WorldWideScience

Sample records for surface irradiance study

  1. Stereophotogrammetric study of surface topography in ion irradiated silver

    International Nuclear Information System (INIS)

    Sokolov, V.N.; Fayazov, I.M.

    1993-01-01

    The irradiated surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The surface of silver was irradiated with 30 keV argon ions at variation for the ion incidence angle in interval of 0-80 deg relative to a surface normal. The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture of the irradiated surface is discussed. The parameters of cones on the irradiated surface of silver were measured by the SEM-stereomethod. The measurements of the sample section perpendicular to the incidence plane are also carried out

  2. Surface study of irradiated sapphires from Phrae Province, Thailand using AFM

    Science.gov (United States)

    Monarumit, N.; Jivanantaka, P.; Mogmued, J.; Lhuaamporn, T.; Satitkune, S.

    2017-09-01

    The irradiation is one of the gemstone enhancements for improving the gem quality. Typically, there are many varieties of irradiated gemstones in the gem market such as diamond, topaz, and sapphire. However, it is hard to identify the gemstones before and after irradiation. The aim of this study is to analyze the surface morphology for classifying the pristine and irradiated sapphires using atomic force microscope (AFM). In this study, the sapphire samples were collected from Phrae Province, Thailand. The samples were irradiated by high energy electron beam for a dose of ionizing radiation at 40,000 kGy. As the results, the surface morphology of pristine sapphires shows regular atomic arrangement, whereas, the surface morphology of irradiated sapphires shows the nano-channel observed by the 2D and 3D AFM images. The atomic step height and root mean square roughness have changed after irradiation due to the micro-structural defect on the sapphire surface. Therefore, this study is a frontier application for sapphire identification before and after irradiation.

  3. Biophysical studies of irradiated thymocytes. 1. Surface changes

    Energy Technology Data Exchange (ETDEWEB)

    Sungurov, A Yu; Tokalov, S V; Petrov, Yu P; Sharlaeva, T M

    1985-08-15

    In order to study postirradiation changes in thymus lymphocyte surface, a number of biophysical analytical methods was used: the cell two-partition method, the physical adhesion method, fluorescence intensity and binding parameters of negatively charged ANS probe. Reduction of cell distribution factor in two-phase system and adhesion of thymocytes to cotton 1 hour after irradiation, as well as abrupt change in parameters of binding the probe in the interval of 3-4 hours after X-ray irradiation at the dose of 4 Gy are demonstrated.

  4. Study of Si wafer surfaces irradiated by gas cluster ion beams

    International Nuclear Information System (INIS)

    Isogai, H.; Toyoda, E.; Senda, T.; Izunome, K.; Kashima, K.; Toyoda, N.; Yamada, I.

    2007-01-01

    The surface structures of Si (1 0 0) wafers subjected to gas cluster ion beam (GCIB) irradiation have been analyzed by cross-sectional transmission electron microscopy (XTEM) and atomic force microscopy (AFM). GCIB irradiation is a promising technique for both precise surface etching and planarization of Si wafers. However, it is very important to understand the crystalline structure of Si wafers after GCIB irradiation. An Ar-GCIB used for the physically sputtering of Si atoms and a SF 6 -GCIB used for the chemical etching of the Si surface are also analyzed. The GCIB irradiation increases the surface roughness of the wafers, and amorphous Si layers are formed on the wafer surface. However, when the Si wafers are annealed in hydrogen at a high temperature after the GCIB irradiation, the surface roughness decreases to the same level as that before the irradiation. Moreover, the amorphous Si layers disappear completely

  5. Surface segregation during irradiation

    International Nuclear Information System (INIS)

    Rehn, L.E.; Lam, N.Q.

    1985-10-01

    Gibbsian adsorption is known to alter the surface composition of many alloys. During irradiation, four additional processes that affect the near-surface alloy composition become operative: preferential sputtering, displacement mixing, radiation-enhanced diffusion and radiation-induced segregation. Because of the mutual competition of these five processes, near-surface compositional changes in an irradiation environment can be extremely complex. Although ion-beam induced surface compositional changes were noted as long as fifty years ago, it is only during the past several years that individual mechanisms have been clearly identified. In this paper, a simple physical description of each of the processes is given, and selected examples of recent important progress are discussed. With the notable exception of preferential sputtering, it is shown that a reasonable qualitative understanding of the relative contributions from the individual processes under various irradiation conditions has been attained. However, considerably more effort will be required before a quantitative, predictive capability can be achieved. 29 refs., 8 figs

  6. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  7. In situ studies of the kinetics of surface topography development during ion irradiation

    International Nuclear Information System (INIS)

    Levinskas, R.; Pranevicius, L.

    1996-01-01

    Studies of the mechanical properties of the materials affected by 25-200 keV H + , He + , Ne + and Ar + ion irradiation in the range of fluences up to 2 · 10 17 cm -2 based on the analysis of acoustic emission signals, kinetics of the surface deformations measured by laser interferometric technique and the variations of the surface acoustic waves propagation velocity are conducted. The acoustic emissions source mechanisms under various ion irradiation conditions are discussed and relative contribution various possible mechanism are indicated. The correlation of experimental results obtained by different methods of analysis is done. (author). 11 refs, 5 figs

  8. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  9. Irradiation of potassium-silicate glass surfaces: XPS and REELS study

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Zemek, Josef; Houdková, Jana; Jurek, Karel; Gedeon, O.

    2016-01-01

    Roč. 48, č. 7 (2016), s. 543-546 ISSN 0142-2421. [16th European Conference on Applications of Surface and Interface Analysis (ECASIA). Granada, 28.09.2015-01.10.2015] R&D Projects: GA ČR(CZ) GA15-12580S Institutional support: RVO:68378271 Keywords : electron spectroscopy * potassium silicate glass * x-ray irradiation * electron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2016

  10. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  11. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  12. Surface cracking in proton-irradiated glass

    International Nuclear Information System (INIS)

    Jensen, T.; Lawn, B.R.; Dalglish, R.L.; Kelly, J.C.

    1976-01-01

    Some observations are reported of the surface fracture behaviour of soda-lime glass slabs (6mm thick Pilkington float glass) irradiated with 480 kV protons. A simple indentation microfracture technique provided a convenient means of probing the irradiated surface regions. Basically, the technique involves loading a standard Vickers diamond pyramid indenter onto the area of interest such that a well-developed deformation/fracture pattern is generated. (author)

  13. Ionic liquids influence on the surface properties of electron beam irradiated wood

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Catalin [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Patachia, Silvia, E-mail: st.patachia@unitbv.ro [“Transilvania” University of Brasov, Product Design and Environment Department, 29 Eroilor Str., 500036, Brasov (Romania); Doroftei, Florica; Parparita, Elena; Vasile, Cornelia [“Petru Poni” Institute of Macromolecular Chemistry, Physical Chemistry of Polymers Department, 41A Gr. Ghica Voda Alley, Iasi (Romania)

    2014-09-30

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface.

  14. Surface properties of UV irradiated PC–TiO{sub 2} nanocomposite film

    Energy Technology Data Exchange (ETDEWEB)

    Jaleh, B., E-mail: bkjaleh@yahoo.com; Shahbazi, N.

    2014-09-15

    Highlights: • Production of PC–TiO{sub 2} nanocomposite films. • Fully characterization of PC–TiO{sub 2} nanocomposite films. • Influence of UV irradiation on surface properties and hardness of PC–TiO{sub 2} nanocomposite film. - Abstract: In this work, polycarbonate–TiO{sub 2} nanocomposite films were prepared with two different percentages. The structure of samples were studied by X-ray diffraction. Thermal stability of the nanocomposites was studied by thermogravimetric analysis (TGA). The polycarbonate and polycarbonate–TiO{sub 2} nanocomposite films were exposed by UV light at different irradiation times. The effects of UV irradiation on the surface properties of samples have been studied by different characterization techniques, viz. scanning electron microscopy (SEM), FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), contact angle measurement and Vickers microhardness tester. Hydrophilicity and surface energy of UV treated samples varied depending on UV irradiation time. TGA curves showed that nanocomposite films have higher resistance to thermal degradation compared to polycarbonate. XPS analysis shows that surface of samples become more oxidized due to UV irradiation. For nanocomposite film, the smallest contact angle was observed in association with the longest UV irradiation time. The contact angle significantly decreased from 90° to 12° after 15 h of UV irradiation. It is observed that the hardness of the nanocomposite films increases after UV irradiation.

  15. Nanostructured surface processing by an intense pulsed ion beam irradiation

    International Nuclear Information System (INIS)

    Yatsuzuka, M.; Masuda, T.; Yamasaki, T.; Uchida, H.; Nobuhara, S.; Hashimoto, Y.; Yoshihara, Y.

    1997-01-01

    Metal surface modification by irradiating an intense pulsed ion beam (IPIB) with short pulse width has been studied experimentally. An IPIB irradiation to a target leads to rapid heating above its melting point. After the beam is turned off, the heated region is immediately cooled by thermal conduction at a cooling rate of typically 10 10 K/s. This rapid cooling and resolidification results in generation of nanostructured phase in the top of surface. The typical hydrogen IPIB parameters are 200 kV of energy, 500 A/cm 2 of current density and 70 ns of pulsewidth. The IPIB was irradiated on a pure titanium to generate nanocrystalline phase. The IPIB-irradiated surface was examined with X-ray diffraction, SEM, and HR-TEM. The randomly oriented lattice fringes as well as a halo diffraction pattern are observed in the HR-TEM micrograph of IPIB-irradiated titanium. The average grain size is found to be 32 nanometers

  16. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  17. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    Science.gov (United States)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  18. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    Science.gov (United States)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  19. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  20. Innovative nuclear technologies based on radiation induced surface activation. (5) Development of high performance BWR by the radiation induced surface activation visualization study on the boiling enhancement with irradiation

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2004-01-01

    Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, CHF of metal oxides irradiated by gamma rays were investigated. The heating test section made of titanium was 0.5 mm in diameter. Oxidation of the surface was carried out by plasma jetting. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. A test piece had been hold horizontally on the electrode after 5400 kGy irradiation. Then, the whole CHF test apparatus with test piece was set on the table in the gamma ray irradiation room. The test piece was irradiated in the water at least 30 minutes. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure under irradiation. The results of on-site experiment were compared with that of off-site one. (author)

  1. Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Tanuj [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 1123029 (India); Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Manish, E-mail: manishbharadwaj@gmail.com [Department of Physics, Central University of Rajasthan, Kishangarh 305801 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Sahoo, P.K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-12-01

    Highlights: • A new process for controlling the near-surface amorphization of ripples on Si surfaces. • Ripples generation by 100 KeV Ar{sup +} and amorphization control by 60 KeV Ar{sup +} irradiation. • Advantage of energy-separated irradiation demonstrated by detailed RBS and AFM studies. • Relevant mechanism is presented on the basis of DAMAGE and SIMNRA simulations. • Key role of solid flow towards the amorphous/crystalline interface is demonstrated. - Abstract: Nanoscale ripples on semiconductor surfaces have potential application in biosensing and optoelectronics, but suffer from uncontrolled surface-amorphization when prepared by conventional ion-irradiation methods. A two-step, energy-separated sequential-irradiation enables simultaneous control of surface-amorphization and ripple-dimensions on Si(1 0 0). The evolution of ripples using 100 keV Ar{sup +} bombardment and further tuning of the patterns using a sequential-irradiation by 60 keV Ar{sup +} at different fluences are demonstrated. The advantage of this approach as opposed to increased fluence at the same energy is clarified by atomic force microscopy and Rutherford backscattering spectroscopy investigations. The explanation of our findings is presented through DAMAGE simulation.

  2. Albumin grafting on polymer surfaces by gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.; Park, K.; DeMeo, D.

    1993-01-01

    Polymeric biomaterial surfaces were modified by albumin grafting to improve their blood compatibility. Albumin molecules were functionalized by introduction of double bonds. The functionalized albumin was covalently attached to polypropylene fibers, polycarbonate, and poly(vinyl chloride) by gamma-irradiation. ESCA and ATR/FTIR analysis of the control and grafted surfaces was conducted. Albumin grafting efficiency was found to be dependent on the gamma-irradiation time and the concentration of albumin as indicated by platelet adhesion studies. The grafted albumin molecules were not displaced when exposed to blood for prolonged time period. Finally, PLEXUS oxygenators grafted with albumin using this approach showed a significant reduction in platelet adhesion when compared to control

  3. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  4. X-ray photoelectron spectroscopy study of synchrotron radiation irradiation of a polytetrafluoroethylene surface

    CERN Document Server

    Haruyama, Y; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The effect of synchrotron radiation (SR) irradiation of a polytetrafluoroethylene (PTFE) surface was investigated using X-ray photoelectron spectroscopy (XPS). After the SR irradiation, the relative intensity of the F ls peak to the C ls peak decreased markedly. The chemical composition ratio to the F atoms to C atoms was estimated to be 0.29. From the curve fitting analysis of C ls and F ls XPS spectra, the chemical components and their intensity ratio were determined. The reason for the chemical composition change by the SR irradiation was discussed. (author)

  5. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    Science.gov (United States)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  6. Analysis of irradiation processes for laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Huis In 't Veld, A.J.

    2013-01-01

    The influence of errors on the irradiation process for laser-induced periodic surface structures (LIPSS) was studied theoretically with energy density simulations. Therefore an irradiation model has been extended by a selection of technical variations. The influence of errors has been found in a

  7. Surface modification of multilayer graphene using Ga ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Shao, Ying; Ge, Daohan; Ren, Naifei [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yang, Qizhi [School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013 (China); State key laboratory of Robotics, Chinese Academy of Sciences, Shengyang 110000 (China)

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  8. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM

    International Nuclear Information System (INIS)

    Verlangieri, Eleonora Jaeger

    2001-01-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm 2 for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  9. Changes in surface morphology of enamel after Er:YAG laser irradiation

    Science.gov (United States)

    Rechmann, Peter; Goldin, Dan S.; Hennig, Thomas

    1998-04-01

    Aim of the study was to investigate the surface and subsurface structure of enamel after irradiation with an Er:YAG laser (wavelength 2.94 micrometer, pulse duration 250 - 500 microseconds, free running, beam profile close to tophead, focus diameter 600 micrometer, focus distance 13 mm, different power settings, air-water spray 2 ml/min; KAVO Key Laser 1242, Kavo Biberach, Germany). The surface of more than 40 freshly extracted wisdom teeth were irradiated using a standardized application protocol (pulse repetition rate 4 and 6 Hz, moving speed of the irradiation table 2 mm/sec and 3 mm/sec, respectively). On each surface between 3 and 5 tracks were irradiated at different laser energies (60 - 500 mJ/pulse) while each track was irradiated between one and ten times respectively. For the scanning electron microscope investigation teeth were dried in alcohol and sputtered with gold. For light microscopic examinations following laser impact, samples were fixed in formaldehyde, dried in alcohol and embedded in acrylic resin. Investigations revealed that at subsurface level cracks can not be observed even at application of highest energies. Borders of the irradiated tracks seem to be sharp while melted areas of different sizes are observed on the bottom of the tracks depending on applied energy. Small microcracks can be seen on the surface of these melted areas.

  10. Tuning the hydrophobicity of mica surfaces by hyperthermal Ar ion irradiation

    International Nuclear Information System (INIS)

    Keller, Adrian; Ogaki, Ryosuke; Bald, Ilko; Dong Mingdong; Kingshott, Peter; Fritzsche, Monika; Facsko, Stefan; Besenbacher, Flemming

    2011-01-01

    The hydrophobicity of surfaces has a strong influence on their interactions with biomolecules such as proteins. Therefore, for in vitro studies of bio-surface interactions model surfaces with tailored hydrophobicity are of utmost importance. Here, we present a method for tuning the hydrophobicity of atomically flat mica surfaces by hyperthermal Ar ion irradiation. Due to the sub-100 eV energies, only negligible roughening of the surface is observed at low ion fluences and also the chemical composition of the mica crystal remains almost undisturbed. However, the ion irradiation induces the preferential removal of the outermost layer of K + ions from the surface, leading to the exposure of the underlying aluminosilicate sheets which feature a large number of centers for C adsorption. The irradiated surface thus exhibits an enhanced chemical reactivity toward hydrocarbons, resulting in the adsorption of a thin hydrocarbon film from the environment. Aging these surfaces under ambient conditions leads to a continuous increase of their contact angle until a fully hydrophobic surface with a contact angle >80 deg. is obtained after a period of about 3 months. This method thus enables the fabrication of ultrasmooth biological model surfaces with precisely tailored hydrophobicity.

  11. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    International Nuclear Information System (INIS)

    Lee, S.W.; Hong, J.W.; Wye, M.Y.; Kim, J.H.; Kang, H.J.; Lee, Y.S.

    2004-01-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2 + ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2 + ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and -CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the C-O complex and -CF-radical with mechanical interlocking. The C-O complex and -CF-radical in O 2 + ion irradiated surface contributed to the adhesion

  12. Global irradiation on horizontal surface at Hyderabad, Pakistan

    International Nuclear Information System (INIS)

    Kalhoro, A.N.

    2005-01-01

    The measurement of global irradiation on horizontal surface at PCSIR (Pakistan Council of Scientific and Industrial Research) Laboratories, Hyderabad, Pakistan, for the period of January-June, 2003 is presented in this paper. During six months the total global irradiation received on horizontal surface at Hyderabad Laboratories is 1.80238 MW-h-m2. The daily irradiation data (Watt-h/Sq.m) has been collected on continuous basis by means of EPLAB Pyranometer and EPLAB Electronic Integrator provided with DIGITEC printer system. HPX- Y recorder (potentiometer) is also connected for continuous data recording of solar intensity (m V). The weather effect over the radiation income was observed regularly and proportion of sunny, cloudy, partly cloudy and dusty days is plotted. Monthly mean daily irradiation bifurcated for sunny and cloudy days are also shown separately. To give an overview of sky conditions, the monthly clearness index is calculated. The highest value of average irradiation per day was recorded in June (7.15 kW/m/sup 2/) and minimum recorded in January (4.11 kW/m/sup 2/). The summer season, although rich in radiation with long sunshine duration, brings dust storms along with many partly cloudy or cloudy days, mostly in the month of May and likely in June as well. This could be an additional barrier for solar energy applications especially in desert areas; therefore the study was made for evaluating the effect of dust on the radiation flux. The purpose of the study is the development of rural life in Pakistan such that the inhabitants of rural areas may need not to wait for the connection to national grid. This study will help in improving the efficiency of solar thermal devices, (currently fabricated on theoretical basis at the laboratories), according to experimental data. (author)

  13. Uses of AES and RGA to study neutron-irradiation-enhanced segregation to internal surfaces

    International Nuclear Information System (INIS)

    Gessel, G.R.; White, C.L.

    1980-01-01

    The high flux of point defects to sinks during neutron irradiation can result in segregation of impurity or alloy additions to metals. Such segregants can be preexisting or produced by neutron-induced transmutations. This segregation is known to strongly influence swelling and mechanical properties. Over a period of years, facilities have been developed at ORNL incorporating AES and RGA to examine irradiated materials. Capabilities of this system include in situ tensile fracture at elevated temperatures under ultrahigh vacuum 10 -10 torr and helium release monitoring. AES and normal incidence inert ion sputtering are exploited to examine segregation at the fracture surface and chemical gradients near the surface

  14. Albumin grafting on biomaterial surfaces using gamma-irradiation

    International Nuclear Information System (INIS)

    Kamath, K.R.

    1993-01-01

    Surface modification has been used extensively in various fields to introduce desirable surface properties without affecting the bulk properties of the material. In the area of biomaterials, the approach of surface modification offers an effective alternative to the synthesis of new biomaterials. The specific objective of this study was to modify different biomaterial surfaces by albumin grafting to improve their blood compatibility. The modified surfaces were characterized for surface-induced platelet activation and thrombus formation. This behavior was correlated with the conditions used for grafting. In particular, albumin was functionalized to introduce pendant double bonds into the molecule. The functionalized albumin was covalently attached to various surfaces, such as dimethyldichlorosilane-coated glass, polypropylene, polycarbonate, poly(vinyl chloride), and polyethylene by gamma-irradiation. Platelet adhesion and activation on these surfaces was examined using video microscopy and scanning electron microscopy. The extent of grafting was found to be dependent on the albumin concentration used for adsorption and the gamma-irradiation time. Release of the grafted albumin during exposure to blood was minimal. The albumin-grafted fibers maintained their thromboresistant properties even after storage at elevated temperatures for prolonged time periods. Finally, the approach was used to graft albumin on the PLEXUS Adult Hollow Fiber Oxygenators (Shiley). The blood compatibility of the grafted oxygenators improved significantly when compared to controls

  15. Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel.

    Science.gov (United States)

    Curylofo-Zotti, Fabiana Almeida; Lepri, Taísa Penazzo; Colucci, Vivian; Turssi, Cecília Pedroso; Corona, Silmara Aparecida Milori

    2015-11-01

    This study evaluated the effects of Er:YAG laser irradiation applied at varying pulse repetition rate on the surface roughness of eroded enamel. Bovine enamel slabs (n = 10) were embedded in polyester resin, ground, and polished. To erosive challenges, specimens were immersed two times per day in 20mL of concentrated orange juice (pH = 3.84) under agitation, during a two-day period. Specimens were randomly assigned to irradiation with the Er:YAG laser (focused mode, pulse energy of 60 mJ and energy density of 3.79 J/cm(2) ) operating at 1, 2, 3, or 4 Hz. The control group was left nonirradiated. Surface roughness measurements were recorded post erosion-like formation and further erosive episodes by a profilometer and observed through atomic force microscopy (AFM). Analysis of variance revealed that the control group showed the lowest surface roughness, while laser-irradiated substrates did not differ from each other following post erosion-like lesion formation. According to analysis of covariance, at further erosive episodes, the control group demonstrated lower surface roughness (P > 0.05), than any of the irradiated groups (P enamel eroded. The AFM images showed that the specimens irradiated by the Er:YAG laser at 1 Hz presented a less rough surface than those irradiated at 2, 3, and 4 Hz. © 2015 Wiley Periodicals, Inc.

  16. Evaluation of primary tooth enamel surface morphology and microhardness after Nd:YAG laser irradiation and APF gel treatment--an in vitro study.

    Science.gov (United States)

    Banda, Naveen Reddy; Vanaja Reddy, G; Shashikiran, N D

    2011-01-01

    Laser irradiation and fluoride has been used as a preventive tool to combat dental caries in permanent teeth, but little has been done for primary teeth which are more prone to caries. The purpose of this study was to evaluate microhardness alterations in the primary tooth enamel after Nd-YAG laser irradiation alone and combined with topical fluoride treatment either before or after Nd-YAG laser irradiation. Ten primary molars were sectioned and assigned randomly to: control group, Nd-YAG laser irradiation, Nd-YAG lasing before APF and APF followed by Nd-YAG lasing. The groups were evaluated for microhardness. Surface morphological changes were observed using SEM. Statistical comparisons were performed. The control group's SEM showed a relatively smooth enamel surface and lasing group had fine cracks and porosities. In the lasing + fluoride group a homogenous confluent surface was seen. In the fluoride + lasing group an irregular contour with marked crack propagation was noted. There was a significant increase in the microhardness of the treatment groups. Nd-YAG laser irradiation and combined APF treatment of the primary tooth enamel gave morphologically hardened enamel surface which can be a protective barrier against a cariogenic attack.

  17. Multi-scale characterization of surface blistering morphology of helium irradiated W thin films

    International Nuclear Information System (INIS)

    Yang, J.J.; Zhu, H.L.; Wan, Q.; Peng, M.J.; Ran, G.; Tang, J.; Yang, Y.Y.; Liao, J.L.; Liu, N.

    2015-01-01

    Highlights: • Multi-scale blistering morphology of He irradiated W film was studied. • This complex morphology was first characterized by wavelet transform approach. - Abstract: Surface blistering morphologies of W thin films irradiated by 30 keV He ion beam were studied quantitatively. It was found that the blistering morphology strongly depends on He fluence. For lower He fluence, the accumulation and growth of He bubbles induce the intrinsic surface blisters with mono-modal size distribution feature. When the He fluence is higher, the film surface morphology exhibits a multi-scale property, including two kinds of surface blisters with different characteristic sizes. In addition to the intrinsic He blisters, film/substrate interface delamination also induces large-sized surface blisters. A strategy based on wavelet transform approach was proposed to distinguish and extract the multi-scale surface blistering morphologies. Then the density, the lateral size and the height of these different blisters were estimated quantitatively, and the effect of He fluence on these geometrical parameters was investigated. Our method could provide a potential tool to describe the irradiation induced surface damage morphology with a multi-scale property

  18. Removing roughness on metal surface by irradiation of intense short-pulsed ion beams

    International Nuclear Information System (INIS)

    Hashimoto, Y.

    1995-01-01

    Surface modification of metals with an intense pulsed ion beam (IPIB) was studied experimentally. When the temperature rise of metal surfaces by IPIB irradiation exceeds their boiling point, it is found that machining roughness on surfaces is removed. The experiments were performed with the pulsed power generator HARIMA-II at Himeji Institute of Technology. The main components of the ion beam were carbon and fluorine ions. The IPIB was irradiated to metal plates (Al, Cu and Ti) which were placed at the focal point. Machining roughness on Ti surface was removed after IPIB irradiation, while roughness on Al and Cu plates was not removed. Using the present experimental parameters (beam power density: 32 W/cm 2 , pulse width: 25 ns), the temperature rise of the Ti surface was estimated to be 8,100 K which exceed its boiling point (3,000 K). However, the estimated temperatures of Al and Cu surfaces was 2,500 and 1,500 K, respectively, that are less than their boiling points. These studies above suggests that temperature rise over the boiling point of metals is necessary for removing machining roughness on metal surfaces

  19. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly due to their mechanical properties, and additional features such as high strength-to-weight ratio, stiffness-to-weight ratio, corrosion resistance and wear properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between the components that are fiber and polymeric matrix. The greatest challenge is to improve adhesion between components having elasticity modulus which differ by orders of magnitude and furthermore they are immiscible in each other. Another important factor is the sizing material on the carbon fiber, which protects the carbon fiber filaments and must be compatible with the matrix material in order to improve the adhesion process. The interaction of ionizing radiation from electron beam can induce in the irradiated material the formation of very active centers and free radicals. Further evolution of these active species can significantly modify structure and properties not only in the irradiated polymeric matrix but also on the fiber surface. So that, fiber and matrix play an important role in the production of chemical bonds, which promote better adhesion between both materials improving the composite mechanical performance. The aim of this work was to improve the surface properties of the carbon fiber surface using ionizing radiation from an electron beam in order to obtain improvement of the adhesion properties in the resulted composite. Commercial carbon fiber roving of high tensile strength with 12 000 filaments named 12 k, and sizing material of epoxy resin modified by ester groups was studied. EB irradiation has been carried out at the Institute for Nuclear and Energy Research (IPEN) facilities using a 1.5 MeV 37.5 kW Dynamitron electron accelerator model JOB-188. Rovings of carbon fibers with 1.78 g cm -3 density and 0.13 mm thickness were irradiated with 0.555 MeV, 6.43 mA and

  20. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  1. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  2. Femtosecond laser irradiation-induced infrared absorption on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Qinghua Zhu

    2015-04-01

    Full Text Available The near-infrared (NIR absorption below band gap energy of crystalline silicon is significantly increased after the silicon is irradiated with femtosecond laser pulses at a simple experimental condition. The absorption increase in the NIR range primarily depends on the femtosecond laser pulse energy, pulse number, and pulse duration. The Raman spectroscopy analysis shows that after the laser irradiation, the silicon surface consists of silicon nanostructure and amorphous silicon. The femtosecond laser irradiation leads to the formation of a composite of nanocrystalline, amorphous, and the crystal silicon substrate surface with microstructures. The composite has an optical absorption enhancement at visible wavelengths as well as at NIR wavelength. The composite may be useful for an NIR detector, for example, for gas sensing because of its large surface area.

  3. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  4. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  5. Surface flashover performance of epoxy resin microcomposites improved by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yin; Min, Daomin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Shengtao, E-mail: stli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Li, Zhen; Xie, Dongri [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xuan [Key Laboratory of Engineering Dielectric and its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040 (China); Lin, Shengjun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Pinggao Group Company Ltd., State Grid High Voltage Switchgear Insulation Materials Laboratory, Pingdingshan 467001 (China)

    2017-06-01

    Highlights: • Epoxy resin microcomposites were irradiated by electron beam with energies of 10 and 20 keV. • Surface flashover voltage increase with the increase of electron beam energy. • Both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. • Deposition energy in epoxy resin microcomposites increases with electron beam energy, and surface trap properties are determined by deposition energy. • The influence of surface conductivity and trap distribution on flashover voltage is discussed. - Abstract: The influencing mechanism of electron beam irradiation on surface flashover of epoxy resin/Al{sub 2}O{sub 3} microcomposite was investigated. Epoxy resin/Al{sub 2}O{sub 3} microcomposite samples with a diameter of 50 mm and a thickness of 1 mm were prepared. The samples were irradiated by electron beam with energies of 10 and 20 keV and a beam current of 5 μA for 5 min. Surface potential decay, surface conduction, and surface flashover properties of untreated and irradiated samples were measured. Both the decay rate of surface potential and surface conductivity decrease with an increase in the energy of electron beam. Meanwhile, surface flashover voltage increase. It was found that both the untreated and irradiated samples have two trap centers, which are labeled as shallow and deep traps. The increase in the energy and density of deep surface traps enhance the ability to capture primary emitted electrons. In addition, the decrease in surface conductivity blocks electron emission at the cathode triple junction. Therefore, electron avalanche at the interface between gas and an insulating material would be suppressed, eventually improving surface flashover voltage of epoxy resin microcomposites.

  6. Changing of micromorphology of silicon-on-sapphire epitaxial layer surface at irradiation by subthreshold energy X-radiation

    CERN Document Server

    Kiselev, A N; Skupov, V D; Filatov, D O

    2001-01-01

    The morphology of silicon-on-sapphire epitaxial layer surface after pulse irradiation by the X-rays with the energy of <= 140 keV is studied. The study on the irradiated material surface is carried out by the methods of the atomic force microscopy and ellipsometry. The average roughness value after irradiation constitutes 7 nm. The change in the films surface microrelief occurs due to reconstruction of their dislocation structure under the action of elastic waves, originating in the X radiation

  7. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  8. Changes of surface electron states of InP under soft X-rays irradiation

    International Nuclear Information System (INIS)

    Yang Zhian; Yang Zushen; Jin Tao; Qui Rexi; Cui Mingqi; Liu Fengqin

    1999-01-01

    Changes of surface electronic states of InP under 1 keV X-ray irradiation is studied by X-ray photoelectron spectroscopy (XPS) and ultraviolet ray energy spectroscopy (UPS). The results show that the soft X-ray irradiation has little effect on In atoms but much on P atoms. The authors analysed the mechanism of irradiation and explained the major effect

  9. Morphological change of self-organized protrusions of fluoropolymer surface by ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Satoh, Takahiro; Koka, Masashi; Kamiya, Tomihiro; Suzuki, Akihiro; Terai, Takayuki

    2013-01-01

    Polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are typical fluoropolymers displaying several desirable technological properties such as electrical insulation and high chemical resistance. When their surfaces are irradiated with ion beams, dense micro-protrusions formed after the emergence and spread of micropores across the entire irradiated area, allowing culture cells to spread on the top of the protrusions. In this study, we investigate the morphological changes introduced in the fluoropolymer surfaces by ion beams as the energy of the beams is increased. When an FEP sample was irradiated with a nitrogen ion beam with an energy of less than 350 keV at 1.0 μA/cm 2 , protrusions were formed with a density between 2 × 10 7 /cm 2 and 2 × 10 8 /cm 2 . However, at energies higher than 350 keV, the protrusions became sparse, and the density dropped to 5 × 10 2 /cm 2 . Protrusions appeared sporadically during irradiation at high energies, and the top of the protrusions appeared as spots inside the sample, which were difficult to etch and became elongated as the erosion of the surface progressed. Erosion was caused by sputtering of FEP molecules and evaporation at notably elevated temperatures on the surface. Analysis based on attenuated total reflectance/Fourier transform infrared spectroscopy showed the presence of C=C bonds as well as –COOH, –C=O, and –OH bonds on all irradiated samples. Their concentration on the surface densely covered with micro-protrusions was higher than that on the surface with sparse protrusions after irradiation at energies exceeding 350 keV. Thus, we determined a suitable range for the ion energy for creating FEP surfaces densely covered with protrusions

  10. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  11. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  12. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  13. Contamination of Optical Surfaces Under Irradiation by Outgassed Volatile Products

    International Nuclear Information System (INIS)

    Khasanshin, R. H.; Grigorevskiy, A. V.; Galygin, A. N.; Alexandrov, N. G.

    2009-01-01

    Deposition of outgassed products of a polymeric composite on model material surfaces being irradiated by electrons and protons with initial energies of E e = 40 keV and E p = 30 keV respectively was studied. It was shown that deposition of volatile products on model material surfaces being under ionizing radiations results in increase of organic film growth rate.

  14. Surface damage on 6H–SiC by highly-charged Xeq+ ions irradiation

    International Nuclear Information System (INIS)

    Zhang, L.Q.; Zhang, C.H.; Han, L.H.; Xu, C.L.; Li, J.J.; Yang, Y.T.; Song, Y.; Gou, J.; Li, J.Y.; Ma, Y.Z.

    2014-01-01

    Surface damage on 6H–SiC irradiated by highly-charged Xe q+ (q = 18, 26) ions to different fluences in two geometries was studied by means of AFM, Raman scattering spectroscopy and FTIR spectrometry. The FTIR spectra analysis shows that for Xe 26+ ions irradiation at normal incidence, a deep reflection dip appears at about 930 cm −1 . Moreover, the reflectance on top of reststrahlen band decreases as the ion fluence increases, and the reflectance at tilted incidence is larger than that at normal incidence. The Raman scattering spectra reveal that for Xe 26+ ions at normal incidence, surface reconstruction occurs and amorphous stoichiometric SiC and Si–Si and C–C bonds are generated and original Si–C vibrational mode disappears. And the intensity of scattering peaks decreases with increasing dose. The AFM measurement shows that the surface swells after irradiation. With increasing ion fluence, the step height between the irradiated and the unirradiated region increases for Xe 18+ ions irradiation; while for Xe 26+ ions irradiation, the step height first increases and then decreases with increasing ion fluence. Moreover, the step height at normal incidence is higher than that at tilted incidence by the irradiation with Xe 18+ to the same ion fluence. A good agreement between the results from the three methods is found

  15. Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film

    Science.gov (United States)

    Chen, Cheng; Fan, Xue; Diao, Dongfeng

    2016-10-01

    We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.

  16. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  17. Evaluation of broadband surface solar irradiance derived from the Ozone Monitoring Instrument

    NARCIS (Netherlands)

    Wang, P.; Sneep, M.; Veefkind, J.P.; Stammes, P.; Levelt, P.F.

    2014-01-01

    Surface solar irradiance (SSI) data are important for planning and estimating the production of solar power plants. Long-term high quality surface solar radiation data are needed for monitoring climate change. This paper presents a new surface solar irradiance dataset, the broadband (0.2–4 ?m)

  18. Immunological network activation by low-dose rate irradiation. Analysis of cell populations and cell surface molecules in whole body irradiated mice

    International Nuclear Information System (INIS)

    Ina, Yasuhiro; Sakai, Kazuo

    2003-01-01

    The effects of low-dose rate whole body irradiation on biodefense and immunological systems were investigated using female C57BL/6 (B6) mice. These B6 mice were exposed continuously to γ-rays from a 137 Cs source in the long-term low-dose rate irradiation facility at CRIEPI for 0 - 12 weeks at a dose rate of 0.95 mGy/hr. In the bone marrow, thymus, spleen, lymph nodes, and peripheral blood of the irradiated mice, changes in cell populations and cell surface molecules were examined. The cell surface functional molecules (CD3, CD4, CD8, CD19, CD45R/B220, ICAM-1, Fas, NK-1.1, CXCR4, and CCR5), and activation molecules (THAM, CD28, CD40, CD44H, CD70, B7-1, B7-2, OX-40 antigen, CTLA-4, CD30 ligand, and CD40 ligand) were analyzed by flow cytometry. The percentage of CD4 + T cells and cell surface CD8 molecule expressions on the CD8 + T cells increased significantly to 120-130% after 3 weeks of the irradiation, compared to non-irradiated control mice. On the other hand, the percentage of CD45R/B220 + CD40 + B cells, which is one of the immunological markers of inflammation, infection, tumor, and autoimmune disease, decreased significantly to 80-90% between the 3rd to 5th week of irradiation. There was no significant difference in other cell population rates and cell surface molecule expression. Furthermore, abnormal T cells bearing mutated T cell receptors induced by high-dose rate irradiation were not observed throughout this study. These results suggest that low-dose rate irradiation activates the immunological status of the whole body. (author)

  19. A case study of the impact of boundary layer aerosol size distribution on the surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Kikas, U.; Reinhart, A. [University of Tartu (Estonia). Institute of Environmental Physics; Vaht, M. [Parnu Institute of Health Resort Treatment and Medical Rehabilitation (Estonia); Veismann, U. [Tartu Observatory (Estonia)

    2001-07-01

    The relationship between scattering characteristics of surface aerosol and surface UV irradiance was examined on the basis of the measurements carried out in June-August 1999 in Parnu, Estonia on the Eastern coast of the Baltic Sea (58{sup o}22'27 ''N, 24{sup o}30'43 ''E) The UV radiation spectra (300-34Onm) were measured with the Ocean Optics Inc. UV spectrometer PC 1000, the aerosol size distributions (3-1000nm) were measured with the electric aerosol spectrometer EAS. A case study was conducted for six sequential cloudless days, when the decrease of the surface UV irradiance was seemingly influenced by atmospheric aerosol. Aerosol radiative properties were calculated from the measured size distributions that represented the maritime polar (North Atlantic) and mixed maritime-continental air. The aerosol optical depths at 500nm for the North Atlantic air were estimated to be from 0.08 to 0. 13. The spectral aerosol optical depth agreed well with the Angstrom law, the Angstrom exponent ({alpha} varied from day to day between values of 0.52-0.90. Aerosol asymmetry factor at 300nm changed between values of 0.76 and 0.80, and was highly correlated with the mean radius of aerosol number distribution. The total aerosol UV scattering was mostly influenced by changes in aerosol with a diameter of 100-560nm. The aerosol scattering coefficients were positively correlated with the relative humidity of air. The ground aerosol properties were used for calculating the surface UV irradiance from the radiative transfer model of Bird and Riordan (J. Climate Appl. Meteorol. 25 (1986)). The calculated UV irradiances correlated quite well with the measured ones, showing that the use of ground aerosol data for radiative transfer calculations turned out reasonable results. However, ignoring the changes in the aerosol vertical distribution resulted in overestimation of aerosol optical depth on hazy days. (author)

  20. Origins of ion irradiation-induced Ga nanoparticle motion on GaAs surfaces

    International Nuclear Information System (INIS)

    Kang, M.; Wu, J. H.; Chen, H. Y.; Thornton, K.; Goldman, R. S.; Sofferman, D. L.; Beskin, I.

    2013-01-01

    We have examined the origins of ion irradiation-induced nanoparticle (NP) motion. Focused-ion-beam irradiation of GaAs surfaces induces random walks of Ga NPs, which are biased in the direction opposite to that of ion beam scanning. Although the instantaneous NP velocities are constant, the NP drift velocities are dependent on the off-normal irradiation angle, likely due to a difference in surface non-stoichiometry induced by the irradiation angle dependence of the sputtering yield. It is hypothesized that the random walks are initiated by ion irradiation-induced thermal fluctuations, with biasing driven by anisotropic mass transport

  1. Characterization of photosynthetic gas exchange in leaves under simulated adaxial and abaxial surfaces alternant irradiation.

    Science.gov (United States)

    Zhang, Zi-Shan; Li, Yu-Ting; Gao, Hui-Yuan; Yang, Cheng; Meng, Qing-Wei

    2016-07-05

    Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight. To simulate adaxial and abaxial surfaces alternant irradiation (ad-ab-alt irradiation), the adaxial or abaxial surface of leaves were exposed to light regimes that fluctuated between 100 and 1,000 μmol m(-2) s(-1). Compared with constant adaxial irradiation, simulated ad-ab-alt irradiation suppressed net photosynthetic rate (Pn) and transpiration (E) but not water use efficiency. These suppressions were aggravated by an increase in alternant frequency of the light intensity. When leaves were transferred from constant light to simulated ad-ab-alt irradiation, the maximum Pn and E during the high light period decreased, but the rate of photosynthetic induction during this period remained constant. The sensitivity of photosynthetic gas exchange to simulated ad-ab-alt irradiation was lower on abaxial surface than adaxial surface. Under simulated ad-ab-alt irradiation, higher Pn and E were measured on abaxial surface compared with adaxial surface. Therefore, bifacial leaves can fix more carbon than leaves with two "sun-leaf-like" surfaces under ad-ab-alt irradiation. Photosynthetic research should be conducted under dynamic conditions that better mimic nature.

  2. Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals

    International Nuclear Information System (INIS)

    Kannappan, P.; Asokan, K.; Krishna, J.B.M.; Dhanasekaran, R.

    2013-01-01

    Highlights: •CVT grown ZnSSe single crystals were irradiated with 120 MeV Au ion. •The GIXRD results show the FWHM increases with increasing ion fluency. •The AFM study show the surface roughness increases with ion fluency. •The optical band gap energy vary with increasing ion fluency. •The PL emission decreases with increasing ion fluency. -- Abstract: The ZnSSe single crystals grown by chemical vapour transport (CVT) method have been irradiated by 120 MeV Au 9+ ions at room temperature with fluences of 1 × 10 12 and 5 × 10 12 ions/cm 2 . The grazing incidence X-ray diffraction (GIXRD) results show that the full width at half maximum (FWHM) value for the as grown ZnSSe crystal is 0.215°; and for the irradiated samples, the FWHM values are 0.413° and 0.625°, with the increase of ion fluences. The atomic force microscopy (AFM) studies reveal the formation of the pits and islands due to irradiation. The optical absorption cut off wavelength is found to be 441 nm for as grown ZnSSe crystal. The cut off values are increased to 447 nm and 457 nm for the irradiated samples with increasing ion fluency. The photoluminescence studies show the emission for the as grown ZnSSe is 590 nm whereas for the irradiated samples in the emission range it is 580–590 nm and 575–595 nm due to SHI irradiation. FT-Raman spectra analysis has been made for the ZnSSe single crystals and irradiated samples. The results are discussed in detail

  3. Effect of SHI irradiation on structural, surface morphological and optical studies of CVT grown ZnSSe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kannappan, P. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, J.B.M. [UGC-DAE Consortium for Scientific Research, III-/LB-8, Bidhan nagar, Kolkata 700 098 (India); Dhanasekaran, R., E-mail: rdcgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2013-12-15

    Highlights: •CVT grown ZnSSe single crystals were irradiated with 120 MeV Au ion. •The GIXRD results show the FWHM increases with increasing ion fluency. •The AFM study show the surface roughness increases with ion fluency. •The optical band gap energy vary with increasing ion fluency. •The PL emission decreases with increasing ion fluency. -- Abstract: The ZnSSe single crystals grown by chemical vapour transport (CVT) method have been irradiated by 120 MeV Au{sup 9+} ions at room temperature with fluences of 1 × 10{sup 12} and 5 × 10{sup 12} ions/cm{sup 2}. The grazing incidence X-ray diffraction (GIXRD) results show that the full width at half maximum (FWHM) value for the as grown ZnSSe crystal is 0.215°; and for the irradiated samples, the FWHM values are 0.413° and 0.625°, with the increase of ion fluences. The atomic force microscopy (AFM) studies reveal the formation of the pits and islands due to irradiation. The optical absorption cut off wavelength is found to be 441 nm for as grown ZnSSe crystal. The cut off values are increased to 447 nm and 457 nm for the irradiated samples with increasing ion fluency. The photoluminescence studies show the emission for the as grown ZnSSe is 590 nm whereas for the irradiated samples in the emission range it is 580–590 nm and 575–595 nm due to SHI irradiation. FT-Raman spectra analysis has been made for the ZnSSe single crystals and irradiated samples. The results are discussed in detail.

  4. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  5. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  6. Effect of remote clouds on surface UV irradiance

    Energy Technology Data Exchange (ETDEWEB)

    Deguenther, M.; Meerkoetter, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    2000-06-01

    Clouds affect local surface UV irradiance, even if the horizontal distance from the radiation observation site amounts to several kilometers. In order to investigate this effect, which we call remote clouds effect, a 3-dimensional radiative transfer model is applied. Assuming the atmosphere is subdivided into a quadratic based sector and its surrounding, we quantify the influence of changing cloud coverage within this surrounding from 0% to 100% on surface UV irradiance at the sector center. To work out this remote clouds influence as a function of sector base size, we made some calculations for different sizes between 10 km x 10 km and 100 km x 100 km. It appears that in the case of small sectors (base size {<=}20 km x 20 km) the remote clouds effect is highly variable: Depending on cloud structure, solar zenith angle and wavelength, the surface UV irradiance may be enhanced up to 15% as well as reduced by more than 50%. In contrast, for larger sectors it is always the case that enhancements become smaller by 5% if sector base size exceeds 60 km x 60 km. However, these values are upper estimates of the remote cloud effects and they are found only for special cloud structures. Since these structures might occur but cannot be regarded as typical, different satellite observed cloud formations (horizontal resolution about 1 km x 1 km) have also been investigated. For these more common cloud distributions we find remote cloud effects to be distinctly smaller than the corresponding upper estimates, e.g., for a sector with base size of 25 km x 25 km the surface UV irradiance error due to ignoring the actual remote clouds and replacing their influence with periodic horizontal boundary conditions is less than 3%, whereas the upper estimate of remote clouds effect would suggest an error close to 10%. (orig.)

  7. UV-C 13-50 ultraviolet irradiation unit for surface sterilization

    International Nuclear Information System (INIS)

    Bachmann, R.

    1979-01-01

    Brown Boveri have developed new watertight ultraviolet irradiation units for surface sterilization. Their main application is in packing techniques in the foodstuffs and pharmaceutical industries. This article describes the construction, germicidal effect, and applications of these irradiation units. (Auth.)

  8. Retrieval of Surface Ozone from UV-MFRSR Irradiances using Deep Learning

    Science.gov (United States)

    Chen, M.; Sun, Z.; Davis, J.; Zempila, M.; Liu, C.; Gao, W.

    2017-12-01

    High concentration of surface ozone is harmful to humans and plants. USDA UV-B Monitoring and Research Program (UVMRP) uses Ultraviolet (UV) version of Multi-Filter Rotating Shadowband Radiometer (UV-MFRSR) to measure direct, diffuse, and total irradiances every three minutes at seven UV channels (i.e. 300, 305, 311, 317, 325, 332, and 368 nm channels with 2 nm full width at half maximum). Based on the wavelength dependency of aerosol optical depths, there have been plenty of literatures exploring retrieval methods of total column ozone from UV-MFRSR measurements. However, few has explored the retrieval of surface ozone. The total column ozone is the integral of the multiplication of ozone concentration (varying by height and time) and cross section (varying by wavelength and temperature) over height. Because of the distinctive values of ozone cross section in the UV region, the irradiances at seven UV channels have the potential to resolve the ozone concentration at multiple vertical layers. If the UV irradiances at multiple time points are considered together, the uncertainty or the vertical resolution of ozone concentrations can be further improved. In this study, the surface ozone amounts at the UVMRP station located at Billings, Oklahoma are estimated from the adjacent (i.e. within 200 miles) US Environmental Protection Agency (EPA) surface ozone observations using the spatial analysis technique. Then, the (direct normal) irradiances of UVMRP at one or more time points as inputs and the corresponding estimated surface ozone from EPA as outputs are fed into a pre-trained (dense) deep neural network (DNN) to explore the hidden non-linear relationship between them. This process could improve our understanding of their physical/mathematical relationship. Finally, the optimized DNN is tested with the preserved 5% of the dataset, which are not used during training, to verify the relationship.

  9. Modification of the surface properties of a polyimide film during irradiation with polychromic light

    International Nuclear Information System (INIS)

    Rosu, Liliana; Sava, Ion; Rosu, Dan

    2011-01-01

    The behaviour of a polyimide film with the aromatic structure during the exposure to UV light with λ > 290 nm was studied. Significant changes in color surface and gloss surface were identified during irradiation. Sample became lighten and less glossy after exposure to the light. These modifications were correlated with the structural changes in FTIR spectra. Based on changes in FTIR spectra recorded during irradiation, a mechanism for the photochemical degradation of polyimide film was proposed.

  10. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  11. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  12. Surface oxidation in glassy arsenic trisulphide induced by high-energy γ-irradiation

    International Nuclear Information System (INIS)

    Shpotyuk, M.; Shpotyuk, O.; Serkiz, R.; Demchenko, P.; Kozhyukhin, S.

    2014-01-01

    Influence of high-energy γ-irradiation with ∼3 MGy dose on glassy g-As 2 S 3 was investigated by a complex of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction methods. A white layer composed of separate 1–2 μm rhombohedral arsenolite As 2 O 3 crystallites was observed at the surface of γ-irradiated samples. These As 2 O 3 extractions along with crystallised S allotropes are responsible for expansion of the first sharp diffraction peaks in the XRD patterns of g-As 2 S 3 . - Highlights: • As 2 O 3 crystallites are observed at the surface of γ-irradiated As 2 S 3 samples. • Observed crystallites can be removed from the surface after washing and polishing. • γ-Irradiation broadens the FSDP due to satellite lines located on its both sides. • As 2 O 3 and S phases extracted at the surface are responsible for satellite lines

  13. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  14. Effect of Pre-Irradiation Annealing and Laser Modification on the Formation of Radiation-Induced Surface Color Centers in Lithium Fluoride

    Science.gov (United States)

    Voitovich, A. P.; Kalinov, V. S.; Novikov, A. N.; Radkevich, A. V.; Runets, L. P.; Stupak, A. P.; Tarasenko, N. V.

    2017-01-01

    It is shown that surface color centers of the same type are formed in the surface layer and in regions with damaged crystal structure inside crystalline lithium fluoride after γ-irradiation. Results are presented from a study of the effect of pre-irradiation annealing on the efficiency with which surface centers are formed in lithium fluoride nanocrystals. Raising the temperature for pre-irradiation annealing from room temperature to 250°C leads to a substantial reduction in the efficiency with which these centers are created. Surface color centers are not detected after γ-irradiation for pre-irradiation annealing temperatures of 300°C and above. Adsorption of atmospheric gases on the crystal surface cannot be regarded as a necessary condition for the formation of radiation-induced surface centers.

  15. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    Science.gov (United States)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  16. Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM

    International Nuclear Information System (INIS)

    Yip, Joanne; Chan, Kwong; Sin, Kwan Moon; Lau, Kai Shui

    2002-01-01

    Polyamide (nylon 6) was irradiated by a pulsed ultraviolet (UV) excimer laser with a fluence below its ablation threshold. Chemical modifications on laser treated nylon were studied by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (Tof-SIMS) and chemical force microscopy (CFM). XPS study provides information about changes in chemical composition and the chemical-state of atom types on the fiber surface. The high sensitivity of ToF-SIMS to the topmost layers was used to detect crosslinking after the laser treatment. Gold-coated AFM tips modified with -COOH terminated self-assembled alkanethiol monolayers (SAMs) were used to measure adhesion forces on the untreated and laser treated samples. XPS results revealed that the irradiated samples have higher oxygen content than prior to laser irradiation. Tof-SIMS analysis illustrated that carbonyl groups in nylon 6 decrease significantly but hydroxyl groups increase after low-fluence laser irradiation. The adhesion force measurements by CFM showed spatial distribution of hydroxyl groups on nylon 6 after the laser treatment

  17. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  18. Study of gamma irradiation effect on commercial TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Bello Lamo, M.P.; Williams, P.; Reece, P.; Lumpkin, G.R.; Sheppard, L.R.

    2014-01-01

    The aim of this work is to understand the effect of gamma irradiation on commercial TiO 2 photocatalyst for water treatment applications. Previous studies concluded that gamma-irradiation is able to modify the electronic properties of TiO 2 based photocatalysts and consequently their photocatalytic performance. However, there are some discrepancies in the literature where on one hand a significant enhancement of the material properties is reported and on the other hand only a weak effect is observed. In this study a surface effect on TiO 2 is confirmed by using low and medium gamma irradiation doses. - Highlights: • Gamma irradiated TiO 2 is investigated for photocatalytic water treatment. • By low gamma doses, no change in surface properties is observed. • However, a surface defect is found for gamma irradiated TiO 2 at higher doses. • XPS measurements showed an increase of hydroxyl groups. • That may cause a variation of its adsorption capacity

  19. Comparison of the effect of plasma treatment and gamma ray irradiation on PS-Cu nanocomposite films surface

    Science.gov (United States)

    Farag, O. F.

    2018-06-01

    Polystyrene-copper (PS-Cu) nanocomposite films were treated with DC N2 plasma and gamma rays irradiations. The plasma treatment of PS-Cu film surface was carried out at different treatment times, gas pressure 0.4 Torr and the applied power 3.5 W. On the other hand, the treatment with gamma rays irradiation were carried out at irradiation doses 10, 30 and 50 kGy. The induced changes in surface properties of PS-Cu films were investigated with UV-viss spectroscopy, scanning electron microscopy (SEM) and FTIR spectroscopy techniques. In addition, the wettability property, surface free energy, spreading coefficient and surface roughness of the treated samples were studied by measuring the contact angle. The UV-viss spectroscopy analysis revealed that the optical band gap decreases with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. SEM observations showed that the particle size of copper particles was increased with increasing the treatment time and the irradiation dose, but gamma treatment changes the copper particles size from nano scale to micro scale. The contact angle measurements showing that the wettability property, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples were increased remarkably with increasing the treatment time and the irradiation dose for plasma and gamma treatments, respectively. The contact angle, surface free energy, spreading coefficient and surface roughness of the treated PS-Cu samples are more influenced by plasma treatment than gamma treatment.

  20. Grafting of polymer onto silica surface in the presence of γ-ray irradiated silica

    International Nuclear Information System (INIS)

    Tsuchida, A.; Yokoyama, R.; Takami, M.; Chen, J.; Ohta, M.; Tsubokawa, N.

    2002-01-01

    Complete text of publication follows. We have reported the graft polymerization of vinyl monomers initiated by surface radicals formed by the decomposition of azo and peroxide groups previously introduced onto the surface. In addition, the grafting of polymers onto carbon black has been reported by the reaction of polymer radicals with the surface. On the other hand, it is well known that the relatively stable radicals are generated on the surface by the γ-ray irradiation. In this paper, the grafting of polystyrene onto silica surface during the thermal polymerization of styrene in the presence of γ-ray irradiated silica, grafting mechanism and thermal stability of grafted polymer will be discussed. The grafting of polymers onto silica surface by irradiation of polymer-adsorbed silica was also investigated. Silica obtained from Mitsubishi Chemical Co., Japan was used after pulverization: the particle size was 0.037-0.088 mm. Irradiation was performed in Cs-137 source at room temperature. The silica was irradiated at 50 Gy with dose rate of 3.463 Gy/min. Into a polymerization tube, styrene and irradiated silica was charged and the polymerization was carried out under argon under stirring. The percentage of polystyrene grafting was determined from weight loss when polystyrene-grafted silica was heated at 600 deg C by a thermal analyzer. Untreated silica did not affect the thermal polymerization of styrene. On the contrary, the thermal polymerization of styrene was remarkably retarded in the presence of the irradiated silica at 60 deg C. Similar tendency was reported during the polymerization of vinyl monomers in the presence of carbon black. In the initial stage of the polymerization in the presence of the irradiated silica below 50 deg C, the polymerization was accelerated. During the polymerization in the presence of irradiated silica, polystyrene was grafted onto the surface: the percentage of grafting was 5-11%. The amount of polystyrene grafted onto silica

  1. A method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy

    International Nuclear Information System (INIS)

    Lu Yong; Song, Paul Y.; Li Shidong; Spelbring, Danny R.; Vijayakumar, Srinivasan; Haraf, Daniel J.; Chen, George T.Y.

    1995-01-01

    Purpose: To develop a method of analyzing rectal surface area irradiated and rectal complications in prostate conformal radiotherapy. Methods and Materials: Dose-surface histograms of the rectum, which state the rectal surface area irradiated to any given dose, were calculated for a group of 27 patients treated with a four-field box technique to a total (tumor minimum) dose ranging from 68 to 70 Gy. Occurrences of rectal toxicities as defined by the Radiation Therapy Oncology Group (RTOG) were recorded and examined in terms of dose and rectal surface area irradiated. For a specified end point of rectal complication, the complication probability was analyzed as a function of dose irradiated to a fixed rectal area, and as a function of area receiving a fixed dose. Lyman's model of normal tissue complication probability (NTCP) was used to fit the data. Results: The observed occurrences of rectal complications appear to depend on the rectal surface area irradiated to a given dose level. The patient distribution of each toxicity grade exhibits a maximum as a function of percentage surface area irradiated, and the maximum moves to higher values of percentage surface area as the toxicity grade increases. The dependence of the NTCP for the specified end point on dose and percentage surface area irradiated was fitted to Lyman's NTCP model with a set of parameters. The curvature of the NTCP as a function of the surface area suggests that the rectum is a parallel structured organ. Conclusions: The described method of analyzing rectal surface area irradiated yields interesting insight into understanding rectal complications in prostate conformal radiotherapy. Application of the method to a larger patient data set has the potential to facilitate the construction of a full dose-surface-complication relationship, which would be most useful in guiding clinical practice

  2. UV irradiation assisted growth of ZnO nanowires on optical fiber surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Bo; Shi, Tielin; Liao, Guanglan; Li, Xiaoping; Huang, Jie; Zhou, Temgyuan; Tang, Zirong, E-mail: zirong@mail.hust.edu.cn

    2017-06-01

    Highlights: • A new fabrication process combined a hydrothermal process with UV irradiation from optical fiber is developed. • The growth of ZnO nanowires is efficient in the utilization of UV light. • A novel hybrid structure which integrates ZnO nanowires on optical fiber surface is synthesized. • The UV assisted growth of ZnO nanowires shows preferred orientation and better quality. • A mechanism of growing ZnO nanowires under UV irradiation is proposed. - Abstract: In this paper, a novel approach was developed for the enhanced growth of ZnO nanowires on optical fiber surface. The method combined a hydrothermal process with the efficient UV irradiation from the fiber core, and the effects of UV irradiation on the growth behavior of ZnO nanowires were investigated. The results show that UV irradiation had great effects on the preferred growth orientation and the quality of the ZnO nanowires. The crystallization velocity along the c-axis would increase rapidly with the increase of the irradiation power, while the growth process in the lateral direction was marginally affected by the irradiation. The structure of ZnO nanowires also shows less oxygen vacancy with UV irradiation of higher power. The developed approach is applicable for the efficient growth of nanowires on the fiber surface, and the ZnO nanowires/optical fiber hybrid structures have great potentials for a wide variety of applications such as optical fiber sensors and probes.

  3. Modification of bamboo surface by irradiation of ion beams

    International Nuclear Information System (INIS)

    Wada, M.; Nishigaito, S.; Flauta, R.; Kasuya, T.

    2003-01-01

    When beams of hydrogen ions, He + and Ar + were irradiated onto bamboo surface, gas release of hydrogen, water, carbon monoxide and carbon dioxide were enhanced. Time evolution of the gas emission showed two peaks corresponding to release of adsorbed gas from the surface by sputtering, and thermal desorption caused by the beam heating. The difference in etched depths between parenchyma lignin and vascular bundles was measured by bombarding bamboo surface with the ion beams in the direction parallel to the vascular bundles. For He + and Ar + , parenchyma lignin was etched more rapidly than vascular bundles, but the difference in etched depth decreased at a larger dose. In the case of hydrogen ion bombardment, vascular bundles were etched faster than parenchyma lignin and the difference in etched depth increased almost in proportion to the dose. The wettability of outer surface of bamboo was improved most effectively by irradiation of a hydrogen ion beam

  4. Simultaneous impact of neutron irradiation and sputtering on the surface structure of self–damaged ITER–grade tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Belyaeva, A. I., E-mail: aibelyaeva@mail.ru; Savchenko, A. A. [National Technical University “Kharkov Politechnical Institute”, Kharkov, 61002 (Ukraine); Galuza, A. A.; Kolenov, I. V. [Institute of Electrophysics and Radiation Technologies, National Academy of Science of Ukraine, Kharkov, 61024 (Ukraine)

    2014-07-15

    Simultaneous effects of neutron irradiation and long–term sputtering on the surface relief of ITER–grade tungsten were studied. The effects of neutron–induced displacement damage have been simulated by irradiation of tungsten target with W{sup 6+} ions of 20 MeV energy. Ar{sup +} ions with energy 600 eV were used as imitation of charge exchange atoms in ITER. The surface relief was studied after each sputtering act. The singularity in the WJ–IG surface relief was ascertained experimentally at the first time, which determines the law of roughness extension under sputtering. As follows from the experimental data, the neutron irradiation has not to make a decisive additional contribution in the processes developing under impact of charge exchange atoms only.

  5. Aspheric surface testing by irradiance transport equation

    Science.gov (United States)

    Shomali, Ramin; Darudi, Ahmad; Nasiri, Sadollah; Asgharsharghi Bonab, Armir

    2010-10-01

    In this paper a method for aspheric surface testing is presented. The method is based on solving the Irradiance Transport Equation (ITE).The accuracy of ITE normally depends on the amount of the pick to valley of the phase distribution. This subject is investigated by a simulation procedure.

  6. Thermal effects of λ = 808 nm GaAlAs diode laser irradiation on different titanium surfaces.

    Science.gov (United States)

    Giannelli, Marco; Lasagni, Massimo; Bani, Daniele

    2015-12-01

    Diode lasers are widely used in dental laser treatment, but little is known about their thermal effects on different titanium implant surfaces. This is a key issue because already a 10 °C increase over the normal body temperature can induce bone injury and compromise osseo-integration. The present study aimed at evaluating the temperature changes and surface alterations experienced by different titanium surfaces upon irradiation with a λ = 808 nm diode laser with different settings and modalities. Titanium discs with surfaces mimicking different dental implant surfaces including TiUnite and anodized, machined surfaces were laser-irradiated in contact and non-contact mode, and with and without airflow cooling. Settings were 0.5-2.0 W for the continuous wave mode and 10-45 μJ, 20 kHz, 5-20 μs for the pulsed wave mode. The results show that the surface characteristics have a marked influence on temperature changes in response to irradiation. The TiUnite surface, corresponding to the osseous interface of dental implants, was the most susceptible to thermal rise, while the machined surfaces, corresponding to the implant collar, were less affected. In non-contact mode and upon continuous wave emission, the temperature rose above the 50 °C tissue damage threshold. Scanning electron microscopy investigation of surface alterations revealed that laser treatment in contact mode resulted in surface scratches even when no irradiation was performed. These findings indicate that the effects of diode laser irradiation on implant surfaces depend on physical features of the titanium coating and that in order to avoid thermal or physical damage to implant surface the irradiation treatment has to be carefully selected.

  7. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  8. Effect of the nature of the surface on the reactivity of nanoporous silica under irradiation

    International Nuclear Information System (INIS)

    Le Caer, S.; Alam, M.S.; Chatelain, C.; Brunet, F.; Charpentier, T.; Renault, J.P.; Brodie-Linder, N.; Alba-Simionesco, C.

    2011-01-01

    Complete text of publication follows. Materials such as concrete, clays and zeolites which embed radioactive wastes adsorb in their pores significant amounts of water that can be decomposed under ionizing radiation leading to the formation of H 2 which is potentially explosive. It is well established that the H 2 production arises from chemi- or physi-sorbed OH groups at the surface of oxides. In this context, we have studied the behaviour of water confined in nanoporous silica. To distinguish the behavior of the two kinds of OH, we have performed different thermal treatments on SBA-15 materials prior to their irradiation. The IR analysis and H 2 measurements have proven that in the radiolysis of SBA-15 materials, silanol groups are only attacked when they are in the majority with respect to adsorbed water. However they are much less efficient at producing H 2 . The comparison between water content before and after electron irradiation and the corresponding H 2 production indicates that water desorption is the main route to adsorbed water loss. On the other hand, surface silanol groups are more susceptible to attack, leading to H 2 production when SBA-15 samples have undergone extensive thermal treatment. The surface of nanoporous glasses were then grafted using chloroaklyldimethylsilane. The effect of irradiation on these grafted surfaces was studied by means of mass spectrometry and NMR experiments. These different techniques reveal an original reactivity of the surface under irradiation.

  9. Irradiation of Polystyrene and Polypropylene to study NIH 3T3 fibroblasts adhesion

    International Nuclear Information System (INIS)

    Arbeitman, C.R.; Grosso, M.F. del; Ibanez, I.; Garcia Bermudez, G.; Duran, H.; Chappa, V.C.; Mazzei, R.; Behar, M.

    2010-01-01

    When polymers are irradiated with heavy ions new chemical groups are created in a few microns of the material. The irradiation changed the polarity and wettability on the surface so that could enhance the biocompatibility of the modified polymer. The study of chemistry and nanoscale topography of the biomaterial is important in determining its potential applications in medicine and biotechnology, because their strong influence on cell function, adhesion and proliferation. In this study, thin films of Polystyrene and Polypropylene samples were modified by irradiation with low energy ion beams (30-150 keV) and swift heavy ions both with various fluences and energies. The changes were evaluated with different methods. Adhesion of NIH 3T3 fibroblasts onto unirradiated and irradiated surfaces has been studied by in vitro techniques. The correlations between physicochemical properties as a function of different irradiations parameters were compared with cell adhesion on the modified polymer surface.

  10. The effects of irradiance and exposure time on the surface roughness of bulk-fill composite resin restorative materials

    Science.gov (United States)

    Alkhudhairy, Fahad I.

    2018-01-01

    Objectives: To evaluate the surface roughness of 4 different bulk-fill resin-based composites cured using different irradiance levels. Methods: This in vitro study was performed in February 2017 to August 2017 at the College of Dentistry, King Saud University. Twenty-four specimens were prepared from each of the bulk-fill materials [Tetric N-Ceram (TNC), SonicFill (SF), Smart Dentin Replacement (SDR), and Filtek Bulk-Fill (FB)] using a brass metal mold, resulting in a total of 96 specimens, cured using a Bluephase N light curing unit. Half of the total number of specimens (N=48) were cured using high-power irradiance (1200 mW/cm2) for 20 seconds, while the remaining half (N=48) were cured using low power irradiance (650 mW/cm2) for 40 seconds. After 24 hours, baseline surface roughness of each specimen was analyzed using a profilometer, then polished using Sof-lex abrasive disks, and the surface roughness of all groups was assessed. Results: Post-polished SonicFill cured at high irradiance had the highest mean surface roughness (0.23±0.03), whereas pre-polished Smart Dentin Replacement (0.11±0.01) and SonicFill (0.11±0.02) cured at low irradiance had the lowest mean surface roughness. Conclusion: High curing irradiance (1,200 mW/cm2) had no positive influence on the surface roughness of Filtek Bulk Fill and Tetric N-Ceram bulk-fill RBCs compared with lower curing irradiance (650 mW/cm2). However, the difference of curing irradiance significantly affected the surface roughness in SDR and sonic fill RBCs. PMID:29436570

  11. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  12. Surface patterning of multilayer graphene by ultraviolet laser irradiation in biomolecule sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tien-Li, E-mail: tlchang@ntnu.edu.tw; Chen, Zhao-Chi

    2015-12-30

    Graphical abstract: - Highlights: • Direct UV laser irradiation on multilayer graphene was discussed. • Multilayer graphene with screen-printed process was presented. • Surface patterning of multilayer graphene at fluence threshold was investigated. • Electrical response of glucose in sensing devices can be studied. - Abstract: The study presents a direct process for surface patterning of multilayer graphene on the glass substrate as a biosensing device. In contrast to lithography with etching, the proposed process provides simultaneous surface patterning of multilayer graphene through nanosecond laser irradiation. In this study, the multilayer graphene was prepared by a screen printing process. Additionally, the wavelength of the laser beam was 355 nm. To perform the effective laser process with the small heat affected zone, the surface patterns on the sensing devices could be directly fabricated using the laser with optimal control of the pulse overlap at a fluence threshold of 0.63 J/cm{sup 2}. The unique patterning of the laser-ablated surface exhibits their electrical and hydrophilic characteristics. The hydrophilic surface of graphene-based sensing devices was achieved in the process with the pulse overlap of 90%. Furthermore, the sensing devices for controlling the electrical response of glucose by using glucose oxidase can be used in sensors in commercial medical applications.

  13. The kinetics of formation and transformation of silver atoms on solid surfaces subjected to ionizing irradiation

    International Nuclear Information System (INIS)

    Popovich, G.M.

    1988-01-01

    The paper discusses the results obtained in ESR-assisted studies of the kinetics of formation and transformation of silver atoms generated by γ-irradiation of silver-containing carriers. Three types of dependences have been established: (1) extreme; (2) saturation curves and (3) step-like. All the kinetic curves display, after a definite period of time, stable concentrations of adsorbed silver atoms per unit of the surface at a given temperature. Depending on the temperature of the experiment, the composition and nature of the carrier, the number of adsorbed silver ions, the irradiation dose and conditions of the experiment, a stable concentration of silver atoms at a given temperature may be equal to, higher or lower than the number of silver atoms measured immediately after γ-irradiation at a temperature of liquid nitrogen. A kinetic scheme is proposed to explain the obtained curves. The model suggests that the silver atoms adsorbed on the surface, as well as those formed after γ-irradiation, are bonded to the surface by various energies, which are related to heterogeneity of the carrier surface. (author)

  14. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Directory of Open Access Journals (Sweden)

    M. Hess

    2008-07-01

    Full Text Available A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  15. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    Science.gov (United States)

    Hess, M.; Koepke, P.

    2008-07-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy of its results is demonstrated. The effect of a natural skyline is shown for an Alpine ski area, where the UV irradiance even on a horizontal surface may increase due to reflection from snow by more than 10 percent. In contrast, in a street canyon the irradiance on a horizontal surface is reduced to 30% in shadow and to about 75% for a position in the sun.

  16. Study of irradiated bone: Part III. /sup 99m/Tc pyrophosphate autoradiographic changes

    International Nuclear Information System (INIS)

    King, M.A.; Corriveau, O.; Casarett, G.W.; Weber, D.A.

    1978-01-01

    The macroautoradiographic and microautoradiographic localization of /sup 99m/Tc-pyrophosphate (/sup 99m/TcPPi) was studied in x-irradiated bone of rabbits up to one year post-irradiation. In cortical bone, /sup 99m/TcPPi was concentrated on bone surfaces near vasculature. Both forming and resorbing bone surfaces were comparably labeled at 2 hrs post-injection. Uptake on the surface of sites of haversian bone remodeling was observed to be at least part of the increased /sup 99m/TcPPi observed in irradiated bone in camera images. In irradiated trabecular bone 12 months following irradiation, a patchy decrease in /sup 99m/TcPPi uptake was correlated with localized decreases in vasculature

  17. Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface.

    Science.gov (United States)

    Yeo, Kok Leng; Solanki, Sami K; Norris, Charlotte M; Beeck, Benjamin; Unruh, Yvonne C; Krivova, Natalie A

    2017-09-01

    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).

  18. Tuning surface properties of graphene oxide quantum dots by gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shunkai; Liao, Fan, E-mail: fliao@suda.edu.cn; Wang, Tao; Zhu, Lili; Shao, Mingwang, E-mail: mwshao@suda.edu.cn

    2016-07-15

    Gamma-ray irradiation was employed to tune surface properties of graphene oxide quantum dots (GOQDs), such as functional groups and defect density. The GOQDs were first oxidized under γ-ray irradiation with doses ranging from 0 to 200 kGy, and then reduced under larger irradiation doses from 200 to 400 kGy. In other words, both the defect density and the number of surface functional groups increased first and then decreased along with the increasing irradiation dose. This process was confirmed with UV–visible absorption, X-ray photoelectron spectroscopy, Raman spectra and Fourier transform infrared spectra. In order to estimate their π-conjugated content, the GOQDs were served to quench the fluorescence of Rhodamine 6 G. The results showed that there existed a positive relationship between the π-conjugated content and the static quenching coefficient V{sub q}Na, which might have a potential value. - Highlights: • The conjugate extent and hydrophily of GOQDs decreased along with irradiation dose. • Gamma-ray irradiation weakens the quenching effect of GOQDs. • Quenching mechanism is a combination of dynamic and static quenching.

  19. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application

    International Nuclear Information System (INIS)

    Quinto Junior, Jose

    2001-01-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  20. Surface modification of Ti dental implants by Nd:YVO4 laser irradiation

    International Nuclear Information System (INIS)

    Braga, Francisco J.C.; Marques, Rodrigo F.C.; Filho, Edson de A.; Guastaldi, Antonio C.

    2007-01-01

    Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO 2 or TiO 2 , and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO 4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases αTi, βTi, Ti 6 O, Ti 3 O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters. The aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process

  1. Surface modification of ceramics and metals by ion implantation combined with plasma irradiation

    International Nuclear Information System (INIS)

    Miyagawa, Soji; Miyagawa, Yoshiko; Nakao, Setsuo; Ikeyama, Masami; Saitoh, Kazuo

    2000-01-01

    To develop a new surface modification technique using ion implantation combined with plasma irradiation, thin film formation by IBAD (Ion Beam Assisted Deposition) and atom relocation processes such as radiation enhanced diffusion and ion beam mixing under high dose implantation have been studied. It was confirmed that the computer simulation code, dynamic-SASAMAL (IBAD version) developed in this research, is quite useful to evaluate ballistic components in film formation by high dose implantation on ceramics and metals, by ion beam mixing of metal-ceramics bi-layer and by the IBAD method including hydrocarbon deposition. Surface modification process of SiC by simultaneous irradiation of ions with a radical beam has also been studied. A composite of SiC and β-Si 3 N 4 was found to be formed on a SiC surface by hot implantation of nitrogen. The amount of β- Si 3 N 4 crystallites increased with increasing the dosage of the hydrogen radical beam during nitrogen implantation. (author)

  2. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, Priya Darshni, E-mail: kaushik.priyadarshni@gmail.com [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Ivanov, Ivan G.; Lin, Pin-Cheng [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Kaur, Gurpreet [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Eriksson, Jens [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Lakshmi, G.B.V.S. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Avasthi, D.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, 110067 (India); Amity Institute of Nanotechnology, Noida 201313 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 (India); Aziz, Anver; Siddiqui, Azher M. [Department of Physics, Jamia Millia Islamia, New Delhi, 110025 (India); Syväjärvi, Mikael [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden); Yazdi, G. Reza, E-mail: yazdi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping (Sweden)

    2017-05-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO{sub 2} and NH{sub 3} gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10{sup 13} ions/cm{sup 2}). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and

  3. Surface functionalization of epitaxial graphene on SiC by ion irradiation for gas sensing application

    International Nuclear Information System (INIS)

    Kaushik, Priya Darshni; Ivanov, Ivan G.; Lin, Pin-Cheng; Kaur, Gurpreet; Eriksson, Jens; Lakshmi, G.B.V.S.; Avasthi, D.K.; Gupta, Vinay; Aziz, Anver; Siddiqui, Azher M.; Syväjärvi, Mikael; Yazdi, G. Reza

    2017-01-01

    Highlights: • For the first time the gas sensing application of SHI irradiated epitaxial graphene on SiC is explored. • Surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles. • Existence of an optimal fluence which maximize the gas sensing response towards NO_2 and NH_3 gases. - Abstract: In this work, surface functionalization of epitaxial graphene grown on silicon carbide was performed by ion irradiation to investigate their gas sensing capabilities. Swift heavy ion irradiation using 100 MeV silver ions at four varying fluences was implemented on epitaxial graphene to investigate morphological and structural changes and their effects on the gas sensing capabilities of graphene. Sensing devices are expected as one of the first electronic applications using graphene and most of them use functionalized surfaces to tailor a certain function. In our case, we have studied irradiation as a tool to achieve functionalization. Morphological and structural changes on epitaxial graphene layers were investigated by atomic force microscopy, Raman spectroscopy, Raman mapping and reflectance mapping. The surface morphology of irradiated graphene layers showed graphene folding, hillocks, and formation of wrinkles at highest fluence (2 × 10"1"3 ions/cm"2). Raman spectra analysis shows that the graphene defect density is increased with increasing fluence, while Raman mapping and reflectance mapping show that there is also a reduction of monolayer graphene coverage. The samples were investigated for ammonia and nitrogen dioxide gas sensing applications. Sensors fabricated on pristine and irradiated samples showed highest gas sensing response at an optimal fluence. Our work provides new pathways for introducing defects in controlled manner in epitaxial graphene, which can be used not only for gas sensing application but also for other applications, such as electrochemical, biosensing, magnetosensing and spintronic

  4. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-01-01

    Microstructure in single crystalline Al 2 O 3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 10 13 to 1.0 × 10 15 ions/cm 2 . After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al 2 O 3 , high-density S e causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 10 13 ions/cm 2 for single crystalline Al 2 O 3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al 2 O 3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al 2 O 3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 10 14 ions/cm 2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures

  5. Surface amorphization in Al2O3 induced by swift heavy ion irradiation

    Science.gov (United States)

    Okubo, N.; Ishikawa, N.; Sataka, M.; Jitsukawa, S.

    2013-11-01

    Microstructure in single crystalline Al2O3 developed during irradiation by swift heavy ions has been investigated. The specimens were irradiated by Xe ions with energies from 70 to 160 MeV at ambient temperature. The fluences were in the range from 1.0 × 1013 to 1.0 × 1015 ions/cm2. After irradiations, X-ray diffractometry (XRD) measurements and cross sectional transmission electron microscope (TEM) observations were conducted. The XRD results indicate that in the initial stage of amorphization in single crystalline Al2O3, high-density Se causes the formation of new planes and disordering. The new distorted lattice planes formed in the early stage of irradiation around the fluence of 5.0 × 1013 ions/cm2 for single crystalline Al2O3 irradiated with 160 MeV-Xe ions. Energy dependence on structural modification was also examined in single crystalline Al2O3 irradiated by swift heavy ions. The XRD results indicate that the swift heavy ion irradiation causes the lattice expansion and the structural modification leading to amorphization progresses above the energy around 100 MeV in this XRD study. The TEM observations demonstrated that amorphization was induced in surface region in single crystalline Al2O3 irradiated by swift heavy ions above the fluence expected from the results of XRD. Obvious boundary was observed in the cross sectional TEM images. The crystal structure of surface region above the boundary was identified to be amorphous and deeper region to be single crystal. The threshold fluence of amorphization was found to be around 1.0 × 1014 ions/cm2 in the case over 80 MeV swift heavy ion irradiation and the fluence did not depend on the crystal structures.

  6. Various categories of defects after surface alloying induced by high current pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Dian [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tang, Guangze, E-mail: oaktang@hit.edu.cn [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Ma, Xinxin [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Gu, Le [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Mingren [School of Material Science & Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Liqin [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-10-01

    Highlights: • Four kinds of defects are found during surface alloying by high current electron beam. • Exploring the mechanism how these defects appear after irradiation. • Increasing pulsing cycles will help to get good surface quality. • Choosing proper energy density will increase surface quality. - Abstract: High current pulsed electron beam (HCPEB) is an attractive advanced materials processing method which could highly increase the mechanical properties and corrosion resistance. However, how to eliminate different kinds of defects during irradiation by HCPEB especially in condition of adding new elements is a challenging task. In the present research, the titanium and TaNb-TiW composite films was deposited on the carburizing steel (SAE9310 steel) by DC magnetron sputtering before irradiation. The process of surface alloying was induced by HCPEB with pulse duration of 2.5 μs and energy density ranging from 3 to 9 J/cm{sup 2}. Investigation of the microstructure indicated that there were several forms of defects after irradiation, such as surface unwetting, surface eruption, micro-cracks and layering. How the defects formed was explained by the results of electron microscopy and energy dispersive spectroscopy. The results also revealed that proper energy density (∼6 J/cm{sup 2}) and multi-number of irradiation (≥50 times) contributed to high quality of alloyed layers after irradiation.

  7. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Zou Yang; Cai Jie; Wan Ming-Zhen; Lv Peng; Guan Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1–1 μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials. (condensed matter: structure, mechanical and thermal properties)

  8. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  9. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    International Nuclear Information System (INIS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Investigated the optical properties of BiFeO_3 (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO_3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au"9"+ ions at a fluence of 1 × 10"1"2 ions cm"−"2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  10. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Energy Technology Data Exchange (ETDEWEB)

    Paliwal, Ayushi [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Sharma, Savita [Department of Applied Physics, Delhi Technological University, Delhi (India); Tomar, Monika [Physics Department, Miranda House, University of Delhi, Delhi 110007 (India); Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110075 (India); Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2016-07-15

    Highlights: • Investigated the optical properties of BiFeO{sub 3} (BFO) thin films after irradiation using SPR. • Otto configuration has been used to excite the surface plasmons using gold metal thin film. • BFO thin films were prepared by sol–gel spin coating technique. • Examined the refractive index dispersion of pristine and irradiated BFO thin film. - Abstract: Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO{sub 3} (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol–gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au{sup 9+} ions at a fluence of 1 × 10{sup 12} ions cm{sup −2}. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  11. Surface structure of Cr0.5 Ti0.5N coatings after heavy ions irradiation and annealing

    International Nuclear Information System (INIS)

    Kislitsin, Sergey; Gorlachev, Igor; Uglov, Vladimir

    2015-01-01

    Results of surface structure investigations of TiCrN coating on carbon steel after irradiation by helium, krypton and xenon heavy ions are reported in the present publication. The series of Cr50Ti50N coatings on carbon steel with thickness of 50,..., 300 nm were formed by vacuum arc deposition techniques. Specimens with TiCrN coating on carbon steel were irradiated by low energy 4 He +1 (22 keV) and 4 He +2 (40 keV) ions and high energy Xe +18 and Kr +14 ions with energy of 1.5 MeV/nucleon. Fluence of He ions was 1.0x10 17 ion.cm -2 , fluence of Xe and Kr ions was 5x10 14 -1.0x10 15 ion.cm -2 , irradiation temperature did not exceed 150 deg. C. Study of surface structure was performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Methods of Roentgen diffractometry and Rutherford backscattering was applied for determination of structure and thickness of coating. In case of irradiation with Xe +18 and Kr +14 ions an investigation of surface morphology and structure was done after successive two hours vacuum annealing of irradiated samples at temperatures 400 deg. C, 500 deg. C and 600 deg. C. It was shown that after irradiation by Xe and Kr ions on the surface of coating convexities appear, surface density of which correlates with ion flux. In the case of Xe, ions irradiation generated convexities of spherical and elongated shape with dimensions ranging from ten to hundreds nm. In the case of Kr ions, only spherical globules were generated, dimensions of which are 10-30 nm. The most likely explanation of observed surface damage is that: convexities on the surface are generated at ion bombardment of specimens with coating. Convexities are the traces of ions passing through coating and they are due to structural reconstruction at energy release along a trajectory of ions braking. Convexities of elongated shape represent overlapping traces from two passing ions. When the projective range of Xe and Kr ions exceeds coating thickness, damage

  12. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  13. Temperature-dependent surface porosity of Nb{sub 2}O{sub 5} under high-flux, low-energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Novakowski, T.J., E-mail: tnovakow@purdue.edu; Tripathi, J.K.; Hosinski, G.M.; Joseph, G.; Hassanein, A.

    2016-01-30

    Graphical abstract: - Highlights: • Nb{sub 2}O{sub 5} surfaces are nanostructured with a novel He{sup +} ion irradiation process. • High-flux, low energy He{sup +} ion irradiation generates highly porous surfaces. • Top-down approach guarantees good contact between different crystallites. • Sample annealing demonstrates temperature effect on surface morphology. • Surface pore diameter increases with increasing temperature. - Abstract: The present study reports on high-flux, low-energy He{sup +} ion irradiation as a novel method of enhancing the surface porosity and surface area of naturally oxidized niobium (Nb). Our study shows that ion-irradiation-induced Nb surface micro- and nano-structures are highly tunable by varying the target temperature during ion bombardment. Mirror-polished Nb samples were irradiated with 100 eV He{sup +} ions at a flux of 1.2 × 10{sup 21} ions m{sup −2} s{sup −1} to a total fluence of 4.3 × 10{sup 24} ions m{sup −2} with simultaneous sample annealing in the temperature range of 773–1223 K to demonstrate the influence of sample temperature on the resulting Nb surface morphology. This surface morphology was primarily characterized using field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). Below 923 K, Nb surfaces form nano-scale tendrils and exhibit significant increases in surface porosity. Above 923 K, homogeneously populated nano-pores with an average diameter of ∼60 nm are observed in addition to a smaller population of sub-micron sized pores (up to ∼230 nm in diameter). Our analysis shows a significant reduction in surface pore number density and surface porosity with increasing sample temperature. High-resolution ex situ X-ray photoelectron spectroscopy (XPS) shows Nb{sub 2}O{sub 5} phase in all of the ion-irradiated samples. To further demonstrate the length scales in which radiation-induced surface roughening occurs, optical reflectivity was performed over a spectrum of

  14. Laser irradiation effects on the surface, structural and mechanical properties of Al-Cu alloy 2024

    Science.gov (United States)

    Yousaf, Daniel; Bashir, Shazia; Akram, Mahreen; kalsoom, Umm-i.-; Ali, Nisar

    2014-02-01

    Laser irradiation effects on surface, structural and mechanical properties of Al-Cu-Mg alloy (Al-Cu alloy 2024) have been investigated. The specimens were irradiated for various fluences ranging from 3.8 to 5.5 J/cm2 using an Excimer (KrF) laser (248 nm, 18 ns, 30 Hz) under vacuum environment. The surface and structural modifications of the irradiated targets have been investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD), respectively. SEM analysis reveals the formation of micro-sized craters along the growth of periodic surface structures (ripples) at their peripheries. The size of the craters initially increases and then decreases by increasing the laser fluence. XRD analysis shows an anomalous trend in the peak intensity and crystallite size of the specimen irradiated for various fluences. A universal tensile testing machine and Vickers microhardness tester were employed in order to investigate the mechanical properties of the irradiated targets. The changes in yield strength, ultimate tensile strength and microhardness were found to be anomalous with increasing laser fluences. The changes in the surface and structural properties of Al-Cu alloy 2024 after laser irradiation have been associated with the changes in mechanical properties.

  15. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Science.gov (United States)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  16. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites – Insight study

    International Nuclear Information System (INIS)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-01-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance. - Highlights: • The γ-irradiation was used for structural modification of halloysite nanotubes. • Composite materials with irradiated HNTs showed improved mechanical properties. • The γ-irradiation treatment is a promising surface modification method.

  17. Time-resolved SFG study of formate on a Ni( 1 1 1 ) surface under irradiation of picosecond laser pulses

    Science.gov (United States)

    Noguchi, H.; Okada, T.; Onda, K.; Kano, S. S.; Wada, A.; Domen, K.

    2003-03-01

    Time-resolved sum-frequency generation spectroscopy was carried out on a deuterated formate (DCOO) adsorbed on Ni(1 1 1) surface to investigate the surface reaction dynamics under instantaneous surface temperature jump induced by the irradiation by picosecond laser pulses. The irradiation of pump pulse (800 nm) caused the rapid intensity decrease of both CD and OCO stretching modes of bridged formate on Ni(1 1 1). Different temporal behaviors of intensity recovery between these two vibrational modes were observed, i.e., CD stretching mode recovered faster than OCO. This is the first result to show that the dynamics of adsorbates on metals strongly depends on the observed vibrational mode. From the results of temperature and pump fluence dependence, we concluded that the observed intensity change was not due to the decomposition or desorption, but was induced by a non-thermal process.

  18. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C. - Highlights: • Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. • The effect of adding various percentage of carbon impurity to the He ion beam on the trend of W fuzz formation was studied. • Mitigation of W fuzz formation due to addition of small percentage of carbon to the He ion beam is reported. • The formation of long W nanowires due to He ion beam irradiation mixed with 0.01% carbon ions is reported.

  19. Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan

    2012-07-01

    Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7 W m-2 (out of 345 W m-2) and 4 W m-2 (out of 192 W m-2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3 W m-2 (out of 398 W m-2) and 3 W m-2 (out of 23 W m-2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12 W m-2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106 W m-2 and 130 W m-2.

  20. Solar Irradiance Changes And Photobiological Effects At Earth's Surface Following Astrophysical Ionizing Radiation Events

    Science.gov (United States)

    Thomas, Brian; Neale, Patrick

    2016-01-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth for decades. Although there is some direct biological damage on the surface from redistributed radiation several studies have indicated that the greatest long term threat is from ozone depletion and subsequent heightened solar ultraviolet (UV) radiation. It is known that organisms exposed to this irradiation experience harmful effects such as sunburn and even direct damage to DNA, proteins, or other cellular structures. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In the present work, we employed a radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light). Using biological weighting functions we have considered a wide range of effects, including: erythema and skin cancer in humans; inhibition of photosynthesis in the diatom Phaeodactylum sp. and dinoflagellate Prorocentrum micans inhibition of carbon fixation in Antarctic phytoplankton; inhibition of growth of oat (Avena sativa L. cv. Otana) seedlings; and cataracts. We found that past work overestimated UVB irradiance, but that relative estimates for increase in exposure to DNA damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in

  1. SEM analysis of enamel surface treated by Er:YAG laser: influence of irradiation distance.

    Science.gov (United States)

    Souza-Gabriel, A E; Chinelatti, M A; Borsatto, M C; Pécora, J D; Palma-Dibb, R G; Corona, S A M

    2008-07-01

    Depending on the distance of laser tip to dental surface a specific morphological pattern should be expected. However, there have been limited reports that correlate the Er:YAG irradiation distance with dental morphology. To assess the influence of Er:YAG laser irradiation distance on enamel morphology, by means of scanning electron microscopy (SEM). Sixty human third molars were employed to obtain discs (approximately =1 mm thick) that were randomly assigned to six groups (n=10). Five groups received Er:YAG laser irradiation (80 mJ/2 Hz) for 20 s, according to the irradiation distance: 11, 12, 14, 16, or 17 mm and the control group was treated with 37% phosphoric acid for 15 s. The laser-irradiated discs were bisected. One hemi-disc was separated for superficial analysis without subsequent acid etching, and the other one, received the phosphoric acid for 15 s. Samples were prepared for SEM. Laser irradiation at 11 and 12 mm provided an evident ablation of enamel, with evident fissures and some fused areas. At 14, 16 and 17 mm the superficial topography was flatter than in the other distances. The subsequent acid etching on the lased-surface partially removed the disorganized tissue. Er:YAG laser in defocused mode promoted slight morphological alterations and seems more suitable for enamel conditioning than focused irradiation. The application of phosphoric acid on lased-enamel surface, regardless of the irradiation distance, decreased the superficial irregularities.

  2. Structural, surface potential and optical studies of AlGaN based double heterostructures irradiated by 120 MeV Si{sup 9+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Arivazhagan, P., E-mail: arivazhaganau2008@gmail.com [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Ramesh, R.; Balaji, M. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India); Asokan, K. [Inter-University Accelerator Centre (IUAC), New Delhi (India); Baskar, K. [Crystal Growth Centre, Anna University, Chennai, 600 025 (India)

    2016-09-15

    The Al{sub 0.33}Ga{sub 0.77}N/Al{sub 0.14}Ga{sub 0.86}N based double heterostructure was irradiated using Si{sup 9+} ion at room temperature (RT) and liquid nitrogen temperature (LNT) with four dissimilar ion fluence. The effect of Si{sup 9+} ion irradiation in dislocation densities and in-plane strain of GaN layer were discussed. The in-plane strain values of Al{sub x}Ga{sub 1-x}N layers were calculated from asymmetric reciprocal space mapping (RSM). The surface modification and the variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces due to the irradiation were measured by Electrostatic Force Microscopy (EFM). The capacitance of the tip-sample system was determined from EFM. The band edge emissions of heterostructures were measured by the room temperature phototluminescence (PL) and the shift in the Al{sub 0.14}Ga{sub 0.86}N active layer emission peaks towards the low energy side at low fluence ion irradiation has been noted. - Highlights: • Effects of Si{sup 9+} ion irradiation on AlGaN double heterostructures were investigated. • Dislocation densities of GaN reduced at liquid nitrogen temperature irradiation. • Variation in phase shift on Al{sub 0.33}Ga{sub 0.77}N surfaces was measured by EFM. • Capacitance per unit area values of AFM tip-sample surface system were calculated. • Si{sup 9+} irradiations play an important role to tune the energy gap in Al{sub 0.14}Ga{sub 0.86}N.

  3. A model for diffuse and global irradiation on horizontal surface

    International Nuclear Information System (INIS)

    Jain, P.C.

    1984-01-01

    The intensity of the direct radiation and the diffuse radiation at any time on a horizontal surface are each expressed as fractions of the intensity of the extraterrestrial radiation. Using these and assuming a random distribution of the bright sunshine hours and not too wide variations in the values of the transmission coefficients, a number of relations for estimating the global and the diffuse irradiation are derived. Two of the relations derived are already known empirically. The formulation lends more confidence in the use of the already empirically known relations providing them a theoretical basis, and affords more flexibility to the estimation techniques by supplying new equations. The study identifies three independent basic parameters and the constants appearing in the various equations as simple functions of these three basic parameters. Experimental data for the diffuse irradiation, the global irradiation and the bright sunshine duration for Macerata (Italy), Salisbury and Bulawayo (Zimbabwe) is found to show good correlation for the linear equations, and the nature and the interrelationships of the constants are found to be as predicted by the theory

  4. Study on the essential variables for pipe outer surface irradiated laser stress improvement process (L-SIP). Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Kamo, Kazuhiko; Muroya, Itaru; Asada, Seiji; Nakamura, Yasuo

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression stress occurs near the inner surface of pipes. In this paper, the essential variables for L-SIP is studied by experimental and FEM analysis. The range of the essential variables for L-SIP, which are defined by thermo-elastic FEM analysis, are Tmax=550 - 650degC, L Q /√rh ≥ 3, W Q /√rh ≥ 1.7, and, 0.04 ≤ F 0 ≤ 0.10 where Tmax is maximum temperature on the monitor point of the outer surface, F 0 is k x τ 0 /h 2 , k is thermal diffusivity coefficient, τ 0 is the temperature rise time from 100degC to maximum temperature on the monitor point of the outer surface, W Q is τ 0 x v, υ is moving velocity, L Q is the uniform temperature length in the axial direction, h is thickness of the pipe, and r is average radius of the pipe. It is showed by thermo-elastic-plastic FEM analysis that the residual stresses near the inner surface of pipes are improved in 4 different size pipes under the same essential variables. L-SIP is actually applied to welding joints of 4B x Sch160 and 2B x Sch80 SUS304 type stainless steel pipes within the defined range of the essential variables. The measured welding residual stresses on the inner surface near the welding joints are tensile. The residual stresses on the inner surface change to compression in all joints by L-SIP. (author)

  5. Recent Advancements in the Numerical Simulation of Surface Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu; Sengupta, Manajit; Deline, Chris

    2017-06-27

    This paper briefly reviews the National Renewable Energy Laboratory's recent efforts on developing all-sky solar irradiance models for solar energy applications. The Fast All-sky Radiation Model for Solar applications (FARMS) utilizes the simulation of clear-sky transmittance and reflectance and a parameterization of cloud transmittance and reflectance to rapidly compute broadband irradiances on horizontal surfaces. FARMS delivers accuracy that is comparable to the two-stream approximation, but it is approximately 1,000 times faster. A FARMS-Narrowband Irradiance over Tilted surfaces (FARMS-NIT) has been developed to compute spectral irradiances on photovoltaic (PV) panels in 2002 wavelength bands. Further, FARMS-NIT has been extended for bifacial PV panels.

  6. Gamma-irradiated cationic starches: Paper surface-sizing agents

    International Nuclear Information System (INIS)

    Hofreiter, B.T.; Heath, H.D.; Schulte, M.I.; Phillips, B.S.

    1981-01-01

    Cationic starches, precisely depolymerized by gamma-irradiation ( 60 Co), were dispersed in mild alkali and evaluated as surface sizes for bond paper on a pilot paper machine. The irradiated products had excellent dispersion properties, were well retained on fibers when sized wastepaper (broke) was repulped and had an ability to enhance paper properties that was comparable to that of starch-based materials used commercially. A yellow corn flour, cationized by an essentially dry reaction process recently developed at this Center, was also radiolyzed and evaluated as a size. This latter product was unique in that all drying steps were eliminated in the preparation of a cationic ceral product of reduced viscosity. (orig.) [de

  7. [Effects of Nd: YAG laser irradiation on the root surfaces and adhesion of Streptococcus mutans].

    Science.gov (United States)

    Yuanhong, Li; Zhongcheng, Li; Mengqi, Luo; Daonan, Shen; Shu, Zhang; Shu, Meng

    2016-12-01

    This study aimed to evaluate the effects of treatment with different powers of Nd: YAG laser irradiation on root surfaces and Streptococcus mutans (S. mutans) adhesion. Extracted teeth because of severe periodontal disease were divided into the following four groups: control group, laser group 1, laser group 2, and laser group 3. After scaling and root planning, laser group 1, laser group 2, and laser group 3 were separately treated with Nd: YAG laser irradiation (4/6/8 W, 60 s); however, the control group did not receive the treatment. Scanning electron microscopy (SEM) was used to determine the morphology. S. mutans were cultured with root slices from each group. Colony forming unit per mL (CFU·mL⁻¹) was used to count and compare the amounts of bacteria adhesion among groups. SEM was used to observe the difference of bacteria adhesion to root surfaces between control group (scaling) and laser group 2 (6 W, 60 s), thereby indicating the different bacteria adhesions because of different treatments. Morphology alterations indicated that root surfaces in control group contain obvious smear layer, debris, and biofilm; whereas the root surfaces in laser group contain more cracks with less smear layer and debris. The bacteria counting indicated that S. mutans adhesion to laser group was weaker than that of control group (P0.05) was observed. Morphology alterations also verified that S. mutans adhesion to laser group 2 (6 W, 60 s) was weaker than that of control group (scaling). This study demonstrated that Nd: YAG laser irradiation treatment after scaling can reduce smear layer, debris, and biofilm on the root surfaces as compared with conventional scaling. The laser treatment reduces the adhesion of S. mutans as well. However, Nd: YAG laser irradiation can cause cracks on the root surfaces. In this experiment, the optimum laser power of 6 W can thoroughly remove the smear layer and debris, as well as relatively improve the control of thermal damagee.

  8. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  9. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    Energy Technology Data Exchange (ETDEWEB)

    Jadhav, Vidya, E-mail: vj1510@yahoo.com

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10{sup 17} cm{sup −3} were irradiated at 100 MeV Fe{sup 7+} ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10{sup 10}–1 × 10{sup 14} ions cm{sup −2}. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10{sup 13}, 5 × 10{sup 13} and 1 × 10{sup 14} ions cm{sup −2}, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10{sup 13} ion cm{sup −2} was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E{sub 1}, E{sub 1} + Δ and E{sub 2} band gaps in all irradiated samples.

  10. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    International Nuclear Information System (INIS)

    Jadhav, Vidya

    2015-01-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0〉 orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 10 17 cm −3 were irradiated at 100 MeV Fe 7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 10 10 –1 × 10 14 ions cm −2 . The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet–visible–NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 10 13 , 5 × 10 13 and 1 × 10 14 ions cm −2 , we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 10 13 ion cm −2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E 1 , E 1 + Δ and E 2 band gaps in all irradiated samples

  11. Influence of irradiation conditions on plasma evolution in laser-surface interaction

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Dubreuil, B.; Mihailescu, I. N.

    1993-09-01

    The plasma plume induced by pulsed CO2 laser irradiation of a Ti target at power densities up to 4×108 W cm-2 was studied by emission spectroscopy. Time- and space-resolved measurements were performed by varying laser intensity, laser temporal pulse shape, ambient gas pressure, and the nature of the ambient gas. Experimental results are discussed by comparison with usual models. We show that shock wave and plasma propagation depend critically on the ratio Ivap/Ii, Ivap being the intensity threshold for surface vaporization and Ii the plasma ignition threshold of the ambient gas. Spectroscopic diagnostics of the helium breakdown plasma show maximum values of electron temperature and electron density in the order of kTe˜10 eV and ne=1018 cm-3, respectively. The plasma cannot be described by local thermodynamic equilibrium modeling. Nevertheless, excited metal atoms appear to be in equilibrium with electrons, hence, they can be used like a probe to measure the electron temperature. In order to get information on the role of the plasma in the laser-surface interaction, Ti surfaces were investigated by microscopy after irradiation. Thus an enhanced momentum transfer from the plasma to the target due to the recoil pressure of the breakdown plasma could be evidenced.

  12. The Influence of Deformation on the Surface Structure of Silicon Under Irradiation by $^{86}$Kr Ions with Energy 253 MeV

    CERN Document Server

    Vlasukova, L A; Hofmann, A; Komarov, F F; Semina, V K; Yuvchenko, V N

    2006-01-01

    The influence of the previously produced deformation in silicon structure by means of macro-scratch surface covering on the sputtering processes under following irradiation by swift $^{86}$Kr ions is studied. The significant leveling of surface relief of irradiated silicon was observed using atomic force microscopy method (AFM), in particular it takes place for smoothing of micro-scratches produced by mechanical polishing of silicon initial plates. The experimental studies of irradiated surface allowed one to conclude that it is impossible to explain the surface changes only by elastic cascade mechanism as it was calculated using the computer code TRIM-98, because the calculated sputtered layers of silicon at ion fluence $\\Phi_{\\rm Kr} = 1{.}3\\cdot10^{14}$ ion/cm$^{2}$ should be $\\Delta H_{\\rm Sputtering}^{\\rm Kr} = 5{.}5\\cdot10^{-3 }${\\AA}. Correspondingly, the surface changes should be explained by one of mechanisms of inelastic sputtering. The macro-cracks on the surface were observed near the scratches. I...

  13. Effect of KrF excimer laser irradiation on the surface changes and photoelectric properties of ZnO single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yong [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China); Zhao, Yan [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Jiang, Yijian, E-mail: yjjiang@bjut.edu.cn [Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing International Cooperation Base of 3D Printing for Digital MedicalHealth, Beijing University of Technology, Beijing 100124 (China)

    2016-06-25

    In this paper, the effect of KrF pulsed excimer laser irradiation on the structural, surface morphology, photoluminescence and electrical properties of ZnO single crystal was investigated. Compared to the as-grown sample, at an irradiation energy density of 257 mJ/cm{sup 2}, the ZnO single crystal exhibits a series of phenomenon: XRD and Raman results show that the crystallization of ZnO quality change slightly, resistivity is decreased by two orders of magnitude, carrier concentration is increased by one order of magnitude. After laser irradiation, the surface shows some strip lines and no cracks. Formula calculation and simulation results show that the stripes are not caused by surface melting. We speculate that these stripes are caused by the precipitation of ZnO material inside to the surface. Due to the reduction of oxygen vacancies, UV emission has been enhanced and visible emission has been declined after irradiation. After the laser irradiation, the visible light of ZnO surface can be regulated. The experimental results show that KrF laser irradiation could effectively improve the optical and electrical properties of ZnO single crystal, which is important for the application of high performance of emitting optoelectronic devices. - Highlights: • After laser irradiation, the surface shows some strip lines and no cracks. • The visible light of as-irradiated ZnO surface can be regulated to four colors. • The electrical properties of as-irradiated ZnO has been improved greatly.

  14. Analyses of surface coloration on TiO2 film irradiated with excimer laser

    International Nuclear Information System (INIS)

    Zheng, H.Y.; Qian, H.X.; Zhou, W.

    2008-01-01

    TiO 2 film of around 850 nm in thickness was deposited on a soda-lime glass by PVD sputtering and irradiated using one pulse of krypton-fluorine (KrF) excimer laser (wavelength of 248 nm and pulse duration of 25 ns) with varying fluence. The color of the irradiated area became darker with increasing laser fluence. Irradiated surfaces were characterized using optical microscopy, scanning electron microscopy, Raman spectroscopy and atomic force microscopy. Surface undergoes thermal annealing at low laser fluence of 400 and 590 mJ/cm 2 . Microcracks at medium laser fluence of 1000 mJ/cm 2 are attributed to surface melting and solidification. Hydrodynamic ablation is proposed to explain the formation of micropores and networks at higher laser fluence of 1100 and 1200 mJ/cm 2 . The darkening effect is explained in terms of trapping of light in the surface defects formed rather than anatase to rutile phase transformation as reported by others. Controlled darkening of TiO 2 film might be used for adjustable filters

  15. Influence of multi-wavelength laser irradiation of enamel and dentin surfaces at 0.355, 2.94, and 9.4 μm on surface morphology, permeability, and acid resistance.

    Science.gov (United States)

    Chang, Nai-Yuan N; Jew, Jamison M; Simon, Jacob C; Chen, Kenneth H; Lee, Robert C; Fried, William A; Cho, Jinny; Darling, Cynthia L; Fried, Daniel

    2017-12-01

    Ultraviolet (UV) and infrared (IR) lasers can be used to specifically target protein, water, and mineral, respectively, in dental hard tissues to produce varying changes in surface morphology, permeability, reflectivity, and acid resistance. The purpose of this study was to explore the influence of laser irradiation and topical fluoride application on the surface morphology, permeability, reflectivity, and acid resistance of enamel and dentin to shed light on the mechanism of interaction and develop more effective treatments. Twelve bovine enamel surfaces and twelve bovine dentin surfaces were irradiated with various combinations of lasers operating at 0.355 (Freq.-tripled Nd:YAG (UV) laser), 2.94 (Er:YAG laser), and 9.4 μm (CO 2 laser), and surfaces were exposed to an acidulated phosphate fluoride gel and an acid challenge. Changes in the surface morphology, acid resistance, and permeability were measured using digital microscopy, polarized light microscopy, near-IR reflectance, fluorescence, polarization sensitive-optical coherence tomography (PS-OCT), and surface dehydration rate measurements. Different laser treatments dramatically influenced the surface morphology and permeability of both enamel and dentin. CO 2 laser irradiation melted tooth surfaces. Er:YAG and UV lasers, while not melting tooth surfaces, showed markedly different surface roughness. Er:YAG irradiation led to significantly rougher enamel and dentin surfaces and led to higher permeability. There were significant differences in acid resistance among the various treatment groups. Surface dehydration measurements showed significant changes in permeability after laser treatments, application of fluoride and after exposure to demineralization. CO 2 laser irradiation was most effective in inhibiting demineralization on enamel while topical fluoride was most effective for dentin surfaces. Lasers Surg. Med. 49:913-927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kurishita, H. [Institute for Materials Research, Tohoku University, Ibaraki 311-1313 (Japan)

    2015-08-15

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m{sup −2} was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  17. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  18. Low-temperature electron irradiation induced defects in gallium arsenide: bulk and surface acoustic wave studies

    International Nuclear Information System (INIS)

    Brophy, M.J. Jr.

    1985-01-01

    Irradiation of GaAs with 2.25 to 2.5 MeV electrons at temperatures below 190 K produces two peaks in ultrasonic attenuation versus temperature. The defects responsible for both peaks have trigonal symmetry and were observed in n-type and semi-insulating GaAs with bulk and surface acoustic waves (SAW) respectively. Bulk waves at eight frequencies between 9 and 130 MHz and SAW at 73 and 145 MHz were used. The reorientation kinetics of both peaks follow the Arrhenius law. The annealing of both peaks was studied with isochronal and isothermal anneals in the temperature range 200 to 335 K. Peak I anneals with a spectrum of activation energies in the range 0.7-1.1 eV between 220 and 335 K. Peak II anneals with a single activation energy of about 1.1 eV above 300K. The different annealing characteristics indicate that these peaks represent two distinct defects. The annealing above 300 K has not been seen in electrical resistivity measurements, but was observed in earlier length change experiments. Irradiation of GaAs:Cr produces no Cr-radiation defect complexes. The attenuation peak associated with Cr 2+ decrease with electron dose, but starts to recover at 150 K

  19. Surface morphological modification of crosslinked hydrophilic co-polymers by nanosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Primo, Gastón A.; Alvarez Igarzabal, Cecilia I. [IMBIV (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba X5000HUA (Argentina); Pino, Gustavo A.; Ferrero, Juan C. [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina); Rossa, Maximiliano, E-mail: mrossa@fcq.unc.edu.ar [INFIQC (CONICET), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, and Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Córdoba X5000IUS (Argentina)

    2016-04-30

    Graphical abstract: - Highlights: • Laser-induced surface modification of crosslinked hydrophilic co-polymers by ns pulses. • Formation of ablation craters observed under most of the single-pulse experimental conditions. • UV laser foaming of dried hydrogel samples resulting from single- and multiple-pulse experiments. • Threshold values of the incident laser fluence reported for the observed surface modifications. • Lower threshold fluences for acrylate-based, compared to acrylamide-based hydrogels. - Abstract: This work reports an investigation of the surface modifications induced by irradiation with nanosecond laser pulses of ultraviolet and visible wavelengths on crosslinked hydrophilic co-polymeric materials, which have been functionalized with 1-vinylimidazole as a co-monomer. A comparison is made between hydrogels differing in the base co-monomer (N,N-dimethylaminoethyl methacrylate and N-[3-(dimethylamino)propyl] methacrylamide) and in hydration state (both swollen and dried states). Formation of craters is the dominant morphological change observed by ablation in the visible at 532 nm, whereas additional, less aggressive surface modifications, chiefly microfoams and roughness, are developed in the ultraviolet at 266 nm. At both irradiation wavelengths, threshold values of the incident laser fluence for the observation of the various surface modifications are determined under single-pulse laser irradiation conditions. It is shown that multiple-pulse irradiation at 266 nm with a limited number of laser shots can be used alternatively for generating a regular microfoam layer at the surface of dried hydrogels based on N,N-dimethylaminoethyl methacrylate. The observations are rationalized on the basis of currently accepted mechanisms for laser-induced polymer surface modification, with a significant contribution of the laser foaming mechanism. Prospective applications of the laser-foamed hydrogel matrices in biomolecule immobilization are suggested.

  20. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  1. Surface nanostructuring of TiO2 thin films by ion beam irradiation

    International Nuclear Information System (INIS)

    Romero-Gomez, P.; Palmero, A.; Yubero, F.; Vinnichenko, M.; Kolitsch, A.; Gonzalez-Elipe, A.R.

    2009-01-01

    This work reports a procedure to modify the surface nanostructure of TiO 2 anatase thin films through ion beam irradiation with energies in the keV range. Irradiation with N + ions leads to the formation of a layer with voids at a depth similar to the ion-projected range. By setting the ion-projected range a few tens of nanometers below the surface of the film, well-ordered nanorods appear aligned with the angle of incidence of the ion beam. Slightly different results were obtained by using heavier (S + ) and lighter (B + ) ions under similar conditions

  2. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  3. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  4. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    International Nuclear Information System (INIS)

    Evora, M.C.; Araujo, J.R.; Ferreira, E.H.M.; Strohmeier, B.R.; Silva, L.G.A.; Achete, C.A.

    2015-01-01

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp 2 structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO 4 ·7H 2 O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful

  5. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  6. Surface Microstructure of Nanoaluminized CoCrAlY Coating Irradiated by HCPEB

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2016-01-01

    Full Text Available A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3 phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.

  7. Plasma Surface Modification of Glass-Fibre-Reinforced Polyester Enhanced by Ultrasonic Irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Singh, Shailendra Vikram; Bardenshtein, Alexander

    2010-01-01

    treatment can be highly enhanced by simultaneous high-power ultrasonic irradiation of the treating surface, because the delivered acoustic energy can reduce the thickness of the boundary gas layer. Here surfaces of glass-fibre-reinforced polyester (GFRP) plates were treated using an atmospheric pressure...

  8. Tissue breathing and topology of rats thymocytes surface under acute total γ-irradiation.

    Science.gov (United States)

    Nikitina, I A; Gritsuk, A I

    2017-12-01

    Assessment of the effect of single total γ irradiation to the parameters of mitochondrial oxidation and the topology of the thymocyte surface. The study was performed in sexually mature white outbreeding male rats divided into three groups: two experimental and one control. The states of energy metabolism were determined by the rate of oxygen consumption by the thymus tissues on endogenous substrates at the presence of 2,4 dinitrophenol, uncoupler of a tissue breathing (TB) and oxidative phosphorylation (OP) after a single total γ irradiation at a dose of 1.0 Gy at 3, 10, 40 and 60 days. The topology of thymus cells was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM). On the 3rd and 10th days after total gamma irradiation at a dose of 1.0 Gy, a significant decrease in respira tory activity was determined in thymus tissues on endogenous substrates. Simultaneously, on the 3rd day, pro nounced changes in the morphological parameters of thymocytes (height, volume, area of contact with the sub strate) and the topology of their surface were also observed. On the 10th day after irradiation, most of the morpho logical parameters of thymocytes, except for their volume, were characterized by restoration to normal. In the long term (on the 30th and 60th days after exposure), a gradual but not complete recovery of the respiratory activity of thymocytes was observed, accompanied by an increase in the degree of dissociation of TD and OP. The obtained data reflect and refine mechanisms of post radiation repair of lymphopoiesis, showing the presence of conjugated changes in the parameters of aerobic energy metabolism of thymocytes, morphology and topology of their surface. The synchronism of changes in the parameters under study is a reflection of the state of the cytoskeleton, the functional activity of which largely depends on the level and efficiency of mitochondrial oxidation. І. A. Nikitina, A. I. Gritsuk.

  9. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    Science.gov (United States)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  10. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    Science.gov (United States)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  11. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  12. Effect of ion irradiation on the structure and the surface topography of carbon fiber

    International Nuclear Information System (INIS)

    Ligacheva, E.A.; Galyaeva, L.V.; Gavrilov, N.V.; Belykh, T.A.; Ligachev, A.E.; Sokhoreva, V.V.

    2006-01-01

    The effect of C + ion irradiation (40 keV, 10 15 - 10 19 cm -2 ) on the structure and surface topography of high-module carbon fibers is investigated. Interplanar distance and internal stress values are found to be minimal at a radiation dose of 10 17 cm -2 , the height of a layer pack being practically unchanged. The relief of ion irradiated carbon fiber surface constitutes regularly repetitive valleys and ridges spaced parallel with the fiber axis [ru

  13. ESR spectra studies on polyterafluoroethyene films irradiated by radio frequency plasmas

    International Nuclear Information System (INIS)

    Ma Yuguang; Yang Meiling; Shen Jiacong; Lin Dehou

    1991-01-01

    The PTFE (polytetrafluoroethylene) films irradiated by Ar plasma were studied by using the method of ESR spectrometer. The peroxide free radicals were found on the surface of PTFE after plasma irradiation, which existed in the layer of some thickness of the surface. These free radicals were quite stable at room temperature. But when density of peroxide free radicals on the PTFE surface was big enough, termination reaction between the peroxide free radicals bound happen and endoperoxides were formed on the PTFE surface. Also the density of peroxide free radical decreased with increasing temperature and underwent a sudden change with temperature reaching 399 K- the glass transition temperature PTFE. The peroxide free radicals can be caught by free radical catcher PBN to form a stable free radical, also can react with MMA to form grafting layer

  14. Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties

    Science.gov (United States)

    Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny; Miller, Walter F.; Chen, Yan; Rutan, David A.; Stephens, Graeme L.; Loeb, Norman G.; Minnis, Patrick; Wielicki, Bruce A.; Winker, David M.; Charlock, Thomas P.; Stackhouse, Paul W., Jr.; Xu, Kuan-Man; Collins, William D.

    2011-10-01

    One year of instantaneous top-of-atmosphere (TOA) and surface shortwave and longwave irradiances are computed using cloud and aerosol properties derived from instruments on the A-Train Constellation: the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, the CloudSat Cloud Profiling Radar (CPR), and the Aqua Moderate Resolution Imaging Spectrometer (MODIS). When modeled irradiances are compared with those computed with cloud properties derived from MODIS radiances by a Clouds and the Earth's Radiant Energy System (CERES) cloud algorithm, the global and annual mean of modeled instantaneous TOA irradiances decreases by 12.5 W m-2 (5.0%) for reflected shortwave and 2.5 W m-2 (1.1%) for longwave irradiances. As a result, the global annual mean of instantaneous TOA irradiances agrees better with CERES-derived irradiances to within 0.5W m-2 (out of 237.8 W m-2) for reflected shortwave and 2.6W m-2 (out of 240.1 W m-2) for longwave irradiances. In addition, the global annual mean of instantaneous surface downward longwave irradiances increases by 3.6 W m-2 (1.0%) when CALIOP- and CPR-derived cloud properties are used. The global annual mean of instantaneous surface downward shortwave irradiances also increases by 8.6 W m-2 (1.6%), indicating that the net surface irradiance increases when CALIOP- and CPR-derived cloud properties are used. Increasing the surface downward longwave irradiance is caused by larger cloud fractions (the global annual mean by 0.11, 0.04 excluding clouds with optical thickness less than 0.3) and lower cloud base heights (the global annual mean by 1.6 km). The increase of the surface downward longwave irradiance in the Arctic exceeds 10 W m-2 (˜4%) in winter because CALIOP and CPR detect more clouds in comparison with the cloud detection by the CERES cloud algorithm during polar night. The global annual mean surface downward longwave irradiance of

  15. Evaluation of the performance of three diffuse hourly irradiation models on tilted surfaces according to the utilizability concept

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.

  16. Surface damage in the small intestine of the mouse after X - or neutron irradiation

    International Nuclear Information System (INIS)

    Hamlet, R.; Carr, K.E.; Nias, A.H.; Watt, C.

    1981-01-01

    Damage after X-irradiation includes lateral villous collapse, progressing after 3 - 5 days to villi which sometimes show signs of vertical collapse. After neutron irradiation vertical villous collapse is established earlier, with less swelling of villous tips. It seems, therefore, that at radiobiologically equivalent doses, neutron and X-irradiation produce different levels of surface damage, with neutron irradiation being the more destructive. Early villous tip damage may perhaps be due to disruption of susceptible cells already at the extrusion zone, or to stromal damage

  17. Modification of preheated tungsten surface after irradiation at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S.; Arzhannikov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Huber, A. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, 52425 Jülich (Germany); Ivanov, I.A. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kuklin, K.N. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V.; Postupaev, V.V.; Sinitsky, S.L. [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vasilyev, A.A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-12-15

    Highlights: • Preheated tungsten was irradiated at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. • The crack pattern and the quantity of bubbles depend on the initial temperatures of the target. • The orientation of major crack networks correlates with the direction of machining of the samples. • Dust impact craters were found. - Abstract: The study is devoted to tungsten surface modification after irradiation at the GOL-3 facility with plasma loads corresponding to the ITER type I ELMs. In order to emulate heating with a steady plasma flux in the ITER divertor, some of the tungsten samples were preheated up to 500 °C. It was found out that the behavior of the surface modification (the crack pattern and the number of bubbles) depends on the initial temperature of the targets. While the orientation of major crack networks correlates with the direction of machining of the samples. Afterwards we have observed the process of craters’ formation caused by dust particle impacts.

  18. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints

    KAUST Repository

    Alfano, Marco; Lubineau, Gilles; Furgiuele, Franco M.; Paulino, Glá ucio Hermogenes

    2012-01-01

    In this work we investigate the effect of laser irradiation on the bond toughness of aluminum/epoxy bonded joints. The evolution of substrate surface morphology and wettability, for various sets of laser process parameters (i.e. laser power, line spacing, scan speed), was investigated by means of Scanning Electron Microscopy (SEM) and contact angle measurements. A proper combination of power, line spacing and scan speed was then selected and adhesive bonded Al/epoxy T-peel joints were prepared and tested. For comparison, similar samples were produced using substrates with classical grit blasting surface treatment. Finally, post-failure SEM analyses of fracture surfaces were performed, and in order to typify the increase in bond toughness of the joints, finite element simulations were carried out using a potential based cohesive zone model of fracture. © 2012 Elsevier Ltd.

  19. Study on the role of laser surface irradiation on damage and decohesion of Al/epoxy joints

    KAUST Repository

    Alfano, Marco

    2012-12-01

    In this work we investigate the effect of laser irradiation on the bond toughness of aluminum/epoxy bonded joints. The evolution of substrate surface morphology and wettability, for various sets of laser process parameters (i.e. laser power, line spacing, scan speed), was investigated by means of Scanning Electron Microscopy (SEM) and contact angle measurements. A proper combination of power, line spacing and scan speed was then selected and adhesive bonded Al/epoxy T-peel joints were prepared and tested. For comparison, similar samples were produced using substrates with classical grit blasting surface treatment. Finally, post-failure SEM analyses of fracture surfaces were performed, and in order to typify the increase in bond toughness of the joints, finite element simulations were carried out using a potential based cohesive zone model of fracture. © 2012 Elsevier Ltd.

  20. Surface study of fusion research in universities linkage organization

    International Nuclear Information System (INIS)

    Miyahara, Akira.

    1980-04-01

    The surface studies for nuclear fusion research consist of the studies on the surface process and the surface damage. The problems with the surface study are different at different research stages. The plasma-wall interaction in the ignition stage is mainly concerned with heating. The impurity control becomes important in the breakeven stage. In the longer burn experiment, the problems of plasma contamination and ash accumulation are serious, and the blistering is also a problem. From the reactor aspect, the reduction of life of wall due to the irradiation of high fluence must be considered. The surface damage due to plasma disruption is a very big problem. The activities concerning the surface studies in university-linked organizations are the surface characterization for fusion reactor materials by low energy ion scattering spectroscopy, the high power ion irradiation test for CTR first wall, data compilation on plasma-wall interaction, the studies of sputtering process and surface coating, and the study on hydrogen isotope permeation through metals for fusion reactors. Other activities such as the sample characterization at many universities using the SUS 304 samples from the same lot, and the collaboration works on JIPP-T-2 plasma wall experiments are introduced. Concerning the surface study, US-Japan or international collaboration are strongly expected. (Kato, T.)

  1. Surface composition, microstructure and corrosion resistance of AZ31 magnesium alloy irradiated by high-intensity pulsed ion beam

    International Nuclear Information System (INIS)

    Li, P.; Lei, M.K.; Zhu, X.P.

    2011-01-01

    High-intensity pulsed ion beam (HIPIB) irradiation of AZ31 magnesium alloy is performed and electrochemical corrosion experiment of irradiated samples is carried out by using potentiodynamic polarization technology in order to explore the effect of HIPIB irradiation on corrosion resistance of magnesium alloy. The surface composition, cross-sectional morphology and microstructure are characterized by using electron probe microanalyzer, optical microscope and transmission electron microscope, respectively. The results indicated that HIPIB irradiation leads to a significant improvement in corrosion resistance of magnesium alloy, in terms of the considerable increase in both corrosion potential and pitting breakdown potential. The microstructural refinement and surface purification induced by HIPIB irradiation are responsible for the improved corrosion resistance. - Research Highlights: → A modified layer about 30 μm thick is obtained by HIPIB irradiation. → Selective ablation of element/impurity phase having lower melting point is observed. → More importantly, microstructural refinement occurred on the irradiated surface. → The modified layer exhibited a significantly improved corrosion resistance. → Improved corrosion resistance is ascribed to the combined effect induced by HIPIB.

  2. Study on shelf life extension of papayas irradiated by /sup 60/Co gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.S.; Chen, M.D.; Lin, C.T.; Fu, Y.K.

    1984-11-01

    Papayas are one of the main fresh fruits in Taiwan area. Papaya fruits were treated with hot water to pasteurize peels followed by /sup 60/Co gamma-ray irradiation to extend the ripening time. The purpose of synergetic methods is to extend the shelf life of papaya fruits. This experiment was carried out by seven treatments, which were: (1) control group, (2) hot water treatment only, (3) hot water treatment with a 25 krad ..gamma..-irradiation, (4) hot water treatment with a 50 krad ..gamma..-irradiation, (5) hot water treatment with a 75 krad ..gamma..-irradiation, (6) 75 krad ..gamma..-irradiation only, and (7) hot water treatment with a 100 krad ..gamma..-irradiation. The items of observation were: surface yellowing, surface decaying, quality of texture, and length of period lasted after irradiation for 50% marketable papayas. The results of this study showed that a shelf-life extension of six days could be obtained for papayas subjected to hot water (50 to 55/sup 0/C) treatment and a 100 krad irradiation. 3 refs., 2 figs., 2 tabs.

  3. Solar irradiance changes and photobiological effects at earth's surface following astrophysical ionizing radiation events.

    Science.gov (United States)

    Thomas, Brian C; Neale, Patrick J; Snyder, Brock R

    2015-03-01

    Astrophysical ionizing radiation events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in surface-level solar ultraviolet radiation. Simulations of the atmospheric effects of a variety of events (such as supernovae, gamma-ray bursts, and solar proton events) have been previously published, along with estimates of biological damage at Earth's surface. In this work, we employed the Tropospheric Ultraviolet and Visible (TUV) radiative transfer model to expand and improve calculations of surface-level irradiance and biological impacts following an ionizing radiation event. We considered changes in surface-level UVB, UVA, and photosynthetically active radiation (visible light) for clear-sky conditions and fixed aerosol parameter values. We also considered a wide range of biological effects on organisms ranging from humans to phytoplankton. We found that past work overestimated UVB irradiance but that relative estimates for increase in exposure to DNA-damaging radiation are still similar to our improved calculations. We also found that the intensity of biologically damaging radiation varies widely with organism and specific impact considered; these results have implications for biosphere-level damage following astrophysical ionizing radiation events. When considering changes in surface-level visible light irradiance, we found that, contrary to previous assumptions, a decrease in irradiance is only present for a short time in very limited geographical areas; instead we found a net increase for most of the modeled time-space region. This result has implications for proposed climate changes associated with ionizing radiation events.

  4. Investigation of the effects of high-energy proton-beam irradiation on metal-oxide surfaces by using methane adsorption isotherms

    International Nuclear Information System (INIS)

    Kim, Euikwoun; Lee, Junggil; Kim, Jaeyong; Kim, Kyeryung

    2012-01-01

    The creation of possible local defects on metal-oxide surfaces due to irradiation with a high-energy proton beam was investigated by using a series of gas adsorption isotherms for methane (CH 4 ) on a MgO powder surface. After a MgO powder surface having only a (100) surface had been irradiated with a 35-MeV proton beam, the second atomic layer of methane had completely disappeared while two distinct atomic layers were found in a layer-by-layer fashion on the surfaces of unirradiated samples. This subtle modification of the surface is evidenced by a change of the contrasts in the morphologies measured a using a transmission electron microscopy. Combined results obtained from an electron microscopy and methane adsorption isotherms strongly suggest that the high-energy proton-beam irradiation induced a local surface modification by imparting kinetic energy to the sample. The calculation of the 2-dimensional compressibility values, which are responsible for the formation of the atomic layers, confirmed the surface modification after irradiating surface-clean MgO powders with a proton beam.

  5. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Directory of Open Access Journals (Sweden)

    Yanping Yuan

    2016-02-01

    Full Text Available In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2 is used to irradiate multi-walled carbon nanotubes (MWCNTs on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM. For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation.

  6. Nano-Welding of Multi-Walled Carbon Nanotubes on Silicon and Silica Surface by Laser Irradiation

    Science.gov (United States)

    Yuan, Yanping; Chen, Jimin

    2016-01-01

    In this study, a continuous fiber laser (1064 nm wavelength, 30 W/cm2) is used to irradiate multi-walled carbon nanotubes (MWCNTs) on different substrate surfaces. Effects of substrates on nano-welding of MWCNTs are investigated by scanning electron microscope (SEM). For MWCNTs on silica, after 3 s irradiation, nanoscale welding with good quality can be achieved due to breaking C–C bonds and formation of new graphene layers. While welding junctions can be formed until 10 s for the MWCNTs on silicon, the difference of irradiation time to achieve welding is attributed to the difference of thermal conductivity for silica and silicon. As the irradiation time is prolonged up to 12.5 s, most of the MWCNTs are welded to a silicon substrate, which leads to their frameworks of tube walls on the silicon surface. This is because the accumulation of absorbed energy makes the temperature rise. Then chemical reactions among silicon, carbon and nitrogen occur. New chemical bonds of Si–N and Si–C achieve the welding between the MWCNTs and silicon. Vibration modes of Si3N4 appear at peaks of 363 cm−1 and 663 cm−1. There are vibration modes of SiC at peaks of 618 cm−1, 779 cm−1 and 973 cm−1. The experimental observation proves chemical reactions and the formation of Si3N4 and SiC by laser irradiation. PMID:28344293

  7. Temperature evaluation of dental implant surface irradiated with high-power diode laser.

    Science.gov (United States)

    Rios, F G; Viana, E R; Ribeiro, G M; González, J C; Abelenda, A; Peruzzo, D C

    2016-09-01

    The prevalence of peri-implantitis and the absence of a standard approach for decontamination of the dental implant surface have led to searches for effective therapies. Since the source of diode lasers is portable, has reduced cost, and does not cause damage to the titanium surface of the implant, high-power diode lasers have been used for this purpose. The effect of laser irradiation on the implants is the elevation of the temperature surface. If this elevation exceeds 47 °C, the bone tissue is irreversibly damaged, so for a safety therapy, the laser parameters should be controlled. In this study, a diode laser of GaAsAl was used to irradiate titanium dental implants, for powers 1.32 to 2.64 W (real) or 2.00 to 4.00 W (nominal), in continuous/pulsed mode DC/AC, with exposure time of 5/10 s, with/without air flow for cooling. The elevation of the temperature was monitored in real time in two positions: cervical and apical. The best results for decontamination using a 968-nm diode laser were obtained for a power of 1.65 and 1.98 W (real) for 10 s, in DC or AC mode, with an air flow of 2.5 l/min. In our perspective in this article, we determine a suggested approach for decontamination of the dental implant surface using a 968-nm diode laser.

  8. Morphological Alterations of the Surfaces of Enamel and Dentin of Deciduous Teeth Irradiated with Nd:YAG, C0(2)and Diode Lasers

    OpenAIRE

    Souza, Mónica Rodrigues de; Watanabe, Ii-Sei; Azevedo, Luciane H; Tanji, Edgar Y

    2009-01-01

    In this work, we studied the effects of C0(2), Nd:YAG and diode lasers on the enamel and dentin of deciduous human teeth. After the irradiations, the samples were duly prepared and set up on metallic bases, covered with gold and examined in the scanning electron microscope. The results showed that the irradiation with the C0(2) mode locked laser with 1.0 W power caused melting and irregularities with small cavities on the surface of the enamel. The irradiated area on the dentin surface appear...

  9. Uncertainty in regional and zonal monthly mean downward surface irradiances from Edition 4.0 CERES Energy Balanced and Filled (EBAF) data product

    Science.gov (United States)

    Kato, S.; Rutan, D. A.; Rose, F. G.; Loeb, N. G.

    2017-12-01

    The surface of the Earth receives solar radiation (shortwave) and emission from the atmosphere (longwave). At a global and annual mean approximately 12% of solar radiation incident on the surface is reflected and the rest is absorbed by the surface. The surface emits radiation proportional to the forth power of the temperature. Although the uncertainty in global and annual mean surface irradiances is estimated in earlier studies (Zhang et al. 1995, 2004; L'Ecuyer et al. 2008; Stephens et al. 2012; Kato et al. 2012), only a few studies estimated the uncertainty in computed surface irradiances at smaller spatial and temporal scales (Zhang et al. 1995, 2004; Kato et al. 2012). We use surface observations at 46 buoys and 36 land sites and newly released the Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)-surface data product to estimate the uncertainty in regional and zonal monthly mean downward shortwave and longwave surface irradiances. The root-mean-square difference of monthly mean computed and observed irradiances is used for the regional uncertainty. The uncertainty is separated into bias and spatially random components. The random component decreases when irradiances are averaged over a larger area, nearly inversely proportional to the number of surface observation sites. The presentation provides the uncertainty in the regional and zonal monthly mean downward surface irradiances over ocean and land. ReferencesKato, S. and N.G.Loeb, D. A.Rutan, F. G. Rose, S. Sun-Mack,W.F.Miller, and Y. Chen, 2012. Surv. Geophys., 33, 395-412, doi:10.1007/s10712-012-9179-x. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951. Stephens, G. L. and Coauthors, 2012, Nat. Geosci., 5, 691-696, doi:10.1038/ngeo1580. Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004, J. Geophys. Res., 109, D19105, doi:10.1029/2003JD

  10. Selective Area Modification of Silicon Surface Wettability by Pulsed UV Laser Irradiation in Liquid Environment.

    Science.gov (United States)

    Liu, Neng; Moumanis, Khalid; Dubowski, Jan J

    2015-11-09

    The wettability of silicon (Si) is one of the important parameters in the technology of surface functionalization of this material and fabrication of biosensing devices. We report on a protocol of using KrF and ArF lasers irradiating Si (001) samples immersed in a liquid environment with low number of pulses and operating at moderately low pulse fluences to induce Si wettability modification. Wafers immersed for up to 4 hr in a 0.01% H2O2/H2O solution did not show measurable change in their initial contact angle (CA) ~75°. However, the 500-pulse KrF and ArF lasers irradiation of such wafers in a microchamber filled with 0.01% H2O2/H2O solution at 250 and 65 mJ/cm(2), respectively, has decreased the CA to near 15°, indicating the formation of a superhydrophilic surface. The formation of OH-terminated Si (001), with no measurable change of the wafer's surface morphology, has been confirmed by X-ray photoelectron spectroscopy and atomic force microscopy measurements. The selective area irradiated samples were then immersed in a biotin-conjugated fluorescein-stained nanospheres solution for 2 hr, resulting in a successful immobilization of the nanospheres in the non-irradiated area. This illustrates the potential of the method for selective area biofunctionalization and fabrication of advanced Si-based biosensing architectures. We also describe a similar protocol of irradiation of wafers immersed in methanol (CH3OH) using ArF laser operating at pulse fluence of 65 mJ/cm(2) and in situ formation of a strongly hydrophobic surface of Si (001) with the CA of 103°. The XPS results indicate ArF laser induced formation of Si-(OCH3)x compounds responsible for the observed hydrophobicity. However, no such compounds were found by XPS on the Si surface irradiated by KrF laser in methanol, demonstrating the inability of the KrF laser to photodissociate methanol and create -OCH3 radicals.

  11. Damage studies on tungsten due to helium ion irradiation

    International Nuclear Information System (INIS)

    Dutta, N.J.; Buzarbaruah, N.; Mohanty, S.R.

    2014-01-01

    Highlights: • Used plasma focus helium ion source to study radiation induced damage on tungsten. • Surface analyses confirm formation of micro-crack, bubbles, blisters, pinholes, etc. • XRD patterns confirm development of compressive stress due to thermal load. • Reduction in hardness value is observed in the case of exposed sample. - Abstract: Energetic and high fluence helium ions emitted in a plasma focus device have been used successfully to study the radiation induced damage on tungsten. The reference and irradiated samples were characterized by optical microscopy, field emission scanning electron microscopy, X-ray diffraction and by hardness testers. The micrographs of the irradiated samples at lower magnification show uniform mesh of cracks of micrometer width. However at higher magnification, various types of crystalline defects such as voids, pinholes, bubbles, blisters and microcracks are distinctly noticed. The prominent peaks in X-ray diffraction spectrum of irradiated samples are seen shifted toward higher Bragg angles, thus indicating accumulation of compressive stress due to the heat load delivered by helium ions. A marginal reduction in hardness of the irradiated sample is also noticed

  12. In situ MeV ion beam analysis of ceramic surfaces modified by 100-400 keV ion irradiation

    International Nuclear Information System (INIS)

    Weber, W.J.; Yu, N.; Sickafus, K.E.

    1995-05-01

    This paper describes use of the in situ ion beam analysis facility developed at Los Alamos National Laboratory for the study of irradiation effects in ceramic materials. In this facility, an analytical beamline of 3 MV tandem accelerator and an irradiation bean-dine of 200 kV ion implanter are connected at 60 degrees to a common target chamber. This facility provides a fast, efficient, and quantitative measurement tool to monitor changes of composition and crystallinity of materials irradiated by 100-400 keV ions, through sequential measurement of backscattering events of MeV ions combined with ion channeling techniques. We will describe the details of the in situ ion beam analysis and ion irradiation and discuss some of the important issues and their solutions associated with the in situ experiment. These issues include (1) the selection of axial ion channeling direction for the measurement of radiation damage; (2) surface charging and charge collection for data acquisition; (3) surface sputtering during ion irradiation; (4) the effects of MeV analytical beam on the materials; and (5) the sample heating effect on ion beam analysis

  13. Effect of alpha irradiation on UO2 surface reactivity in aqueous media

    International Nuclear Information System (INIS)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D.; Jorion, F.; Corbel, C.

    2005-01-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO 2 matrix in aqueous media subjected to α-β-γ radiation. The β-γ emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO 2 pellets doped with alpha emitters ( 238 Pu and 239 Pu) to quantify the impact of alpha irradiation on UO 2 matrix alteration. Three batches of doped UO 2 pellets with different alpha flux levels (3.30 x 10 4 , 3.30 x 10 5 , and 3.2 x 10 6 α cm -2 s -1 ) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO 2 matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO 2 pellets doped with alpha emitters results in variations of the UO 2 surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO 2 pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO 2 to UO 2+x . However, leaching experiments performed in deaerated media after annealing the samples and preleaching the surface suggest that alpha radiolysis does indeed affect the dissolution, which varies with the

  14. Surface morphology, microstructure and properties of as-cast AZ31 magnesium alloy irradiated by high intensity pulsed ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xuesong [State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080 (China); The Fourth Hospital of Harbin Medical University, Harbin 150001 (China); Zhang, Gang [Sino-Russia Joint Lab for High Energy Beam, Shenyang Ligong University, Shenyang 110159 (China); Wang, Guotian [School of Automobile and Traffic Engineering, Heilongjiang Institute of Technology, Harbin 150050 (China); Zhu, Guoliang, E-mail: glzhu1983@hotmail.com [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Zhou, Wei, E-mail: wzhou@sjtu.edu.cn [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); Wang, Jun; Sun, Baode [Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai (China)

    2014-08-30

    Highlights: • High intensity pulsed ion beam (HIPIB) irradiation were performed to improve the properties of as-cast AZ31 magnesium alloy. • After 10 shots HIPIB irradiation, the average microhardness was increased by 27.1% and wear rate was reduced by 38.5%. • After 10 shots HIPIB irradiation, the corrosion rate was reduced by 24.8%, and the corrosion rate was decreased from 23.15 g m{sup −2} h{sup −1} to 17.4 g m{sup −2} h{sup −1}. - Abstract: High intensity pulsed ion beam (HIPIB) irradiation was performed as surface modification to improve the properties of as-cast AZ31 magnesium (Mg) alloys. The surface morphology and microstructure of the irradiated Mg alloys were characterized and their microhardness, wear resistance and corrosion resistance before and after HIPIB irradiation were measured. The results show that the formation of crater on the surface was attributed to the particles impacted from the irradiated cathode material. HIPIB irradiation resulted in more vacancy defects on the surface of the material. Moreover, new dislocations were generated by the reaction between vacancies, and the dislocation configuration was also changed. These variations caused by the HIPIB are beneficial for improving the material properties. After 10 shots of irradiation, the average microhardness increased by 27.1% but the wear rate decreased by 38.5%. The corrosion rate was reduced by 24.8% according to the salt spray corrosion experiment.

  15. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Asma, E-mail: asmahayat@gcu.edu.pk; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-12-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm{sup 2} and 4 J/cm{sup 2} resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm{sup 2} under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm{sup 2}, laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly

  16. Surface and morphological features of laser-irradiated silicon under vacuum, nitrogen and ethanol

    International Nuclear Information System (INIS)

    Hayat, Asma; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Iqbal, Muhammad Hassan

    2015-01-01

    Highlights: • Laser irradiation effects on Si surface have been explored. • An Excimer Laser was used as a source. • SEM analysis was performed to explore surface morphology. • Raman spectroscopy analysis was carried out to find crystallographical alterations. - Abstract: Laser-induced surface and structural modification of silicon (Si) has been investigated under three different environments of vacuum, nitrogen (100 Torr) and ethanol. The interaction of 1000 pulses of KrF (λ ≈ 248 nm, τ ≈ 18 ns, repetition rate ≈ 30 Hz) Excimer laser at two different fluences of 2.8 J/cm 2 and 4 J/cm 2 resulted in formation of various kinds of features such as laser induced periodic surface structures (LIPSS), spikes, columns, cones and cracks. Surface morphology has been observed by Scanning Electron Microscope (SEM). Whereas, structural modification of irradiated targets is explored by Raman spectroscopy. SEM analysis exhibits a non-uniform distribution of micro-scale pillars and spikes at the central ablated regime of silicon irradiated at low laser fluence of 2.8 J/cm 2 under vacuum. Whereas cones, pits, cavities and ripples like features are seen at the boundaries. At higher fluence of 4 J/cm 2 , laser induced periodic structures as well as micro-columns are observed. In the case of ablation in nitrogen environment, melting, splashing, self-organized granular structures and cracks along with redeposition are observed at lower fluence. Such types of small scaled structures in nitrogen are attributed to confinement and shielding effects of nitrogen plasma. Whereas, a crater with multiple ablative layers is formed in the case of ablation at higher fluence. Significantly different surface morphology of Si is observed in the case of ablation in ethanol. It reveals the formation of cavities along with small scale pores and less redeposition. These results reveal that the growth of surface and morphological features of irradiated Si are strongly dependent upon the

  17. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  18. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  19. Effects of accelerated electron beam irradiation on surface hardening and fatigue properties in an AISI 4140 steel used for automotive crankshaft

    Energy Technology Data Exchange (ETDEWEB)

    Choo, S.-H.; Lee, S. [Pohang Univ. of Sci. and Technol. (Korea). Center for Adv. Aerospace Mater.; Golkovski, M.G. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    2000-11-30

    This study is concerned with the effects of high-energy accelerated electron beam irradiation on surface hardening and improvement of fatigue properties in an AISI 4140 steel currently used for automotive crankshaft. The 4140 steel specimens were irradiated in air by using a high-energy electron beam accelerator, and then microstructure, hardness, and fatigue properties were examined. Beam power was varied in the range of 5.2{proportional_to}7.7 kW by changing beam current. Upon irradiation, the unirradiated microstructure containing band structure was changed to martensite and bainite in the carbon-rich zone or ferrite, bainite, and martensite in the carbon-depleted zone. This microstructural modification improved greatly surface hardness and fatigue properties due to transformation of martensite whose amount and type were determined by heat input during irradiation. Thus, high-energy electron beam irradiation can be effectively applied to the surface hardening process of automotive parts. In order to investigate the thermal cycle during electron beam irradiation of quickly rotating specimens, the thermal analysis was also carried out using an analytical computer simulation. Analytical solutions gave information about the peak temperature, heating and cooling rate, and hardened depth to correlate with the overall microstructural modification. (orig.)

  20. A disposal centre for irradiated nuclear fuel: conceptual design study

    International Nuclear Information System (INIS)

    1980-09-01

    This report describes a conceptual design of a disposal centre for irradiated nuclear fuel. The surface facilities consist of plants for the preparation of steel cylinders containing irradiated nuclear fuel immobilized in lead, shaft headframe buildings, and all necessary support facilities. The undergound disposal vault is located on one level at a depth of 1000 metres. The cylinders containing the irradiated fuel are emplaced on a one-metre thick layer of backfill material and then completely covered with backfill. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  1. AFM studies on heavy ion irradiated YBCO single crystals

    International Nuclear Information System (INIS)

    Lakhani, Archana; Marhas, M.K.; Saravanan, P.; Ganesan, V.; Srinivasan, R.; Kanjilal, D.; Mehta, G.K.; Elizabeth, Suja; Bhat, H.L.

    2000-01-01

    Atomic Force Microscopy (AFM) is extensively used to characterise the surface morphology of high energy ion irradiated single crystals of high temperature superconductor - YBCO. Our earlier systematic studies on thin films of YBCO under high energy and heavy ion irradiation shows clear evidence of ion induced sputtering or erosion, even though the effect is more on the grain boundaries. These earlier results were supported by electrical resistance measurements. In order to understand more clearly, the nature of surface modification at these high energies, AFM studies were carried out on single crystals of YBCO. Single crystals were chosen in order to see the effect on crystallites alone without interference from grain boundaries. 200 MeV gold ions were used for investigation using the facilities available at Nuclear Science Centre, New Delhi. The type of ion and the range of energies were chosen to meet the threshold for electronically mediated defect production. The results are in conformity with our earlier studies and will be described in detail in the context of electronic energy loss mediated sputtering or erosion. (author)

  2. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface

    International Nuclear Information System (INIS)

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment

  3. Surface contamination of the LIL optical components and their evolution after laser irradiation (1. series of experiments); La pollution surfacique de la LIL et son evolution sur un composant optique soumis a une irradiation laser (1. serie d'experiences)

    Energy Technology Data Exchange (ETDEWEB)

    Palmier, St.; Garcia, S.; Lamaignere, L.; Manac' h, P.; Rullier, J.L.; Tovena, I

    2006-07-01

    In the context of the Laser Megajoule project, a study has been carried out to observe the correlation between particle contamination at the surface of the optical components and laser irradiation. The experiments consist in placing silica samples in the Ligne d'Integration Laser (LIL) environment more precisely around the frequency conversion crystals and beam focusing area. Particle contamination at the surface samples is characterized and quantified. Then its behaviour under 1064 nm laser irradiation is observed. From the results of this first series of experiments, it appears that on irradiated silica samples treated with anti reflection coatings, surface particles or contamination can induce a surface defect. (author)

  4. Surface damages of polycrystalline W and La2O3-doped W induced by high-flux He plasma irradiation

    Science.gov (United States)

    Liu, Lu; Li, Shouzhe; Liu, Dongping; Benstetter, Günther; Zhang, Yang; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Wu, Yunfeng; Bi, Zhenhua

    2018-04-01

    In this study, polycrystalline tungsten (W) and three oxide dispersed strengthened W with 0.1 vol %, 1.0 vol % and 5.0 vol % lanthanum trioxide (La2O3) were irradiated with low-energy (200 eV) and high-flux (5.8 × 1021 or 1.4 × 1022 ions/m2ṡs) He+ ions at elevated temperature. After He+ irradiation at a fluence of 3.0 × 1025/m2, their surface damages were observed by scanning electron microscopy, energy dispersive spectroscopy, scanning electron microscopy-electron backscatter diffraction, and conductive atomic force microscopy. Micron-sized holes were formed on the surface of W alloys after He+ irradiation at 1100 K. Analysis shows that the La2O3 grains doped in W were sputtered preferentially by the high-flux He+ ions when compared with the W grains. For irradiation at 1550 K, W nano-fuzz was formed at the surfaces of both polycrystalline W and La2O3-doped W. The thickness of the fuzz layers formed at the surface of La2O3-doped W is 40% lower than the one of polycrystalline W. The presence of La2O3 could suppress the diffusion and coalescence of He atoms inside W, which plays an important role in the growth of nanostructures fuzz.

  5. Diode Laser Irradiation in Endodontic Therapy through Cycles - in vitro Study

    Directory of Open Access Journals (Sweden)

    Trišić Dijana

    2017-07-01

    Full Text Available Background/Aim: The aim of this in vitro study was to investigate the influence of irradiation cycles and resting periods, on thermal effects on the external root surface during root canal irradiation of two diode laser systems (940 nm and 975 nm, at output powers of 1 W and 2 W in continuous mode. In previous studies the rising of temperature above 7°C has been reported as biologically accepted to avoid periodontal damage on the external root surface. Material and Methods: Twenty human inferior incisors were randomly distributed into four groups, the 940 nm, and the 975 nm diode laser irradiation, both with an output power of 1 W and 2 W, in continuous mode. The thermographic camera was used to detect temperature variations on the external root surface. Digital radiography of the samples was made. Results: After three cycles of irradiation, at apical third of the root, mean temperature variation by 940 nm diode laser irradiation was 2.88°C for output power of 1 W, and 6.52°C for output power of 2 W. The 975 nm laser caused a higher temperature increase in the apical region, with temperature variation of 13.56°C by an output power of 1 W, and 30.60°C at 2 W, with a statistical significance of p ≤ 0.0001 between two laser systems compared for the same power. The resting periods of 20 s between cycles were enough to lower temperature under 7°C in the case of 1 W and 2 W for 940 nm diode laser, while for 975 nm laser, after three irradiation cycles overheating occurred at both output power rates. Conclusion: Three cycles irradiation of 940 nm diode laser, with resting periods of 20 seconds, allowed safe usage of 1 W and 2 W in CW for endodontic treatment. For 975 nm at a power rate of 1 W, the last resting period drop the temperature near the safe limit and it came under 7°C in a period less than a minute, while at the power of 2 W the resting periods were not long enough for the safe temperature decrease.

  6. Surface damage of TFTR protective plate candidate materials by energetic D+ irradiation

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1979-01-01

    Experiments were conducted to determine the surface damage of ATJ graphite, V, Cu, and Type 316 stainless steel under 60-keV D + irradiation. The irradiations were conducted in the pulsed mode. For a total accumulated dose of 8.1 x 10 18 ions/cm 2 , blisters were readily seen for Cu surfaces, but no blisters were observed on Type 316 stainless steel and vanadium surfaces. For the case of ATJ graphite, the surface damage was observed in the form of ridges and grooves. In the case of copper, many large blisters with diameters ranging from 3.5 μm to 46 μm are observed in addition to some small ones (average diameter approx. 2 μm. The blister density of the large blisters is the highest in the case of copper (1.1 x 10 5 blisters/cm 2 ). These observations of blister formation are related to the differences in the premeability of deuterium in these materials. An examination of the cross section of the ridges in fractured samples of graphite indicates that they are not hollow. The mechanisms of formation of these ridges is not clear at present. 1 figure

  7. Irradiation of Oil / Water Biphasic Systems: the Importance of Interfacial Surface Area on the Production of Hydrogen and Other Deleterious Products

    International Nuclear Information System (INIS)

    Causey, Patrick-W.; Stuart, Craig-R.

    2012-09-01

    -water interfacial surface area, control of headspace gas composition, and removal of sample aliquots. Results highlight the importance of interfacial surface area in affecting the radiolytic degradation of the studied hydrocarbons. In particular, experiments having higher oil-water interfacial surface areas generate greater quantities of oil degradation products as compared with lower surface area samples. As expected, one notable result from these irradiations was the formation of significant quantities of hydrogen, which was found to be dependent on the interfacial surface area. Presented here is a review of the radiolytic degradation of insoluble organic material in aqueous systems, a summary of experimental results focusing on biphasic systems and a description of a strategy to mitigate the effects of insoluble organic material ingress and to aid in developing station-appropriate responses. (authors)

  8. Study on preservation of sweet apricot kernel (SAK) by γ-irradiation

    International Nuclear Information System (INIS)

    Wang Jide; Xu Fang

    1992-01-01

    This paper introduces the study on effect of insecticide and sterilization of SAK by 60 Co γ irradiation. The results declare that the proper dose kill the insect eggs on the surface of SAK is 3.5 kGy, the preserving period under ambient temperature is up to 7 months, the intactness rate is 100%, and the SAK can be safely stored through the summer. By the irradiation of 3.5 kGy, the sanitary quality of SAK can be notably improved and the amount of microbes can decrease by at least 99%. There are no remarkable changes of the main nutrition components of irradiated SAK

  9. Irradiation-induced defects in graphite and glassy carbon studied by positron annihilation

    International Nuclear Information System (INIS)

    Hasegawa, M.; Kajino, M.; Kuwahara, H.; Yamaguchi, S.; Kuramoto, E.; Takenaka, M.

    1992-01-01

    ACAR and positron lifetime measurements have been made on, HOPG, isotropic fine-grained graphites, glassy carbons and C 60 /C 70 . HOPG showed a marked bimodal ACAR distribution along the c-axis. By irradiation of 1.0 X 10 19 fast neutrons/cm 2 remarkable narrowing in the ACAR curves and disappearance of the bimodal distribution were observed. Lifetime in HOPG increased from 225 psec to 289 psec (positron-lifetime in vacancies and their small clusters) by the irradiation. The irradiation on isotropic graphites and glassy carbons, however, gave slight narrowing in ACAR curves and decrease in lifetimes (360 psec → 300psec). This suggests irradiation-induced vacancy trapping in crystallites. In C 60 /C 70 powder two lifetime components were detected: τ 1 =177psec, τ 2 =403psec (I 2 =58%). The former is less than the bulk lifetime of HOPG, while the latter being very close to lifetimes in the isotropic graphites and glassy carbons. This and recent 2D-ACAR study of HOPG surface [15] strongly suggest free and defect surface states around ''soccer ball'' cages

  10. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    Science.gov (United States)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  11. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  12. Surface characterization and assessment of cell attachment capabilities of thin films fabricated by ion-beam irradiation of poly(L-lactic acid) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Toshiyuki, E-mail: tttanaka@riken.jp [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Suzuki, Yoshiaki [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsuchiya, Koji; Yajima, Hirofumi [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Thin films can be obtained by ion-beam irradiation of poly(L-lactic acid). Black-Right-Pointing-Pointer Both surfaces of the thin film were carbonized by the irradiation. Black-Right-Pointing-Pointer No significant changes were noticed in the topographies of the two surfaces. Black-Right-Pointing-Pointer Fibroblasts attached firmly to the bottom as well as the top surface of the film. - Abstract: The ion-beam irradiation of substrates of poly(L-lactic acid) (PLLA), a biodegradable polymer, gave rise to exfoliatable thin films when the substrate was immersed in an aqueous solution. The thin films exhibited excellent cell affinity, and hence, can be useful in bioengineering applications. In this study, we characterized both surfaces of the thin films and evaluated their cell attachment capabilities. Each surface was analyzed by X-ray photoelectron spectroscopy (XPS) and dynamic force microscopy (DFM). These analyses showed that carbonization took place at both surfaces. In addition, no significant changes were noticed in the topographies of the two surfaces. Finally, the cell attachment capabilities of the surfaces were determined by culturing mouse fibroblasts on them. The cells attached firmly to the bottom as well as the top surface of the film and were well spread out. These results could be attributed to the carbonization of the surfaces of the thin-film. Such thin films, fabricated by the irradiation of a biodegradable polymer, are expected to find wide application in areas such as tissue regeneration and cell transplantation.

  13. Surface potential on gold nanodisc arrays fabricated on silicon under light irradiation

    Science.gov (United States)

    Ezaki, Tomotarou; Matsutani, Akihiro; Nishioka, Kunio; Shoji, Dai; Sato, Mina; Okamoto, Takayuki; Isobe, Toshihiro; Nakajima, Akira; Matsushita, Sachiko

    2018-06-01

    This paper proposes Kelvin probe force microscopy (KFM) as a new measurement method of plasmon phenomenon. The surface potential of two arrays, namely, a monomeric array and a tetrameric array, of gold nanodiscs (600 nm diameter) on a silicon substrate fabricated by electron beam lithography was investigated by KFM with the view point of irradiation light wavelength change. In terms of the value of the surface potential, contrasting behaviour, a negative shift in the monomeric disc array and a positive shift in the tetrameric disc array, was observed by light irradiation. This interesting behaviour is thought to be related to a difference in localised plasmons caused by the disc arrangement and was investigated from various viewpoints, including Rayleigh anomalies. Finally, this paper reveals that KFM is powerful not only to investigate the plasmonic behaviour but also to predict the electron transportation.

  14. Temperature-dependent surface modification of Ta due to high-flux, low-energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Novakowski, T.J.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    This work examines the response of Tantalum (Ta) as a potential candidate for plasma-facing components (PFCs) in future nuclear fusion reactors. Tantalum samples were exposed to high-flux, low-energy He + ion irradiation at different temperatures in the range of 823–1223 K. The samples were irradiated at normal incidence with 100 eV He + ions at constant flux of 1.2 × 10 21 ions m −2  s −1 to a total fluence of 4.3 × 10 24 ions m −2 . An additional Ta sample was also irradiated at 1023 K using a higher ion fluence of 1.7 × 10 25 ions m −2 (at the same flux of 1.2 × 10 21 ions m −2  s −1 ), to confirm the possibility of fuzz formation at higher fluence. This higher fluence was chosen to roughly correspond to the lower fluence threshold of fuzz formation in Tungsten (W). Surface morphology was characterized with a combination of field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). These results demonstrate that the main mode of surface damage is pinholes with an average size of ∼70 nm 2 for all temperatures. However, significantly larger pinholes are observed at elevated temperatures (1123 and 1223 K) resulting from the agglomeration of smaller pinholes. Ex situ X-ray photoelectron spectroscopy (XPS) provides information about the oxidation characteristics of irradiated surfaces, showing minimal exfoliation of the irradiated Ta surface. Additionally, optical reflectivity measurements are performed to further characterize radiation damage on Ta samples, showing gradual reductions in the optical reflectivity as a function of temperature.

  15. Effects of high heat flux hydrogen and helium mixture beam irradiation on surface modification and hydrogen retention in tungsten materials

    International Nuclear Information System (INIS)

    Tokunaga, K.; Fujiwara, T.; Ezato, K.; Suzuki, S.; Akiba, M.; Kurishita, H.; Nagata, S.; Tsuchiya, B.; Tonegawa, A.; Yoshida, N.

    2009-01-01

    High heat flux experiments using a hydrogen-helium mixture beam have been carried out on powder metallurgy tungsten (PM-W) and ultra fine grain W-TiC alloy (W-0.5 wt%TiC-H 2 ). The energy of is 18 keV. Beam flux and heat flux at the beam center is 2.0 x 10 21 atoms/m 2 s and 7.0 MW/m 2 , respectively. Typical ratio of He/D ion is 0.25. Beam duration is 1.5-3 s and interval of beam shot start is 30 s. The samples are irradiated up to a fluence of 10 22 -10 24 He/m 2 by the repeated irradiation pulses. After the irradiation, surface modification by the irradiation and hydrogen retention, surface composition have been investigated. Surface modification by hydrogen-helium mixture beams is completely different from results of single beam irradiation. In particular, mixture beam irradiation causes remarkably high hydrogen retention.

  16. Topography evolution of 500 keV Ar(4+) ion beam irradiated InP(100) surfaces - formation of self-organized In-rich nano-dots and scaling laws.

    Science.gov (United States)

    Sulania, Indra; Agarwal, Dinesh C; Kumar, Manish; Kumar, Sunil; Kumar, Pravin

    2016-07-27

    We report the formation of self-organized nano-dots on the surface of InP(100) upon irradiating it with a 500 keV Ar(4+) ion beam. The irradiation was carried out at an angle of 25° with respect to the normal at the surface with 5 different fluences ranging from 1.0 × 10(15) to 1.0 × 10(17) ions per cm(2). The morphology of the ion-irradiated surfaces was examined by atomic force microscopy (AFM) and the formation of the nano-dots on the irradiated surfaces was confirmed. The average size of the nano-dots varied from 44 ± 14 nm to 94 ± 26 nm with increasing ion fluence. As a function of the ion fluence, the variation in the average size of the nano-dots has a great correlation with the surface roughness, which changes drastically up to the ion fluence of 1.0 × 10(16) ions per cm(2) and attains almost a saturation level for further irradiation. The roughness and the growth exponent values deduced from the scaling laws suggest that the kinetic sputtering and the large surface diffusion steps of the atoms are the primary reasons for the formation of the self-organized nanodots on the surface. X-ray photo-electron spectroscopy (XPS) studies show that the surface stoichiometry changes with the ion fluence. With irradiation, the surface becomes more indium (In)-rich owing to the preferential sputtering of the phosphorus atoms (P) and the pure metallic In nano-dots evolve at the highest ion fluence. The cross-sectional scanning electron microscopy (SEM) analysis of the sample irradiated with the highest fluence showed the absence of the nanostructuring beneath the surface. The surface morphological changes at this medium energy ion irradiation are discussed in correlation with the low and high energy experiments to shed more light on the mechanism of the well separated nano-dot formation.

  17. Effect of alpha irradiation on UO{sub 2} surface reactivity in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C.; Muzeau, B.; Broudic, V.; Poulesquen, A.; Roudil, D. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DIEC/SESC/LMPA, Bagnols-sur-Ceze (France); Jorion, F. [Commissariat a l' Energie Atomique (CEA), Rhone Valley Research Center, DRCP/SE2A/LEMA, Bagnols-sur-Ceze (France); Corbel, C. [Commissariat a l' Energie Atomique (CEA), Saclay Research Center, DSM/DRECAM/SCM, Gif sur Yvette (France)

    2005-07-01

    The option of direct disposal of spent nuclear fuel in a deep geological formation raises the need to investigate the long-term behavior of the UO{sub 2} matrix in aqueous media subjected to {alpha}-{beta}-{gamma} radiation. The {beta}-{gamma} emitters account for most of the activity of spent fuel at the moment it is removed from the reactor, but diminish within a millennial time frame by over three orders of magnitude to less than the long-term activity. The latter persists over much longer time periods and must therefore be taken into account over a geological disposal time scale. Leaching experiments with solution renewal were carried out on UO{sub 2} pellets doped with alpha emitters ({sup 238}Pu and {sup 239}Pu) to quantify the impact of alpha irradiation on UO{sub 2} matrix alteration. Three batches of doped UO{sub 2} pellets with different alpha flux levels (3.30 x 10{sup 4}, 3.30 x 10{sup 5}, and 3.2 x 10{sup 6} {alpha} cm{sup -2} s{sup -1}) were studied. The results obtained in aerated and deaerated media immediately after sample annealing or interim storage in air provide a better understanding of the UO{sub 2} matrix alteration mechanisms under alpha irradiation. Interim storage in air of UO{sub 2} pellets doped with alpha emitters results in variations of the UO{sub 2} surface reactivity, which depends on the alpha particle flux at the interface and on the interim storage duration. The variation in the surface reactivity and the greater uranium release following interim storage cannot be attributed to the effect of alpha radiolysis in aerated media since the uranium release tends toward the same value after several leaching cycles for the doped UO{sub 2} pellet batches and spent fuel. Oxygen diffusion enhanced by alpha irradiation of the extreme surface layer and/or radiolysis of the air could account for the oxidation of the surface UO{sub 2} to UO{sub 2+x}. However, leaching experiments performed in deaerated media after annealing the samples and

  18. Carbon protrusions on PTFE surface prepared by ion irradiation and chemical defluorination

    Science.gov (United States)

    Kobayashi, T.; Iwaki, M.

    2006-01-01

    A surface of PTFE was covered with small protrusions by ion-beam irradiation. In this study, we converted PTFE protrusions into carbon protrusions by a defluorination (carbonization) process using sodium vapor. The morphology, composition and structure were analyzed by SEM-EDX, Raman spectroscopy and TEM. The irradiated PTFE sheets were packed in evacuated glass tubes with a sodium block and kept at 473 K for 2-48 h. The samples were then rinsed in HCl and distilled water to remove NaF precipitates. The EDX measurement showed that the NaF precipitates were completely removed by washing, and the percentage of carbon atoms was controlled from 60% to 99% by the treatment. Raman spectra showed that graphite structures grow during the defluorination process. TEM micrographs showed that the protrusions have a bubble structure and are covered with a thin wall. The carbonized protrusions were conductive and grew perpendicular to the substrate.

  19. Dependence of leaf surface potential response of a plant (Ficus Elastica) to light irradiation on room temperature; Shokubutsu (gomunoki) hamen den`i no hikari shosha oto no shitsuon izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    In order to clarify plant body potential information, study was made on a leaf surface potential response to light irradiation. The leaf surface potential change, total transpiration and transpiration rate of Ficus Elastica were measured using light irradiation period and room temperature as parameters. The leaf surface potential change shows a positive peak after the start of light irradiation, while a negative peak after its end. Arrival time to both peaks is constant regardless of the light irradiation period, while decrease with an increase in room temperature. Although the total transpiration increases with room temperature, this tendency disappears with an increase in light irradiation period. The transpiration rate shows its peak after the start of light irradiation. Arrival time to the peak is saturated with the light irradiation period of 60min, while decreases with an increase in room temperature. These results suggest that opening of stomata becomes active with an increase in room temperature, and the peak of the leaf surface potential after the start of light irradiation relates to the opening. 3 refs., 11 figs.

  20. Behaviour of total surface charge in SiO2-Si system under short-pulsed ultraviolet irradiation cycles characterised by surface photo voltage technique

    International Nuclear Information System (INIS)

    Kang, Ban-Hong; Lee, Wah-Pheng; Yow, Ho-Kwang; Tou, Teck-Yong

    2009-01-01

    Effects of time-accumulated ultraviolet (UV) irradiation and surface treatment on thermally oxidized p-type silicon wafers were investigated by using the surface photo voltage (SPV) technique via the direct measurement of the total surface charge, Q SC . The rise and fall times of Q sc curves, as a function of accumulated UV irradiation, depended on the thermal oxide thickness. A simple model was proposed to explain the time-varying characteristics of Q sc based on the UV-induced bond breaking of SiOH and SiH, and photoemission of bulk electrons to wafer surface where O 2 - charges were formed. While these mechanisms resulted in charge variations and hence in Q sc , these could be removed by rinsing the silicon wafers in de-ionized water followed by spin-dry or blow-dry by an ionizer fan. Empirical parameters were used in the model simulations and curve-fitting of Q SC . The simulated results suggested that initial changes in the characteristic behaviour of Q sc were mainly due to the net changes in the positive and negative charges, but subsequently were dominated by the accumulation of O 2 - during the UV irradiation.

  1. Fabrication of periodical surface structures by picosecond laser irradiation of carbon thin films: transformation of amorphous carbon in nanographite

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, C.; Dorcioman, G. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania); Bita, B. [National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari RO-077190 (Romania); Faculty of Physics, 405 Atomistilor Street, Magurele RO-077125 (Romania); Besleaga, C.; Zgura, I. [National Institute of Materials Physics, 105bis Atomistilor Street, Magurele RO-077125 (Romania); Himcinschi, C. [Institute of Theoretical Physics, TU Bergakademie Freiberg, Freiberg D-09596 (Germany); Popescu, A.C., E-mail: andrei.popescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele RO-077125 (Romania)

    2016-12-30

    Highlights: • Ripples obtained on carbon films after irradiation with visible ps laser pulses. • Amorphous carbon was transformed in nanographite following irradiation. • Ripples had a complex morphology, being made of islands of smaller ripples. • Hydrophilic carbon films became hydrophobic after surface structuring. - Abstract: Thin films of carbon were synthesized by ns pulsed laser deposition in vacuum on silicon substrates, starting from graphite targets. Further on, the films were irradiated with a picosecond laser source emitting in visible at 532 nm. After tuning of laser parameters, we obtained a film surface covered by laser induced periodical surface structures (LIPSS). They were investigated by optical, scanning electron and atomic force microscopy. It was observed that changing the irradiation angle influences the LIPSS covered area. At high magnification it was revealed that the LIPSS pattern was quite complex, being composed of other small LIPSS islands, interconnected by bridges of nanoparticles. Raman spectra for the non-irradiated carbon films were typical for a-C type of diamond-like carbon, while the LIPSS spectra were characteristic to nano-graphite. The pristine carbon film was hydrophilic, while the LIPSS covered film surface was hydrophobic.

  2. Simulation calculations of physical sputtering and reflection coefficient of plasma-irradiated carbon surface

    International Nuclear Information System (INIS)

    Kawamura, T.; Ono, T.; Yamamura, Y.

    1994-08-01

    Physical sputtering yields from the carbon surface irradiated by the boundary plasma are obtained with the use of a Monte Carlo simulation code ACAT. The yields are calculated for many random initial energy and angle values of incident protons or deuterons with a Maxwellian velocity distribution, and then averaged. Here the temperature of the boundary plasma, the sheath potential and the angle δ between the magnetic field line and the surface normal are taken into account. A new fitting formula for an arrangement of the numerical data of sputtering yield is introduced, in which six fitting parameters are determined from the numerical results and listed. These results provide a way to estimate the erosion of carbon materials irradiated by boundary plasma. The particle reflection coefficients for deuterons and their neutrals from a carbon surface are also calculated by the same code and presented together with, for comparison, that for the case of monoenergetic normal incidence. (author)

  3. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-01-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He + ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C + ion impurities in He + ion irradiations. For introducing such tiny C + ion impurities, gas mixtures of He and CH 4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He + ion (for Mo fuzz growth due to only He + ions) and 100% H + ion (for confirming the significance of tiny 0.04–2.0% H + ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10 24  ions m −2 ), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He + ion irradiation case. Enhancement of C + ion impurities in He + ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity concentrations. Additionally, no fuzz formation for 100% H + ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H + ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H + ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He + ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C + ion impurities in He + ions. • Almost complete prevention of Mo fuzz evolutions for 0.5% C + ion impurity in He + ions. • No Mo fuzz formation for 100% H + ion

  4. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    International Nuclear Information System (INIS)

    Tripathi, J.K.; Novakowski, T.J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-01-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He + ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 10 24 ions m −2 (with a flux of 7.2 × 10 20 ions m −2 s −1 ). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO 3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth

  5. Study on residual stress across the pipes' thickness using outer surface rapid heating. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression plastic strain generates near the outer surface and the tensile plastic strain generates near the inner surface of pipes. The compression stress occurs near the inner surface of pipes by the plastic deformation. In this paper, the theoretical equation which calculates residual stress distribution from the inherent strain distribution in the thickness of pipes is derived. And, the relation between the distribution of temperature and the residual stress in the thickness is examined for various pipes size. (1) By rapidly heating from the outer surface, the residual stress near the inner surface of the pipe is improved to the compression stress. (2) Pipes size hardly affects the distribution of the residual stress in the stainless steel pipes for piping (JISG3459). (3) The temperature rising area from the outside is smaller, the area of the compression residual stress near the inner surface becomes wider. (author)

  6. Study on ceramic breeder and related materials by means of work function measurement under irradiation

    International Nuclear Information System (INIS)

    Luo, G.N.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2002-01-01

    Ceramic breeder materials, Li 2 O, LiAlO 2 and Li 4 SiO 4 , under irradiation have been studied using a Kelvin probe that measures work function changes of materials. Surface charging was observed to influence greatly the probe output, which can be explained qualitatively employing a model concerning induction electric field due to external field and free charges on ceramic surface. It is found that the insulating ceramics could not be studied properly with the Kelvin probe. A probable solution is to heat the ceramics, so as to raise their electric conductivities high enough to root out the surface charging. Also briefly discussed is the application of the probe to metals under ion irradiation. (orig.)

  7. Sensitivity of Pseudomonas fluorescens to gamma irradiation following surface inoculations on romaine lettuce and baby spinach

    Science.gov (United States)

    Irradiation of fresh fruits and vegetables is a post-harvest intervention measure often used to inactivate pathogenic food-borne microbes. We evaluated the sensitivity of Pseudomonas fluorescens strains (2-79, Q8R1, Q287) to gamma irradiation following surface inoculations on romaine lettuce and spi...

  8. Studies of blood irradiator application

    International Nuclear Information System (INIS)

    Li Wenhong; Lu Yangqiao

    2004-01-01

    Transfusion is an important means for medical treatment, but it has many syndromes such as transfusion-associated graft-versus-host disease, it's occurrence rate of 5% and above 90% death-rate. Now many experts think the only proven method is using blood irradiator to prevent this disease. It can make lymphocyte of blood product inactive, so that it can not attack human body. Therefore, using irradiation blood is a trend, and blood irradiator may play an important role in medical field. This article summarized study of blood irradiator application, including the meaning of blood irradiation, selection of the dose for blood irradiation and so on

  9. Study of dielectric materials irradiated with electron beam by using the Pulsed Electro-Acoustic (PEA) method

    International Nuclear Information System (INIS)

    Nguyen, Xuan Truong

    2014-01-01

    Dielectric materials are frequently used as electrical insulators in spatial applications. Due to their dielectric nature, these dielectrics are likely to accumulate electric charges during their service. Under certain critical conditions, these internal or surface space charges can lead to an electrostatic surface discharge. To understand these phenomena, an experimental device has been developed in the laboratory. This device allows us to simulate the electronic irradiation conditions encountered in space. The aim of our study is to characterize the electrical behavior of insulating materials irradiated by electron beam, to investigate charge storage and transport phenomena and anticipate electrostatic discharges. In this work, the device based on the Pulsed Electro-Acoustic (PEA) technique has been chosen. It has been implanted in the irradiation chamber. It allows us to obtain the spatial distribution of charges injected between two periods of irradiation and during relaxation. However the PEA method offers a limited resolution and does not allow the detection of injected charges when they are too close to the surface. First, we performed a parameters signal processing analysis that we will call the spreading factor and the resolution factor. The preliminary study post-irradiation in air of experimental measurements showed that the resolution factor choice is important for the analysis and interpretation of the signal when the space charge is localized near the surface. Then, a comparison to the spreading parameter used in some deconvolution technique was established. In the second time, space charge distribution measurements in vacuum have been carried out on Poly Tetra Fluoro Ethylene (PTFE) films irradiated by an electron beam in the range [10-100] keV. Results from irradiation periods with increasing energies [10 keV → 100 keV] of the electron beam have been compared with results from irradiation periods with decreasing energies [100 keV → 10 keV]. In

  10. Polymer surfaces graphitization by low-energy He{sup +} ions irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Geworski, A.; Lazareva, I.; Gieb, K.; Koval, Y.; Müller, P. [Department of Physics, Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2014-08-14

    The electrical and optical properties of surfaces of polyimide and AZ5214e graphitized by low-energy (1 keV) He{sup +} irradiation at different polymer temperatures were investigated. The conductivity of the graphitized layers can be controlled with the irradiation temperature within a broad range and can reach values up to ∼1000 S/cm. We show that the electrical transport in low-conducting samples is governed by thermally activated hopping, while the samples with a high conductivity show a typical semimetallic behavior. The transition from thermally activated to semimetallic conductance governed by the irradiation temperature could also be observed in optical measurements. The semimetallic samples show an unusually high for graphitic materials carrier concentration, which results in a high extinction coefficient in the visible light range. By analyzing the temperature dependence of the conductance of the semimetallic samples, we conclude that the scattering of charge carriers is dominated by Coulomb interactions and can be described by a weak localization model. The transition from a three to two dimensional transport mechanism at low temperatures consistently explains the change in the temperature dependence of the conductance by cooling, observed in experiments.

  11. Study on grafting glycidyl methacrylate onto HDPE membranes by pre-irradiation graft copolymerization

    International Nuclear Information System (INIS)

    Tong Long; Zu Jianhua; Liu Xinwen; Sun Guisheng; Yu Chunhui

    2006-01-01

    Glycidyl methacrylate (GMA) was grafted onto HDPE membranes by pre-irradiation method with 1.8 MeV E-beam and a kind of membranes having reactive epoxy groups was successfully synthesized. Effects of monomer concentration, reaction temperature and time and irradiation dose on the grafting yield were studied. Composition, thermo-property and surface morphology of the grafted membranes were studied by FTIR, DSC and Tapping-mode AFM, respectively. The FTIR measurements proved the synthesized copolymer is HDPE-g-GMA. The DSC results indicated the grafted HDPE's melting temperature (T m ) and heat of fusion (ΔH f ( HDPE) ) which was reduced with increasing grafting yield. The AFM images indicated that surface of the HDPE-g-GMA membranes was rougher than the virgin HDPE. (authors)

  12. Study on radiation effect of poly (vinyl alcohol) films irradiated by tritium decay

    International Nuclear Information System (INIS)

    Li Hairong; Peng Shuming; Zhou Xiaosong; Yu Mingming; Xia Lidong; Chen Xiaohua; Liang Jianhua

    2014-01-01

    The radiation effect of poly(vinyl alcohol) films used as a kind of gas-barrier material for inertial confinement fusion (ICF) targets was studied under the different conditions of β-ray from tritium decay. The changes of physical and chemical properties of the irradiated material samples were analyzed by FTIR, XRD and AFM. The tritium-hydrogen isotopic exchange reaction of the irradiated samples mainly occurs at C-H bond and the IR absorption peak of C-T bond obviously increases with the irradiation dose. For strong hydrogen bonding interaction, the isotopic exchange reaction doesn't occur at O-H bond. The crystallinity degree and surface morphology of the irradiated samples were changed. The tensile properties of irradiated poly(vinyl alcohol) films were measured by universal material testing machine. The results show that the change trend of mechanical properties is in accordance with the microstructures of the irradiated samples. (authors)

  13. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  14. Study on surface wave characteristics of free surface flow of liquid metal lithium for IFMIF

    International Nuclear Information System (INIS)

    Hoashi, Eiji; Sugiura, Hirokazu; Yoshihashi-Suzuki, Sachiko; Yamaoka, Nobuo; Horiike, Hiroshi; Kanemura, Takuji; Kondo, Hiroo

    2011-01-01

    The international fusion materials irradiation facility (IFMIF) presents an intense neutron source to develop fusion reactor materials. The free surface flow of a liquid metal Lithium (Li) is planned as a target irradiated by two deuteron beams to generate intense neutrons and it is thus important to obtain knowledge of the surface wave characteristic for the safety and the efficiency of system in the IFMIF. We have been studying on surface wave characteristics experimentally using the liquid metal Li circulation facility at Osaka University and numerically using computational fluid dynamics (CFD) code, FLUENT. This paper reports the results of the surface fluctuation, the wave height and the surface velocity in the free surface flow of the liquid metal Li examined experimentally and numerically. In the experiment, an electro-contact probe apparatus was used to obtain the surface fluctuation and the wave height, and a high speed video was used to measure the surface velocity. We resulted in knowledge of the surface wave growth mechanism. On the other hand, a CFD simulation was also conducted to obtain information on the relation of the free surface with the inner flow. In the simulation, the model included from a two-staged contraction nozzle to a flow channel with a free surface flow region and simulation results were compared with the experimental data. (author)

  15. Process and apparatus for irradiating film, and irradiated film

    International Nuclear Information System (INIS)

    1981-01-01

    A process for irradiating film is described, which consists of passing the film through an electron irradiation zone having an electron reflection surface disposed behind and generally parallel to the film; and disposing within the irradiation zone adjacent the edges of the film a lateral reflection member for reflecting the electrons toward the reflection surface to further reflect the reflected electrons towards the adjacent edges of the film. (author)

  16. An analytical two-flow model to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance

    Science.gov (United States)

    Ma, Wei-Ming

    1997-06-01

    An analytical two-flow model is derived from the radiative transfer equation to simulate the distribution of irradiance in coastal waters with a wind-roughed surface and bottom reflectance. The model utilizes unique boundary conditions, including the surface slope of the downwelling and upwelling irradiance as well as the influence of wind and bottom reflectance on simulated surface reflectance. The developed model provides a simple mathematical concept for understanding the irradiant light flux and associated processes in coastal or fresh water as well as turbid estuarine waters. The model is applied to data from the Banana River and coastal Atlantic Ocean water off the east coast of central Florida, USA. The two-flow irradiance model is capable of simulating realistic above-surface reflectance signatures under wind-roughened air-water surface given realistic input parameters including a specular flux conversion coefficient, absorption coefficient, backscattering coefficient, atmospheric visibility, bottom reflectance, and water depth. The root-mean-squared error of the calculated above-surface reflectances is approximately 3% in the Banana River and is less than 15% in coastal Atlantic Ocean off the east of Florida. Result of the subsurface reflectance sensitivity analysis indicates that the specular conversion coefficient is the most sensitive parameter in the model, followed by the beam attenuation coefficient, absorption coefficient, water depth, backscattering coefficient, specular irradiance, diffuse irradiance, bottom reflectance, and wind speed. On the other hand, result of the above-surface reflectance sensitivity analysis indicates that the wind speed is the most important parameter, followed by bottom reflectance, attenuation coefficient, water depth, conversion coefficient, specular irradiance, downwelling irradiance, absorption coefficient, and backscattering coefficient. Model results depend on the accuracy of these parameters to a large degree and

  17. Effect of the irradiance distribution from light curing units on the local micro-hardness of the surface of dental resins.

    Science.gov (United States)

    Haenel, Thomas; Hausnerová, Berenika; Steinhaus, Johannes; Price, Richard B T; Sullivan, Braden; Moeginger, Bernhard

    2015-02-01

    An inhomogeneous irradiance distribution from a light-curing unit (LCU) can locally cause inhomogeneous curing with locally inadequately cured and/or over-cured areas causing e.g. monomer elution or internal shrinkage stresses, and thus reduce the lifetime of dental resin based composite (RBC) restorations. The aim of the study is to determine both the irradiance distribution of two light curing units (LCUs) and its influence on the local mechanical properties of a RBC. Specimens of Arabesk TOP OA2 were irradiated for 5, 20, and 80s using a Bluephase® 20i LCU in the Low mode (666mW/cm(2)), in the Turbo mode (2222mW/cm(2)) and a Celalux® 2 (1264mW/cm(2)). The degree of conversion (DC) was determined with an ATR-FTIR. The Knoop micro-hardness (average of five specimens) was measured on the specimen surface after 24h of dark and dry storage at room temperature. The irradiance distribution affected the hardness distribution across the surface of the specimens. The hardness distribution corresponded well to the inhomogeneous irradiance distributions of the LCU. The highest reaction rates occurred after approximately 2s light exposure. A DC of 40% was reached after 3.6 or 5.7s, depending on the LCU. The inhomogeneous hardness distribution was still evident after 80s of light exposure. The irradiance distribution from a LCU is reflected in the hardness distribution across the surface. Irradiance level of the LCU and light exposure time do not affect the pattern of the hardness distribution--only the hardness level. In areas of low irradiation this may result in inadequate resin polymerization, poor physical properties, and hence premature failure of the restorations as they are usually much smaller than the investigated specimens. It has to be stressed that inhomogeneous does not necessarily mean poor if in all areas of the restoration enough light intensity is introduced to achieve a high degree of cure. Copyright © 2014 Academy of Dental Materials. Published by

  18. Effect of electron irradiation on the surface properties of Ge-Si single crystals

    International Nuclear Information System (INIS)

    Bakirov, M.Ya.; Ibragimov, N.I.

    1998-01-01

    It is established that by electron irradiation of the Ge 1-x Si x (x = 0 - 0.15) monocrystals with the dose of ≤ 10 13 cm -2 the concentration of the surface charged centers N t does not change. Some drop in the N t value with tendency to saturation is observed by increase in the dose. The speed of the surface recombination also grows with tendency to saturation. Monotonous growth of the surface recombination is identified by increase in dislocations density [ru

  19. Fabrication of SERS Active Surface on Polyimide Sample by Excimer Laser Irradiation

    Directory of Open Access Journals (Sweden)

    T. Csizmadia

    2014-01-01

    Full Text Available A possible application of excimer laser irradiation for the preparation of surface enhanced Raman spectroscopy (SERS substrate is demonstrated. A polyimide foil of 125 μm thickness was irradiated by 240 pulses of focused ArF excimer laser beam (λ = 193 nm, FWHM = 20 ns. The applied fluence was varied between 40 and 80 mJ/cm2. After laser processing, the sample was coated with 40 nm silver by PLD in order to create a conducting layer required for the SERS application. The SERS activity of the samples was tested by Raman microscopy. The Raman spectra of Rhodamine 6G aqueous solution (c=10−3 mol/dm3 were collected from the patterned and metalized areas. For areas prepared at 40–60 mJ/cm2 laser fluences, the measured Raman intensities have shown a linear dependence on the applied laser fluence, while above 60 mJ/cm2 saturation was observed. The morphology of the SERS active surface areas was investigated by scanning electron microscopy. Finite element modeling was performed in order to simulate the laser-absorption induced heating of the polyimide foil. The simulation resulted in the temporal and spatial distribution of the estimated temperature in the irradiated polyimide sample, which are important for understanding the structure formation process.

  20. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-15

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He{sup +} ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C{sup +} ion impurities in He{sup +} ion irradiations. For introducing such tiny C{sup +} ion impurities, gas mixtures of He and CH{sub 4} have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He{sup +} ion (for Mo fuzz growth due to only He{sup +} ions) and 100% H{sup +} ion (for confirming the significance of tiny 0.04–2.0% H{sup +} ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 10{sup 24} ions m{sup −2}), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He{sup +} ion irradiation case. Enhancement of C{sup +} ion impurities in He{sup +} ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C{sup +} ion impurity concentrations. Additionally, no fuzz formation for 100% H{sup +} ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H{sup +} ions in Mo fuzz evolutions (at least for such tiny amount, 0.04–2.0% H{sup +} ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications. - Highlights: • Mo Fuzz evolutions due to low-energy high-flux 100% He{sup +} ion irradiation. • Sequential reduction in Mo fuzz evolutions with increasing C{sup +} ion impurities in He{sup +} ions. • Almost complete prevention of Mo

  1. Ripple structures on surfaces and underlying crystalline layers in ion beam irradiated Si wafers

    Energy Technology Data Exchange (ETDEWEB)

    Grenzer, J.; Muecklich, A. [Forschungszentrum Rossendorf, Institut fuer Ionenstrahlphysik und Materialforschung, Dresden (Germany); Biermanns, A.; Grigorian, S.A.; Pietsch, U. [Institute of Physics, University of Siegen (Germany)

    2009-08-15

    We report on the formation of ion beam induced ripples in Si(001) wafers when bombarded with Ar+ ions at an energy of 60 keV. A set of samples varying incidence and azimuthal angles of the ion beam with respect to the crystalline surface orientation was studied by two complementary near surface sensitive techniques, namely atomic force microscopy and depth-resolved X-ray grazing incidence diffraction (GID). Additionally, cross-section TEM investigations were carried out. The ripple-like structures are formed at the sample surface as well as at the buried amorphous-crystalline interface. Best quality of the ripple pattern was found when the irradiating ion beam was aligned parallel to the (111) planes. The quality decreases rapidly if the direction of the ion beam deviates from (111). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Effect of Irradiation Parameters on Morphology of Polishing DF2 (AISI-O1 Surface by Nd:YAG Laser

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2007-01-01

    Full Text Available Pulse Nd:YAG laser was used to polish DF2 cold work steel. Influence of irradiation parameters on the 3D surface morphology was studied by 3D profilometer, scanning electron microscopy (SEM, and atomic force microscope (AFM. Results among the tests showed when DF2 specimens were irradiated with parameters of (i laser input energy P=1 J, (ii pulse feedrate=300 mm/min, (iii pulse duration (PD =3 milliseconds, and (iv pulse frequency f=20∼25 Hz, laser polishing of DF2 cold work steel seemed to be successful.

  3. Influence of surface melting effects and availability of reagent ions on LDI-MS efficiency after UV laser irradiation of Pd nanostructures.

    Science.gov (United States)

    Silina, Yuliya E; Koch, Marcus; Volmer, Dietrich A

    2015-03-01

    In this study, the influence of surface morphology, reagent ions and surface restructuring effects on atmospheric pressure laser desorption/ionization (LDI) for small molecules after laser irradiation of palladium self-assembled nanoparticular (Pd-NP) structures has been systematically studied. The dominant role of surface morphology during the LDI process, which was previously shown for silicon-based substrates, has not been investigated for metal-based substrates before. In our experiments, we demonstrated that both the presence of reagent ions and surface reorganization effects--in particular, melting--during laser irradiation was required for LDI activity of the substrate. The synthesized Pd nanostructures with diameters ranging from 60 to 180 nm started to melt at similar temperatures, viz. 890-898 K. These materials exhibited different LDI efficiencies, however, with Pd-NP materials being the most effective surface in our experiments. Pd nanostructures of diameters >400-800 nm started to melt at higher temperatures, >1000 K, making such targets more resistant to laser irradiation, with subsequent loss of LDI activity. Our data demonstrated that both melting of the surface structures and the presence of reagent ions were essential for efficient LDI of the investigated low molecular weight compounds. This dependence of LDI on melting points was exploited further to improve the performance of Pd-NP-based sampling targets. For example, adding sodium hypophosphite as reducing agent to Pd electrolyte solutions during synthesis lowered the melting points of the Pd-NP materials and subsequently gave reduced laser fluence requirements for LDI. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Direct Experimental Evidence of Back-Surface Acceleration from Laser-Irradiated Foils

    International Nuclear Information System (INIS)

    Allen, M; Patel, P; Mackinnon, A; Price, D; Wilks, S; Morse, E

    2004-01-01

    Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10 20 W/cm 2 producing proton beams with a total yield of ∼ 10 11 and maximum proton energy of > 9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text

  5. In vitro study of the diode laser effect on artificial demineralized surface of human dental enamel

    International Nuclear Information System (INIS)

    Ebel, Patricia

    2003-01-01

    In scientific literature there are many reports about fusion and resolidification of dental enamel after laser irradiation and their capability to generate surfaces with increased resistance to demineralization compared to non-irradiated areas. The use of high power diode laser on demineralized surfaces of human dental enamel is presented as a good alternative in caries prevention. The purpose of this study is to investigate the morphological changes produced by the use of one high power diode laser on human dental enamel surface after demineralization treatment with lactic acid, under chosen parameters. Fifteen samples of human dental molars were used and divided in four groups: control - demineralization treatment with lactic acid and no irradiation, and demineralization treatment with lactic acid followed of irradiation with 212,20 mJ/cm 2 , 282,84 mJ/cm 2 and 325,38 mJ/cm 2 , respectively. The samples were irradiated with high power diode laser (808 nm) with a 300 μm diameter fiber optics. Black ink was used on enamel surface to enhance the superficial absorption. The samples were studied by optical microscopy and scanning electron microscopy. Modifications on the enamel surfaces were observed. Such modifications were characterized by melted and re-solidified region of the enamel. According with our results the best parameter was 2.0 W, presenting the most uniform surface. The use of high power diode laser as demonstrated in this study is able to promote melting and re-solidification on human dental enamel. (author)

  6. SSMS near surface analysis of B in irradiated Zircaloy-2: ion implantation standards as a calibration technique

    International Nuclear Information System (INIS)

    Christie, W.H.; Carter, J.A.; Eby, R.E.; Landau, L.; Musick, W.R.

    1980-01-01

    Purpose of this study was to determine the amount of 10 B contamination on the surface of Zircaloy-2 clad irradiated fuel elements that had been stored in an aqueous solution containing 5000 wt. ppM enriched B. SMSS indicated that the contamination was less than 0.06 μg/cm 2

  7. Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies

    International Nuclear Information System (INIS)

    Choi, B.; Pearce, J.A.; Welch, A.J.

    2000-01-01

    The use of thermographic techniques has increased as infrared detector technology has evolved and improved. For laser-tissue interactions, thermal cameras have been used to monitor the thermal response of tissue to pulsed and continuous wave irradiation. It is important to note that the temperature indicated by the thermal camera may not be equal to the actual surface temperature. It is crucial to understand the limitations of using thermal cameras to measure temperature during laser irradiation of tissue. The goal of this study was to demonstrate the potential difference between measured and actual surface temperatures in a quantitative fashion using a 1D finite difference model. Three ablation models and one cryogen spray cooling simulation were adapted from the literature, and predictions of radiometric temperature measurements were calculated. In general, (a) steep superficial temperature gradients, with a surface peak, resulted in an underestimation of the actual surface temperature, (b) steep superficial temperature gradients, with a subsurface peak, resulted in an overestimation, and (c) small gradients led to a relatively accurate temperature estimate. (author)

  8. In-situ XMCD evaluation of ferromagnetic state at FeRh thin film surface induced by 1 keV Ar ion beam irradiation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T. [Research Organization for the 21st Century, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Aikoh, K. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Sakamaki, M.; Amemiya, K. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Iwase, A. [Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2015-12-15

    Surface ferromagnetic state of FeRh thin films irradiated with 1 keV Ar ion-beam has been investigated by using soft X-ray Magnetic Circular Dichroism (XMCD). It was revealed that the Fe atoms of the samples were strongly spin-polarized after Ar ion-beam irradiation. Due to its small penetration depth, 1 keV Ar ion-beam irradiation can modify the magnetic state at subsurface of the samples. In accordance with the XMCD sum rule analysis, the main component of the irradiation induced ferromagnetism at the FeRh film surface was to be effective spin magnetic moment, and not to be orbital moment. We also confirmed that the surface ferromagnetic state could be produced by thermal annealing of the excessively ion irradiated paramagnetic subsurface of the FeRh thin films. This novel magnetic modification technique by using ion irradiation and subsequent annealing can be a potential tool to control the surface magnetic state of FeRh thin films.

  9. Effect of laser fluence on surface, structural and mechanical properties of Zr after irradiation in the ambient environment of oxygen

    International Nuclear Information System (INIS)

    Jelani, M.; Bashir, S.; Khaleeq-ur Rehman, M.; Ahamad, R.; Ul-Haq, F.; Yousaf, D.; Akram, M.; Afzal, N.; Umer Chaudhry, M.; Mahmood, K.; Hayat, A.; Ahmad, Sajjad

    2013-01-01

    The laser irradiation effects on surface, structural and mechanical properties of zirconium (Zr) have been investigated. For this purpose, Zr samples were irradiated with Excimer (KrF) laser (λ = 248 nm, τ = 18 ns, repetition rate ∼ 30 Hz). The irradiation was performed under the ambient environment of oxygen gas at filling pressure of 20 torr by varying laser fluences ranging from 3.8 to 5.1 cm -2 . The surface and structural modification of irradiated targets was investigated by scanning electron microscope (SEM) and X-ray diffractometer (XRD). In order to explore the mechanical properties of irradiated Zr, the tensile testing and Vickers micro hardness testing techniques were employed. SEM analysis reveals the grain growth on the irradiated Zr surfaces for all fluences. However, the largest sized grains are grown for the lowest fluence of 3.8 J/cm 2 . With increasing fluence from 4.3 to 5.1 J cm -2 , the compactness and density of grains increase whereas their size decreases. XRD analysis reveals the appearance of new phases of ZrO 2 and Zr 3 O. The variation in the peak intensity is observed to be anomalous whereas decreasing trend in the crystallite size and residual stresses has been observed with increasing fluence. Micro hardness analysis reveals the increasing trend in surface hardness with increasing fluence. The tensile testing exhibits the increasing trend of yield stress (YS), decreasing trend of percentage elongation and anomalous behaviour of ultimate tensile strength with increasing fluence. (authors)

  10. Shift of localized surface plasmon resonance by Ar-ion irradiation of Ag–Au bimetallic films deposited on Al{sub 2}O{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan); Yu, Ruixuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan); Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, Hokkaido 060-8628 (Japan)

    2013-11-01

    Effects of Ar-ion induced surface nanostructuring were studied using 100 keV Ar-ion irradiation of 30 nm Ag–Au bimetallic films deposited on Al{sub 2}O{sub 3} single crystals, under irradiation fluences ranging from 5.0 × 10{sup 15} cm{sup −2} to 6.3 × 10{sup 16} cm{sup −2}. Scanning electron microscope was used to study the ion-beam-induced surface nanostructuring. As the irradiation fluence increased, dewetting of the bimetallic films on the Al{sub 2}O{sub 3} substrate was observed, and formation of isolated Ag–Au nanostructures sustained on the substrate were obtained. Next, thermal annealing was performed under high vacuum at 1073 K for 2 h; a layer of photosensitive Ag–Au alloy nanoballs partially embedded in the Al{sub 2}O{sub 3} substrate was obtained when higher fluence irradiation (>3.8 × 10{sup 16} cm{sup −2}) was used. The microstructures of the nanoballs were investigated using a transmission electron microscope, and the nanoballs were found to be single crystals with a FCC structure. In addition, photoabsorption spectra were measured, and localized surface plasmon resonance peaks were observed. With increase in the irradiation fluence, the size of the Ag–Au nanoballs on the substrate decreased, and a blue-shift of the LSPR peaks was observed. Further control of the LSPR frequency over a wide range was achieved by modifying the chemical components, and a red-shift of the LSPR peaks was observed as the Au concentration increased. In summary, ion irradiation is an effective approach toward surface nanostructuring, and the nanocomposites obtained have potential applications in optical devices.

  11. Gliding arc surface treatment of glass-fiber-reinforced polyester enhanced by ultrasonic irradiation

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Norrman, Kion; Drews, Joanna Maria

    2011-01-01

    . The efficiency of such a plasma treatment at atmospheric pressure can be further improved by ultrasonic irradiation onto the surface during the treatment. In the present work glass fiber reinforced polyester (GFRP) plates are treated using an atmospheric pressure gliding arc with and without ultrasonic...

  12. Trapping of point defects and segregation at the free surfaces of a metal sheet under irradiation

    International Nuclear Information System (INIS)

    Sarce, Alicia

    2003-01-01

    The migration of irradiation produced vacancies and interstitials to the free surfaces of a sheet of thickness d (pure metal and binary alloys AB of hcp structure) is calculated. For alloys, the irradiation temperature when no segregation exists (critical temperature) is obtained. The anisotropy of the diffusion of point defects in the hcp lattice is explicitly included in the calculations. (author)

  13. Experimental studies of photon-surface interaction dynamics in the alkali halides

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Tolk, N.H.

    1986-01-01

    We describe recent measurements which have provided, in unprecedented detail, insights into the electronic mechanisms through which energy carried into a material by photon irradiation is absorbed, localized and rechanneled to produce desorption, surface modification, erosion and damage. The specific object of these studies has been desorption induced by electronic transition in alkali halide crystals, with particular emphasis on the dynamics of changes in the surface and near-surface regions. In our experiments, the irradiating ultraviolet photons are provided by a synchrotron storage ring, and the dynamical information about desorption products is obtained from optical measurements of the quantum states, yields and velocity distributions of neutral ground-state and excited-state atoms ejected from the surface of the irradiating material. These studies have shown that the dominant exit channels in photon-induced particle emission are those producing ground-state and excited-state neutral atoms. Using dynamical information about these desorbing neutral species, obtained, for example, by laser-induced fluorescence and laser Doppler spectroscopy, we are generating an increasingly comprehensive picture of the dynamics of electronic energy flow into and out of pure crystalline surfaces in these prototypical dielectrics. We are also beginning to be able to relate desorption dynamics to specific materials properties, and to discriminate between pure surface and near-surface effects in these materials. Applications of these techniques to the problem of photon-induced surface damage and to analysis of surface dynamics in dielectric materials are discussed, and the relationships between these nearly ideal model materials and the non-crystalline, covalently bonded materials more typical of real optical elements are pointed out. 19 refs., 13 figs

  14. Effect of 100 MeV Ag{sup +7} ion irradiation on the bulk and surface magnetic properties of Co–Fe–Si thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hysen, T., E-mail: hysenthomas@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Department of Physics, Christian College, Chengannur, Kerala 689 122 (India); Geetha, P. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Al-Harthi, Salim; Al-Omari, I.A. [Department of Physics, College of Science, Sultan Qaboos University, Al Khod 123 (Oman); Lisha, R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India); Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639 798 (Singapore); Sakthikumar, D. [Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe (Japan); Avasthi, D.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Anantharaman, M.R., E-mail: mra@cusat.ac.in [Department of Physics, Cochin University of Science and Technology, Cochin 682 022, Kerala (India)

    2014-12-15

    Thin films of Co–Fe–Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag{sup +7} ions at fluences of 1×10{sup 11}, 1×10{sup 12} and 1×10{sup 13} ions/cm{sup 2}. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag{sup 7+} ions modifies the surface morphology. Irradiating with ions at fluences of 1×10{sup 11} ions/cm{sup 2} smoothens the mesoscopic hill-like structures, and then, at 1×10{sup 12} ions/cm{sup 2} new surface structures are created. When the fluence is further increased to 1×10{sup 13} ions/cm{sup 2} an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×10{sup 11} ions/cm{sup 2}, 1×10{sup 12} ions/cm{sup 2} and 1×10{sup 13} ions/cm{sup 2} the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation. - Highlights: • We have irradiated thermally evaporated Co–Fe–Si thin films on glass substrate with 100 MeV Ag{sup +7} ions using the 15 UD Pelletron Accelerator at IUAC, New Delhi, India. • Surface morphology and magnetic characteristics of the films can be altered with ion irradiation. • It was observed that the variation in surface magnetic properties correlates well with the changes in surface morphology, further reiterating the

  15. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  16. Study of ion-bombardment-induced surface topography of silver by stereophotogrammetric method

    International Nuclear Information System (INIS)

    Fayazov, I.M.; Sokolov, V.N.

    1992-01-01

    The ion-bombardment-induced surface topography of polycrystalline silver was studied using the stereophotogrammetric method. The samples were irradiated with 30keV argon ions at fairly high fluences (> 10 17 ions/cm 2 ). The influence of the inclination angle of the sample in the SEM on the cone shape of a SEM-picture is discussed. To analyse the irradiated surfaces covered with cones, the SEM-stereotechnique is proposed. The measurements of the sample section perpendicular to the incidence plane are also carried out. (author)

  17. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser

    International Nuclear Information System (INIS)

    Guimaraes Filho, Arlindo Lopes

    2004-01-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm 2 (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm 2 (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any thermic damage

  18. The gas-bubble superlattice and the development of surface structure in He+ and H+ irradiated metals at 300 K

    International Nuclear Information System (INIS)

    Johnson, P.B.; Mazey, D.J.

    1980-01-01

    Transmission electron microscopy (TEM) is used to investigate the spatial arrangement of the small gas bubbles produced at 300 K in several fcc metals including copper and in the hcp metal titanium by 30 keV helium ion irradiation, and in copper by 16 keV proton irradiation. For the fcc metals it is found that the helium gas bubbles lie on a superlattice having a fcc structure with principal axes aligned with those of the metal matrix. The bubble lattice constant, α 1 , measured for a helium fluence just below the critical dose for radiation blistering of the metal surface (approx. equal to 4 x 10 21 He + /m 2 ) is typically approx. equal to 7 nm with bubble diameters typically approx. equal to 2 nm. For titanium, similar bubble ordering is seen is samples irradiated to a level of approx. equal to 1.5 x 10 22 He + /m 2 , with bubble sizes and spacings approximately 50% greater than those for the fcc metals. Pipe-like passages formed by the interconnection of strings of helium gas bubbles are evident in all metals studied. Superlattice formation is also a freature of the hydrogen bubble structure in copper following irradiation to a level of approx. equal to 1.3 x 10 23 H + /m 2 . At an early stage of bubble development small bubbles (approx. equal to 2 nm diameter) arranged on a lattice of spacing α 1 approx. equal to 12 nm are found. The bubble structure evolves further through several well-defined stages before radiation blistering of the surface occurs. Some implications for gas release and for synergistic effects in irradiated surfaces are suggested by these results and by those obtained in other recent experiments. (orig.)

  19. Lateral propagation of fast electrons at the laser-irradiated target surfaces

    International Nuclear Information System (INIS)

    Li, Y T; Lin, X X; Liu, B C; Du, F; Wang, S J; Li, C; Zhou, M L; Zhang, L; Liu, X; Wang, J; Liu, X L; Chen, L M; Wang, Z H; Ma, J L; Wei, Z Y; Zhang, J; Liu, F; Liu, F

    2010-01-01

    Lateral propagation of fast electrons at the target surfaces irradiated by femtosecond intense laser pulses is measured by k α x-ray imaging technique when a preplasma is presented. An annular halo surrounding a bright spot is observed in the x-ray images when the scale length of the electron density is large. For an incidence angle of 70 0 the x-ray images show a non-symmetrical distribution peaked to the laser propagation direction. The x-ray photons in the halo are mainly excited by the fast electrons that flow in the preplasma when their paths intersect the high density regions near the target surface.

  20. Comparative study of smear layer removal by different etching modalities and Er:YAG laser irradiation on the root surface: a scanning electron microscopy study

    International Nuclear Information System (INIS)

    Theodoro, Leticia Helena

    2001-01-01

    The aim of this study was to compare the effects of citric acid, EDTA, citric acid with tetracycline, and Er:YAG laser to smear layer removal on the root surface after scaling with manual instruments by SEM. Thirty specimens (n=30) of root surface before scaling were divided into 6 groups (n=5). The Control Group (G1) was not treated; Group 2 (G2) was conditioned with citric acid gel 24%, pH1, during 2 minutes; Group 3 (G3) was conditioned with EDTA gel 24%, pH 7, during 2 minutes; Group 4 (G4) was conditioned with citric acid and tetracycline gel 50%, pH1 during 2 minutes; Group 5 (G5) was irradiated with Er:YAG laser (2.94 μm), 47 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 0.58 J/cm 2 ; Group 6 (G6) was irradiated with Er:YAG laser (2.94μm), 83 mJ/10 Hz, focused, under water spray during 15 seconds and fluence of 1.03 J/cm 2 . The micrographic were analyzed by scores and following the statistical analysis with Kruskal Wallis (p<0.05) H=20,31. The G1 was significantly different of all groups (28.0); the G2 (13.4), G3 (11.7), and G4 (13.6) showed no difference in relation to G5 (20.3) and G6 (6.0), but the G6 was significantly different from G5. From the results, it can be conclude that: 1) there was intensity smear layer after scaling and root planing; 2) all treatments were effective to smear layer remove with significantly difference to G2, G3, G4, G5 and G6; G2, G3 and G4 were not statistically different from G5 and G6; 3) G6 was more effective in the smear layer remotion in relation to G5 and both presented irregular root surface. (author)

  1. Characterization of {sup 14}C in neutron irradiated NBG-25 nuclear graphite

    Energy Technology Data Exchange (ETDEWEB)

    LaBrier, Daniel, E-mail: labrdani@isu.edu; Dunzik-Gougar, Mary Lou

    2014-05-01

    Recent studies suggest that the highest concentration of {sup 14}C contamination present in reactor-irradiated graphite exists on the surfaces and within near-surface layers. Surface-sensitive analysis techniques (XPS, ToF-SIMS, SEM/EDS and Raman) were employed to determine the chemical nature of {sup 14}C on irradiated NBG-25 (nuclear grade) graphite surfaces. Several {sup 14}C precursor species are identified on the surfaces of irradiated NBG-25; the quantities of these species decrease at sub-surface depths, which further suggests that {sup 14}C formation is predominantly a surface-concentrated phenomenon. The elevated presence of several surface oxide complexes on irradiated NBG-25 surfaces are attributed directly to neutron irradiation. Larger numbers of oxide bonds were found on irradiated NBG-25 surfaces (when compared to unirradiated samples) in the form of interlattice (e.g. ether) and dangling (e.g. carboxylate and ketone) bonds; the quantities of these bond types also decrease with increasing sub-surface depths.

  2. Quantifying and Modelling the Effect of Cloud Shadows on the Surface Irradiance at Tropical and Midlatitude Forests

    Science.gov (United States)

    Kivalov, Sergey N.; Fitzjarrald, David R.

    2018-02-01

    Cloud shadows lead to alternating light and dark periods at the surface, with the most abrupt changes occurring in the presence of low-level forced cumulus clouds. We examine multiyear irradiance time series observed at a research tower in a midlatitude mixed deciduous forest (Harvard Forest, Massachusetts, USA: 42.53{°}N, 72.17{°}W) and one made at a similar tower in a tropical rain forest (Tapajós National Forest, Pará, Brazil: 2.86{°}S, 54.96{°}W). We link the durations of these periods statistically to conventional meteorological reports of sky type and cloud height at the two forests and present a method to synthesize the surface irradiance time series from sky-type information. Four classes of events describing distinct sequential irradiance changes at the transition from cloud shadow and direct sunlight are identified: sharp-to-sharp, slow-to-slow, sharp-to-slow, and slow-to-sharp. Lognormal and the Weibull statistical distributions distinguish among cloudy-sky types. Observers' qualitative reports of `scattered' and `broken' clouds are quantitatively distinguished by a threshold value of the ratio of mean clear to cloudy period durations. Generated synthetic time series based on these statistics adequately simulate the temporal "radiative forcing" linked to sky type. Our results offer a quantitative way to connect the conventional meteorological sky type to the time series of irradiance experienced at the surface.

  3. Irradiation induced surface segregation in concentrated alloys: a contribution; Contribution a l`etude de la segregation de surface induite par irradiation dans les alliages concentres

    Energy Technology Data Exchange (ETDEWEB)

    Grandjean, Y.

    1996-12-31

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe{sub 50}Ni{sub 50} and Fe{sub 49}Ni{sub 50}Hf{sub 1} alloys. (author). 190 refs.

  4. Endovascular gamma-irradiation for prevention of restenosis after angioplasty of femoropopliteal de-novo-stenoses. Long-term results of a feasibility study

    International Nuclear Information System (INIS)

    Krueger, K.; Zaehringer, M.; Schulte, O.; Lackner, K.; Bendel, M.; Bongartz, R.; Nolte, M.

    2002-01-01

    Objectives: To evaluate the performance and efficacy of endovascular irradiation after percutaneous transluminal angioplasty (PTA) of de-novo femoropopliteal stenoses in a pilot study. Methods: 6 patients received non-centered endovascular irradiation (12 Gray at surface of the vessel wall) immediately after angioplasty of de-novo femoropopliteal stenosis, 1 patient was given centered endovascular irradiation using 192-iridium (12 Gray at surface of the vessel wall) Centered irradiation was considered for two other patients. Duplex sonographies and interviews were performed the day before and after PTA and after 1, 3, 6, 9, 12, 18, 24 months up to 4 years. Intraarterial angiography was performed in symptomatic patients. Results: Non-centered endovascular irradiation was possible in all patiens without problems or complications. Centered irradiation was not possible in two patients with the cross-over approach. One thromboembolic complication occurred during centered irradiation. Both restenosis and new stenosis at the edge of irradiated distance occurred in 1/7 patiens. No other side effects were observed during follow-up. Conclusions: In our pilot study endovascular irradiation after angioplasty of de-novo femoropopliteal stenosis was possible with low rates of complications and restenosis and taking vessel anatomy into account. (orig.) [de

  5. A study on UV irradiated HDPE

    International Nuclear Information System (INIS)

    Sang Haibo; Liu Zimin; Wu Shishan; Shen Jian

    2006-01-01

    The structure and properties of HDPE irradiated by ultraviolet (UV) in ozone atmosphere were studied by FT-IR, XPS, gel, and water contact angle test. The oxygen-containing groups such as C=O, C-O and C(=O)O were introduced onto high density polyethylene (HDPE) chains through ultraviolet irradiation in ozone atmosphere, their content increased with the UV irradiation time. Under the same UV irradiation conditions, amount of the oxygen-containing groups introduced in ozone atmosphere was more than that in air atmosphere, indicating that the speed of oxygen-containing groups introduced through UV irradiation in ozone atmosphere was faster than that in air. Therefore, HDPE could be quickly functionalized through UV irradiation in ozone atmosphere. There was no gel formed in the HDPE irradiated in ozone atmosphere. After UV irradiation, the water contact angle of HDPE decreased, and its hydrophilicity was improved, suggesting that the compatibility between the irradiated HDPE and polar polymer or inorganic fillers may be better. Compared with HDPE, the temperature of initial weight loss for irradiated HDPE decreased. The structure and properties of irradiated HDPE/CaCO 3 blend were also investigated. The results showed that the compatibility and interfacial action of the irradiated HDPE/CaCO 3 blend were improved compared to that of HDPE/CaCO 3 blend. The mechanical properties of irradiated HDPE/CaCO 3 blend increased with increasing irradiation time. (authors)

  6. Study of the recrystallisation of irradiated uranium; Etude sur l'uranium irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, J; Mustelier, J P; Bussy, P; Blin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1- Study of the recrystallisation of irradiated uranium. The recrystallisation of uranium irradiated to a burnup level of 220 MWj/t, at a temperature of the order of 350 deg. C, has been investigated. The observations were made chiefly by means of micrography an hardness measurements. If the irradiated metal is compared with a cold-drawn metal showing the same shearing of the twinned crystals, and therefore the same rate of plastic deformation, as the irradiated metal, it is noted that the restoring of the irradiated metal takes place at a considerably higher temperature than that of the cold-drawn metal. Pre-crystallisation is very much delayed. Only, a passage of the {alpha}-{beta} transformation point quickly wipes out irradiation effect. 2- Hardening of uranium by irradiation. Using hardness measurements we have studied more especially the effect of very weak irradiations on uranium (integrated flux < 10{sup 16} nvt). The hardness does not increase linearly with the flux, but a period of incubation is observed probably representing the time necessary for saturation of the dislocations. (author)Fren. [French] 1- Etude de la recristallisation de l'uranium irradie. On a etudie la recristallisation d'uranium irradie jusqu'a un taux de combustion de 220 MWj/t a une temperature de l'ordre de 350 deg. C. Les observations ont ete faites principalement a l'aide de la micrographie et de la durete. Si l'on compare le metal irradie avec un metal ecroui presentant le meme cisaillement des macles, donc le meme taux de deformation plastique que le metal irradie, on constate que la restauration du metal irradie se fait a une temperature notablement superieure a celle du metal ecroui. La recristallisation est tres retardee. Seul, un passage du point de transformation {alpha}-{beta} efface rapidement l'effet de l'irradiation. 2- Durcissement de l'uranium par irradiation. Nous avons, a l'aide de la durete, etudie plus particulierement l'effet de tres faibles irrtions sur l

  7. Surface modification of RuO2 electrodes by laser irradiation and ion ...

    Indian Academy of Sciences (India)

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored ...

  8. Surface ripple evolution by argon ion irradiation in polymers

    International Nuclear Information System (INIS)

    Goyal, Meetika; Aggarwal, Sanjeev; Sharma, Annu

    2016-01-01

    In this report, an attempt has been made to investigate the morphological evolution of nanoscale surface ripples on aliphatic (polypropylene, PP) and aromatic (polyethylene terephthalate, PET) polymeric substrates irradiated with 50 keV Ar"+ ions. The specimens were sputtered at off normal incidence of 30° with 5 × 10"1"6 Ar"+ cm"−"2. The topographical features and structural behavior of the specimens were studied using Atomic Force Microscopy (AFM) and UV-Visible spectroscopy techniques, respectively. The Stopping and Range of Ions in Matter simulations were performed to calculate sputtering yield of irradiated PP and PET polymers. Sputtering yield of carbon atoms has been found to be smaller for PP (0.40) as compared to PET (0.73), which is attributed to the different structures of two polymers. AFM analysis demonstrates the evolution of ripple like features with amplitude (2.50 nm) and wavelength (690 nm) on PET while that of lower amplitude (1.50 nm) and higher wavelength (980 nm) on PP specimen. The disorder parameter (Urbach energy) has been found to increase significantly from 0.30 eV to 1.67 eV in case of PP as compared to a lesser increase from 0.35 eV to 0.72 eV in case of PET as revealed by UV-Visible characterization. A mutual correlation between ion beam sputtering induced topographical variations with that of enhancement in the disorder parameter of the specimens has been discussed.

  9. In vitro study of demineralization resistance and fluoride retention in dental enamel irradiated with Er,Cr: YSGG laser

    International Nuclear Information System (INIS)

    Ana, Patricia Aparecida da.

    2007-01-01

    This study aimed to establish irradiation conditions of Er,Cr:YSGG laser (λ of 2.79 μm) which could propitiate changes on human dental enamel and increase its resistance to demineralization, when associated or not with topical application of acidulated phosphate fluoride (APF). Fluences of 2,8 J/cm 2 , 5,6 J/cm 2 e 8,5 J/cm 2 were selected; they were associated or not with previous application of a photo absorber (coal paste) and then APF was applied or not after laser irradiation. In a first step, the morphological findings, the surface temperatures, and the pupal temperatures were evaluated during laser irradiation. After that, the treated samples were submitted to a a ten-day pH-cycling model. After producing the incipient white-spots lesions, the following aspects were evaluated: the mineral loss, the loosely bound fluoride and the firmly bound fluoride. All the demineralizing and remineralizing pH-cycling solutions were evaluated with respect to their calcium (Ca), inorganic phosphorous (Pi) and fluoride (F - ) concentrations. The data had their normality and homogeneity distribution statistically evaluated, and it was chosen an appropriated statistical test for each performed analysis according to the obtained results, considering 5% significant level. The fluences selected for this study created ablated surfaces; the fluences of 5.6 J/cm 2 and 8.5 J/cm 2 promoted increments in surface temperature above 110 deg C. The intrapupal temperature changes revealed that laser irradiation did not increase the pulpal temperatures above the critical threshold for induction of pulpitis. The coal paste did not promote any changes on surface morphology or in the intrapulpal temperature changes; however, this paste increased the surface temperatures during laser irradiation. Only laser irradiation at 8.5 J/cm 2 was able to decrease the mineral loss when compared to the no-treatment group; although the association of coal paste + laser at 2.8 J/cm 2 + APF application

  10. Chromosome aberrations in F1 from irradiated male mice studied by their synaptonemal complexes

    International Nuclear Information System (INIS)

    Kalikinskaya, E.I.; Kolomiets, O.L.; Shevchenko, V.A.; Bogdanov, Yu.F.

    1986-01-01

    Possible implications of surface-spread synaptonemal complex (SC) karyotyping in analysing the causes of sterility of F 1 from irradiated male mice are demonstrated in this work. After irradiation by 137 Cs γ-rays at a dose of 5 Gy the males were mated to unirradiated females and genetic analysis of fertility in the F 1 progeny was carried out. Males with abnormal fertility were examined for the presence of chromosome aberrations in diakinesis-metaphase I and in pachytene by the method of surface-spread SC karyotyping. In most cases, SC karyotyping provides additional information and permits the detection and analysis of aberrations that are not revealed in diakinesis. Two reciprocal translocations, one X autosomal and one nonreciprocal translocation were discovered in five F 1 males studied. It is concluded that the method is efficient in detecting translocations in pachytene in partially fertile F 1 hybrids of irradiated and normal mice. (orig.)

  11. Effects of γ-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    International Nuclear Information System (INIS)

    El-Molla, S. A.; Ismail, S. A.; Ibrahim, M. M.

    2011-01-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of γ-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N 2 -adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu 2 O. γ-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  12. Effects of {gamma}-irradiation and ageing on surface and catalytic properties of nano-sized Cu O/Mg O system

    Energy Technology Data Exchange (ETDEWEB)

    El-Molla, S. A. [Ain Shams University, Faculty of Education, Chemistry Deparment, Roxy, Heliopolis, 11757 Cairo (Egypt); Ismail, S. A.; Ibrahim, M. M., E-mail: saharelmolla@yahoo.com [National Center for Radiation Research and Technology, Nasr City, P.O. Box 29, 11731 Cairo (Egypt)

    2011-07-01

    0.2 Cu O/Mg O system prepared by impregnation method was calcined at 350 and 450 C. The effects of {gamma}-rays (0.2-1.6 MGy) on its structure, surface and catalytic properties were investigated by using XRD, N{sub 2}-adsorption at -196 C and catalytic conversion of isopropanol at 150-275 C using a flow technique. The results revealed that the investigated solids consisted of nano-sized Mg O as a major phase besides Cu O and trace amount of Cu{sub 2}O. {gamma}-Irradiation of the solids investigated exerted measurable changes in their surface and catalytic properties dependent on the calcination temperature and dose of irradiation. The catalysts investigated acted as active dehydrogenation solids. The five years-ageing of different solids showed limited changes of their surface and catalytic properties indicating a good catalytic stability of the irradiated prepared solids. (Author)

  13. Solar surface magnetism and irradiance on time scales

    NARCIS (Netherlands)

    Domingo, V.; Ermolli, I.; Fox, P.; Fröhlich, C.; Haberreiter, M.; Krivova, N.; Kopp, G.; Schmutz, W.; Solanki, S.K.; Spruit, H.C.; Unruh, Y.C.; Vögler, A.

    2009-01-01

    The uninterrupted measurement of the total solar irradiance during the last three solar cycles and an increasing amount of solar spectral irradiance measurements as well as solar imaging observations (magnetograms and photometric data) have stimulated the development of models attributing irradiance

  14. Effect of He+ fluence on surface morphology and ion-irradiation induced defect evolution in 7075 aluminum alloys

    Science.gov (United States)

    Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao

    2018-02-01

    The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.

  15. Modelling UV irradiances on arbitrarily oriented surfaces: effects of sky obstructions

    OpenAIRE

    Hess, M.; Koepke, P.

    2008-01-01

    A method is presented to calculate UV irradiances on inclined surfaces that additionally takes into account the influence of sky obstructions caused by obstacles such as mountains, houses, trees, or umbrellas. With this method it is thus possible to calculate the impact of UV radiation on biological systems, such as, for instance, the human skin or eye, in any natural or artificial environment. The method, which consists of a combination of radiation models, is explained here and the accuracy...

  16. In situ transmission electron microscope studies of ion irradiation-induced and irradiation-enhanced phase changes

    International Nuclear Information System (INIS)

    Allen, C.W.

    1992-01-01

    Motivated at least initially by materials needs for nuclear reactor development, extensive irradiation effects studies employing transmission electron microscopes (TEM) have been performed for several decades, involving irradiation-induced and irradiation-enhanced microstructural changes, including phase transformations such as precipitation, dissolution, crystallization, amorphization, and order-disorder phenomena. From the introduction of commercial high voltage electron microscopes (HVEM) in the mid-1960s, studies of electron irradiation effects have constituted a major aspect of HVEM application in materials science. For irradiation effects studies two additional developments have had particularly significant impact; the development of TEM specimen holder sin which specimen temperature can be controlled in the range 10-2200 K and the interfacing of ion accelerators which allows in situ TEM studies of irradiation effects and the ion beam modification of materials within this broad temperature range. This paper treats several aspects of in situ studies of electron and ion beam-induced and enhanced phase changes and presents two case studies involving in situ experiments performed in an HVEM to illustrate the strategies of such an approach of the materials research of irradiation effects

  17. Study of the recrystallisation of irradiated uranium

    International Nuclear Information System (INIS)

    Bloch, J.; Mustelier, J.P.; Bussy, P.; Blin, J.

    1958-01-01

    1- Study of the recrystallisation of irradiated uranium. The recrystallisation of uranium irradiated to a burnup level of 220 MWj/t, at a temperature of the order of 350 deg. C, has been investigated. The observations were made chiefly by means of micrography an hardness measurements. If the irradiated metal is compared with a cold-drawn metal showing the same shearing of the twinned crystals, and therefore the same rate of plastic deformation, as the irradiated metal, it is noted that the restoring of the irradiated metal takes place at a considerably higher temperature than that of the cold-drawn metal. Pre-crystallisation is very much delayed. Only, a passage of the α-β transformation point quickly wipes out irradiation effect. 2- Hardening of uranium by irradiation. Using hardness measurements we have studied more especially the effect of very weak irradiations on uranium (integrated flux 16 nvt). The hardness does not increase linearly with the flux, but a period of incubation is observed probably representing the time necessary for saturation of the dislocations. (author) [fr

  18. Clear-Sky Longwave Irradiance at the Earth's Surface--Evaluation of Climate Models.

    Science.gov (United States)

    Garratt, J. R.

    2001-04-01

    An evaluation of the clear-sky longwave irradiance at the earth's surface (LI) simulated in climate models and in satellite-based global datasets is presented. Algorithm-based estimates of LI, derived from global observations of column water vapor and surface (or screen air) temperature, serve as proxy `observations.' All datasets capture the broad zonal variation and seasonal behavior in LI, mainly because the behavior in column water vapor and temperature is reproduced well. Over oceans, the dependence of annual and monthly mean irradiance upon sea surface temperature (SST) closely resembles the observed behavior of column water with SST. In particular, the observed hemispheric difference in the summer minus winter column water dependence on SST is found in all models, though with varying seasonal amplitudes. The analogous behavior in the summer minus winter LI is seen in all datasets. Over land, all models have a more highly scattered dependence of LI upon surface temperature compared with the situation over the oceans. This is related to a much weaker dependence of model column water on the screen-air temperature at both monthly and annual timescales, as observed. The ability of climate models to simulate realistic LI fields depends as much on the quality of model water vapor and temperature fields as on the quality of the longwave radiation codes. In a comparison of models with observations, root-mean-square gridpoint differences in mean monthly column water and temperature are 4-6 mm (5-8 mm) and 0.5-2 K (3-4 K), respectively, over large regions of ocean (land), consistent with the intermodel differences in LI of 5-13 W m2 (15-28 W m2).

  19. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-01-01

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced

  20. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 and Tecnun, University of Navarra, Manuel Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  1. Recovery of tungsten surface with fiber-form nanostructure by the argon plasma irradiation at a high surface temperature

    International Nuclear Information System (INIS)

    Takamura, Shuichi; Miyamoto, Takanori

    2011-01-01

    One of the serious concerns for tungsten materials in fusion devices is the radiation defects caused by helium plasma irradiation, while the helium is one of fusion products. Fiber-formed nanostructure is worried to have a possible weakness against the plasma heat flux and may destroy the reflectivity as an optical mirror. In this communication an interesting method for a recovery of such a tungsten surface is shown. (author)

  2. Detecting onset of chain scission and crosslinking of γ-ray irradiated elastomer surfaces using frictional force microscopy

    International Nuclear Information System (INIS)

    Banerjee, S; Sinha, N K; Gayathri, N; Ponraju, D; Dash, S; Tyagi, A K; Raj, Baldev

    2007-01-01

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon γ-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the γ-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the γ-ray dose rate for the two elastomers are presented in this paper

  3. Detecting onset of chain scission and crosslinking of {gamma}-ray irradiated elastomer surfaces using frictional force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Sinha, N K [Innovative Design Engineering and Synthesis Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Gayathri, N [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Ponraju, D [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Dash, S [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Tyagi, A K [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India); Raj, Baldev [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 TN (India)

    2007-02-07

    We report here that atomic force microscopy (AFM) in frictional force mode can be used to detect the onset of chain scission and crosslinking in polymeric and macromolecular samples upon irradiation. A systematic investigation to detect chain scission and crosslinking of two elastomers (1) ethylene-propylene-diene monomer rubber and (2) fluorocarbon rubber, upon {gamma}-ray irradiation has been carried out using frictional force microscopy (FFM). From the AFM results we observed that both the elastomers show a systematic smoothening of its surfaces, as the {gamma}-ray dose rate increases. However, the frictional property studied using FFM of the sample surfaces show an initial increase and then a decrease as a function of dose rate. This behaviour of increase in its frictional property has been attributed to the onset of chain scission, and the subsequent decrease in friction has been attributed to the onset of crosslinking of the polymer chains. The evaluated qualitative and semi-quantitative changes observed in the overall frictional property as a function of the {gamma}-ray dose rate for the two elastomers are presented in this paper.

  4. A study of the photodegradation of leukotriene B4 by ultraviolet irradiation (UVB, UVA)

    International Nuclear Information System (INIS)

    Millar, B.; Green, C.; Ferguson, J.; Raffle, E.J.; Macleod, T.M.

    1989-01-01

    In view of the presence of the polymorphonuclear leukocyte (PMN) chemoattractant Leukotriene B 4 (LTB 4 ) in surface scale of the psoriatic lesion and the known therapeutic effect of phototherapy in psoriasis, the photostability of LTB 4 was investigated. LTB 4 was irradiated with UVB (290-320 nm) from 100-1500 mJ cm -2 and UVA (320-400 nm) from 5-40 J cm -2 . Topical application of UVB irradiated LTB 4 to forearm skin of normal volunteers showed marked reduction in cutaneous erythema, paralleled by reduced transepidermal PMN migration compared with sites of application of unirradiated and UVA irradiated LTB 4 . High performance liquid chromatography (HPLC) demonstrated a dose-dependent photodegradation of LTB 4 by UVB irradiation. UVA irradiation produced no such effect. The wavelengths responsible lie within the absorption spectrum of LTB 4 . In vitro chemotaxis studies, using an under agarose technique, showed a statistically significant reduction in the migration of PMN from psoriatic and non-psoriatic subjects to the UVB irradiated LTB 4 compared with unirradiated LTB 4 , whilst UVA irradiated LTB 4 produced a normal PMN chemotactic response. (author)

  5. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  6. Monte Carlo studies for irradiation process planning at the Portuguese gamma irradiation facility

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Botelho, M.L.M. Luisa; Ferreira, L.M.

    2000-01-01

    The paper describes a Monte Carlo study for planning the irradiation of test samples for microbiological validation of distinct products in the Portuguese Gamma Irradiation Facility. Three different irradiation geometries have been used. Simulated and experimental results are compared and good agreement is observed. It is shown that Monte Carlo simulation improves process understanding, predicts absorbed dose distributions and calculates dose uniformity in different products. Based on these results, irradiation planning of the product can be performed

  7. Comparison of hospital room surface disinfection using a novel ultraviolet germicidal irradiation (UVGI) generator.

    Science.gov (United States)

    Jelden, Katelyn C; Gibbs, Shawn G; Smith, Philip W; Hewlett, Angela L; Iwen, Peter C; Schmid, Kendra K; Lowe, John J

    2016-09-01

    The estimated 721,800 hospital acquired infections per year in the United States have necessitated development of novel environmental decontamination technologies such as ultraviolet germicidal irradiation (UVGI). This study evaluated the efficacy of a novel, portable UVGI generator (the TORCH, ChlorDiSys Solutions, Inc., Lebanon, NJ) to disinfect surface coupons composed of plastic from a bedrail, stainless steel, chrome-plated light switch cover, and a porcelain tile that were inoculated with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus faecalis (VRE). Each surface type was placed at 6 different sites within a hospital room and treated by 10-min ultraviolet-C (UVC) exposures using the TORCH with doses ranging from 0-688 mJ/cm(2) between sites. Organism reductions were compared with untreated surface coupons as controls. Overall, UVGI significantly reduced MRSA by an average of 4.6 log10 (GSD: 1.7 log10, 77% inactivation, p surfaces, while VRE was reduced significantly less on chrome (p = 0.0004) and stainless steel (p = 0.0012) than porcelain tile. Organisms out of direct line of sight of the UVC generator were reduced significantly less (p surfaces evaluated within the hospital environment in direct line of sight of UVGI treatment with variation between organism and surface types.

  8. Thermoluminescent and impedimetric studies on irradiated foodstuffs

    International Nuclear Information System (INIS)

    Mamoon, A.M.

    2000-01-01

    Several brands of different spices and milk powders were irradiated with relatively high doses of gamma radiation. Glow curves were produced upon heating these irradiated foodstuffs only. Study of the obtained spices glow curves revealed that the magnitude of these curves depends upon the dose received while the shape of the curves remains generally the same for the different doses and for the different spices. Previous studies had shown that the obtained thermoluminescence (TL) is due to dust particles carried by the spices. The TL studies show, furthermore, that different brands of the same spice are apparently contaminated with different amounts of dust or soil. The obtained TL from irradiated milk powders is apparently due to its mineral content. Different milk powders gave TL curves of different magnitudes for the same dose depending upon the milk brand. Impedimetric studies carried out irradiated potatoes show changes in impedance amplitude and phase angle. The results support earlier work on the use of TL to differentiate between irradiated and control foodstuffs, to assess the extent of spices contamination with soil-which perhaps reflects hygienic care-and that impedimetric measurements can distinguish irradiated from control potatoes

  9. Study of irradiation effect on curcuma polyphenols

    International Nuclear Information System (INIS)

    Rejeb, Imen

    2008-01-01

    The present study was carried out to evaluate the effect of gamma irradiation on curcumin (Curcuma Longa rhizome) component, particularly the polyphenolic fraction. Powdered rhizome was irradiated at 0, 5, 10 and 15 KGy (dose rate of 6 KGy / H). Polyphenolics were extracted and total polyphenols conent (TPC) was quantified using the Folin-Ciocalteau method. The irradiation effect was also evaluated by the HPLC technique. The chromatographic analysis showed that the irradiated and non-irradiated curcumin spectrum gave similar data. The antioxidant and antibacterial activities of the phenolic extracts were also assessed. the anti oxidative potential of the sample was evaluated using two radical scavenging methods with DPPH and ABTS. The antimicrobial analysis showed that the phenolic extracts of curcumin inhibited the growth of the studied microorganisms. Our results showed that irradiated samples were not affected in terms of polyphenols content and characteristics. (Author)

  10. Observation of surface discharge on polymer films irradiated by electron beam

    International Nuclear Information System (INIS)

    Komatsubara, Minoru; Ishii, Masaru; Tsumura, Eiji.

    1992-01-01

    The surface discharge on dielectric surfaces of a spacecraft caused by spacecraft charging is simulated by using a high vacuum chamber equipped with an electron beam gun. Fluoroethylene-propylene (FEP) and polyethleneterephthalate (PET) films frequently employed as thermal control materials are irradiated by an electron beam until surface discharges occur, then the spectrum and waveform of emitted light of discharge, together with the current waveform of the discharge and the mass spectrum of the gas in the vacuum chamber are measured. In the range of 300 through 700 nm of the wavelength, light emission from CN radicals, C 2 radicals, CH radicals and hydrogen atoms are detected. From this result, it is suggested that water molecules in the residual gas and molecules in the structure of the specimen contribute the light emission. The spectroscopic observation of the light emission suggests that the discharge energy is concentrated on PET more than that on FEP. (author)

  11. Surface damage of 316 stainless steel irradiated with 4He+ to high doses

    International Nuclear Information System (INIS)

    Kaminsky, M.; Das, S.K.

    1978-01-01

    Surface blistering of niobium by implantation with helium ions in the 9 to 15 keV range was investigated. The apparent disappearance of blisters at sufficiently high doses was believed to be an equilibrium effect. To determine whether high temperature annealing causes the equilibrium condition, stainless steel-316 samples were irradiated at a constant 450 0 C. Results are presented

  12. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM; Estudo in vitro do efeito do laser Nd:YAG e Er:YAG sobre o esmalte dental humano atraves de microscopia eletronica de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Verlangieri, Eleonora Jaeger

    2001-07-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm{sup 2} for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  13. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    Science.gov (United States)

    Veerapandian, Murugan; Zhang, Linghe; Krishnamoorthy, Karthikeyan; Yun, Kyusik

    2013-10-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml-1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml-1 for Bacillus subtilis and 0.5 μg ml-1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside.

  14. Surface activation of graphene oxide nanosheets by ultraviolet irradiation for highly efficient anti-bacterials

    International Nuclear Information System (INIS)

    Veerapandian, Murugan; Zhang, Linghe; Yun, Kyusik; Krishnamoorthy, Karthikeyan

    2013-01-01

    A comprehensive investigation of anti-bacterial properties of graphene oxide (GO) and ultraviolet (UV) irradiated GO nanosheets was carried out. Microscopic characterization revealed that the GO nanosheet-like structures had wavy features and wrinkles or thin grooves. Fundamental surface chemical states of GO nanosheets (before and after UV irradiation) were investigated using x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy. Minimum inhibitory concentration (MIC) results revealed that UV irradiated GO nanosheets have more pronounced anti-bacterial behavior than GO nanosheets and standard antibiotic, kanamycin. The MIC of UV irradiated GO nanosheets was 0.125 μg ml −1 for Escherichia coli and Salmonella typhimurium, 0.25 μg ml −1 for Bacillus subtilis and 0.5 μg ml −1 for Enterococcus faecalis, ensuring its potential as an anti-infective agent for controlling the growth of pathogenic bacteria. The minimum bactericidal concentration of normal GO nanosheets was determined to be two-fold higher than its corresponding MIC value, indicating promising bactericidal activity. The mechanism of anti-bacterial action was evaluated by measuring the enzymatic activity of β-d-galactosidase for the hydrolysis of o-nitrophenol-β-d-galactopyranoside. (paper)

  15. Effect of fluence and ambient environment on the surface and structural modification of femtosecond laser irradiated Ti

    International Nuclear Information System (INIS)

    Umm-i-Kalsoom; Ali, Nisar; Husinsky, Wolfgang; Nathala, Chandra S R; Bashir, Shazia; Shahid Rafique, M; Makarov, Sergey V; Begum, Narjis

    2016-01-01

    Under certain conditions, ultrafast pulsed laser interaction with matter leads to the formation of self-organized conical as well as periodic surface structures (commonly reffered to as, laser induced periodic surface structures, LIPSS). The purpose of the present investigations is to explore the effect of fsec laser fluence and ambient environments (Vacuum and O 2 ) on the formation of LIPSS and conical structures on the Ti surface. The surface morphology was investigated by scanning electron microscope (SEM). The ablation threshold with single and multiple (N = 100) shots and the existence of an incubation effect was demonstrated by SEM investigations for both the vacuum and the O 2 environment. The phase analysis and chemical composition of the exposed targets were performed by x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS), respectively. SEM investigations reveal the formation of LIPSS (nano and micro). FFT d-spacing calculations illustrate the dependence of periodicity on the fluence and ambient environment. The periodicity of nano-scale LIPSS is higher in the case of irradiation under vacuum conditions as compared to O 2 . Furthermore, the O 2 environment reduces the ablation threshold. XRD data reveal that for the O 2 environment, new phases (oxides of Ti) are formed. EDS analysis exhibits that after irradiation under vacuum conditions, the percentage of impurity element (Al) is reduced. The irradiation in the O 2 environment results in 15% atomic diffusion of oxygen. (paper)

  16. Aspects of ion irradiations to study localized deformation in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zhijie, E-mail: zjiao@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, Gary [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Miura, Terumitsu; Fukuya, Koji [Institute of Nuclear Safety System (INSS) (Japan)

    2014-09-15

    The effect of irradiation depth on localized deformation in strained SUS304 and SUS316 was assessed by irradiation to various doses using different energies of Fe{sup ++} and protons. The average height and spacing of slip steps formed on the surfaces after 2% plastic strain in 300 °C argon were characterized using AFM and SEM. The step height and spacing were nearly unchanged for irradiation depth greater than 1/3 of the average grain size. 2.8 MeV Fe{sup ++} irradiation, with an irradiation depth of <1 μm, resulted in slightly larger step spacing compared to the unirradiated samples but it was much smaller compared to that in proton-irradiated samples with much greater irradiation depths. Step height and spacing also appeared to be affected by the grain size as they were nearly double in magnitude for 30 μm compared to 14 μm grain sizes in SUS304.

  17. Surface damage characteristics of CFC and tungsten with repetitive ELM-like pulsed plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Nishijima, D. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States); Nakatsuka, M.; Ando, K.; Higashi, T.; Ueno, Y.; Ishihara, M.; Shoda, K.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Kawai, T.; Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Fukumoto, N. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, 671-2280 Hyogo (Japan); Doerner, R.P. [Center for Energy Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0417 (United States)

    2011-08-01

    Surface damage of carbon fiber composite (CFC) and tungsten (W) due to repetitive ELM-like pulsed plasma irradiation has been investigated by using a magnetized coaxial plasma gun. CX2002U CFC and stress-relieved W samples were exposed to repetitive pulsed deuterium plasmas with duration of {approx}0.5 ms, incident ion energy of {approx}30 eV, and surface absorbed energy density of {approx}0.3-0.7 MJ/m{sup 2}. Bright spots on a CFC surface during pulsed plasma exposures were clearly observed with a high-speed camera, indicating a local surface heating. No melting of a W surface was observed under a single plasma pulse exposure at energy density of {approx}0.7 MJ/m{sup 2}, although cracks were formed. Cracking of the W surface grew with repetitive pulsed plasma exposures. Subsequently, the surface melted due to localized heat absorption.

  18. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    Peltola, Timo Hannu Tapani

    2014-01-01

    A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching to measurements of silicon strip detectors. However, the model does not provide the expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's...

  19. Comparison of several databases of downward solar daily irradiation data at ocean surface with PIRATA measurements

    Science.gov (United States)

    Trolliet, Mélodie; Wald, Lucien

    2017-04-01

    The solar radiation impinging at sea surface is an essential variable in climate system. There are several means to assess the daily irradiation at surface, such as pyranometers aboard ship or on buoys, meteorological re-analyses and satellite-derived databases. Among the latter, assessments made from the series of geostationary Meteosat satellites offer synoptic views of the tropical and equatorial Atlantic Ocean every 15 min with a spatial resolution of approximately 5 km. Such Meteosat-derived databases are fairly recent and the quality of the estimates of the daily irradiation must be established. Efforts have been made for the land masses and must be repeated for the Atlantic Ocean. The Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) network of moorings in the Tropical Atlantic Ocean is considered as a reference for oceanographic data. It consists in 17 long-term Autonomous Temperature Line Acquisition System (ATLAS) buoys equipped with sensors to measure near-surface meteorological and subsurface oceanic parameters, including downward solar irradiation. Corrected downward solar daily irradiation from PIRATA were downloaded from the NOAA web site and were compared to several databases: CAMS RAD, HelioClim-1, HelioClim-3 v4 and HelioClim-3 v5. CAMS-RAD, the CAMS radiation service, combines products of the Copernicus Atmosphere Monitoring Service (CAMS) on gaseous content and aerosols in the atmosphere together with cloud optical properties deduced every 15 min from Meteosat imagery to supply estimates of the solar irradiation. Part of this service is the McClear clear sky model that provides estimates of the solar irradiation that should be observed in cloud-free conditions. The second and third databases are HelioClim-1 and HelioClim-3 v4 that are derived from Meteosat images using the Heliosat-2 method and the ESRA clear sky model, based on the Linke turbidity factor. HelioClim-3 v5 is the fourth database and differs from v4 by the

  20. ARIMA representation for daily solar irradiance and surface air temperature time series

    Science.gov (United States)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  1. Spatial and Temporal Homogeneity of Solar Surface Irradiance across Satellite Generations

    Directory of Open Access Journals (Sweden)

    Rebekka Posselt

    2011-05-01

    Full Text Available Solar surface irradiance (SIS is an essential variable in the radiation budget of the Earth. Climate data records (CDR’s of SIS are required for climate monitoring, for climate model evaluation and for solar energy applications. A 23 year long (1983–2005 continuous and validated SIS CDR based on the visible channel (0.45–1 μm of the MVIRI instruments onboard the first generation of Meteosat satellites has recently been generated using a climate version of the well established Heliosat method. This version of the Heliosat method includes a newly developed self-calibration algorithm and an improved algorithm to determine the clear sky reflection. The climate Heliosat version is also applied to the visible narrow-band channels of SEVIRI onboard the Meteosat Second Generation Satellites (2004–present. The respective channels are observing the Earth in the wavelength region at about 0.6 μm and 0.8 μm. SIS values of the overlapping time period are used to analyse whether a homogeneous extension of the MVIRI CDR is possible with the SEVIRI narrowband channels. It is demonstrated that the spectral differences between the used visible channels leads to significant differences in the solar surface irradiance in specific regions. Especially, over vegetated areas the reflectance exhibits a high spectral dependency resulting in large differences in the retrieved SIS. The applied self-calibration method alone is not able to compensate the spectral differences of the channels. Furthermore, the extended range of the input values (satellite counts enhances the cloud detection of the SEVIRI instruments resulting in lower values for SIS, on average. Our findings have implications for the application of the Heliosat method to data from other geostationary satellites (e.g., GOES, GMS. They demonstrate the need for a careful analysis of the effect of spectral and technological differences in visible channels on the retrieved solar irradiance.

  2. Compaction of PDMS due to proton beam irradiation

    International Nuclear Information System (INIS)

    Szilasi, S.Z.; Huszank, R.; Rajta, I.; Kokavecz, J.

    2011-01-01

    Complete text of publication follows. This work is about the detailed investigation of the changes of the surface topography, the degree of compaction/shrinkage and its relation to the irradiation fluence and the structure spacing in poly(dimethylsiloxane) (PDMS) patterned with 2 MeV proton microbeam. Sylgard 184 kit (Dow-Corning) was used to create the PDMS samples. The density of the PDMS samples was determined with pycnometer. The penetration depth for 2 MeV protons is ∼85 μm, the PDMS layer was ∼95 μm thick, so the incident protons stop in the PDMS, they do not reach the substrate. The irradiations have been performed at the nuclear microprobe facility at ATOMKI. The irradiated periodic structures consisted of parallel lines with different widths and spacing. To achieve different degrees of compaction, each structure was irradiated with five different fluences. The surface topography, the phase modification of the surface, and the connection between them were revealed using an atomic force microscope (AFM PSIA XE 100). The shrinkage data were obtained from the topography images. The structures with different line widths and spacing show different degrees of compaction as a function of irradiation fluence. By plotting them in the same graph (Fig. 1) it is clearly seen that the degree of compaction depends on both the irradiation fluence and the distance of the structures. The fluence dependence of the compaction can be explained with the chemical changes of PDMS. When an energetic ion penetrates through the material it scissions the polymer chain, whereupon among other things volatile products form. In the case of PDMS, these are mainly hydrogen, methane and ethane gases that can be released from PDMS. The irradiated volume shrinks due to significant structural change during which silicate derivatives (SiO x ) are formed. The phase change and the corresponding surface topography was compared and studied at all applied irradiation fluences. It was concluded

  3. Measurements of three dimensional residual stress distribution on laser irradiated spot

    International Nuclear Information System (INIS)

    Tanaka, Hirotomo; Akita, Koichi; Ohya, Shin-ichi; Sano, Yuji; Naito, Hideki

    2004-01-01

    Three dimensional residual stress distributions on laser irradiated spots were measured using synchrotron radiation to study the basic mechanism of laser peening. A water-immersed sample of high tensile strength steel was irradiated with Q-switched and frequency-doubled Nd:YAG laser. The residual stress depth profile of the sample was obtained by alternately repeating the measurement and surface layer removal by electrolytic polishing. Tensile residual stresses were observed on the surface of all irradiated spots, whereas residual stress changed to compressive just beneath the surface. The depth of compressive residual stress imparted by laser irradiation and plastic deformation zone increased with increasing the number of laser pulses irradiated on the same spot. (author)

  4. Nanowall formation by maskless wet-etching on a femtosecond laser irradiated silicon surface

    Science.gov (United States)

    Lee, Siwoo; Jo, Kukhyun; Keum, Hee-sung; Chae, Sangmin; Kim, Yonghyeon; Choi, Jiyeon; Lee, Hyun Hwi; Kim, Hyo Jung

    2018-04-01

    We found that micro-cells surrounded by nanowalls can be formed by a maskless wet-etching process on Si (100) surfaces possessing Laser Induced Periodic Surface Structure (LIPSS) by femtosecond laser irradiation. The LIPSS process could produce periodic one-dimensional micron scale ripples on a Si surface, which could be developed into micro-cells by a subsequent etching process. The solution etching conditions strongly affected both the micro-cell and nanowall shapes such as the height and the thickness of nanowalls. The tetramethylammonium hydroxide solution created thin nanowalls and the resulting micro-cells with a well-flattened bottom while the KOH solution formed thick walls and incomplete micro-cells. The bottoms of micro-cells surrounded by the nanowalls were considerably flat with a 3.10 nm surface roughness. A pentacene layer was deposited on the micro-cells of a Si surface to evaluate the film properties by grazing incidence wide angle x-ray scattering measurements. The pentacene film on the micro-cell Si surface showed a strong film phase, which was comparable to the film phase grown on the atomically flat Si surface.

  5. Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation

    International Nuclear Information System (INIS)

    Ţălu, Ştefan; Marković, Zoran; Stach, Sebastian; Todorović Marković, B.; Ţălu, Mihai

    2014-01-01

    This study presents a multifractal approach, obtained with atomic force microscopy analysis, to characterize the structural evolution of single wall carbon nanotube thin films upon exposure to optical parametric oscillator laser irradiation at wavelength of 430 nm. Microstructure and morphological changes of carbon nanotube films deposited on different substrates (mica and TGX grating) were recorded by atomic force microscope. A detailed methodology for surface multifractal characterization, which may be applied for atomic force microscopy data, was presented. Multifractal analysis of surface roughness revealed that carbon nanotube films surface has a multifractal geometry at various magnifications. The generalized dimension D q and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of carbon nanotube films surface morphology at nanometer scale. Multifractal analysis provides different yet complementary information to that offered by traditional surface statistical parameters.

  6. Surface deformation effects on stainless steel, Ni, Cu and Mo produced by medium energy He ions irradiation

    International Nuclear Information System (INIS)

    Constantinescu, B.; Florescu, V.; Sarbu, C.

    1993-01-01

    To investigate dose and energy dependence of surface deformation effects (blistering and flaking), different kinds of candidate CTR first wall materials as 12KH18N10T, W-4541, W-4016 and SS-304 stainless steels, Ni, Cu, Mo were irradiated at room temperature with 3.0, 4.7 and 6.8 MeV He + ions at IAP Cyclotron. The effects were investigated by means of a TEMSCAN 200 CX electron microscope and two metallographic Orthoplan Pol Leitz and Olympus microscopes. We observed two dose dependent main phenomena: blistering and flaking (craters). So, blisters occurrence on the irradiated surface is almost instantaneous when a critical dose (number of He ions accumulated in the region at the end of alpha particles range) is reached. Increasing irradiation dose, we reached flaking stage. So, isolated submicronic fissures along grain boundaries were observed on the blister skin, chronologically followed by large (5-20 μm) deep cracks of hundreds of microns in length, blisters opening and, finally, flaking appearance. (author) 8 figs., 1 tab

  7. Surface morphological changes on the human dental enamel and cement after the Er:YAG laser irradiation at different incidence angles

    International Nuclear Information System (INIS)

    Tannous, Jose Trancoso

    2001-01-01

    This is a morphological analysis study through SEM of the differences of the laser tissue interaction as a function of the laser beam irradiation angle, under different parameters of energy. Fourteen freshly extracted molars stored in a 0,9% sodium chloride solution were divided in seven pairs and were irradiated with 100, 200, 300, 400, 500, 600 and 700 mJ per pulse, respectively. Each sample received three enamel irradiations and three cement irradiations, either in the punctual or in the contact mode, one near to the other, with respectively 30, 45 and 90 inclinations degrees of dental surface-laser-beam incidence. Four Er:YAG pulses (2,94 μm, 7-20 Hz, 0,1-1 J energy/pulse - Opus 20 - Opus Dent) with water cooling system (0,4 ml/s) were applied. After the laser irradiation the specimens were analysed through scanning electron microscope (SEM). The results were analysed by SEM micrographs showing a great difference on the laser tissue interaction characteristics as a function of the irradiation angle of the laser beam. All the observations led to conclude that, considering the laser parameters used, the incidence angle variation is a very important parameter regarding the desired morphological effects. This represents an extremely relevant detail on the technical description of the Er:YAG laser irradiation protocols on dental tissues. (author)

  8. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects.

    Science.gov (United States)

    Xu, Jiangmin; Chen, Chao; Zhang, Tengfei; Han, Zhenchun

    2017-03-03

    Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  9. A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects

    Directory of Open Access Journals (Sweden)

    Jiangmin Xu

    2017-03-01

    Full Text Available Based on PVDF (piezoelectric sensing techniques, this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.

  10. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    Science.gov (United States)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  11. A study of positron irradiated porous silicon

    International Nuclear Information System (INIS)

    Huang Yuanming; Xue Qing; Zhai Baogai; Xu Aijun; Liu Shewen; Yu Weizhong

    1998-01-01

    The effect of positron irradiation on photoluminescence (PL) of porous silicon has been studied. After four hour positron irradiation, the red PL spectrum of porous silicon blue shifts into greenish spectral region, and a higher energy luminescence band is introduced into this blueshifted spectrum. The fourier transform infrared absorption experiment shows that the positron irradiation can cause further oxidization of porous silicon. A possible mechanism causing this change of PL spectra after positron irradiation is suggested

  12. Effect of swift heavy ion irradiation on surface resistance of DyBa 2

    Indian Academy of Sciences (India)

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7- (DBCO) thin films. The measurements were carried out in zero field as well as in the presence of magnetic fields ...

  13. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  14. Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Mohovikov, A. A.; Yu, B.; Xu, Yu; Zhong, L.

    2018-01-01

    Metal-ceramic composites are the main materials for high-load parts in tribomechanical systems. Modern approaches to extend the operation life of tribomechanical systems are based on increasing the strength and tribological properties of the surface layer having 100 to 200 microns in depth. The essential improvement of the properties occurs when high dispersed structure is formed in the surface layer using high-energy processing. As a result of the dispersed structure formation the more uniform distribution of elastic stresses takes place under mechanical or thermal action, the energy of stress concentrators emergence significantly increases and the probability of internal defects formation reduces. The promising method to form the dispersed structure in the surface layer is pulse electron irradiation in the plasmas of inert gases combining electron irradiation and ion bombardment in one process. The present work reports upon the effect of pulse electron irradiation in plasmas of different inert gases with different atomic mass and ionization energy on the structure and tribological properties of the surface layer of TiC/(Ni-Cr) metal-ceramic composite with the volume ratio of the component being 50:50. It is experimentally shown that high-dispersed heterophase structure with a fraction of nanosized particles is formed during the irradiation. Electron microscopy study reveals that refining of the initial coarse TiC particles occurs via their dissolution in the molten metal binder followed by the precipitation of secondary fine particles in the interparticle layers of the binder. The depth of modified layer and the fraction of nanosized particles increase when the atomic number of the plasma gas increases and ionization energy decreases. The wear resistance of metal-ceramic composite improves in accordance to the formation of nanocrystalline structure in the surface layer.

  15. Heavy ions amorphous semiconductors irradiation study

    International Nuclear Information System (INIS)

    Benmalek, M.

    1978-01-01

    The behavior of amorphous semiconductors (germanium and germanium and arsenic tellurides) under ion bombardment at energies up to 2 MeV was studied. The irradiation induced modifications were followed using electrical parameter changes (resistivity and activation energy) and by means of the transmission electron microscopy observations. The electrical conductivity enhancement of the irradiated samples was interpreted using the late conduction theories in amorphous compounds. In amorphous germanium, Electron Microscopy showed the formations of 'globules', these defects are similar to voids observed in irradiated metals. The displacement cascade theory was used for the interpretation of the irradiation induced defects formation and a coalescence mechanism of growth was pointed out for the vacancy agglomeration [fr

  16. Effect of ion irradiation on surface morphology and superconductivity of BaFe{sub 2}(As{sub 1−x}P{sub x}){sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Daghero, D., E-mail: dario.daghero@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Tortello, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Gozzelino, L. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino, 10125 Torino (Italy); Gonnelli, R.S. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Hatano, T.; Kawaguchi, T.; Ikuta, H. [Department of Crystalline Materials Science, Nagoya University, Nagoya 464-8603 (Japan)

    2017-02-15

    Highlights: • Epitaxial films of BaFe{sub 2}(As,P){sub 2} at optimal doping on MgO substrate have been irradiated by 250 MeV Au ions with different fluences. • Irradiation induces a partial relaxation of the in-plane tensile stress typical of the pristine films. • The residual resistivity increases less than linearly with fluence, tending to saturate; the overall increase is about 60%, but the critical temperature decreases by only 2%. • These results indicate that the substrate and the reduced dimensionality of the films (as compared to the case of single crystals) play an important role in their response to irradiation. - Abstract: We have irradiated epitaxial thin films of BaFe{sub 2}(As{sub 1−x}P{sub x}){sub 2} with x ≃ 0.2 (optimal doping) with Au ions having an energy of 250 MeV. We have used two different fluences, Φ{sub 1} = 2.4 × 10{sup 11} cm{sup −2} and Φ{sub 2} = 7.3 × 10{sup 11} cm{sup −2}, and we have studied the effects of irradiation on the surface morphology, on the resistivity and on the critical temperature. We have found that irradiation progressively destroys the very clear and interconnected growth terraces typical of the pristine surface, leading first to their smoothening – accompanied by the appearance of localized defects – and then to a completely disordered surface. The residual resistivity increases by almost 60%, but the critical temperature decreases very little (i.e. by about 2%) on going from the pristine film to the most irradiated one. The possible role of the substrate in these results is discussed.

  17. Studies on some irradiated food products

    International Nuclear Information System (INIS)

    Mohammed, H.M.B.

    1998-01-01

    The aim of this investigation was to study the possibility of using some doses of gamma irradiation and cold storage (4+1 C) for improving the hygienic quality and shelf-life of some meat products ( beef luncheon, processed minced beef and fresh beef sausage). luncheon meat samples were irradiated at doses of 4,6,8,10 and 12 k Gy, while beef and sausage samples were subjected to 4,6 and 8 KGy gamma rays doses and the effects of irradiation on the organoleptic properties, microbiological aspects and the chemical composition were studied during cold storage (4+1 C) of samples. Attention was focussed on the changes occurred in the organoleptic properties of these products by the evaluation of sensory scores for appearance, color and odor of samples post irradiation and during cold storage (4+1 C). In addition, the effects of treatments and cold storage on the microbiological quality by the determination of total bacterial count, total psychropilic bacteria, total coliforms, total molds and yeasts, staphylococcus aureus, streptococcus faecalis as well as the detection of salmonellae were studied

  18. Recent changes in solar irradiance and infrared irradiance related with air temperature and cloudiness at the King Sejong Station, Antarctica

    Science.gov (United States)

    Jung, Y.; Kim, J.; Cho, H.; Lee, B.

    2006-12-01

    The polar region play a critical role in the surface energy balance and the climate system of the Earth. The important question in the region is that what is the role of the Antarctic atmospheric heat sink of global climate. Thus, this study shows the trends of global solar irradiance, infrared irradiance, air temperature and cloudiness measured at the King Sejong station, Antarctica, during the period of 1996-2004 and determines their relationship and variability of the surface energy balance. Annual average of solar radiation and cloudiness is 81.8 Wm-2 and 6.8 oktas and their trends show the decrease of -0.24 Wm-2yr-1(-0.30 %yr-1) and 0.02 oktas yr-1(0.30 %yr-1). The change of solar irradiance is directly related to change of cloudiness and decrease of solar irradiance presents radiative cooling at the surface. Monthly mean infrared irradiance, air temperature and specific humidity shows the decrease of -2.11 Wm^{- 2}yr-1(-0.75 %yr-1), -0.07 'Cyr-1(-5.15 %yr-1) and -0.044 gkg-1yr-1(-1.42 %yr-1), respectively. Annual average of the infrared irradiance is 279.9 Wm-2 and correlated with the air temperature, specific humidity and cloudiness. A multiple regression model for estimation of the infrared irradiance using the components has been developed. Effects of the components on the infrared irradiance changes show 52 %, 19 % and 10 % for air temperature, specific humidity and cloudiness, respectively. Among the components, air temperature has a great influence on infrared irradiance. Despite the increase of cloudiness, the decrease in the infrared irradiance is due to the decrease of air temperature and specific humidity which have a cooling effect. Therefore, the net radiation of the surface energy balance shows radiative cooling of negative 11-24 Wm^{- 2} during winter and radiative warming of positive 32-83 Wm-2 during the summer. Thus, the amount of shortage and surplus at the surface is mostly balanced by turbulent flux of sensible and latent heat.

  19. Study of irradiation creep of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  20. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    International Nuclear Information System (INIS)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo; Hayashi, Toru; Yasumoto, Kyoden.

    1990-01-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author)

  1. Comparative study on disinfection potency of spore forming bacteria by electron-beam irradiation and gamma-ray irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, Hironobu; Suzuki, Satoru; Suzuki, Tetsuya; Takama, Kozo [Hokkaido Univ., Hakodate (Japan). Faculty of Fisheries; Hayashi, Toru; Yasumoto, Kyoden

    1990-10-01

    Along with gamma-ray irradiation, electron-beam irradiation (EB) is a method to disinfect microorganisms which cause food decomposition and food-poisoning. The present study was undertaken to compare sterilization efficacy of EB and gamma-ray irradiation on bacterial spores and vegetative cells under various conditions. Spores of Bacillus pumilus, a marker strain for irradiation study, and Bacillus stearothermophilus known as a thermophilic bacteria were irradiated by electron-beam and gamma-ray separately at irradiation dose of 0 to 10 kGy on combination of wet/dry and aerobic/anaerobic conditions. Sterilization effect of irradiation on spores was evaluated by colony counting on agar plates. Results showed that both EB and gamma-ray irradiation gave sufficient sterilization effect on spores, and the sterilization effect increased exponentially with irradiation dose. The sterilization effect of gamma-ray irradiation was higher than that of EB in all cases. Higher disinfection effect was observed under aerobic condition. The present study suggests that oxygen supply in EB is more important than gamma-ray irradiation. No results suggesting that chlorine ion at 0.1 ppm (as available chlorine concentration) enhanced the sterilization efficacy of either EB or gamma-ray irradiation was obtained under any conditions examined. (author).

  2. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  3. Study of the iron corrosion at the interface of different media (water, air) submitted to protons irradiation

    International Nuclear Information System (INIS)

    Lapuerta, S.

    2005-10-01

    During the deep geological disposal, stainless steel containers of the vitrified waste will be put in carbon steel overpacks. After the closing of the storage site, overpacks will be in contact with a humid air and a radioactive medium. After hundred years, overpacks could be in contact with water radiolysis in an anoxic medium. In this context, my PhD work is a fundamental study which is the understanding of the corrosion mechanisms of pure iron under proton irradiation. This corrosion is affected by the contact of iron with different atmospheres (air, nitrogen) and water. In the case of the atmospheric iron corrosion under irradiation, we have studied the influence of the proton beam flux. During this work, we have characterized the structure of the oxides formed at the iron surface. The structure formed does not correspond to iron oxides and hydroxides indexed. However, we have shown that the oxide structure is close to that of lepidocrocite and bernalite. Moreover, we have determined the oxygen diffusion coefficient in iron under irradiation and we have shown that the irradiation accelerates of 6 orders of magnitude the iron corrosion. In addition, the irradiations which were realized in different gas have put in evidence the negligible role of nitrates, and the importance of the O 2 /H 2 O coupling on the iron corrosion. Finally, we have shown the influence of the relative humidity, the maximum of the corrosion being observed for a relative humidity close to 45%. In the case of the iron corrosion in aqueous media under irradiation, the influence of the oxygen dissolved in water has been studied using a surface marker. We have put in evidence that the corrosion is twice more significant in aerated medium than in deaerated medium. Moreover, the influence of radicals has been shown. An irradiated sample is more corroded than a sample put in contact with a H 2 O 2 solution. Finally, the follow-up of the iron potential under irradiation have shown the majority role

  4. Sprout inhibition of potatoes by electron irradiation, (2)

    International Nuclear Information System (INIS)

    Furuta, Junichiro; Hiraoka, Eiichi; Okamoto, Shinichi; Fujishiro, Masatoshi; Kanazawa, Tamotsu; Ohnishi, Tokuhiro; Tsujii, Yukio; Hori, Shiro

    1982-01-01

    Sprouting of potatoes are inhibited usually by the gamma-ray irradiation. The buds of potatoes exist in a very thin layer near surface of each tuber. So the inhibition will be performed sufficiently by surface irradiation using electron beams. To irradiate all surfaces of each potato uniformly, the authors prepare a new apparatus which is a conveyer passing under an electron beam scanner of accelerator rotating the potatoes by many rotating rollers. The sprout inhibition experiment of potatoes was performed by following three methods to obtain the performance of this apparatus, and the results were compared. 1) turn over irradiation method --- potatoes were arranged in one layer in plastic baskets and were irradiated on the conveyor. After irradiation, the potatoes were turned over and were irradiated again. 2) rotating irradiation method --- potatoes were rotated on the rotating roller apparatus set on the conveyer and were passed under the electron beam scanner. 3) rotating irradiation method with an improved rotating roller apparatus --- the rotating rollers have many protuberances on their surface to irradiate all of potato surface more uniform. 550 keV electron beams by Cockcroft-Walton type accelerator were used for the irradiation and the irradiated dose was 5 to 20 krad. 40 pieces of potates, ''Danshaku'' variety yielded in June 1981, were irradiated for each dose in the beginning of August. Prior to these irradiation experiments, the dose and dose uniformity were checked by the agar color dosimeters. After the irradiation, potatoes were stored in natural condition and their sprouting was observed. The potatoes irradiated by the improved rotating roller apparatus were almost completely sprout-inhibited by 20 krad irradiation. (author)

  5. Irradiation preservation processing study of strawberry

    International Nuclear Information System (INIS)

    Xu Shihong; Zhu Zhaodi

    1992-01-01

    Radiation preservation processing of strawberry was studied. The results show that single seal processing or combining with irradiation processing under given doses is of no practical value, but only combining with chill processing can promote lengthening period of fresh keeping. Single irradiation processing under given doses provides not only good initial state, but also the beginning of bad development at top speed on microorganism. The composite processing of irradiation, chill and seal can supply extended shelf lifetime with optimum value of dual synergetic effect

  6. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  7. Effect of irradiation on functional properties of Gum Tragacanth

    Directory of Open Access Journals (Sweden)

    Neda Mollakhalili meybodi

    2017-03-01

    Full Text Available Background and objective: irradiation is a physical treatment in which products are exposed to ionized radiation such as gamma and x rays to improve the security and quality. Hydrocolloids are components that are used in food science to improve texture properties. Exposing to irradiation treatment may change structural and functional properties. By regard to the importance of irradiation on decontaminating of hydrocolloids in food application, the aim of this study is studying the effect of irradiation at different doses on functional properties of Gum Tragacanth in food application. Material and methods: effect of irradiation treatment was studied on the rheological properties, zeta potential, particle size distribution and surface tension of dispersion systems contained 0/5% w/ w gum tragacanth that is irradiated at different doses (0, 0.75. 3, 5 kGy. The effect of irradiation on rheological properties was monitored by rheometer. In order to monitor the effect of irradiation treatment on particle size distribution, zeta potential and surface tension, particle sizer, Brookhaven zeta plus and tensiometer sere used respectively. All treatments were performed three times and the data were analyzed by one way ANOVA. Significant differences between means were identified (P values < 0.05 using Duncan test. Results: Irradiation, change rheologiacal properties and particle size distribution of dispersion contained gum tragacanth. Irradiation treatment up to 0.75 kGy increase zeta potential, but irradiating at higher doses decrease it again. Results of studying parameters showed that irradiation changes the functional properties by affecting on structure. These changes depend on irradiation dose Conclusion: Gum tragacanth irradiation may improve the functional properties by affecting on structure.

  8. Changes in the surface electronic states of semiconductor fine particles induced by high energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaki, Tetsuya; Asai, Keisuke; Ishigure, Kenkichi [Tokyo Univ. (Japan); Shibata, Hiromi

    1997-03-01

    The changes in the surface electronic states of Q-sized semiconductor particles in Langmuir-Blodgett (LB) films, induced by high energy ion irradiation, were examined by observation of ion induced emission and photoluminescence (PL). Various emission bands attributed to different defect sites in the band gap were observed at the initial irradiation stage. As the dose increased, the emissions via the trapping sites decreased in intensity while the band-edge emission developed. This suggests that the ion irradiation would remove almost all the trapping sites in the band gap. The low energy emissions, which show a multiexponential decay, were due to a donor-acceptor recombination between the deeply trapped carriers. It was found that the processes of formation, reaction, and stabilization of the trapping sites would predominantly occur under the photooxidizing conditions. (author)

  9. Evaluation of various procedures transposing global tilted irradiance to horizontal surface irradiance

    Science.gov (United States)

    Housmans, Caroline; Bertrand, Cédric

    2017-02-01

    Many transposition models have been proposed in the literature to convert solar irradiance on the horizontal plane to that on a tilted plane. The inverse process, i.e. the conversion from tilted to horizontal is investigated here based upon seven months of in-plane global solar irradiance measurements recorded on the roof of the Royal Meteorological Institute of Belgium's radiation tower in Uccle (Longitude 4.35° E, Latitude 50.79° N). Up to three pyranometers mounted on inclined planes of different tilts and orientations were involved in the inverse transposition process. Our results indicate that (1) the tilt to horizontal irradiance conversion is improved when measurements from more than one tilted pyranometer are considered (i.e. by using a multi-pyranometer approach) and (2) the improvement from using an isotropic model to anisotropic models in the inverse transposition problem is not significant.

  10. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  11. Response-surface models for deterministic effects of localized irradiation of the skin by discrete β/γ -emitting sources

    International Nuclear Information System (INIS)

    Scott, B.R.

    1995-01-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete Β- and γ-emitting (ΒγE) sources (e.g., ΒγE hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot ΒγE particles are 60 Co- or nuclear fuel-derived particles with diameters > 10 μm and < 3 mm and contain at least 3.7 kBq (0.1 μCi) of radioactivity. For such ΒγE sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for systems that adequately control exposure of workers to discrete ΒγE sources, models are needed for evaluating the risk of deterministic effects of localized Β irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete ΒγE sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to Β radiation from ΒγE sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects

  12. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    OpenAIRE

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) wer...

  13. WE-D-BRE-01: A Sr-90 Irradiation Device for the Study of Cutaneous Radiation Injury

    Energy Technology Data Exchange (ETDEWEB)

    Dorand, JE; Bourland, JD [Department of Radiation Oncology and Department of Physics, Wake Forest University, Winston-Salem, NC (United States); Burnett, LR [KeraNetics, LLC, Winston-Salem, NC (United States); Tytell, M [Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC (United States)

    2014-06-15

    Purpose: To determine dosimetric character for a custom-built Sr-90 beta irradiator designed for the study of Cutaneous Radiation Injury (CRI) in a porcine animal model. In the event of a radiological accident or terrorist event, Sr-90, a fission by-product, will likely be produced. CRI is a main concern due to the low energy and superficial penetration in tissue of beta particles from Sr-90. Seven 100 mCi plaque Sr-90 radiation sources within a custom-built irradiation device create a 40 mm diameter region of radiation-induced skin injury as part of a larger project to study the efficacy of a topical keratin-based product in CRI healing. Methods: A custom-built mobile irradiation device was designed and implemented for in vivo irradiations. Gafchromic™ EBT3 radiochromic film and a PTW Markus chamber type 23343 were utilized for dosimetric characterization of the beta fluence at the surface produced by this device. Films were used to assess 2-dimensional dose distribution and percent depth dose characteristics of the radiation field. Ion chamber measurements provided dose rate data within the field. Results: The radiation field produced by the irradiation device is homogeneous with high uniformity (∼5%) and symmetry (∼3%) with a steep dose fall-off with depth from the surface. Dose rates were determined to be 3.8 Gy/min and 3.3 Gy/min for film and ion chamber measurements, respectively. A dose rate of 3.4 Gy/min was used to calculate irradiation times for in vivo irradiations. Conclusion: The custom-built irradiation device enables the use of seven Sr-90 beta sources in an array to deliver a 40 mm diameter area of homogeneous skin dose with a dose rate that is useful for research purposes and clinically relevant for the induction of CRI. Doses of 36 and 42 Gy successfully produce Grade III CRI and are used in the study of the efficacy of KeraStat™. This project has been funded in whole or in part with Federal funds from the Biomedical Advanced Research and

  14. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  15. Study of tungsten surface interaction with plasma streams at DPF-1000U

    Directory of Open Access Journals (Sweden)

    Ladygina Marina S.

    2015-06-01

    Full Text Available In this note experimental studies of tungsten (W samples irradiated by intense plasma-ion streams are reported. Measurements were performed using the modified plasma focus device DPF-1000U equipped with an axial gas-puffing system. The main diagnostic tool was a Mechelle®900 optical spectrometer. The electron density of a freely propagating plasma stream (i.e., the plasma stream observed without any target inside the vacuum chamber was estimated on the basis of the half-width of the Dβ spectral line, taking into account the linear Stark effect. For a freely propagating plasma stream the maximum electron density amounted to about 1.3 × 1017 cm−3 and was reached during the maximum plasma compression. The plasma electron density depends on the initial conditions of the experiments. It was thus important to determine first the plasma flow characteristics before attempting any target irradiation. These data were needed for comparison with plasma characteristics after an irradiation of the investigated target. In fact, spectroscopic measurements performed during interactions of plasma streams with the investigated W samples showed many WI and WII spectral lines. The surface erosion was determined from mass losses of the irradiated samples. Changes on the surfaces of the irradiated samples were also investigated with an optical microscope and some sputtering and melting zones were observed.

  16. Optimization of process parameters for the inactivation of Lactobacillus sporogenes in tomato paste with ultrasound and {sup 60}Co-{gamma} irradiation using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ye Shengying [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)], E-mail: yesy@scau.edu.cn; Qiu Yuanxin; Song Xianliang; Luo Shucan [College of Food Science, South China Agricultural University, Wushan, Guangzhou, GD 510640 (China)

    2009-03-15

    The processing parameters for ultrasound and {sup 60}Co-{gamma} irradiation were optimized for their ability to inactivate Lactobacillus sporogenes in tomato paste using a systematic experimental design based on response surface methodology. Ultrasonic power, ultrasonic processing time and irradiation dose were explored and a central composite rotation design was adopted as the experimental plan, and a least-squares regression model was obtained. The significant influential factors for the inactivation rate of L. sporogenes were obtained from the quadratic model and the t-test analyses for each process parameter. Confirmation of the experimental results indicated that the proposed model was reasonably accurate and could be used to describe the efficacy of the treatments for inactivating L. sporogenes within the limits of the factors studied. The optimized processing parameters were found to be an ultrasonic power of 120 W with a processing time of 25 min and an irradiation dose of 6.5 kGy. These were measured under the constraints of parameter limitation, based on the Monte Carlo searching method and the quadratic model of the response surface methodology, including the a/b value of the Hunter color scale of tomato paste. Nevertheless, the ultrasound treatment prior to irradiation for the inactivation of L. sporogenes in tomato paste was unsuitable for reducing the irradiation dose.

  17. Irradiated film material and method of the irradiation

    International Nuclear Information System (INIS)

    1978-01-01

    The irradiation of polymer film material is a strengthening procedure. To obtain a substantial uniformity in the radiation dosage profile, the film is irradiated in a trough having lateral deflection blocks adjacent to the film edges. These deflect the electrons towards the surface of the trough bottom for further deflection towards the film edge. (C.F.)

  18. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    Science.gov (United States)

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (pbond strength between porcelain and the Ti surface.

  19. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  20. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  1. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    International Nuclear Information System (INIS)

    Kumar, Pragati; Agarwal, Avinash; Saxena, Nupur; Singh, Fouran; Gupta, Vinay

    2014-01-01

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ a /Γ b ) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  2. Study of Irradiation Effect onto Uranium silicide Fuel

    International Nuclear Information System (INIS)

    Suparjo

    1998-01-01

    The irradiation effect onto the U 3 Si-Al and U 3 Si 2 -Al dispersion type of fuel element has been studied. The fuel material performs swelling during irradiation due to boehmite (Al 2 O 3 (H 2 O)) formation in which might occurs inside the meat and on the cladding surface, the interaction between the fuel and aluminium matrix that produce U(Al,Si) 3 phase, and the formation of fission gas bubble inside the fuel. At a constant fission density, the U 3 Si-Al fuel swelling is higher than that of U 3 Si 2 -Al fuel. The swellings of both fuels increase with the increasing of fission density. The difference of swelling behavior was caused by formation of large bubble gases generated from fission product of U 3 Si fuel and distributed non-uniformly over all of fuel zone. On the other hand, the U 3 Si 2 fission produced small bubble gases, and those were uniformly distributed. The growth rate of fission gas bubble in the U 3 Si fuel has shown high diffusivity, transformation into amorph material and thus decrease its mechanical strength

  3. Experimental identification for physical mechanism of fiber-form nanostructure growth on metal surfaces with helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takamura, S., E-mail: takamura@aitech.ac.jp [Faculty of Engineering, Aichi Institute of Technology, Yakusa-cho, Toyota 470-0392 (Japan); Uesugi, Y. [Faculty of Electrical and Computer Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192 (Japan)

    2015-11-30

    Highlights: • Initial growth process of fiber-form nanostructure on metal surfaces under helium ion irradiation is given based on experimental knowledge, where the pitting of original surface and forming nano-walls and/or loop-like nanostructure works as precursors. • The physical mechanism of fiber growth is discussed in terms of shear modulus of metals influenced by helium content as well as surface temperature. • The physical model explains the reason why tantalum does not make sufficiently grown nano-fibers, and the temperature dependence of surface morphology of titanium. - Abstract: The initial stage of fiber-form nanostructure growth on metal surface with helium plasma irradiation is illustrated, taking recent research knowledge using a flux gradient technique, and including loop-like nano-scale structure as precursors. The growth mechanism of fibers is discussed in terms of the shear modulus of various materials that is influenced by the helium content as well as the surface temperature, and the mobility of helium atoms, clusters and/or nano-bubbles in the bulk, loops and fibers. This model may explain the reason why tantalum does not provide fiber-form nanostructure although the loop-like structure was identified. The model also suggests the mechanism of an existence of two kinds of nanostructure of titanium depending on surface temperature. Industrial applications of such nanostructures are suggested in the properties and the possibilities of its growth on other basic materials.

  4. Facilities for studying radiation damage in nonmetals during irradiation

    International Nuclear Information System (INIS)

    Levy, P.W.

    1984-08-01

    Two facilities have been developed for making optical absorption, luminescence and other measurements on a single sample before, during and after irradiation. One facility uses 60 Co gamma rays and the other 0.5 to 3 MeV electrons from an accelerator. Optical relays function as spectrophotometers, luminescenc detectors, etc. All radiation sensitive components are outside of walk-in irradiation chambers; all measurement control and data recording is computerized. Irradiations are made at controlled temperatures between 5K and 900 0 C. The materials studied include glasses, quartz, alkali halides (especially natural rock salt), organic crystals, etc. As determined from color center measurements the damage formation rate in all materials studied at 25 0 C or above is strongly temperature dependent. The defect concentration during irradiation is usually much greater than that measured after irradiation. The fraction of defects annealing after irradiation and the annealing rate usually increases as the irradiation temperature increases. The completed studies demonstrate that, in most cases, the extent of maximum damage and the damage formation and annealing kinetics can be determined only by making measurements during irradiation

  5. Laser ablation of liquid surface in air induced by laser irradiation through liquid medium

    Science.gov (United States)

    Utsunomiya, Yuji; Kajiwara, Takashi; Nishiyama, Takashi; Nagayama, Kunihito; Kubota, Shiro; Nakahara, Motonao

    2010-10-01

    The pulse laser ablation of a liquid surface in air when induced by laser irradiation through a liquid medium has been experimentally investigated. A supersonic liquid jet is observed at the liquid-air interface. The liquid surface layer is driven by a plasma plume that is produced by laser ablation at the layer, resulting in a liquid jet. This phenomenon occurs only when an Nd:YAG laser pulse (wavelength: 1064 nm) is focused from the liquid onto air at a low fluence of 20 J/cm2. In this case, as Fresnel’s law shows, the incident and reflected electric fields near the liquid surface layer are superposed constructively. In contrast, when the incident laser is focused from air onto the liquid, a liquid jet is produced only at an extremely high fluence, several times larger than that in the former case. The similarities and differences in the liquid jets and atomization processes are studied for several liquid samples, including water, ethanol, and vacuum oil. The laser ablation of the liquid surface is found to depend on the incident laser energy and laser fluence. A pulse laser light source and high-resolution film are required to observe the detailed structure of a liquid jet.

  6. Contribution to the study of the effects of α-irradiation in nuclear glasses

    International Nuclear Information System (INIS)

    Abbas, A.

    2001-01-01

    The main topic of this work is to characterise the effects of α-disintegration in nuclear waste glasses. Experimental and numerical approaches have been considered. The structure of the French nuclear waste glass (R7T7) has been simulated using four- and six-oxides simplified glasses which contain the main elements of the R7T7 glass: SiO 2 , B 2 O 3 , Na 2 O, ZrO 2 , Al 2 O 3 and CaO. Four- and six-oxides glasses have been irradiated with 1 MeV-He + (ionisation) and 2.1 MeV-Kr 3+ (ionisation and atomic collisions) ions in order to reproduce the effects of the α-particle and of the recoil nucleus emitted during α-disintegration of actinides, and also to differentiate electronic and ballistic effects. Irradiated glasses have been characterised using several techniques, which have been adapted to the peculiarities of our samples (isolated material, small irradiated depth). The results point out the salient role of sodium in the observed modifications: depth concentration profiles obtained with RBS show an accumulation of sodium at the irradiated surface. We found a apparent acceleration of sodium release in leaching experiments which confirm that point. Modifications observed in Raman spectra of irradiated glasses show an increase of the polymerisation (increase of Q 3 /Q 2 ratio) due to sodium migration. In simplified glasses we have found that the modifications of mechanical properties by external irradiations reproduce the modifications observed in actinide doped nuclear glass (decrease of hardness and increase of fracture toughness). At the same time, we performed Molecular Dynamics simulations of a six-oxides glass. We have shown that the surface modifies the glass structure down to a depth of 10 Angstrom: modification of depth concentration profiles, decrease of the atomic coordination number (A1, B and Si). During cascades, we found that atomic displacements are easier near the surface. This behaviour is also observed when the glass is submitted to an

  7. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K.; Mishima, K.; Furuya, M.

    2003-01-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by γ-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by γ-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co γ-ray irradiation

  8. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  9. Study on the effect of ambient gas on nanostructure formation on metal surfaces during femtosecond laser ablation for fabrication of low-reflective surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smausz, Tomi, E-mail: tomi@physx.u-szeged.hu [MTA-SZTE Research Group on Photoacoustic Spectroscopy, University of Szeged, 6720 Szeged, Dóm tér 9 (Hungary); Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Csizmadia, Tamás [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Attosecond Light Pulse Source, ELI-Hu Nkft, H-6720 Szeged, Dugonics ter 13 (Hungary); Tápai, Csaba; Kopniczky, Judit [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Oszkó, Albert [Department of Physical Chemistry and Material Science, University of Szeged, H-6720 Szeged, Aradi vértanuk tere 1 (Hungary); Ehrhardt, Martin; Lorenz, Pierre; Zimmer, Klaus; Prager, Andrea [Leibniz-Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany); Hopp, Béla [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2016-12-15

    Highlights: • Metal surfaces were irradiated with femtosecond laser in different gas environments. • The reflectivity, morphology and chemical composition of the surfaces were studied. • Darkening was influenced by chemical and physical interaction of the plume and gas. • Molecular mass of the applied gas had an impact on the nanostructure formation. • For some of the used metals the oxide formation affected the reflective properties. - Abstract: Nanostructure formation on bulk metals (silver, gold, copper and titanium) by femtosecond Ti-sapphire laser irradiation (775 nm, 150 fs) is studied aiming the production of low-reflectivity surfaces and the better understanding of the development process. The experiments were performed in nitrogen, air, oxygen and helium environments at atmospheric pressure. The samples were irradiated with fluences in the 0.1–2 J/cm{sup 2} range and an average pulse number of 100 falling over a given area. The reflectivity of the treated surfaces was determined by a microspectrometer in the 450–800 nm range and their morphology was studied by scanning electron microscopy. The gas ambience influenced the results via two effects: formation processes and the chemically-induced modifications of the nanostructures. In case of He the nanoparticle aggregates–otherwise generally present–are predominantly missing, which leads to a lower darkening efficiency. The presence of oxygen enhances the darkening effect for copper mostly at lower fluences, while causes a slow increase in reflectivity in the case of titanium (in case of pure oxygen) in the high fluence range. The surface morphology in case of nitrogen and air were quite similar probably due to their close molecular mass values.

  10. Ion irradiation as a tool for modifying the surface and optical properties of plasma polymerised thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Daniel S. [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); Bazaka, Kateryna [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Siegele, Rainer [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Holt, Stephen A. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Jacob, Mohan V., E-mail: Mohan.Jacob@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia)

    2015-10-01

    Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I{sup 10+} ions to fluences of 1 × 10{sup 10} and 1 × 10{sup 12} ions/cm{sup 2}. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate’s surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.

  11. Influence of gamma irradiation on the surface morphology, XRD and thermophysical properties of silicide hexoboride

    Science.gov (United States)

    Mirzayev, Matlab N.; Mehdiyeva, Ravan N.; Garibov, Ramin G.; Ismayilova, Narmin A.; Jabarov, Sakin H.

    2018-05-01

    In this study, compounds of B6Si were irradiated using a 60Co gamma source that have an energy line of 1.25 MeV at the absorbed dose rates from 14.6 kGy to 194.4 kGy. Surface morphology images of the sample obtained by Scanning Electron Microscope (SEM) show that the crystal structure at a high absorbed doses (D ≥ 145.8kGy) starts to be destroyed. X-ray diffraction studies revealed that with increasing radiation absorption dose, the spectrum intensity of the sample was decreased 1.96 times compared with the initial value. Thermal properties were studied by Differential scanning calorimetry (DSC) method in the temperature range of 30-1000∘C.

  12. Thrombogenicity tests on ar-irradiated polycarbonate foils

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Gustavo F.; Rizzutto, Marcia A.; Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala; Tabacniks, Manfredo H., E-mail: g.ferraz@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Inst. de Fisica; Delgado, Adriana O. [Universidade Federal de Sao Carlos (UFSCAR), Sorocaba, SP (Brazil); Cunha, Tatiana F. [Biosintesis P and D do Brasil, Sao Paulo, SP (Brazil); Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Biotecnologia

    2013-07-01

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  13. Thrombogenicity tests on ar-irradiated polycarbonate foils

    International Nuclear Information System (INIS)

    Trindade, Gustavo F.; Rizzutto, Marcia A.; Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala; Tabacniks, Manfredo H.; Cunha, Tatiana F.; Higa, Olga Z.

    2013-01-01

    Understanding polymer surface properties is extremely important for the most wide range of their applications, from basic coating to the most complex composites and biomaterials. Low energy ion beam irradiation of polymer can improve such surface properties. By modifying its surface biocompatibility, polymers are excellent candidates for biomaterials, due to its malleability and low weight, when compared to metals. In this work, we irradiated 30-μm Bisphenol-A Polycarbonate foils with 23-keV Argon ion beam at six different doses. Aluminium foils were simultaneously irradiated in order to measure the doses by Rutherford Backscattering Spectroscopy. The surface modifications after the argon ion beam irradiation were analyzed by water contact angle measurements and atomic force microscopy. Platelet adhesion tests were used in order to investigate thrombogenicity, showing a growing tendency with the irradiated Argon dose. (author)

  14. Radiation and biophysical studies on cells and viruses. Progress report 1 July 1977--30 June 1978. [Particle beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Arthur; Ansevin, Allen T.; Corry, Peter M.

    1978-08-01

    Studies on genetic structure included arrangement of interphase and mitotic chromosomes, nucleoproteins, and DNA. Studies on analysis of sensitive sites by particle beam irradiation included location of cellular sites for mutation induction and cell transformation. Studies on radiation damage and repair and radiation as an investigative tool included damage to nuclear proteins and other model systems; detection and quantitation of cell surface antigens; interaction of hyperthermia and irradiation; radioinduced cell transformation alkaline elution studies of damage and repair; and low dose, low LET lethality. (HLW)

  15. Wholesomeness studies in the International Food Irradiation Project

    Energy Technology Data Exchange (ETDEWEB)

    Elias, P S [International Food Irradiation Project, Federal Research Centre for Nutrition

    1980-01-01

    Despite more than 25 years of history as an effective food preservation method, food irradiation is still subject to strict legislative control in many countries and scientific investigations are required to provide reassurance as to the safety of irradiated food. The International Food Irradiation Project was set up on October 14, 1970 to facilitate the objective evaluation of the wholesomeness of irradiated foodstuffs. Its major activities are; (1) wholesomeness testing of irradiated foods, (2) research on and investigations into the methodology of wholesomeness testing, (3) dissemination of information, and (4) assisting national and international authorities in their consideration of acceptance of irradiated food. In particular, the project over the past nine years had been devoted to the provision of data to national health authorities and international bodies. Up to now, 23 studies were and are being carried out for the project under contract. Subjects for the studies include wheat, wheat flour, potatoes, fish, rice, mango, spices, dried dates, onions and cocoa beans.

  16. Wholesomeness studies in the International Food Irradiation Project

    International Nuclear Information System (INIS)

    Elias, P.S.

    1980-01-01

    Despite more than 25 years history as an effective food preservation method, food irradiation is still subject to strict legislative control in many countries and it is required to carry out scientific investigations to reassure the safety of irradiated food. The International Food Irradiation Project was set up on October 14, 1970 to facilitate the objective evaluation of the wholesomeness of irradiated foodstuffs. Its major activities are; (1) wholesomeness testing of irradiated foods, (2) research on and investigations into the methodology of wholesomeness testing, (3) dissemination of information, and (4) assisting national and international authorities in their consideration of acceptance of irradiated food. In particular, the project over the past nine years had been devoted to the provision of data to national health authorities and international bodies. Up to now, 23 studies were and are being carried out for the project under contract. Subject to the studies include wheat, wheat flour, potatoes, fish, rice, mango, spices, dried dates, onions and cocoa beans. (Kitajima, A.)

  17. Study for the identification of irradiated carbohydrate containing food

    International Nuclear Information System (INIS)

    Scherz, H.

    1991-01-01

    The study was undertaken to find radiation specific substances of carbohydrates and methods to detect those ones in irradiated food. Deoxycompounds have been found by irradiation of carbohydrates. It could be stated, that the formation of these substances was radiation specific. The irradiation of wheat for desinfestation was high actual at the moment of this study and therefore it was tried to find these deoxycompounds in irradiated potato starch and wheat flour. These substances were isolated and one of them was identified as w-hydroxymaltol. This substance was also found in irradiated wheat flour. The dependence between the amount of w-hydroxymaltol and the irradiation dosage was determined for both materials. (7 refs, 2 figs)

  18. Electron microscope study of irradiated beryllium oxide

    International Nuclear Information System (INIS)

    Bisson, A.A.

    1965-06-01

    The beryllium oxide is studied first by fractography, before and after irradiation, using sintered samples. The fractures are examined under different aspects. The higher density sintered samples, with transgranular fractures are the most interesting for a microscopic study. It is possible to mark the difference between the 'pores' left by the sintering process and the 'bubbles' of gases that can be produced by former thermal treatments. After irradiation, the grain boundaries are very much weakened. By annealing, it is possible to observe the evolution of the gases produced by the reaction (n, 2n) and (n. α) and gathered on the grain boundaries. The irradiated beryllium oxide is afterwards studied by transmission. For that, a simple method has been used: little chips of the crushed material are examined. Clusters of point defects produced by neutrons are thus detected in crystals irradiated at the three following doses: 6 x 10 19 , 9 x 10 19 and 2 x 10 20 n f cm -2 at a temperature below 100 deg. C. For the irradiation at 6 x 10 19 n f cm -2 , the defects are merely visible, but at 2 x l0 20 n f cm -2 the crystals an crowded with clusters and the Kikuchi lines have disappeared from the micro-diffraction diagrams. The evolution of the clusters into dislocation loops is studied by a series of annealings. The activation energy (0,37 eV) calculated from the annealing curves suggests that it must be interstitials that condense into dislocation loops. Samples irradiated at high temperatures (650, 900 and 1100 deg. C) are also studied. In those specimens the size of the loops is not the same as the equilibrium size obtained after out of pile annealing at the same temperature. Those former loops are more specifically studied and their Burgers vector is determined by micro-diffraction. (author) [fr

  19. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  20. Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL

    CERN Document Server

    Biao, Z J; Gao Xue Ju; He Wei; Huang Yu Ying; Li Yong Gui; LiuNianQing; Wang Min Kai; Wu Gan; Yan Xue Pin; Zhang Guo Qing

    2001-01-01

    A free electron laser (FEL) with its characteristics of wide wavelength tunability, ultrashort pulse time structure, and high peak power density is predominantly superior to all other conventional lasers in applications. Several experimental studies on mid-infrared FEL irradiation on dental enamel and dentine were performed at the Beijing FEL. Experimental aims were to investigate changes in the hardness, ratios of P to Ca and Cs before and after irradiation on samples with a characteristic absorption wavelength of 9.66 mu m, in the colors of these sample surfaces after irradiation with different wavelengths around the peak wavelength. The time dependence of temperature of the dentine sample was measured with its ps pulse effects compared to that with a continuous CO sub 2 laser. FTIR absorption spectra in the range of 2.5-15.4 mu m for samples of these hard dental substances and pure hydroxyapatite were first examined to decide their chemical components and absorption maximums. Primary experimental results w...

  1. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  2. Biochemical and Tissue Studies on Post Irradiation Recovery in Mammals

    International Nuclear Information System (INIS)

    Abdou, M.I.M.

    2004-01-01

    three main studies were performed in this thesis, namely, mortality and survival study, biochemical studies, and studies on tissue alterations cobalt-60 gamma irradiation for low let was used for the external whole body irradiation of the irradiated animal groups. a total number of animals of 722 virgin female adult wister rats of approximately the same age and weight were used for the three studies that were performed, including the control and irradiated animal groups. the animals were housed and kept with special care at fixed temperature, humidity and diet. the study on mortality and survival included 370 animals divided into control and groups irradiated with 4,5,6,7,8 and 9 Gy. this study was followed up for one year to record the number and date of animal deaths for the different irradiated groups. for the 8 and 9 Gy irradiated groups the follow up ended after 12 weeks and 11 days respectively when animal mortality reached 100%. the maximum percent mortality was noted at the second week (3.3,8,14 and 29%) for the 4,5,6 and 7 Gy irradiated groups respectively. for the 8 and 9 Gy irradiated groups, the maximum percent mortality was noted at the first week (42.9 and 90% respectively). regression equations were applied for the percent of mortality of the 5-8 Gy irradiated groups to estimate the LD 50/30, which was found to be 6.4 Gy

  3. Consumer acceptance of irradiated food products: an apple marketing study

    International Nuclear Information System (INIS)

    Terry, D.E.; Tabor, R.L.

    1990-01-01

    This study was exploratory in nature, with emphasis on initial purchases and not repeat purchases or long-term loyalties to either irradiated or non-irradiated produce. The investigation involved the actual sale of irradiated and non-irradiated apples to consumers. Limited information about the process was provided, and apples were sold at roadside stands. Prices for the irradiated apples were varied while the price for the non-irradiated apples was held constant. Of these 228 West-Central Missouri shoppers, 101 (44%) bought no irradiated apples, 86 (38%) bought only irradiated apples, and 41 (18%) bought some of both types, Results of probit regressions indicated three significant independent variables. There was an inverse relationship between the price of irradiated apples and the probability of purchasing irradiated apples. There was a positive relationship between the purchasers’ educational level and the probability of purchasing irradiated apples. Predicted probabilities for belonging to categories in probit models were computed. Depending on particular equation specification, correctly placed were approximately 70 percent of the purchasers of the two categories--bought only non-irradiated apples, or bought some of both irradiated and non-irradiated apples or only irradiated apples. This study suggests that consumers may be interested in food irradiation as a possible alternative or supplement to current preservation techniques

  4. In-situ high temperature irradiation setup for temperature dependent structural studies of materials under swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Kulriya, P.K.; Kumari, Renu; Kumar, Rajesh; Grover, V.; Shukla, R.; Tyagi, A.K.; Avasthi, D.K.

    2015-01-01

    An in-situ high temperature (1000 K) setup is designed and installed in the materials science beam line of superconducting linear accelerator at the Inter-University Accelerator Centre (IUAC) for temperature dependent ion irradiation studies on the materials exposed with swift heavy ion (SHI) irradiation. The Gd 2 Ti 2 O 7 pyrochlore is irradiated using 120 MeV Au ion at 1000 K using the high temperature irradiation facility and characterized by ex-situ X-ray diffraction (XRD). Another set of Gd 2 Ti 2 O 7 samples are irradiated with the same ion beam parameter at 300 K and simultaneously characterized using in-situ XRD available in same beam line. The XRD studies along with the Raman spectroscopic investigations reveal that the structural modification induced by the ion irradiation is strongly dependent on the temperature of the sample. The Gd 2 Ti 2 O 7 is readily amorphized at an ion fluence 6 × 10 12 ions/cm 2 on irradiation at 300 K, whereas it is transformed to a radiation-resistant anion-deficient fluorite structure on high temperature irradiation, that amorphized at ion fluence higher than 1 × 10 13 ions/cm 2 . The temperature dependent ion irradiation studies showed that the ion fluence required to cause amorphization at 1000 K irradiation is significantly higher than that required at room temperature irradiation. In addition to testing the efficiency of the in-situ high temperature irradiation facility, the present study establishes that the radiation stability of the pyrochlore is enhanced at higher temperatures

  5. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  6. Preliminary studies on 1-vinyl-2-pyrrolidone grafting onto cellulose by pre-irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Severich, Patrick; Dutra, Rodrigo da Costa; Kodama, Yasko, E-mail: ykodama@ipen.br, E-mail: patrick.severich@ipen.br, E-mail: rodrigo.dutra@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN-CNEN/SP), São Paulo, SP (Brazil)

    2017-07-01

    Cellulose is considered a renewable biopolymer most abundant in nature. Better functional surfaces can be Obtained by modifying cellulose. On the other hand, poly vinyl pyrrolidone, PVP, is a synthetic nontoxic, water-soluble polymer frequently used in an extensive variety of applications including several pharmaceutical applications. Grafting 1-vinyl-2-pyrrolidone, NVP, onto polymeric cellulose can be obtained by ionizing radiation. Ionizing radiation grafting can be affected by several factors as environment, solvent, monomer concentration, temperature of graft reaction. Grafting by ionizing radiation can be performed by three methods, pre-irradiation, oxidation by peroxide and simultaneous irradiation. In this study, it was used pre-irradiation method of cellulose. Paper filter without ash, NVP without purification was used in this study. Paper samples were exposed to electron beam from Dynamitron Accelerator with radiation absorbed dose of 25 kGy. Influence of NVP concentration, temperature of reaction after irradiation on degree of grafting (DG) was studied. Also, cellulose radicals of grafted paper samples was studied by electron paramagnetic resonance using a Bruker X-band ESR at room temperature just after heating reaction. Small decrease of cellulose radicals was observed with increasing reaction temperature. It was observed DG small increase with increasing concentration of monomer in solution of water ethanol 50-50 v:v and rising temperature of reaction. Further tests using simultaneous method of grafting of NVP in cellulose paper, in water:ethanol 75:25 v:v solution, induced by gamma irradiation were performed. It was observed homopolymerization forming PVP with increasing monomer concentration. (author)

  7. Preliminary studies on 1-vinyl-2-pyrrolidone grafting onto cellulose by pre-irradiation method

    International Nuclear Information System (INIS)

    Severich, Patrick; Dutra, Rodrigo da Costa; Kodama, Yasko

    2017-01-01

    Cellulose is considered a renewable biopolymer most abundant in nature. Better functional surfaces can be Obtained by modifying cellulose. On the other hand, poly vinyl pyrrolidone, PVP, is a synthetic nontoxic, water-soluble polymer frequently used in an extensive variety of applications including several pharmaceutical applications. Grafting 1-vinyl-2-pyrrolidone, NVP, onto polymeric cellulose can be obtained by ionizing radiation. Ionizing radiation grafting can be affected by several factors as environment, solvent, monomer concentration, temperature of graft reaction. Grafting by ionizing radiation can be performed by three methods, pre-irradiation, oxidation by peroxide and simultaneous irradiation. In this study, it was used pre-irradiation method of cellulose. Paper filter without ash, NVP without purification was used in this study. Paper samples were exposed to electron beam from Dynamitron Accelerator with radiation absorbed dose of 25 kGy. Influence of NVP concentration, temperature of reaction after irradiation on degree of grafting (DG) was studied. Also, cellulose radicals of grafted paper samples was studied by electron paramagnetic resonance using a Bruker X-band ESR at room temperature just after heating reaction. Small decrease of cellulose radicals was observed with increasing reaction temperature. It was observed DG small increase with increasing concentration of monomer in solution of water ethanol 50-50 v:v and rising temperature of reaction. Further tests using simultaneous method of grafting of NVP in cellulose paper, in water:ethanol 75:25 v:v solution, induced by gamma irradiation were performed. It was observed homopolymerization forming PVP with increasing monomer concentration. (author)

  8. Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, R.P. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); Kumar, T. [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123029 (India); Mittal, A.K. [Department of Physics, University of Allahabad, Allahabad, UP 211002 (India); K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Dwivedi, S., E-mail: suneetdwivedi@gmail.com [K Banerjee Centre of Atmospheric and Ocean Studies, University of Allahabad, Allahabad, UP 211002 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, PO Box 10502, New Delhi 110 067 (India)

    2015-08-30

    Highlights: • Fractal analysis of Si(1 0 0) surface morphology at varying ion fluences. • Autocorrelation function and height–height correlation function as fractal measures. • Surface roughness and lateral correlation length increases with ion fluence. • Ripple pattern of the surfaces is found at higher ion fluences. • Wavelength of the ripple surfaces is computed for each fluence. - Abstract: Si (1 0 0) is bombarded with 200 keV Ar{sup +} ion beam at oblique incidence with fluences ranging from 3 × 10{sup 17} ions/cm{sup 2} to 3 × 10{sup 18} ions/cm{sup 2}. The surface morphology of the irradiated surfaces is captured by the atomic force microscopy (AFM) for each ion fluence. The fractal analysis is performed on the AFM images. The autocorrelation function and height–height correlation function are used as fractal measures. It is found that the average roughness, interface width, lateral correlation length as well as roughness exponent increase with ions fluence. The analysis reveals the ripple pattern of the surfaces at higher fluences. The wavelength of the ripple surfaces is computed for each ion fluence.

  9. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  10. Hardness and stability of a carburized surface layer on AISI 316L stainless steel after irradiation in a spallation neutron environment

    International Nuclear Information System (INIS)

    McClintock, David A.; Hyres, James W.; Vevera, Bradley J.

    2014-01-01

    The inner surfaces of mercury target vessels at the Spallation Neutron Source (SNS) experience material erosion caused by proton-beam induced cavitation of the liquid mercury. One approach developed and deployed to inhibit erosion of the target vessel material was surface hardening via a proprietary low-temperature carburization treatment, called Kolsterising®, to the target surfaces most susceptible to cavitation-induced erosion. Previous testing has shown that the hardened surface produced by the Kolsterising® treatment can delay the onset of erosion and inhibit erosion once initiated. But the stability of the carbon atmosphere in the treated surface layer after radiation to doses prototypic to the SNS target was unknown. Therefore, as part of the target Post Irradiation Examination program at the SNS, optical microscopy and microhardness testing were performed on material sampled from the first and second operational SNS target vessels. Optical micrographs contained no noticeable precipitation in the super-saturated carbon layer extending into the base material and several micrographs contained evidence of a proposed mechanism for mass wastage from the vessel surface. The hardened layer was characterized using Vickers microhardness testing and results show that the shape of hardness profile of the treated layer corresponded well with known pre-irradiation hardness values, though the microhardness results show some hardening occurred during irradiation. The results suggest that the hardened surface layer produced by the Kolsterising® treatment is stable at the operational temperatures and dose levels experienced by the first and second operational SNS target modules

  11. Generation of amorphous surface layers in LiNbO3 by ion-beam irradiation: thresholding and boundary propagation

    International Nuclear Information System (INIS)

    Olivares, J.; Garcia, G.; Agullo-Lopez, F.; Agullo-Rueda, F.; Kling, A.; Soares, J.C.

    2005-01-01

    The refractive-index profiles induced by high-energy (5 MeV, 7.5 MeV) silicon irradiation in LiNbO 3 have been systematically determined as a function of ion fluence in the range 10 13 -10 15 cm -2 . At variance with irradiations at lower energies, an optically isotropic ('amorphous') homogeneous surface layer is generated whose thickness increases with fluence. These results have been associated with an electronic excitation mechanism. They are discussed in relation to the well-documented phenomenon of latent (amorphous) track generation under ion irradiation, requiring a threshold value S e,th for the electronic stopping power S e . Our optical data have yielded a value of ∼5 keV/nm for such a threshold, within the range reported by independent single-track measurements. The propagation of the amorphous boundary into the crystal during irradiation indicates that the threshold value decreases on increasing the fluence. Complementary Rutherford backscattering-channeling and micro-Raman (on samples irradiated at 30 MeV) experiments have been performed to monitor the induced structural changes. (orig.)

  12. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  13. Flux and energy deposition distribution studies inside the irradiation room of the portuguese 60Co irradiation facility

    International Nuclear Information System (INIS)

    Portugal, Luis; Oliveira, Carlos

    2008-01-01

    Full text: In December 2003 the irradiator of the Portuguese 60 Co irradiation facility, UTR, was replenished. Eighteen new sources were loaded and the older ones (156) were rearranged. The result was an irradiator with about 10.2 P Bq of total activity. The active area of the irradiator has also increased. Now it uses twenty five of the thirty tubes of the source rack, nine more than in the previous geometry. This facility was designed mainly for sterilisation of medical devices. However it is also used for the irradiation of other products such as cork stoppers, plastics and a limited number of food and feed. The purpose of this work is to perform dosimetric studies inside the irradiation room of a 60 Co irradiation facility, particularly, the flux and energy deposition distributions. The MCNPX code was used for the simulation of the facility. The track average mesh tally capabilities of MCNPX were used to plot the photon flux and energy deposition distributions. This tool provides a fast way for flux and energy deposition mapping. The absorbed dose distribution near the walls of the irradiation room was also calculated. Instead of using meshtallys as before, the average absorbed dose inside boxes lined with the walls was determined and afterwards a plot of its distribution was made. The absorbed dose rates obtained ranged from 5 to 500 Gy.h -1 depending on material being irradiated in process and the location on the wall. These positions can be useful for fixed irradiation purposes. Both dosimetric studies were done considering two different materials being irradiated in the process: cork stoppers and water, materials with quite different densities (0.102 and 1 g.cm-3, respectively). These studies showed some important characteristics of the radiation fields inside the irradiation room, namely its spatial heterogeneity. Tunnelling and shadow effects were enhanced when the product boxes increases its density. Besides a deeper dosimetric understanding of the

  14. Depth-dependent and surface damages in MgAl sub 2 O sub 4 and MgO irradiated with energetic iodine ions

    CERN Document Server

    Aruga, T; Ohmichi, T; Okayasu, S; Kazumata, Y; Jitsukawa, S

    2002-01-01

    Samples of polycrystalline ceramics of MgAl sub 2 O sub 4 irradiated at the ambient temperature with 85 MeV I sup 7 sup + iodine ions to doses up to 1x10 sup 1 sup 9 m sup - sup 2 is observed to be amorphized up to depths around 6 mu m from the ion-incident surface for a dose of 1.2x10 sup 1 sup 9 m sup - sup 2 , through a cross-sectional transmission electron microscopy. A step height of 1 mu m is formed across the border between the masked and irradiated regions of the surface. The height of the step is observed to increase sharply from the irradiated area towards the edge at the border, forming a peak as tall as 1.5 mu m. A glossy, silver-gray film with a thickness less than 0.1 mu m is unexpectedly observed to have formed on the surface of samples of MgAl sub 2 O sub 4 and MgO, in about 3.5 years aging after the irradiation to 1.2x10 sup 1 sup 9 m sup - sup 2 , being left untouched in the air. The film is easily peeled off along grain boundaries and found to be amorphous from the electron diffraction patt...

  15. Studies on potato irradiation in the G.D.R

    International Nuclear Information System (INIS)

    Luther, Th.; Huebner, G.; Grahn, Ch.; Doellstaedt, R.

    1990-01-01

    The studies of potato irradiation have been conducted in the framework of the National Food Irradiation Research Project for 4 years. Although in the G.D.R. the use of chemical sprout inhibitors is allowed, potato irradiation can be an alternative technique for potato processing. Before irradiation a wound healing period of approx. 2 weeks is absolutely necessary to protect the potatoes from Fusarium. The method that presents the minimum risk of damage is irradiation in containers. Economic evaluations for the irradiation of potatoes are also made. (author)

  16. Correlation between surface phonon mode and luminescence in nanocrystalline CdS thin films: An effect of ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pragati, E-mail: pkumar.phy@gmail.com; Agarwal, Avinash [Department of Physics, Bareilly College, Bareilly 243 005, Uttar Pradesh (India); Saxena, Nupur; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)

    2014-07-28

    The influence of swift heavy ion irradiation (SHII) on surface phonon mode (SPM) and green emission in nanocrystalline CdS thin films grown by chemical bath deposition is studied. The SHII of nanocrystalline CdS thin films is carried out using 70 MeV Ni ions. The micro Raman analysis shows that asymmetry and broadening in fundamental longitudinal optical (LO) phonon mode increases systematically with increasing ion fluence. To analyze the role of phonon confinement, spatial correlation model (SCM) is fitted to the experimental data. The observed deviation of SCM to the experimental data is further investigated by fitting the micro Raman spectra using two Lorentzian line shapes. It is found that two Lorentzian functions (LFs) provide better fitting than SCM fitting and facilitate to identify the contribution of SPM in the observed distortion of LO mode. The behavior of SPM as a function of ion fluence is studied to correlate the observed asymmetry (Γ{sub a}/Γ{sub b}) and full width at half maximum of LO phonon mode and to understand the SHII induced enhancement of SPM. The ion beam induced interstitial and surface state defects in thin films, as observed by photoluminescence (PL) spectroscopy studies, may be the underlying reason for enhancement in SPM. PL studies also show enhancement in green luminescence with increase in ion fluence. PL analysis reveals that the variation in population density of surface state defects after SHII is similar to that of SPM. The correlation between SPM and luminescence and their dependence on ion irradiation fluence is explained with the help of thermal spike model.

  17. Saturation of plastic deformation by swift heavy ion irradiation: Ion hammering vs. surface effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferhati, Redi; Dautel, Knut; Bolse, Wolfgang [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, Universitaet Stuttgart (Germany); Fritzsche, Monika [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2012-07-01

    Swift heavy ion (SHI) induced plastic deformation is a subject of current research and scientific discussion. This *Ion Hammering* phenomenon was first observed 30 years ago in amorphous materials like metallic glasses. About 10 years ago, Feyh et al. have shown that stress generation and *Ion Hammering* result in self-organization of thin NiO-films on Si-wafers into a sub-micron lamellae-like structure under grazing angle irradiation. The growth of the lamellae was found to saturate as soon as they have reached a thickness of a few hundreds of nm. Here we show our latest results on the restructuring of pre-patterned thin oxide films by SHI under various irradiation conditions. The experiments were performed by employing (in-situ) scanning electron microscopy, and were complemented by (in-situ) energy dispersive x-ray analysis and atomic force microscopy. As we will show, the saturation behavior can be understood as a competition of *Ion Hammering* and surface energy effects, while the unexpected fact, that the initially crystalline films undergo *Ion Hammering* can possibly be attributed to oxygen loss and thus amorphization during irradiation.

  18. Cost/benefit study on date disinfestation by gamma irradiation in Algeria

    International Nuclear Information System (INIS)

    Mahlous, M.

    2002-01-01

    To establish the irradiation technology, one must have a holistic approach to the technology of food irradiation in order to assure a maximum utilization rate of the facility. The assumptions in this study are based on a free standing multipurpose irradiation facility, the throughput of which is expressed in t·kGy/year, and the unit cost of the treatment in US $/t·kGy. These values may then be applied for the calculation of the treatment cost of any food commodity, according to the irradiation dose needed. The study showed that irradiation treatment of dates is profitable and that the cost of irradiation does not exceed 1.6% of the selling price of the product. Post harvest losses may be considerably reduced thanks to irradiation treatment. A comparative study between irradiation and cold storage showed that irradiation will cost 30% less than cold storage. This study is completed by an evaluation of consumer acceptance of irradiated food products. (author)

  19. Temperature effect of irradiated target surface on distribution of nanoparticles formed by implantation

    CERN Document Server

    Stepanov, A L; Popok, V N

    2001-01-01

    The composition layers, containing the metal nanoparticles, synthesized thorough implantation of the Ag sup + ions with the energy of 60 keV and the dose of 3 x 10 sup 1 sup 6 ion/cm sup 2 into the sodium-calcium silicate glass by the ion current of 3 mu A/cm sup 2 and the sublayer temperature of 35 deg C are studied. The obtained implantation results are analyzed in dependence on the temperature effects, developing for the glass samples of various thickness. The data on the silver distribution, the metal nanoparticles formation and growth by depth are obtained from the optical reflection spectra. It is demonstrated that minor changes in the surface temperature of the irradiated glass sublayer lead to noticeable diversities in the regularities of the nanoparticles formation in the sample volume

  20. Synthesis of Au nanoparticles at the surface and embedded in carbonaceous matrix by 150 keV Ar ion irradiation

    International Nuclear Information System (INIS)

    Prakash, Jai; Tripathi, Jalaj; Tripathi, A; Kumar, P; Asokan, K; Avasthi, D K; Rigato, V; Pivin, J C; Chae, Keun Hwa; Gautam, Sanjeev

    2011-01-01

    We report on synthesis of spherical Au nanoparticles at the surface and embedded in carbonaceous matrix by 150 keV Ar ion irradiation of thin Au film on polyethyleneterepthlate (PET). The pristine and irradiated samples are characterized by Rutherford backscattering spectrometry (RBS), atomic force microscopy, scanning electron microscopy and transmission electron microscopy (TEM) techniques. RBS spectra reveal the sputtering of Au film and interface mixing, increasing with increasing fluence. Surface morphology shows that at the fluence of 5 x 10 15 ions cm -2 , dewetting of thin Au film begins and partially connected nanostructures are formed whereas, at the higher fluence of 5 x 10 16 ions cm -2 , isolated spherical Au nanoparticles (45 ± 20 nm) are formed at the surface. Cross-sectional TEM observations also evidence the Au nanoparticles at the surface and mixed metal-polymer region indicating the formation of nanocomposites with small Au nanoparticles. The results are explained by the crater formation, sputtering followed by dewetting of the thin Au film and interdiffusion at the interface, through molten zones due to thermal spike induced by Ar ions.

  1. Dedicated Tool for Irradiation and Electrical Measurement of Large Surface Samples on the Beamline of a 2.5 Mev Pelletron Electron Accelerator: Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Lefèvre Jérémie

    2017-01-01

    After a brief description of the SIRIUS irradiation facility hosted at Laboratoire des Solides Irradiés (LSI, this paper gives detailed information about the Large Surface Irradiated-Cell (LSIC device. Preliminary results obtained during the ongoing qualification phase of the setup are also discussed.

  2. Study on determination method of identifying irradiated chicken

    International Nuclear Information System (INIS)

    Guo Liping; Yu Xuejun; Yu Menghong; Fu Junjie; Zhang Shimin; Bao Jinsong

    2003-01-01

    The effects of gamma irradiation on the activities of aleipsis, peroxidase, perhydrol catalase and the peroxide values in chicken oil and effects of different storage time on self-oxidation of fat and lipa in irradiated chicken were studied. The results showed that the activities of aleipsis and perhydrol catalase in irradiated chicken decreased with increasing doses, and the peroxide activity and peroxide value of lipa increased with increase of doses. No significant effect of storage time on peroxide value was observed in the irradiated chicken

  3. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  4. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, S.; Campbell, C.A.

    1993-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 1800 deg F) and to simulate Regulatory Guide 1.99 database materials (austenitized at 1600 deg. F). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (U. of Michigan Test Reactor) which had never been used for this type of irradiation program. Materials taken from plate surface locations (vs. 1/4T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, is maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (500 deg. F and 550 deg. F) to determine the effect of irradiation temperature on embrittlement. The preliminary results of the irradiation program show an increase in T 30 shift of 69 deg. F for a decrease in irradiation temperature of 50 deg. F. The results suggest that for nickel bearing steels, the superior toughness of plate surface material is maintained after irradiation and for the copper content tested, nickel had no apparent effect on irradiation response. No apparent microstructure

  5. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany); Doyle, S. [Synchrotron Light Source ANKA, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviations from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.

  6. Some wholesomeness studies on irradiated Iraqi dates

    International Nuclear Information System (INIS)

    Al Rawi, A.M.; Hamoudi, H.I.

    1981-01-01

    Iraqi dates (Zahdi and Khestawi) were irradiated at different dose levels (0 to 1500 krad) to extend their shelf-lives. Samples irradiated at 150 krad showed no change in the behaviour studies of tested Swiss albino mice. Fungi were found to have a constant rate of growth on the syrup irradiated dates. Chemical products such as malondialdehyde, deoxy sugars, acids and reducing sugars were quantified. In conclusion, 150 krad is a convenient dose to extend the shelf-lives of the tested dates and is therefore recommended. (author)

  7. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    Science.gov (United States)

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  8. [Alaskan commodities irradiation project: An options analysis study

    International Nuclear Information System (INIS)

    Zarling, J.P.; Swanson, R.B.; Logan, R.R.

    1989-09-01

    The ninety-ninth US Congress commissioned a six-state food irradiation research and development program to evaluate the commercial potential of this technology. Hawaii, Washington, Iowa, Oklahoma and Florida as well as Alaska have participated in the national program; various food products including fishery products, red meats, tropical and citrus fruits and vegetables have been studied. The purpose of the Alaskan study was to review and evaluate those factors related to the technical and economic feasibility of an irradiator in Alaska. This options analysis study will serve as a basis for determining the state's further involvement in the development of food irradiation technology

  9. A study on displacement of crystalline diffraction peaks in electron-beam irradiated filter paper cellulose

    International Nuclear Information System (INIS)

    Zhou Ruimin; Xiang Qun; Song Jing

    1997-01-01

    It is found that the crystalline diffraction angles of the electron-beam irradiated filter paper cellulose shift regularly when the irradiation dose is increased. The experiments indicate that the molecules between crystalline area and amorphous area in the filter paper cellulose will be degraded by the irradiation and the cellulose molecules in the surface of crystal will come off, thus the microcrystalline dimension will be reduced and the diffraction angle will become smaller. The fact that intensity of the 002 peak for filter paper samples decreases gradually with the increasing storage time can be attributed to the post-irradiation effect

  10. [Influence of different surface treatments on porcelain surface topography].

    Science.gov (United States)

    Tai, Yinxia; Zhu, Xianchun; Sen, Yan; Liu, Chang; Zhang, Xian; Shi, Xueming

    2013-02-01

    To evaluate the influence of different surface treatments on porcelain surface topography. Metal ceramic prostheses in 6 groups were treated according to the different surface treatment methods, and the surface topography was observed through scanning electron microscope (SEM). Group A was the control one (untreated), group B was etched by 9.6% hydrofluoric acid(HF), group C was deglazed by grinding and then etched by 9.6% HF, group D was treated with Nd: YAG laser irradiation(0.75 W) and HF etching, group E was treated with Nd: YAG laser irradiation (1.05 W) and HF etching, and group F was treated with laser irradiation (1.45 W) and HF etching. Surface topography was different in different groups. A lot of inerratic cracks with the shapes of rhombuses and grid, and crater with a shape of circle were observed on the ceramic surface after treatment with energy parameters of 1.05 W Nd: YAG laser irradiation and 9.6% HF etching (group E). Surface topography showed a lot of concaves on the inner wall of the cracks, and the concaves with diameter of 1-5 microm could be observed on the inner wall of the holes, which had a diameter of 20 microm under SEM. The use of Nd: YAG laser irradiation with the energy parameters of 1.05 W and the HF with a concentration of 9.6% can evenly coarsen the porcelain surface, that is an effective surface treatment method.

  11. Study on silk yellowing induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Tsukada, Masuhiro; Aoki, Akira

    1985-01-01

    The changes in the yellow color of silk threads with total dose of irradiation applied were described and studied by a colorimetric method and by monochrome photography. The change into a yellow color of the specimen in the course of irradiation was clearly detected in photographs using filters, 2B and SC 56 under light conditions at the wavelength of 366 nm. The b/L value measured by colorimetry in undegummed and degummed silk fibers sharply increased in the early stage of irradiation. Yellow color indices (b/L) of the specimen subjected to gamma-irradiation continued to increase and the yellow color of the silk threads became more pronounced above a total dose of irradiation of 21 Mrad. The b/L value of the undegummed silk fiber which had deen irradiated was about 2 times that of the degummed silk fiber. (author)

  12. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  13. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    International Nuclear Information System (INIS)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-01-01

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10"1"7 m"−"3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  14. Effect of irradiation in nanocomposite films of LLDPE

    International Nuclear Information System (INIS)

    Jagtap, R.N.; Shaikh, J.; Anandakrishnan, R.; Sharma, A.K.; Varier, P.S.

    2009-01-01

    Melt compounding was used for the preparation of LLDPE/MMT nanocomposite. The films were irradiated with gamma irradiation to study its mechanical, optical, thermal properties, barrier properties. Montmorillonite clay was treated with cationic emulsifier, to modify the surface properties by HCl and functionalizing with acetic acid. These treated clays were then incorporated in LLDPE to prepare nanocomposite films and then it is irradiated with gamma rays for different dosages of irradiation varying from 0 to 30 kGy, which can be used for food packaging applications. These nanocomposites were characterized by XRD and FTIR. (author)

  15. Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural metals

    International Nuclear Information System (INIS)

    Xu Donghua; Wirth, Brian D.; Li Meimei; Kirk, Marquis A.

    2012-01-01

    We present a combinatorial approach that integrates state-of-the-art transmission electron microscopy (TEM) in situ irradiation experiments and high-performance computing techniques to study irradiation defect dynamics in metals. Here, we have studied the evolution of visible defect clusters in nanometer-thick molybdenum foils under 1 MeV krypton ion irradiation at 80 °C through both cluster dynamics modeling and in situ TEM experiments. The experimental details are reported elsewhere; we focus here on the details of model construction and comparing the model with the experiments. The model incorporates continuous production of point defects and/or small clusters, and the accompanying interactions, which include clustering, recombination and loss to the surfaces that result from the diffusion of the mobile defects. To account for the strong surface effect in thin TEM foils, the model includes one-dimensional spatial dependence along the foil depth, and explicitly treats the surfaces as black sinks. The rich amount of data (cluster number density and size distribution at a variety of foil thickness, irradiation dose and dose rate) offered by the advanced in situ experiments has allowed close comparisons with computer modeling and permitted significant validation and optimization of the model in terms of both physical model construct (damage production mode, identities of mobile defects) and parameterization (diffusivities of mobile defects). The optimized model exhibits good qualitative and quantitative agreement with the in situ TEM experiments. The combinatorial approach is expected to bring a unique opportunity for the study of radiation damage in structural materials.

  16. Trends in total column ozone over Australia and New Zealand and its influence on clear-sky surface erythemal irradiance

    International Nuclear Information System (INIS)

    Bodeker, G. E.

    1995-01-01

    Australia and New Zealand are two of the countries closest to the Antarctic ozone depletion and may therefore be 'at risk' as a result of the associated increases in surface ultraviolet (UV) radiation. To investigate the possible impact of mid-latitude ozone decreases on surface erythemal irradiances, monthly mean total ozone has been calculated from daily total ozone mapping spectrometer data for 5 Australian cities (Canberra, Hobart, Melbourne, Perth and Sydney) and 3 New Zealand cities (Auckland, Christchurch and Wellington) from 1979 to 1992. These values have then been used as inputs to a single layer model to calculate noon clear-sky global UV irradiances and associated erythemal irradiances. In addition, the monthly mean ozone data have been modelled statistically for each location to reveal a long-term linear trend, an annual variation, a Quasi-Biennial Oscillation (QBO), a solar cycle component and a semi-annual (6 month) signal. Coefficients from these statistical models have been used to estimate monthly mean ozone and noon clear-sky erythemal irradiances to the year 2000 for each city. It is assumed that the rate of increase of stratospheric chlorine over the remainder of the century will remain constant. Given that there is some evidence that the rate of increase is decreasing, the results present here should be regarded as an upper limit. 33 refs., 7 tabs., 4 figs

  17. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  18. Study of plasma-surface interaction at the GOL-3 facility

    Energy Technology Data Exchange (ETDEWEB)

    Shoshin, A.A., E-mail: shoshin@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arakcheev, A.S., E-mail: asarakcheev@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Arzhannikov, A.V., E-mail: A.V.Arzhannikov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Burdakov, A.V., E-mail: a.v.burdakov@mail.ru [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Ivanov, I.A., E-mail: I.A.Ivanov@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Kasatov, A.A., E-mail: a.a.kasatov@gmail.com [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kuklin, K.N., E-mail: K.N.Kuklin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Polosatkin, S.V., E-mail: S.V.Polosatkin@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Postupaev, V.V., E-mail: V.V.Postupaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Sinitsky, S.L., E-mail: S.L.Sinitsky@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); and others

    2017-01-15

    The review presents experimental studies of plasma-surface interaction and materials behavior under plasma loads done in the multiple-mirror trap of the GOL-3 facility. In the experiments for the PSI, the energy density in the extracted plasma stream varies from 0.5 to 30 MJ/m{sup 2}. Parameters of near-surface plasma measured by a set of diagnostics are reviewed. Surface patterns of targets exposed to the plasma are analyzed. The erosion depth depends on the energy loads—it rises from 0 to 600 μm at 0.5 and 30 MJ/m{sup 2}, correspondingly. Cracking and evolution of graphite and tungsten surface morphology are discussed. The enthalpy of brittle destruction of graphite (10 kJ/g), which determines the threshold of bulk damage of targets irradiated with a charged-particle flux with large penetration depth, was determined. Comparison of different facilities for PSI studies are presented. Heat flux play a key role to the target surface erosion.

  19. Ultrastructural changes of photodegradation of wood surfaces exposed to UV

    International Nuclear Information System (INIS)

    Kuo, M.L.; Hu, N.

    1991-01-01

    Red pine sapwood transverse and radial surfaces were exposed to ultraviolet (UV) light for 3 to 40 days. Effect of UV irradiation on ultrastructural changes of cell walls were studied by scanning (SEM) and transmission (TEM) electron microscopy. SEM study of transverse sections showed that during initial stages of UV irradiation, lignin in cell corners and in the compound middle lamellae was preferentially degraded and that the radial middle lamellae substained a greater rate of UV degradation than did the tangential middle lamellae. Massive cell wall degradation, as indicated by cell wall thinning, did not occur until surfaces were exposed to UV light for more than 10 days. TEM study of radial cell wall surfaces indicated that lignin lining the warty layer was removed by UV irradiation in 3 days and that warts were destroyed by a UV irradiation in 7 days. UV irradiation of cell wall surfaces produced a substantial amount of water-soluble degradation products. After 30 days of UV irradiation, the S3 layer was totally removed and revealed the very fragile S2 layer. (author)

  20. Electron spin resonance studies of some irradiated pharmaceuticals

    International Nuclear Information System (INIS)

    Gibella, M.; Crucq, A-S.; Tilquin, B.; Stocker, P.; Lesgards, G.; Raffi, J.

    2000-01-01

    Five antibiotics belonging to the cephalosporins and penicillins groups have been irradiated: anhydrous ampicilline acid, amoxicilline acid trihydrate, cefuroxime sodium salt, cloxacilline sodium salt monohydrate and ceftazidime pentahydrate. ESR studies have been carried out, showing the influence of irradiation and storage parameters on the nature and concentration of the free radicals trapped. These results may be used to detect an irradiation treatment on such pharmaceuticals. (author)

  1. An experimental study on the effects of Co-60 irradiation in the rat periodontium

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dai Hee; Lee, Sang Hee [Dept. of Oral Radiology, Division of Dentistry, Kyung Hee University, Seoul (Korea, Republic of)

    1986-11-15

    It is known that radiation therapy is a kind of treatment choices of the maxillofacial tumors. This study is designed to investigate the irradiation effects on rat's periodontal tissues as functional tissues which relate to tooth-support, hard tissue formation and destruction. 20 rats (Sprague-Dowley branch, male) were devided into control group of 4 and experimental groups of 16. Experimental group was singly expose to Co-60 irradiation with 10 Gy in the head and neck region. Animals were sacrificed on 2 days, 2 weeks after the irradiation. The specimens were ob served by histopathological examination employing H-E stain, van-Gieson stain and PA-ACH fluorescent stain. The results were as follows: 1. Cementoblasts and osteoblasts were gradually lost and rearranged along the external surfaces of the cementum and alveolar bone, but osteoclasts were almost not affected.2. The cell numbers of the periodontal ligament were decreased due to the cellular atrophy and degeneration, but recovered almost normal on the 3rd week after irradiation. 3. The collagen fibers within the periodontal ligament were irregularly oriented, became finer and decreased in num ber. 4. The vessels of the periodontal ligament were decreased at the initial stage but increased again on the 2nd wee k after irradiation, and the hemorrhagic appearances, occurred within the tissues, due to the arterial destruction, were lasted until 3 weeks after irradiation. 5. The glycogen within the the periodontal ligament was gradually increased and stored in the matrices of the cemental side on the 1st week after irradiation, but recovered almost normally on the 3rd week after irradiation.

  2. An experimental study on the effects of Co-60 irradiation in the rat periodontium

    International Nuclear Information System (INIS)

    Park, Dai Hee; Lee, Sang Hee

    1986-01-01

    It is known that radiation therapy is a kind of treatment choices of the maxillofacial tumors. This study is designed to investigate the irradiation effects on rat's periodontal tissues as functional tissues which relate to tooth-support, hard tissue formation and destruction. 20 rats (Sprague-Dowley branch, male) were devided into control group of 4 and experimental groups of 16. Experimental group was singly expose to Co-60 irradiation with 10 Gy in the head and neck region. Animals were sacrificed on 2 days, 2 weeks after the irradiation. The specimens were ob served by histopathological examination employing H-E stain, van-Gieson stain and PA-ACH fluorescent stain. The results were as follows: 1. Cementoblasts and osteoblasts were gradually lost and rearranged along the external surfaces of the cementum and alveolar bone, but osteoclasts were almost not affected.2. The cell numbers of the periodontal ligament were decreased due to the cellular atrophy and degeneration, but recovered almost normal on the 3rd week after irradiation. 3. The collagen fibers within the periodontal ligament were irregularly oriented, became finer and decreased in num ber. 4. The vessels of the periodontal ligament were decreased at the initial stage but increased again on the 2nd wee k after irradiation, and the hemorrhagic appearances, occurred within the tissues, due to the arterial destruction, were lasted until 3 weeks after irradiation. 5. The glycogen within the the periodontal ligament was gradually increased and stored in the matrices of the cemental side on the 1st week after irradiation, but recovered almost normally on the 3rd week after irradiation.

  3. Influence of fiber surface-treatment on interfacial property of poly(L-lactic acid)/ramie fabric biocomposites under UV-irradiation hydrothermal aging

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dakai; Li Jing [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China); Ren Jie, E-mail: renjie6598@163.com [Institute of Nano- and Bio-polymeric Materials, School of Material Science and Engineering, Tongji University, Shanghai 200092 (China) and Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai 200092 (China)

    2011-04-15

    Research highlights: {yields} Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. {yields} Fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. {yields} The swelling of ramie fibers reduce the interfacial adhesive strength in critical area of PLLA matrix-ramie fabric interface. - Abstract: The present study is devoted to the effect of fiber surface-treatment on the interfacial property of biocomposites based on poly(L-lactic acid) (PLLA) and ramie fabric. Ramie fiber is used as reinforced material because it's lowest water absorption among sisal, jute, kenaf and ramie fiber. Fiber surface-treatment can increase the water absorption of natural fibers. SEM images show that PLLA biocomposites with treated ramie fabric exhibit better interfacial adhesion character. DMA results show that the storage modulus of PLLA biocomposites with treated ramie increase compared to neat PLLA and PLLA biocomposites with untreated ramie. Unexpectedly, fiber surface-treatment can cause an accelerated decline in mechanical properties of PLLA biocomposites after UV-irradiation hydrothermal aging. Finally, GPC results show that there is no obvious decline in the molecular weight of PLLA. The main reason for this decline is the interfacial destructive effect induced by the water absorption of ramie fiber.

  4. Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites - Insight study

    Science.gov (United States)

    Saif, Muhammad Jawwad; Naveed, Muhammad; Zia, Khalid Mahmood; Asif, Muhammad

    2016-10-01

    The present study focuses on development of epoxy system reinforced with naturally occurring halloysite nanotubes (HNTs). A comparative study is presented describing the performance of pristine and γ-irradiated HNTs in an epoxy matrix. The γ-irradiation treatment was used for structural modification of natural pristine HNTs under air sealed environment at different absorbed doses and subsequently these irradiated HNTs were incorporated in epoxy resin with various wt% loadings. The consequences of γ-irradiation on HNTs were studied by FTIR and X-ray diffraction analysis (XRD) in terms of changes in functional groups and crystalline characteristics. An improvement is observed in mechanical properties and crack resistance of composites reinforced with γ-irradiated HNTs. The irradiated HNTs imparted an improved flexural and tensile strength/modulus along with better thermal performance.

  5. Study on biologically active substances in irradiated apple juice

    International Nuclear Information System (INIS)

    Tencheva, S.

    1975-01-01

    The radiochemical changes proceeding by irradiation of foodstuffs rich in carbohydrates are studied. For the purpose pure solutions of D-glucose, D-fructose and sucrose and fresh apple juice, irradiated with 0,5 and 1,0 Mrad are investigated. Changes set in UV-spectra of the irradiated foodstuffs, the specific reaction of malonic dialdehyde formation with 2-thiobarbituric acid and the formation of carbonyl compounds reacting with 2,4-dinitro phenylhydrazine are studied. Results show that in the irradiated sample solutions of sugars and apple juice two peaks are formed. The malonic dialdehyde formation depends on the dose of irradiation applied. The newly formed carbonyl compounds both in the sample solutions and in the juice are 8 to 9 in number. (author)

  6. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    International Nuclear Information System (INIS)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de

    2017-01-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  7. Study of ablation on surfaces of nuclear-use metals irradiated with Femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Alessandro F.; Samad, Ricardo E.; Vieira Junior, Nilson D.; Rossi, Wagner de, E-mail: alessandro.nogueira@usp.br, E-mail: resamad@ipen.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sorocaba, SP (Brazil); Faculdade de Engenharia de Sorocaba (FACENS), Ipero, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The use of ultrashort pulsed lasers is an alternative for micro-machining in metal surfaces, with diverse applications in several industrial areas, such as aeronautics, aerospace, naval, nuclear, among others, where there is a growing concern with reliability in service. In this work, micro-machining were performed on titanium surfaces using femtosecond ultrashort pulses. Such a process resulted in minimal heat transfer to the material, thus avoiding and surface deformation of the titanium plate and the formation of resolidified material in the ablated region, which are drawbacks present in the use of the long pulsed keyed laser of the order of nanoseconds. Three types of micro-machining were performed, with variations in the distances between the machined lines. It was also verified that the wettability increases when there is an increase in the distance between machined lines. Finally, in order to change the surface with minimal removal of material, it has been found that the use of ultra-short pulse lasers provide great benefits for the integrity of the ablated material. This initial study is the starting point for the study of other metals, such as Maraging Steels and Zircaloy that will be the target of future work. (author)

  8. Surface chemical reactions during electron beam irradiation of nanocrystalline CaS:Ce3+ phosphor

    International Nuclear Information System (INIS)

    Kumar, Vinay; Pitale, Shreyas S.; Nagpure, I. M.; Coetsee, E.; Ntwaeaborwa, O. M.; Terblans, J. J.; Swart, H. C.; Mishra, Varun

    2010-01-01

    The effects of accelerating voltage (0.5-5 keV) on the green cathodoluminescence (CL) of CaS:Ce 3+ nanocrystalline powder phosphors is reported. An increase in the CL intensity was observed from the powders when the accelerating voltage was varied from 0.5 to 5 keV, which is a relevant property for a phosphor to be used in field emission displays (FEDs). The CL degradation induced by prolonged electron beam irradiation was analyzed using CL spectroscopy, x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The AES data showed the decrease in the S peak intensity and an increase in the O peak intensity during electron bombardment. The CL intensity was found to decrease to 30% of its original intensity after about 50 C/cm 2 . XPS was used to study the chemical composition of the CaS:Ce 3+ nanophosphor before and after degradation. The XPS data confirms that a nonluminescent CaSO 4 layer has formed on the surface during the degradation process, which may partially be responsible for the CL degradation. The electron stimulated surface chemical reaction mechanism was used to explain the effects of S desorption and the formation of the nonluminescent CaSO 4 layer on the surface.

  9. Study of boron carbide evolution under neutron irradiation

    International Nuclear Information System (INIS)

    Simeone, D.

    1999-01-01

    Owing to its high neutron efficiency, boron carbide (B 4 C) is used as a neutron absorber in control rods of nuclear plants. Its behaviour under irradiation has been extensively studied for many years. It now seems clear that brittleness of the material induced by the 10 B(n,α) 7 Li capture reaction is due to penny shaped helium bubbles associated to a high strain field around them. However, no model explains the behaviour of the material under neutron irradiation. In order to build such a model, this work uses different techniques: nuclear microprobe X-ray diffraction profile analysis and Raman and Nuclear Magnetic Resonance Spectroscopy to present an evolution model of B 4 C under neutron irradiation. The use of nuclear reactions produced by a nuclear microprobe such as the 7 Li(p,p'γ) 7 Li reaction, allows to measure lithium profile in B 4 C pellets irradiated either in Pressurised Water Reactors or in Fast Breeder Reactors. Examining such profiles enables us to describe the migration of lithium atoms out of B 4 C materials under neutron irradiation. The analysis of X-ray diffraction profiles of irradiated B 4 C samples allows us to quantify the concentrations of helium bubbles as well as the strain fields around such bubbles.Furthermore Raman spectroscopy studies of different B 4 C samples lead us to propose that under neutron irradiation. the CBC linear chain disappears. Such a vanishing of this CBC chain. validated by NMR analysis, may explain the penny shaped of helium bubbles inside irradiated B 4 C. (author)

  10. Study of irradiation damage structures in austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Shozo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs.

  11. Study of irradiation damage structures in austenitic stainless steels

    International Nuclear Information System (INIS)

    Hamada, Shozo

    1997-08-01

    The irradiation damage microstructures in austenitic stainless steels, which have been proposed to be a candidate of structural materials of a fusion reactor, under ions and neutrons irradiation have been studied. In ion irradiation experiments, cross-sectional observation of the depth distribution of damage formed due to ion irradiation became available. Comparison and discussion between experimental results with TEM and the calculated ones in the depth profiles of irradiation damage microstructures. Further, dual-phase stainless steels, consisted of ferritic/austenitic phases, showed irradiation-induced/enhanced precipitation during ion irradiation. High Flux Isotope Reactor with high neutron fluxes was employed in neutron-irradiation experiments. Swelling of 316 steel showed irradiation temperature dependence and this had strong correlation with phase instability under heavy damage level. Swelling resistance of Ti-modified austenitic stainless steel, which has good swelling resistance, decreased during high damage level. This might be caused by the instability of Ti-carbide particles. The preparation method to reduce higher radioactivity of neutron-irradiated TEM specimen was developed. (author). 176 refs

  12. Simulation of gamma-ray irradiation of lettuce leaves in a 137Cs irradiator using MCNP

    International Nuclear Information System (INIS)

    Kim, Jongsoon; Moreira, Rosana G.; Braby, Leslie A.

    2010-01-01

    Ionizing radiation effectively reduces the number of common microbial pathogens in fresh produce. However, the efficacy of the process for pathogens internalized into produce tissue is unknown. The objective of this study was to understand gamma irradiation of lettuce leaf structure exposed in a 137 Cs irradiator using MCNP. The simulated 137 Cs irradiator is a self-shielded device, and its geometry and sources are described in the MCNP input file. When the irradiation chamber is filled with water, lower doses are found at the center of the irradiation volume and the dose uniformity ratio (maximum dose/minimum dose) is 1.76. For randomly oriented rectangular lettuce leaf segments in the irradiation chamber, the dose uniformity ratio is 1.25. It shows that dose uniformity in the Cs irradiator is strongly dependent of the density of the sample. To understand dose distribution inside the leaf, we divided a lettuce leaf into a low density (flat) region (0.72 g/cm 3 ) and high density (rib) region (0.86 g/cm 3 ). Calculated doses to the rib are 61% higher than doses to the flat region of the leaf. This indicates that internalized microorganisms can be inactivated more easily than organisms on the surface. This study shows that irradiation can effectively reduce viable microorganism internalized in lettuce. (author)

  13. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  14. Studies on safety and efficacy of gamma-irradiated ginseng

    International Nuclear Information System (INIS)

    Kwon, Joong Ho; Cho, Han Oak; Byun, Myung Woo; Kim, Suk Won; Yang, Jae Seung; You, Young Soo; Jin, Joon Ha; Park, Soon Chul

    1992-09-01

    Microbiological qualities were evaluated for the commercial red ginseng. Molds, which might cause microbial spoilage of stored ginseng, were isolated and identified for determining radiosensitivity and growth characteristics on ginseng-extract agar media. Red ginseng inoculated with isolated molds was incubated under the ideal condition following irradiation at different doses to pre-establish the effective dose-range for decontamination by confirming mold growth on the surface of the sample. At this point of time, moisture content was determined for the corresponding sample. By comparing the monolayer moisture content of red ginseng and its actual moisture level causing microbial spoilage during storage, it was intended to establish a basal condition for the continued project regarding irradiation effects on the quality of high-moisture products and their storage stability. (Author)

  15. Surface study of nano-template anodic porous alumina pre-irradiated by ArF laser

    International Nuclear Information System (INIS)

    Jaleh, B.; Saramad, S.; Farshchi-Tabrizi, M.

    2009-01-01

    Nano-porous alumina membranes have widely used as matrix for the fabrication of nanomaterials for many applications including quantum-dot arrays, magnetic storage devices and composites for catalysis, due to their remarkable hardness, thermal and anti corrupted stability, uniform pore size and high pore density. In this experiment three sets of aluminum samples were chosen for fabrication nano-porous anodic alumina. One set has select for laser cleaning before chemical treatment and the two others with and without chemical treatment without laser irradiation. Anodic aluminum oxide (AAO) films were characterized with Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) micrograph and the SEM results were analyzed by Linear-Angular Fast Fourier Transform (LA-FFT) technique to investigate the arrangement and ordering of pores. According to these results the laser irradiated sample has much better regularity in comparison with the usual one.

  16. Feeding Studies of Irradiated Foods with Insects

    Energy Technology Data Exchange (ETDEWEB)

    Loaharanu, Srisan

    1978-06-15

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  17. Feeding studies of irradiated foods with insects

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1978-01-01

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  18. Thermal release behavior of helium from copper irradiated by He+ ions

    International Nuclear Information System (INIS)

    Yamauchi, T.; Tokura, S.; Yamanaka, S.; Miyake, M.

    1988-01-01

    Thermal release behavior of helium from copper irradiated by 20 keV He + ions with a dose of 2x10 15 to 3x10 17 ions/cm 2 has been studied. The shape of the thermal release curves and thew number of helium release peaks strongly depend on the irradiation dose. Results from SEM surface observastion after post-irradiation heating suggested that helium release caused various surface damages such as blistering, flaking, and hole formation. Helium release resulting in small holes was analyzed and helium bubble growth mechanisms are discussed. (orig.)

  19. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  20. Onion irradiation - a case study

    International Nuclear Information System (INIS)

    Huebner, G.

    1988-01-01

    The irradiation of onions (Allium cepa L.) serves to prevent sprouting associated with long-term storage or transport and storage of onions in climatic conditions which stimulate sprouting. JECFI the Joint Expert Committee for Food Irradiation of FAO/IAEA/WHO, recommended the application of an irradiation dose of up to 150 Gy for sprout inhibition with onions. (author)

  1. Low energy He+ irradiation effect on graphite surface

    International Nuclear Information System (INIS)

    Asari, E.; Nakamura, K.G.; Kitajima, M.; Kawabe, T.

    1992-01-01

    Study on the lattice disordering and the secondary electron emission under low energy (1-5keV) He + irradiation is reported. Real-time Raman measurements show that difference in the observed Raman spectra for different ion energies is due to the difference of the damage depth. The relation between the observed Raman spectrum and the depth profile of lattice damage is discussed. Energy dependence of the secondary electron emission coefficient are also described. (author)

  2. Acute effect of gamma irradiation on the gastric mucosa

    International Nuclear Information System (INIS)

    Dubois, A.; Dorval, E.D.; Rogers, J.E.; O'Connell, L.; Durakovic, A.; Conklin, J.J.

    1984-01-01

    The effect of gamma irradiation on the gastric mucosa has been studied in a primate model by evaluating endoscopically the rate of healing of gastric biopsies. Six male rhesus monkeys were subjected to fiberoptic gastroscopies performed under general anesthesia before and after total body exposure to Cobalt-60 (800 rads). Gastric biopsies were taken 3 hours and 2, 7, and 9 days after irradiation and examined using light microscopy. Gastric biopsies were found to heal in 3 days before irradiation; in contrast, they were still present 7 and 9 days after the biopsies in irradiated animals. Microscopic examination of the biopsies taken outside of the ulcer craters did not demonstrate any significant changes of the gastric surface epithelial cells. These data demonstrate that a gastric ulcer develops at the site of each endoscopic biopsy in irradiated monkeys whereas complete healing is observed in non-irradiated animals. The cause of this observation is unclear but it could be due to radiation induced suppression of the mitotic activity and of the cell renewal of gastric surface epithelial cells

  3. Study of irradiation defects in GaAs

    International Nuclear Information System (INIS)

    Loualiche, S.

    1982-11-01

    Characterization techniques: C(V) differential capacity, DLTS deep level transient spectroscopy, DDLTS double deep level transient spectroscopy and DLOS deep level optical spectroscopy are studied and theoretical and experimental fundamentals are re-examined. In particular the centres created by ionic or electronic bombardment of p-type GaAs. New quantitative theoretical bases for the C(V) method are obtained. Study of the optical properties of traps due to irradiation using DLOS. The nature of irradiation defects are discussed [fr

  4. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Science.gov (United States)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Athanasopoulou, Eleni; Speyer, Orestis; Raptis, Panagiotis I.; Marinou, Eleni; Proestakis, Emmanouil; Solomos, Stavros; Gerasopoulos, Evangelos; Amiridis, Vassilis; Bais, Alkiviadis; Kontoes, Charalabos

    2017-07-01

    This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO) observations, in conjunction with radiative transfer model (RTM) and chemical transport model (CTM) simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS). The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD) reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI) attenuation by as much as 40-50 % and a much stronger Direct Normal Irradiance (DNI) decrease (80-90 %), while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS). Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m-2 in southern Greece, and a mean increase of 20 W m-2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are being planned.

  5. Dust impact on surface solar irradiance assessed with model simulations, satellite observations and ground-based measurements

    Directory of Open Access Journals (Sweden)

    P. G. Kosmopoulos

    2017-07-01

    Full Text Available This study assesses the impact of dust on surface solar radiation focussing on an extreme dust event. For this purpose, we exploited the synergy of AERONET measurements and passive and active satellite remote sensing (MODIS and CALIPSO observations, in conjunction with radiative transfer model (RTM and chemical transport model (CTM simulations and the 1-day forecasts from the Copernicus Atmosphere Monitoring Service (CAMS. The area of interest is the eastern Mediterranean where anomalously high aerosol loads were recorded between 30 January and 3 February 2015. The intensity of the event was extremely high, with aerosol optical depth (AOD reaching 3.5, and optical/microphysical properties suggesting aged dust. RTM and CTM simulations were able to quantify the extent of dust impact on surface irradiances and reveal substantial reduction in solar energy exploitation capacity of PV and CSP installations under this high aerosol load. We found that such an extreme dust event can result in Global Horizontal Irradiance (GHI attenuation by as much as 40–50 % and a much stronger Direct Normal Irradiance (DNI decrease (80–90 %, while spectrally this attenuation is distributed to 37 % in the UV region, 33 % in the visible and around 30 % in the infrared. CAMS forecasts provided a reliable available energy assessment (accuracy within 10 % of that obtained from MODIS. Spatially, the dust plume resulted in a zonally averaged reduction of GHI and DNI of the order of 150 W m−2 in southern Greece, and a mean increase of 20 W m−2 in the northern Greece as a result of lower AOD values combined with local atmospheric processes. This analysis of a real-world scenario contributes to the understanding and quantification of the impact range of high aerosol loads on solar energy and the potential for forecasting power generation failures at sunshine-privileged locations where solar power plants exist, are under construction or are

  6. Irradiation effects in clays. Environmental and geological applications

    International Nuclear Information System (INIS)

    Fourdrin, Ch.

    2009-01-01

    Irradiation defects in minerals present at the earth surface gave rise to an important number of studies. Among these minerals, clays possessed properties (cationic exchange capacity, swelling properties) which make them suitable candidate for the retention of actinides in the context of high level radioactive waste storage. In order to insure the stability of the clay located around the waste, it is necessary to study their physico-chemical properties after irradiation. This thesis is divided in three parts that are related to this thematic. In the first part, we will discuss the effect of ionizing irradiation of alpha particles on the specific surface area of kaolinite and the consequences of such an irradiation on the observed spectra by IRTF. The second part is dealing with the solubility of amorphized smectite in alkaline conditions and more especially with the dissolution kinetics. We will present new results on this process. Finally, in the third part, we studied a natural analogue geo-system Nopal which is located in Chihuahua (Mexico). We will discuss how the kaolinite dosimeter can be a powerful tool to asses' ancient uranium migration in the U-deposit. (author)

  7. Studies on preservation of agricultural products by irradiation

    International Nuclear Information System (INIS)

    Chung, K.H.; Kwon, S.H.; Lee, Y.I.; Chae, J.C.; Shin, I.C.

    1981-01-01

    This study was attempted to develop and establish the preservation techniques of agricultural products by irradiation through ascertainment of the optimum irradiation doses for sprout inhibition of white potato and chestnut, and for disinfestation of rice insects during storage

  8. Statistical optimization of ultraviolet irradiate conditions for vitamin D₂ synthesis in oyster mushrooms (Pleurotus ostreatus using response surface methodology.

    Directory of Open Access Journals (Sweden)

    Wei-Jie Wu

    Full Text Available Response surface methodology (RSM was used to determine the optimum vitamin D2 synthesis conditions in oyster mushrooms (Pleurotus ostreatus. Ultraviolet B (UV-B was selected as the most efficient irradiation source for the preliminary experiment, in addition to the levels of three independent variables, which included ambient temperature (25-45°C, exposure time (40-120 min, and irradiation intensity (0.6-1.2 W/m2. The statistical analysis indicated that, for the range which was studied, irradiation intensity was the most critical factor that affected vitamin D2 synthesis in oyster mushrooms. Under optimal conditions (ambient temperature of 28.16°C, UV-B intensity of 1.14 W/m2, and exposure time of 94.28 min, the experimental vitamin D2 content of 239.67 µg/g (dry weight was in very good agreement with the predicted value of 245.49 µg/g, which verified the practicability of this strategy. Compared to fresh mushrooms, the lyophilized mushroom powder can synthesize remarkably higher level of vitamin D2 (498.10 µg/g within much shorter UV-B exposure time (10 min, and thus should receive attention from the food processing industry.

  9. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    Science.gov (United States)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (PBiofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  10. Dedicated Tool for Irradiation and Electrical Measurement of Large Surface Samples on the Beamline of a 2.5 Mev Pelletron Electron Accelerator: Application to Solar Cells

    OpenAIRE

    Lefèvre Jérémie; Le Houedec Patrice; Losco Jérôme; Cavani Olivier; Boizot Bruno

    2017-01-01

    We designed a tool allowing irradiation of large samples over a surface of A5 size dimension by means of a 2.5 MeV Pelletron electron accelerator. in situ electrical measurements (I-V, conductivity, etc.) can also be performed, in the dark or under illumination, to study radiation effects in materials. Irradiations and electrical measurements are achievable over a temperature range from 100 K to 300 K. The setup was initially developed to test real-size triple junction solar cells at low t...

  11. Changes in mechanical and chemical wood properties by electron beam irradiation

    International Nuclear Information System (INIS)

    Schnabel, Thomas; Huber, Hermann; Grünewald, Tilman A.; Petutschnigg, Alexander

    2015-01-01

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations

  12. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  13. Progresses in studies on 2-alkylcyclobutanones in irradiated lipid-containing foods

    International Nuclear Information System (INIS)

    Zhang Haiwei; Ha Yiming; Wang Feng

    2007-01-01

    When foods are irradiated, the free fatty acids and triacylglycerides in the food are decomposed to 2-alkylcyclobutanones (2-ACBs), which have been one of the focuses in food irradiation studies since they were dis- covered in irradiated lipid-containing foods. As specific markers, 2-ACBs could be used to detect irradiated food. The production and stability of 2-ACBs are affected strongly by the irradiation does and temperature and preservation conditions, etc. On the other hand, potential health hazard assessments of 2-ACBs have been studied extensively. Re- cent progresses in 2-ACBs detecting methods from irradiated food, toxicological studies on 2-ACBs, and factors affecting production and stability of 2-ACBs are reviewed in this paper. (authors)

  14. Irradiation study of different silicon materials for the CMS tracker upgrade

    International Nuclear Information System (INIS)

    Erfle, Joachim

    2014-05-01

    Around 2022, an upgrade of the LHC collider complex is planned to significantly increase the luminosity (the High Luminosity LHC, HL-LHC). This means that the experiments have to cope with a higher number of collisions per bunch crossing and survive in a radiation environment much harsher than that at the present LHC. Especially the tracking detectors have to be improved for the HL-LHC. The increased number of tracks requires an increase of the number of readout channels while the higher radiation makes new sensor materials necessary. Within CMS, a measurement campaign was initiated to study the performance of different silicon materials in a corresponding radiation environment. To simulate the expected radiation the samples were irradiated with neutrons and with protons with two different energies. Radiation damage can be divided in two categories. First, ionizing energy loss in the surface isolation layers of the sensor leads to a change of the concentration of charged states in the sensor surface and therefore alters the distribution of the electrical fields in the sensor. Second, non-ionizing energy loss in the bulk of the sensor material leads to a variety of defects in the silicon lattice. Electrically active defects can influence the material properties. The three properties under investigation are the reverse current, the full depletion voltage and the charge collection. While the reverse current and full depletion voltage influence the power dissipation and the noise of the detector, the charge collection directly influences the measurement. The material properties were studied using pad and strip sensor. The structures were electrically characterized before and after irradiation with different fluences of neutrons and protons, corresponding to the expected fluences at different radii of the outer tracker after 3000 fb -1 . The charge collection measurements were mainly performed using the ALiBaVa readout system and the charge was induced with

  15. Uniformly irradiated polymer film

    International Nuclear Information System (INIS)

    Fowler, S.L.

    1979-01-01

    Irradiated film having substantial uniformity in the radiation dosage profile is produced by irradiating the film within a trough having lateral deflection blocks disposed adjacent the film edges for deflecting electrons toward the surface of the trough bottom for further deflecting the electrons toward the film edge

  16. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  17. Facts about food irradiation: Genetic studies

    International Nuclear Information System (INIS)

    1991-01-01

    Results published in the mid-1970s from the National Institute of Nutrition (NIN) in India showed increased numbers of polyploid cells in rats, mice, monkeys and malnourished children fed irradiated wheat products. This fact sheet considers the validity of these results. A large number of independent studies have been subsequently performed, and in none of these have results been obtained that support the NIN findings. The conclusion is that there is no evidence to link the consumption of irradiated food with any mutagenic effect. 3 refs

  18. Surface topography and morphology characterization of PIII irradiated silicon surface

    International Nuclear Information System (INIS)

    Sharma, Satinder K.; Barthwal, Sumit

    2008-01-01

    The effect of plasma immersion ion implantation (PIII) treatment on silicon surfaces was investigated by micro-Raman and atomic force microscopy (AFM) technique. The surface damage was given by the implantation of carbon, nitrogen, oxygen and argon ions using an inductively coupled plasma (ICP) source at low pressure. AFM studies show that surface topography of the PIII treated silicon wafers depend on the physical and chemical nature of the implanted species. Micro-Raman spectra indicate that the significant reduction of intensity of Raman peak after PIII treatment. Plasma immersion ion implantation is a non-line-of-sight ion implantation method, which allows 3D treatment of materials. Therefore, PIII based surface modification and plasma immersion ion deposition (PIID) coatings are applied in a wide range of situations.

  19. Techno-economic studies on transportable moving-bed onion irradiator

    International Nuclear Information System (INIS)

    Krishnamurthy, K.; Sharma, K.S.S.; Deshmukh, V.P.; Bongirwar, D.R.; Nair, K.V.V.; Patil, K.B.

    1984-01-01

    The paper presents the optimisation studies and the design features of a transportable irradiator evolved to demonstrate the techno-economic advantage of the irradiation process at village level. A brief outline is also given of the computer programme generated and employed to optimise the source-target configuration based on a narrow plane source moving-bed irradiation concept that aimed at achieving a simplified product handling system and cost effective design of the biological shield and controls for the irradiator. The engineering features of the irradiator along with a summary of the analysis of the economics of the application of the process are also given. (author)

  20. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  1. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  2. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  3. Forecasting of the lethality in cases of nonuniform accidental irradiation (experimental studies at external gamma irradiation of rats)

    International Nuclear Information System (INIS)

    Ingilizova, K.

    1983-01-01

    A model is suggested that enables the prediction of death probability for the body (L) within the whole lethality dose range (DL 0 -DL 100 ), on the basis of predetermined physical characteristics: in cases of uneven external wholebody irradiation. Some biological effects of 4 variants of uneven irradiation have been studied, i.e. ventro-dorsal (V-D), dorso-ventral (D-V), cranio-caudal (Cr-Ca) and caudo-cranial (Ca-Cr). The following basic conclusions have been drawn: 1. The study of the biological effects of uneven irradiation, when estimated by the lethality factor, points out the lower efficiency of the former, if compared to even irradiation. 2. The even irradiation lethality in the conducted experiments, according to the ALE data and the postradiation mortality dynamics, is determined basically by the damage of the bloodforming tissue and the animals die of bone marrow syndrome. 3. The uneven irradiation, estimated by the total weight factor, is of lower efficiency than the even one. 4. The radiation-induced hypoplasia of the studied organs is exponential in character. 5. An original model for predicting radiation mortality in cases of uneven irradiation has been constructed. The model gives the possibility of relating the alterations in the index of biological efficiency reduction to the wholebody irradiation factor, as well as to the two systems with highest radiosensitivity: red bone marrow and the small intestine. The model helps determining the numerical value of death probability, depending on the average body irradiation doses and the integral unevenness factors for RBM. (author)

  4. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  5. A study on the boundary condition for analysis of bio-heat equation according to light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Dong Guk; Bae, Sung Woo; Im, Ik Tae [Chunbuk Natinal University, Junju (Korea, Republic of)

    2015-11-15

    In this study, the temperature change in an imitational biological tissue, when its surface is irradiated with bio-light, was measured by experiments. Using the experimental data, an equation for temperature as a function of time was developed in order to use it as a boundary condition in numerical studies for the model. The temperature profile was measured along the depth for several wavelengths and distances of the light source from the tissue. It was found that the temperature of the tissue increased with increasing wavelength and irradiation time; however, the difference in the temperatures with red light and near infrared light was not large. The numerical analysis results obtained by using the developed equation as boundary condition show good agreement with the measured temperatures.

  6. Charging effects of PET under electron beam irradiation in a SEM

    International Nuclear Information System (INIS)

    Jbara, O; Rondot, S; Hadjadj, A; Patat, J M; Fakhfakh, S; Belhaj, M

    2008-01-01

    This paper deals with charge trapping and charge transport of polyethylene terephthalate (PET) polymer subjected to electron irradiation in a scanning electron microscope (SEM). Measurement of displacement current and leakage current using an arrangement adapted to the SEM allows the amount of trapped charge during and after electron irradiation to be determined and the charge mechanisms regulation to be studied. These mechanisms involve several parameters related to the electronic injection, the characteristics of insulator and the effects of the trapped charge itself. The dynamic trapping properties of PET samples are investigated and the time constants of charging are evaluated for various conditions of irradiation. The determination of the trapping cross section for electrons is possible by using the trapping rate at the onset of irradiation. Many physical processes are involved in the charging and discharging mechanisms; among them surface conduction is outlined. Through the control of irradiation conditions, various types of surface discharging (flashover phenomenon) behaviour are also observed. The strength of the electric field initiating surface discharge is estimated.

  7. Femtosecond laser-induced cross-periodic structures on a crystalline silicon surface under low pulse number irradiation

    Science.gov (United States)

    Ji, Xu; Jiang, Lan; Li, Xiaowei; Han, Weina; Liu, Yang; Wang, Andong; Lu, Yongfeng

    2015-01-01

    A cross-patterned surface periodic structure in femtosecond laser processing of crystalline silicon was revealed under a relatively low shots (4 energy slightly higher than the ablation threshold. The experimental results indicated that the cross-pattern was composed of mutually orthogonal periodic structures (ripples). Ripples with a direction perpendicular to laser polarization (R⊥) spread in the whole laser-modified region, with the periodicity around 780 nm which was close to the central wavelength of the laser. Other ripples with a direction parallel to laser polarization (R‖) were found to be distributed between two of the adjacent ripples R⊥, with a periodicity about the sub-wavelength of the irradiated laser, 390 nm. The geometrical morphology of two mutually orthogonal ripples under static femtosecond laser irradiation could be continuously rotated as the polarization directions changed, but the periodicity remained almost unchanged. The underlying physical mechanism was revealed by numerical simulations based on the finite element method. It was found that the incubation effect with multiple shots, together with the redistributed electric field after initial ablation, plays a crucial role in the generation of the cross-patterned periodic surface structures.

  8. Cherry Irradiation Studies. 1984 annual report

    International Nuclear Information System (INIS)

    Eakin, D.E.; Hungate, F.P.; Tingey, G.L.; Olsen, K.L.; Fountain, J.B.; Burditt, A.K. Jr.; Moffit, H.R.; Johnson, D.A.; Lunden, J.D.

    1985-04-01

    Fresh cherries, cherry fruit fly larvae, and codling moth larvae were irradiated using the PNL cobalt-60 facility to determine the efficacy of irradiation treatment for insect disinfestation and potential shelf life extension. Irradiation is an effective disinfestation treatment with no significant degradation of fruit at doses well above those required for quarantine treatment. Sufficient codling moth control was achieved at projected doses of less than 25 krad; cherry fruit fly control, at projected doses of less than 15 krad. Dose levels up to 60 krad did not adversely affect cherry quality factors tested. Irradiation above 60 krad reduced the firmness of cherries but had no significant impact on other quality factors tested. Irradiation of cherries below 80 krad did not result in any significant differences in sensory evaluations (appearance, flavor, and firmness) in tests conducted at OSU. Irradiation up to 200 krad at a temperature of about 25 0 C (77 0 F) did not measurably extend shelf life. Irradiation at 500 krad at 25 0 C (77 0 F) increased mold and rotting of cherries tested. There is no apparent advantage of irradiation over low-temperature fumigation

  9. Comparative study of effects of neutron, γ-ray and UV irradiation on proteins

    International Nuclear Information System (INIS)

    Fujii, Noriko; Saito, Takeshi; Sakurai, Yoshinori; Shimada, Akihiko

    2005-01-01

    When α-crystalline was irradiated by γ-ray, isomerization of aspartic acid (Asp)-151 and oxidation of methionine(Met)-1 of αA-chain was introduced and the forth dimension structure of α-crystalline was changed. The chaperone-like activity decreased. By UV irradiation, the hydrophobic property of α-crystalline surface was decreased, isomerization of Asp-151 and oxidation of Met-1 of αA-chain introduced. The chaperon-like activity decreased, too. With irradiating neutron, oxidation of Trp and Met residue groups and cut of peptide bonds of α-crystalline was observed, but the chaperon-like activity was kept. The behaviors of charge particles produced by neutron, γ-ray and nuclear reactions were simulated. The effects of proton originated chlorine in the buffer solution on the behavior were very large. Metallothionein (Mt) was derived in the cell by treating γTN-1 with ZnCl 2 . The resistance of αTN4-1 to UV-A irradiation was increased by MT induced ZnCl 2 treatment. D-tryptophan was decomposed by tryptophanase irradiated with γ-ray. (S.Y.)

  10. Study on the sterilization of egg white powder by irradiation

    International Nuclear Information System (INIS)

    Fu Lixin; Meng Lifen; Zhao Xiaonan; Xu Dechun; Hu Shaoxin; Chen Changdong; Wang Zhidong

    2013-01-01

    The sterilizing effect, influence on main essential nutrient and sensory qualities of egg white powder treated with 60 Co γ-ray irradiation were studied. The microorganism index of egg white powder samples treated with 4 kGy irradiation could meet the government food sanitation standard, and the sterilization rate could reach 100%. The irradiation doses from 4 to 10 kGy had little influence on egg white powder protein, crude fiber and amino acidscontent, and the sensory quality such as color, luster, and scent changed little below 6 kGy irradiation. Considering the result of this study, the optimal irradiation dose for egg white powder sterilization was 4 to 6 kGy. (authors)

  11. UV-C irradiation disrupts platelet surface disulfide bonds and activates the platelet integrin alphaIIbbeta3

    NARCIS (Netherlands)

    Verhaar, Robin; Dekkers, David W. C.; de Cuyper, Iris M.; Ginsberg, Mark H.; de Korte, Dirk; Verhoeven, Arthur J.

    2008-01-01

    UV-C irradiation has been shown to be effective for pathogen reduction in platelet concentrates, but preliminary work indicated that UV-C irradiation of platelets can induce platelet aggregation. In this study, the mechanism underlying this phenomenon was investigated. Irradiation of platelets with

  12. Optimizing UV Index determination from broadband irradiances

    Science.gov (United States)

    Tereszchuk, Keith A.; Rochon, Yves J.; McLinden, Chris A.; Vaillancourt, Paul A.

    2018-03-01

    A study was undertaken to improve upon the prognosticative capability of Environment and Climate Change Canada's (ECCC) UV Index forecast model. An aspect of that work, and the topic of this communication, was to investigate the use of the four UV broadband surface irradiance fields generated by ECCC's Global Environmental Multiscale (GEM) numerical prediction model to determine the UV Index. The basis of the investigation involves the creation of a suite of routines which employ high-spectral-resolution radiative transfer code developed to calculate UV Index fields from GEM forecasts. These routines employ a modified version of the Cloud-J v7.4 radiative transfer model, which integrates GEM output to produce high-spectral-resolution surface irradiance fields. The output generated using the high-resolution radiative transfer code served to verify and calibrate GEM broadband surface irradiances under clear-sky conditions and their use in providing the UV Index. A subsequent comparison of irradiances and UV Index under cloudy conditions was also performed. Linear correlation agreement of surface irradiances from the two models for each of the two higher UV bands covering 310.70-330.0 and 330.03-400.00 nm is typically greater than 95 % for clear-sky conditions with associated root-mean-square relative errors of 6.4 and 4.0 %. However, underestimations of clear-sky GEM irradiances were found on the order of ˜ 30-50 % for the 294.12-310.70 nm band and by a factor of ˜ 30 for the 280.11-294.12 nm band. This underestimation can be significant for UV Index determination but would not impact weather forecasting. Corresponding empirical adjustments were applied to the broadband irradiances now giving a correlation coefficient of unity. From these, a least-squares fitting was derived for the calculation of the UV Index. The resultant differences in UV indices from the high-spectral-resolution irradiances and the resultant GEM broadband irradiances are typically within 0

  13. Pathological study about two autopsy cases of bilateral irradiation pneumonitis induced by unilateral irradiation

    International Nuclear Information System (INIS)

    Yamauchi, Noriko; Tajima, Yo; Iio, Masaaki; Oshima, Takeo; Iino, Koichi.

    1978-01-01

    The first case is a 73-year-old man with left lung cancer. Seven days after completion of radiotherapy 7,000 rad, a chest roentgenogram showed diffuse bilateral pneumonia. The second case is a 61-year-old woman with right lung cancer and about one month after completion of radiotherapy 2,600 rad, a chest roentgenogram showed bilateral pneumonia. Pathological findings, all lobes of both lungs of these cases showed acute interstitial pneumonitis. The pathogenesis of irradiation pneumonitis is poorly understood. Several investigators thought that the pathogenesis of irradiation pneumonitis was caused by autoimmune mechanism, they carried out sero-pathological studies and demonstrated the bilateral pneumonia caused by unilateral irradiation. (author)

  14. Cytologic studies on irradiated gestric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Isono, S; Takeda, T; Amakasu, H; Asakawa, H; Yamada, S [Miyagi Prefectural Adult Disease Center, Natori (Japan)

    1981-06-01

    The smears of the biopsy and resected specimens obtained from 74 cases of irradiated gastric cancer were cytologically analyzed for effects of irradiation. Irradiation increased the amount of both necrotic materials and neutrophils in the smears. Cancer cells were decreased in number almost in inverse proportion to irradiation dose. Clusters of cancer cells shrank in size and cells were less stratified after irradiation. Irradiated cytoplasms were swollen, vacuolated and stained abnormally. Irradiation with less than 3,000 rads gave rise to swelling of cytoplasms in almost all cases. Nuclei became enlarged, multiple, pyknotic and/or stained pale after irradiation. Nuclear swelling was more remarkable in cancer cells of differentiated adenocarcinomas.

  15. Study on the Long Term Effects of Radiation on Irradiated Manawthukha Rice Grain (Mahsuri-M)

    International Nuclear Information System (INIS)

    Aye Aye Mar; Aye Aye Mon; Hnin Hnin Than; Ba Han; Tin Tin; Myint U

    2008-03-01

    Radioactivity monitoring of first and second generations Manawthukha paddy grain before cultivations were carried out. It was found out that there were no induced activity. Therefore it can be concluded that similarly it will be the same for third generation rice. The second generation rice was obtained from cultivation and harvesting of first generation [(i) non-irradiated (control), (ii) gamma-irradiated, (iii) neutron-one hour irradiated, (iv) neutron one-day irradiated rice]. Agronomical characteristics of three different types of generation of rice were studied. Morphological characteristics studies such as plant height, leaf width and panicle length,there was no large variation between three generations of rice. Phenotypes were found to be stable. Yield improvement was calculated. Nutritional values of rice generation were studied. They were (i) element analysis by different methods (NAA, EDXRF and AAS), vitamin determination and protein percent determination. There was no distinctive difference between first, second and third generation rice. In element analysis, eleven elements such as Mg, Mn, Na, K, Cl, Al, Ca, Fe, Zn, P and Cu were observed by NAA, AAS and EDXRF methods. Vitamin content (B1, B2) and protein content were also studied. Determination of amylose content, gel consistency and gelatinization temperature were involved in grain quality study. There was no large variation in three generations. Surface texture of first, second and third generation Manawthukha rice were studied by Scanning Electron Microscope (SEM). It was observed that the change of texture from generation to generation tend to become more distinctive in third generation.

  16. NMR studies of defects created by irradiation in metals

    International Nuclear Information System (INIS)

    Minier, M.; Minier, C.

    1983-06-01

    Nuclear Magnetic Resonance has been rarely used to study point defects created by irradiation in metals. Information obtained in this field using N.M.R. are shown. Some results are also described: characterization of migrating defects in electron irradiated copper; mobility of the complex interstitial-impurity in Al with 150 ppm of chromium; interstitial structure in irradiated aluminum and autodiffusion in metals [fr

  17. Effect of gamma-ray irradiation on the surface states of MOS tunnel junctions

    Science.gov (United States)

    Ma, T. P.; Barker, R. C.

    1974-01-01

    Gamma-ray irradiation with doses up to 8 megarad produces no significant change on either the C(V) or the G(V) characteristics of MOS tunnel junctions with intermediate oxide thicknesses (40-60 A), whereas the expected flat-band shift toward negative electrode voltages occurs in control thick oxide capacitors. A simple tunneling model would explain the results if the radiation-generated hole traps are assumed to lie below the valence band of the silicon. The experiments also suggest that the observed radiation-generated interface states in conventional MOS devices are not due to the radiation damage of the silicon surface.

  18. Biochemical and pharmacological studies of native and irradiated crotamine with gamma radiation of Co{sup 60}

    Energy Technology Data Exchange (ETDEWEB)

    Mitake, M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: mbmitake@net.ipen.br

    2000-07-01

    Ionizing radiation has been widely employed to attenuate venoms and toxins, preserving and even enhancing their immunogenic properties. However, little is know about molecular changes in irradiated proteins. In this work, we compared native and irradiated bothropstoxin-1, with the aim of characterizing the structural modifications induced by radiation. Our results indicate that radiation promotes a transition from the multimeric to the monomeric state in a dose-dependent manner. Spectral and calorimetric analysis suggest that the irradiation molecules undergo oxidation and partially unfold the remaining elements being stabilized by the seven disulphide bonds. The binding pattern of monoclonal antibodies raised against irradiated bothropstoxin indicates that most of the recognized epitopes are linear present on the surface of both native and irradiated toxin. Also, irradiated toxin appears to be more immunogenic, inducing the formation of native toxin-binding antibodies. (author)

  19. Bulk and interface defects in electron irradiated InP

    International Nuclear Information System (INIS)

    Peng Chen; Sun Heng-hui

    1989-01-01

    Systematic studies on the structure of defects in InP caused by electron irradiation are conducted based on experimental measurements and theoretical calculations. The rates of introduction and annealing-out temperatures of In and P vancancies are estimated using proper theoretical models. These calculations reveal that after room temperature irradiation only complexes may exist. It is also supported by our experimental data that the sum of introducing rates of three detected levels are less than the theoretical value calculated for single vacancies. According to our equation on the relation between interface states and DLTS signal and from the results of computer calculation we believe that the broad peak appearing in the DLTS diagram before irradiation is related to interface states. Its disappearance after electron irradiation suggests the reduction of interface states; this is further confirmed by the reduction of surface recombination rate derived from the results of surface photovoltage measurement

  20. Irradiance Impact on Pollution by Integrating Nephelometer Measurements

    Directory of Open Access Journals (Sweden)

    Maria Rita Perrone

    2015-12-01

    Full Text Available Three-wavelength integrating nephelometer measurements combined with short- (SW and long-wave (LW irradiance measurements were used to investigate the irradiance effects on the daily evolution of the particulate matter (PM at the ground level, and contribute to the characterization of the land–atmosphere interaction in pollution dispersal. The integrating nephelometer measurements have allowed characterizing the daily changes of the PM optical and microphysical properties by the aerosol scattering coefficient (σp and the scattering Ångström coefficient (å. We found that on a daily basis σp reached the minimum values when the irradiance reached the maximum values, since the convective motions, which favor the particle dispersion at the surface, increase with the irradiance. The å value, which is commonly used as qualitative indicator of the dominant particle size, has allowed evaluating the irradiance effects on the mean particle size distribution at the surface and revealed that the irradiance increase favors mainly the dispersion of the ground-level fine particles. Particle size-distribution measurements supported the last comment. Measurements were performed from 4 to 10 May 2015 when the study site was affected by a Saharan dust outbreak, to also evaluate the impact of long-range transported particles on the daily evolution of the ground-level particle’s properties and the SW and LW irradiance.

  1. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  2. Evaluation of thermal damage in dental implants after irradiation with 980nm diode laser. An in vitro study

    Directory of Open Access Journals (Sweden)

    Carlo Cafiero

    2016-12-01

    Full Text Available Purpose: The aim of this study was to analyze the thermal damage in dental implants after irradiations with a 980nm diode laser, normally used for the decontamination. Material and Methods: Five Titanium Plasma Sprayed dental implants were irradiated with a 980nm diode laser at different parameters. Temperature increase on implant surface was evaluated by a Mid-Wavelength Infrared thermal-camera (Merlin®, FLIR, USA. Temperature increase (ΔT was compared to environmental temperature (27°C and recorded in three points: “A” (laser spot, “B” (3mm apically to the laser spot and “C” (2mm horizontally to the laser spot. Finally, a morphological evaluation at optical stereomicroscopy was performed. Results: When 0.6W power was applied, a moderate increase of temperature in point A (5.5°C-15.0°C, a slight increase in point B (0.1°C-6.2°C and point C (0.1°C-5.7°C, were registered after 30” of irradiation. In the samples treated at 6W, in “point A” an impressive ΔT increase was immediately recorded (over 70°C. In “point B” was recorded a slight ΔT after 2 sec. irradiation (range 2.3°C-6.0°C, a moderate ΔT after 4 sec. irradiation (16.4°C and a consistent ΔT after 8-10 sec. irradiation (range 36.6°C-46.2°C. In “point C” ΔT values were very similar to those collected in “point B”. Optical stereomicroscopy examination at a magnification of 32x did not show any surface alteration or damage after whichever laser irradiation independently from irradiation time and power output . Conclusions: 980nm diode laser, used at controlled parameters, can be used in the decontamination of dental implants, without causing any thermal damage or increase.

  3. Study in vitro of dental enamel irradiated with a high power diode laser operating at 960 nm: morphological analysis of post-irradiation dental surface and thermal effect analysis in pulp chamber due to laser application; Estudo in vitro do esmalte dental irradiado com laser de diodo de alta potencia em 960 nm: analise morfologica da superficie dental pos-irradiada e analise do comportamento termico na camara pulpar devido a aplicacao laser

    Energy Technology Data Exchange (ETDEWEB)

    Quinto Junior, Jose

    2001-07-01

    Objectives: This study examines the structural and thermal modifications induced in dental enamel under dye assisted diode laser irradiation. The aim of this study is to verify if this laser-assisted treatment is capable to modify the enamel surface by causing fusion of the enamel surface layer. At the same time, the pulpal temperature rise must be kept low enough in order not to cause pulpar necrosis. To achieve this target, it is necessary to determine suitable laser parameters. As is known, fusion of the enamel surface followed by re-solidification produce a more acid resistant layer. This surface treatment is being researched as a new method for caries prevention. Method and Materials: A series of fourteen identically prepared enamel samples of human teeth were irradiated with a high power diode laser operating at 960 nm and using fiber delivery. Prior to irradiation, a fine layer of cromophorous ink was applied to the enamel surface. In the first part of the experiment the best parameter for pulse duration was determined. In the second part of the experimental phase the same energy density was used but with different repetition rates. During irradiation we monitored the temperature rise in the pulpal cavity. The morphology of the treated samples was analysed under SEM. Results: The morphology of the treated samples showed a homogeneously re-solidified enamel layer. The results of the temperature analysis showed a decrease of the pulpal temperature rise with decreasing repetition rate. Conclusion: With the diode laser it is possible to cause morphological alterations of the enamel surface, which is known to increase the enamel resistance against acid attack, and still maintain the temperature rise in the pulpar chamber below damage threshold. (author)

  4. Defects investigation in neutron irradiated reactor steels by positron annihilation

    International Nuclear Information System (INIS)

    Slugen, V.

    2003-01-01

    Positron annihilation spectroscopy (PAS) based on positron lifetime measurements using the Pulsed Low Energy Positron System (PLEPS) was applied to the investigation of defects of irradiated and thermally treated reactor pressure vessel (RPV) steels. PLEPS results showed that the changes in microstructure of the RPV-steel properties caused by neutron irradiation and post-irradiation heat treatment can be well detected. From the lifetime measurements in the near-surface region (20-550 nm) the defect density in Russian types of RPV-steels was calculated using the diffusion trapping model. The post-irradiation heat treatment studies performed on non-irradiated specimens are also presented. (author)

  5. Effect of Ion Irradiation in Cadmium Niobate Pyrochlores

    International Nuclear Information System (INIS)

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; Boatner, Lynn A.

    2003-01-01

    Irradiation experiments have been performed for cadmium niobate pyrochlore (CdNb2O) single crystals at both 150 and 300 K using 1.0 MeV Au ions over fluences ranging from 0.01 to 0.10 ions/nm. In-situ 3.0 MeV He Rutherford backscattering spectrometry along the -axial channeling direction (RBS/C) has been applied to study the damage states ranging from small defect concentrations to a fully amorphous state. Results show that the crystal can be readily amorphized under the irradiation conditions. Room-temperature recovery of the defects produced at 150 K has been observed, while the defects produced at 300 K are thermally stable at room temperature. Results also indicate that the RBS/C analysis used in this study induced negligible damage in the near-surface regime. In addition, irradiation at and below room temperature using He and C3 ions leads to surface exfoliation at the corresponding damage peaks

  6. Study on irradiation preservation of frozen shelled shrimps

    International Nuclear Information System (INIS)

    Liu Chunquan; Zhu Jiating; Zhao Yongfu; Yu Gang; Zhang Weidong; Jin Yudong; Ji Ping

    2004-01-01

    The effect of irradiaiton preservation of frozen shelled shrimps for export was studied. The microbial indexd, nutritional ingredient, physico-chemical index for irradiation frozen shelled shrimps were detected. The results showed that 3-5 kGy irradiation dose could kill more than 99% of all kinds of microorganisms in frozen shelled shrimps, the content of most amino acids in shelled shrimps increased, after being irradiated by 1-9 kGy dose, the total amino acids had been obvisouly higher than CK, the increased range was 0.33%-24.6%, the content of the total volatile basic nitrogen (TVBN) decreased. Compared with the CK, the content of the heavy metal elements etc had no obvious change, the presrvation duration of irradiated shelled shrimp was twelve months longer than that of CK when storage temperature was under -7 degree C soft frozen, Compared with -18 degree C the effect of irradiation preservation had no obvious change. (authors)

  7. Studies on apple preservation by 60 -gamma irradiation

    International Nuclear Information System (INIS)

    Wang Chuanyao; Jiang Mengyue; Gao Meixu

    1992-01-01

    Studies on '60'Co-gamma irradiation of Golden Delicious apple have been carried out. The results showed that the optimum irradiation dosage for stored apple was ranged from 0.3-0.5 k Gy, with this dosage, the contents of vitamin c and titratalbe acidity in these apples had no significant change compared with unirradiated apples. The respiratory rate and the amount of ethylene release were decreased after irradiation. The mortality of the verticillate pathogenic fungi was 97% at the dose of 0.5 k Gy

  8. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L3 Global 1.0x1.0 deg Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Aura-OMI Daily Gridded Surface UV Irradiance Product (OMUVBd) is now available from the NASA Goddard Earth Sciences Data and Information Services Center (GES...

  9. OMI/Aura Surface UVB Irradiance and Erythemal Dose Daily L2 Global 0.25 deg Lat/Lon Grid V003

    Data.gov (United States)

    National Aeronautics and Space Administration — The Version 003 of Aura-OMI Spectral Surface UVB Irradiance and Erythemal Dose Level-2G data product (Daily level-2 data binned into global 0.25 deg Lat/Lon grids)...

  10. Preliminary irradiation test results from the Yankee Atomic Electric Company reactor vessel test irradiation program

    International Nuclear Information System (INIS)

    Biemiller, E.C.; Fyfitch, Stephen; Campbell, C.A.

    1994-01-01

    The Yankee Atomic Electric Company test irradiation program was implemented to characterize the irradiation response of representative Yankee Rowe reactor vessel beltline plate materials and to remove uncertainties in the analysis of existing irradiation data on the Yankee Rowe reactor vessel steel. Plate materials each containing 0.24 w/o copper, but different nickel contents at 0.63 w/o and 0.19 w/o, were heat treated to simulate the Yankee vessel heat treatment (austenitized at 982 o C (1800 o F)) and to simulate Regulatory Guide 1.99 database materials (austenitized at 871 o C (1600 o F)). These heat treatments produced different microstructures so the effect of microstructure on irradiation damage sensitivity could be tested. Because the nickel content of the test plates varied and the copper level was constant, the effect of nickel on irradiation embrittlement was also tested. Correlation monitor material, HSST-02, was included in the program to benchmark the Ford Nuclear Reactor (University of Michigan Test Reactor) which had never been used before for this type of irradiation program. Materials taken from plate surface locations (versus 1/4 T) were included to test whether or not the improved toughness properties of the plate surface layer, resulting from the rapid quench, are maintained after irradiation. If the improved properties are maintained, pressurized thermal shock calculations could utilize this margin. Finally, for one experiment, irradiations were conducted at two irradiation temperatures (260 o C and 288 o C) to determine the effect of irradiation temperature on embrittlement. (Author)

  11. Studies on the safety and consumer acceptance of gamma irradiated meats

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Il Jun [Hallym University, Kangwon (Korea); Lee, Cherl Ho [Korea University, Seoul (Korea); Kim, Jung Hee [Seoul Women' s University, Seoul (Korea)

    1999-04-01

    Gamma irradiation was applied to beefs (0-5 kGy) and porks (0-30 kGy) for evaluation of their possible genotoxicity, acute toxicity and four-week oral toxicity. The results were negative in the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535, TA1537. Clastogenic effects of the irradiated samples tested were not shown in vivo mouse micronucleus assay. In an acute toxicity test, the maximal dose of 5,000 mg/kg did not change any toxic parameter examined in this study. In four-week oral toxicity study, no significant differences were found between the control and treatment groups. In the study of rat hepatocarcinogenesis, the consumption of gamma irradiated beef and pork not only does not affect the formation of lipid peroxide and membrane stability but also has a possibility to inhibit hepatocarcinogenesis. Also, the consumption of {gamma} - irradiated beef and pork does not affect antioxidative defense system. In the study of the biological safety of korean red pepper, no difference was found on microbial growth between pepper extract alone or irradiated pepper extract. In the preservation study of korean traditional rice-cake(garedok), irradiation dose below 10kGy had no influence on typical sensory characteristics. The shelf-life in rice-cakes with different conditions was the longest on 10kGy treatment than 5kGy. In investigation of the consumer attitude toward irradiated foods, the main reason for the concern about irradiated foods is that compounds in the products formed by irradiation. Therefore, regulatory authorities must be encouraged to permit the sale of irradiated items when wholesomeness is established. (author). 94 refs.,31 figs., 62 tabs.

  12. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  13. Surface contamination of the LIL optical components and their evolution after laser irradiation (2.series of experiments); La pollution surfacique de la LIL et son evolution sur un composant optique soumis a une irradiation laser (2.serie d'experiences)

    Energy Technology Data Exchange (ETDEWEB)

    Palmier, S.; Garcia, S.; Lamaignere, L.; Manac' h, P.; Rullier, J.L.; Tovena, I. [Centre d' Etudes Scientifiques et Techniques d' Aquitaine, Dept. des Lasers de Puissance, 33 - Le Barp (France)

    2006-07-01

    In the context of the Laser Megajoule project (LMJ), a study has been carried out to understand the effect of particle contamination at the surface of optical components. With the object to achieve this purpose, samples were placed as particles collectors in the LMJ prototype, i.e. the Ligne d'Integration Laser (LIL). We report more specifically particle contamination in the LIL amplifiers section. Particles densities that we measured show that contamination is independent of the sample location in the amplifiers section and also independent of their surface quality. Chemical analyses of collected particles show a majority of organic compounds. Laser irradiations of the silica samples at various fluence levels between 2 and 15 J/cm{sup 2} at a wavelength o64 nm and a pulse duration of 6.5 ns reveal a weak laser cleaning effect. An irreversible surface modification was sometimes observed on silica samples with antireflection coating. However, this effect does not grow after several laser irradiations at 15 J/cm{sup 2}. (authors)

  14. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mikestikova, M., E-mail: mikestik@fzu.cz [Academy of Sciences of the Czech Republic, Institute of Physics, Na Slovance 2, 18221 Prague 8 (Czech Republic); Allport, P.P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J.P.; Wilson, J.A. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Kierstead, J.; Kuczewski, P.; Lynn, D. [Brookhaven National Laboratory, Physics Department and Instrumentation Division, Upton, NY 11973-5000 (United States); Hommels, L.B.A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ullan, M. [Centro Nacional de Microelectronica (IMB-CNM, CSIC), Campus UAB-Bellaterra, 08193 Barcelona (Spain); Bloch, I.; Gregor, I.M.; Tackmann, K. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Hauser, M.; Jakobs, K.; Kuehn, S. [Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); and others

    2016-09-21

    A radiation hard n{sup +}-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×10{sup 16} n{sub eq}/cm{sup 2}, by reactor neutron fluence of 1×10{sup 15} n{sub eq}/cm{sup 2} and by gamma rays from {sup 60}Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07. - Highlights:

  15. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Thin films of tin(IV) oxide (SnO2) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au8+ using 1 pnA current at normal incidence with ion fluences varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV-Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm-1 in FTIR spectrum confirmed the O-Sn-O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO2 were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  16. Performance studies under high irradiation of resistive bulk-micromegas chambers at the CERN Gamma Irradiation Facility

    CERN Document Server

    Sidiropoulou, Ourania; Bortfeldt, J; Farina, E; Iengo, P; Longo, L; Sidiropoulou, O; Wotschack, J

    2017-01-01

    Radiation studies on several resistive bulk-Micromegas chambers produced at CERN will be viewed in this document. Two resistive bulk-Micromegas chambers have been installed at the CERN Gamma Irradiation Facility (GIF++) exposed to an intense gamma irradiation with the aim of evaluating the detector behaviour under high irradiation and carrying out a long-term age- ing study. The chambers under study have an active area of 10 x 10 cm 2 , a strip pitch of 400 m m , an ampli- fication gap of 128 m m , and a drift gap of 5 mm. The results on the detector performance as a function of the photon flux up to 44 MHz/cm 2 will be shown as well as the ageing properties as function of the integrated charge and the current intensity and its stability with time. In addition, the results of the efficiency measurements before, during, and after the irradiation will also be presented as a function of the amplification voltage at which the chambers are operated.

  17. EPR study on gamma-irradiated fruits dehydrated via osmosis

    International Nuclear Information System (INIS)

    Yordanov, N.D.; Aleksieva, K.

    2007-01-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples

  18. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Science.gov (United States)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  19. Plant responses to UV-B irradiation are modified by UV-A irradiation

    International Nuclear Information System (INIS)

    Middleton, E.M.; Teramura, A.H.

    1993-01-01

    The increasing UV-B radiation (0.28-0.32 μm) reaching the earth's surface is an important concern. Plant response in artificial UV-B irradiation studies has been difficult to assess, especially regarding photosynthetic pigments, because the fluorescent lamps also produce UV-A (0.32-0.40μm) radiation which is involved with blue light in pigment synthesis. Both UV-A and UV-B irradiances were controlled in two glasshouse experiments conducted under relatively high PPFD (> 1300μmol m -2 s -1 ) at two biologically effective daily UV-B irradiances (10.7 and 14.1 kJ m -2 ); UV-A irradiances were matched in Controls (∼5, 9 kJ m -2 ). Normal, chlorophyll-deficient, and flavonoid-deficient isolines of soybean cultivar, Clark, were utilized. Many growth/ pigment variables exhibited a statistically significant interaction between light quality and quantity: in general, UV-A radiation moderated the damaging effects of UV-B radiation. Regression analyses demonstrated that a single negative function related photosynthetic efficiency to carotenoid Content (r 2 =0.73, P≤0.001), implying a open-quotes costclose quotes in maintaining carotenoids for photoprotection. A stomatal limitation to photosynthesis was verified and carotenoid content was correlated with UV-B absorbing compound levels, in UV-B irradiated plants

  20. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  1. Fractal characteristics of fracture morphology of steels irradiated with high-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Yongqiang; Liu, Juan [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); University of Chinese Academy of Science, Beijing 100049 (China); Zhang, Chonghong, E-mail: c.h.zhang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China); Chen, Jiachao [Paul Scherrer Institute, Villigen PSI (Switzerland); Yang, Yitao; Zhang, Liqing; Song, Yin [Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000 (China)

    2015-06-15

    Highlights: • Fractal dimensions of fracture surfaces of steels before and after irradiation were calculated. • Fractal dimension can effectively describe change of fracture surfaces induced by irradiation. • Correlation of change of fractal dimension with embrittlement of irradiated steels is discussed. - Abstract: A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.

  2. Silicon passivation study under low energy electron irradiation conditions

    International Nuclear Information System (INIS)

    Cluzel, R.

    2010-01-01

    Backside illuminated thinned CMOS (Complementary Metal Oxide Semiconductor) imaging system is a technology developed to increase the signal to noise ratio and the sensibility of such sensors. This configuration is adapted to the electrons detection from the energy range of [1 - 12 keV]. The impinging electron creates by multiplication several hundreds of secondary electrons close to the surface. A P ++ highly-doped passivation layer of the rear face is required to reduce the secondary electron surface recombination rate. Thanks to the potential barrier induced by the P ++ layer, the passivation layer increases the collected charges number and so the sensor collection gain. The goal of this study is to develop some experimental methods in order to determine the effect of six different passivation processes on the collection gain. Beforehand, the energy profile deposited by an incident electron is studied with the combination of Monte-Carlo simulations and some analytical calculations. The final collection gain model shows that the mirror effect from the passivation layer is a key factor at high energies whereas the passivation layer has to be as thin as possible at low energies. A first experimental setup which consists in irradiating P ++ /N large diodes allows to study the passivation process impacts on the surface recombinations. Thanks to a second setup based on a single event upset directly on thinned CMOS sensor, passivation techniques are discriminated in term of mirror effect and the implied spreading charges. The doping atoms activation laser annealing is turn out to be a multiplication gain inhomogeneity source impacting directly the matrix uniformity. (author)

  3. Preliminary study on sterilization effect of irradiation on dry vegetable

    International Nuclear Information System (INIS)

    Zhai Jianqing; Bao Jianzhong; Cao Hong; Wang Jinrong; Chen Xiulan

    2004-01-01

    The number of surviving germs relationship to irradiation dose for several species dry vegetable was studied, and the original value D 10 of the dry vegetable was given. The value will provide a theoretical reference to ascertain the appropriate irradiation dose in the irradiation process of the dry vegetable

  4. Surface roughness control by extreme ultraviolet (EUV) radiation

    Science.gov (United States)

    Ahad, Inam Ul; Obeidi, Muhannad Ahmed; Budner, Bogusław; Bartnik, Andrzej; Fiedorowicz, Henryk; Brabazon, Dermot

    2017-10-01

    Surface roughness control of polymeric materials is often desirable in various biomedical engineering applications related to biocompatibility control, separation science and surface wettability control. In this study, Polyethylene terephthalate (PET) polymer films were irradiated with Extreme ultraviolet (EUV) photons in nitrogen environment and investigations were performed on surface roughness modification via EUV exposure. The samples were irradiated at 3 mm and 4 mm distance from the focal spot to investigate the effect of EUV fluence on topography. The topography of the EUV treated PET samples were studied by AFM. The detailed scanning was also performed on the sample irradiated at 3 mm. It was observed that the average surface roughness of PET samples was increased from 9 nm (pristine sample) to 280 nm and 253 nm for EUV irradiated samples. Detailed AFM studies confirmed the presence of 1.8 mm wide period U-shaped channels in EUV exposed PET samples. The walls of the channels were having FWHM of about 0.4 mm. The channels were created due to translatory movements of the sample in horizontal and transverse directions during the EUV exposure. The increased surface roughness is useful for many applications. The nanoscale channels fabricated by EUV exposure could be interesting for microfluidic applications based on lab-on-a-chip (LOC) devices.

  5. A history of studies on safety of irradiated foods

    International Nuclear Information System (INIS)

    Miyahara, Makoto

    2003-01-01

    This report explained a history of studies on safety of irradiated foods in the United States. The army of USA had begun an experiment of irradiated foods in 1953. The toxic tests consisted of three phase, the phase I (1954 to 1959), phase II (1956 to 1965) and phase III (1971 to 1978). In the phase I, the short period toxic tests (90days) of 54 kinds of foods were carried out using high and low irradiation. The Swift and Company Laboratories reported detailed animal tests of 2685 albino rat, chickens and human. The animal tests showed many kinds of nutrition disorder, but the human test no problem. On phase II, 22 kinds of foods were tested for long period using rat, dog and mouse. Dog showed many kinds of symptom, for example, low birthrate, short life time, low growth rate, increasing spleen weight and thyroid disease. On phase III, two companies carried out the toxic test and Ralston Purina Company report is only data to be used now. Atomic Energy Commission (AEC) (1960 to 1970), Department of Commerce (1965 to 1976) and Department of Agriculture (1961 to 1966) studied safety of irradiated foods. Food and Drug Administration (FDA) determined that the irradiated foods belonged to under the category of food additive in 1958. FDA tests safety of irradiated foods using the determination tree and permitted many kinds of irradiated foods. (S.Y.)

  6. Physic-chemical Study of Starch Extracted from Irradiated Corn Flour

    International Nuclear Information System (INIS)

    Pozo Sanchez, R. del; Alvarez Gil, M.

    1986-01-01

    The effects of gamma irradiation on starch extracted from irradiated samples of corn flour were studied in the range 0,6 kGy-1,0 kGy. Amylographic properties, solubility and swelling powder of starch samples were determined immediately after irradiation and at 75 days storage at environment conditions (16 0 C-31 0 C, 55%-97% H.R.). Diffraction patterns of crystalline starch were also obtained by X-rays. Gelatinization temperature, swelling powder and diffraction patterns did not change upon irradiation, but a decrease in viscosity and an increase in starch solubility were observed within the dose-range and storage time studied. (author)

  7. Study on irradiation treatment to drunk crab

    International Nuclear Information System (INIS)

    Cao Hong; Chen Xiulan; Zhai Jianqing; Bao Jianzhong; Wang Jinrong

    2002-01-01

    For guaranteeing the quality of irradiated drunk crab, manufacture method of the dosimeter, sample setting and taking position, irradiation time, asymmetry degree of irradiation dose, contrast of the dosimeter are discussed and some reference datum to commercialization of drunk crab's irradiation are provided

  8. Effects of gamma-irradiation on the electrokinetic properties of purple membranes

    International Nuclear Information System (INIS)

    Doltchinkova, V.; Baldjiiska, M.; Stoilova, S.

    1998-01-01

    The effect of gamma-irradiation (5, 10 and 15 Gy) on the kinetic surface charge of purple membranes (PM) was followed by means of particle microelectrophoresis. The changes in electrophoretic mobility (EPM) were examined at 2, 5 and 26 h, respectively, following irradiation of native PM, and at 2, 26, 50 h and 5 days following irradiation of delipidated PM. It was concluded that the high inhomogeneity of the suspension, even after sonication, largely affects the measured zeta-potential. The 15-Gy treatment significantly increased the net negative surface charge density at 5 and 26 h after irradiation of native PM. However, the opposite effect of approximately twofold reduction of EPM values was derived from simultaneous studies concerning their delipidated form. Low irradiation doses clearly induced an enhancement of negative surface charge density at 2 h post-exposure as well as the formation of unstable structures of delipidated PM. The changes in electrokinetic properties might reflect the specific aggregate formation in both native and delipidated PM. It was suggested that the effect observed of both types of PM was mainly a structural phenomenon possibly related to the modification of functionally active residues. (orig.)

  9. Surface modification and hydrogen isotope retention in CFC during plasma irradiation in the Tore Supra tokamak

    International Nuclear Information System (INIS)

    Begrambekov, L.; Brosset, C.; Bucalossi, J.; Delchambre, E.; Gunn, J.P.; Grisolia, C.; Lipa, M.; Loarer, T.; Mitteau, R.; Moner-Garbet, P.; Pascal, J.-Y.; Shigin, P.; Titov, N.; Tsitrone, E.; Vergazov, S.; Zakharov, A.

    2007-01-01

    The uniform layer with thickness at least 50-100 μm was found on the CFC tiles from the inboard midplane after more than four years of tokamak operation. The upper part of the uniform layer was amorphous, but at the depth of ∼5 μm a structure consisting of micro-size regions with aromatic chains located parallel to the surface was found. Gradual transition from uniform layer to underlying CFC structure was observed. The reciprocating material probe was used for installation of CFC samples in the Tore Supra deuterium plasma. The thermal desorptional spectra of these samples are compared with the spectra of the samples irradiated in the laboratory stand and with the spectra of hydrogenated carbon film. The peculiarities of hydrogen isotope trapping under plasma irradiation and at the atmosphere are presented and discussed

  10. Non-equilibrium surface conditions and microstructural changes following pulsed laser irradiation and ion beam mixing of Ni overlayers on sintered alpha-SiC

    International Nuclear Information System (INIS)

    More, K.L.; Davis, R.F.

    1986-01-01

    Pulsed laser irradiation and ion beam mixing of thin Ni overlayers on sintered alpha-SiC have been investigated as potential surface modification techniques for the enhancement of the mechanical properties of the SiC. Each of these surface processing methods are nonequilibrium techniques; materials interactions can be induced at the specimen surface which are not possible with conventional thermal techniques. As a result of the surface modification, the physical properties of the ceramic can be altered under the correct processing conditions. Following laser irradiation using a pulsed ruby or krypton fluoride (KrF) excimer laser, the fracture strength of the SiC was increased by approximately 50 percent and 20 percent, respectively. However, ion-beam mixing of Ni on SiC resulted in no change in fracture strength. Cross-sectional transmission electron microscopy, scanning electron microscopy, secondary ion mass spectroscopy, and Rutherford backscattering techniques, have been used to characterize the extent of mixing between the Ni and SiC as a result of the surface modification and to determine the reason(s) for the observed changes in fracture strength. 19 references

  11. Preliminary study on irradiation breeding of ornamental lotus

    International Nuclear Information System (INIS)

    Chen Xiulan; Bao Jianzhong; Liu Chungui; Cao Hong; Zhai Jianqing

    2004-01-01

    The effects of γ-ray irradiation on seeds and stems of ornamental lotus were studied. The results show that the mutation rate of seeds is higher than that of stems, and 30-60 Gy is the appropriate irradiation dose. The varieties with red or multi-color flower are more mutable than those with white flower. Two varieties were selected

  12. Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference

    International Nuclear Information System (INIS)

    Zhang, Zhe; Li, Wenbin; Kan, Jiangming

    2015-01-01

    Highlights: • A technical solution to the power supply of wireless sensor networks is presented. • The low voltage produced by TEG is boosted from less than 1 V to more than 4 V. • An output current and voltage of TEG device is acquired as 21.47 mA and 221 mV. • The device successfully provides output power 4.7 mW in no electricity conditions. • The thermo-economic value of TEG device is demonstrated. - Abstract: Motivated by the limited power supply of wireless sensors used to monitor the natural environment, for example, in forests, this study presents a technical solution by recycling solar irradiation heat using thermoelectric generators. Based on solar irradiation and the earth’s surface-air temperature difference, a new type of thermoelectric power generation device has been devised, the distinguishing features of which include the application of an all-glass heat-tube-type vacuum solar heat collection pipe to absorb and transfer solar energy without a water medium and the use of a thin heat dissipation tube to cool the earth surface air temperature. The effects of key parameters such as solar illumination, air temperature, load resistance, the proportional coefficient, output power and power generation efficiency for thermoelectric energy conversion are analyzed. The results of realistic outdoor experiments show that under a state of regular illumination at 3.75 × 10 4 lx, using one TEG module, the thermoelectric device is able to boost the voltage obtained from the natural solar irradiation from 221 mV to 4.41 V, with an output power of 4.7 mW. This means that the electrical energy generated can provide the power supply for low power consumption components, such as low power wireless sensors, ZigBee modules and other low power loads

  13. Gamma irradiation effect on polymers derived of pyrrole synthesized by plasma

    International Nuclear Information System (INIS)

    Lopez G, O. G.

    2013-01-01

    This work studies the effect of gamma irradiation at doses of 50, 100, 200, 400 and 800 kGy on polymers obtained from pyrrole synthesized by plasma. The evolution of the structure was studied by Fourier transform infrared spectroscopy (Ftir) and X-ray photoelectron spectroscopy (XPS). The Ftir spectra show that poly pyrroles have N-H, C-H, C=O, triple and consecutive double bonds in their structure. The irradiated polymers show the same chemical groups in their structure without significant changes. Nevertheless, a more detailed analysis by XPS allows the identification of superficial chemical states, such as: C=CH-C, C=CC-C, C-NH-C, C-NC-C, etc., and shows that most of these states are present in all polymers but with different participation. One possible mechanism indicates that as the irradiation dose increases, dehydrogenation processes are performed increasing fragmentation, crosslinking and formation of multiple bonds. The fragmentation and thermal degradation were studied by thermogravimetric analysis, indicating that the loss of moisture and light compounds formed during gamma irradiation occurs in the firsts 100 grades C. The main degradation of all polymers occurs from 150 to 700 grades C, suggesting that the thermal stability is independent of the irradiation dose in the interval studied. Morphology was studied using scanning electron microscopy techniques. Before irradiation, the polymer presented a uniform and practically smooth surface, however, after gamma irradiation, the applied energy increased roughness and macro fragmentation. The roughness and functional groups on the surface reduced the contact angle with water as the irradiation dose increased. However, the polymers are hydrophilic, because for all doses that contact angle is smaller than 90 grades C. Electrical conductivity was calculated respect to temperature in the interval from 25 to 100 grades C. Conductivity increases with temperature and is slightly greater in the irradiated polymers

  14. Studies on Post-Irradiation DNA Degradation in Micrococcus Radiodurans, Strain RII51

    DEFF Research Database (Denmark)

    Auda, H.; Emborg, C.

    1973-01-01

    The influence of irradiation condition on post-irradiation DNA degradation was studied in a radiation resistant mutant of M. radiodurans, strain ${\\rm R}_{{\\rm II}}5$. After irradiation with 1 Mrad or higher more DNA is degraded in cells irradiated in wet condition than in cells irradiated with t...

  15. The effects of gamma irradiation on leaching of 137Cs from organic matrix wasteforms

    International Nuclear Information System (INIS)

    Burnay, S.G.; Johnson, D.I.; Phillips, D.C.; Brownsword, M.

    1987-09-01

    The effects of γ-irradiation on the leaching behaviour of 137 Cs in organic matrix wasteforms has been studied. The matrix materials used include epoxide, polyester and vinyl ester thermosetting resins and bitumen. Leaching of 137 Cs in such matrices can be described by models, based on diffusion, which take into consideration such factors as non-representative surface layers, finite sample size, and sorption effects. In many cases, the changes observed on irradiation arise from modification of the sorptive capacity of the wasteform for 137 Cs, producing changes in the experimentally observed diffusion coefficients. In samples containing wet wastes, enhanced leaching in the first few days is observed after irradiation. This arises from loss of water from the sample surfaces during irradiation producing an enhanced concentration of the radionuclide in the surface. (author)

  16. The intrinsic gettering in neutron irradiation Czochralski-silicon

    CERN Document Server

    Li Yang Xian; Niu Ping Juan; Liu Cai Chi; Xu Yue Sheng; Yang Deren; Que Duan Lin

    2002-01-01

    The intrinsic gettering in neutron irradiated Czochralski-silicon is studied. The result shows that a denuded zone at the surface of the neutron irradiated Czochralski-silicon wafer may be formed through one-step short-time annealing. The width of the denuded zone is dependent on the annealing temperature and the dose of neutron irradiation, while it is irrelated to the annealing time in case the denuded zone is formed. The authors conclude that the interaction between the defects induced by neutron irradiation and the oxygen in the silicon accelerates the oxygen precipitation in the bulk, and becomes the dominating factor of the quick formation of intrinsic gettering. It makes the effect of thermal history as the secondary factor

  17. EPR study on gamma-irradiated fruits dehydrated via osmosis

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, N.D. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)]. E-mail: ndyepr@bas.bg; Aleksieva, K. [Laboratory EPR, Institute of Catalysis, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)

    2007-06-15

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and {gamma}-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas {gamma}-irradiated exhibit 'sugar-like' EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  18. Contribution to the study of the effects of {alpha}-irradiation in nuclear glasses; Contribution a l'etude des effets de l'irradiation {alpha} sur les verres nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A

    2001-07-01

    The main topic of this work is to characterise the effects of {alpha}-disintegration in nuclear waste glasses. Experimental and numerical approaches have been considered. The structure of the French nuclear waste glass (R7T7) has been simulated using four- and six-oxides simplified glasses which contain the main elements of the R7T7 glass: SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, ZrO{sub 2}, Al{sub 2}O{sub 3} and CaO. Four- and six-oxides glasses have been irradiated with 1 MeV-He{sup +} (ionisation) and 2.1 MeV-Kr{sup 3+} (ionisation and atomic collisions) ions in order to reproduce the effects of the {alpha}-particle and of the recoil nucleus emitted during {alpha}-disintegration of actinides, and also to differentiate electronic and ballistic effects. Irradiated glasses have been characterised using several techniques, which have been adapted to the peculiarities of our samples (isolated material, small irradiated depth). The results point out the salient role of sodium in the observed modifications: depth concentration profiles obtained with RBS show an accumulation of sodium at the irradiated surface. We found a apparent acceleration of sodium release in leaching experiments which confirm that point. Modifications observed in Raman spectra of irradiated glasses show an increase of the polymerisation (increase of Q{sub 3}/Q{sub 2} ratio) due to sodium migration. In simplified glasses we have found that the modifications of mechanical properties by external irradiations reproduce the modifications observed in actinide doped nuclear glass (decrease of hardness and increase of fracture toughness). At the same time, we performed Molecular Dynamics simulations of a six-oxides glass. We have shown that the surface modifies the glass structure down to a depth of 10 Angstrom: modification of depth concentration profiles, decrease of the atomic coordination number (A1, B and Si). During cascades, we found that atomic displacements are easier near the surface. This

  19. Surface Nano crystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Han, Z.; Zou, H.; Wang, Z.; Ji, I.; Cai, J.; Guan, Q.

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nano crystallized surface were characterized by X-ray diffraction and electron microscopy. Two nano structures consisting of fine austenite grains (50-150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C) solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  20. Interaction between the surface of the silver nanoparticles prepared by γ-irradiation and organic molecules containing thiol group

    International Nuclear Information System (INIS)

    Choi, S.-H.; Lee, S.-H.; Hwang, Y.-M.; Lee, K.-P.; Kang, H.-D.

    2003-01-01

    The colloidal silver nanoparticles were prepared by the γ-irradiation of silver nitrate (AgNO 3 ) in a mixture solution of water and 2-propanol in the presence of poly(vinylpyrrolidone) as a colloidal stabilizer. The Ag colloids obtained by γ-irradiation were characterized by use of XRD and TEM. The surface of the Ag colloids were modified by use of mercaptosuccinic acid (MSA), (D)-cysteine (Cys), and (L)-Cys, respectively. The MSA and (L)-Cys-capped Ag colloids were aggregated because of hydrogen bonding of the carboxylic acid and amino acid group, respectively. From the analysis by CD spectroscopy, it was shown that chiral-enhanced phenomena were obtained in (L)- and (D)-Cys-capped Ag colloids

  1. Study on innocent irradiation treatment of Trichinella spiralis pork

    International Nuclear Information System (INIS)

    Zhao Guang; Guo Anxi; Xu Zhaomei

    1992-01-01

    The effects of 60 Co gamma rays on pork Trichinella spiralis and nutritional hygiene evaluation of irradiated Trichinella spiralis pork were studied by using animal infestation test and artificial gastric juice digestion method. The results showed that when mouse was infested by Trichinella spiralis pork irradiated with a dose of 0.04 kGy, the number of the second generation larvae and the parasitism in the muscle were reduced. 0.08 kGy irradiation could render the intestine Trichinella spiralis sterile. 0.1 kGy blocked the growth of Trichinella spiralis, which were excreted from the body four days after infestation. 0.2-0.8 kGy irradiation could severely block the growth of Trichinella spiralis, which were excreted completely from the body within forth-eight hours when irradiated with 7 kGy and 8 kGy, the Trichinella spiralis body was not found in the intestine within twenty-four hours. 0.3 kGy and 1 kGy irradiation had no harmful effect on nutrition and wholesomeness of Trichinella spiralis pork. Innocent irradiation treatment of Trichinella spiralis pork is practicable, and the lowest dose should be 0.3 kGy

  2. Prospective study of nutritional support during pelvic irradiation

    International Nuclear Information System (INIS)

    Kinsella, T.J.; Malcolm, A.W.; Bothe, A. Jr.; Valerio, D.; Blackburn, G.L.

    1981-01-01

    A prospective study of nutritional support during pelvic irradiation was carried out in 32 patients with a primary pelvic malignancy and prior weight loss. Both curative and palliative patients were eligible for the study. Seventeen patients were randomized to receive intravenous hyperalimentation (IVH) and fifteen patients served as controls who were maintained on their regular diet. Patients were stratified by percent body weight loss. Tolerance to therapy was assessed by evaluation of functional status and by using nutritional parameters of body weight change, change in serum protein levels, and response to delayed hypersensitivity skin tests. The curative IVH group tolerated therapy well by both functional and nutritional measurements. All curative IVH patients completed the planned radiation therapy without a treatment break and were fully active following treatment. Patients gained an average of 4.0 kg body weight during irradiation, which was significantly different from the curative control patients. They demonstrated a significant increase in serum transferrin reflecting an improvement in visceral protein. In addition, all showed a positive response to delayed hypersensitivity skin tests at the completion of irradiation. The palliative IVH patients often did poorly because of progression of disease and demonstrated only an elevation of serum transferrin during treatment. The results in the curative IVH group suggest a potential adjunctive role for intravenous hyperalimentation in the malnourished cancer patient undergoing pelvic irradiation. Clearly, further study of nutritional support during pelvic irradiation is needed using curative patients with a single tumor type and significant prior weight loss

  3. Study on identification of irradiated food containing cellulose by ESR

    International Nuclear Information System (INIS)

    Wan Xiaojuan; Dou Daying; Xu Gang; Jiao Zheng; Wang Jia; Zheng Jianfei; Jiao Zheng; Wu Minghong; Ding Guoji

    2008-01-01

    The fast development and application of food irradiation technology signify the necessity and urgency to research on effective detection method for irradiated food. In this paper, we report a preliminary study in this area with dried chili powder, peanuts and strawberry seeds. The food samples were irradiated to 0.5, 1.0, 3.0, 5.0 and 10.0 kGy by 60 Co gamma rays. The relation between ESR intensity and irradiation dose, and correlation R 2 , were studied. The results showed that the ESR signal intensity is positively related with the dose. ESR intensity of the strawberry increased the slowest with the dose, and the chili powder had the most accurate calculation. Accurate dose-effect curves, however, require repeating tests and further studies are needed to verify the ESR results. (authors)

  4. Windowless Electron Beam Experimental Irradiation WEBExplr

    International Nuclear Information System (INIS)

    Heyse, J.

    2009-01-01

    The design of the MYRRHA/XT-ADS, the European eXperimental Accelerator Driven System for the demonstration of Transmutation, includes a high power windowless spallation target operating with liquid LBE (Lead-Bismuth Eutectic) that will be irradiated with a 600 MeV proton beam at currents of up to 2.5 mA. When considering such a high power windowless target design, a number of questions need to be addressed, such as the stability of the free surface flow and its ability to remove the power deposited by the proton beam by forced convection, the compatibility of a large hot LBE reservoir with the beam line vacuum and the outgassing of the LBE in the spallation target circuit. These issues have been studied during previous experiments supported by numerical simulations. Another crucial point in the development of the spallation target is the demonstration of the safe and stable operation of the free LBE surface during irradiation with a high power proton beam. As a first step in this program, the WEBExpIr (Windowless target Electron Beam Experimental Irradiation) experiment was set up. The purpose of the WEBExpIr experiment was to investigate the influence of LBE surface heating caused by a charged particle beam in a situation representative of the MYRRHA/XT-ADS. More in particular, we wanted to assess possible free surface distortion or shockwave effects in nominal conditions and during sudden beam on/off transient situations, as well as possible enhanced evaporation

  5. An ESR study of radicals induced in irradiated fresh mango

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Hussain, Mohammed S.; Morishita, Norio; Kobayashi, Yasuhiko; Ukai, Mitsuko; Shimoyama, Yuhei

    2009-01-01

    An electron spin resonance (ESR) spectroscopic study was performed on the radicals induced irradiated fresh mangoes. Fresh Philippine mangoes were irradiated by the γ-rays, lyophilized and powdered. The ESR spectrum of the dry specimen showed a strong main peak at g=2.004 and a pair of peaks at both magnetic fields of the main peak. The main peak detected from flesh and skin specimens faded away in a few days after the irradiation. On the other hand, the side peaks showed a well-defined dose response even 9 days after the irradiation. The side-peak is a useful mean to define the irradiation on fresh mangoes. (author)

  6. Development of process control for the irradiation of fresh mangoes

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E G; Lanuza, L G; Maningas, A L; Solomon, H M; Madera, G G; Pares, F A [Philippine Nuclear Research Institute, Quezon City (Philippines)

    2001-03-01

    Dose distribution studies in mangoes contained in boxes used in commercial trade for export, were done using the multipurpose irradiation facility at the Philippine Nuclear Research Institute. The mangoes were irradiated at a target dose of 100 Gy, the dose required for quarantine treatment of fresh mangoes against fruitflies. Positions of minimum dose and maximum dose were identified and dose uniformity ratio was determined. Fricke and Gammachrome YR dosimeters were used for the dose distribution studies. The performance of STERIN threshold indicators was evaluated by irradiating them at different doses. STERIN 125 indicators were also attached to the surface of the mango boxes during the dose distribution studies. STERIN indicators can be useful to differentiate between irradiated and unirradiated products. (author)

  7. Development of process control for the irradiation of fresh mangoes

    International Nuclear Information System (INIS)

    Cabalfin, E.G.; Lanuza, L.G.; Maningas, A.L.; Solomon, H.M.; Madera, G.G.; Pares, F.A.

    2001-01-01

    Dose distribution studies in mangoes contained in boxes used in commercial trade for export, were done using the multipurpose irradiation facility at the Philippine Nuclear Research Institute. The mangoes were irradiated at a target dose of 100 Gy, the dose required for quarantine treatment of fresh mangoes against fruitflies. Positions of minimum dose and maximum dose were identified and dose uniformity ratio was determined. Fricke and Gammachrome YR dosimeters were used for the dose distribution studies. The performance of STERIN threshold indicators was evaluated by irradiating them at different doses. STERIN 125 indicators were also attached to the surface of the mango boxes during the dose distribution studies. STERIN indicators can be useful to differentiate between irradiated and unirradiated products. (author)

  8. GXRD study of 100 MeV Fe9+ ion irradiated indium phosphide

    International Nuclear Information System (INIS)

    Dubey, R.L.; Dubey, S.K.; Kachhap, N.K.; Kanjilal, D.

    2014-01-01

    Swift heavy ions with MeV to GeV kinetic energy offer unique possibilities of modifying material properties. Each projectile passing through the target material causes loss of its energy by ion-electrons and ion-atoms interaction with the target material. The consequence of formal one is to change in surface properties and latter to produces damage deep in the target material near the projected range of projectile. In the present work, indium phosphide samples were irradiated at 100 MeV 56 Fe 9+ ions with different fluences varying from 1x10 12 to 1x10 14 ions cm -2 using the 15UD Pelletron facilities at Inter University Accelerator Centre (IUAC), New Delhi. Grazing angle X-ray diffraction technique was used to investigate the structural properties of irradiated indium phosphide at different depths. The GXRD spectra of non-irradiated and irradiated samples were recorded at different grazing angle i.e 1°, 2°, 3°, 4° and 5° to get the structural information over the projected range. The detailed result will be presented and discussed in the conference. (author)

  9. Experimental study on ablative stabilization of Rayleigh-Taylor instability of laser-irradiated targets

    Science.gov (United States)

    Shigemori, Keisuke; Sakaiya, Tatsuhiko; Otani, Kazuto; Fujioka, Shinsuke; Nakai, Mitsuo; Azechi, Hiroshi; Shiraga, Hiroyuki; Tamari, Yohei; Okuno, Kazuki; Sunahara, Atsushi; Nagatomo, Hideo; Murakami, Masakatsu; Nishihara, Katsunobu; Izawa, Yasukazu

    2004-09-01

    Hydrodynamic instabilities are key issues of the physics of inertial confinement fusion (ICF) targets. Among the instabilities, Rayleigh-Taylor (RT) instability is the most important because it gives the largest growth factor in the ICF targets. Perturbations on the laser irradiated surface grow exponentially, but the growth rate is reduced by ablation flow. The growth rate γ is written as Takabe-Betti formula: γ = [kg/(1+kL)]1/2-βkm/pa, where k is wave number of the perturbation, g is acceleration, L is density scale-length, β is a coefficient, m is mass ablation rate per unit surface, and ρa is density at the ablation front. We experimentally measured all the parameters in the formula for polystyrene (CH) targets. Experiments were done on the HIPER laser facility at Institute of Laser Engineering, Osaka University. We found that the β value in the formula is ~ 1.7, which is in good agreements with the theoretical prediction, whereas the β for certain perturbation wavelengths are larger than the prediction. This disagreement between the experiment and the theory is mainly due to the deformation of the cutoff surface, which is created by non-uniform ablation flow from the ablation surface. We also found that high-Z doped plastic targets have multiablation structure, which can reduce the RT growth rate. When a low-Z target with high-Z dopant is irradiated by laser, radiation due to the high-Z dopant creates secondary ablation front deep inside the target. Since, the secondary ablation front is ablated by x-rays, the mass ablation rate is larger than the laser-irradiated ablation surface, that is, further reduction of the RT growth is expected. We measured the RT growth rate of Br-doped polystyrene targets. The experimental results indicate that of the CHBr targets show significantly small growth rate, which is very good news for the design of the ICF targets.

  10. Ion irradiation synthesis of Ag–Au bimetallic nanospheroids in SiO{sub 2} glass substrate with tunable surface plasmon resonance frequency

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan); Shibayama, Tamaki; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan)

    2013-08-07

    Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.

  11. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  12. High energy electron irradiation of flowable materials

    International Nuclear Information System (INIS)

    Offermann, B.P.

    1975-01-01

    In order to efficiently irradiate a flowable material with high energy electrons, a hollow body is disposed in a container for the material and the material is caused to flow in the form of a thin layer across a surface of the body from or to the interior of the container while the material flowing across the body surface is irradiated. (U.S.)

  13. Irradiation damages in Ti3SiC2

    International Nuclear Information System (INIS)

    Nappe, J.C.; Grosseau, Ph.; Guilhot, B.; Audubert, F.; Beauvy, M.

    2007-01-01

    Carbides, by their remarkable properties, are considered as possible materials (fuel cans) in reactor of generation IV. Among those studied, Ti 3 SiC 2 is particularly considered because it joins both the ceramics and metals properties. Nevertheless, its behaviour under irradiation is not known. Characterizations have been carried out on samples irradiated at 75 MeV krypton ions. They have revealed that TiO 2 (formed at the surface of Ti 3 SiC 2 ) is pulverized by the irradiation and that the crystal lattice of Ti 3 SiC 2 dilates with c. (O.M.)

  14. Evaluating solar radiation on a tilted surfaces - a study case in Timis (Romania)

    International Nuclear Information System (INIS)

    Vasar, C; Prostean, O; Prostean, G

    2016-01-01

    In the last years the usage of solar energy has grown considerably in Romania, as well as in Europe, stimulated by various factors as government programs, green pricing policies, decreasing of photovoltaic components cost etc. Also, the rising demand of using Solar Energy Conversion Systems (SECS) is driven by the desire of individuals or companies to obtain energy from a clean renewable source. In many applications, remote consumers far from other energetic grids can use solar systems more cost-effectively than extending the grid to reach the location. Usually the solar energy is measured or forecast on horizontal surface, but in SECS there is needed the total solar radiation incident on the collector surface, that is oriented in a position that maximize the harvested energy. There are many models that convert the solar radiation from horizontal surface to a tilted surface, but they use empirical coefficients and the accuracy is influenced by different facts as geographical location or sky conditions. Such models were used considering measured values for solar radiation on horizontal plane, in the western part of Romania. Hourly values measured for global solar irradiation on the horizontal plane, diffuse solar irradiation on the horizontal plane and reflected solar irradiation by ground are used to compute the total solar radiation incident on different tilted surfaces. The calculated incident radiation is then compared with the real radiation measured on tilted surface in order to evaluate the performance of the considered conversion models. (paper)

  15. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    International Nuclear Information System (INIS)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  16. Thermohydraulic design of saturated temperature capsule for IASCC irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ide, Hiroshi; Matsui, Yoshinori; Itabashi, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2002-10-01

    An advanced water chemistry controlled irradiation research device is being developed in JAERI, to perform irradiation tests for irradiation assisted stress corrosion cracking (IASCC) research concerned with aging of LWR. This device enables the irradiation tests under the water chemistry condition and the temperature, which simulate the conditions for BWR core internals. The advanced water chemistry controlled irradiation research device is composed of saturated temperature capsule inserted into the JMTR core and the water chemistry control unit installed in the reactor building. Regarding the saturated temperature capsule, the Thermohydraulic design of capsule structure was done, aimed at controlling the specimen's temperature, feeding water velocity on specimen's surface to the environment of BWR nearer. As the result of adopting the new capsule structure based on the design study, it was found out that feeding water velocity at the surface of specimen's is increased to about 10 times as much as before, and nuclear heat generated in the capsule components can be removed safely even in the abnormal event such as the case of loss of feeding water. (author)

  17. Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Manoj Kumar [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Kumar, Rajesh, E-mail: rajeshkumaripu@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi 110 078 (India)

    2013-11-01

    Thin films of tin(IV) oxide (SnO{sub 2}) of 100 nm thickness were grown on silicon (1 0 0) matrices by electron beam evaporation deposition technique under high vacuum. The thicknesses of these films were monitored by piezo-sensor attached to the deposition chamber. Nanocrystallinity is achieved in these thin films by 100 MeV Au{sup 8+} using 1 pnA current at normal incidence with ion fluences varying from 1 × 10{sup 11} ions/cm{sup 2} to 5 × 10{sup 13} ions/cm{sup 2}. Swift Heavy Ion beam irradiation was carried out by using 15 UD Pelletron Accelerator at IUAC, New Delhi, India. Optical studies of pristine and ion irradiated thin films were characterized by UV–Visible spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Prominent peak at 610 cm{sup −1} in FTIR spectrum confirmed the O–Sn–O bonding of tin(IV) oxide. For Surface topographical studies and grain size calculations, these films were characterized by Atomic Force Microscope (AFM) using Nanoscope III-A. Crystallinity and phase transformation due to irradiation of pristine and irradiated films were characterized by Glancing Angle X-ray Diffraction (GAXRD) using Brucker-D8 advance model. GAXRD results show improvement in crystallinity and phase transformation due to swift heavy ion irradiation. Grain size distribution was verified by AFM and GAXRD results. Swift heavy ion induced modifications in thin films of SnO{sub 2} were confirmed by the presence of prominent peaks at 2θ values of 30.65°, 32.045°, 43.94°, 44.96° and 52.36° in GAXRD spectrum.

  18. The influence of fast neutron irradiation on the noise properties of silicon surface-barrier detectors

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1988-01-01

    The susceptibility to the fast neutron irradiation of silicon surface-barrier detectors has been investigated. It was shown that the 1/f-noise decreases substantially with increasing fluence in the range from 10 10 n/cm 2 to 10 11 n/cm 2 . The deterioration of the detector performance is caused mainly by the positively-charged defects induced by the radiation. The critical value of the neutron fluence, at which the detector performance begins to be worsened was also determined. 5 refs., 5 figs. (author)

  19. Synthetic study of reactor irradiation for medical use

    International Nuclear Information System (INIS)

    An, Shigehiro; Furuhashi, Akira; Kanda, Keiji; Sumita, Kenji; Kakihana, Hidetake.

    1978-01-01

    This report is described on the results of the study on the reactor irradiation for medical use shared by the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, and other seventeen facilities. Boron neutron-capturing therapy developed in Japan is extremely significant treating method for tumors by destroying tumor cells of encephaloma, etc. selectively. This is the synthetic study for promoting the above therapeutic method. Two existing reactors were reconstructed into the thermal neutron reactors for boron neutron-capturing therapy. The various preparatory and physical researches were made with the reconstruction, and the therapy was tried on eleven cases. Further experiments were made on the following points: (1) To promote treatment on encephaloma by boron neutron-capturing therapy. (2) To develop its application to malignant tumors other than encephaloma. (3) Animal irradiation experiments. (4) The basic experiments on the cellular level. (5) The study of remote controlled anesthesia. (6) To control irradiated dose. (7) To improve boron compounds. (8) To condense radioisotopes. (Kobatake, H.)

  20. Swift heavy ion irradiated SnO_2 thin film sensor for efficient detection of SO_2 gas

    International Nuclear Information System (INIS)

    Tyagi, Punit; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Response of Ni"7"+ ion irradiated (100 MeV) SnO_2 film have been performed. • Effect of irradiation on the structural and optical properties of SnO_2 film is studied. • A decrease in operating temperature and increased response is seen after irradiation. - Abstract: Gas sensing response studies of the Ni"7"+ ion irradiated (100 MeV) and non-irradiated SnO_2 thin film sensor prepared under same conditions have been performed towards SO_2 gas (500 ppm). The effect of irradiation on the structural, surface morphological, optical and gas sensing properties of SnO_2 thin film based sensor have been studied. A significant decrease in operating temperature (from 220 °C to 60 °C) and increased sensing response (from 1.3 to 5.0) is observed for the sample after irradiation. The enhanced sensing response obtained for the irradiated SnO_2 thin film based sensor is attributed to the desired modification in the surface morphology and material properties of SnO_2 thin film by Ni"7"+ ions.