of laser scan microscopy in vivo for wound healing characterization

    Science.gov (United States)

    Czaika, V.; Alborova, A.; Sterry, W.; Lademann, J.; Koch, S.

    2010-09-01

    Considering the advancing age of the population, wound healing disturbances are becoming increasingly important in clinical routine. The development of wound healing creams and lotions as well as therapy control require an objective evaluation of the wound healing process, which represents the destruction of the barrier. Therefore, transepidermal water loss measurements are often carried out. These measurements have the disadvantage that they are disturbed by the interstitial fluid, which is located on the surface of chronic wounds and also by water components of the creams and lotions. Additionally, the TEWL measurements are very sensitive to temperature changes and to the anxiety of the volunteers. In the present study, in vivo laser scanning microscopy was used to analyze the reepithelialization and barrier recovery of standardized wounds produced by the suction blister technique. It was demonstrated that this non-invasive, on-line spectroscopic method allows the evaluation of the wound healing process, without any disturbances. It was found that the wound healing starts not only from the edges of the wound, but also out of the hair follicles. The in vivo laser scanning microscopy is well suited to evaluate the efficacy of wound healing creams and for therapy control.

  16. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2016-06-30

    Graphical abstract: - Highlights: • Large areas covered with sub-100 nm LIPSS (HSFL) were manufactured by fs-laser irradiation on titanium surfaces. • Tribological performance of HSFL covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • HSFL on titanium do not endure the tribological tests. • For a beneficial tribological performance, the tribological sample deformation must be smaller than the LIPSS modulation depth. - Abstract: Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  17. Tribological performance of sub-100-nm femtosecond laser-induced periodic surface structures on titanium

    International Nuclear Information System (INIS)

    Bonse, J.; Höhm, S.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Rosenfeld, A.; Krüger, J.

    2016-01-01

    Graphical abstract: - Highlights: • Large areas covered with sub-100 nm LIPSS (HSFL) were manufactured by fs-laser irradiation on titanium surfaces. • Tribological performance of HSFL covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • HSFL on titanium do not endure the tribological tests. • For a beneficial tribological performance, the tribological sample deformation must be smaller than the LIPSS modulation depth. - Abstract: Sub-100-nm laser-induced periodic surface structures (LIPSS) were processed on bulk titanium (Ti) surfaces by femtosecond laser pulse irradiation in air (30 fs pulse duration, 790 nm wavelength). The laser peak fluence, the spatial spot overlap, and the number of overscans were optimized in a sample-scanning geometry in order to obtain large surface areas (5 mm × 5 mm) covered homogeneously by the LIPSS. The laser-processed regions were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). The friction coefficient of the nanostructured surfaces was tested during 1000 cycles under reciprocal sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel, both in paraffin oil and in engine oil used as lubricants. Subsequently, the corresponding wear tracks were qualified by OM, SEM, and energy dispersive X-ray analyses (EDX). The results of the tribological tests are discussed and compared to that obtained for near wavelength-sized fs-LIPSS, processed under somewhat different irradiation conditions. Some constraints for a beneficial effect of LIPSS on the tribological performance are provided.

  18. Localized corrosion evaluation of the ASTM F139 stainless steel marked by laser using scanning vibrating electrode technique, X-ray photoelectron spectroscopy and Mott–Schottky techniques

    International Nuclear Information System (INIS)

    Pieretti, Eurico F.; Manhabosco, Sara M.; Dick, Luís F.P.; Hinder, Steve; Costa, Isolda

    2014-01-01

    Graphical abstract: SEM image of pits found at the centred marked area, where the laser beam focused twice. - Highlights: • The effect of laser engraving on the corrosion resistance of the ASTM F139 was studied. • Scanning vibrating electrode technique was used to identify the anodic zone. • Laser engraving of austenitic stainless steels produces highly defective surfaces. • Laser engraving causes large chemical modification of the surface. • Pitting nucleates at the interface between laser affected and unaffected areas. - Abstract: The effect of laser engraving on the corrosion resistance of ASTM F139 stainless steel (SS) has been investigated by electrochemical techniques. The nucleation of localized corrosion on this biomaterial was evaluated by scanning vibrating electrode technique (SVET) in a phosphate buffered saline solution (PBS) of pH 7.4. The Mott–Schottky approach was used to determine the electronic properties of the passive film, also chemically characterized by X-ray photoelectron spectroscopy (XPS). SVET allowed the identification of the anodic zones on the surface of the SS marked by laser technique that were associated with the heat-affected areas. Metallic drops solidified on the laser marked surface dissolved actively at OCP and favoured the nucleation of crevice corrosion, while at the pitting potential, pits nucleate preferentially on the laser marks. XPS results showed that laser engraving caused large chemical modification of the surface. Mott–Schottky results indicated a more defective oxide layer with a larger number of donors on the laser marked surface comparatively to that without marks

  19. The Influence of Laser Surface Remelting on the Microstructure of EN AC-48000 Cast Alloy

    Directory of Open Access Journals (Sweden)

    Piątkowski J.

    2016-12-01

    Full Text Available Paper present a thermal analysis of laser heating and remelting of EN AC-48000 (EN AC-AlSi12CuNiMg cast alloy used mainly for casting pistons of internal combustion engines. Laser optics were arranged such that the impingement spot size on the material was a circular with beam radius rb changes from 7 to 1500 μm. The laser surface remelting was performed under argon flow. The resulting temperature distribution, cooling rate distribution, temperature gradients and the depth of remelting are related to the laser power density and scanning velocity. The formation of microstructure during solidification after laser surface remelting of tested alloy was explained. Laser treatment of alloy tests were perform by changing the three parameters: the power of the laser beam, radius and crystallization rate. The laser surface remelting needs the selection such selection of the parameters, which leads to a significant disintegration of the structure. This method is able to increase surface hardness, for example in layered castings used for pistons in automotive engines.

  20. Quality Assurance By Laser Scanning And Imaging Techniques

    Science.gov (United States)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  1. Analyses of surface coloration on TiO2 film irradiated with excimer laser

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Qian, H.X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2 . Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2 . The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters

  2. COMPARISON OF RETINAL PATHOLOGY VISUALIZATION IN MULTISPECTRAL SCANNING LASER IMAGING.

    Science.gov (United States)

    Meshi, Amit; Lin, Tiezhu; Dans, Kunny; Chen, Kevin C; Amador, Manuel; Hasenstab, Kyle; Muftuoglu, Ilkay Kilic; Nudleman, Eric; Chao, Daniel; Bartsch, Dirk-Uwe; Freeman, William R

    2018-03-16

    To compare retinal pathology visualization in multispectral scanning laser ophthalmoscope imaging between the Spectralis and Optos devices. This retrospective cross-sectional study included 42 eyes from 30 patients with age-related macular degeneration (19 eyes), diabetic retinopathy (10 eyes), and epiretinal membrane (13 eyes). All patients underwent retinal imaging with a color fundus camera (broad-spectrum white light), the Spectralis HRA-2 system (3-color monochromatic lasers), and the Optos P200 system (2-color monochromatic lasers). The Optos image was cropped to a similar size as the Spectralis image. Seven masked graders marked retinal pathologies in each image within a 5 × 5 grid that included the macula. The average area with detected retinal pathology in all eyes was larger in the Spectralis images compared with Optos images (32.4% larger, P < 0.0001), mainly because of better visualization of epiretinal membrane and retinal hemorrhage. The average detection rate of age-related macular degeneration and diabetic retinopathy pathologies was similar across the three modalities, whereas epiretinal membrane detection rate was significantly higher in the Spectralis images. Spectralis tricolor multispectral scanning laser ophthalmoscope imaging had higher rate of pathology detection primarily because of better epiretinal membrane and retinal hemorrhage visualization compared with Optos bicolor multispectral scanning laser ophthalmoscope imaging.

  3. Surface morphology study of some Cu–Ni reference alloys using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sheta, S.A. [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt); Di Carlo, G.; Ingo, G.M. [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN-CNR), Area della Ricerca Roma 1 Montelibretti, 00016, Monterotondo Scalo, Rome (Italy); Harith, M.A., E-mail: mharithm@niles.edu.eg [National Institute of Laser Enhanced Science (NILES), Cairo University, 12613, Giza (Egypt)

    2016-04-15

    In the present work a detailed study of the surface morphology of purposely-prepared Cu–Ni reference alloys has been performed. These alloys have been prepared via tailored casting methods in order to have samples with same chemical composition and different local chemical enrichments of both metals. A micro-LIBS system for surface spatial scanning was set up based on a second harmonic Nd:YAG laser at 532 nm and using a focusing lens of focal length 7 cm to disclose the local chemical composition variation. Surface morphological scanning was performed for some of the binary Cu–Ni reference alloys to differentiate between chemically homogeneous and heterogeneous alloys. LIBS results were compared with the information of the Scanning Electron Microscope coupled with Energy Dispersive X-ray (SEMEDS) investigation carried out to provide surface local large-area chemical analysis via EDS technique. It has been proved that LIBS is a simple, sensitive and direct technique in the determination of homogeneity or heterogeneity of the sample's surface. The LIBS results have been shown to be more sensitive and accurate in the heterogeneity determination than other used conventional analytical techniques. - Highlights: • Surface LIBS scanning was performed for Cu–Ni reference alloy samples. • LIBS system was based on a 2nd harmonic Nd:YAG laser and a focusing lens (f = 7 cm). • LIBS results were compared with SEM imaging and EDS chemical analysis. • Surface homogeneity and heterogeneity have been differentiated successfully. • LIBS is a sensitive analytical tool in surface metallurgical study.

  4. Efficiency of a concentric matrix track detector surface scanning

    International Nuclear Information System (INIS)

    Bek-Uzarov, Dj.; Nikezic, D.; Kostic, D.; Krstic, D.; Cuknic, O.

    1995-01-01

    Heavy particle ionizing radiation track counting on the surface of a solid state round surface detector is made using the microscope and scanning step by step by a round field of vision. The whole solid state detector surface could not be fully or completely covered by round fields of visions. Therefore detector surface could be divided on the two parts, the larger surface, being under fields of vision, really scanned and no scanned missed or omitted surface. The ratio between omitted and scanned surfaces is so called track scanning efficiency. The knowledge of really counted, or scanned surface is a important value for evaluating the real surface track density an exposed solid state track detector. In the paper a matrix of a concentric field of vision made around the first microscope field of vision placed in center of the round disc of the scanned track detector is proposed. In a such scanning matrix the real scanned surface could be easy calculated and by the microscope scanning made as well. By this way scanned surface is very precisely obtained as well. Precise knowledge of scanned and omitted surface allows to obtain more precise scanning efficiency factor as well as real surface track density, the main parameter in solid state track detection measurements. (author)

  5. Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning

    International Nuclear Information System (INIS)

    Xiao Bin; Zhang Yuwen

    2007-01-01

    A three-dimensional numerical model for multiple-line sintering of loose powders on top of multiple sintered layers under the irradiation of a moving Gaussian laser beam is carried out. The overlaps between vertically deposited layers and adjacent lines which strengthen bonding are taken into account. The energy equation is formulated using the temperature transforming model and solved by the finite volume method. The effects of the number of the existing sintered layers, porosity and initial temperature coupled with the optimal combination laser intensity and scanning velocity are presented. The results show that the liquid pool moves slightly towards the negative scanning direction and the shape of the liquid pool becomes shallower with higher scanning velocity. A higher laser intensity is needed to achieve the required overlaps when the number of the existing sintered layers increases. Increasing porosity or initial temperature enhances the sintering process and thus less intensity is needed for the overlap requirement

  6. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy

    Science.gov (United States)

    Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  7. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    International Nuclear Information System (INIS)

    Sels, Seppe; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve

    2016-01-01

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  8. 3D camera assisted fully automated calibration of scanning laser Doppler vibrometers

    Energy Technology Data Exchange (ETDEWEB)

    Sels, Seppe, E-mail: Seppe.Sels@uantwerpen.be; Ribbens, Bart; Mertens, Luc; Vanlanduit, Steve [Op3Mech Research Group, University of Antwerp, Salesianenlaan 90, 2660 Antwerp (Belgium)

    2016-06-28

    Scanning laser Doppler vibrometers (LDV) are used to measure full-field vibration shapes of products and structures. In most commercially available scanning laser Doppler vibrometer systems the user manually draws a grid of measurement locations on a 2D camera image of the product. The determination of the correct physical measurement locations can be a time consuming and diffcult task. In this paper we present a new methodology for product testing and quality control that integrates 3D imaging techniques with vibration measurements. This procedure allows to test prototypes in a shorter period because physical measurements locations will be located automatically. The proposed methodology uses a 3D time-of-flight camera to measure the location and orientation of the test-object. The 3D image of the time-of-flight camera is then matched with the 3D-CAD model of the object in which measurement locations are pre-defined. A time of flight camera operates strictly in the near infrared spectrum. To improve the signal to noise ratio in the time-of-flight measurement, a time-of-flight camera uses a band filter. As a result of this filter, the laser spot of most laser vibrometers is invisible in the time-of-flight image. Therefore a 2D RGB-camera is used to find the laser-spot of the vibrometer. The laser spot is matched to the 3D image obtained by the time-of-flight camera. Next an automatic calibration procedure is used to aim the laser at the (pre)defined locations. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. Secondly the orientation of the CAD model is known with respect to the laser beam. This information can be used to find the direction of the measured vibration relatively to the surface of the object. With this direction, the vibration measurements can be compared more precisely with numerical

  9. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Kuang, E-mail: z.kuang@liv.ac.uk [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom); Dun Liu; Perrie, Walter; Edwardson, Stuart; Sharp, Martin; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom)

    2009-04-15

    Fast parallel femtosecond laser surface micro-structuring is demonstrated using a spatial light modulator (SLM). The Gratings and Lenses algorithm, which is simple and computationally fast, is used to calculate computer generated holograms (CGHs) producing diffractive multiple beams for the parallel processing. The results show that the finite laser bandwidth can significantly alter the intensity distribution of diffracted beams at higher angles resulting in elongated hole shapes. In addition, by synchronisation of applied CGHs and the scanning system, true 3D micro-structures are created on Ti6Al4V.

  10. Laser ablation of toluene liquid for surface micro-structuring of silica glass

    International Nuclear Information System (INIS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Gumpenberger, T.; Kurosaki, R.

    2006-01-01

    Microstructures with well-defined micropatterns were fabricated on the surfaces of silica glass using a laser-induced backside wet etching (LIBWE) method by diode-pumped solid state (DPSS) UV laser at the repetition rate of 10 kHz. For a demonstration of flexible rapid prototyping as mask-less exposure system, the focused laser beam was directed to the sample by galvanometer-based point scanning system. Additionally, a diagnostics study of plume propagation in the ablated products of toluene solid film was carried out with an intensified CCD (ICCD) camera

  11. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Scanning laser ophthalmoscope design with adaptive optics

    OpenAIRE

    Laut, SP; Jones, SM; Olivier, SS; Werner, JS

    2005-01-01

    A design for a high-resolution scanning instrument is presented for in vivo imaging of the human eye at the cellular scale. This system combines adaptive optics technology with a scanning laser ophthalmoscope (SLO) to image structures with high lateral (∼2 μm) resolution. In this system, the ocular wavefront aberrations that reduce the resolution of conventional SLOs are detected by a Hartmann-Shack wavefront sensor, and compensated with two deformable mirrors in a closed-loop for dynamic cor...

  13. Recommendations for the design and the installation of large laser scanning microscopy systems

    Science.gov (United States)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  14. Surface Modifications with Laser Synthesized Mo Modified Coating

    Science.gov (United States)

    Sun, Lu; Chen, Hao; Liu, Bo

    2013-01-01

    Mg-Cu-Al was first used to improve the surface performance of TA15 titanium alloys by means of laser cladding technique. The synthesis of hard composite coating on TA15 titanium alloy by laser cladding of Mg-Cu-Al-B4C/Mo pre-placed powders was investigated by means of scanning electron microscope, energy dispersive spectrometer and high resolution transmission electron microscope. Experimental results indicated that such composite coating mainly consisted of TiB2, TiB, TiC, Ti3Al and AlCuMg. Compared with TA15 alloy substrate, an improvement of wear resistance was observed for this composite coating due to the actions of fine grain, amorphous and hard phase strengthening.

  15. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J., E-mail: joern.bonse@bam.de [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany); Höhm, S.; Rosenfeld, A. [Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI), Max-Born-Straße 2A, D-12489 Berlin (Germany); Krüger, J. [BAM Bundesanstalt für Materialforschung und -prüfung, Unter den Eichen 87, D-12205 Berlin (Germany)

    2015-05-01

    Graphical abstract: - Highlights: • Large LIPSS covered areas were manufactured by fs-laser irradiation on steel (X30CrMoN15-1) and titanium (Ti). • LIPSS with spatial periods around 500 nm were formed homogeneously on both materials. • Tribological performance of LIPSS covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • LIPSS on titanium significantly reduced the friction coefficient and wear when a fully formulated engine oil was used. - Abstract: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications.

  16. Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel

    International Nuclear Information System (INIS)

    Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J.

    2015-01-01

    Graphical abstract: - Highlights: • Large LIPSS covered areas were manufactured by fs-laser irradiation on steel (X30CrMoN15-1) and titanium (Ti). • LIPSS with spatial periods around 500 nm were formed homogeneously on both materials. • Tribological performance of LIPSS covered areas was qualified in reciprocal sliding tests in two different lubricating oils. • LIPSS on titanium significantly reduced the friction coefficient and wear when a fully formulated engine oil was used. - Abstract: Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications

  17. Early intraocular pressure change after peripheral iridotomy with ultralow fluence pattern scanning laser and Nd:YAG laser in primary angle-closure suspect: Kowloon East Pattern Scanning Laser Study Report No. 3.

    Science.gov (United States)

    Chan, Jeffrey Chi Wang; Choy, Bonnie Nga Kwan; Chan, Orlando Chia Chieh; Li, Kenneth Kai Wang

    2018-02-01

    Our purpose was to assess the early intraocular pressure (IOP) changes of ultralow fluence laser iridotomy using pattern scanning laser followed by neodymium:yttrium-aluminum-gamet (Nd:YAG) laser. This is a prospective interventional study. Thirty-three eyes of 33 adult Chinese primary angle-closure suspect subjects were recruited for prophylactic laser peripheral iridotomy. Sequential laser peripheral iridotomy was performed using pattern scanning laser followed by Nd:YAG laser. Visual acuity (VA) and IOP were measured before treatment, at 1 h, 1 day, 1 week, 1 month, 3 months and 6 months after laser. Laser energy used and complications were documented. Corneal endothelial cell count was examined at baseline and 6 months. Patency of the iridotomy was assessed at each follow-up visit. All subjects achieved patent iridotomy in a single session. The mean energy used was 0.335+/-0.088 J for the pattern scanning laser, and 4.767+/-5.780 mJ for the Nd:YAG laser. The total mean energy was 0.339+/-0.089 J. None of the eyes developed a clinically significant IOP spike (≥ 8 mmHg) at 1 h and 1 day after laser use. Only four eyes developed higher IOP at 1 h and all were ≤3 mmHg compared to baseline. The mean IOP was 13.8+/-2.5 mmHg at 1 h and 11.5+/-2.2 mmHg at 1 day, both were significantly lower than baseline (15.8+/-2.1 mmHg) (P laser compared to baseline (0.23 vs 0.26). There was also no statistically significant difference in mean VA at other follow-up visits compared to baseline. Peripheral iridotomy closure was encountered in two (6.1%) eyes, one at 1 month and another at 6 months follow-up. There were no complications including hyphema, peripheral anterior synechia formation nor prolonged inflammation throughout the follow-up period. There was no significant loss in corneal endothelial cell counts at 6 months (2255+/-490) compared to baseline (2303+/-386) (P = 0.347). Sequential LPI using an ultralow fluence pattern scanning laser

  18. Power Measurements for Microvision, Inc., Aircrew Integrated Helmet System Scanning Laser Helmet-Mounted Display

    National Research Council Canada - National Science Library

    Rash, Clarence

    2002-01-01

    ...) technology based on scanning lasers. Under this program, Microvision, Inc., Bothell, Washington, has developed a scanning laser HMD prototype for use with the Aircrew Integrated Helmet System (AIHS...

  19. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  20. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    International Nuclear Information System (INIS)

    Pfleging, Wilhelm; Kumari, Renu; Besser, Heino; Scharnweber, Tim; Majumdar, Jyotsna Dutta

    2015-01-01

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti_2O_3 phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  1. Codification of scan path parameters and development of perimeter scan strategies for 3D bowl-shaped laser forming

    Science.gov (United States)

    Tavakoli, A.; Naeini, H. Moslemi; Roohi, Amir H.; Gollo, M. Hoseinpour; Shahabad, Sh. Imani

    2018-01-01

    In the 3D laser forming process, developing an appropriate laser scan pattern for producing specimens with high quality and uniformity is critical. This study presents certain principles for developing scan paths. Seven scan path parameters are considered, including: (1) combined linear or curved path; (2) type of combined linear path; (3) order of scan sequences; (4) the position of the start point in each scan; (5) continuous or discontinuous scan path; (6) direction of scan path; and (7) angular arrangement of combined linear scan paths. Regarding these path parameters, ten combined linear scan patterns are presented. Numerical simulations show continuous hexagonal, scan pattern, scanning from outer to inner path, is the optimized. In addition, it is observed the position of the start point and the angular arrangement of scan paths is the most effective path parameters. Also, further experimentations show four sequences due to creat symmetric condition enhance the height of the bowl-shaped products and uniformity. Finally, the optimized hexagonal pattern was compared with the similar circular one. In the hexagonal scan path, distortion value and standard deviation rather to edge height of formed specimen is very low, and the edge height despite of decreasing length of scan path increases significantly compared to the circular scan path. As a result, four-sequence hexagonal scan pattern is proposed as the optimized perimeter scan path to produce bowl-shaped product.

  2. Two-photon excitation laser scanning microscopy of porcine nasal septal cartilage following Nd:YAG laser-mediated stress relaxation

    Science.gov (United States)

    Kim, Charlton C.; Wallace, Vincent P.; Rasouli, Alexandre; Coleno, Mariah L.; Dao, Xavier; Tromberg, Bruce J.; Wong, Brian J.

    2000-05-01

    Laser irradiation of hyaline cartilage result in stable shape changes due to temperature dependent stress relaxation. In this study, we determined the structural changes in chondrocytes within porcine nasal septal cartilage tissue over a 4-day period using a two-photon laser scanning microscope (TPM) following Nd:YAG laser irradiation (lambda equals 1.32 micrometer) using parameters that result in mechanical stress relaxation (6.0 W, 5.4 mm spot diameter). TPM excitation (780 nm) result in induction of fluorescence from endogenous agents such as NADH, NADPH, and flavoproteins in the 400 - 500 nm spectral region. During laser irradiation diffuse reflectance (from a probe HeNe laser, (lambda) equals 632.8 nm), surface temperature, and stress relaxation were measured dynamically. Each specimen received one, two, or three sequential laser exposures (average irradiation times of 5, 6, and 8 seconds). The cartilage reached a peak surface temperature of about 70 degrees Celsius during irradiation. Cartilage denatured in 50% EtOH (20 minutes) was used as a positive control. TPM was performed using a mode-locked 780 nm Titanium:Sapphire (Ti:Al203) beam with a, 63X, 1.2 N.A. water immersion objective (working distance of 200 mm) to detect the fluorescence emission from the chondrocytes. Images of chondrocytes were obtained at depths up to 150 microns (lateral resolution equals 35 micrometer X 35 micrometer). Images were obtained immediately following laser exposure, and also after 4 days in culture. In both cases, the irradiated and non-irradiated specimens do not show any discernible difference in general shape or auto fluorescence. In contrast, positive controls (immersed in 50% ethanol), show markedly increased fluorescence relative to both the native and irradiated specimens, in the cytoplasmic region.

  3. Maritime Laser Scanning as the Source for Spatial Data

    Directory of Open Access Journals (Sweden)

    Szulwic Jakub

    2015-12-01

    Full Text Available The rapid development of scanning technology, especially mobile scanning, gives the possibility to collect spatial data coming from maritime measurement platforms and autonomous manned or unmanned vehicles. Presented solution is derived from the mobile scanning. However we should keep in mind that the specificity of laser scanning at sea and processing collected data should be in the form acceptable in Geographical Information Systems, especially typical for the maritime needs. At the same time we should be aware that data coming from maritime mobile scanning constitutes a new approach to the describing of maritime environment and brings a new perspective that is completely different than air and terrestrial scanning.

  4. Deformation Monitoring of Motorway Underpasses Using Laser Scanning Data

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2012-07-01

    is a Optech Lynx mobile LiDAR. This laser scanner is based on time of flight technology and presents an accuracy of 6 mm in the determination of the geometrical coordinates. This accuracy can be improved to around 1 mm using fitting post-processing techniques and makes this technology very useful for studies related with deformation monitoring. The laser scanner, in comparison with other geodetic techniques as total stations, allows the control of all the structure, including unexpected deformations. Reflective targets are permanently positioned over the small walls of the structure to allow the 3D orientation of the different scans. Two main scans are made for this study, before and after the backfilling process. Backfilling takes about 10 days for the construction companies. The scans need a time of approximately 12 minutes. Construction works do not need to be interrupted during the scans. Point clouds are then post-processed using QT Modeler Software. First, the point cloud is cleaned to use only the data directly related with the structure under study. Then, using the target coordinates, both point clouds are moved to the same coordinate system. Finally, the deformation of the underpass is studied using two algorithms specifically developed using Matlab software. First algorithm fits a geometrical surface to the point cloud of the first scan and evaluates the residuals of both scans for this fitting surface. Differences in the residuals give the deformation map of the structure. Second algorithm takes a portion of the point cloud from the top of the structure, where it is located the joining point between the voussoirs. The joining between two voussoirs shows a height step that in an ideal case must tend to zero. Deformations produced by the loading of the structure are measured as a comparison between the steps before and after the backfilling process. The analysis of the results show as some deformation occurs in the structure in the joining point of the

  5. DEFORMATION MONITORING OF MOTORWAY UNDERPASSES USING LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    I. Puente

    2012-07-01

    deformation monitoring is a Optech Lynx mobile LiDAR. This laser scanner is based on time of flight technology and presents an accuracy of 6 mm in the determination of the geometrical coordinates. This accuracy can be improved to around 1 mm using fitting post-processing techniques and makes this technology very useful for studies related with deformation monitoring. The laser scanner, in comparison with other geodetic techniques as total stations, allows the control of all the structure, including unexpected deformations. Reflective targets are permanently positioned over the small walls of the structure to allow the 3D orientation of the different scans. Two main scans are made for this study, before and after the backfilling process. Backfilling takes about 10 days for the construction companies. The scans need a time of approximately 12 minutes. Construction works do not need to be interrupted during the scans. Point clouds are then post-processed using QT Modeler Software. First, the point cloud is cleaned to use only the data directly related with the structure under study. Then, using the target coordinates, both point clouds are moved to the same coordinate system. Finally, the deformation of the underpass is studied using two algorithms specifically developed using Matlab software. First algorithm fits a geometrical surface to the point cloud of the first scan and evaluates the residuals of both scans for this fitting surface. Differences in the residuals give the deformation map of the structure. Second algorithm takes a portion of the point cloud from the top of the structure, where it is located the joining point between the voussoirs. The joining between two voussoirs shows a height step that in an ideal case must tend to zero. Deformations produced by the loading of the structure are measured as a comparison between the steps before and after the backfilling process. The analysis of the results show as some deformation occurs in the structure in the joining

  6. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

    Science.gov (United States)

    Gregorčič, P.; Šetina-Batič, B.; Hočevar, M.

    2017-12-01

    This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser ( λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

  7. Spectrally enhanced imaging of occlusal surfaces and artificial shallow enamel erosions with a scanning fiber endoscope

    Science.gov (United States)

    Zhang, Liang; Nelson, Leonard Y.; Seibel, Eric J.

    2012-07-01

    An ultrathin scanning fiber endoscope, originally developed for cancer diagnosis, was used to image dental occlusal surfaces as well as shallow artificially induced enamel erosions from human extracted teeth (n=40). Enhanced image resolution of occlusal surfaces was obtained using a short-wavelength 405-nm illumination laser. In addition, artificial erosions of varying depths were also imaged with 405-, 404-, 532-, and 635-nm illumination lasers. Laser-induced autofluorescence images of the teeth using 405-nm illumination were also obtained. Contrast between sound and eroded enamel was quantitatively computed for each imaging modality. For shallow erosions, the image contrast with respect to sound enamel was greatest for the 405-nm reflected image. It was also determined that the increased contrast was in large part due to volume scattering with a smaller component from surface scattering. Furthermore, images obtained with a shallow penetration depth illumination laser (405 nm) provided the greatest detail of surface enamel topography since the reflected light does not contain contributions from light reflected from greater depths within the enamel tissue. Multilayered Monte Carlo simulations were also performed to confirm the experimental results.

  8. Laser surface treatment of S235JRC carbon steel with Co{sub 2}B nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Simsek, Tuncay [Hacettepe Univ., Ankara (Turkey). Dept. of Physics Engineering; Baris, Mustafa [Eti Maden Works General Management, Ankara (Turkey). Dept. of Technology Development; Akkurt, Adnan [Gazi Univ., Ankara (Turkey). Dept. of Industrial Design Engineering

    2017-06-15

    In this study, Co{sub 2}B nanocrystals, which were synthesized in a planetary type mill by using the mechanochemical method, were pre-coated on the surface of S235JRC low carbon steel substrates, and then the surfaces were clad using a CO{sub 2} laser. In the experiments, laser scan speed was kept constant and laser power was specified as the variable parameter. The microstructure and phases of the coatings were investigated by using X-ray diffractometry, scanning electron microscopy, and optical microscopy. The mechanical properties of the coatings were characterized using micro-hardness, ball-on-disc wear, and scratch testing. The thickness of the coatings depending on the laser power was measured in the range 35-71 μm. The hardness and the wear resistance of the coatings were approximately 3 times higher compared to the base metal due to FeN{sub 0.0760}, Fe{sub 15.1}C, FeCo, and B{sub 2}C{sub 5}N{sub 2} phases of the coatings. The most durable coatings against wear were obtained at 174 W and 220 W laser powers.

  9. AN AUTOMATED ROAD ROUGHNESS DETECTION FROM MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2017-05-01

    Full Text Available Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  10. An Automated Road Roughness Detection from Mobile Laser Scanning Data

    Science.gov (United States)

    Kumar, P.; Angelats, E.

    2017-05-01

    Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  11. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  12. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  13. Preliminary testing of the Scanning Laser Environmental Airborne Fluorosensor

    International Nuclear Information System (INIS)

    Brown, C.E.; Marois, R.; Fingas, M.F.; Mullin, J.V.

    2000-01-01

    The installation and testing program of the Scanning Laser Environmental Airborne Fluorosensor (SLEAF) on Environment Canada's DC-3 aircraft was described and the capabilities of the new system were presented. SLEAF is a new generation of laser fluorosensor designed to provide prompt reliable detection and mapping of oil pollution in different marine and terrestrial environments. It consists of a high-power excimer laser, high-resolution range-gated intensified diode-array spectrometer, and a pair of variable speed and angular displacement scanning mirrors. SLEAF is capable of detecting narrow bands of oil that can pile up along the high tide lines of beaches and shorelines, including those that contain ice and snow. It also has the added benefit of providing real-time detection. SLEAF will be declared operational for emergency response personnel when the initial test flight program will be completed in the near future. 9 refs., 2 figs

  14. Automatic segmentation of cell nuclei from confocal laser scanning microscopy images

    International Nuclear Information System (INIS)

    Kelemen, A.; Reist, H.W.

    1997-01-01

    A newly developed experimental method combines the possibility of irradiating more than a thousand cells simultaneous with an efficient colony-forming ability and with the capability of localizing a particle track through a cell nucleus together with the assessment of the energy transfer by digital superposition of the image containing the track with that of the cells. To assess the amount of energy deposition by particles traversing the cell nucleus the intersection lengths of the particle tracks have to be known. Intersection lengths can be obtained by determining the 3D surface contours of the irradiated cell nuclei. Confocal laser scanning microscopy using specific DNA fluorescent dye offers a possible way for the determination of the 3D shape of individual nuclei. Unfortunately, such experiments cannot be performed on living cells. One solution to this problem can be provided by building a statistical model of the shape of the nuclei of the exposed cells. In order to build such a statistical model, a large number of cell nuclei have to be identified and segmented from confocal laser scanning microscopy images. The present paper describes a method to perform this 3D segmentation in an automatic manner in order to create a solid basis for the statistical model. (author) 2 figs., 4 refs

  15. [Results of therapy of children with amblyopia by scanning stimulating laser].

    Science.gov (United States)

    Chentsova, O B; Magaramova, M D; Grechanyĭ, M P

    1997-01-01

    A new effective method for the treatment of amblyopia was used in 113 children: stimulation with ophthalmological SLSO-208A scanning laser by two methods differing by the transmission coefficient and scanning pattern. Good results were attained, the best when laser exposure was combined with traditional therapy for amblyopia and in the patients with the central fixation. The results were assessed by the main parameters of visual functions and the stability of the effect.

  16. Use of laser-scan technology to analyse topography and flow in a weir pool

    Directory of Open Access Journals (Sweden)

    P. E. Dresel

    2012-08-01

    Full Text Available The development of laser-scan techniques provides opportunity for detailed terrain analysis in hydrologic studies. Ground based scans were used to model the ground surface elevation in the area of a stream gauge weir over an area of 240 m2 at a resolution of 0.05 m. The terrain model was used to assess the possibility of flow bypassing the weir and to calculate stream flow during filling of the weir pool, prior to flow through the weir notch. The mapped surface shows a subtle low-lying area at the south end of the structure where flow could bypass the weir. The flow calculations quantify low-flows that do not reach the weir notch during small rain events and flow at the beginning of larger events in the ephemeral stream.

  17. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  18. A New Recursive Filtering Method of Terrestrial Laser Scanning Data to Preserve Ground Surface Information in Steep-Slope Areas

    Directory of Open Access Journals (Sweden)

    Mi-Kyeong Kim

    2017-11-01

    Full Text Available Landslides are one of the critical natural hazards that cause human, infrastructure, and economic losses. Risk of catastrophic losses due to landslides is significant given sprawled urban development near steep slopes and the increasing proximity of large populations to hilly areas. For reducing these losses, a high-resolution digital terrain model (DTM is an essential piece of data for a qualitative or a quantitative investigation of slopes that may lead to landslides. Data acquired by a terrestrial laser scanning (TLS, called a point cloud, has been widely used to generate a DTM, since a TLS is appropriate for detecting small- to large-scale ground features on steep slopes. For an accurate DTM, TLS data should be filtered to remove non-ground points, but most current algorithms for extracting ground points from a point cloud have been developed for airborne laser scanning (ALS data and not TLS data. Moreover, it is a challenging task to generate an accurate DTM from a steep-slope area by using existing algorithms. For these reasons, we developed an algorithm to automatically extract only ground points from the point clouds of steep terrains. Our methodology is focused on TLS datasets and utilizes the adaptive principal component analysis–triangular irregular network (PCA-TIN approach. Our method was applied to two test areas and the results showed that the algorithm can cope well with steep slopes, giving an accurate surface model compared to conventional algorithms. Total accuracy values of the generated DTMs in the form of root mean squared errors are 1.84 cm and 2.13 cm over the areas of 5252 m2 and 1378 m2, respectively. The slope-based adaptive PCA-TIN method demonstrates great potential for TLS-derived DTM construction in steep-slope landscapes.

  19. INCREASE OF READABILITY AND ACCURACY OF 3D MODELS USING FUSION OF CLOSE RANGE PHOTOGRAMMETRY AND LASER SCANNING

    Directory of Open Access Journals (Sweden)

    M. Gašparović

    2012-07-01

    Full Text Available The development of laser scanning technology has opened a new page in geodesy and enabled an entirely new way of presenting data. Products obtained by the method of laser scanning are used in many sciences, as well as in archaeology. It should be noted that 3D models of archaeological artefacts obtained by laser scanning are fully measurable, written in 1:1 scale and have high accuracy. On the other hand, texture and RGB values of the surface of the object obtained by a laser scanner have lower resolution and poorer radiometric characteristics in relation to the textures captured with a digital camera. Scientific research and the goal of this paper are to increase the accuracy and readability of the 3D model with textures obtained with a digital camera. Laser scanning was performed with triangulation scanner of high accuracy, Vivid 9i (Konica Minolta, while for photogrammetric recording digital camera Nikon D90 with a lens of fixed focal length 20 mm, was used. It is important to stress that a posteriori accuracy score of the global registration of point clouds in the form of the standard deviation was ± 0.136 mm while the average distance was only ± 0.080 mm. Also research has proven that the quality projection texture model increases readability. Recording of archaeological artefacts and making their photorealistic 3D model greatly contributes to archaeology as a science, accelerates processing and reconstruction of the findings. It also allows the presentation of findings to the general public, not just to the experts.

  20. Wettability transition of laser textured brass surfaces inside different mediums

    Science.gov (United States)

    Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui

    2018-01-01

    Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.

  1. Unsynchronized scanning with a low-cost laser range finder for real-time range imaging

    Science.gov (United States)

    Hatipoglu, Isa; Nakhmani, Arie

    2017-06-01

    Range imaging plays an essential role in many fields: 3D modeling, robotics, heritage, agriculture, forestry, reverse engineering. One of the most popular range-measuring technologies is laser scanner due to its several advantages: long range, high precision, real-time measurement capabilities, and no dependence on lighting conditions. However, laser scanners are very costly. Their high cost prevents widespread use in applications. Due to the latest developments in technology, now, low-cost, reliable, faster, and light-weight 1D laser range finders (LRFs) are available. A low-cost 1D LRF with a scanning mechanism, providing the ability of laser beam steering for additional dimensions, enables to capture a depth map. In this work, we present an unsynchronized scanning with a low-cost LRF to decrease scanning period and reduce vibrations caused by stop-scan in synchronized scanning. Moreover, we developed an algorithm for alignment of unsynchronized raw data and proposed range image post-processing framework. The proposed technique enables to have a range imaging system for a fraction of the price of its counterparts. The results prove that the proposed method can fulfill the need for a low-cost laser scanning for range imaging for static environments because the most significant limitation of the method is the scanning period which is about 2 minutes for 55,000 range points (resolution of 250x220 image). In contrast, scanning the same image takes around 4 minutes in synchronized scanning. Once faster, longer range, and narrow beam LRFs are available, the methods proposed in this work can produce better results.

  2. An adaptive surface filter for airborne laser scanning point clouds by means of regularization and bending energy

    Science.gov (United States)

    Hu, Han; Ding, Yulin; Zhu, Qing; Wu, Bo; Lin, Hui; Du, Zhiqiang; Zhang, Yeting; Zhang, Yunsheng

    2014-06-01

    The filtering of point clouds is a ubiquitous task in the processing of airborne laser scanning (ALS) data; however, such filtering processes are difficult because of the complex configuration of the terrain features. The classical filtering algorithms rely on the cautious tuning of parameters to handle various landforms. To address the challenge posed by the bundling of different terrain features into a single dataset and to surmount the sensitivity of the parameters, in this study, we propose an adaptive surface filter (ASF) for the classification of ALS point clouds. Based on the principle that the threshold should vary in accordance to the terrain smoothness, the ASF embeds bending energy, which quantitatively depicts the local terrain structure to self-adapt the filter threshold automatically. The ASF employs a step factor to control the data pyramid scheme in which the processing window sizes are reduced progressively, and the ASF gradually interpolates thin plate spline surfaces toward the ground with regularization to handle noise. Using the progressive densification strategy, regularization and self-adaption, both performance improvement and resilience to parameter tuning are achieved. When tested against the benchmark datasets provided by ISPRS, the ASF performs the best in comparison with all other filtering methods, yielding an average total error of 2.85% when optimized and 3.67% when using the same parameter set.

  3. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  4. Terrestrial Laser Scanning-Based Bridge Structural Condition Assessment : Tech Transfer Summaries

    Science.gov (United States)

    2016-05-01

    Problem Statement : While several state departments of transportation (DOTs) have used : terrestrial laser scanning (TLS) in the project planning phase, limited : research has been conducted on employing laser scanners to detect : cracks for bridge c...

  5. Modeling Main Body of Overcrossing Bridge Based on Vehicle-Borne Laser Scanning Data

    Science.gov (United States)

    Chen, X.; Chen, M.; Wei, Z.; Zhong, R.

    2017-09-01

    Vehicle-borne laser scanning (VBLS) is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  6. Investigation into the influence of laser energy input on selective laser melted thin-walled parts by response surface method

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong; Wu, Weihui

    2018-04-01

    Selective laser melting (SLM) provides a feasible way for manufacturing of complex thin-walled parts directly, however, the energy input during SLM process, namely derived from the laser power, scanning speed, layer thickness and scanning space, etc. has great influence on the thin wall's qualities. The aim of this work is to relate the thin wall's parameters (responses), namely track width, surface roughness and hardness to the process parameters considered in this research (laser power, scanning speed and layer thickness) and to find out the optimal manufacturing conditions. Design of experiment (DoE) was used by implementing composite central design to achieve better manufacturing qualities. Mathematical models derived from the statistical analysis were used to establish the relationships between the process parameters and the responses. Also, the effects of process parameters on each response were determined. Then, a numerical optimization was performed to find out the optimal process set at which the quality features are at their desired values. Based on this study, the relationship between process parameters and SLMed thin-walled structure was revealed and thus, the corresponding optimal process parameters can be used to manufactured thin-walled parts with high quality.

  7. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    Science.gov (United States)

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P < 0.05) than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  8. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Sebastiano Serrao

    2014-01-01

    Full Text Available Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS laser platforms in comparison with manual continuous circular capsulorhexis (CCC using environmental scanning electron microscopy (eSEM. Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n=5, and Victus, n=5. In addition, five manual CCC (n=5 were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA. Objective metrics, which included the arithmetic mean deviation of the surface (Sa and the root-mean-square deviation of the surface (Sq, were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P<0.05 than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  9. Scanning Laser Infrared Molecular Spectrometer (SLIMS)

    Science.gov (United States)

    Scott, David C.; Rickey, Kelly; Ksendzov, Alexander; George, Warren P.; Aljabri, Abdullah S.; Steinkraus, Joel M.

    2012-01-01

    This prototype innovation is a novel design that achieves very long, effective laser path lengths that are able to yield ppb (parts per billion) and sub-ppb measurements of trace gases. SLIMS can also accommodate multiple laser channels covering a wide range of wavelengths, resulting in detection of more chemicals of interest. The mechanical design of the mirror cell allows for the large effective path length within a small footprint. The same design provides a robust structure that lends itself to being immune to some of the alignment challenges that similar cells face. By taking a hollow cylinder and by cutting an elliptically or spherically curved surface into its inner wall, the basic geometry of a reflecting ring is created. If the curved, inner surface is diamond-turned and highly polished, a surface that is very highly reflective can be formed. The surface finish can be further improved by adding a thin chrome or gold film over the surface. This creates a high-quality, curved, mirrored surface. A laser beam, which can be injected from a small bore hole in the wall of the cylinder, will be able to make many low-loss bounces around the ring, creating a large optical path length. The reflecting ring operates on the same principle as the Herriott cell. The difference exists in the mirror that doesn't have to be optically aligned, and which has a relatively large, internal surface area that lends itself to either open air or evacuated spectroscopic measurements. This solid, spherical ring mirror removes the possibility of mirror misalignment caused by thermal expansion or vibrations, because there is only a single, solid reflecting surface. Benefits of the reflecting ring come into play when size constraints reduce the size of the system, especially for space missions in which mass is at a premium.

  10. Fluence scan: an unexplored property of a laser beam

    Czech Academy of Sciences Publication Activity Database

    Chalupský, Jaromír; Burian, Tomáš; Hájková, Věra; Juha, Libor; Polcar, T.; Gaudin, J.; Nagasono, M.; Sobierajski, R.; Yabashi, M.; Krzywinski, J.

    2013-01-01

    Roč. 21, č. 22 (2013), s. 26363-26375 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP108/11/1312; GA ČR GA13-28721S; GA MŠk(CZ) LG13029; GA ČR GAP208/10/2302; GA ČR GAP205/11/0571; GA MŠk EE2.3.30.0057 Grant - others:AVČR(CZ) M100101221; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : free-electron lasers (FELs) * UV * EUV * x-ray lasers * laser beam characterization * F-scan Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.525, year: 2013

  11. Land-Based Mobile Laser Scanning Systems: a Review

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  12. scanning speed influence on the physical properties of laser metal

    African Journals Online (AJOL)

    user

    2017-01-01

    Jan 1, 2017 ... result of the preliminary study that produces full dense and pore free deposits. ... Keywords: Additive manufacturing, Laser metal deposition (LMD), Material efficiency, Titanium alloy. 1. ... parts. Ti6Al4V is the most commonly produced titanium alloy ... In this study, effect of laser transverse speed or scanning.

  13. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  14. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  15. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    Science.gov (United States)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  16. Surface modification induced by UV nanosecond Nd:YVO4 laser structuring on biometals

    Science.gov (United States)

    Fiorucci, M. Paula; López, Ana J.; Ramil, Alberto

    2014-08-01

    Laser surface texturing is a promising tool for improving metallic biomaterials performance in dental and orthopedic bone-replacing applications. Laser ablation modifies the topography of bulk material and might alter surface properties that govern the interactions with the surrounding tissue. This paper presents a preliminary evaluation of surface modifications in two biometals, stainless steel 316L and titanium alloy Ti6Al4V by UV nanosecond Nd:YVO4. Scanning electron microscopy of the surface textured by parallel micro-grooves reveals a thin layer of remelted material along the grooves topography. Furthermore, X-ray diffraction allowed us to appreciate a grain refinement of original crystal structure and consequently induced residual strain. Changes in the surface chemistry were determined by means of X-ray photoelectron spectroscopy; in this sense, generalized surface oxidation was observed and characterization of the oxides and other compounds such hydroxyl groups was reported. In case of titanium alloy, oxide layer mainly composed by TiO2 which is a highly biocompatible compound was identified. Furthermore, laser treatment produces an increase in oxide thickness that could improve the corrosion behavior of the metal. Otherwise, laser treatment led to the formation of secondary phases which might be detrimental to physical and biocompatibility properties of the material.

  17. 3D laser scanning in civil engineering - measurements of volume of earth masses

    Science.gov (United States)

    Pawłowicz, J. A.; Szafranko, E.; Harasymiuk, J.

    2018-03-01

    Considering the constant drive to improve and accelerate building processes as well as possible applications of the latest technological achievements in civil engineering practice, the author has proposed to use 3D laser scanning in the construction industry. For example, data achieved through a 3D laser scanning process will facilitate making inventories of parameters of buildings in a very short time, will enable one to check irregularly shaped masses of earth, heavy and practically impossible to calculate precisely using traditional techniques. The other part of the research, performed in the laboratory, consisted of measurements of a model mound of earth. All the measurements were made with a 3D SkanStation C10 laser scanner manufactured by Leica. The data were analyzed. The results suggest that there are great opportunities for using the laser scanning technology in civil engineering

  18. Imaging of Norway spruce early somatic embryos with the ESEM, Cryo-SEM and laser scanning microscope.

    Science.gov (United States)

    Neděla, Vilém; Hřib, Jiří; Havel, Ladislav; Hudec, Jiří; Runštuk, Jiří

    2016-05-01

    This article describes the surface structure of Norway spruce early somatic embryos (ESEs) as a typical culture with asynchronous development. The microstructure of extracellular matrix covering ESEs were observed using the environmental scanning electron microscope as a primary tool and using the scanning electron microscope with cryo attachment and laser electron microscope as a complementary tool allowing our results to be proven independently. The fresh samples were observed in conditions of the air environment of the environmental scanning electron microscope (ESEM) with the pressure from 550Pa to 690Pa and the low temperature of the sample from -18°C to -22°C. The samples were studied using two different types of detector to allow studying either the thin surface structure or material composition. The scanning electron microscope with cryo attachment was used for imaging frozen extracellular matrix microstructure with higher resolution. The combination of both electron microscopy methods was suitable for observation of "native" plant samples, allowing correct evaluation of our results, free of error and artifacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mobile Laser Scanning for Indoor Modelling

    Directory of Open Access Journals (Sweden)

    C. Thomson

    2013-10-01

    Full Text Available The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM. At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  20. Mobile Laser Scanning for Indoor Modelling

    Science.gov (United States)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  1. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, Wessel Willems; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, Hubertus J.M.

    2015-01-01

    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper

  2. A Combination of Stop-and-Go and Electro-Tricycle Laser Scanning Systems for Rural Cadastral Surveys

    Directory of Open Access Journals (Sweden)

    Liang Zhong

    2016-09-01

    Full Text Available Over the past decade, land-based laser scanning technologies have been actively studied and implemented, in response to the need for detailed three-dimensional (3D data about our rural and urban environment for topographic mapping, cadastral mapping, and other street-level features, which are difficult and time consuming to measure by other instruments. For rural areas in China, the complex terrain and poor planning limit the applicability of this advanced technology. To improve the efficiency of rural surveys, we present two SSW (Shoushi and SiWei laser scanning systems for rapid topographic mapping: stop-and-go and electro-tricycle laser scanning systems. The objective of this paper is to evaluate whether laser scanning data collected by the developed SSW systems meet the accuracy requirements for rural homestead mapping. We investigated the performance of the two laser scanning systems on Ma’anshan Village, a small, typical village in Hubei Province, China. To obtain full coverage of the village, we fused the stop-and-go and electro-tricycle laser scanning data. The performance of the developed SSW systems is described by the results of building contours extracted from the fused data against the established building vector map.

  3. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy.

    Science.gov (United States)

    van Berkel, A M; van Marle, J; Groen, A K; Bruno, M J

    2005-08-01

    Endoscopic insertion of plastic biliary endoprostheses is a well-established treatment for obstructive jaundice. The major limitation of this technique is late stent occlusion. In order to compare events involved in biliary stent clogging and identify the distribution of bacteria in unblocked stents, confocal laser scanning (CLS) and scanning electron microscopy (SEM) were carried out on two different stent materials - polyethylene (PE) and hydrophilic polymer-coated polyurethane (HCPC). Ten consecutive patients with postoperative benign biliary strictures were included in the study. Two 10-Fr stents 9 cm in length, one made of PE and the other of HCPC, were inserted. The stents were electively exchanged after 3 months and examined using CLS and SEM. No differences were seen between the two types of stent. The inner stent surface was covered with a uniform amorphous layer. On top of this layer, a biofilm of living and dead bacteria was found, which in most cases was unstructured. The lumen was filled with free-floating colonies of bacteria and crystals, surrounded by mobile laminar structures of mucus. An open network of large dietary fibers was seen in all of the stents. The same clogging events occurred in both PE and HCPC stents. The most remarkable observation was the identification of networks of large dietary fibers, resulting from duodenal reflux, acting as a filter. The build-up of this intraluminal framework of dietary fibers appears to be a major factor contributing to the multifactorial process of stent clogging.

  4. Changes in surface morphology of enamel after Er:YAG laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  5. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.

    Science.gov (United States)

    Zapata, Miguel Angel; Leila, Mahmoud; Teixidor, Teresa; Garcia-Arumi, Jose

    2015-06-01

    To explore the utility of fundus autofluorescence (FAF) and red reflectance (RR) imaging using ultra-wide-field scanning laser ophthalmoscope in choroidal nevi. Retrospective observational case study reviewing clinical data, color, FAF, and RR images of patients with choroidal nevi and comparing the findings. The ultra-wide-field scanning laser ophthalmoscope uses green laser 532 nm and red laser 633 nm that enabled FAF and RR imaging, respectively in separate channels. Superimposition of both images yielded a composite color image. The study included 46 eyes of 45 patients. Nevi were unilateral in 44 patients (98%). Forty-one nevi (89.1%) were located temporally between the macula and the equator. All nevi (100%) were deeply pigmented. The most frequent surface changes were lipofuscin pigments, zones of retinal pigment epithelium atrophy, and retinal pigment epithelium pigment clumps in 31 (67.3%), 18 (39.1%), and 8 eyes (17.3%), respectively. Color photographs were superior to FAF in detecting nevus boundaries and surface changes. Red reflectance correlated strongly with color images, although the nevus boundaries and surface changes were better delineated in RR mode. Red reflectance was superior to FAF in delineating the boundaries and surface changes of the nevus; clear visibility (3+) for RR versus no or poor visibility (0/1+) for FAF. Nevertheless, the areas of retinal pigment epithelium atrophy were better delineated in FAF mode; clear visibility (3+) for FAF versus poor visibility (1+) for FAF. Red reflectance imaging is more sensitive than conventional photography for follow-up of choroidal nevi. Fundus autofluorescence should be considered only as a complementary tool to RR imaging.

  6. Application of 3D Laser Scanning Technology in Complex Rock Foundation Design

    Science.gov (United States)

    Junjie, Ma; Dan, Lu; Zhilong, Liu

    2017-12-01

    Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.

  7. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  8. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    Science.gov (United States)

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  9. Automatic Extraction of Road Markings from Mobile Laser Scanning Data

    Science.gov (United States)

    Ma, H.; Pei, Z.; Wei, Z.; Zhong, R.

    2017-09-01

    Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS) and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS) system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  10. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Science.gov (United States)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  11. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    International Nuclear Information System (INIS)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-01-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics

  12. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer

    International Nuclear Information System (INIS)

    Sohn, H; Yang, J Y; Dutta, D; DeSimio, M; Olson, S; Swenson, E

    2011-01-01

    The paper presents signal and image processing algorithms to automatically detect delamination and disbond in composite plates from wavefield images obtained using a scanning laser Doppler vibrometer (LDV). Lamb waves are excited by a lead zirconate titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using an LDV. From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with hidden delaminations and disbonds. In particular, the frequency–wavenumber (f–k) domain filter and the Laplacian image filter are used to enhance the visibility of defects in the scanned images. Thereafter, a statistical cluster detection algorithm is used to identify the defect location and distinguish damaged specimens from undamaged ones

  13. Effects of surface irregularities on intensity data from laser scanning: an experimental approach.

    Directory of Open Access Journals (Sweden)

    G. Teza

    2008-06-01

    Full Text Available The results of an experiment carried out with the aim to investigate the role of surface irregularities on the intensity data provided by a terrestrial laser scanner (TLS survey are reported here. Depending on surface roughness, the interaction between an electromagnetic wave and microscopic irregularities leads to a Lambertian-like diffusive light reflection, allowing the TLS to receive the backscattered component of the signal. The described experiment consists in a series of TLS-based acquisitions of a rotating artificial target specifically conceived in order to highlight the effects on the intensity data due to surface irregularity. This target is articulated in a flat plate and in an irregular surface, whose macro-roughness has a characteristic length with the same order of the spot size. Results point out the different behavior of the plates. The intensity of the signal backscattered by the planar element decreases if the incidence angle increases, whereas the intensity of the signal backscattered by the irregular surface is almost constant if the incidence angle varies. Since the typical surfaces acquired in a geological/geophysical survey are generally irregular, these results imply that the intensity data can be easily used in order to evaluate the reflectance of the material at the considered wavelength, e.g. for pattern recognition purposes.

  14. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  15. Technical Note: Reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans

    DEFF Research Database (Denmark)

    Villa, Chiara; Buckberry, Jo; Cattaneo, Cristina

    2013-01-01

    Previous studies have reported that the ageing method of Suchey-Brooks (pubic bone) and some of the features applied by Lovejoy et al. and Buckberry-Chamberlain (auricular surface) can be confidently performed on 3D visualizations from CT-scans. In this study, seven observers applied the Suchey......-Brooks and the Buckberry-Chamberlain methods on 3D visualizations based on CT-scans and, for the first time, on 3D visualizations from laser scans. We examined how the bone features can be evaluated on 3D visualizations and whether the different modalities (direct observations of bones, 3D visualization from CT......-observer agreement was obtained in the evaluation of the pubic bone in all modalities. In 3D visualizations of the auricular surfaces, transverse organization and apical changes could be evaluated, although with high inter-observer variability; micro-, macroporosity and surface texture were very difficult to score...

  16. Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope

    International Nuclear Information System (INIS)

    Nakao, M.; Inoue, S.; Oishi, R.; Yoshinobu, T.; Iwasaki, H.

    1995-01-01

    The extracellular pH-distribution of colonies of Saccharomyces cerevisiae (yeast) and Escherichia coli (E. coli) were observed using a newly-developed scanning-laser-beam pH-sensing microscope. Colonies were incubated either on top of agarose plates or between the pH-sensing surface and the agar. In the latter case, colony growth was observed in-situ. The colonies could be observed within a period as short as 8 h for E. coli. The pH-distribution profiles by the colonies were found to be very sharp, in agreement with simulation results. (author)

  17. Influence of laser alloyed layer of carbon steel with tantalum on the structure and surface layer properties

    International Nuclear Information System (INIS)

    Woldan, A.; Kusinski, J.; Kac, S.

    1999-01-01

    The paper describes the microstructure and properties (chemical composition and microhardness) of the surface laser alloyed layer with tantalum. The surface alloyed zones varied in microstructure, zones depth and width, as well as Ta content according to the thickness of the coated layer, bonding paint type and process parameters (power and scanning velocity). The electron microprobe analysis of melts showed that higher tantalum content in the melted zone resulted from the thicker original Ta coating as well as slower scanning velocity. Scanning electron microscopy examinations show that dendritic structure of the melted zone becomes evident when carbon was used as one of the components of the binder, while structure is typically martensitic when silicon containing binder was used for powder deposition. Samples covered with Ta and carbon containing binder showed after laser alloying higher hardness than in case of using silicon containing binder. (author)

  18. Research on the effect of coverage rate on the surface quality in laser direct writing process

    Science.gov (United States)

    Pan, Xuetao; Tu, Dawei

    2017-07-01

    Direct writing technique is usually used in femtosecond laser two-photon micromachining. The size of the scanning step is an important factor affecting the surface quality and machining efficiency of micro devices. According to the mechanism of two-photon polymerization, combining the distribution function of light intensity and the free radical concentration theory, we establish the mathematical model of coverage of solidification unit, then analyze the effect of coverage on the machining quality and efficiency. Using the principle of exposure equivalence, we also obtained the analytic expressions of the relationship among the surface quality characteristic parameters of microdevices and the scanning step, and carried out the numerical simulation and experiment. The results show that the scanning step has little influence on the surface quality of the line when it is much smaller than the size of the solidification unit. However, with increasing scanning step, the smoothness of line surface is reduced rapidly, and the surface quality becomes much worse.

  19. MODELING MAIN BODY OF OVERCROSSING BRIDGE BASED ON VEHICLE-BORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    X. Chen

    2017-09-01

    Full Text Available Vehicle-borne laser scanning (VBLS is widely used to collect urban data for various mapping and modelling systems. This paper proposes a strategy of feature extraction and 3d model reconstruction for main body of overcrossing bridges based on VBLS point clouds. As the bridges usually have a large span, and the clouds data is often affected by obstacles, we have to use round-trip cloud data to avoid missing part. To begin with, pick out the cloud of the bridge body by an interactive clip-box, and group points by scan-line, then sort the points by scanning angle on each scan line. Since the position under the vehicle have a fixed scan-angle, a virtual path can be obtained. Secondly, extract horizontal line segments perpendicular to the virtual path along adjacent scan-lines, and then cluster line segments into long line-strings, which represent the top and bottom edge. Finally, regularize the line-strings and build 3d surface model of the bridge body. Experimental studies have demonstrated its efficiency and accuracy in case of building bridge model. Modelling the stairs at the both end of the bridge will be the direction of the next step.

  20. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  1. Superhydrophylic textures fabricated by femtosecond laser pulses on sub-micro- and nano-crystalline titanium surfaces

    International Nuclear Information System (INIS)

    Kolobov, Yury R; Smolyakova, Marina Yu; Kolobova, Anastasia Yu; Ionin, Andrey A; Kudryashov, Sergey I; Makarov, Sergey V; Saltuganov, Pavel N; Zayarny, Dmitry A; Ligachev, Alexander E

    2014-01-01

    Sub-micron quasi-regular surface textures were fabricated on surfaces of pure titanium (VT1-0) with micro- and ultrafine-grained bulk structures by multiple femtosecond laser pulses in the scanning mode and characterized by scanning electron and atomic force microscopy. Their wetting characteristics acquired for the initial non-textured and as-textured samples, as well as upon ultrasonic and plasma cleaning, demonstrate corresponding drastic changes of the wetting angles from 87° to ≤ 10°, with much more pronounced contamination, cleaning and wetting effects for the ultrafine-grained titanium. (letter)

  2. Shallow Water Measurements Using a Single Green Laser Corrected by Building a Near Water Surface Penetration Model

    Directory of Open Access Journals (Sweden)

    Jianhu Zhao

    2017-04-01

    Full Text Available To reduce the size and cost of an integrated infrared (IR and green airborne LiDAR bathymetry (ALB system, and improve the accuracy of the green ALB system, this study proposes a method to accurately determine water surface and water bottom heights using a single green laser corrected by the near water surface penetration (NWSP model. The factors that influence the NWSP of green laser are likewise analyzed. In addition, an NWSP modeling method is proposed to determine the relationship between NWSP and the suspended sediment concentration (SSC of the surface layer, scanning angle of a laser beam and sensor height. The water surface and water bottom height models are deduced by considering NWSP and using only green laser based on the measurement principle of the IR laser and green laser, as well as employing the relationship between NWSP and the time delay of the surface return of the green laser. Lastly, these methods and models are applied to a practical ALB measurement. Standard deviations of 3.0, 5.3, and 1.3 cm are obtained by the NWSP, water-surface height, and water-bottom height models, respectively. Several beneficial conclusions and recommendations are drawn through the experiments and discussions.

  3. Mobile Laser Scanning along Dieppe coastal cliffs: reliability of the acquired point clouds applied to rockfall assessments

    Science.gov (United States)

    Michoud, Clément; Carrea, Dario; Augereau, Emmanuel; Cancouët, Romain; Costa, Stéphane; Davidson, Robert; Delacourt, Chirstophe; Derron, Marc-Henri; Jaboyedoff, Michel; Letortu, Pauline; Maquaire, Olivier

    2013-04-01

    Dieppe coastal cliffs, in Normandy, France, are mainly formed by sub-horizontal deposits of chalk and flintstone. Largely destabilized by an intense weathering and the Channel sea erosion, small and large rockfalls are regularly observed and contribute to retrogressive cliff processes. During autumn 2012, cliff and intertidal topographies have been acquired with a Terrestrial Laser Scanner (TLS) and a Mobile Laser Scanner (MLS), coupled with seafloor bathymetries realized with a multibeam echosounder (MBES). MLS is a recent development of laser scanning based on the same theoretical principles of aerial LiDAR, but using smaller, cheaper and portable devices. The MLS system, which is composed by an accurate dynamic positioning and orientation (INS) devices and a long range LiDAR, is mounted on a marine vessel; it is then possible to quickly acquire in motion georeferenced LiDAR point clouds with a resolution of about 15 cm. For example, it takes about 1 h to scan of shoreline of 2 km long. MLS is becoming a promising technique supporting erosion and rockfall assessments along the shores of lakes, fjords or seas. In this study, the MLS system used to acquire cliffs and intertidal areas of the Cap d'Ailly was composed by the INS Applanix POS-MV 320 V4 and the LiDAR Optech Ilirs LR. On the same day, three MLS scans with large overlaps (J1, J21 and J3) have been performed at ranges from 600 m at 4 knots (low tide) up to 200 m at 2.2 knots (up tide) with a calm sea at 2.5 Beaufort (small wavelets). Mean scan resolutions go from 26 cm for far scan (J1) to about 8.1 cm for close scan (J3). Moreover, one TLS point cloud on this test site has been acquired with a mean resolution of about 2.3 cm, using a Riegl LMS Z390i. In order to quantify the reliability of the methodology, comparisons between scans have been realized with the software Polyworks™, calculating shortest distances between points of one cloud and the interpolated surface of the reference point cloud. A Mat

  4. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  5. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  6. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    Directory of Open Access Journals (Sweden)

    Mostafa Rabah

    2013-12-01

    The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  7. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    Science.gov (United States)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  8. Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.

    Science.gov (United States)

    Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul

    2014-10-01

    The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.

  9. Enhancing Surface Finish of Additively Manufactured Titanium and Cobalt Chrome Elements Using Laser Based Finishing

    Science.gov (United States)

    Gora, Wojciech S.; Tian, Yingtao; Cabo, Aldara Pan; Ardron, Marcus; Maier, Robert R. J.; Prangnell, Philip; Weston, Nicholas J.; Hand, Duncan P.

    Additive manufacturing (AM) offers the possibility of creating a complex free form object as a single element, which is not possible using traditional mechanical machining. Unfortunately the typically rough surface finish of additively manufactured parts is unsuitable for many applications. As a result AM parts must be post-processed; typically mechanically machined and/or and polished using either chemical or mechanical techniques (both of which have their limitations). Laser based polishing is based on remelting of a very thin surface layer and it offers potential as a highly repeatable, higher speed process capable of selective area polishing, and without any waste problems (no abrasives or liquids). In this paper an in-depth investigation of CW laser polishing of titanium and cobalt chrome AM elements is presented. The impact of different scanning strategies, laser parameters and initial surface condition on the achieved surface finish is evaluated.

  10. Simulation of surface cracks measurement in first walls by laser spot array thermography

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Cuixiang; Qiu, Jinxin; Liu, Haocheng; Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn

    2016-11-01

    The inspection of surface cracks in first walls (FW) is very important to ensure the safe operation of the fusion reactors. In this paper, a new laser excited thermography technique with using laser spot array source is proposed for the surface cracks imaging and evaluation in the FW with an intuitive and non-contact measurement method. Instead of imaging a crack by scanning a single laser spot and superimposing the local discontinuity images with the present laser excited thermography methods, it can inspect a relatively large area at one measurement. It does not only simplify the measurement system and data processing procedure, but also provide a faster measurement for FW. In order to investigate the feasibility of this method, a numerical code based on finite element method (FEM) is developed to simulate the heat flow and the effect of the crack geometry on the thermal wave fields. An imaging method based on the gradient of the thermal images is proposed for crack measurement with the laser spot array thermography method.

  11. Point Cloud Analysis for Uav-Borne Laser Scanning with Horizontally and Vertically Oriented Line Scanners - Concept and First Results

    Science.gov (United States)

    Weinmann, M.; Müller, M. S.; Hillemann, M.; Reydel, N.; Hinz, S.; Jutzi, B.

    2017-08-01

    In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  12. Surface plasmon resonance assisted rapid laser joining of glass

    Energy Technology Data Exchange (ETDEWEB)

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin, E-mail: a.abdolvand@dundee.ac.uk [School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); Wang, Zengbo [School of Electronic Engineering, Bangor University, Bangor LL57 1UT (United Kingdom)

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  13. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Chikarakara, E.; Brabazon, D.

    2016-04-01

    This paper presents laser cladding of NiTi powder on AISI H13 tool steel surface for surface properties enhancement. The cladding process was conducted using Rofin DC-015 diffusion-cooled CO2 laser system with wavelength of 10.6 µm. NiTi powder was pre-placed on H13 tool steel surface. The laser beam was focused with a spot size of 90 µm on the sample surface. Laser parameters were set to 1515 and 1138 W peak power, 18 and 24 % duty cycle and 2300-3500 Hz laser pulse repetition frequency. Hardness properties of the modified layer were characterized by Wilson Hardness tester. Metallographic study and chemical composition were conducted using field emission scanning electron microscope and energy-dispersive X-ray spectrometer (EDXS) analysis. Results showed that hardness of NiTi clad layer increased three times that of the substrate material. The EDXS analysis detected NiTi phase presence in the modified layer up to 9.8 wt%. The metallographic study shows high metallurgical bonding between substrate and modified layer. These findings are significant to both increased hardness and erosion resistance of high-wear-resistant components and elongating their lifetime.

  14. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  15. A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.

    Science.gov (United States)

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2015-02-01

    Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.

  16. Evolution of laser skin resurfacing: from scanning to fractional technology.

    Science.gov (United States)

    Aslam, Arif; Alster, Tina S

    2014-11-01

    Laser skin resurfacing was popularized for photoaged and scarred skin 2 decades ago. Since then, several technologic advancements have led to a new generation of delivery systems that produce excellent clinical outcomes with reduced treatment risks and faster recovery times. To review the evolution of laser skin resurfacing from pulsed and scanned infrared laser technology to the latest techniques of nonablative and ablative fractional photothermolysis. All published literature regarding laser skin resurfacing was analyzed and collated. A comprehensive review of laser skin resurfacing was outlined and future developments in the field of fractionated laser skin treatment were introduced. Laser skin resurfacing has evolved such that excellent clinical outcomes in photodamaged and scarred skin are achieved with rapid wound healing. As newer devices are developed, the applications of this technology will have a dramatic effect on the delivery of medical and aesthetic dermatology.

  17. MULTISPECTRAL AIRBORNE LASER SCANNING - A NEW TREND IN THE DEVELOPMENT OF LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Bakuła Krzysztof

    2015-12-01

    Full Text Available Airborne laser scanning (ALS is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G, near-infrared (NIR and shortwave-infrared (SWIR lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  18. DEVELOPMENT OF SMART PRECISION FOREST IN CONIFER PLANTATION IN JAPAN USING LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    M. Katoh

    2017-10-01

    Full Text Available Currently, the authors are planning to launch a consortium effort toward Japan’s first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  19. Development of Smart Precision Forest in Conifer Plantation in Japan Using Laser Scanning Data

    Science.gov (United States)

    Katoh, M.; Deng, S.; Takenaka, Y.; Cheung, K.; Oono, K.; Horisawa, M.; Hyyppä, J.; Yu, X.; Liang, X.; Wang, Y.

    2017-10-01

    Currently, the authors are planning to launch a consortium effort toward Japan's first smart precision forestry project using laser data and to develop this technology throughout the country. Smart precision forestry information gathered using the Nagano model (laser scanning from aircraft, drone, and backpack) is being developed to improve the sophistication of forest information, reduce labor-intensive work, maintain sustainable timber productivity, and facilitate supply chain management by laser sensing information in collaboration with industry, academia, and government. In this paper, we outline the research project and the technical development situation of unmanned aerial vehicle laser scanning.

  20. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  1. Scanning lidar fluorosensor for remote diagnostic of surfaces

    Science.gov (United States)

    Caneve, Luisa; Colao, Francesco; Fantoni, Roberta; Fiorani, Luca

    2013-08-01

    Scanning hyperspectral systems based on laser induced fluorescence (LIF) have been developed and realized at the ENEA allowing to obtain information of analytical and qualitative interest on different materials by the study of the emission of fluorescence. This technique, for a surface analysis, is fast, remote, not invasive and specific. A new compact setup capable of fast 2D monochromatic images acquisition on up to 90 different spectral channels in the visible/UV range will be presented. It has been recently built with the aim to increase the performances in terms of space resolution, time resolved capabilities and data acquisition speed. Major achievements have been reached by a critical review of the optical design. The results recently obtained with in-situ measurements of interest for applications in the field of cultural heritage will be shown. 2001 Elsevier Science. All rights reserved

  2. ANALYSIS OF TERRESTRIAL LASER SCANNING AND PHOTOGRAMMETRY DATA FOR DOCUMENTATION OF HISTORICAL ARTIFACTS

    Directory of Open Access Journals (Sweden)

    R. A. Kuçak

    2016-10-01

    Full Text Available Historical artifacts living from the past until today exposed to many destructions non-naturally or naturally. For this reason, The protection and documentation studies of Cultural Heritage to inform the next generations are accelerating day by day in the whole world. The preservation of historical artifacts using advanced 3D measurement technologies becomes an efficient tool for mapping solutions. There are many methods for documentation and restoration of historic structures. In addition to traditional methods such as simple hand measurement and tachometry, terrestrial laser scanning is rapidly becoming one of the most commonly used techniques due to its completeness, accuracy and fastness characteristics. This study evaluates terrestrial laser scanning(TLS technology and photogrammetry for documenting the historical artifacts facade data in 3D Environment. PhotoModeler software developed by Eos System was preferred for Photogrammetric method. Leica HDS 6000 laser scanner developed by Leica Geosystems and Cyclone software which is the laser data evaluation software belonging to the company is preferred for Terrestrial Laser Scanning method. Taking into account the results obtained with this software product is intended to provide a contribution to the studies for the documentation of cultural heritage.

  3. Laser surface modification of PEEK

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de Espana 2, 36920 Marin (Spain); Soto, R.; Comesana, R.; Boutinguiza, M.; Val, J. del; Quintero, F.; Lusquinos, F.; Pou, J. [Applied Physics Department, University of Vigo ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Role of laser irradiation wavelength on the surface modification of PEEK (polyether-ether-ketone) was investigated. Black-Right-Pointing-Pointer Adequate processing conditions to improve wettability, roughness, and cell adhesion characteristics are determined. Black-Right-Pointing-Pointer A design of experiments (DOE) methodology was performed. Black-Right-Pointing-Pointer UV (355 nm) radiation is the most promising laser radiation for improving the adhesive surface properties of PEEK. - Abstract: Polyether-ether-ketone (PEEK) is a synthetic thermoplastic polymer with excellent mechanical and chemical properties, which make it attractive for the field of reconstructive surgery. Nevertheless, this material has a poor interfacial biocompatibility due to its large chemical stability which induces poor adhesive bonding properties. The possibilities of enhancing the PEEK adhesive properties by laser treatments have been explored in the past. This paper presents a systematic approach to discern the role of laser irradiation wavelength on the surface modification of PEEK under three laser wavelengths ({lambda} = 1064, 532, and 355 nm) with the aim to determine the most adequate processing conditions to increase the roughness and wettability, the main parameters affecting cell adhesion characteristics of implants. Overall results show that the ultraviolet ({lambda} = 355 nm) laser radiation is the most suitable one to enhance surface wettability of PEEK.

  4. Using a terrestrial laser scanner to measure spatiotemporal surface moisture dynamics

    Science.gov (United States)

    Smit, Y.; Donker, J.; Ruessink, G.

    2017-12-01

    A terrestrial laser scanner (TLS) is an active remote sensing technique that utilizes the round trip time of an emitted laser beam to provide the range between the laser scanner and the backscattering object. It is routinely used for topographic mapping, forest measurements or 3D city models since it derives useful object representations by means of a dense three-dimensional (3D) point cloud. Here, we present a novel application using the returned intensity of the emitted beam to detect surface moisture with the RIEGL VZ-400. Because this TLS operates at a wavelength near a water absorption band (1550 nm), reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Concurrent gravimetric surface moisture samples were collected to calibrate the relation between reflectance and surface moisture. Results reveal the reflectance output is a robust parameter to measure surface moisture from the thin upper layer over its full range from 0% to 25%. The obtained calibration curve of the presented TLS, describing the relationship between reflectance and surface moisture, has a root-mean-square error of 2.7% and a correlation coefficient squared of 0.85. This relation holds to about 60 m from the TLS. Within this distance the TLS typically produces O(10^6-10^7) data points, which we averaged into surface moisture maps with a 1 x 1 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. Concluding, TLS (RIEGL-VZ 400) is a highly suited technique to accurately and robustly measure spatiotemporal surface moisture variations on a coastal beach with high spatial ( 1 x 1 m) and temporal ( 15-30min.) resolution.

  5. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  6. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  7. AUTOMATIC EXTRACTION OF ROAD MARKINGS FROM MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    H. Ma

    2017-09-01

    Full Text Available Road markings as critical feature in high-defination maps, which are Advanced Driver Assistance System (ADAS and self-driving technology required, have important functions in providing guidance and information to moving cars. Mobile laser scanning (MLS system is an effective way to obtain the 3D information of the road surface, including road markings, at highway speeds and at less than traditional survey costs. This paper presents a novel method to automatically extract road markings from MLS point clouds. Ground points are first filtered from raw input point clouds using neighborhood elevation consistency method. The basic assumption of the method is that the road surface is smooth. Points with small elevation-difference between neighborhood are considered to be ground points. Then ground points are partitioned into a set of profiles according to trajectory data. The intensity histogram of points in each profile is generated to find intensity jumps in certain threshold which inversely to laser distance. The separated points are used as seed points to region grow based on intensity so as to obtain road mark of integrity. We use the point cloud template-matching method to refine the road marking candidates via removing the noise clusters with low correlation coefficient. During experiment with a MLS point set of about 2 kilometres in a city center, our method provides a promising solution to the road markings extraction from MLS data.

  8. Laser Surface Treatment of Sintered Alumina

    Science.gov (United States)

    Hagemann, R.; Noelke, C.; Kaierle, S.; Wesling, V.

    Sintered alumina ceramics are used as refractory materials for industrial aluminum furnaces. In this environment the ceramic surface is in permanent contact with molten aluminum resulting in deposition of oxidic material on its surface. Consequently, a lower volume capacity as well as thermal efficiency of the furnaces follows. To reduce oxidic adherence of the ceramic material, two laser-based surface treatment processes were investigated: a powder- based single-step laser cladding and a laser surface remelting. Main objective is to achieve an improved surface quality of the ceramic material considering the industrial requirements as a high process speed.

  9. Simulation of surface profile formation in oxygen laser cutting of mild steel due to combustion cycles

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, G V; Kovalev, O B [Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch of Russian Academy of Sciences, Institutskaya Str 4/1, Novosibirsk, 630090 (Russian Federation)

    2009-09-21

    A physicomathematical model of cyclic iron combustion in an oxygen flow during oxygen laser cutting of metal sheets is developed. The combustion front is set into motion by focused laser radiation and a heterogeneous oxidation reaction in oxygen. The burning rate is limited by oxygen supply from the gas phase towards the metal surface, and the interface motion depends on the local temperature. A 3D numerical simulation predicts wavy structures on the metal surface; their linear sizes depend on the scanning speed of the laser beam, the thickness of the produced liquid oxide film and the parameters of the oxygen jet flow. Simulation results help in understanding the mechanism of striation formation during oxygen gas-laser cutting of mild steel and are in qualitative agreement with experimental findings.

  10. A STUDY ABOUT TERRESTRIAL LASER SCANNING FOR RECONSTRUCTION OF PRECAST CONCRETE TO SUPPORT QLASSIC ASSESSMENT

    Directory of Open Access Journals (Sweden)

    M. A. Aziz

    2016-09-01

    Full Text Available Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC. Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape. To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  11. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    Science.gov (United States)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  12. Laser Annealing on the Surface Treatment of Thin Super Elastic NiTi Wire

    Science.gov (United States)

    Samal, S.; Heller, L.; Brajer, J.; Tyc, O.; Kadrevek, L.; Sittner, P.

    2018-05-01

    Here the aim of this research is annealing the surface of NiTi wire for shape memory alloy, super-elastic wire by solid state laser beam. The laser surface treatment was carried out on the NiTi wire locally with fast, selective, surface heat treatment that enables precisely tune the localized material properties without any precipitation. Both as drawn (hard) and straight annealing NiTi wire were considered for laser annealing with input power 3 W, with precisely focusing the laser beam height 14.3 % of the Z-axis with a spot size of 1 mm. However, straight annealing wire is more interest due to its low temperature shape setting behavior and used by companies for stent materials. The variable parameter such as speed of the laser scanning and tensile stress on the NiTi wire were optimized to observe the effect of laser response on the sample. Superelastic, straight annealed NiTi wires (d: 0.10 mm) were held prestrained at the end of the superelastic plateau (ε: 5 ∼6.5 %) above the superelastic region by a tensile machine ( Mitter: miniature testing rig) at room temperature (RT). Simultaneously, the hardness of the wires along the cross-section was performed by nano-indentation (NI) method. The hardness of the NiTi wire corresponds to phase changes were correlated with NI test. The laser induced NiTi wire shows better fatigue performance with improved 6500 cycles.

  13. Three-Dimensional Digital Documentation of Heritage Sites Using Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry

    Science.gov (United States)

    Jo, Y. H.; Kim, J. Y.

    2017-08-01

    Three-dimensional digital documentation is an important technique for the maintenance and monitoring of cultural heritage sites. This study focuses on the three-dimensional digital documentation of the Magoksa Temple, Republic of Korea, using a combination of terrestrial laser scanning and unmanned aerial vehicle (UAV) photogrammetry. Terrestrial laser scanning mostly acquired the vertical geometry of the buildings. In addition, the digital orthoimage produced by UAV photogrammetry had higher horizontal data acquisition rate than that produced by terrestrial laser scanning. Thus, the scanning and UAV photogrammetry were merged by matching 20 corresponding points and an absolute coordinate system was established using seven ground control points. The final, complete threedimensional shape had perfect horizontal and vertical geometries. This study demonstrates the potential of integrating terrestrial laser scanning and UAV photogrammetry for three-dimensional digital documentation. This new technique is expected to contribute to the three-dimensional digital documentation and spatial analysis of cultural heritage sites.

  14. Laser surface treatment of polyamide and NiTi alloy and the effects on mesenchymal stem cell response

    Science.gov (United States)

    Waugh, D. G.; Lawrence, J.; Shukla, P.; Chan, C.; Hussain, I.; Man, H. C.; Smith, G. C.

    2015-07-01

    Mesenchymal stem cells (MSCs) are known to play important roles in development, post-natal growth, repair, and regeneration of mesenchymal tissues. What is more, surface treatments are widely reported to affect the biomimetic nature of materials. This paper will detail, discuss and compare laser surface treatment of polyamide (Polyamide 6,6), using a 60 W CO2 laser, and NiTi alloy, using a 100 W fiber laser, and the effects of these treatments on mesenchymal stem cell response. The surface morphology and composition of the polyamide and NiTi alloy were studied by scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS), respectively. MSC cell morphology cell counting and viability measurements were done by employing a haemocytometer and MTT colorimetric assay. The success of enhanced adhesion and spreading of the MSCs on each of the laser surface treated samples, when compared to as-received samples, is evidenced in this work.

  15. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  16. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    Science.gov (United States)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  17. INITIAL TESTS AND ACCURACY ASSESMENT OF A COMPACT MOBILE LASER SCANNING SYSTEM

    Directory of Open Access Journals (Sweden)

    K. Julge

    2016-06-01

    Full Text Available Mobile laser scanning (MLS is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  18. Determination of foveal location using scanning laser polarimetry.

    Science.gov (United States)

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  19. Scanning or treating device for smooth curved surface

    International Nuclear Information System (INIS)

    Gemma, A.

    1988-01-01

    This robot for scanning or treating a smooth curved surface is made by a vehicle moving predeterminately on the surface, this vehicle having mobil grips. A support arm is attached to the vehicle by a swivel and fixed at the center of the curvature. It is orientable parralel to the axes of legs of the vehicle near the center. Scanning or treatment systems for the surface are fixed on the vehicle. Drives and control systems for the vehicle and treatment or scanning system are provided [fr

  20. POINT CLOUD ANALYSIS FOR UAV-BORNE LASER SCANNING WITH HORIZONTALLY AND VERTICALLY ORIENTED LINE SCANNERS – CONCEPT AND FIRST RESULTS

    Directory of Open Access Journals (Sweden)

    M. Weinmann

    2017-08-01

    Full Text Available In this paper, we focus on UAV-borne laser scanning with the objective of densely sampling object surfaces in the local surrounding of the UAV. In this regard, using a line scanner which scans along the vertical direction and perpendicular to the flight direction results in a point cloud with low point density if the UAV moves fast. Using a line scanner which scans along the horizontal direction only delivers data corresponding to the altitude of the UAV and thus a low scene coverage. For these reasons, we present a concept and a system for UAV-borne laser scanning using multiple line scanners. Our system consists of a quadcopter equipped with horizontally and vertically oriented line scanners. We demonstrate the capabilities of our system by presenting first results obtained for a flight within an outdoor scene. Thereby, we use a downsampling of the original point cloud and different neighborhood types to extract fundamental geometric features which in turn can be used for scene interpretation with respect to linear, planar or volumetric structures.

  1. Confocal laser scanning microscopy in study of bone calcification

    Science.gov (United States)

    Nishikawa, Tetsunari; Kokubu, Mayu; Kato, Hirohito; Imai, Koichi; Tanaka, Akio

    2012-12-01

    Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 μm/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  2. The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    Directory of Open Access Journals (Sweden)

    Pakieła W.

    2016-09-01

    Full Text Available In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m.

  3. Error analysis of motion correction method for laser scanning of moving objects

    Science.gov (United States)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  4. The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers

    Science.gov (United States)

    Pakieła, W.; Tański, T.; Brytan, Z.; Labisz, K.

    2016-04-01

    The goal of this paper was focused on investigation of microstructure and properties of surface layer produced during laser surface treatment of aluminium alloy by high-power fibre laser. The performed laser treatment involves remelting and feeding of Inconel 625 powder into the aluminium surface. As a base metal was used aluminium alloy AlMg5Si2Mn. The Inconel powder was injected into the melt pool and delivered by a vacuum feeder at a constant rate of 4.5 g/min. The size of Inconel alloying powder was in the range 60-130 µm. In order to remelt the aluminium alloy surface, the fibre laser of 3 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 m/min. Based on performed investigations, it was possible to obtain the layer consisting of heat-affected zone, transition zone and remelted zone, without cracks and defects having much higher hardness value compared to the non-alloyed material.

  5. AFM study of the effects of laser surface remelting on the morphology of Al-Fe aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pariona, Moises Meza, E-mail: mmpariona@uepg.br [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Teleginski, Viviane; Santos, Kelly dos; Leandro Ribeiro dos Santos, Everton; Aparecida de Oliveira Camargo de Lima, Angela [Graduate Program in Engineering and Materials Science, State University of Ponta Grossa (UEPG), Ponta Grossa 84010-919, PR (Brazil); Riva, Rudimar [Department of Aerospace Science and Technology, Institute for Advanced Studies (IEAv), Sao Jose dos Campos 12227-000, SP (Brazil)

    2012-12-15

    Laser beam welding has recently been incorporated into the fabrication process of aircraft and automobile structures. Surface roughness is an important parameter of product quality that strongly affects the performance of mechanical parts, as well as production costs. This parameter influences the mechanical properties such as fatigue behavior, corrosion resistance, creep life, etc., and other functional characteristics such as friction, wear, light reflection, heat transmission, lubrification, electrical conductivity, etc. The effects of laser surface remelting (LSR) on the morphology of Al-Fe aerospace alloys were examined before and after surface treatments, using optical microscopy (OM), scanning electron microscopy (SEM), low-angle X-ray diffraction (LA-XRD), atomic force microscopy (AFM), microhardness measurements (Vickers hardness), and cyclic voltammetry. This analysis was performed on both laser-treated and untreated sanded surfaces, revealing significant differences. The LA-XRD analysis revealed the presence of alumina, simple metals and metastable intermetallic phases, which considerably improved the microhardness of laser-remelted surfaces. The morphology produced by laser surface remelting enhanced the microstructure of the Al-Fe alloys by reducing their roughness and increasing their hardness. The treated surfaces showed passivity and stability characteristics in the electrolytic medium employed in this study. - Highlights: Black-Right-Pointing-Pointer The samples laser-treated and untreated showed significant differences. Black-Right-Pointing-Pointer The La-XRD revealed the presence of alumina in Al-1.5 wt.% Fe. Black-Right-Pointing-Pointer The laser-treated reducing the roughness and increasing the hardness. Black-Right-Pointing-Pointer The laser-treated surfaces showed characteristic passive in the electrolytic medium. Black-Right-Pointing-Pointer The laser-treated is a promising technique for applications technological.

  6. Function analysis of working integrated circuit with scanning laser microscope. Laser kenbikyo ni yoru IC no dosa kansatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ode, T. (Lasertec Corp., Kanagawa (Japan))

    1992-10-20

    By scanning a laser light, the reaction of a specimen against the light is detected in some means. The optical effect can be visualized by displaying that on the CRT or the like in synchronism with the scanning. Among these, an image formed and visualized by internal photoelectric effect by light is called OBIC image, and chiefly used for evaluating and analyzing semiconductor devices. Observing this OBIC image by a high speed scanning laser microscope has been spotlighted these days as an effective means for observing the state of p-n junction of an IC in operation. This paper descries the principle, the observing method, the detecting circuit, etc. of the semiconductor observing method using a laser microscope. Further, actual examples of detecting defects of an IC by means of OBIC image are shown. As for the problem, since leak parts are displayed as negative contrast in the OBIC image to affect finding work of leak part, the necessity of improvement is pointed out. 39 refs., 11 figs.

  7. Surface morphology of laser superheated Pb(100)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.H.; Lin, B.; Elsayed-Ali, H.E.

    1999-11-01

    The change in the surface vacancy density after heating of Pb(100) with {approximately}100 ps laser pulses is investigated using reflection high-energy electron diffraction. The surface vacancy density remains unchanged when the surface is superheated without melting. However, when the laser fluence is high enough to cause surface melting, the surface vacancy density increases. This increase in vacancy density is attributed to fast diffusion of atoms in the liquid film formed on Pb(100) during laser melting.

  8. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  9. Leptomeningeal angiomatosis of the left occipital surface detected by CT scan

    International Nuclear Information System (INIS)

    Niiro, Masaki; Mihara, Tadahiro; Maeda, Yoshiki; Awa, Hiroshi; Kadota, Koki; Asakura, Tetsuhiko

    1982-01-01

    A case of left occipital leptomeningeal angiomatosis was reported. The patient was a 12-year-old boy who had episodes of severe vascular type headache accompanied by transient right homonymous hemianopsia. CT scan showed localized superficial high density area in the left occipital pole. Remarkable enhancement of the lower and inner surface of the left occipital lobe was demonstrated. Angiography showed poor filling of the distal portion of the left posterior cerebral artery. Skull tomograms showed linear calcifications in the left occipital region. Brain scan showed increased RI uptake in the left occipital region. During operation, the surface of the left occipital lobe was covered by excessive, fine, vascular networks which extended over the arachnoid membrane. The abnormal vessels were cauterized by a CO 2 laser as throughly as possible. The occipital pole, felt gritty. Histologically, the abnormal vessels had spread into the subarachnoid space and were predominantly veins with thin and enlarged walls. The abnormal vessels followed the leptomeninges in the sulci of the cerebral cortex. Underneath the abnormal vessels, in the external layers of the cerebral cortex, calcium deposits were scattered and gliosis and degeneration of the ganglion cells were observed. The lesion was comparable with leptomeningeal angiomatosis. Though the pathological findings of the specimen, CT findings, and brain scan findings were extremely similar to those of Sturge-Weber disease, in this case, the typical clinical and roentgenographic findings of Sturge-Weber disease were all absent. (author)

  10. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Czaniková, Klaudia; Ilčíková, Markéta; Mičušík, Matej; Kasák, Peter; Mosnáček, Jaroslav; Omastová, Mária; Krupa, Igor; Pavlova, Ewa; Chorvát Jr, Dušan

    2013-01-01

    The photo-actuation behavior of nanocomposites based on ethylene–vinylacetate copolymer (EVA) and styrene–isoprene–styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height. (paper)

  11. Effects of Laser Operating Parameters on Piezoelectric Substrates Micromachining with Picosecond Laser

    Directory of Open Access Journals (Sweden)

    Lamia EL Fissi

    2014-12-01

    Full Text Available Ten picoseconds (200 kHz ultrafast laser micro-structuring of piezoelectric substrates including AT-cut quartz, Lithium Niobate and Lithium Tantalate have been studied for the purpose of piezoelectric devices application ranging from surface acoustic wave devices, e.g., bandpass filters, to photonic devices such as optical waveguides and holograms. The study examines the impact of changing several laser parameters on the resulting microstructural shapes and morphology. The micromachining rate has been observed to be strongly dependent on the operating parameters, such as the pulse fluence, the scan speed and the scan number. The results specifically indicate that ablation at low fluence and low speed scan tends to form a U-shaped cross-section, while a V-shaped profile can be obtained by using a high fluence and a high scan speed. The evolution of surface morphology revealed that laser pulses overlap in a range around 93% for both Lithium Niobate (LiNbO3 and Lithium Tantalate (LiTaO3 and 98% for AT-cut quartz can help to achieve optimal residual surface roughness.

  12. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  13. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  14. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    Science.gov (United States)

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  15. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  16. Fast Edge Detection and Segmentation of Terrestrial Laser Scans Through Normal Variation Analysis

    Science.gov (United States)

    Che, E.; Olsen, M. J.

    2017-09-01

    Terrestrial Laser Scanning (TLS) utilizes light detection and ranging (lidar) to effectively and efficiently acquire point cloud data for a wide variety of applications. Segmentation is a common procedure of post-processing to group the point cloud into a number of clusters to simplify the data for the sequential modelling and analysis needed for most applications. This paper presents a novel method to rapidly segment TLS data based on edge detection and region growing. First, by computing the projected incidence angles and performing the normal variation analysis, the silhouette edges and intersection edges are separated from the smooth surfaces. Then a modified region growing algorithm groups the points lying on the same smooth surface. The proposed method efficiently exploits the gridded scan pattern utilized during acquisition of TLS data from most sensors and takes advantage of parallel programming to process approximately 1 million points per second. Moreover, the proposed segmentation does not require estimation of the normal at each point, which limits the errors in normal estimation propagating to segmentation. Both an indoor and outdoor scene are used for an experiment to demonstrate and discuss the effectiveness and robustness of the proposed segmentation method.

  17. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  18. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    International Nuclear Information System (INIS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-01-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm 2 and 4 J/cm 2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm 2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm 2 , laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the

  19. Forest Resource Measurements by Combination of Terrestrial Laser Scanning and Drone Use

    Science.gov (United States)

    Cheung, K.; Katoh, M.; Horisawa, M.

    2017-10-01

    Using terrestrial laser scanning (TLS), forest attributes such as diameter at breast height (DBH) and tree location can be measured accurately. However, due to low penetration of laser pulses to tree tops, tree height measurements are typically underestimated. In this study, data acquired by TLS and drones were combined; DBH and tree locations were determined by TLS, and tree heights were measured by drone use. The average tree height error and root mean square error (RMSE) of tree height were 0.8 and 1.2 m, respectively, for the combined method, and -0.4 and 1.7 m using TLS alone. The tree height difference was compared using airborne laser scanning (ALS). Furthermore, a method to acquire 100 % tree detection rate based on TLS data is suggested in this study.

  20. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  1. Tailored topography control of biopolymer surfaces by ultrafast lasers for cell–substrate studies

    International Nuclear Information System (INIS)

    Rusen, L.; Cazan, M.; Mustaciosu, C.; Filipescu, M.; Sandel, S.; Zamfirescu, M.; Dinca, V.; Dinescu, M.

    2014-01-01

    Nowadays, the culture surfaces used for in vitro testing must be capable of possessing an improved interface for cell interactions and adhesion. For this reason, the materials used need to have an appropriate chemistry and architecture of its surface, resembling to the extracellular matrix. Within this context, in this work we combined the advantages of natural biopolymer characteristics (chitosan) with the flexibility in surface texturing by ultrafast laser for creating functional microstructured surfaces for cell–substrate in vitro studies. A Ti:Sapphire femtosecond laser irradiation (λ = 775 nm and 387 nm) was used for tailoring surface morphological characteristics of chitosan based films (i.e. polymer “bubbles”, “fingertips” and “sponge-like” structures). These structures were investigated by scanning electron microscopy and atomic force microscopy. The morphology of the structures obtained was correlated with the response of oligodendrocytes cells line. In vitro tests on the patterned surface showed that early cell growth was conditioned by the microtopography and indicate possible uses of the structures in biomedical applications.

  2. Experimental validation of a newly designed 6 degrees of freedom scanning laser head: Application to three-dimensional beam structure

    International Nuclear Information System (INIS)

    Di Maio, D.; Copertaro, E.

    2013-01-01

    A new scanning laser head is designed to use single Laser Doppler Vibrometer (LDV) for performing measurements up to 6 degrees of freedom (DOF) at a target. The scanning head is supported by a rotating hollow shaft, which allows the laser beam to travel up to the scanning head from an opposite direction where an LDV is set up. The scanning head is made of a set of two mirrors, which deflects the laser beam with an angle so that the rotation of the scanning head produces a conical scan. When measurements are performed at the focal point of the conical scan then three translational vibration components can be measured, otherwise the very small circle scan, before and after the focal point, can measure up to 6 degrees of freedom, including three translations and three rotations. This paper presents the 6DOF scanning head and the measurements of 3D operational deflection shapes of a test structure

  3. Scanning electron microscopical examination of the impact of laser patterning on microscopic inhomogeneities of Cu(In,Ga)(Se,S)2 absorbers produced by rapid thermal processing

    International Nuclear Information System (INIS)

    Künecke, U.; Hölzing, A.; Jost, S.; Lechner, R.; Vogt, H.; Heiß, A.; Palm, J.; Hock, R.; Wellmann, P.

    2013-01-01

    Laser scribing of the Mo back electrode is commonly applied to define the cell structure of Cu(In,Ga)(Se,S) 2 (CIGSSe) thin film solar cells. The patterning process was performed on laboratory samples using ns and ps pulse length laser processes. After structuring, CIGSSe absorbers were processed by rapid thermal processing (RTP) of stacked elemental layer precursors. Microscopic inhomogeneities were investigated on different sample positions. For samples structured with ns pulse, the absorber morphology in the laser line vicinity is different as compared to the morphology in the unstructured cell area. Scanning electron microscopy and energy-dispersive X-ray spectroscopy show significant changes in the absorber grain size and chemical composition. Close to the laser line, the typically observed Ga accumulation on the back contact is less pronounced and more Ga is incorporated closer to the surface leading to a smaller grain size. The observed changes are attributed to partial damaging of a diffusion barrier between glass and Mo induced by the ns laser process, which allows diffusion of sodium from the glass substrate into the absorber during RTP. The enhanced Ga incorporation closer to the surface is an indication for the influence of sodium on the local phase development during RTP. The damages of the diffusion barrier can be effectively prevented by the application of a ps laser scribing process. CIGSSe absorbers processed on samples structured with ps pulse length do not show the described microscopic inhomogeneities around the laser line. - Highlights: ► Scanning electron microscopy on Cu(In,Ga)(Se,S) 2 solar cell absorbers ► Laser patterning with ns laser pulse damages the sodium diffusion barrier. ► Improved laser patterning with ps laser pulse leaves diffusion barrier intact. ► Additional sodium changes phase development during absorber formation. ► Gallium content is increased at surface and decreased at backside of absorber

  4. Semi-Automatic Registration of Airborne and Terrestrial Laser Scanning Data Using Building Corner Matching with Boundaries as Reliability Check

    Directory of Open Access Journals (Sweden)

    Liang Cheng

    2013-11-01

    Full Text Available Data registration is a prerequisite for the integration of multi-platform laser scanning in various applications. A new approach is proposed for the semi-automatic registration of airborne and terrestrial laser scanning data with buildings without eaves. Firstly, an automatic calculation procedure for thresholds in density of projected points (DoPP method is introduced to extract boundary segments from terrestrial laser scanning data. A new algorithm, using a self-extending procedure, is developed to recover the extracted boundary segments, which then intersect to form the corners of buildings. The building corners extracted from airborne and terrestrial laser scanning are reliably matched through an automatic iterative process in which boundaries from two datasets are compared for the reliability check. The experimental results illustrate that the proposed approach provides both high reliability and high geometric accuracy (average error of 0.44 m/0.15 m in horizontal/vertical direction for corresponding building corners for the final registration of airborne laser scanning (ALS and tripod mounted terrestrial laser scanning (TLS data.

  5. An Improved Method of Mitigating Laser Induced Surface Damage Growth in Fused Silica Using a Rastered, Pulsed CO2 Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Guss, G M; Nostrand, M J; Wegner, P L

    2010-10-21

    A new method of mitigating (arresting) the growth of large (>200 m diameter and depth) laser induced surface damage on fused silica has been developed that successfully addresses several issues encountered with our previously-reported large site mitigation technique. As in the previous work, a tightly-focused 10.6 {micro}m CO{sub 2} laser spot is scanned over the damage site by galvanometer steering mirrors. In contrast to the previous work, the laser is pulsed instead of CW, with the pulse length and repetition frequency chosen to allow substantial cooling between pulses. This cooling has the important effect of reducing the heat-affected zone capable of supporting thermo-capillary flow from scale lengths on the order of the overall scan pattern to scale lengths on the order of the focused laser spot, thus preventing the formation of a raised rim around the final mitigation site and its consequent down-stream intensification. Other advantages of the new method include lower residual stresses, and improved damage threshold associated with reduced amounts of redeposited material. The raster patterns can be designed to produce specific shapes of the mitigation pit including cones and pyramids. Details of the new technique and its comparison with the previous technique will be presented.

  6. Detecting Terrain Stoniness From Airborne Laser Scanning Data †

    Directory of Open Access Journals (Sweden)

    Paavo Nevalainen

    2016-08-01

    Full Text Available Three methods to estimate the presence of ground surface stones from publicly available Airborne Laser Scanning (ALS point clouds are presented. The first method approximates the local curvature by local linear multi-scale fitting, and the second method uses Discrete-Differential Gaussian curvature based on the ground surface triangulation. The third baseline method applies Laplace filtering to Digital Elevation Model (DEM in a 2 m regular grid data. All methods produce an approximate Gaussian curvature distribution which is then vectorized and classified by logistic regression. Two training data sets consisted of 88 and 674 polygons of mass-flow deposits, respectively. The locality of the polygon samples is a sparse canopy boreal forest, where the density of ALS ground returns is sufficiently high to reveal information about terrain micro-topography. The surface stoniness of each polygon sample was categorized for supervised learning by expert observation on the site. The leave-pair-out (L2O cross-validation of the local linear fit method results in the area under curve A U C = 0 . 74 and A U C = 0 . 85 on two data sets, respectively. This performance can be expected to suit real world applications such as detecting coarse-grained sediments for infrastructure construction. A wall-to-wall predictor based on the study was demonstrated.

  7. Laser surface pretreatment of 100Cr6 bearing steel – Hardening effects and white etching zones

    International Nuclear Information System (INIS)

    Buling, Anna; Sändker, Hendrik; Stollenwerk, Jochen; Krupp, Ulrich; Hamann-Steinmeier, Angela

    2016-01-01

    Highlights: • Laser surface pretreatment of the bearing steel 100Cr6 is performed. • Microstructural changes of the surface are examined by light microscopy and SEM. • Topographical changes are observed using white light interferometry. • Micro-hardness testing show the existence of very hard white etching zones (WEZ). • WEZ are attributed to near-surface reaustenitization and rapid quenching. • Dark etching zones (DEZ) are found at the laser path edges after laser pretreatment. - Abstract: In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1–1.5 wt.% Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering.

  8. Laser surface pretreatment of 100Cr6 bearing steel – Hardening effects and white etching zones

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna, E-mail: a.buling@hs-osnabrueck.de [Faculty of Engineering and Computer Science, University of Applied Sciences, 49009 Osnabrück (Germany); Sändker, Hendrik; Stollenwerk, Jochen [Fraunhofer Institute for Laser Technology ILT, Steinbachstrasse 15, 52074 Aachen (Germany); Krupp, Ulrich; Hamann-Steinmeier, Angela [Faculty of Engineering and Computer Science, University of Applied Sciences, 49009 Osnabrück (Germany)

    2016-08-15

    Highlights: • Laser surface pretreatment of the bearing steel 100Cr6 is performed. • Microstructural changes of the surface are examined by light microscopy and SEM. • Topographical changes are observed using white light interferometry. • Micro-hardness testing show the existence of very hard white etching zones (WEZ). • WEZ are attributed to near-surface reaustenitization and rapid quenching. • Dark etching zones (DEZ) are found at the laser path edges after laser pretreatment. - Abstract: In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1–1.5 wt.% Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering.

  9. Surface improvement for inside surface of small diameter pipes by laser cladding technique

    International Nuclear Information System (INIS)

    Irisawa, Toshio; Morishige, Norio; Umemoto, Tadahiro; Ono, Kazumichi; Hamaoka, Tadashi; Tanaka, Atsushi

    1991-01-01

    A laser cladding technique has been used for surface improvement in controlling the composition of a metal surface. Recent high power YAG laser development gives an opportunity to use this laser cladding technique for various applications. A YAG laser beam can be transmitted through an optical fiber for a long distance and through narrow spaces. YAG laser cladding was studied for developing alloy steel to prevent stress corrosion cracking in austenitic stainless steel piping. In order to make a cladding layer, mixed metal powder was on the inside surface of the piping using an organic binder. Subsequently the powder beds were melted with a YAG laser beam transmitted through an optical fiber. This paper introduces the Laser cladding technique for surface improvement for the inside surface of a small diameter pipe. (author)

  10. Estimation of forest resources from a country wide laser scanning survey and national forest inventory data

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Schumacher, Johannes

    2012-01-01

    Airborne laser scanning may provide a means for assessing local forest biomass resources. In this study, national forest inventory (NFI) data was used as reference data for modeling forest basal area, volume, aboveground biomass, and total biomass from laser scanning data obtained in a countrywid...

  11. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    Science.gov (United States)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  12. A method for separation of the terrain and non-terrain from Vehicle-borne Laser Scanning Data

    International Nuclear Information System (INIS)

    Wei, Jiangxia; Zhong, Ruofei

    2014-01-01

    Half the points from vehicle-borne laser scanning data are terrain data. If you want to extract features such as trees, street lights and buildings, terrain points must be removed. Nowadays, either airborne or vehicle-borne laser data, are mostly used to set an elevation threshold based on the scanning line or POS data to determine whether the point is a terrain point or not, but the disadvantage is part of low buildings or other feature objects will be lost. If the study area has high differences in the horizontal or the forward direction, this method is not applicable. This paper investigates a new methodology to extract the terrain points, which has great significance for data reduction and classification. The procedure includes the following steps: 1)Pre-processing: to remove discrete points and abnormal points. 2) Divided all the points into grid, calculating the average value of the XY and the minimum value of the Z of all the points in the same grid as the central point of the grid.3) Choose nearest six points which are close to the centre point to fitting the quadratic surface.4)Compare the normal vector of the fitting surface of the grid to the normal vector of the 8-neighborhood, if the difference is too big, it will be smoothed.5) Determine whether the point in the grid is on the surface, if the point belongs to the surface, it will be classified as terrain point. The results and evaluation have shown the effectiveness of the method and its potential in separation of the terrain of various areas

  13. Multi-temporal terrestrial laser scanning for identifying rockslide modifications: potentialities and problems

    Science.gov (United States)

    Castagnetti, Cristina; Bertacchini, Eleonora; Capra, Alessandro; Rivola, Riccardo

    2013-04-01

    The heart of this research is to provide an efficient methodology for a reliable acquisition and interpretation of Terrestrial Laser Scanner (TLS) data in the application field of landslide monitoring. In particular, rockslides, which are characterized by vertical walls of rock and by a complex morphology, are of great concern in the study. In these cases the airborne laser scanning is not able to provide useful and reliable description and the terrestrial laser scanning might be the only possible choice to obtain a good and reliable description of the geomorphology or to identify the changes occurred over time. The last purpose is still a challenging task when long distances are involved because the accurate and punctual identification of displacements is not possible due to the laser beam divergence. The final purpose of the research is a proposal of a methodology which is based on TLS technology for identifying displacements and extracting geomorphological changes. The approach is clearly based on a multi-temporal analysis which is computed on several repetitions of TLS surveys performed on the area of interest. To achieve best results and optimize the processing strategy, different methods about point clouds alignment have been tested together with algorithms both for filtering and post-processing. The case study is the Collagna Landslide that is located in the North Appennines (Reggio Emilia, Italy) on the right flank of Biola torrent. The large scale composite landslide area is made both by a wide rock slide sector and a more limited earth slide sector that, after high precipitation rates, disrupted the National Road 63 in December 2008. An integrated monitoring system is installed since 2009 and comprises both point-based technologies such as extensometers, total station and global positioning system, and also area-based technologies such as airborne laser scanner, long-range TLS and ground-based radar. This choice allows to couple the advantages of both

  14. Novel Infiltration Diagnostics based on Laser-line Scanning and Infrared Temperature Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinwei [Iowa State Univ., Ames, IA (United States)

    2017-12-08

    This project targets the building energy efficiency problems induced by building infiltration/leaks. The current infiltration inspection techniques often require extensive visual inspection and/or whole building pressure test. These current techniques cannot meet more than three of the below five criteria of ideal infiltration diagnostics: 1. location and extent diagnostics, 2. building-level application, 3. least surface preparation, 4. weather-proof, and 5. non-disruption to building occupants. These techniques are either too expensive or time consuming, and often lack accuracy and repeatability. They are hardly applicable to facades/facades section. The goal of the project was to develop a novel infiltration diagnostics technology based on laser line-scanning and simultaneous infrared temperature imaging. A laboratory scale experimental setup was designed to mimic a model house of well-defined pressure difference below or above the outside pressure. Algorithms and Matlab-based programs had been developed for recognition of the hole location in infrared images. Our experiment based on laser wavelengths of 450 and 1550 nm and laser beam diameters of 4-25 mm showed that the location of the holes could be identified using laser heating; the diagnostic approach however could not readily distinguish between infiltration and non-infiltration points. To significantly improve the scanning throughput and recognition accuracy, a second approach was explored, developed, and extensively tested. It incorporates a liquid spray on the surface to induce extra phase change cooling effect. In this spray method, we termed it as PECIT (Phase-change Enhanced Cooling Infrared Thermography), phase-change enhanced cooling was used, which significantly amplifies the effect of air flow (infiltration and exfiltration). This heat transfer method worked extremely well to identify infiltration and exfiltration locations with high accuracy and increased throughput. The PECIT technique was

  15. Efficient green lasers for high-resolution scanning micro-projector displays

    Science.gov (United States)

    Bhatia, Vikram; Bauco, Anthony S.; Oubei, Hassan M.; Loeber, David A. S.

    2010-02-01

    Laser-based projectors are gaining increased acceptance in mobile device market due to their low power consumption, superior image quality and small size. The basic configuration of such micro-projectors is a miniature mirror that creates an image by raster scanning the collinear red, blue and green laser beams that are individually modulated on a pixel-bypixel basis. The image resolution of these displays can be limited by the modulation bandwidth of the laser sources, and the modulation speed of the green laser has been one of the key limitations in the development of these displays. We will discuss how this limitation is fundamental to the architecture of many laser designs and then present a green laser configuration which overcomes these difficulties. In this green laser architecture infra-red light from a distributed Bragg-reflector (DBR) laser diode undergoes conversion to green light in a waveguided second harmonic generator (SHG) crystal. The direct doubling in a single pass through the SHG crystal allows the device to operate at the large modulation bandwidth of the DBR laser. We demonstrate that the resultant product has a small footprint (9% electrical-to-optical conversion) and large modulation bandwidth (>100 MHz).

  16. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    International Nuclear Information System (INIS)

    Miokovic, T.; Schulze, V.; Voehringer, O.; Loehe, D.

    2007-01-01

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite

  17. Influence of cyclic temperature changes on the microstructure of AISI 4140 after laser surface hardening

    Energy Technology Data Exchange (ETDEWEB)

    Miokovic, T. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Schulze, V. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)]. E-mail: volker.schulze@mach.uni-karlsruhe.de; Voehringer, O. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany); Loehe, D. [Institute of Materials Science and Engineering I, University of Karlsruhe, 76131 Karlsruhe (Germany)

    2007-01-15

    In recent years laser surface hardening using pulsed laser sources has become an increasingly established technology in engineering industry and has opened up wider possibilities for the application of selective surface hardening. However, the choice of the process parameters is generally based on experience rather than on their empirical influence on the resulting microstructure, and for hardening processes with cyclic temperature changes, almost no correlations between process parameters and hardening results are known. Therefore, some problems regarding the choice of the process parameters and their influence on the resulting microstructure still remain. In particular, there is a lack of data concerning the effect of cyclic temperature changes on hardening. To facilitate process optimization, this paper deals with a detailed characterization of the microstructures created in quenched and tempered AISI 4140 (German grade 42CrMo4) steel following a temperature-dependent laser surface hardening treatment. The structure properties were obtained from microhardness measurements, scanning electron microscopy investigations and X-ray diffraction analysis of retained austenite.

  18. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    Science.gov (United States)

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered. PMID:23112655

  19. Application of Mobile Laser Scanning for Lean and Rapid Highway Maintenance and Construction

    Science.gov (United States)

    2015-08-28

    Mobile Terrestrial Laser Scanning (MTLS) is an emerging technology that combines the use of a laser scanner(s), the Global Navigation Satellite System (GNSS), and an Inertial Measurement Unit (IMU) on a vehicle to collect geo-spatial data. The overal...

  20. Multimodal scanning laser ophthalmoscopy for image guided treatment of age-related macular degeneration

    Science.gov (United States)

    Hammer, Daniel X.; Ferguson, R. D.; Patel, Ankit H.; Iftimia, Nicusor V.; Mujat, Mircea; Husain, Deeba

    2009-02-01

    Subretinal neovascular membranes (SRNM) are a deleterious complication of laser eye injury and retinal diseases such as age-related macular degeneration (AMD), choroiditis, and myopic retinopathy. Photodynamic therapy (PDT) and anti-vascular endothelial growth factor (VEGF) drugs are approved treatment methods. PDT acts by selective dye accumulation, activation by laser light, and disruption and clotting of the new leaky vessels. However, PDT surgery is currently not image-guided, nor does it proceed in an efficient or automated manner. This may contribute to the high rate of re-treatment. We have developed a multimodal scanning laser ophthalmoscope (SLO) for automated diagnosis and image-guided treatment of SRNMs associated with AMD. The system combines line scanning laser ophthalmoscopy (LSLO), fluorescein angiography (FA), indocyanine green angiography (ICGA), PDT laser delivery, and retinal tracking in a compact, efficient platform. This paper describes the system hardware and software design, performance characterization, and automated patient imaging and treatment session procedures and algorithms. Also, we present initial imaging and tracking measurements on normal subjects and automated lesion demarcation and sizing analysis of previously acquired angiograms. Future pre-clinical testing includes line scanning angiography and PDT treatment of AMD subjects. The automated acquisition procedure, enhanced and expedited data post-processing, and innovative image visualization and interpretation tools provided by the multimodal retinal imager may eventually aid in the diagnosis, treatment, and prognosis of AMD and other retinal diseases.

  1. Real-time depth monitoring and control of laser machining through scanning beam delivery system

    International Nuclear Information System (INIS)

    Ji, Yang; Grindal, Alexander W; Fraser, James M; Webster, Paul J L

    2015-01-01

    Scanning optics enable many laser applications in manufacturing because their low inertia allows rapid movement of the process beam across the sample. We describe our method of inline coherent imaging for real-time (up to 230 kHz) micron-scale (7–8 µm axial resolution) tracking and control of laser machining depth through a scanning galvo-telecentric beam delivery system. For 1 cm trench etching in stainless steel, we collect high speed intrapulse and interpulse morphology which is useful for further understanding underlying mechanisms or comparison with numerical models. We also collect overall sweep-to-sweep depth penetration which can be used for feedback depth control. For trench etching in silicon, we show the relationship of etch rate with average power and scan speed by computer processing of depth information without destructive sample post-processing. We also achieve three-dimensional infrared continuous wave (modulated) laser machining of a 3.96 × 3.96 × 0.5 mm 3 (length × width × maximum depth) pattern on steel with depth feedback. To the best of our knowledge, this is the first successful demonstration of direct real-time depth monitoring and control of laser machining with scanning optics. (paper)

  2. Research on Mechanical Properties of Concrete Constructs Based on Terrestrial Laser Scanning Measurement

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2016-05-01

    Full Text Available Terrestrial laser scanning (TLS technology is broadly accepted as a structural health monitoring device for reinforced concrete (RC composite structures. Both experiments and numerical analysis are considered. In this submit, measurements were conducted for the composite concrete beams. The emphasis in numerical simulation is given on finite element methods (FEM which is corrected by the response surface methodology (RSM. Aspects considered are effects of material parameters and variation in geometry. This paper describes our recent progress on FEM modeling of damages in concrete composite structures based on the TLS measurement. We also focus on the research about mechanical properties of concrete constructs here.

  3. A multiphoton laser scanning microscope setup for transcranial in vivo brain imaging on mice

    Science.gov (United States)

    Nase, Gabriele; Helm, P. Johannes; Reppen, Trond; Ottersen, Ole Petter

    2005-12-01

    We describe a multiphoton laser scanning microscope setup for transcranial in vivo brain imaging in mice. The modular system is based on a modified industrial standard Confocal Scanning Laser Microscope (CSLM) and is assembled mainly from commercially available components. A special multifunctional stage, which is optimized for both laser scanning microscopic observation and preparative animal surgery, has been developed and built. The detection unit includes a highly efficient photomultiplier tube installed in a Peltier-cooled thermal box shielding the detector from changes in room temperature and from distortions caused by external electromagnetic fields. The images are recorded using a 12-bit analog-to-digital converter. Depending on the characteristics of the staining, individual nerve cells can be imaged down to at least 100μm below the intact cranium and down to at least 200μm below the opened cranium.

  4. Surface morphology of laser superheated Pb(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. H.; Lin, Bo; Zeng, X. L.; Elsayed-Ali, H. E.

    1998-05-01

    The step density on the vicinal Pb(111) surface after laser superheating and melting is investigated using reflection high-energy electron diffraction. The (00) beam profiles parallel and perpendicular to the incident beam are analyzed. For laser heating with ˜100 ps laser pulses, surface superheating does not significantly change the density of the steps and step edge roughness. A sudden increase in the average terrace width is observed after laser surface melting. The average terrace width and the string length at the step edge become as large as those at room temperature. The average terrace width at 573 K changes from 38±15 to 64±19 Å after laser surface melting, while the average string length at the step edge changes from 50±12 to 250±38 Å.

  5. Experimental verification of subthreshold laser therapy using conventional pattern scan laser.

    Directory of Open Access Journals (Sweden)

    Tomoyasu Shiraya

    Full Text Available Leading-edge therapeutic laser technologies are not available at every medical facility; therefore, alternative approaches incorporating novel advances in digital and laser technology into more readily available conventional methods have generated significant research interest. Using a rabbit model, this study investigated whether the algorithm used in the Endpoint Management (EM software system of the latest devices could enable subthreshold laser treatment in conventional retinal tissue laser therapy systems.Two types of devices were used, the PASCAL Streamline 577 and the MC 500-Vixi™, and the laser method was classified into three categories: EM; single-shot using PASCAL with arbitrary energy settings (PSS-SDM; and MC500-VixiTM (VX-SDM, which were performed in eight eyes from four Dutch-Belted rabbits. In EM, 100 mW (100% was set as a landmark, and the laser energy parameters were gradually decreased to 80%, 60%, 50%, 40%, 30%, 20%, and 10%, using a 2 × 3 square pattern. In PSS-SDM and VX-SDM, as control, the laser energy was gradually decreased to 100, 80, 60, 50, 40, 30, 20, and 10 mW. The laser settings were fixed at 200 μm, 20 ms, and a wavelength of 577 μm. To identify and compare the extent of tissue damage at each spot size, optical coherence tomography (OCT and histological findings were used to construct a three-dimensional histopathology image using a confocal laser scanning fluorescence microscope.The spot size at 50% setting on EM was 7183 μm2; PSS-SDM required 50 mW (5503 μm2 to 60 mW (10279 μm2 and VX-SDM required 50 mW (7423 μm2 to create the approximate spot size. Furthermore, at 50 mW of PSS-SDM and VX-SDM, the extent of tissue damage in all three methods was generally in accord with the outer nuclear layer by OCT and inner nuclear layer by histopathological imaging.These findings suggest that it may be possible to perform subthreshold laser therapy using approximations from the EM algorithm.

  6. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    Science.gov (United States)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  7. High-speed scanning ablation of dental hard tissues with a λ = 9.3 μm CO2 laser: adhesion, mechanical strength, heat accumulation, and peripheral thermal damage

    Science.gov (United States)

    Nguyen, Daniel; Chang, Kwang; Hedayatollahnajafi, Saba; Staninec, Michal; Chan, Kenneth; Lee, Robert; Fried, Daniel

    2011-07-01

    CO2 lasers can be operated at high laser pulse repetition rates for the rapid and precise removal of dental decay. Excessive heat accumulation and peripheral thermal damage is a concern when using high pulse repetition rates. Peripheral thermal damage can adversely impact the mechanical strength of the irradiated tissue, particularly for dentin, and reduce the adhesion characteristics of the modified surfaces. The interpulpal temperature rise was recorded using microthermocouples situated at the roof of the pulp chamber on teeth that were occlusally ablated using a rapidly-scanned CO2 laser operating at 9.3 μm with a pulse duration of 10 to 15 μs and repetition rate of 300 Hz over a 2 min time course. The adhesion strength of laser treated enamel and dentin surfaces was measured for various laser scanning parameters with and without post-ablation acid etching using the single-plane shear test. The mechanical strength of laser-ablated dentin surfaces were determined via the four-point bend test and compared to control samples prepared with 320 grit wet sand paper to simulate conventional preparations. Thermocouple measurements indicated that the temperature remained below ambient temperature if water-cooling was used. There was no discoloration of either dentin or enamel laser treated surfaces, the surfaces were uniformly ablated, and there were no cracks visible. Four-point bend tests yielded mean mechanical strengths of 18.2 N (s.d. = 4.6) for ablated dentin and 18.1 N (s.d. = 2.7) for control (p > 0.05). Shear tests yielded mean bond strengths approaching 30 MPa for both enamel and dentin under certain irradiation conditions. These values were slightly lower than nonirradiated acid-etched control samples. Additional studies are needed to determine if the slightly lower bond strength than the acid-etched control samples is clinically significant. These measurements demonstrate that enamel and dentin surfaces can be rapidly ablated by CO2 lasers with minimal

  8. Close-range laser scanning in forests: towards physically based semantics across scales.

    Science.gov (United States)

    Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E

    2018-04-06

    Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.

  9. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    Science.gov (United States)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  10. Transient measurements with an ultrafast scanning tunneling microscope on semiconductor surfaces

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We demonstrate: the use of an ultrafast scanning tunneling microscope on a semiconductor surface. Laser-induced transient signals with 1.8 ps rise time are detected, The investigated sample is a low-temperature grown GaAs layer plated on a sapphire substrate with a thin gold layer that serves as st...... bias contact, For comparison, the measurements are performed with the tip in contact to the sample as well as in tunneling above the surface, In contact and under bias, the transient signals are identified as a transient photocurrent, An additional signal is generated by a transient voltage induced...... by the nonuniform carrier density created by the absorption of the light (photo Dember effect). The transient depends in sign and in shape on the direction of optical excitation. This signal is the dominating transient in tunneling mode. The signals are explained by a capacitive coupling across the tunneling gap...

  11. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    Science.gov (United States)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  12. Surface oxidation of porous ZrB2-SiC ceramic composites by continuous-wave ytterbium fibre laser

    International Nuclear Information System (INIS)

    Mahmod, Dayang Salyani Abang; Glandut, Nicolas; Khan, Amir Azam; Labbe, Jean-Claude

    2015-01-01

    Highlights: • Surface oxidation of ZrB 2 -SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO 2 -rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB 2 -SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB 2 -SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s 2 . The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO 2 -rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  13. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    International Nuclear Information System (INIS)

    Riveiro, A.; Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J.

    2014-01-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  14. Laser surface modification of ultra-high-molecular-weight polyethylene (UHMWPE) for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Riveiro, A., E-mail: ariveiro@uvigo.es [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain); Centro Universitario de la Defensa, Escuela Naval Militar, Plaza de España 2, 36920 Marín (Spain); Soto, R.; Val, J. del; Comesaña, R.; Boutinguiza, M.; Quintero, F.; Lusquiños, F.; Pou, J. [Applied Physics Department, University of Vigo, ETSII, Lagoas-Marcosende, 9, Vigo 36310 (Spain)

    2014-05-01

    Ultra-high-molecular-weight polyethylene (UHMWPE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore, this material is being used in human orthopedic implants such as total hip or knee replacements. Surface modification of this material relates to changes on its chemistry, microstructure, roughness, and topography, all influencing its biological response. Surface treatment of UHMWPE is very difficult due to its high melt viscosity. This work presents a systematic approach to discern the role of different laser wavelengths (λ = 1064, 532, and 355 nm) on the surface modification of carbon coated UHMWPE samples. Influence of laser processing conditions (irradiance, pulse frequency, scanning speed, and spot overlapping) on the surface properties of this material was determined using an advanced statistical planning of experiments. A full factorial design of experiments was used to find the main effects of the processing parameters. The obtained results indicate the way to maximize surface properties which largely influence cell–material interaction.

  15. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  16. Assessment of Relative Accuracy of AHN-2 Laser Scanning Data Using Planar Features

    NARCIS (Netherlands)

    Khoshelham, K.; Soudarissanane, S.; Van der Sande, C.

    2010-01-01

    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements,

  17. Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures

    Directory of Open Access Journals (Sweden)

    Lenda Grzegorz

    2016-06-01

    Full Text Available The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile, but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones. Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.

  18. Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder

    Science.gov (United States)

    Sabelle, Matías; Walczak, Magdalena; Ramos-Grez, Jorge

    2018-01-01

    Laser-based layer manufacturing of metals, also known as additive manufacturing, is a growing research field of academic and industrial interest. However, in the associated laser-driven processes (i.e. selective laser sintering (SLS) or melting (SLM)), optimization of some parameters has not been fully explored. This research aims at determining how the angle of laser scanning pattern (i.e. build orientation) in SLS affects the mechanical properties and structure of an individual Cu-Sn-Ni alloy metallic layer sintered in the process. Experiments consist in varying the angle of the scanning pattern (0°, 30°, 45° 60° and 90° relative to the transverse dimension of the piece), at constant scanning speed and laser beam power, producing specimens of different thicknesses. A noticeable effect of the scan angle on the mechanical strength and degree of densification of the sintered specimens is found. Thickness of the resulting monolayer correlates negatively with increasing scan angle, whereas relative density correlates positively. A minimum porosity and maximum UTS are found at the angle of 60°. It is concluded that angle of the scanning pattern angle plays a significant role in SLS of metallic monolayers.

  19. Optimal Information Extraction of Laser Scanning Dataset by Scale-Adaptive Reduction

    Science.gov (United States)

    Zang, Y.; Yang, B.

    2018-04-01

    3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  20. OPTIMAL INFORMATION EXTRACTION OF LASER SCANNING DATASET BY SCALE-ADAPTIVE REDUCTION

    Directory of Open Access Journals (Sweden)

    Y. Zang

    2018-04-01

    Full Text Available 3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed method, suggesting a reliable solution for optimal information extraction of object.

  1. Equivalente esférico e valores da espessura da camada de fibras nervosas obtidas com o GDX TM Scanning Laser System® Spherical equivalent and nerve fiber layer thickness assessed with GDX TM Scanning Laser System®

    Directory of Open Access Journals (Sweden)

    Lênio Souza Alvarenga

    1999-12-01

    Full Text Available Objetivo: Estudar a influência do equivalente esférico nos valores obtidos pelo GDX TM Scanning Laser System®. Métodos: Foram avaliados 41 olhos de 41 voluntários sem doenças oculares e com campo visual sem alterações. Foi realizada a polarimetria de varredura a laser com o GDX TM Scanning Laser System® de acordo com as instruções contidas no manual do aparelho. Foram comparados os valores obtidos nesse exame em um grupo de pacientes com equivalente esférico positivo e em um outro com este valor nulo ou negativo, pelo teste de Mann-Whitney. Resultados: Não se verificou diferença estatística entre os valores obtidos nos olhos de pacientes do grupo I e os do grupo II. Não foi encontrada correlação entre o equivalente esférico e os valores obtidos com o GDX TM Scanning Laser System®. Conclusões: Na amostra estudada não houve diferença estatística entre os valores obtidos em um grupo de olhos com equivalente esférico positivo e outro com este valor negativo ou nulo, usando-se o GDX TM Scanning Laser System®.Purpose: To evaluate the effect of spherical equivalent on the acquisition of nerve fiber layer (NFL thickness with GDX TM Scanning Laser System®. Methods: Forty-one eyes of 41 volunteers were enrolled in this study. All of them presented with no ocular disease and no visual field defect. The NFL thickness was measured with GDX TM Scanning Laser System® as described in its manual. The values obtained in a group of volunteers with negative spherical equivalent (group I were compared to those from a group with a positive spherical equivalent (group II by the Mann-Whitney test. Results: There was no statistical difference between mea-surements in eyes of group I and those in group II. The NFL thickness measurements were not correlated with the sphe-rical equivalent. Conclusions: In the studied group there was no statistical difference in the GDX TM Scanning Laser System® parameters related to spherical equivalent.

  2. An Autonomous Ultra-Wide Band-Based Attitude and Position Determination Technique for Indoor Mobile Laser Scanning

    Directory of Open Access Journals (Sweden)

    Lawrence Lau

    2018-04-01

    Full Text Available Mobile laser scanning (MLS has been widely used in three-dimensional (3D city modelling data collection, such as Google cars for Google Map/Earth. Building Information Modelling (BIM has recently emerged and become prominent. 3D models of buildings are essential for BIM. Static laser scanning is usually used to generate 3D models for BIM, but this method is inefficient if a building is very large, or it has many turns and narrow corridors. This paper proposes using MLS for BIM 3D data collection. The positions and attitudes of the mobile laser scanner are important for the correct georeferencing of the 3D models. This paper proposes using three high-precision ultra-wide band (UWB tags to determine the positions and attitudes of the mobile laser scanner. The accuracy of UWB-based MLS 3D models is assessed by comparing the coordinates of target points, as measured by static laser scanning and a total station survey.

  3. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    Science.gov (United States)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  4. Research on calibration algorithm in laser scanning projection system

    Science.gov (United States)

    Li, Li Juan; Qu, Song; Hou, Mao Sheng

    2017-10-01

    Laser scanning projection technology can project the image defined by the existing CAD digital model to the working surface, in the form of a laser harness profile. This projection is in accordance with the ratio of 1: 1. Through the laser harness contours with high positioning quality, the technical staff can carry out the operation with high precision. In a typical process of the projection, in order to determine the relative positional relationship between the laser projection instrument and the target, it is necessary to place several fixed reference points on the projection target and perform the calibration of projection. This position relationship is the transformation from projection coordinate system to the global coordinate system. The entire projection work is divided into two steps: the first step, the calculation of the projector six position parameters is performed, that is, the projector calibration. In the second step, the deflection angle is calculated by the known projector position parameter and the known coordinate points, and then the actual model is projected. Typically, the calibration requires the establishment of six reference points to reduce the possibility of divergence of the nonlinear equations, but the whole solution is very complex and the solution may still diverge. In this paper, the distance is detected combined with the calculation so that the position parameters of the projector can be solved by using the coordinate values of three reference points and the distance of at least one reference point to the projector. The addition of the distance measurement increases the stability of the solution of the nonlinear system and avoids the problem of divergence of the solution caused by the reference point which is directly under the projector. Through the actual analysis and calculation, the Taylor expansion method combined with the least squares method is used to obtain the solution of the system. Finally, the simulation experiment is

  5. Oxidised zirconium versus cobalt alloy bearing surfaces in total knee arthroplasty: 3D laser scanning of retrieved polyethylene inserts.

    Science.gov (United States)

    Anderson, F L; Koch, C N; Elpers, M E; Wright, T M; Haas, S B; Heyse, T J

    2017-06-01

    We sought to establish whether an oxidised zirconium (OxZr) femoral component causes less loss of polyethylene volume than a cobalt alloy (CoCr) femoral component in total knee arthroplasty. A total of 20 retrieved tibial inserts that had articulated with OxZr components were matched with 20 inserts from CoCr articulations for patient age, body mass index, length of implantation, and revision diagnosis. Changes in dimensions of the articular surfaces were compared with those of pristine inserts using laser scanning. The differences in volume between the retrieved and pristine surfaces of the two groups were calculated and compared. The loss of polyethylene volume was 122 mm 3 (standard deviation (sd) 87) in the OxZr group and 170 mm 3 (sd 96) in the CoCr group (p = 0.033). The volume loss in the OxZr group was also lower in the medial (72 mm 3 (sd 67) versus 92 mm 3 (sd 60); p = 0.096) and lateral (49 mm 3 (sd 36) versus 79 mm 3 (sd 61); p = 0.096) compartments separately, but these differences were not significant. Our results corroborate earlier findings from in vitro testing and visual retrieval analysis which suggest that polyethylene volume loss is lower with OxZr femoral components. Since both OxZr and CoCr are hard surfaces that would be expected to create comparable amounts of polyethylene creep, the differences in volume loss may reflect differences in the in vivo wear of these inserts. Cite this article: Bone Joint J 2017;99-B:793-8. ©2017 The British Editorial Society of Bone & Joint Surgery.

  6. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  7. Laser applications in materials processing

    International Nuclear Information System (INIS)

    Ready, J.F.

    1980-01-01

    The seminar focused on laser annealing of semiconductors, laser processing of semiconductor devices and formation of coatings and powders, surface modification with lasers, and specialized laser processing methods. Papers were presented on the theoretical analysis of thermal and mass transport during laser annealing, applications of scanning continuous-wave and pulsed lasers in silicon technology, laser techniques in photovoltaic applications, and the synthesis of ceramic powders from laser-heated gas-phase reactants. Other papers included: reflectance changes of metals during laser irradiation, surface-alloying using high-power continuous lasers, laser growth of silicon ribbon, and commercial laser-shock processes

  8. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  9. Accuracy assessment of airborne laser scanning strips using planar features

    NARCIS (Netherlands)

    Soudarissanane, S.S.; Van der Sande, C.J.; Khoshelham, K.

    2010-01-01

    Airborne Laser Scanning (ALS) is widely used in many applications for its high measurement accuracy, fast acquisition capability, and large spatial coverage. Accuracy assessment of the ALS data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips.

  10. Scanning vs. single spot laser ablation (λ=213 nm) inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Gonzalez, Jhanis J.; Fernandez, Alberto; Mao Xianglei; Russo, Richard E.

    2004-01-01

    Sampling strategy is defined in this work as the interaction of a repetitively pulsed laser beam with a fixed position on a sample (single spot) or with a moving sample (scan). Analytical performance of these sampling strategies was compared by using 213 nm laser ablation ICP-MS. A geological rock (Tuff) was quantitatively analyzed based on NIST series 610-616 glass standard reference materials. Laser ablation data were compared to ICP-MS analysis of the dissolved samples. The scan strategy (50 μm/s) produced a flat, steady temporal ICP-MS response whereas the single spot strategy produced a signal that decayed with time (after 60 s). Single-spot sampling provided better accuracy and precision than the scan strategy when the first 15 s of the sampling time was eliminated from the data analysis. In addition, the single spot strategy showed less matrix dependence among the four NIST glasses

  11. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  12. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters

    International Nuclear Information System (INIS)

    Zhang Zhihui; Zhou Hong; Ren Luquan; Tong Xin; Shan Hongyu; Li Xianzhou

    2008-01-01

    Aiming to form the high quality of non-smooth biomimetic unit, the influence of laser processing parameters (pulse energy, pulse duration, frequency and scanning speed in the present work) on the surface morphology of scanned tracks was studied based on the 3Cr2W8V die steel. The evolution of the surface morphology was explained according to the degree of melting and vaporization of surface material, and the trend of mean surface roughness and maximum peak-to-valley height. Cross-section morphology revealed the significant microstructural characteristic of the laser-treated zone used for forming the functional zone on the biomimetic surface. Results showed that the combination of pulse energy and pulse duration plays a major role in determining the local height difference on the irradiated surface and the occurrence of melting or vaporization. While frequency and scanning speed have a minor effect on the change of the surface morphology, acting mainly by the different overlapping amount and overlapping mode. The mechanisms behind these influences were discussed, and schematic drawings were introduced to describe the mechanisms

  13. Disilicate Dental Ceramic Surface Preparation by 1070 nm Fiber Laser: Thermal and Ultrastructural Analysis

    Directory of Open Access Journals (Sweden)

    Carlo Fornaini

    2018-01-01

    Full Text Available Lithium disilicate dental ceramic bonding, realized by using different resins, is strictly dependent on micro-mechanical retention and chemical adhesion. The aim of this in vitro study was to investigate the capability of a 1070 nm fiber laser for their surface treatment. Samples were irradiated by a pulsed fiber laser at 1070 nm with different parameters (peak power of 5, 7.5 and 10 kW, repetition rate (RR 20 kHz, speed of 10 and 50 mm/s, and total energy density from 1.3 to 27 kW/cm2 and the thermal elevation during the experiment was recorded by a fiber Bragg grating (FBG temperature sensor. Subsequently, the surface modifications were analyzed by optical microscope, scanning electron microscope (SEM, and energy dispersive X-ray spectroscopy (EDS. With a peak power of 5 kW, RR of 20 kHz, and speed of 50 mm/s, the microscopic observation of the irradiated surface showed increased roughness with small areas of melting and carbonization. EDS analysis revealed that, with these parameters, there are no evident differences between laser-processed samples and controls. Thermal elevation during laser irradiation ranged between 5 °C and 9 °C. A 1070 nm fiber laser can be considered as a good device to increase the adhesion of lithium disilicate ceramics when optimum parameters are considered.

  14. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    Science.gov (United States)

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  15. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel

    International Nuclear Information System (INIS)

    Ebel, Patricia

    2003-01-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm 2 , 282,84 mJ/cm 2 and 325,38 mJ/cm 2 , respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 μm diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  16. Facile fabrication of functional PDMS surfaces with tunable wettablity and high adhesive force via femtosecond laser textured templating

    Directory of Open Access Journals (Sweden)

    Yanlei Hu

    2014-12-01

    Full Text Available Femtosecond laser processing is emerged as a promising tool to functionalize surfaces of various materials, including metals, semiconductors, and polymers. However, the productivity of this technique is limited by the low efficiency of laser raster scanning. Here we report a facile approach for efficiently producing large-area functional polymer surfaces, by which metal is firstly textured by a femtosecond laser, and the as-prepared hierarchical structures are subsequently transferred onto polydimethylsiloxane (PDMS surfaces. Aluminum pieces covered by laser induced micro/nano-structures act as template masters and their performance of displaying diverse colors are investigated. Polymer replicas are endowed with tunable wetting properties, which are mainly attributed to the multi-scale surface structures. Furthermore, the surfaces are found to have extremely high adhesive force for water drops because of the high water penetration depth and the resultant high contact angle hysteresis. This characteristic facilitates many potential applications like loss-free tiny water droplets transportation. The reusability of metal master and easiness of soft lithography make it to be a very simple, fast and cost-efficient way for mass production of functional polymeric surfaces.

  17. Laser Surface Modification of H13 Die Steel using Different Laser Spot Sizes

    Science.gov (United States)

    Aqida, S. N.; Naher, S.; Brabazon, D.

    2011-05-01

    This paper presents a laser surface modification process of AISI H13 tool steel using three sizes of laser spot with an aim to achieve reduced grain size and surface roughness. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). Metallographic study and image analysis were done to measure the grain size and the modified surface roughness was measured using two-dimensional surface profilometer. From metallographic study, the smallest grain sizes measured by laser modified surface were between 0.51 μm and 2.54 μm. The minimum surface roughness, Ra, recorded was 3.0 μm. This surface roughness of the modified die steel is similar to the surface quality of cast products. The grain size correlation with hardness followed the findings correlate with Hall-Petch relationship. The potential found for increase in surface hardness represents an important method to sustain tooling life.

  18. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  19. Pattern scan laser versus single spot laser in panretinal photocoagulation treatment for proliferative diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Shu Zhang

    2017-02-01

    Full Text Available AIM: To investigate the efficacy of 577-nm pattern scan laser in panretinal photocoagulation(PRPtreatment in newly diagnosed proliferative diabetic retinopathy(PDR.METHODS:Prospective and comparative observation was performed in totally 32 patients with high-risk PDR. They were randomly divided into group 1(using pattern scan laser, PSLand 2(using single spot laser, SSL, each containing 16 subjects to which totally 20 eyes received PRP. Non-perfusion region was identified with fundus fluorescein angiography(FFAbefore and 3mo after final PRP. The advantage of PSL was verified in terms of the number and the duration of PRP sessions needed for satisfactory outcomes, and the pain score.RESULTS: Three PRP sessions were needed for each eye to complete the treatment using PSL, while 4 sessions were needed using SSL. The duration of each session with PSL in group 1 was 7.3±2.3min, which was significantly shorter than that with SSL in group 2(13.2±4.1, t38=5.596, PPCONCLUSION: PSL showed clear advantages over SSL in the PRP treatment of PDR, not only in the improved efficacy, but also in the reduction of pain and the improvement of effectiveness.

  20. An investigation of laser processing of silica surfaces

    International Nuclear Information System (INIS)

    Weber, A.J.; Stewart, A.F.; Exarhos, G.J.; Stowell, W.K.

    1988-01-01

    An initial set of experiments has been conducted to determine the practicality of laser processing of optical substrates. In contrast to earlier work, a high average power CO 2 laser was used to flood load the entire surface of each test sample. Fused silica substrates were laser polished on both surfaces at power densities ranging from 150 to 350 W/cm 2 . During each test sequence sample surface temperatures were recorded using a thermal imaging system. Extensive pre- and post-test characterization revealed that surface roughness and scattering of bare silica surfaces were reduced while internal stress increased. Laser damage thresholds were found to increase only for certain conditions. Changes in the microstructure were observed. These preliminary experiments demonstrate that laser processing can dramatically improve the optical properties of fused silica substrates

  1. Multi-objective optimization of cellular scanning strategy in selective laser melting

    DEFF Research Database (Denmark)

    Ahrari, Ali; Deb, Kalyanmoy; Mohanty, Sankhya

    2017-01-01

    The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study is to dev......The scanning strategy for selective laser melting - an additive manufacturing process - determines the temperature fields during the manufacturing process, which in turn affects residual stresses and distortions, two of the main sources of process-induced defects. The goal of this study......, the problem is a combination of combinatorial and choice optimization, which makes the problem difficult to solve. On a process simulation domain consisting of 32 cells, our multi-objective evolutionary method is able to find a set of trade-off solutions for the defined conflicting objectives, which cannot...

  2. RESEARCH OF THE ENTRANCE ANGLE EFFECT ON THE REFLECTANCE SPECTRA OF THE STAINLESS STEEL SURFACE OXIDIZED BY PULSED LASER RADIATION

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2016-05-01

    Full Text Available Subject of Research.Oxide films on the metal surfaces can be obtained both by surface-uniform infrared heating and local laser treatment e.g. by sequence of nanosecond laser pulses. Due to interference in created films the coloration of treated area is observed. The present work shows the results of spectrophotometric measurements for various light entrance angles in the range of 10-60°. Method. AISI 304 stainless steel plates were oxidized by two methods: in muffle furnace FM - 10 (Т= 500-600° С, t = 5-7 min. and at line-by-line scanning by sequence of nanosecond laser pulses (λ = 1.06 μm, τ =100 ns, r = 25 μm,q=2.91∙107 W/cm2, Nx = 30, Ny = 1. Surface research in optical resolution was realized by Carl Zeiss Axio Imager A1M. Reflectance spectra were obtained with spectrophotometer Lambda Perkin 1050 with integrating sphere at different fixed light incidence angles. Topographic features were detected by scanning probe microscopy investigation with NanoEducator equipment. Main Results. The quantitative surface geometry characteristics of AISI 304 stainless steel patterns treated by different methods are obtained. It was found that the increase of light entrance angle has no influence on the form of reflection coefficient dependence from a wavelength, but a blue-shift occurs especially for the case of laser treatment. This difference can be caused by surface topology formed by laser heating and variety of oxide film thickness. This effect results in more significant change in observed sample color for laser treatment then for infrared heating. Practical Relevance. The results obtained in the present work can be used to implement a new element of product protection against forgery with the product marking.

  3. LASER ABLATION OF MONOCRYSTALLINE SILICON UNDER PULSED-FREQUENCY FIBER LASER

    Directory of Open Access Journals (Sweden)

    V. P. Veiko

    2015-05-01

    Full Text Available Subject of research. The paper deals with research of the surface ablation for single-crystal silicon wafers and properties of materials obtained in response to silicon ablation while scanning beam radiation of pulse fiber ytterbium laser with a wavelenght λ = 1062 nm in view of variation of radiation power and scanning modes. Method. Wafers of commercial p-type conductivity silicon doped with boron (111, n-type conductivity silicon doped with phosphorus (100 have been under research with a layer of intrinsical silicon oxide having the thickness equal to several 10 s of nanometers and SiO2 layer thickness from 120 to 300 nm grown by thermal oxidation method. The learning system comprises pulse fiber ytterbium laser with a wavelenght λ = 1062 nm. The laser rated-power output is equal to 20 W, pulse length is 100 ns. Pulses frequency is in the range from 20 kHz to 100 kHz. Rated energy in the pulse is equal to 1.0 mJ. Scanning has been carried out by means of two axial scanning device driven by VM2500+ and controlled by personal computer with «SinMarkТМ» software package. Scanning velocity is in the range from 10 mm/s to 4000 mm/s, the covering varies from 100 lines per mm to 3000 lines per mm. Control of samples has been carried out by means of Axio Imager A1m optical microscope Carl Zeiss production with a high definition digital video camera. All experiments have been carried out in the mode of focused laser beam with a radiation spot diameter at the substrate equal to 50 μm. The change of temperature and its distribution along the surface have been evaluated by FLIR IR imager of SC7000 series. Main results. It is shown that ablation occurs without silicon melting and with plasma torch origination. The particles of ejected silicon take part in formation of silicon ions plasma and atmosphere gases supporting the plasmo-chemical growth of SiO2. The range of beam scanning modes is determined where the growth of SiO2 layer is observed

  4. Accuracy assessment of modeling architectural structures and details using terrestrial laser scanning

    Directory of Open Access Journals (Sweden)

    M. Kedzierski

    2015-08-01

    Full Text Available One of the most important aspects when performing architectural documentation of cultural heritage structures is the accuracy of both the data and the products which are generated from these data: documentation in the form of 3D models or vector drawings. The paper describes an assessment of the accuracy of modelling data acquired using a terrestrial phase scanner in relation to the density of a point cloud representing the surface of different types of construction materials typical for cultural heritage structures. This analysis includes the impact of the scanning geometry: the incidence angle of the laser beam and the scanning distance. For the purposes of this research, a test field consisting of samples of different types of construction materials (brick, wood, plastic, plaster, a ceramic tile, sheet metal was built. The study involved conducting measurements at different angles and from a range of distances for chosen scanning densities. Data, acquired in the form of point clouds, were then filtered and modelled. An accuracy assessment of the 3D model was conducted by fitting it with the point cloud. The reflection intensity of each type of material was also analyzed, trying to determine which construction materials have the highest reflectance coefficients, and which have the lowest reflection coefficients, and in turn how this variable changes for different scanning parameters. Additionally measurements were taken of a fragment of a building in order to compare the results obtained in laboratory conditions, with those taken in field conditions.

  5. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  6. Incorporation of a laser range scanner into image-guided liver surgery: Surface acquisition, registration, and tracking

    International Nuclear Information System (INIS)

    Cash, David M.; Sinha, Tuhin K.; Chapman, William C.; Terawaki, Hiromi; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2003-01-01

    As image guided surgical procedures become increasingly diverse, there will be more scenarios where point-based fiducials cannot be accurately localized for registration and rigid body assumptions no longer hold. As a result, procedures will rely more frequently on anatomical surfaces for the basis of image alignment and will require intraoperative geometric data to measure and compensate for tissue deformation in the organ. In this paper we outline methods for which a laser range scanner may be used to accomplish these tasks intraoperatively. A laser range scanner based on the optical principle of triangulation acquires a dense set of three-dimensional point data in a very rapid, noncontact fashion. Phantom studies were performed to test the ability to link range scan data with traditional modes of image-guided surgery data through localization, registration, and tracking in physical space. The experiments demonstrate that the scanner is capable of localizing point-based fiducials to within 0.2 mm and capable of achieving point and surface based registrations with target registration error of less than 2.0 mm. Tracking points in physical space with the range scanning system yields an error of 1.4±0.8 mm. Surface deformation studies were performed with the range scanner in order to determine if this device was capable of acquiring enough information for compensation algorithms. In the surface deformation studies, the range scanner was able to detect changes in surface shape due to deformation comparable to those detected by tomographic image studies. Use of the range scanner has been approved for clinical trials, and an initial intraoperative range scan experiment is presented. In all of these studies, the primary source of error in range scan data is deterministically related to the position and orientation of the surface within the scanner's field of view. However, this systematic error can be corrected, allowing the range scanner to provide a rapid, robust

  7. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  8. OPTICAL DEFLECTOR CREATION FOR LASER THERAPEUTIC DEVICES

    Directory of Open Access Journals (Sweden)

    V. N. Baranov

    2014-03-01

    Full Text Available The paper deals with creation of optical deflector for management of laser radiation in physiotherapeutic devices. Design features and operation principles of electro-optical, optical-acoustic and mechanical deflectors, giving the possibility to carry out continuous or discrete scanning of a laser beam are shown. Operation mechanism of the mechanical type deflector on the example of domestic laser therapeutic scanners is described in detail. Application possibility in clinical practice for heating technique of the acupuncture points by volumetric scanning of tissues by the radiation of semiconductor lasers on wave lengths equal to 0,67 and 0,85 μm is investigated. Creation justification of the new type deflector is given. Comparison between stable and labile techniques of radiation is carried out. It is shown that more intensive warming up of a skin surface in acupuncture point projection is observed at volumetric scanning, rather than at planar scanning by laser beams. Temperature increase on a skin surface in projection of acupuncture points is detected at radiation in both the visible spectrum range (0,67 μm and the infrared range (0,85 μm. It gives the possibility to apply this scanning method to thermal photo-activation of the point and to extend an existing arsenal of laser reflexology methods. The optical deflector is offered for medical industry, making it possible to carry out volumetric scanning of a laser beam and to facilitate the medical personnel’s work in laser therapy and reflexology consulting rooms.

  9. Development of Large Concrete Object Geometrical Model Based on Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Zaczek-Peplinska Janina

    2015-02-01

    Full Text Available The paper presents control periodic measurements of movements and survey of concrete dam on Dunajec River in Rożnów, Poland. Topographical survey was conducted using laser scanning technique. The goal of survey was data collection and creation of a geometrical model. Acquired cross- and horizontal sections were utilised to create a numerical model of object behaviour at various load depending of changing level of water in reservoir. Modelling was accomplished using finite elements technique. During the project an assessment was conducted to terrestrial laser scanning techniques for such type of research of large hydrotechnical objects such as gravitational water dams. Developed model can be used to define deformations and displacement prognosis.

  10. Damage Detection on Thin-walled Structures Utilizing Laser Scanning and Standing Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Hyeok; Jeon, Jun Young; Kim, Du Hwan; Park, Gyuhae [Chonnam Nat’l Univ., Gwangju (Korea, Republic of); Kang, To; Han, Soon Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    This paper describes wavenumber filtering for damage detection using single-frequency standing wave excitation and laser scanning sensing. An embedded piezoelectric sensor generates ultrasonic standing waves, and the responses are measured using a laser Doppler vibrometer and mirror tilting device. After scanning, newly developed damage detection techniques based on wavenumber filtering are applied to the full standing wave field. To demonstrate the performance of the proposed techniques, several experiments were performed on composite plates with delamination and aluminum plates with corrosion damage. The results demonstrated that the developed techniques could be applied to various structures to localize the damage, with the potential to improve the damage detection capability at a high interrogation speed.

  11. Polishing Sapphire Substrates by 355 nm Ultraviolet Laser

    Directory of Open Access Journals (Sweden)

    X. Wei

    2012-01-01

    Full Text Available This paper tries to investigate a novel polishing technology with high efficiency and nice surface quality for sapphire crystal that has high hardness, wear resistance, and chemical stability. A Q-switched 355 nm ultraviolet laser with nanosecond pulses was set up and used to polish sapphire substrate in different conditions in this paper. Surface roughness Ra of polished sapphire was measured with surface profiler, and the surface topography was observed with scanning electronic microscope. The effects of processing parameters as laser energy, pulse repetition rate, scanning speed, incident angle, scanning patterns, and initial surface conditions on surface roughness were analyzed.

  12. REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

    Directory of Open Access Journals (Sweden)

    P. Rönnholm

    2012-07-01

    Full Text Available Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was

  13. Data acquisition considerations for Terrestrial Laser Scanning of forest plots

    NARCIS (Netherlands)

    Wilkes, Phil; Lau Sarmiento, Alvaro; Disney, Mathias; Calders, Kim; Burt, Andrew; Gonzalez De Tanago Meñaca, J.; Bartholomeus, Harm; Brede, Benjamin; Herold, Martin

    2017-01-01

    The poor constraint of forest Above Ground Biomass (AGB) is responsible, in part, for large uncertainties in modelling future climate scenarios. Terrestrial Laser Scanning (TLS) can be used to derive unbiased and non-destructive estimates of tree structure and volume and can, therefore, be used to

  14. Fabrication of nanometer flat areas onto YBa2Cu3O7-x thin film surfaces by scanning tunneling microscope

    International Nuclear Information System (INIS)

    Virtanen, J.A.; Suketu, P.; Huth, G.C.; Cho, Z.H.

    1991-01-01

    A scanning tunneling microscope was used to mechanically ''mill'' nanometer flat areas of up to 1600 μm 2 on high temperature superconducting (HTS) films of YBa 2 Cu 3 O 7-x which were originally formed by laser ablation. Flatness to a standard deviation of 2 nm in height was found to be characteristic of milled areas. It was subsequently possible to mill trenches and ditches onto these flat areas. Scanning tunneling measurements of the exposed layered structure of the milled HTS surface are also reported. Surface modifications are also possible by the application of voltage pulse to the tunneling tip. The combination of electrical pulses and milling offer a possibility of mixed electromechanical patterning of the film

  15. A flexible 3D laser scanning system using a robotic arm

    Science.gov (United States)

    Fei, Zixuan; Zhou, Xiang; Gao, Xiaofei; Zhang, Guanliang

    2017-06-01

    In this paper, we present a flexible 3D scanning system based on a MEMS scanner mounted on an industrial arm with a turntable. This system has 7-degrees of freedom and is able to conduct a full field scan from any angle, suitable for scanning object with the complex shape. The existing non-contact 3D scanning system usually uses laser scanner that projects fixed stripe mounted on the Coordinate Measuring Machine (CMM) or industrial robot. These existing systems can't perform path planning without CAD models. The 3D scanning system presented in this paper can scan the object without CAD models, and we introduced this path planning method in the paper. We also propose a practical approach to calibrating the hand-in-eye system based on binocular stereo vision and analyzes the errors of the hand-eye calibration.

  16. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.

    Science.gov (United States)

    Long, Jiangyou; Fan, Peixun; Gong, Dingwei; Jiang, Dafa; Zhang, Hongjun; Li, Lin; Zhong, Minlin

    2015-05-13

    Superhydrophobic surfaces with tunable water adhesion have attracted much interest in fundamental research and practical applications. In this paper, we used a simple method to fabricate superhydrophobic surfaces with tunable water adhesion. Periodic microstructures with different topographies were fabricated on copper surface via femtosecond (fs) laser irradiation. The topography of these microstructures can be controlled by simply changing the scanning speed of the laser beam. After surface chemical modification, these as-prepared surfaces showed superhydrophobicity combined with different adhesion to water. Surfaces with deep microstructures showed self-cleaning properties with extremely low water adhesion, and the water adhesion increased when the surface microstructures became flat. The changes in surface water adhesion are attributed to the transition from Cassie state to Wenzel state. We also demonstrated that these superhydrophobic surfaces with different adhesion can be used for transferring small water droplets without any loss. We demonstrate that our approach provides a novel but simple way to tune the surface adhesion of superhydrophobic metallic surfaces for good potential applications in related areas.

  17. Effects of conventional welding and laser welding on the tensile strength, ultimate tensile strength and surface characteristics of two cobalt-chromium alloys: a comparative study.

    Science.gov (United States)

    Madhan Kumar, Seenivasan; Sethumadhava, Jayesh Raghavendra; Anand Kumar, Vaidyanathan; Manita, Grover

    2012-06-01

    The purpose of this study was to evaluate the efficacy of laser welding and conventional welding on the tensile strength and ultimate tensile strength of the cobalt-chromium alloy. Samples were prepared with two commercially available cobalt-chromium alloys (Wironium plus and Diadur alloy). The samples were sectioned and the broken fragments were joined using Conventional and Laser welding techniques. The welded joints were subjected to tensile and ultimate tensile strength testing; and scanning electron microscope to evaluate the surface characteristics at the welded site. Both on laser welding as well as on conventional welding technique, Diadur alloy samples showed lesser values when tested for tensile and ultimate tensile strength when compared to Wironium alloy samples. Under the scanning electron microscope, the laser welded joints show uniform welding and continuous molt pool all over the surface with less porosity than the conventionally welded joints. Laser welding is an advantageous method of connecting or repairing cast metal prosthetic frameworks.

  18. Markerless laser registration in image-guided oral and maxillofacial surgery.

    Science.gov (United States)

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  19. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    Energy Technology Data Exchange (ETDEWEB)

    Estevam-Alves, Regina [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany); Mendonca, Cleber R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos (Brazil); Cestari, Ismar N. [Heart Institute (InCOr), University of São Paulo Medical School, São Paulo 05403-000 (Brazil); Lasagni, Andrés F., E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, Dresden 01277 (Germany); Chair for Large Area Laser Based Surface Micro/Nano-Structuring, Institute for Manufacturing Technology, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden (Germany)

    2016-06-30

    Highlights: • First reported experiments on Direct Laser Interference Patterning of polyurethane. • First reported sub-micrometer structures (feature size ∼250 nm) fabricated in polyurethane materials using laser processing technologies. • Anisotropic wetting behavior of structured surfaces and possibility to tune the contact angle as function of surface structure parameters. - Abstract: Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  20. A study of the formation of Cr-surface alloyed layer on structural alloy steel by Co2 laser

    International Nuclear Information System (INIS)

    Kim, T.H.; Han, W.S.

    1986-01-01

    In order to improve wear and erosion-resistances of a structural alloy steel (SNCM 8) during heat-cycling, chromium-alloyed layers were produced on the surface by irradiating Co 2 laser. Specimens were prepared either by electroplating of hard-chromium or coating of chromium powders on the steel followed by the laser treatment. Index values, which related the depth and the width of the alloyed layers to the scanning speed of laser, for both samples are experimentally measured. At a fixed scanning speed, while both samples resulted in a similar depth of the alloyed layers, the chromium powder coated specimen showed larger width of the alloyed layer than the chromium electroplated one. The hardness values of the alloyed layers in both samples were slightly lower than that of the martensitic region beneath the alloyed layers. But they are considerably higher than those of steel matrices. Regardless of the prior treatments before laser irradiation, distributions of chromium were fairly uniform throughout the alloyed layers. (Author)

  1. Additive Manufacturing of Nickel-Base Superalloy IN100 Through Scanning Laser Epitaxy

    Science.gov (United States)

    Basak, Amrita; Das, Suman

    2018-01-01

    Scanning laser epitaxy (SLE) is a laser powder bed fusion (LPBF)-based additive manufacturing process that uses a high-power laser to consolidate metal powders facilitating the fabrication of three-dimensional objects. In the present study, SLE is used to produce samples of IN100, a high-γ' non-weldable nickel-base superalloy on similar chemistry substrates. A thorough analysis is performed using various advanced material characterization techniques such as high-resolution optical microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and Vickers microhardness measurements to characterize and compare the quality of the SLE-fabricated IN100 deposits with the investment cast IN100 substrates. The results show that the IN100 deposits have a finer γ/γ' microstructure, weaker elemental segregation, and higher microhardness compared with the substrate. Through this study, it is demonstrated that the SLE process has tremendous potential in the repair and manufacture of gas turbine hot-section components.

  2. Investigation into Effects of Scanning Speed on in Vitro Biocompatibility of Selective Laser Melted 316L Stainless Steel Parts

    Directory of Open Access Journals (Sweden)

    Shang Yitong

    2017-01-01

    Full Text Available In recent years, selective laser melting (SLM has gained an important place in fabrication due to their strong individualization which cannot be manufactured using conventional processes such as casting or forging. By proper control of the SLM processing parameters, characteristics of the alloy can be optimized. In the present work, 316L stainless steel (SS, as a widely used biomedical material, is investigated in terms of the effects of scanning speed on in vitro biocompatibility during SLM process. Cytotoxicity assay is adopted to assess the in vitro biocompatibility. The results show the scanning speed strongly affects the in vitro biocompatibility of 316L SS parts and with prolongs of incubation time, the cytotoxicity increase and the in vitro biocompatibility gets worse. The optimal parameters are determined as follows: scanning speed of 900 mm/s, laser power of 195 W, hatch spacing of 0.09 mm and layer thickness of 0.02 mm. The processing parameters lead to the change of surface morphology and microstructures of samples, which can affect the amount of toxic ions release, such as Cr, Mo and Co, that can increase risks to patient health and reduce the biocompatibility.

  3. [Progress in the application of laser ablation ICP-MS to surface microanalysis in material science].

    Science.gov (United States)

    Zhang, Yong; Jia, Yun-hai; Chen, Ji-wen; Shen, Xue-jing; Liu, Ying; Zhao, Leiz; Li, Dong-ling; Hang, Peng-cheng; Zhao, Zhen; Fan, Wan-lun; Wang, Hai-zhou

    2014-08-01

    In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

  4. Effect of Irradiation Parameters on Morphology of Polishing DF2 (AISI-O1 Surface by Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2007-01-01

    Full Text Available Pulse Nd:YAG laser was used to polish DF2 cold work steel. Influence of irradiation parameters on the 3D surface morphology was studied by 3D profilometer, scanning electron microscopy (SEM, and atomic force microscope (AFM. Results among the tests showed when DF2 specimens were irradiated with parameters of (i laser input energy P=1 J, (ii pulse feedrate=300 mm/min, (iii pulse duration (PD =3 milliseconds, and (iv pulse frequency f=20∼25 Hz, laser polishing of DF2 cold work steel seemed to be successful.

  5. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  6. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    Science.gov (United States)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  7. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    International Nuclear Information System (INIS)

    Dekker, K H; Battista, J J; Jordan, K J

    2017-01-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations. (paper)

  8. Periodic and uniform nanogratings formed on cemented carbide by femtosecond laser scanning

    International Nuclear Information System (INIS)

    Lian, Yunsong; Deng, Jianxin; Xing, Youqiang; Lei, Shuting; Yu, Xiaoming

    2013-01-01

    Periodic and uniform nanogratings are fabricated by femtosecond laser scanning on cemented carbide. Specifically, three experiments are designed to study the influence of single pulse energy, scanning speed, and scanning spacing on the period and the uniformity of the formed nanogratings. The results show that the sample with single pulse energy of 2 μJ, scanning speed of 1000 μm/s, and scanning spacing of 5 μm shows the best quality of nanogratings among all the tested samples at different processing parameters. The uniformity of the nanogratings is largely determined by single pulse energy, scanning speed, and scanning spacing. Single pulse energy and scanning speed significantly affect the period of the nanogratings, whereas the period of the nanogratings maintains a fixed value under different scanning spacings. The period of the nanogratings increases gradually with the decrease of the single pulse energy and the increase of the scanning speed, respectively.

  9. Influence of repetitive pulsed laser irradiation on the surface characteristics of an aluminum alloy in the melting regime

    International Nuclear Information System (INIS)

    Choi, Sung Ho; Jhang, Kyung Young

    2015-01-01

    We have investigated the influence of repetitive near-infrared (NIR) pulsed laser shots in the melting regime on the surface characteristics of an aluminum 6061-T6 alloy. Characteristics of interest include surface morphology, surface roughness, and surface hardness in the melted zone as well as the size of the melted zone. For this study, the proper pulse energy for inducing surface melting at one shot is selected using numerical simulations that calculate the variation in temperature at the laser beam spot for various input pulse energies in order to find the proper pulse energy for raising the temperature to the melting point. In this study, 130 mJ was selected as the input energy for a Nd:YAG laser pulse with a duration of 5 ns. The size of the melted zone measured using optical microscopy (OM) increased logarithmically with an increasing shot number. The surface morphology observed by scanning electron microscopy (SEM) clearly showed a re-solidified microstructure evolution after surface melting. The surface roughness and hardness were measured by atomic force microscopy (AFM) and nano-indentation, respectively. The surface roughness showed almost no variation due to the surface texturing after laser shots over 10. The hardness inside the melted zone was lower than that outside the zone because the β'' phase was transformed to a β phase or dissolved into a matrix.

  10. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    Science.gov (United States)

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  11. Laser surface processing with controlled nitrogen-argon concentration levels for regulated surface life time

    Science.gov (United States)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2018-03-01

    Laser surface modification can be used to enhance the mechanical properties of a material, such as hardness, toughness, fatigue strength, and corrosion resistance. Surface nitriding is a widely used thermochemical method of surface modification, in which nitrogen is introduced into a metal or other material at an elevated temperature within a furnace. It is used on parts where there is a need for increased wear resistance, corrosion resistance, fatigue life, and hardness. Laser nitriding is a novel method of nitriding where the surface is heated locally by a laser, either in an atmosphere of nitrogen or with a jet of nitrogen delivered to the laser heated site. It combines the benefits of laser modification with those of nitriding. Recent work on high toughness tool steel samples has shown promising results due to the increased nitrogen gas impingement onto the laser heated region. Increased surface activity and nitrogen adsorption was achieved which resulted in a deeper and harder surface compared to conventional hardening methods. In this work, the effects of the laser power, pulse repetition frequency, and overlap percentage on laser surface treatment of 316 L SST steel samples with an argon-nitrogen jet will be presented. Resulting microstructure, phase type, microhardness, and wear resistance are presented.

  12. Axial Fan Blade Vibration Assessment under Inlet Cross-Flow Conditions Using Laser Scanning Vibrometry

    Directory of Open Access Journals (Sweden)

    Till Heinemann

    2017-08-01

    Full Text Available In thermal power plants equipped with air-cooled condensers (ACCs, axial cooling fans operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect has previously only been studied numerically or by using blade-mounted strain gauges. For this study, laser scanning vibrometry (LSV was used to assess fan blade vibration under inlet cross-flow conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined, with and without inlet cross-flow influence. While almost identical fan vibration patterns were found for both reference operating points, the overall blade vibration increased by 100% at the low fan flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted natural frequency modes could be confirmed from experimental data as minor peaks in the vibration amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited at the blade-pass frequency.

  13. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    Science.gov (United States)

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  14. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy.

    Science.gov (United States)

    Hu, H; Johani, K; Gosbell, I B; Jacombs, A S W; Almatroudi, A; Whiteley, G S; Deva, A K; Jensen, S; Vickery, K

    2015-09-01

    Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  15. 3D laser scanning and modelling of the Dhow heritage for the Qatar National Museum

    Science.gov (United States)

    Wetherelt, A.; Cooper, J. P.; Zazzaro, C.

    2014-08-01

    Curating boats can be difficult. They are complex structures, often demanding to conserve whether in or out of the water; they are usually large, difficult to move on land, and demanding of gallery space. Communicating life on board to a visiting public in the terra firma context of a museum can be difficult. Boats in their native environment are inherently dynamic artifacts. In a museum they can be static and divorced from the maritime context that might inspire engagement. New technologies offer new approaches to these problems. 3D laser scanning and digital modeling offers museums a multifaceted means of recording, monitoring, studying and communicating watercraft in their care. In this paper we describe the application of 3D laser scanning and subsequent digital modeling. Laser scans were further developed using computer-generated imagery (CGI) modeling techniques to produce photorealistic 3D digital models for development into interactive, media-based museum displays. The scans were also used to generate 2D naval lines and orthographic drawings as a lasting curatorial record of the dhows held by the National Museum of Qatar.

  16. Effect of liquid environment on the titanium surface modification by laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nisar, E-mail: chnisarali@gmail.com [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad (Pakistan); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Bashir, Shazia [Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Umm-i-Kalsoom [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria); Laser Laboratories, Centre for Advanced Studies in Physics, GC University, 1-Church Road, Lahore (Pakistan); Department of Physics, GC University, Kachehri Road, Lahore (Pakistan); Department of Basic Science and Humanities, University of Engineering and Technology Lahore, Kala Shah Kaku Campus, Lahore (Pakistan); Begum, Narjis [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Rafique, Muhammad Shahid [Department of Physics, University of Engineering and Technology Lahore (Pakistan); Husinsky, Wolfgang [Laser Laboratories, Institute for Applied Physics, Vienna University of Technology, 1040 Vienna (Austria)

    2017-05-31

    Highlights: • Liquid assisted ablation effects on the titanium under varying number of laser pulses is investigated. • SEM analysis reveals the growth of various features like ripples, dendritic structures, pores, grains and craters. • Raman and XRD analyses shows the presence of TiO{sub 2} & TiH in both media whereas, TiC, TiCxOy are only identified in propanol. • Hardness of ablated Ti explored by Nano indentation is found to decrease with increasing number of pulses in both media. • Relationship between surface, structural and mechanical modifications is established. - Abstract: The effect of liquid environment (de-ionized water and propanol) on surface, structural and mechanical properties of femtosecond laser ablated titanium has been investigated. For this purpose, Ti: sapphire laser (800 nm, 30 fs, 1 kHz) has been employed, at a fluence of 3.6 J/cm{sup 2} in ambient environments of de-ionized water, and propanol for various number of laser pulses i.e. 500, 1000, 1500 and 2000. The surface features, chemical composition, structural analysis and mechanical properties of irradiated targets have been evaluated by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X -ray Diffraction (XRD), Raman Spectroscopy and Nano-hardness tester. Various features like dendritic structures, globules, porous granular morphology, cones, crater, circular ripples and thermal stress cracking are observed at the ablated area after irradiation. These features are instigated by various thermal and chemical phenomena induced by laser heating at the solid–liquid interface. Decrease in nano-hardness observed in both ambient environments is attributable to the formation of hydrides after irradiation in both media.

  17. Single-mode surface plasmon distributed feedback lasers.

    Science.gov (United States)

    Karami Keshmarzi, Elham; Tait, R Niall; Berini, Pierre

    2018-03-29

    Single-mode surface plasmon distributed feedback (DFB) lasers are realized in the near infrared using a two-dimensional non-uniform long-range surface plasmon polariton structure. The surface plasmon mode is excited onto a 20 nm-thick, 1 μm-wide metal stripe (Ag or Au) on a silica substrate, where the stripe is stepped in width periodically, forming a 1st order Bragg grating. Optical gain is provided by optically pumping a 450 nm-thick IR-140 doped PMMA layer as the top cladding, which covers the entire length of the Bragg grating, thus creating a DFB laser. Single-mode lasing peaks of very narrow linewidth were observed for Ag and Au DFBs near 882 nm at room temperature. The narrow linewidths are explained by the low spontaneous emission rate into the surface plasmon lasing mode as well as the high quality factor of the DFB structure. The lasing emission is exclusively TM polarized. Kinks in light-light curves accompanied by spectrum narrowing were observed, from which threshold pump power densities can be clearly identified (0.78 MW cm-2 and 1.04 MW cm-2 for Ag and Au DFB lasers, respectively). The Schawlow-Townes linewidth for our Ag and Au DFB lasers is estimated and very narrow linewidths are predicted for the lasers. The lasers are suitable as inexpensive, recyclable and highly coherent sources of surface plasmons, or for integration with other surface plasmon elements of similar structure.

  18. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    International Nuclear Information System (INIS)

    Arias, Nestor; Meneses, Nestor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  19. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  20. Laser surface modification of polyethersulfone films: effect of laser wavelength on biocompatibility

    International Nuclear Information System (INIS)

    Pazokian, H; Jelvani, S; Mollabashi, M; Barzin, J

    2013-01-01

    In this paper laser ablation of polyethersulfone (PES) films regarding to the change in biocompatibility of the surface is investigated at 3 different wavelengths of 193nm (ArF), 248 nm (KrF) and 308 nm (XeCl). The optimum laser fluence and number of pulses for the improvement of the surface biocompatibility is found by examination of the surface behavior in contact with platelets and fibroblasts cells at 3 wavelengths. These biological modifications are explained by alteration of the surface morphology and chemistry following irradiation. The results show that the KrF laser is the best choice for treatment of PES in biological applications.

  1. Effect of laser power and scanning speed on laser deposited Ti6Al4V/TiB2 matrix composites

    CSIR Research Space (South Africa)

    Mokgalaka, MN

    2012-10-01

    Full Text Available Additive Manufacturing in Industry Conference, Kwa Maritane, Pilanesberg National Park, 31 October-2 November 2012 EFFECT OF LASER POWER AND SCANNING SPEED ON LASER DEPOSITED Ti6Al4V/TiB2 MATRIX COMPOSITES M.N. Mokgalaka2,1, S.L. Pityana1,2, A.P.I...

  2. Surface processing by high power excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Stehle, M [SOPRA, 92 - Bois-Colombes (France)

    1995-03-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at {lambda} = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : (a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. (b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. (c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. (d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.).

  3. Surface processing by high power excimer laser

    International Nuclear Information System (INIS)

    Stehle, M.

    1995-01-01

    Surface processing with lasers is a promising field of research and applications because lasers bring substantial advantages : laser beams work at distance, laser treatments are clean in respect of environment consideration and they offer innovative capabilities for surface treatment which cannot be reached by other way. Excimer lasers are pulsed, gaseous lasers which emit in UV spectral range - the most common are XeCl (308 nm), KrF (248 nm), ArF (193 nm). From 1980 up to 1994, many of them have been used for research, medical and industrial applications such as spectroscopy, PRK (photo-refractive keratotomy) and micro-machining. In the last six years, from 1987 up to 1993, efforts have been done in order to jump from 100 W average power up to 1 kW for XeCl laser at λ = 308 nm. It was the aim of AMMTRA project in Japan as EU205 and EU213 Eureka projects in Europe. In this framework, SOPRA developed VEL (Very large Excimer Laser). In 1992, 1 kW (10 J x 100 Hz) millstone has been reached for the first time, this technology is based on X-Ray preionization and large laser medium (5 liters). Surface treatments based on this laser source are the main purpose of VEL Lasers. Some of them are given for instance : a) Turbine blades made with metallic substrate and ceramic coatings on the top, are glazed in order to increase corrosion resistance of ceramic and metal sandwich. b) Selective ablation of organic coatings deposited on fragile composite material is investigated in Aerospace industry. c) Chock hardening of bulk metallic materials or alloys are investigated for automotive industry in order to increase wear resistance. d) Ablation of thin surface oxides of polluted steels are under investigation in nuclear industry for decontamination. (J.P.N.)

  4. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  5. Laser modification of macroscopic properties of metal surface layer

    Science.gov (United States)

    Kostrubiec, Franciszek

    1995-03-01

    Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.

  6. Geodetic Imaging for Rapid Assessment of Earthquakes: Airborne Laser Scanning (ALS)

    Science.gov (United States)

    Carter, W. E.; Shrestha, R. L.; Glennie, C. L.; Sartori, M.; Fernandez-Diaz, J.; National CenterAirborne Laser Mapping Operational Center

    2010-12-01

    To the residents of an area struck by a strong earthquake quantitative information on damage to the infrastructure, and its attendant impact on relief and recovery efforts, is urgent and of primary concern. To earth scientists a strong earthquake offers an opportunity to learn more about earthquake mechanisms, and to compare their models with the real world, in hopes of one day being able to accurately predict the precise locations, magnitudes, and times of large (and potentially disastrous) earthquakes. Airborne laser scanning (also referred to as airborne LiDAR or Airborne Laser Swath Mapping) is particularly well suited for rapid assessment of earthquakes, both for immediately estimating the damage to infrastructure and for providing information for the scientific study of earthquakes. ALS observations collected at low altitude (500—1000m) from a relatively slow (70—100m/sec) aircraft can provide dense (5—15 points/m2) sets of surface features (buildings, vegetation, ground), extending over hundreds of square kilometers with turn around times of several hours to a few days. The actual response time to any given event depends on several factors, including such bureaucratic issues as approval of funds, export license formalities, and clearance to fly over the area to be mapped, and operational factors such as the deployment of the aircraft and ground teams may also take a number of days for remote locations. Of course the need for immediate mapping of earthquake damage generally is not as urgent in remote regions with less infrastructure and few inhabitants. During August 16-19, 2010 the National Center for Airborne Laser Mapping (NCALM) mapped the area affected by the magnitude 7.2 El Mayor-Cucapah Earthquake (Northern Baja California Earthquake), which occurred on April 4, 2010, and was felt throughout southern California, Arizona, Nevada, and Baja California North, Mexico. From initial ground observations the fault rupture appeared to extend 75 km

  7. Defining the Cubature Changes of Historic St. Kinga Chamber in Bochnia Salt Mine, Using Laser Scanning Technology

    Science.gov (United States)

    Szafarczyk, Anna; Gawałkiewicz, Rafał

    2018-03-01

    In Poland, there are many mining enterprises, of historic character registered in the UNESCO World Heritage List. One of the oldest mining enterprises in Poland is the Salt Mine in Bochnia. The processes inside the rock mass require that surveying services carry out regular geometric control of the cavities. A particular attention should be paid (due to its sacral function) on St. Kinga Chamber, located 195 metres below the surface, on the mine level "August". So far measurement technologies have been connected with the studies on changes in the geometry of cavities and based on linear bases used to measure convergence. This only provides discrete information (in a point) and not always presents a real state of deformation. In the scanning method, in practice a three dimension image of changes (structural deformations) is obtained, impossible to determine with the application of measurement methods, applied to measure the value of linear convergence (the method with a limited number of bases). Laser scanning, apart from determining the value of volume convergence, gives also the possibility of the visualization of 3D cavern. Moreover, it provides direct information to update mining numerical maps and make it possible to generate various cross-sections through the cavern. The authors analysed the possibility of the application of laser scanning (scanner Faro Focus 3D), as a modern tool allowing the measuring of the value of volume convergence.

  8. Nanosecond laser surface modification of AISI 304L stainless steel: Influence the beam overlap on pitting corrosion resistance

    International Nuclear Information System (INIS)

    Pacquentin, Wilfried; Caron, Nadège; Oltra, Roland

    2014-01-01

    Surface modifications of AISI 304L stainless steel by laser surface melting (LSM) were investigated using a nanosecond pulsed laser-fibre doped by ytterbium at different overlaps. The objective was to study the change in the corrosion properties induced by the treatment of the outer-surface of the stainless steel without modification of the bulk material. Different analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and glow discharge optical emission spectrometry (GDOES) were used to characterize the laser-melted surface. The corrosion resistance was evaluated in a chloride solution at room temperature by electrochemical tests. The results showed that the crystallographic structure, the chemical composition, the properties of the induced oxide layer and consequently the pitting corrosion resistance strongly depend on the overlap rate. The most efficient laser parameters led to an increase of the pitting potential by more than 300 mV, corresponding to a quite important improvement of the corrosion resistance. This latter was correlated to chromium enrichment (47 wt.%) at the surface of the stainless steel and the induced absence of martensite and ferrite phases. However, these structural and chemical modifications were not sufficient to explain the change in corrosion behaviour: defects and adhesion of the surface oxide layer must have been taken into consideration.

  9. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer

    2017-12-01

    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.

  10. Generation of ultrasound in materials using continuous-wave lasers.

    Science.gov (United States)

    Caron, James N; DiComo, Gregory P; Nikitin, Sergei

    2012-03-01

    Generating and detecting ultrasound is a standard method of nondestructive evaluation of materials. Pulsed lasers are used to generate ultrasound remotely in situations that prohibit the use of contact transducers. The scanning rate is limited by the repetition rates of the pulsed lasers, ranging between 10 and 100 Hz for lasers with sufficient pulse widths and energies. Alternately, a high-power continuous-wave laser can be scanned across the surface, creating an ultrasonic wavefront. Since generation is continuous, the scanning rate can be as much as 4 orders of magnitude higher than with pulsed lasers. This paper introduces the concept, comparing the theoretical scanning speed with generation by pulsed laser. © 2012 Optical Society of America

  11. Designing Pulse Laser Surface Modification of H13 Steel Using Response Surface Method

    Science.gov (United States)

    Aqida, S. N.; Brabazon, D.; Naher, S.

    2011-01-01

    This paper presents a design of experiment (DOE) for laser surface modification process of AISI H13 tool steel in achieving the maximum hardness and minimum surface roughness at a range of modified layer depth. A Rofin DC-015 diffusion-cooled CO2 slab laser was used to process AISI H13 tool steel samples. Samples of 10 mm diameter were sectioned to 100 mm length in order to process a predefined circumferential area. The parameters selected for examination were laser peak power, overlap percentage and pulse repetition frequency (PRF). The response surface method with Box-Behnken design approach in Design Expert 7 software was used to design the H13 laser surface modification process. Metallographic study and image analysis were done to measure the modified layer depth. The modified surface roughness was measured using two-dimensional surface profilometer. The correlation of the three laser processing parameters and the modified surface properties was specified by plotting three-dimensional graph. The hardness properties were tested at 981 mN force. From metallographic study, the laser modified surface depth was between 37 μm and 150 μm. The average surface roughness recorded from the 2D profilometry was at a minimum value of 1.8 μm. The maximum hardness achieved was between 728 and 905 HV0.1. These findings are significant to modern development of hard coatings for wear resistant applications.

  12. 3D laser scanning and open source GIS for solar potential assessment

    International Nuclear Information System (INIS)

    Jochem, A.

    2011-01-01

    There is an increasing demand among home owners and operators of commercial and public facilities to reduce energy costs, the reliance on declining fossil fuel resources and the impact on the environment. Therefore, cost effective sustainable energy production such as biomass, wind power and solar energy must play a major role in the energy supply chain. The latter is in the focus of this thesis. Solar thermal and photovoltaic conversion systems can be mounted on both, roof planes and building facades in order to produce heat and electricity and thus to increase renewable energy supply. The amount of the incoming solar energy on building areas can be assessed by using e.g. solar radiation models that are implemented in Geographical Information Systems (GIS). However, this requires detailed information about the three dimensional representation of the buildings of interest as well as of their surrounding objects that may cast shadows in order to find suitable areas for the installation of solar based renewable energy technologies. In recent years Light Detection and Ranging (LiDAR), also referred to as laser scanning, has established as a standard technology for highly accurate three dimensional data acquisition of object surfaces. The geometrical information of the scanned surface is stored as 3D point cloud (xyz-triples). Each point is tagged with additional information such as strength of backscatter (intensity), timestamp and scan angle. Most solar radiation models that are implemented in standard GIS software operate on 2.5D raster data and cannot be combined with 3D point cloud data. Hence, an aggregation and simplification of the 3D point cloud to 2.5D raster cells is required leading to an irreversible loss of the third dimension. This procedure reduces the amount of point cloud data significantly and processing such simple data models is less time consuming because the complexity of the third dimension has not to be considered anymore. Although 3D shapes

  13. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-12

    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  14. Effect of CO2 Laser and Fluoride Varnish Application on Microhardness of Enamel Surface Around Orthodontic Brackets.

    Science.gov (United States)

    Mahmoudzadeh, Majid; Rezaei-Soufi, Loghman; Farhadian, Nasrin; Jamalian, Seyed Farzad; Akbarzadeh, Mahdi; Momeni, Mohammadali; Basamtabar, Masome

    2018-01-01

    Introduction: Orthodontic treatment has many advantages such as esthetic improvement and self-esteem enhancement; yet it has some disadvantages such as increasing the risk of formation of white spot lesions, because it makes oral hygiene more difficult. It is rational to implement procedures to prevent these lesions. The present study was aimed to assess the effect of CO 2 laser and fluoride varnish on the surface of the enamel surface microhardness around the orthodontic braces. Methods: Eighty extracted premolar teeth were selected, scaled, polished with nonfluoridated pumic and metal brackets were bonded to them. Then, they were randomly allocated to 5 groups: control (neither fluoride nor laser is used on enamel surfaces), fluoride (4 minutes fluoride varnish treatment of the enamel surfaces), CO 2 laser (10.6 µm CO 2 laser irradiation of the teeth), laserfluoride (fluoride application after laser irradiation) and fluoride-laser (fluoride was applied and then teeth were irradiated with laser). After surface treatment around brackets on enamel, the samples were stored in 0.1% thymol for less than 5 days and then they were exposed to a 10-day microbiological caries model. Microhardness values of enamel were evaluated with Vickers test. One sample of each group (5 teeth from 80 samples) was prepared for SEM (scanning electron microscopy) and the data from 75 remaining teeth were analyzed with analysis of variance (ANOVA) and chi-square tests (α =0.05). Results: Microhardness mean values from high to low were as follow: fluoride-laser, laser-fluoride, laser, fluoride and control. Microhardness in fluoride-laser group was significantly higher compared with that of the control group. Distribution adhesive remnant index (ARI) scores were significantly different between groups and most of bond failures occurred at the enamel-adhesive interface in groups 2 to 5 and at the adhesive-bracket interface in the control group. Conclusion: Combination of fluoride varnish and

  15. Integrating Airborne and Terrestrial Laser Scanning data to monitor active landsliding

    Science.gov (United States)

    Székely, B.; Molnár, G.; Roncat, A.; Lehner, H.; Gaisecker, Th.; Drexel, P.

    2009-04-01

    Active slope processes often endanger various built-up objects and, as a consequence, sometimes human lives as well. Data acquision on the status and evolution of such slopes, especially those that had already affected by landsliding, therefore is a primary target for engineering geomorphic research. The method of laser scanning provides an appropriate data collection technique with the requested accuracy. Data from repeated Airborne Laser Scanning (ALS) campaigns are suitable to be analysed for the slow, incipient movements of the slope. The problem of this surveying technique is that repetition time is strongly dependent on the financial resources of the monitoring project, and often the requested recurrence of flight campaigns cannot be achieved. A possible solution to densify the data acquisition in time is the application of Terrestrial Laser Scanning (TLS) and intergration of its data with ALS data sets. TLS has the advantage of flexibility and shorter observation distances compared to ALS. This technique needs special considerations and tedious processing since the geometric setting of the data acquision considerably differ in TLS and ALS. Furthermore, obstacles in the landscape may partly hamper the data acqusition which rarely the case in ALS. Our case study area is a several-decade-long active landsliding in Doren (Federal State Vorarlberg, Austria) that as it develops, it is about to endangers houses of the locality. The site is especially suitable for the project, because multi-temporal data sets (from ALS flight campaigns in 2003, 2006 and 2007, respectively) of this area are available. The data integration is carried out in the form of production of point clouds (sensed from various points of the valley sides) and we compared the results with the results of the previous ALS campaigns. With the planned repetition of the TLS measurements new and detailed insights can be achieved concerning the evolution of the incipient and on-going slow motions. This

  16. Effect of laser parameters on surface roughness of laser modified tool steel after thermal cyclic loading

    Science.gov (United States)

    Lau Sheng, Annie; Ismail, Izwan; Nur Aqida, Syarifah

    2018-03-01

    This study presents the effects of laser parameters on the surface roughness of laser modified tool steel after thermal cyclic loading. Pulse mode Nd:YAG laser was used to perform the laser surface modification process on AISI H13 tool steel samples. Samples were then treated with thermal cyclic loading experiments which involved alternate immersion in molten aluminium (800°C) and water (27°C) for 553 cycles. A full factorial design of experiment (DOE) was developed to perform the investigation. Factors for the DOE are the laser parameter namely overlap rate (η), pulse repetition frequency (f PRF) and peak power (Ppeak ) while the response is the surface roughness after thermal cyclic loading. Results indicate the surface roughness of the laser modified surface after thermal cyclic loading is significantly affected by laser parameter settings.

  17. An evaluation of the efficiency of laser scanning technology in the ...

    African Journals Online (AJOL)

    Green-Blue (RGB) intensity values for each point. Point clouds of data can now be imported into a CAD package and compared to design specifications. In the case where “as-built” specifications differ for the initial design, laser scanning allows ...

  18. Effect of laser parameters on the microstructure of bonding porcelain layer fused on titanium

    Science.gov (United States)

    Chen, Xiaoyuan; Guo, Litong; Liu, Xuemei; Feng, Wei; Li, Baoe; Tao, Xueyu; Qiang, Yinghuai

    2017-09-01

    Bonding porcelain layer was fused on Ti surface by laser cladding process using a 400 W pulse CO2 laser. The specimens were studied by field-emission scanning electron microscopy, X-ray diffraction and bonding tests. During the laser fusion process, the porcelain powders were heated by laser energy and melted on Ti to form a chemical bond with the substrate. When the laser scanning speed decreased, the sintering temperature and the extent of the oxidation of Ti surface increased accordingly. When the laser scanning speed is 12.5 mm/s, the bonding porcelain layers were still incomplete sintered and there were some micro-cracks in the porcelain. When the laser scanning speed decreased to 7.5 mm/s, vitrified bonding porcelain layers with few pores were synthesized on Ti.

  19. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  20. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation quality assessment with the laser scanning technology can be reduced by 70%–90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  1. Laser scan of the Grimming Mts. (Austria) with the latest LiDAR VZ-4000 equipment: preliminary results

    Science.gov (United States)

    Bauer, Harald; Hatzenbichler, Georg; Amon, Philipp; Fallah, Mohammad; Tari, Gabor; Grasemann, Bernhard

    2013-04-01

    As part of a cooperation project between OMV, RIEGL and the University of Vienna the new LiDAR (Light Detection and Ranging) VZ-4000 laser scanner was tested at the Grimming Mts. of the Eastern Alps in Austria. The prominent Grimming Mts. lies in the eastern part of the Dachstein Massif at the southern margin of the Northern Calcareous Alps. The Grimming, with a peak of 2,351 m above sea level, is one of the highest isolated mountains in Europe. Because of its spectacular topography, the Grimming has been used as an important surface reference mark since 1822. From a structural geology standpoint, the Grimming forms a huge antiform made up of dominantly well-bedded Triassic Dachstein Limestone. Because of the relatively well exposed bedrock surfaces above the tree-line and the fairly complex internal structure, the Grimming Mts. provides an ideal target for testing new high resolution laser scan techniques and devices. The maximum distance from the scanning positions on the nearby valley floor to the mountain face was about 4,500 m and the generated point cloud has an average resolution of 25 points per square meter. The purpose of this work was to test the latest version of the high resolution LiDAR laser equipment in a setting which falls beyond the capabilities of most existing LiDAR devices. The results of the pilot study include high-resolution spatial data on bedding planes, fault planes and the thickness variations of individual beds within the Dachstein Limestone. For the first time, the data obtained can be directly used to generate the proper 3D geometry of folds and faults observed on the Grimming Mts. This leads to a modern understanding of this prominent Alpine anticline in terms of structural geology.

  2. Laser welding, cutting and surface treatment

    International Nuclear Information System (INIS)

    Crafer, R.C.

    1984-01-01

    Fourteen articles cover a wide range of laser applications in welding, cutting and surface treatment. Future trends are covered as well as specific applications in shipbuilding, the manufacture of heart pacemakers, in the electronics industry, in automobile production and in the aeroengine industry. Safety with industrial lasers and the measurement of laser beam parameters are also included. One article on 'Lasers in the Nuclear Industry' is indexed separately. (U.K.)

  3. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael

    2012-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-ofsight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. The results will be used to test computational fluid dynamics models for flow over terrain, and has relevance for wind energy. The development of multiple lidar...

  4. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael

    2014-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-of-sight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. We observe a sharp interface between slow and fast moving fluid after the escarpment, and the interface is moving rapidly up and down. This implies that the position...

  5. Direct observation of atoms on surfaces by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Baldeschwieler, J.D.

    1989-01-01

    The scanning tunnelling microscope is a non-destructive means of achieving atomic level resolution of crystal surfaces in real space to elucidate surface structures, electronic properties and chemical composition. Scanning tunnelling microscope is a powerful, real space surface structure probe complementary to other techniques such as x-ray diffraction. 21 refs., 8 figs

  6. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal.

    Science.gov (United States)

    Paasch, Uwe; Wagner, Justinus A; Paasch, Hartmut W

    2015-01-01

    Alexandrite (755 nm) and diode lasers (800-810 nm) are commonly used for hair removal. The alexandrite laser technology is somewhat cumbersome whereas new diode lasers are more robust. Recently, alexandrite-like 755 nm wavelength diodes became available. To compare the efficacy, tolerability, and subject satisfaction of a 755 nm diode laser operated in conventional (HR) and non-conventional in-motion (SHR) modes with a conventional scanned alexandrite 755 nm laser for chest and axillary hair removal. A prospective, single-center, proof of principle study was designed to evaluate the safety, efficacy and handling of a 755 nm diode laser system in comparison to a standard alexandrite 755 nm scanning hair removal laser. The new 755 nm diode is suitable to be used in SHR and HR mode and has been tested for its safety, efficacy and handling in a volunteer with success. Overall, both systems showed a high efficacy in hair reduction (88.8% 755 nm diode laser vs. 77.7% 755 nm alexandrite laser). Also, during the study period, no severe adverse effects were reported. The new 755 nm diode laser is as effective and safe as the traditional 755 nm alexandrite laser. Additionally, treatment with the 755 nm diode laser with HR and SHR modes was found to be less painful.

  7. Impact of initial surface parameters on the final quality of laser micro-polished surfaces

    Science.gov (United States)

    Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.

    2012-03-01

    Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.

  8. Extending ultra-short pulse laser texturing over large area

    Energy Technology Data Exchange (ETDEWEB)

    Mincuzzi, G., E-mail: girolamo.mincuzzi@alphanov.com; Gemini, L.; Faucon, M.; Kling, R.

    2016-11-15

    Highlights: • We carried out metal surface texturing (Ripples, micro grooves, Spikes) using a high power, high repetition rate, industrial, Ultra-short pulses laser. • Extremely Fast processing is shown (Laser Scan speed as high as 90 m/s) with a polygon scanner head. • Stainless steel surface blackening with Ultra-short pulses laser has been obtained with unprecedented scanspeed. • Full SEM surface characterization was carried out for all the different structures obtained. • Reflectance measurements were carried out to characterize surface reflectance. - Abstract: Surface texturing by Ultra-Short Pulses Laser (UPL) for industrial applications passes through the use of both fast beam scanning systems and high repetition rate, high average power P, UPL. Nevertheless unwanted thermal effects are expected when P exceeds some tens of W. An interesting strategy for a reliable heat management would consists in texturing with a low fluence values (slightly higher than the ablation threshold) and utilising a Polygon Scanner Heads delivering laser pulses with unrepeated speed. Here we show for the first time that with relatively low fluence it is possible over stainless steel, to obtain surface texturing by utilising a 2 MHz femtosecond laser jointly with a polygonal scanner head in a relatively low fluence regime (0.11 J cm{sup −2}). Different surface textures (Ripples, micro grooves and spikes) can be obtained varying the scan speed from 90 m s{sup −1} to 25 m s{sup −1}. In particular, spikes formation process has been shown and optimised at 25 m s{sup −1} and a full morphology characterization by SEM has been carried out. Reflectance measurements with integrating sphere are presented to compare reference surface with high scan rate textures. In the best case we show a black surface with reflectance value < 5%.

  9. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser

    OpenAIRE

    Ma, Xiaodong; Huo, Haibin; Wang, Wenhui; Tian, Ye; Wu, Nan; Guthy, Charles; Shen, Mengyan; Wang, Xingwei

    2010-01-01

    A novel fabrication method for surface-enhanced Raman scattering (SERS) sensors that used a fast femtosecond (fs) laser scanning process to etch uniform patterns and structures on the endface of a fused silica optical fiber, which is then coated with a thin layer of silver through thermal evaporation is presented. A high quality SERS signal was detected on the patterned surface using a Rhodamine 6G (Rh6G) solution. The uniform SERS sensor built on the tip of the optical fiber tip was small, l...

  10. Dependence of laser assisted cleaning of clad surfaces on the laser fluence

    International Nuclear Information System (INIS)

    Nilaya, J.P.; Raote, P.; Sai Prasad, M.B.; Biswas, D.J.; Aniruddha Kumar

    2005-01-01

    The decontamination factor is studied as a function of laser fluence for three kinds of clad surfaces viz., plain zircaloy, autoclaved zircaloy and SS with cesium as the test contamination. It has been found that the decontamination factor exhibits a maximal behaviour with the laser fluence and its maximum value occurs at different laser fluences in the three cases. The maximal behaviour is attributed to reduced coupling of energy from the laser beam to the substrate due to the initiation of surface-assisted optical breakdown. The results obtained in the experiment carried out in helium environment qualitatively support this explanation (author)

  11. Laser surface treatment of grey cast iron for automotive applications

    NARCIS (Netherlands)

    Ocelik, V.; Tang, P.N.; de Boer, M.C.; de Oliveira, U.; de Hosson, J.T.M.; DeHosson, JTM; Brebbia, CA; Nishida, SI

    2005-01-01

    The surface of pearlitic grey cast iron was treated using a 2 kW Nd:YAG laser beam with the final aim to improve its surface properties, mainly for automotive applications. Two kinds of laser surface treatments were experimentally applied. In the laser surface hardening approach the surface of cast

  12. Scanning laser polarimetry in glaucoma.

    Science.gov (United States)

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  13. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  14. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  15. Impact of multiple sub-melt laser scans on the activation and diffusion of shallow Boron junctions

    DEFF Research Database (Denmark)

    Rosseel, E.; Vandervorst, W.; Clarysse, T.

    2008-01-01

    , careful process optimization is required. While macroscopic variations can easily be addressed using the proper spatial power compensation it is more difficult to completely eliminate the micro scale non-uniformity which is intimately linked to the laser beam profile, the amount of overlaps and the scan...... pitch. In this work, we will present micro scale sheet resistance uniformity measurements for shallow 0.5 keV B junctions and zoom in on the underlying effect of multiple subsequent laser scans. A variety of characterization techniques are used to extract the relevant junction parameters and the role...... of different implantation and anneal parameters will be explored. It turns out that the observed sheet resistance decrease with increasing number of laser scans is caused on one hand by a temperature dependent increase of the activation level, and on the other hand, by a non-negligible temperature...

  16. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    International Nuclear Information System (INIS)

    Dziadoń, Andrzej; Mola, Renata; Błaż, Ludwik

    2016-01-01

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al 3 Mg 2 , Mg 17 Al 12 and Mg 2 Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO 2 laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  17. The microstructure of the surface layer of magnesium laser alloyed with aluminum and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dziadoń, Andrzej [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Mola, Renata, E-mail: rmola@tu.kielce.pl [Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce (Poland); Błaż, Ludwik [Department of Structure and Mechanics of Solids, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland)

    2016-08-15

    The surface layer under analysis was formed as a result of diffusion bonding of a thin AlSi20 plate to a magnesium substrate followed by laser melting. Depending on the process parameters, the laser beam melted the AlSi20 plate only or the AlSi20 plate and a layer of the magnesium surface adjacent to it. Two types of microstructure of the remelted layer were thus analyzed. If the melting zone was limited to the AlSi20 plate, the microstructure of the surface layer was typical of a rapidly solidified hypereutectic Al–Si alloy. Since, however, the liquid AlSi20 reacted with the magnesium substrate, the following intermetallic phases formed: Al{sub 3}Mg{sub 2}, Mg{sub 17}Al{sub 12} and Mg{sub 2}Si. The microstructure of the modified surface layer of magnesium was examined using optical, scanning electron and transmission electron microscopy. The analysis of the surface properties of the laser modified magnesium revealed that the thin layer has a microstructure of a rapidly solidified Al–Si alloy offering good protection against corrosion. By contrast, the surface layer containing particles of intermetallic phases was more resistant to abrasion but had lower corrosion resistance than the silumin type layer. - Highlights: •A CO{sub 2} laser was used for surface alloying of Mg with AlSi20. •Before alloying, an AlSi20 plate was diffusion bonded with the Mg substrate. •The process parameters affected the alloyed layer microstructure and properties. •With melting limited to AlSi20, the layer had a structure of rapidly solidified AlSi20. •Mg–Al and Mg–Si phases were present when both the substrate and the plate were melted.

  18. Evaluation of the morphological alteration of the root surface radiated with a diode laser

    International Nuclear Information System (INIS)

    Gulin, Mauricio

    2003-01-01

    The diode laser has been studied for periodontal therapy, as much for removal of calculus as for microbial reduction of periodontal pockets, as well as the visible analgesic effects and biomodulation capacity. For this reason the purpose of this study was to evaluate the morphological alteration of the root surface after radiation with the diode laser, 808 nm through analysis by scanning electron microscopy (SEM). Besides this, to verify the temperature variations caused during the radiation, a thermometer put into the dentinal wall of the root canal was used. In all, 18 teeth were used, 15 of which for the SEM study, and the other 3 were used to temperature variation analysis. The 25 samples were scraped on the root surface and planed with manual instruments. The other 5 were not subjected to any type of treatment. This, 6 groups of 5 samples each were formed. Control Group C whose samples had not received any treatment; Control Group C 1 was only scraped and polished conventionally with Hu-Friedy Gracey curettes 5 and 6; the other samples groups L1, L2, L3, L4 were radiated by diode laser using parameters of power 1,0 W; 1,2 W; 1,4 W; and 1,6 W respectively, 2 times for 10 seconds with 20 seconds intervals between each radiation in continuous mode. The results with relation to the increase of temperature in the interior of the root canal demonstrated that there was an increase of more than 5 degree Celsius. The results of the scanning electron microscope analysis of Control Group C demonstrated great irregularity and ridges on the root surface, with the presence of a dentine layer. Control Group C1 presented a similar aspect to Group L 1's, smoother and more homogeneous surface. Groups L2, L3, and L4 presented scratches alternating with smoother areas showing that fiber contacted the surface of the sample. The results reconfirmed the necessity of further studies using diode laser, with a beam of light emitted in an interrupted mode to improve the control of the

  19. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy

    Directory of Open Access Journals (Sweden)

    Xuesong Han

    2018-03-01

    Full Text Available AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut.

  20. Investigation on Selective Laser Melting AlSi10Mg Cellular Lattice Strut: Molten Pool Morphology, Surface Roughness and Dimensional Accuracy.

    Science.gov (United States)

    Han, Xuesong; Zhu, Haihong; Nie, Xiaojia; Wang, Guoqing; Zeng, Xiaoyan

    2018-03-07

    AlSi10Mg inclined struts with angle of 45° were fabricated by selective laser melting (SLM) using different scanning speed and hatch spacing to gain insight into the evolution of the molten pool morphology, surface roughness, and dimensional accuracy. The results show that the average width and depth of the molten pool, the lower surface roughness and dimensional deviation decrease with the increase of scanning speed and hatch spacing. The upper surface roughness is found to be almost constant under different processing parameters. The width and depth of the molten pool on powder-supported zone are larger than that of the molten pool on the solid-supported zone, while the width changes more significantly than that of depth. However, if the scanning speed is high enough, the width and depth of the molten pool and the lower surface roughness almost keep constant as the density is still high. Therefore, high dimensional accuracy and density as well as good surface quality can be achieved simultaneously by using high scanning speed during SLMed cellular lattice strut.