WorldWideScience

Sample records for surface insect community

  1. Impervious surface area as a predictor of the effects of urbanization on stream insect communities in Maine, USA.

    Science.gov (United States)

    Morse, Chandler C; Huryn, Alexander D; Cronan, Christopher

    2003-11-01

    The influence of urbanization on stream insect communities was determined by comparing physical, chemical, and biological characteristics of streams draining 20 catchments with varying levels of urban land-cover in Maine (U.S.A). Percent total impervious surface area (PTIA), which was used to quantify urban land-use, ranged from approximately 1-31% among the study catchments. Taxonomic richness of stream insect communities showed an abrupt decline as PTIA increased above 6%. Streams draining catchments with PTIA 18 taxa or an EPT richness > 6 taxa. Insect communities in streams with PTIA > 6% were characterized by the absence of pollution-intolerant taxa. The distribution of more pollution-tolerant taxa (e.g. Acerpenna (Ephemeroptera); Paracapnia, Allocapnia (Plecoptera); Optioservus, Stenelmis (Coleoptera); Hydropsyche, Cheumatopsvyche (Trichoptera)), however, showed little relation to PTIA. In contrast to the apparent threshold relationship between PTIA and insect taxonomic richness, both habitat quality and water quality tended to decline as linear functions of PTIA. Our results indicate that, in Maine, an abrupt change in stream insect community structure occurs at a PTIA above a threshold of approximately 6% of total catchment area. The measurement of PTIA may provide a valuable tool for predicting thresholds for adverse effects of urbanization on the health of headwater streams in Maine.

  2. Forest litter insect community succession in clearcuts of Norway spruce

    Science.gov (United States)

    Arturas Gedminas

    2003-01-01

    Insects are subjected to stress in fresh clearcuts due to changes in microclimate, vegetation, and trophic links. The objective of this study was to investigate succession in litter insect communities (most abundant by number of species and individuals of all clearcut insects).

  3. A call to insect scientists: Challenges and opportunities of managing insect communities under climate change

    Science.gov (United States)

    Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.

    2016-01-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.

  4. A call to insect scientists: challenges and opportunities of managing insect communities under climate change.

    Science.gov (United States)

    Hellmann, Jessica J; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W

    2016-10-01

    As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us to revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Response of native insect communities to invasive plants.

    Science.gov (United States)

    Bezemer, T Martijn; Harvey, Jeffrey A; Cronin, James T

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies. Through the release of volatile compounds, and by changing the chemical complexity of the habitat, invasive plants can also affect the behavior of native insects such as herbivores, parasitoids, and pollinators. Studies that compare insects on related native and invasive plants in invaded habitats show that the abundance of insect herbivores is often lower on invasive plants, but that damage levels are similar. The impact of invasive plants on the population dynamics of resident insect species has been rarely examined, but invasive plants can influence the spatial and temporal dynamics of native insect (meta)populations and communities, ultimately leading to changes at the landscape level.

  6. A Phloem-Feeding Insect Transfers Bacterial Endophytic Communities between Grapevine Plants

    Directory of Open Access Journals (Sweden)

    Sebastiàn Lòpez-Fernàndez

    2017-05-01

    Full Text Available Bacterial endophytes colonize the inner tissues of host plants through the roots or through discontinuities on the plant surface, including wounds and stomata. Little is known regarding a possible role of insects in acquiring and transmitting non-phytopathogenic microorganisms from plant to plant, especially those endophytes that are beneficial symbionts providing plant protection properties and homeostatic stability to the host. To understand the ecological role of insects in the transmission of endophytic bacteria, we used freshly hatched nymphs of the American sap-feeding leafhopper Scaphoideus titanus (vector to transfer microorganisms across grapevine plants. After contact with the vector, sink plants were colonized by a complex endophytic community dominated by Proteobacteria, highly similar to that present in source plants. A similar bacterial community, but with a higher ratio of Firmicutes, was found on S. titanus. Insects feeding only on sink plants transferred an entirely different bacterial community dominated by Actinobacteria, where Mycobacterium sp., played a major role. Despite the fact that insects dwelled mostly on plant stems, the bacterial communities in plant roots resembled more closely those inside and on insects, when compared to those of above-ground plant organs. We prove here the potential of insect vectors to transfer entire endophytic bacterial communities between plants. We also describe the role of plants and bacterial endophytes in establishing microbial communities in plant-feeding insects.

  7. A Phloem-Feeding Insect Transfers Bacterial Endophytic Communities between Grapevine Plants

    Science.gov (United States)

    Lòpez-Fernàndez, Sebastiàn; Mazzoni, Valerio; Pedrazzoli, Federico; Pertot, Ilaria; Campisano, Andrea

    2017-01-01

    Bacterial endophytes colonize the inner tissues of host plants through the roots or through discontinuities on the plant surface, including wounds and stomata. Little is known regarding a possible role of insects in acquiring and transmitting non-phytopathogenic microorganisms from plant to plant, especially those endophytes that are beneficial symbionts providing plant protection properties and homeostatic stability to the host. To understand the ecological role of insects in the transmission of endophytic bacteria, we used freshly hatched nymphs of the American sap-feeding leafhopper Scaphoideus titanus (vector) to transfer microorganisms across grapevine plants. After contact with the vector, sink plants were colonized by a complex endophytic community dominated by Proteobacteria, highly similar to that present in source plants. A similar bacterial community, but with a higher ratio of Firmicutes, was found on S. titanus. Insects feeding only on sink plants transferred an entirely different bacterial community dominated by Actinobacteria, where Mycobacterium sp., played a major role. Despite the fact that insects dwelled mostly on plant stems, the bacterial communities in plant roots resembled more closely those inside and on insects, when compared to those of above-ground plant organs. We prove here the potential of insect vectors to transfer entire endophytic bacterial communities between plants. We also describe the role of plants and bacterial endophytes in establishing microbial communities in plant-feeding insects. PMID:28555131

  8. Plant interactions with multiple insect herbivores: from community to genes

    NARCIS (Netherlands)

    Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; Loon, van J.J.A.; Poelman, E.H.; Dicke, M.

    2014-01-01

    Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant

  9. A possibility of avoiding surface roughness due to insects

    Science.gov (United States)

    Wortmann, F. X.

    1984-01-01

    Discussion of a method for eliminating turbulence caused by the formation of insect roughness upon the leading edges and fuselage, particularly in aircraft using BLC. The proposed technique foresees the use of elastic surfaces on which insect roughness cannot form. The operational characteristics of highly elastic rubber surface fastened to the wing leading edges and fuselage edges are examined. Some preliminary test results are presented. The technique is seen to be advantageous primarily for short-haul operations.

  10. Engineered Surfaces for Mitigation of Insect Residue Adhesion

    Science.gov (United States)

    Siochi, Emilie J.; Smith, Joseph G.; Wohl, Christopher J.; Gardner, J. M.; Penner, Ronald K.; Connell, John W.

    2013-01-01

    Maintenance of laminar flow under operational flight conditions is being investigated under NASA s Environmentally Responsible Aviation (ERA) Program. Among the challenges with natural laminar flow is the accretion of residues from insect impacts incurred during takeoff or landing. Depending on air speed, temperature, and wing structure, the critical residue height for laminar flow disruption can be as low as 4 microns near the leading edge. In this study, engineered surfaces designed to minimize insect residue adhesion were examined. The coatings studied included chemical compositions containing functional groups typically associated with abhesive (non-stick) surfaces. To reduce surface contact by liquids and enhance abhesion, the engineered surfaces consisted of these coatings doped with particulate additives to generate random surface topography, as well as coatings applied to laser ablated surfaces having precision patterned topographies. Performance evaluation of these surfaces included contact angle goniometry of pristine coatings and profilometry of surfaces after insect impacts were incurred in laboratory scale tests, wind tunnel tests and flight tests. The results illustrate the complexity of designing antifouling surfaces for effective insect contamination mitigation under dynamic conditions and suggest that superhydrophobic surfaces may not be the most effective solution for preventing insect contamination on aircraft wing leading edges.

  11. Diverse honeydew-consuming fungal communities associated with scale insects.

    Directory of Open Access Journals (Sweden)

    Manpreet K Dhami

    Full Text Available Sooty mould fungi are ubiquitous, abundant consumers of insect-honeydew that have been little-studied. They form a complex of unrelated fungi that coexist and compete for honeydew, which is a chemically complex resource. In this study, we used scanning electron microscopy in combination with T-RFLP community profiling and ITS-based tag-pyrosequencing to extensively describe the sooty mould community associated with the honeydews of two ecologically important New Zealand coelostomidiid scale insects, Coelostomidia wairoensis and Ultracoelostoma brittini. We tested the influence of host plant on the community composition of associated sooty moulds, and undertook limited analyses to examine the influence of scale insect species and geographic location. We report here a previously unknown degree of fungal diversity present in this complex, with pyrosequencing detecting on average 243 operational taxonomic units across the different sooty mould samples. In contrast, T-RFLP detected only a total of 24 different "species" (unique peaks. Nevertheless, both techniques identified similar patterns of diversity suggesting that either method is appropriate for community profiling. The composition of the microbial community associated with individual scale insect species varied although the differences may in part reflect variation in host preference and site. Scanning electron microscopy visualised an intertwined mass of fungal hyphae and fruiting bodies in near-intact physical condition, but was unable to distinguish between the different fungal communities on a morphological level, highlighting the need for molecular research. The substantial diversity revealed for the first time by pyrosequencing and our inability to identify two-thirds of the diversity to further than the fungal division highlights the significant gap in our knowledge of these fungal groups. This study provides a first extensive look at the community diversity of the fungal community

  12. Effects of temperature increase in insect community

    International Nuclear Information System (INIS)

    Tuda, Midori; Fujii, Koichi

    1993-01-01

    Temperature will rise by 2degC in the near future. Potential effects of the rise on biological community are predicted with little evidence on the subjects. Individualistic responses of component species in community are often ignored. We performed experiments on a lab host-parasitoid community and tested the hypothesis that individualistic changes in developmental schedules by temperature rise can generate drastic community change. (author)

  13. Effects of temperature increase in insect community

    Energy Technology Data Exchange (ETDEWEB)

    Tuda, Midori; Fujii, Koichi (Tsukuba Univ., Ibaraki (Japan))

    1993-01-01

    Temperature will rise by 2degC in the near future. Potential effects of the rise on biological community are predicted with little evidence on the subjects. Individualistic responses of component species in community are often ignored. We performed experiments on a lab host-parasitoid community and tested the hypothesis that individualistic changes in developmental schedules by temperature rise can generate drastic community change. (author).

  14. Response of native insect communities to invasive plants

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Cronin, J.T.

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies.

  15. Response of Native Insect Communities to Invasive Plants

    NARCIS (Netherlands)

    Bezemer, T.M.; Harvey, J.A.; Cronin, J.T.

    2014-01-01

    Invasive plants can disrupt a range of trophic interactions in native communities. As a novel resource they can affect the performance of native insect herbivores and their natural enemies such as parasitoids and predators, and this can lead to host shifts of these herbivores and natural enemies.

  16. Detecting changes in insect herbivore communities along a pollution gradient

    International Nuclear Information System (INIS)

    Eatough Jones, Michele; Paine, Timothy D.

    2006-01-01

    The forests surrounding the urban areas of the Los Angeles basin are impacted by ozone and nitrogen pollutants arising from urban areas. We examined changes in the herbivore communities of three prominent plant species (ponderosa pine, California black oak and bracken fern) at six sites along an air pollution gradient. Insects were extracted from foliage samples collected in spring, as foliage reached full expansion. Community differences were evaluated using total herbivore abundance, richness, Shannon-Weiner diversity, and discriminant function analysis. Even without conspicuous changes in total numbers, diversity or richness of herbivores, herbivore groups showed patterns of change that followed the air pollution gradient that were apparent through discriminant function analysis. For bracken fern and oak, chewing insects were more dominant at high pollution sites. Oak herbivore communities showed the strongest effect. These changes in herbivore communities may affect nutrient cycling in forest systems. - Differences in insect herbivore communities were associated with an ambient air pollution gradient in the mixed conifer forest outside the Los Angeles area

  17. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    Science.gov (United States)

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  18. Phytochemical diversity drives plant-insect community diversity.

    Science.gov (United States)

    Richards, Lora A; Dyer, Lee A; Forister, Matthew L; Smilanich, Angela M; Dodson, Craig D; Leonard, Michael D; Jeffrey, Christopher S

    2015-09-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.

  19. Phytochemical diversity drives plant–insect community diversity

    Science.gov (United States)

    Richards, Lora A.; Dyer, Lee A.; Forister, Matthew L.; Smilanich, Angela M.; Dodson, Craig D.; Leonard, Michael D.; Jeffrey, Christopher S.

    2015-01-01

    What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores. PMID:26283384

  20. Insect-Specific Virus Discovery: Significance for the Arbovirus Community

    Directory of Open Access Journals (Sweden)

    Bethany G. Bolling

    2015-09-01

    Full Text Available Arthropod-borne viruses (arboviruses, especially those transmitted by mosquitoes, are a significant cause of morbidity and mortality in humans and animals worldwide. Recent discoveries indicate that mosquitoes are naturally infected with a wide range of other viruses, many within taxa occupied by arboviruses that are considered insect-specific. Over the past ten years there has been a dramatic increase in the literature describing novel insect-specific virus detection in mosquitoes, which has provided new insights about viral diversity and evolution, including that of arboviruses. It has also raised questions about what effects the mosquito virome has on arbovirus transmission. Additionally, the discovery of these new viruses has generated interest in their potential use as biological control agents as well as novel vaccine platforms. The arbovirus community will benefit from the growing database of knowledge concerning these newly described viral endosymbionts, as their impacts will likely be far reaching.

  1. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle.

    Science.gov (United States)

    Ortiz-Urquiza, Almudena; Keyhani, Nemat O

    2013-07-16

    Infections mediated by broad host range entomopathogenic fungi represent seminal observations that led to one of the first germ theories of disease and are a classic example of a co-evolutionary arms race between a pathogen and target hosts. These fungi are able to parasitize susceptible hosts via direct penetration of the cuticle with the initial and potentially determining interaction occurring between the fungal spore and the insect epicuticle. Entomogenous fungi have evolved mechanisms for adhesion and recognition of host surface cues that help direct an adaptive response that includes the production of: (a) hydrolytic, assimilatory, and/or detoxifying enzymes including lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases; (b) specialized infectious structures, e.g., appressoria or penetrant tubes; and (c) secondary and other metabolites that facilitate infection. Aside from immune responses, insects have evolved a number of mechanisms to keep pathogens at bay that include: (a) the production of (epi) cuticular antimicrobial lipids, proteins, and metabolites; (b) shedding of the cuticle during development; and (c) behavioral-environmental adaptations such as induced fever, burrowing, and grooming, as well as potentially enlisting the help of other microbes, all intended to stop the pathogen before it can breach the cuticle. Virulence and host-defense can be considered to be under constant reciprocal selective pressure, and the action on the surface likely contributes to phenomena such as strain variation, host range, and the increased virulence often noted once a (low) virulent strain is "passaged" through an insect host. Since the cuticle represents the first point of contact and barrier between the fungus and the insect, the "action on the surface" may represent the defining interactions that ultimately can lead either to successful mycosis by the pathogen or successful defense by the host. Knowledge concerning the molecular mechanisms

  2. [Effects of insecticides on insect pest-natural enemy community in early rice fields].

    Science.gov (United States)

    Jiang, Junqi; Miao, Yong; Zou, Yunding; Li, Guiting

    2006-05-01

    This paper studied the effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid on the insect pest-natural enemy community in early rice fields in the Yangtze-Huaihe region of Anhui Province. The results showed that all of the test insecticides had significant effects in controlling the growth of major insect pest populations. The average value of insect pest-natural enemy community diversity under effects of triazophos, shachongshuang, abamectin, and Bt + imidacloprid was 1.545, 1.562, 1.691 and 1.915, respectively, while that in control plot was 1.897. After two weeks of applying insecticides, the plots applied with shachongshuang and abamectin had a similar composition of insect pest-natural enemy community, but the community composition was significantly different between the plots applied with triazophos and Bt + imidacloprid. From the viewpoints of community stability and pest control, Bt + imidacloprid had the best effect, and shachongshuang and abamectin were better than triazophos.

  3. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  4. Linkages between benthic microbial and feshwater insect communities in degraded peatland ditches

    NARCIS (Netherlands)

    Whatley, M.H.; van Loon, E.E.; Cerli, C.; Vonk, J.A.; van der Geest, H.G.; Admiraal, W.

    2014-01-01

    Many wetlands are heavily modified and identifying the environmental drivers of indicator groups like aquatic insects is complicated by multiple stressors and co-varying environmental factors. Yet, incorporating data from other biological groups, such as microbial communities, potentially reveals

  5. Community-wide body size differences between nocturnal and diurnal insects.

    Science.gov (United States)

    Guevara, Jennifer; Avilés, Leticia

    2013-02-01

    Examining community-wide patterns for the most diverse animal group, insects, is fundamental to our understanding of the ecological and evolutionary factors that maintain tropical diversity. Using several sampling techniques (malaise traps, pitfall traps, visual searches, and social spider nest captures), we investigated the day-night community composition of active insects to reveal differences in body size at three elevations in eastern Ecuador. We show that insects active at night are, on average, larger than those active during the day. Even though insect size decreased with increasing elevation, the observed diel pattern was consistent across elevations, and for most insect orders. All sampling techniques consistently detected day--night differences in insect size, except for social spider captures at the two higher elevations, probably due to the reduced range of colony sizes at the higher elevations and possibly lower spider activity at night. We suggest that the observed diel patterns in insect size may be driven by a combination of factors, including increased risk imposed on large insects by diurnal visual predators, mainly insectivorous birds, and physiological responses to diel changes in abiotic conditions.

  6. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    Science.gov (United States)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  7. Microbial ecology-based methods to characterize the bacterial communities of non-model insects.

    Science.gov (United States)

    Prosdocimi, Erica M; Mapelli, Francesca; Gonella, Elena; Borin, Sara; Crotti, Elena

    2015-12-01

    Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Patterns of insect communities along a stress gradient following decommissioning of a Cu-Ni smelter

    International Nuclear Information System (INIS)

    Babin-Fenske, Jennifer; Anand, Madhur

    2011-01-01

    The diversity, estimated richness and abundance of terrestrial insect communities were examined along a stress gradient of past pollution in the region of Sudbury, Ontario, Canada. This gradient represents the natural recovery and lingering effects of a decommissioned copper-nickel smelting complex. Ant genera and sixteen higher taxonomic groups (family and order) had the highest abundance at the sites with intermediate stress. Eight families increased in abundance with distance from the decommissioned source of pollution and eleven families decreased reflecting a complex response of diversity to pollution. Carabid beetles show an increase in diversity further from the smelter; however, examination of the species composition reveals a distinct carabid community closest to the smelter, emphasizing the unique habitat created by severe pollution. Although almost forty years since decomissioning of the smelter complex, the terrestrial insect community in the vicinity remains significantly impacted suggesting slow recovery. - Highlights: → Several taxonomic groups had highest abundance at intermediate stress. → Eight families increased in abundance with distance from the source of pollution. → Eleven families decreased in abundance with distance. → Species composition reveals a distinct carabid community closest to the smelter. → Terrestrial insect community still significantly impacted suggesting slow recovery. - Our study finds both unexpected and expected responses of insect communities to a landscape gradient of past pollution suggesting the emergence of novel ecosystems.

  9. Insect Residue Contamination on Wing Leading Edge Surfaces: A Materials Investigation for Mitigation

    Science.gov (United States)

    Lorenzi, Tyler M.; Wohl, Christopher J.; Penner, Ronald K.; Smith, Joseph G.; Siochi, Emilie J.

    2011-01-01

    Flight tests have shown that residue from insect strikes on aircraft wing leading edge surfaces may induce localized transition of laminar to turbulent flow. The highest density of insect populations have been observed between ground level and 153 m during light winds (2.6 -- 5.1 m/s), high humidity, and temperatures from 21 -- 29 C. At a critical residue height, dependent on the airfoil and Reynolds number, boundary layer transition from laminar to turbulent results in increased drag and fuel consumption. Although this represents a minimal increase in fuel burn for conventional transport aircraft, future aircraft designs will rely on maintaining laminar flow across a larger portion of wing surfaces to reduce fuel burn during cruise. Thus, insect residue adhesion mitigation is most critical during takeoff and initial climb to maintain laminar flow in fuel-efficient aircraft configurations. Several exterior treatments investigated to mitigate insect residue buildup (e.g., paper, scrapers, surfactants, flexible surfaces) have shown potential; however, implementation has proven to be impractical. Current research is focused on evaluation of wing leading edge surface coatings that may reduce insect residue adhesion. Initial work under NASA's Environmentally Responsible Aviation Program focused on evaluation of several commercially available products (commercial off-the-shelf, COTS), polymers, and substituted alkoxy silanes that were applied to aluminum (Al) substrates. Surface energies of these coatings were determined from contact angle data and were correlated to residual insect excrescence on coated aluminum substrates using a custom-built "bug gun." Quantification of insect excrescence surface coverage was evaluated by a series of digital photographic image processing techniques.

  10. The insect-trapping rim of Nepenthes pitchers: surface structure and function.

    Science.gov (United States)

    Bauer, Ulrike; Federle, Walter

    2009-11-01

    Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications.

  11. Contrasting responses of insect communities to grazing intensity in lowland heathlands

    NARCIS (Netherlands)

    Wallis de Vries, Michiel; Noordijk, Jinze; Colijn, Ed O.; Smit, John T.; Veling, Kars

    2016-01-01

    Grazing at low stocking rates is often recommended for the preservation of the characteristic biodiversity of open landscapes. However, the fine-tuning of grazing management still lacks a good evidence base. This is particularly true for insect communities, as available evidence indicates that

  12. Species diversity in a mycophagous insect community: the case of spatial aggregation vs. resource partitioning

    NARCIS (Netherlands)

    Wertheim, B; Sevenster, JG; Eijs, IEM; Van Alphen, JJM

    1. Previous work has suggested that species diversity in resource-limited insect communities on patchy resources is maintained by spatial aggregation, not by resource partitioning. The most comprehensive test of this claim to date was by Shorrocks & Sevenster (1995), but some of their datasets

  13. Insect community responses to climate and weather across elevation gradients in the Sagebrush Steppe, eastern Oregon

    Science.gov (United States)

    Pilliod, David S.; Rohde, Ashley T.

    2016-11-17

    Executive SummaryIn this study, the U.S. Geological Survey investigated the use of insects as bioindicators of climate change in sagebrush steppe shrublands and grasslands in the Upper Columbia Basin. The research was conducted in the Stinkingwater and Pueblo mountain ranges in eastern Oregon on lands administered by the Bureau of Land Management.We used a “space-for-time” sampling design that related insect communities to climate and weather along elevation gradients. We analyzed our insect dataset at three levels of organization: (1) whole-community, (2) feeding guilds (detritivores, herbivores, nectarivores, parasites, and predators), and (3) orders within nectarivores (i.e., pollinators). We captured 59,517 insects from 176 families and 10 orders at the Pueblo Mountains study area and 112,305 insects from 185 families and 11 orders at the Stinkingwater Mountains study area in 2012 and 2013. Of all the individuals captured at the Stinkingwater Mountains study area, 77,688 were from the family Cecidomyiidae (Diptera, gall gnats).We found that the composition of insect communities was associated with variability in long-term (30-yr) temperature and interannual fluctuations in temperature. We found that captures of certain fly, bee, moth, and butterfly pollinators were more strongly associated with some climate and vegetation variables than others. We found that timing of emergence, as measured by first detection of families, was associated with elevation. When analyzed by feeding guilds, we found that all guilds emerged later at high elevations except for detritivores, which emerged earlier at high elevations. The abundance of most taxa varied through time, mostly in response to temperature and precipitation. Of the pollinators, bees (particularly, Halictidae and Megachilidae) peaked in abundance in late June and early July, whereas butterflies and moths peaked in August. Flies peaked in abundance in July.Overall, our interpretation of these patterns is that

  14. Spatial variation in the community of insects associated with the flowers of Pachycereus weberi (Caryophyllales: Cactaceae).

    Science.gov (United States)

    Figueroa-Castro, Dulce María; Valverde, Pedro Luis; Vite, Fernando; Carrillo-Ruiz, Hortensia

    2014-08-01

    The positive relationship between productivity and species diversity is well-known. Insect communities associated with the flowers of Cactaceae species represent an interesting system to explore the productivity-diversity relationship because branches facing the equator receive more photosynthetically active radiation and have higher productivity. Thus, flowers with contrasting orientations within an individual, and even within a single branch, might differ in productivity. Therefore, higher abundance, species richness, and diversity are expected for the insect communities associated with south-facing flowers. This hypothesis was tested in Pachycereus weberi (J.M. Coulter) Backeberg (Cactaceae). Insects within flowers with contrasting orientations were collected and its abundance, richness, and diversity were estimated. We also asked if insects prefer big flowers. Thus, flower volume was estimated and regression analyses were conducted to test if there is a positive relationship between flower size and insect abundance. Flower orientation did not affect species richness. However, species abundance and diversity were different in flowers with contrasting orientations. In general, species abundance was higher in flowers facing southwards than in north-facing flowers. On the contrary, species diversity was higher in north-facing flowers. Abundance of Coleoptera was explained by flower volume in south-facing flowers. Contrary to our hypothesis, total diversity was greater in the less productive oriented flowers. Three possible explanations are discussed to explain the low diversity found in the highly productive, south-facing flowers. Our study provides evidence for the effects of productivity on the structure of insect communities at a very small-scale.

  15. Insect communities on maize expressing a Bt-toxin

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Sehnal, František; Hussein, Hany

    2005-01-01

    Roč. 1, - (2005), s. 9-11 ISSN 1335-258X R&D Projects: GA AV ČR(CZ) KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : GMO * arthropod communities * Bt maize Subject RIV: EH - Ecology, Behaviour

  16. Novel Epoxy Particulate Composites for Mitigation of Insect Residue Adhesion on Future Aircraft Surfaces

    Science.gov (United States)

    Wohl, Christopher J.; Smith, Joseph G., Jr.; Gardner, John M.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2014-01-01

    Drag is reduced significantly for airflow over surfaces when laminar flow can be maintained over greater chord lengths, the distance from the leading edge of an airfoil.1 However, surface imperfections, such as chipped paint, scratches, and events that change topography on a microscopic scale can introduce airflow instabilities resulting in premature transition to turbulent flow.1 Although many of these surface imperfections can be avoided with proper maintenance, advanced materials, and advanced manufacturing practices, topographical surface anomalies arising during flight from insect impacts cannot be controlled and can influence laminar flow stability. Practical solutions to this operational challenge need to be developed for future aircraft to have full advantage of laminar flow designs that improve fuel efficiency.2 Researchers have investigated various methods to mitigate insect residue adhesion for decades.3 Although several techniques have demonstrated efficacy including mechanical scrapers, active liquid discharge systems, and sacrificial paper coatings, they have not been commercially implemented due to increased manufacturing and operational complexity, environmental impact, and weight penalties. Coatings offer a simple route for passive insect residue adhesion prevention without many of the challenges associated with maintenance of laminar flow.4 In our previous work, we determined that most commercially available materials were not effective at insect residue adhesion.5 We also identified improvements when both surface energy could be controlled by surface modifying agents and the topography could be altered through the use of micron-sized and nanometer-sized filler materials.6 In this work, these general principles were applied to an epoxy system to evaluate the behavior of the surface modifying agent, a fluorinated alkyl ether oligomer, on surface energy and insect residue adhesion properties.

  17. Distributional patterns in an insect community inhabiting a sandy beach of Uruguay

    Science.gov (United States)

    Mourglia, Virginia; González-Vainer, Patricia; Defeo, Omar

    2015-12-01

    Most studies of sandy beach macrofauna have been restricted to semiterrestrial species and do not include insects when providing species richness and abundance estimates. Particularly, spatio-temporal patterns of community structure of the entomofauna inhabiting these ecosystems have been scarcely documented. This study assessed spatio-temporal distributional patterns of the night active entomofauna on a beach-dune system of Uruguay, including variations in species richness, abundance and diversity, and their relationship with environmental factors. A deconstructive taxonomic analysis was also performed, considering richness and abundance patterns separately for the most abundant insect Orders (Hymenoptera and Coleoptera) to better understand the factors which drive their patterns. We found clear temporal and across-shore patterns in the insect community inhabiting a land-ocean interface, which matched spatiotemporal variations in the environment. Abundance and species richness were highest in spring and summer, concurrently with high temperatures and low values of sediment moisture and compaction. Multivariate ordinations showed two well-defined species groups, which separated summer, autumn and spring samples from winter ones. Generalized Linear Models allowed us to describe a clear segregation in space of the most important orders of the insect community, with specific preferences for the terrestrial (Hymenoptera) and beach (Coleoptera) fringes. Hymenoptera preferred the dune zone, characterized by high elevation and low sand moisture and compaction levels, whereas Coleoptera preferred gentle slopes and fine and humid sands of the beach. Our results suggest that beach and dune ecosystems operate as two separate components in regard to their physical and biological features. The high values of species richness and abundance of insects reveal that this group has a more significant ecological role than that originally considered so far in sandy beach ecology.

  18. Community Engagement and Field Trials of Genetically Modified Insects and Animals.

    Science.gov (United States)

    Neuhaus, Carolyn P

    2018-01-01

    New techniques for the genetic modification of organisms are creating new strategies for addressing persistent public health challenges. For example, the company Oxitec has conducted field trials internationally-and has attempted to conduct field trials in the United States-of a genetically modified mosquito that can be used to control dengue, Zika, and some other mosquito-borne diseases. In 2016, a report commissioned by the National Academies of Sciences, Engineering, and Medicine discussed the potential benefits and risks of another strategy, using gene drives. Driving a desired genotype through a population of wild animals or insects could lead to irreversible genetic modification of an entire species. The NASEM report recommends community, stakeholder, and public engagement about potential uses of the technology, and it argues that the engagement should occur as research advances, well before gene drives are deployed. Yet what "engagement" means in practice is unclear. This article seeks clarity on this problem by offering a justification for community engagement and drawing out implications of this argument for the implementation and desired outcomes of community engagement. Community engagement is essential when it comes to research that would release genetically modified insects or animals into the environment. By contrast, obtaining informed consent from people who live near such a proposed field trial is neither necessary nor sufficient. Drawing on the epistemic and moral arguments for deliberative democracy, I propose two discrete mechanisms of community engagement: community advisory boards and deliberative forums, neither of which has been systematically incorporated into research governance. The proposed mechanisms would engender respect for persons who live near field trials, even when the results of deliberation override some individuals' preferences. Community engagement foregrounds the community in our thinking about humans' relationship to nature

  19. Experimental warming increases herbivory by leaf-chewing insects in an alpine plant community

    OpenAIRE

    Birkemoe, Tone; Bergmann, Saskia; Hasle, Toril Elisabet; Klanderud, Kari

    2016-01-01

    Abstract Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open?top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf?chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two expe...

  20. Aquatic insects as the main food resource of fish the community in a Neotropical reservoir

    Directory of Open Access Journals (Sweden)

    Ana Paula Vidotto-Magnoni

    Full Text Available We evaluated the feeding of fish species of the Nova Avanhandava Reservoir, low Tietê River, São Paulo State, Brazil. Fishes were collected in two stretches of the reservoir: Santa Bárbara (14 samples and Bonito (two samples between September 2002 and March 2004, using gill and seining nets. The results of stomach contents analysis were expressed with the frequency of occurrence and gravimetric method, combined in the Alimentary Index (AI. The 20 species studied consumed 52 food items, grouped in 10 food categories: aquatic insects, terrestrial insects, crustaceans, fish, macroinvertebrates, microcrustaceans, algae, vegetal matter, detritus/sediment and scales. The aquatic insects (mainly Chironomidae, Odonata and Ephemeroptera were the most common food resources, consumed by 18 species. The diet composition of the community (species grouped indicated that the dominant food category in the diet of fishes was aquatic insects (AI = 77.6%, followed by crustaceans (AI = 7.1%. Four trophic guilds were identified according a cluster analysis (Pearson distance: insectivorous (10 species, omnivorous (4 species, detritivorous (3 species and piscivorous/carcinophagous (3 species. Despite the highest number of species, the insectivorous guild was responsible for more than 80% in captures in number and biomass (CPUEn and CPUEb. The low values of niche breadth presented by all species, along with the low values of diet overlap between species pairs indicate a high degree of food resources partitioning among species. The aquatic insects, despite being the main food resource of insectivorous fishes, also complemented the diet of other species, which demonstrate the importance of this food resource for the fish community, sustaining a high diversity, abundance and biomass of fishes.

  1. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    Science.gov (United States)

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  2. Engineered biomimicry: polymeric replication of surface features found on insects

    Science.gov (United States)

    Pulsifer, Drew P.; Lakhtakia, Akhlesh; Martín-Palma, Raúl J.; Pantano, Carlo G.

    2011-04-01

    By combining the modified conformal-evaporated-film-by-rotation (M-CEFR) technique with nickel electroforming, we have produced master negatives of nonplanar biotemplates. An approximately 250-nm-thick conformal coating of nanocrystaline nickel is deposited on a surface structure of interest found in class Insecta, and the coating is then reinforced with a roughly 60-μm-thick structural layer of nickel by electroforming. This structural layer endows the M-CEFR coating with the mechanical robustness necessary for casting or stamping multiple polymer replicas of the biotemplate. We have made master negatives of blowfly corneas, beetle elytrons, and butterfly wings.

  3. Differential effects of land use on ant and herbivore insect communities associated with Caryocar brasiliense (Caryocaraceae

    Directory of Open Access Journals (Sweden)

    Frederico S. Neves

    2012-09-01

    Full Text Available Simplification of natural habitats leads to a modification of the community associated with a host plant. Pequi trees (Caryocar brasiliense are common to find in central Brazil, especially in the middle of monocultures, such as soy, corn, pasturelands or Eucalyptus plantations. On this scenario we hypothesized that habitat modification differentially affects the diversity of ants and herbivore insects associated with this species. The aim of the work was to test if C. brasiliense trees located in human modified habitats, support a lower species richness and abundance of ants, and a greater species richness and abundance of insect herbivores, compared to preserved cerrado habitats. The study was conducted in a Cerrado area located in Northern Minas Gerais State, Brazil. Ants and herbivore insects were collected monthly during 2005 using beating technique. The results showed that ant species richness was higher in pequi trees located in preserved Cerrado, followed by trees in pastureland and Eucalyptus plantation, respectively. The ant abundance was lower in the Eucalyptus plantation but no difference in ant abundance was observed between trees in pastureland and the preserved Cerrado. Moreover, herbivore insects exhibited lower number of species and individuals in trees located in the preserved Cerrado than in the pastureland and Eucalyptus plantation. We concluded that habitats simplified by human activities may result in diversity loss and may change species interactions.

  4. Little effects of reduced-impact logging on insect communities in eastern Amazonia.

    Science.gov (United States)

    Nogueira, Denis Silva; Calvão, Lenize Batista; de Assis Montag, Luciano Fogaça; Juen, Leandro; De Marco, Paulo

    2016-07-01

    Selective logging has become a major source of threats to tropical forest, bringing challenges for both ecologists and managers to develop low-impact forestry. Reduced-impact logging (RIL) is a prominent activity accounting for such forestry practices to prevent strong forest disturbances. Our aims were to evaluate the effects of RIL on insect communities of forested streams from Eastern Amazon and to test the hypothesis of negative effects of RIL on species richness, abundance, and functional feeding groups of aquatic insect assemblages. Neither of the evaluated metrics of the studied assemblages were negatively affected by RIL. Environmental metrics, such as substrate heterogeneity, woody canopy cover, and hill slope height, varied more among RIL streams than in reference streams, indicating a gradient according to logging impacts, and are suitable candidates to monitor RIL impacts in Amazonian streams. In addition, the PHI index also varied among REF and RIL, according to age class and year of logging, which could reflect trends to recover the forest structure after logging in a time frame of only 10 years. We conclude that RIL impacts have not had detrimental impacts on insect communities, but have changed little of the environmental conditions, especially of the riparian vegetation around streams.

  5. Insect communities on experimental mugwort (Artemisia vulgaris L.) plots along an urban gradient.

    Science.gov (United States)

    Denys, C; Schmidt, Holger

    1998-01-01

    We studied the ability of insect herbivores and their natural enemies to colonize exposed, potted mugwort plants (Artemisia vulgaris L.) along a rural-urban gradient in 1994 in Hamburg (northern Germany). Ectophagous insects, leafmines and galls were monitored weekly from mid-May to mid-September. Endophagous insects were counted by harvesting and dissecting the stems at the end of the growing season. The rural-urban gradient was characterized by a gradient of vegetation-free areas and increasing proportion of ground covered in concrete, tarmac, paving and other impermeable surfaces surrounding the Artemisia plots, i.e. six different zones of increasing isolation. Numbers of insect species (herbivores, parasitoids and predators) decreased along the gradient from 43 to 12. Monophagous herbivores were not more affected than polyphagous herbivores, but parasitoids, especially rare species, were more strongly affected by isolation than predators. Some dominant herbivorous species were very successful colonizers and occurred in inner city sites devoid of all natural vegetation. Sometimes their abundance increased in the inner city to significantly higher densities than in the urban fringe. Isolation appeared to be the main reason for the observed patterns, since area and soil conditions were held constant in the experiment. Microclimate and pollution were considered to play a minor role.

  6. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    Science.gov (United States)

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  7. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas.

    Science.gov (United States)

    Del-Claro, Kleber; Torezan-Silingardi, Helena M

    2009-01-01

    The causal mechanisms shaping and structuring ecological communities are among the most important themes in ecology. The study of insect-plant interactions in trophic nets is pointed out as basic to improve our knowledge on this issue. The cerrado tropical savanna, although extremely diverse, distributed in more than 20% of the Brazilian territory and filled up with rich examples of multitrophic interactions, is underexplored in terms of biodiversity interaction. Here, this ecosystem is suggested as valuable to the study of insect-plant interactions whose understanding can throw a new light at the ecological communities' theory. Three distinct systems: extrafloral nectary plants or trophobiont herbivores and the associated ant fauna; floral herbivores-predators-pollinators; and plants-forest engineers and associated fauna, will serve as examples to illustrate promising new pathways in cerrado. The aim of this brief text is to instigate young researchers, mainly entomologists, to initiate more elaborated field work, including experimental manipulations in multitrophic systems, to explore in an interactive way the structure that maintain preserved viable communities in the Neotropical savanna.

  8. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P functional diversity of the aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  9. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  10. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface.

    Science.gov (United States)

    Bohn, Holger F; Federle, Walter

    2004-09-28

    Pitcher plants of the genus Nepenthes have highly specialized leaves adapted to attract, capture, retain, and digest arthropod prey. Several mechanisms have been proposed for the capture of insects, ranging from slippery epicuticular wax crystals to downward-pointing lunate cells and alkaloid secretions that anesthetize insects. Here we report that perhaps the most important capture mechanism has thus far remained overlooked. It is based on special surface properties of the pitcher rim (peristome) and insect "aquaplaning." The peristome is characterized by a regular microstructure with radial ridges of smooth overlapping epidermal cells, which form a series of steps toward the pitcher inside. This surface is completely wettable by nectar secreted at the inner margin of the peristome and by rain water, so that homogenous liquid films cover the surface under humid weather conditions. Only when wet, the peristome surface is slippery for insects, so that most ant visitors become trapped. By measuring friction forces of weaver ants (Oecophylla smaragdina) on the peristome surface of Nepenthes bicalcarata, we demonstrate that the two factors preventing insect attachment to the peristome, i.e., water lubrication and anisotropic surface topography, are effective against different attachment structures of the insect tarsus. Peristome water films disrupt attachment only for the soft adhesive pads but not for the claws, whereas surface topography leads to anisotropic friction only for the claws but not for the adhesive pads. Experiments on Nepenthes alata show that the trapping mechanism of the peristome is also essential in Nepenthes species with waxy inner pitcher walls.

  11. Geographic analysis of thermal equilibria: A bioenergetic model for predicting thermal response of aquatic insect communities

    International Nuclear Information System (INIS)

    Sweeney, B.W.; Newbold, J.D.; Vannote, R.L.

    1991-12-01

    The thermal regime immediately downstream from bottom release reservoirs is often characterized by reduced diel and seasonal (winter warm/summer cool) conditions. These unusual thermal patterns have often been implicated as a primary factor underlying observed downstream changes in the species composition of aquatic macroinvertebrate communities. The potential mechanisms for selective elimination of benthic species by unusual thermal regimes has been reviewed. Although the effects of temperature on the rate and magnitude of larval growth and development has been included in the list of potential mechanisms, only recently have field studies below dams focused on this interrelationship. This study investigates the overall community structure as well as the seasonal pattern of larval growth and development for several univoltine species of insects in the Delaware River below or near the hypolimnetic discharge of the Cannonsville and Pepeacton dams. These dams, which are located on the West and East branches of the Delaware River, respectively, produce a thermal gradient extending about 70 km downstream

  12. Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion

    Science.gov (United States)

    Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2015-01-01

    Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.

  13. Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities

    NARCIS (Netherlands)

    Deyn, de G.B.; Ruijven, van J.; Raaijmakers, C.E.; Ruiter, de P.C.; Putten, van der W.H.

    2007-01-01

    Interactions between above- and belowground invertebrate herbivores alter plant diversity, however, little is known on how these effects may influence higher trophic level organisms belowground. Here we explore whether above- and belowground invertebrate herbivores which alter plant community

  14. [The community succession of sarcosaphagous insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area].

    Science.gov (United States)

    Yin, Xiao-Jun; Ma, Meng-Yun; Zhou, Hui; Lai, Yue; Wang, Jiang-Feng

    2014-06-01

    To explore the growing development and community succession of main sarcosaphagous insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area and to estimate the postmortem interval (PMI). From early May to August in 2013, in Forensic Medical Examination Center of Shenzhen Public Security Bureau, the main insect species and the decomposition process were observed in two adult pig carcasses of simulative indoor and outdoor environment. The different decomposition stages and the community succession of insects were recorded. The indoor and outdoor pig carcasses showed skeleton 412.5 and 325 hours after death, respectively. The main species of flies on pig carcasses were Chrysomya megacephala, Chrysomya rufifacies and Chrysomya chani. The main species of beetles were Crecphilus maxillosus, Necrobia ruficollis, Saprinus splendens and Dermestes maculatu. The dominant species of flies in the outdoor pig carcasses obviously produced the second generations due to the effect of mass rainfall, nor in the indoor pig carcasses. There are regular patterns on the community succession of insects on pig carcasses in summer indoor and outdoor environment in Shenzhen area. The activity patterns of seven typical insects and their larva show important value for estimating PMI.

  15. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    Science.gov (United States)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  16. Improved annotation of the insect vector of citrus greening disease: Biocuration by a diverse genomics community

    Science.gov (United States)

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector usin...

  17. Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies.

    Science.gov (United States)

    Vandeweyer, D; Crauwels, S; Lievens, B; Van Campenhout, L

    2017-11-16

    Despite the continuing development of new insect-derived food products, microbial research on edible insects and insect-based foods is still very limited. The goal of this study was to increase the knowledge on the microbial quality of edible insects by comparing the bacterial community composition of mealworms (Tenebrio molitor) and crickets (Acheta domesticus and Gryllodes sigillatus) from several production cycles and rearing companies. Remarkable differences in the bacterial community composition were found between different mealworm rearing companies and mealworm production cycles from the same company. In comparison with mealworms, the bacterial community composition of the investigated crickets was more similar among different companies, and was highly similar between both cricket species investigated. Mealworm communities were dominated by Spiroplasma and Erwinia species, while crickets were abundantly colonised by (Para)bacteroides species. With respect to food safety, only a few operational taxonomic units could be associated with potential human pathogens such as Cronobacter or spoilage bacteria such as Pseudomonas. In summary, our results implicate that at least for cricket rearing, production cycles of constant and good quality in terms of bacterial composition can be obtained by different rearing companies. For mealworms however, more variation in terms of microbial quality occurs between companies. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Footsteps from insect larvae damage leaf surfaces and initiate rapid responses

    NARCIS (Netherlands)

    Hall, D.E.; MacGregor, K.B.; Nijsse, J.; Bown, A.W.

    2004-01-01

    Plant resistance to insect herbivory involves gene expression in response to wounding and the detection of insect elicitors in oral secretions (Kessler and Baldwin, 2002, Ann. Rev. Plant/ Biol. 53: 299¿328). However, crawling insect larvae stimulate the synthesis of 4-aminobutyrate within minutes

  19. Diversity and ecological aspects of aquatic insect communities from montane streams in southern Brazil

    Directory of Open Access Journals (Sweden)

    Bruna Marmitt Braun

    2014-06-01

    Full Text Available AIMS: In this study, the diversity of Ephemeroptera, Plecoptera, Trichoptera and Coleoptera communities was surveyed in the Toropi River basin, a watershed localized in a slope region, in southernmost Brazil. The influence of some local abiotic factors on the most common genera was also analyzed. METHODS: Samplings were conducted at 40 sites in 1st-4th order streams, along a short elevation gradient (70-500 m, with a Surber sampler. Water physico-chemical factors, as well as substrate type, were obtained at each site. RESULTS: At all, 5,320 specimens were collected, belonging to 18 families and 52 genera. The caddisflies Austrotinodes and Celaenotrichia, and an undescribed Elmidae, Genus M, are new records for the region. The caddisfly Smicridea was the most frequent genus in the study area. The mayflies Camelobaetidius, Paracloeodes and Americabaetis were influenced by stream order. Smicridea was related to air temperature, while the mayfly Thraulodes was influenced by high levels of electrical conductivity. CONCLUSIONS: The high diversity found in the study area, compared to other Brazilian regions, reflects the environmental heterogeneity in the region. These data show that hydrographic basins in slope areas from extreme Southern Brazil sustain high levels of diversity of aquatic insect communities.

  20. Reanalysis and experimental evidence indicate that the earliest trace fossil of a winged insect was a surface-skimming neopteran.

    Science.gov (United States)

    Marden, James H

    2013-01-01

    A recent description and analysis of an imprint fossil from the Carboniferous concluded that it was made by a mayfly landing in sediment at the edge of water. Here, I reanalyze that trace fossil and supply experimental evidence regarding wing traces and behavior. The thorax of the trace maker lacked structures characteristic of mayflies, but closely matches a modern neopteran insect family (Taeniopterygidae, Plecoptera) little changed from Early Permian fossils. Edges of the folded wings of live Taeniopteryx leave marks on sediment closely matching marks in the trace fossil. Faint marks lateral to and beyond the reach of meso- and metathoracic legs match the location where wings of surface-skimming Taeniopteryx stoneflies lightly touch the sediment when these insects skim onto wet ground at shorelines. Dimensions of the thorax of the trace indicate relatively weak flight ability compared to fossils from the Early Permian, making doubtful the hypothesis that the trace maker was flight capable. Ultimately, this fossil best fits a scenario in which a neopteran insect skimmed across the surface of water, then folded its wings. Surface skimming as a precursor to the evolution of flight in insects is supported by this fossil evidence of skimming behavior in a Carboniferous insect. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  1. Elemental concentrations of aquatic insect larvae and attached algae on tone surfaces in an uncontaminated stream

    International Nuclear Information System (INIS)

    Momoshima, N.; Sugihara, S.; Hibino, K.; Nakamura, Y.

    2009-01-01

    Elemental concentrations of aquatic insect larvae and attached algae in an uncontaminated river were analyzed by instrumental neutron activation analysis (INAA) via the k 0 -standardization method. The aquatic insect larvae found were all intolerant species. No significant difference was observed int he elemental concentrations of aquatic insect larvae and attached algae long the river. Similar elemental concentrations were observed in the aquatic insect larvae collected at a fixed sampling point for two years. An analysis by the ratio-matching technique indicated a higher generic relationship between aquatic insect larvae and attached algae than river water. (author)

  2. Plant-mediated Interactions Among Insects within a Community Ecological Perspective

    NARCIS (Netherlands)

    Poelman, E.H.; Dicke, M.

    2014-01-01

    Plants may be visited by many species of insects during their life-time. These insects include harmful herbivores above and belowground as well as beneficial natural enemies of herbivores and pollinators. Moreover, these interactions may take place sequentially or simultaneously. Responses of plants

  3. The relationship between epicuticular long-chained hydrocarbons and surface area - volume ratios in insects (Diptera, Hymenoptera, Lepidoptera).

    Science.gov (United States)

    Brückner, Adrian; Heethoff, Michael; Blüthgen, Nico

    2017-01-01

    Long-chain cuticular hydrocarbons (CHCs) are common components of the epicuticle of terrestrial arthropods. CHC serve as a protective barrier against environmental influences but also act as semiochemicals in animal communication. Regarding the latter aspect, species- or intra-functional group specific CHCs composition and variation are relatively well studied. However, comparative knowledge about the relationship of CHC quantity and their relation to surface area-volume ratios in the context of water loss and protection is fragmentary. Hence, we aim to study the taxon-specific relationship of the CHC amount and surface-area to volume ratio related to their functional role (e.g. in water loss). We focused on flower visiting insects and analyzed the CHC amounts of three insect orders (Hymenoptera, Lepidoptera and Diptera) using gas chromatography-mass spectrometry (GC-MS). We included 113 species from two grassland plots, quantified their CHCs, and measured their body mass and surface area. We found differences in the surface area, CHCs per body mass and the CHC density (= amount of CHCs per surface area) across the three insect taxa. Especially the Hymenoptera had a higher CHC density compared to Diptera and Lepidoptera. CHC density could be explained by surface area-volume ratios in Hymenoptera but not in Diptera and Lepidoptera. Unexpectedly, CHC density decreased with increasing surface area-volume ratios.

  4. The direct and indirect effects of fire on the assembly of insect herbivore communities: examples from the Florida scrub habitat.

    Science.gov (United States)

    Kim, Tania N; Holt, Robert D

    2012-04-01

    Disturbance is a major source of spatial and temporal heterogeneity. In fire-maintained systems, disturbance by fire is often used as a management tool to increase biological diversity, restore degraded habitats, and reduce pest outbreaks. Much attention has been given to how plant communities recover from fire, but relatively few studies have examined post-fire responses of higher order species, such as insect herbivores. Because dynamic feedbacks occur between plants and their consumers, which can in turn influence the response of the entire ecosystem, incorporating higher trophic level responses into our understanding of the effects of fire is essential. In this study, we used structural equation modeling (SEM) to tease apart the direct and indirect effects of fire on insect herbivore assemblages found on three common oak species in the Florida scrub (Quercus inopina, Q. chapmanii, and Q. geminata). We investigated how fire affected herbivore abundance, richness, and community composition both directly and indirectly through environmental heterogeneity at different spatial scales (e.g., leaf quality, plant architecture, and habitat structure). We also investigated how seasonality and landscape heterogeneity influenced post-fire responses of insect herbivores and whether fire effects on herbivore assemblages varied among different host plants. Our general findings were that fire effects were (1) largely indirect, mediated through habitat structure (although direct fire effects were observed on Q. inopina herbivores), (2) non-linear through time due to self-thinning processes occurring in the scrub habitat, and (3) varied according to herbivore assemblage as a result of differences in the composition of species in each herbivore community. To the best of our knowledge, this is the first comprehensive study to examine how fire influences the assembly of insect herbivore communities through both direct and indirect pathways and at multiple spatial scales.

  5. Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?

    Directory of Open Access Journals (Sweden)

    Daniela Chaves Resende

    2016-03-01

    Full Text Available ABSTRACT The cultivation of genetically modified crops in Brazil has led to the need to assess the impacts of this technology on non-target species. Under field conditions, the potential effect on insect biodiversity was evaluated by comparing a homogeneous corn field with conventional and transgenic maize, expressing different Bt proteins in seven counties of Minas Gerais, Brazil. The richness pattern of non-target insect species, secondary pests and natural enemies were observed. The results do not support the hypothesis that Bt protein affects insect biodiversity. The richness and diversity data of insects studied were dependent on the location and other factors, such as the use of insecticides, which may be a major factor where they are used.

  6. Grain surface-layer treatment of diatomaceous earth for insect control.

    Science.gov (United States)

    Korunić, Z; Mackay, A

    2000-03-01

    This paper describes an alternative method to synthetic insecticides used for protection of stored agricultural products the purpose of which is to minimise the everyday human exposure to those chemicals. The method uses diatomaceous earth which is practically non-toxic to humans and fully acceptable for the environment. Fifty and 100-cm-deep layers of Hard Red Spring wheat Triticum aestivum (L.) in metal containers (cylinders), 30 cm in diameter and 150 cm in height were treated with 0.5 and 0.75 g of diatomaceous earth Protect-It per kg of wheat. The treatment reduced the population of Sitophilus oryzae (L.), Tribolium castaneum (Herbst) and Rhyzopertha dominica (Fabricius) by 98 to 100% with respect to controls. The conclusion is that a 100-cm-surface layer treated with 0.5 g/kg of Protect-It is sufficient to control these insects, and that no more than 20% of the total grain mass should be treated to minimise bulk density reduction. A field test using a similar design is essential to confirm the laboratory findings.

  7. Diversity and community structure of aquatic insects in a pond in Midnapore town, West Bengal, India.

    Science.gov (United States)

    Jana, Sarmistha; Pahari, Priti R; Dutta, Tapan Kr; Bhattacharya, Tanmay

    2009-03-01

    In total 20 species of aquatic insects have been recorded from a weed infested pond. Odonata was numerically the most abundant group constituting of 54% of the total aquatic insects even though these belonged to three species. Coleoptera though constituted only 22% of aquatic insects had 10 species. Urothemis signata and Ranatra filliformes were eudominant and dominant species respectively. Hydrometra butlen is recorded from West Bengal for the first time. Five species of Hemiptera, Ranatra filiformes, Ranatra elongata, Diplonychus rusticus, Micronecta merope, Genis nitida and Hydrometra butlen; three species of Odonata, Urothemis signata, Agriocnemis pygmoea and Enllagma parvum and one species of Coleoptera viz., Coplatus indicus have been recorded from Paschim Medinipore district for the first time. Species diversity and evenness indices fluctuated from month to month and from one sampling site to other being <1 suggest a stressed and disturbed environment.

  8. Long distance root-shoot signalling in plant-insect community interactions.

    Science.gov (United States)

    Soler, Roxina; Erb, Matthias; Kaplan, Ian

    2013-03-01

    Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground-belowground interactions that can be extrapolated to general plant-insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant-insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. The Predictability of Phytophagous Insect Communities: Host Specialists as Habitat Specialists

    NARCIS (Netherlands)

    Müller, J.; Stadler, J.; Jarzabek-Müller, A.; Hacker, H.; Braak, ter C.J.F.; Brandl, R.

    2011-01-01

    The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local

  10. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California

    Science.gov (United States)

    Michael A. Valenti; George T. Ferrell; Alan A. Berryman

    1997-01-01

    Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level were inventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the...

  11. Long distance root-shoot signalling in plant-insect community interactions

    NARCIS (Netherlands)

    Soler, R.; Erb, M.; Kaplan, I.

    2013-01-01

    Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of

  12. Getting prepared for future attack : induction of plant defences by herbivore egg deposition and consequences for the insect community

    NARCIS (Netherlands)

    Pashalidou, F.G.

    2015-01-01

    Plants have evolved intriguing defences against insect herbivores. Compared to constitutive Plants have evolved intriguing defences against insect herbivores. Compared to constitutive defences that are always present, plants can respond with inducible defences when they are attacked. Insect

  13. Capturing community context of human response to forest disturbance by insects: a multi-method assessment

    Science.gov (United States)

    Hua Qin; Courtney G. Flint

    2010-01-01

    The socioeconomic and environmental features of local places (community context) influence the relationship between humans and their physical environment. In times of environmental disturbance, this community context is expected to influence human perceptual and behavioral responses. Residents from nine Colorado communities experiencing a large outbreak of mountain...

  14. The rainy season increases the abundance and richness of the aquatic insect community in a Neotropical reservoir

    Directory of Open Access Journals (Sweden)

    HS Santana

    Full Text Available Alterations in aquatic systems and changes in water levels, whether due to rains or dam-mediated control can cause changes in community structure, forcing the community to readjust to the new environment. This study tested the hypothesis that there is an increase in the richness and abundance of aquatic insects during the rainy season in the Serra da Mesa Reservoir, with the premise that increasing the reservoir level provides greater external material input and habitat diversity, and, therefore, conditions that promote colonization by more species. We used the paired t test to test the differences in richness, beta diversity, and abundance, and a Non-metric Multidimensional Scaling (NMDS was performed to identify patterns in the community under study. Additionally, Pearson correlations were analyzed between the richness, abundance, and beta diversity and the level of the reservoir. We collected 35,028 aquatic insect larvae (9,513 in dry period and 25,515 in the rainy season, predominantly of the Chironomidae family, followed by orders Ephemeroptera, Trichoptera, and Odonata. Among the 33 families collected, only 12 occurred in the dry season, while all occurred in the rainy season. These families are common in lentic environments, and the dominance of Chironomidae was associated with its fast colonization, their behavior of living at high densities and the great tolerance to low levels of oxygen in the environment. The hypothesis was confirmed, as the richness, beta diversity, and abundance were positively affected by the increase in water levels due to the rainy season, which most likely led to greater external material input, greater heterogeneity of habitat, and better conditions for colonization by several families.

  15. The Impact of Human Activities to Dynamic of Insect Communities: a Case Study in Gunung Salak, West Java

    Directory of Open Access Journals (Sweden)

    HARI SUTRISNO

    2010-12-01

    Full Text Available Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Human activities such as deforestation, fragmentation, over-exploitation, and monoculture practices are the main drivers of tropical forest biodiversity loss. Investigating of these threats with focusses on changes in species richness or species diversity will be able to minimize any impact of human activities at the early stage in a certain region. Therefore, to know the impact of human activities to dynamic of insect communities in Gunung Salak, West Java, we measured moth diversity and their structure within communities by comparing the index diversity, species richness and species composition across five different habitat types. The results showed that the habitat changes due to human activities had changed not only to the moth diversity but also to their structure within communities. The number of moth species decreased significantly as well as the number of lower taxa (family in the disturbed forest (secondary forest, Agathis forest, and transition area within ranges: 20-50 and 10-20%. The composition of the two main families, Geometridae and Noctuidae also showed a major change, family Geometridae decreased within ranges 10-50% in the disturbed area but Noctuidae increased up to 50% in those areas. Indeed, habitat lost due to human activities such as illegal logging, change of land use and land clearing is the main threats to decrease on macro-moth diversity and change their structures within communities.

  16. Effects of bromeliad flowering event on the community structuring of aquatic insect larvae associated with phytotelmata of Aechmea distichantha Lem. (Bromeliaceae

    Directory of Open Access Journals (Sweden)

    Felipe Emiliano Amadeo

    2017-12-01

    Full Text Available Abstract Aim: We aimed to understand how aquatic insect larvae communities associated with bromeliad phytotelmata are affected by plant architecture, predators and resources (local factors, and by geographical distance (regional factors in two different plant phenological phases. Bromeliad flowering results in plant structural changes, which favours insect dispersal. Considering that local and regional factors may affect the community of aquatic insect larvae, we expected that composition, beta diversity and the importance of those factors would differ in the vegetative growth and flowering phases. Methods We performed six samplings of the bromeliad associated fauna in 2010, three during the first semester - vegetative growth phase - and three during the second semester - flowering phase. In each sampling, we collected 12 plants along the rocky walls with similar location distribution, with a total of 72 bromeliads studied. Results Although beta diversity (PERMDISP did not differ between vegetative growth and flowering, NMDS followed by ANOSIM showed that composition was significantly different in the distinct phenological phases. IndVal results showed that three Diptera morphospecies were discriminant of the vegetative growth phase. In addition, pRDA revealed differences in the relative contribution of local and regional factors to explain insect larvae community structure. During the flowering phase, local factors predominated, while during vegetative growth, regional factors were more important. Conclusion Differences in dispersal rates between the two phenological phases, likely due to adult insect pollination and further oviposition, influenced community structuring. Therefore, flowering events account for differences not only in the composition, but also in community structuring of aquatic insect larvae inhabiting the phytotelmata of Aechmea distichantha Lem. (Bromeliaceae.

  17. The predictability of phytophagous insect communities: host specialists as habitat specialists.

    Directory of Open Access Journals (Sweden)

    Jörg Müller

    Full Text Available The difficulties specialized phytophagous insects face in finding habitats with an appropriate host should constrain their dispersal. Within the concept of metacommunities, this leads to the prediction that host-plant specialists should sort into local assemblages according to the local environmental conditions, i.e. habitat conditions, whereas assemblages of host-plant generalists should depend also on regional processes. Our study aimed at ranking the importance of local environmental factors and species composition of the vegetation for predicting the species composition of phytophagous moth assemblages with either a narrow or a broad host range. Our database consists of 351,506 specimens representing 820 species of nocturnal Macrolepidoptera sampled between 1980 and 2006 using light traps in 96 strict forest reserves in southern Germany. Species were grouped as specialists or generalists according to the food plants of the larvae; specialists use host plants belonging to one genus. We used predictive canonical correspondence and co-correspondence analyses to rank the importance of local environmental factors, the species composition of the vegetation and the role of host plants for predicting the species composition of host-plant specialists and generalists. The cross-validatory fit for predicting the species composition of phytophagous moths was higher for host-plant specialists than for host-plant generalists using environmental factors as well as the composition of the vegetation. As expected for host-plant specialists, the species composition of the vegetation was a better predictor of the composition of these assemblages than the environmental variables. But surprisingly, this difference for specialized insects was not due to the occurrence of their host plants. Overall, our study supports the idea that owing to evolutionary constraints in finding a host, host-plant specialists and host-plant generalists follow two different models of

  18. Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention.

    Science.gov (United States)

    Gorb, Elena; Kastner, Victoria; Peressadko, Andrei; Arzt, Eduard; Gaume, Laurence; Rowe, Nick; Gorb, Stanislav

    2004-08-01

    Carnivorous plants of the genus Nepenthes grow in nutrient-poor habitats and have evolved specialised trapping organs, known as pitchers. These are composed of different surface zones serving the functions of attraction, capture and digestion of insects, which represent a main source of nitrogen. To investigate the role of the glandular digestive zone in the trapping mechanism of the pitcher, structural, mechanical and physico-chemical studies were applied to N. ventrata and combined with insect behavioural experiments. It was found that the glandular surface is microscopically rough since it is regularly structured with multicellular glands situated in epidermal depressions. The presence of downward-directed 'hoods' over the upper part of glands and sloped depressions in the proximal direction of the pitcher causes a marked anisotropy of the surface. The glandular zone surface is composed of relatively stiff material (Young's modulus, 637.19+/-213.44 kPa). It is not homogeneous, in terms of adhesive properties, and contains numerous areas without adhesion as well as adhesive areas differing greatly in tenacity values (range, 1.39-28.24 kPa). The surface is readily wettable with water (contact angle, 31.9-36.0 degrees C) and has a high surface free energy (56.84-61.93 mN m(-1)) with a relatively high polar component (33.09-52.70 mN m(-1)). To examine the effect of the glandular secretion on attachment systems of insects having hairy and smooth adhesive pads, forces generated on different surfaces by Calliphora vicina flies and Pyrrhocoris apterus bugs, respectively, were measured. Flies attached equally well to both fresh and air-dried glandular surfaces whereas bugs generated a significantly lower force on the fresh glandular surface compared with the air-dried one. It is assumed that the contribution of the glandular surface to insect retention, due to its effect on insect attachment, differs depending on insect weight and the type of insect attachment system

  19. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Directory of Open Access Journals (Sweden)

    Miklos Blaho

    Full Text Available The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt and species (mayflies, dolichopodids, tabanids. (ii Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries than matt black finish. (iii The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a matt car-paints are highly polarization reflecting, and (b these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  20. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    Science.gov (United States)

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  1. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  2. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach.

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    Full Text Available During the past centuries, humans have introduced many plant species in areas where they do not naturally occur. Some of these species establish populations and in some cases become invasive, causing economic and ecological damage. Which factors determine the success of non-native plants is still incompletely understood, but the absence of natural enemies in the invaded area (Enemy Release Hypothesis; ERH is one of the most popular explanations. One of the predictions of the ERH, a reduced herbivore load on non-native plants compared with native ones, has been repeatedly tested. However, many studies have either used a community approach (sampling from native and non-native species in the same community or a biogeographical approach (sampling from the same plant species in areas where it is native and where it is non-native. Either method can sometimes lead to inconclusive results. To resolve this, we here add to the small number of studies that combine both approaches. We do so in a single study of insect herbivory on 47 woody plant species (trees, shrubs, and vines in the Netherlands and Japan. We find higher herbivore diversity, higher herbivore load and more herbivory on native plants than on non-native plants, generating support for the enemy release hypothesis.

  3. Effects of a Nonnative, Invasive Lovegrass on Agave palmeri Distribution, Abundance, and Insect Pollinator Communities

    Science.gov (United States)

    2010-05-01

    Agave stalks are edible to wild herbivores such as deer, javelina, rodents, and rabbits (USFWS 1999). Because agave stalks often remain available... plants on military lands.” The objective of the work unit is to provide a better under- standing of the impacts of invasive species on key components of...ecosystems and pollinator communities. The study documented herein emphasized the integration of invasive nonnative plant invasion with other

  4. Analysis of the predator community of a subterranean herbivorous insect based on polymerase chain reaction.

    Science.gov (United States)

    Lundgren, Jonathan G; Ellsbury, Michael E; Prischmann, Deirdre A

    2009-12-01

    The identity and impact of trophic linkages within subterranean arthropod communities are challenging to establish, a fact that hinders the development of conservation biological control programs of subterranean herbivores. Diabrotica virgifera (the western corn rootworm) is a severe agricultural pest that lives subterraneously during its pre-imaginal stages and succumbs to high levels of pre-imaginal mortality from unknown agents. The guts of 1500 field-collected arthropod predators were analyzed for D. virgifera-specific DNA sequences using quantitative polymerase chain reaction (qPCR). These gut analyses were used to generate relative and taxon-specific prey consumption indices for the major predator taxa and to determine relative consumption levels during D. virgifera egg and larval stages by predator feeding guilds. Laboratory feeding assays were used to determine the meal size consumed during 5 min and digestion rates of D. virgifera DNA of four predators abundant in D. virgifera-infested cornfields. More than 17 taxa consumed D. virgifera in the field. Harvestmen and small rove beetles were the most abundant predators captured, and the most frequent predators within the community to consume D. virgifera. The largest proportions of individual species' populations testing positive for D. virgifera DNA were found in ground beetles (Scarites quadriceps and Poecilus chalcites) and spiders, wolf spiders, and predaceous mites. Because of the longer duration of the egg stage, significantly more predators consumed D. virgifera eggs than larvae, but a similar proportion of the predator community fed on eggs and larvae. Predators with sucking mouthparts had a higher consumption index than chewing predators. Laboratory assays confirmed that sucking predators consume more D. virgifera DNA during 5 min than the chewing predators, and all four predators digested this DNA at a similar rate. This research substantiates that a diverse community of soil-dwelling and

  5. Comment on Marden (2013): "reanalysis and experimental evidence indicate that the earliest trace fossil of a winged insect was a surface skimming neopteran".

    Science.gov (United States)

    Benner, Jacob S; Knecht, Richard J; Engel, Michael S

    2013-07-01

    Marden's (2013) reanalysis of Knecht et al. (2011) suggesting that specimen SEMC-F97 is the result of the skimming behavior of a neopteran insect and, more importantly, fossil evidence of "… surface skimming as a precursor to the evolution of flight in insects" (Marden 2013) is found to be deficient on three fronts: (1) the principal specimen was never viewed firsthand which led to significant morphological misinterpretations; (2) poorly designed and executed neoichnological experiments led to incredulous results; and (3) the assumption that this specimen is fossil evidence supporting the surface skimming hypothesis of the origin of insect flight despite the fact that since its induction into the literature that hypothesis has been refuted based on significant paleontological, phylogenetic, genetic, and developmental evidence. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  6. Historical and projected interactions between climate change and insect voltinism in a multivoltine species

    Science.gov (United States)

    Patrick C. Tobin; Sudha Nagarkatti; Greg Loeb; Michael C. Saunders

    2008-01-01

    Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is...

  7. Fungal communities in barren forest soil after amendment with different wood substrates and their possible effects on trees’, pathogens, insects and nematodes

    Directory of Open Access Journals (Sweden)

    Małecka Monika

    2015-07-01

    Full Text Available Scots pine sawdust, composted bark or coarse, post-harvest woody debris from conifers had been spread over the surface of barren forest soil before planting with Scots pine. The effects of the Scots pine sawdust, composted bark or coarse, post-harvest woody debris from conifers on the abundance and diversity of culturable fungi were investigated. The amendments were aimed at increasing the soil suppressiveness to Armillaria and Heterobasidion. The classical soil-dilution method was chosen for qualitative and quantitative analyses of fungal communities in soils because of its proven reliability and consistency. The soil was inhabited by saprotrophic fungi from Ascomycota and Zygomycota, including species known to be potential antagonists of Armillaria or H. annosum (i.e. Clonostachys + Trichoderma spp., Penicillium commune, P. daleae, P. janczewskii or stimulants of Armillaria (i.e. Pseudogymnoascus roseus, Trichocladium opacum. Eleven years after treatment, the abundance and diversity of fungi, the abundance of P. commune, and locally the abundance of P. janczewskii increased, while Clonostachys + Trichoderma spp., and locally, P. daleae and T. opacum decreased. Amending the barren soil with organic matter does not guarantee effective, long-term suppressiveness of the sandy loam soil to Armillaria and Heterobasidion. Increased abundance of entomopathogenic and nematophagous species, 11 years after treatment, does suggest the long-term possibility of insect or nematode control in soil.

  8. Survey of Soybean Insect Pollinators: Community Identification and Sampling Method Analysis.

    Science.gov (United States)

    Gill, K A; O'Neal, M E

    2015-06-01

    Soybean, Glycine max (L.) Merrill, flowers can be a source of nectar and pollen for honey bees, Apis mellifera L. (Hymenoptera: Apidae), wild social and solitary bees (Hymenoptera: Apoidea), and flower-visiting flies (Diptera). Our objectives were to describe the pollinator community in soybean fields, determine which sampling method is most appropriate for characterizing their abundance and diversity, and gain insight into which pollinator taxa may contact soybean pollen. We compared modified pan traps (i.e., bee bowls), yellow sticky traps, and sweep nets for trapping pollinators in Iowa soybean fields when soybeans were blooming (i.e., reproductive stages R1-R6) during 2011 and 2012. When all trap type captures were combined, we collected 5,368 individuals and at least 50 species. Per trap type, the most pollinators were captured in bee bowls (3,644 individuals, 44 species), yellow sticky traps (1,652 individuals, 32 species), and sweep nets (66 individuals, 10 species). The most abundant species collected include Agapostemon virescens F. and Lasioglossum (Dialictus) species (Hymenoptera: Halictidae), Melissodes bimaculata Lepeletier (Hymenoptera: Apidae), and Toxomerus marginatus Say (Diptera: Syrphidae). To determine if these pollinators were foraging on soybean flowers, we looked for soybean pollen on the most abundant bee species collected that had visible pollen loads. We found soybean pollen alone or intermixed with pollen grains from other plant species on 29 and 38% of the bees examined in 2011 and 2012, respectively. Our data suggest a diverse community of pollinators-composed of mostly native, solitary bees-visit soybean fields and forage on their flowers within Iowa. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effect of Pet Insects on the Psychological Health of Community-Dwelling Elderly People: A Single-Blinded, Randomized, Controlled Trial.

    Science.gov (United States)

    Ko, Hae-Jin; Youn, Chang-Ho; Kim, Seong-Hyun; Kim, So-Yun

    2016-01-01

    There is evidence that animal-assisted therapy has positive effects on mental health, especially in elderly people. Caring for insects is easy, relatively inexpensive, and does not require much space. The aim of this 8-week randomized, controlled, single-blinded study was to investigate the effect of pet insects on the psychological health of community-dwelling elderly people. Elderly subjects (≥65 years old) attending a community center in Daegu, Korea, were enrolled in the study between April and May 2014 and randomized at a 1:1 ratio to receive insect therapy and health advice or only health advice. The insect group received 5 crickets in a cage with sufficient fodder and a detailed instruction manual. At baseline and at 8 weeks, all subjects underwent psychometric tests via a direct interview [Beck Anxiety Inventory, Geriatric Depression Scale (GDS-15), Mini-Mental State Examination (MMSE), 36-Item Short Form Health Survey, Insomnia Severity Index, Fatigue Severity Scale, and Brief Encounter Psychosocial Instrument] and laboratory analyses of inflammatory and oxidative stress markers (erythrocyte sedimentation rate, high-sensitivity C-reactive protein, biological antioxidant potential, and derivatives of reactive oxygen metabolites). The insect-caring (n = 46) and control (n = 48) groups did not differ in baseline characteristics. The insect-caring group had significantly lower GDS-15 scores at week 8 (3.20 vs. 4.90, p = 0.004) and, after adjustment for baseline values, a significantly greater change in GDS-15 scores relative to baseline (-1.12 vs. 0.20, p = 0.011). They also had a significantly greater change in MMSE scores relative to baseline (1.13 vs. 0.31, p = 0.045). The two groups did not differ in terms of other psychometric and laboratory tests. No serious risks or adverse events were reported. Caring for insects, which is cost-effective and safe, was associated with a small to medium positive effect on depression and cognitive function in community

  10. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  11. Marine insects

    National Research Council Canada - National Science Library

    Cheng, Lanna

    1976-01-01

    .... Not only are true insects, such as the Collembola and insect parasites of marine birds and mammals, considered, but also other kinds of intertidal air-breathing arthropods, notably spiders, scorpions...

  12. Insect Neurohormones

    African Journals Online (AJOL)

    Although insects and vertebrates appear to have roughly the same nwnber of hormones, those of insects are almost all neurohormones, synthesized in neurosecretory cells distributed throughout the nervous system. Most of the insect neurohor- mones have been discovered in the last 20 years. Only very recently have ...

  13. Consuming insects

    DEFF Research Database (Denmark)

    Roos, Nanna; van Huis, A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a...

  14. Consuming insects

    NARCIS (Netherlands)

    Roos, N.; Huis, van A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a

  15. Edible Insects

    NARCIS (Netherlands)

    Huis, van A.; Dunkel, F.V.

    2016-01-01

    The interest in insects as human food in the Western world is increasingly considered as a viable alternative to other protein sources. In tropical countries it is common practice and about 2000 insect species are eaten. Insects emit low levels of greenhouse gases, need little water, and require

  16. Impact of an Invasive Longhorned Beetle, Tetropium fuscum (Coleoptera: Cerambycidae), on Community Structure of Subcortical and Wood-Associated Insects in Eastern Canada.

    Science.gov (United States)

    Heustis, Allyson; Moise, Eric R D; Johns, Rob; Pureswaran, Deepa S; Heard, Stephen B

    2018-02-08

    Tetropium fuscum (Fabricius) (Coleoptera: Cerambycidae), a phloem-feeding and wood-boring beetle introduced from Eurasia, attacks spruce in eastern Canada alongside its native congener Tetropium cinnamopterum Kirby. We reared phloem- and wood-feeding insects (and their predators) from bolts of red and Norway spruce (Picea rubens and Picea abies) in Nova Scotia, comparing insect communities between bolts with added eggs of T. fuscum or T. cinnamopterum and bolts without added Tetropium (controls). We tested for impacts of each Tetropium on insect community structure (Simpson's diversity, richness, and evenness). We also asked whether, consistent with Darwin's Naturalization Hypothesis, Tetropium spp. would have greater impacts on emergence of its closer relatives (which might be most likely to compete and/or share natural enemies). Addition of Tetropium eggs (either species) to bolts lowered insect diversity in both host trees. Both richness and evenness components of diversity were always lower in +Tetropium treatments, although different components reached statistical significance in different Tetropium species × host combinations. Addition of Tetropium spp. significantly reduced emergence of some species: Evodinus monticola (Randall) (Coleoptera: Cerambycidae) was reduced by T. fuscum on both hosts and by T. cinnamopterum on Norway spruce; Hylobius congener Dalla Torre, Schenkling, and Marshall was reduced by T. fuscum on red spruce; and Xylophagus sp. (Diptera: Xylophagidae) was reduced by T. cinnamopterum on Norway spruce. However, there was no relationship between Tetropium's impact on a community member and their phylogenetic relatedness, and the overall impacts of Tetropium presence were not very different between T. fuscum and T. cinnamopterum. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Structure and dynamics of the oribatid mite communities (Acari, Oribatida in some Quercus forests, in relation with the treatments used in the control of defoliating insects

    Directory of Open Access Journals (Sweden)

    Otilia Ivan

    2009-11-01

    Full Text Available This study was carried out in the context of some complex researches concerning the effects of long standing use of the pesticides in the control of the defoliating insects, in forest ecosystems. These investigations showed that the structural parameters of the oribatid mites' communities are obviously influenced by the stands biotic and abiotic factors, alongside some varied anthropogenic factors, such as:treatments, industrial pollution, some management measures etc. This paper includes a comparative analysis of the research results obtained in two forest stands placed in the Moldavian Plateau (Ciurea Forest District, Iasi county: Tomesti-Poieni (integratedcontrol of the defoliating insects and ªanta (chemical control. The analysis of the faunistic material collected in these two forests has shown that, in the first stand (the control perimeter, the density, the number of species, and also the specific diversity have higher values compared to the second station. In unfavourable climatic conditions(e. g. during the winter season it was observed a more increased decline of these parameters in the ªanta forest, related to the control station. In such conditions (low temperatures, deficit of humidity etc. the change of the vertical distribution of the effectives was observed in both stands, and a massive migration of the oribatid mites in the deeper, humiferous layer of the soil. The results gathered during the project emphasize that the chemical treatments used against the defoliating insects enhance the negative effects of some natural factors, representing an additional stressing factor on the edaphic microarthropods' communities.

  18. Edible insects

    OpenAIRE

    Huis, van, A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than in temperate zones. Until recently in the western world, eating insects was considered a peculiar tropical food habit and the term 'entomophagy' was coined. How to motivate consumers to substitute me...

  19. Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota

    Directory of Open Access Journals (Sweden)

    Tobin J. Hammer

    2015-08-01

    Full Text Available Research on insect microbiota has greatly expanded over the past decade, along with a growing appreciation of the microbial contributions to insect ecology and evolution. Many of these studies use DNA sequencing to characterize the diversity and composition of insect-associated microbial communities. The choice of strategies used for specimen collection, storage, and handling could introduce biases in molecular assessments of insect microbiota, but such potential influences have not been systematically evaluated. Likewise, although it is common practice to surface sterilize insects prior to DNA extraction, it is not known if this time-consuming step has any effect on microbial community analyses. To resolve these methodological unknowns, we conducted an experiment wherein replicate individual insects of four species were stored intact for two months using five different methods—freezing, ethanol, dimethyl sulfoxide (DMSO, cetrimonium bromide (CTAB, and room-temperature storage without preservative—and then subjected to whole-specimen 16S rRNA gene sequencing to assess whether the structure of the insect-associated bacterial communities was impacted by these different storage strategies. Overall, different insect species harbored markedly distinct bacterial communities, a pattern that was highly robust to the method used to store samples. Storage method had little to no effect on assessments of microbiota composition, and the magnitude of the effect differed among the insect species examined. No single method emerged as “best,” i.e., one consistently having the highest similarity in community structure to control specimens, which were not stored prior to homogenization and DNA sequencing. We also found that surface sterilization did not change bacterial community structure as compared to unsterilized insects, presumably due to the vastly greater microbial biomass inside the insect body relative to its surface. We therefore recommend that

  20. Pollination services mapping and economic valuation from insect communities: a case study in the Azores (Terceira Island

    Directory of Open Access Journals (Sweden)

    Ana Picanço

    2017-05-01

    Full Text Available Insect pollinators provide vital ecosystem services through its maintenance of plant biological diversity and its role in food production. Indeed, adequate pollination services can increase the production and quality of fruit and vegetable crops. This service is currently challenged by land use intensification and expanding human population growth. Hence, this study aims: (1 to assess the pollination services in different land uses with different levels of disturbance through GIS mapping technique using insect pollinators abundance and richness as indicators, and (2 estimate the economic value of pollination by insects in agricultural crops. Our study takes place in a small oceanic island, Terceira (Azores, Portugal. Our results showed, remarkably, that not only the pristine vegetation areas, but also the orchards and agricultural areas have relatively high values of pollination services, even though both land uses have opposite disturbance levels. For the economic valuation, we analyzed 24 crops in the island and found that 18 depend on pollinators with one-third of these crops having 65% or 95% dependence on pollinators. The economic contribution of pollinators totals 36.2% of the total mean annual agricultural income of the dependent crops, highlighting the importance of insect pollinators in agricultural production and consequent economic gain productions.

  1. Eating insects

    NARCIS (Netherlands)

    Tan, Hui Shan Grace

    2017-01-01

    In recent years, edible insects have gained global attention due to their nutritional and environmental advantages over conventional meat. While numerous species of edible insects are enjoyed in various cultures around the world, most Western consumers react with disgust and aversion towards

  2. Insect Keepers

    Science.gov (United States)

    Moore, Virginia J.; Chessin, Debby A.; Theobald, Becky

    2010-01-01

    Insects are fascinating creatures--especially when you and your students get up close and personal with them! To that end, the authors facilitated an inquiry-based investigation with an emphasis on identification of the different types of insects found in the school yard, their characteristics, their habitat, and what they eat, while engaging the…

  3. Edible insects

    NARCIS (Netherlands)

    Huis, van A.

    2017-01-01

    Is it an impossible task to convince consumers to eat insects? This does not only apply to western consumers who are less familiar with this food habit than consumers in tropical countries. In the tropics too, many people do not consume insects, even though they are easier to collect as food than

  4. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... all life stages of insects from and around the corpse. The collected specimens are subjected to further analysis either in the field itself or in the laboratory. A forensic entomologist has three main objectives in his mind while analyzing the insect data: determination of place, time and mode of death, each of.

  5. Establishment of insect cell lines expressing green fluorescent protein on cell surface based on AcMNPV GP64 membrane fusion characteristic.

    Science.gov (United States)

    Qi, Ben-Xiang; Chen, Ying-Jian; Su, Rui; Li, Yi-Fei; Zheng, Gui-Ling; Li, Chang-You

    2017-10-01

    Displaying a protein on the surface of cells has been provided a very successful strategy to function research of exogenous proteins. Based on the membrane fusion characteristic of Autographa californica multiple nucleopolyhedrovirus envelope protein GP64, we amplified and cloned N-terminal signal peptide and C-terminal transmembrane domain as well as cytoplasmic tail domain of gp64 gene into vector pIZ/V5-His with multi-cloning sites to construct the cell surface expression vector pIZ/V5-gp64. To verify that the vector can be used to express proteins on the membrane of insect cells, a recombinant plasmid pIZ/V5-gp64-GFP was constructed by introducing the PCR amplified green fluorescent protein (GFP) gene and transfected into insect cell lines Sf9 and H5. The transected cells were screened with zeocin and cell cloning. PCR verification results showed that the GFP gene was successfully integrated into these cells. Green fluorescence in Sf9-GFP and H5-GFP cells was observed by using confocal laser scanning microscopy and immunofluorescence detection indicated that GFP protein was located on the cell membrane. Western blot results showed that a fusion protein GP64-GFP of about 40 kDa was expressed on the membrane of Sf9-GFP and H5-GFP cells. The expression system constructed in this paper can be used for localization and continuous expression of exogenous proteins on insect cell membrane.

  6. Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin, state of São Paulo

    Directory of Open Access Journals (Sweden)

    HHL Saulino

    Full Text Available The fragmentation of lotic systems caused by construction of dams has modified many aquatic communities. The objective of this study was to analyse changes in the aquatic insect community structure by discontinuity of habitat created by dams along the Ribeirão das Anhumas, a sub-basin of the Mogi-Guaçu River (state of São Paulo, Brazil. Entomofauna collection was carried out in 10 segments upstream and downstream of five dams along the longitudinal profile of the stream, with a quick sampling method using a D net (mesh 250 mm with 2 minutes of sampling effort. The insects were sorted and identified to the lowest possible taxonomic level and analysed by the Shannon diversity index, β diversity, richness estimated by rarefaction curves and relative participation of functional feeding groups. The results showed a slight reduction in diversity in the downstream segments, as well as along the longitudinal profile of the stream. However, there were no significant differences in abundance and richness between the upstream and downstream segments, indicating that the dams did not influence these variables. Differences were observed in the functional feeding groups along the longitudinal profile. Predator and gatherer insects were dominant in all segments analysed. The feeding group of shredders was more abundant in the segment DSIII with the participation of Marilia Müller (Odontoceridae – Trichoptera, although we observed a decrease of shredders and scrapers with the decrease of the canopy cover reducing values of β diversity in the continuum of Ribeirão das Anhumas. This result demonstrated the importance of the conservation of the riparian vegetation in order to maintain the integrity of the stream.

  7. Consuming insects

    OpenAIRE

    Roos, N.; Huis, van, A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and ...

  8. Evaluation of Pyrethroid Insecticides and Insect Growth Regulators Applied to Different Surfaces for Control of Trogoderma granarium (Coleoptera: Dermestidae) the Khapra Beetle.

    Science.gov (United States)

    Arthur, F H; Ghimire, M N; Myers, S W; Phillips, T W

    2018-04-02

    The khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a serious pest of stored products and is the only stored product insect pest that triggers a quarantine response when it is found in the United States. The larvae of T. granarium feed on a wide range of dry food products of plant and animal origin, including cereals, dried fish, and museum specimens. In this study, we evaluated the residual efficacy of two pyrethroid insecticides, deltamethrin and cyfluthrin, applied on concrete, wood, painted wood, vinyl flooring tile, and metal surfaces using small and large T. granarium larvae. Residual efficacy of two insect growth regulators (IGRs), methoprene and pyriproxyfen was also evaluated on concrete, metal, and wood surfaces. In both studies, larvae were exposed with provision of a food source on the treated surfaces and residual assays were conducted at 0 months (1 d), 1, 2, and 3 months post treatment. In general, both of the pyrethroids provided a high level of control of T. granarium larvae, though small larvae were much more susceptible than large larvae. The IGRs were comparatively less effective, with more larval survival and adult emergence of exposed larvae compared with the pyrethroids. Residues of the pyrethroids and IGRs were most persistent on the metal surface. Results can be used to help to control and eradicate infestations of T. granarium when they are detected in the United States.

  9. Insect Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature and environment derived from beetle and other insect fossils. Parameter keywords describe what was measured in this data set. Additional...

  10. Olive trees protected from the olive bark beetle, Phloeotribus scarabaeoides (Bernard 1788) (Coleoptera, Curculionidae, Scolytinae) with a pyrethroid insecticide: Effect on the insect community of the olive grove.

    Science.gov (United States)

    Ruano, Francisca; Campos, Mercedes; Sánchez-Raya, A Juan; Peña, Aránzazu

    2010-06-01

    Field studies were performed in two successive years, 2005 and 2006, in different olive groves of the province of Granada (South-eastern Spain) by spraying olive trees (Olea europaea) with a pyrethroid insecticide, deltamethrin, for the control of the olive bark beetle Phloeotribus scarabaeoides (Bernard 1788) (Coleoptera, Curculionidae, Scolytinae). Three olive groves received each year three treatments in June consisting of water (control) and two insecticide doses, which were halved the second year. From June to September six olives trees per site were inspected every 15d for feeding galleries in olive branches; the arthropods, collected in traps placed below the olive trees (three traps per site), were identified and counted. Results show that feeding galleries were significantly reduced, what proves that the pyrethroid insecticide efficiently protected the olive trees from the olive bark beetle with a single application and even at the lower dose employed in 2006. Some repellent effect may occur as deduced from the number of P. scarabaeoides individuals captured. Other individuals from the insect community were also affected to a great extent by insecticide application, though no statistical differences were found among the treatments due to the high variability in insect captures. Among the parasitoids, Scelionidae, Encyrtidae, Eurytomidae and Pteromalidae were captured in great numbers. Mirids were the predators whose numbers drastically increased in traps placed under the treated trees, while spiders and ants were less affected. A knock-down effect was noticed for some insect groups, for instance mirids and Euphyllura olivina. Approximately 80% of their captures corresponded to the first date of sampling after insecticide application. 2010 Elsevier Ltd. All rights reserved.

  11. Insect Capital

    Directory of Open Access Journals (Sweden)

    Andrew Pilsch

    2015-12-01

    Full Text Available In this note, Pilsch address William Gibson’s use of insect imagery in to trouble the common understanding of the novel Neuromancer, its commentary on corporate culture, and its relationship to a then-emergent posthumanism. Further, he concludes by suggesting that, for Gibson, the insect hive as an image for the corporate body shows that corporate culture is, in contrast to the banal image the term brings to mind, a set of nefarious cultural techniques derived for interfacing human bodies with the corporation’s native environment in the postmodern era: the abstractions of data.

  12. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  13. Population fluctuation in phytophagous insects

    Energy Technology Data Exchange (ETDEWEB)

    Redfearn, A.; Pimm, S.L. (Oak Ridge National Laboratory, TN (United States))

    1994-06-01

    We examined how community interactions affect year-to-year population variability in three groups of phytophagous insects: British aphids and moths, and Canadian moths. We first examined how the number of host plant species on which a given phytophagous insect species feeds affects its population variability. Specialist insect species showed a weak tendency to be more variable than generalist species. We then examined how the number of species of parasitoids from which a given phytophagous insects species suffers affects its population variability. Species that are host to few parasitoid species showed a weak tendency to be more variable than species with many parsitoid species. These relationships also depend on other aspects of the life histories of the phytophagous insect species.

  14. The role of mites in insect-fungus associations

    Science.gov (United States)

    R. W. Hofstetter; J. C. Moser

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on...

  15. Insect Detectives

    Indian Academy of Sciences (India)

    2002-08-01

    Aug 1, 2002 ... urine, saliva and faecal material oozing from natural openings and blood from wounds. Later on, the flesh and other tissues and bones also become attractive. As a body decays, it can be viewed as providing a succession of habitats, each attractive to and supporting a particular group of insects. Although ...

  16. Stinging Insect Matching Game

    Science.gov (United States)

    ... for Kids ▸ Stinging Insect Matching Game Share | Stinging Insect Matching Game Stinging insects can ruin summer fun for those who are ... the difference between the different kinds of stinging insects in order to keep your summer safe and ...

  17. Dryland photoautotrophic soil surface communities endangered by global change

    Science.gov (United States)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-02-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  18. Insects: A nutritional alternative

    Science.gov (United States)

    Dufour, P. A.

    1981-01-01

    Insects are considered as potential food sources in space. Types of insects consumed are discussed. Hazards of insect ingestion are considered. Insect reproduction, requirements, and raw materials conversion are discussed. Nutrition properties and composition of insects are considered. Preparation of insects as human food is discussed.

  19. The role of mites in insect-fungus associations.

    Science.gov (United States)

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  20. Edible insects in China: Utilization and prospects.

    Science.gov (United States)

    Feng, Ying; Chen, Xiao-Ming; Zhao, Min; He, Zhao; Sun, Long; Wang, Cheng-Ye; Ding, Wei-Feng

    2018-04-01

    completely in captivity or are partially raised in captivity, and the insect habitat is manipulated to increase production. Depending on the type of relationship the insect has with humans, plants and the environment, different farming strategies are used. The social and scientific communities must work together to promote the use of insects as food and feed. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  1. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps.

    Science.gov (United States)

    Allison, Jeremy D; Johnson, C Wood; Meeker, James R; Strom, Brian L; Butler, Sarah M

    2011-08-01

    Survey and detection programs for native and exotic forest insects frequently rely on traps baited with odorants, which mediate the orientation of target taxa (e.g., the southern pine beetle, Dendroctonusfrontalis Zimmermann) toward a resource (e.g., host material, mates). The influence of trap design on the capture efficiency of baited traps has received far less empirical attention than odorants, despite concerns that intercept traps currently used operationally have poor capture efficiencies for some target taxa (e.g., large woodborers). Several studies have recently demonstrated that treating traps with a surface lubricant to make them "slippery" can increase their capture efficiency; however, previously tested products can be expensive and their application time-consuming. The purpose of this study was to evaluate the effect of alternate, easier to apply aerosol lubricants on trap capture efficiency of selected forest insects. Aerosol formulations of Teflon and silicone lubricants increased both panel and multiple-funnel trap capture efficiencies. Multiple-funnel traps treated with either aerosol lubricant captured significantly more Monochamus spp. and Acanthocinus obsoletus (Olivier) than untreated traps. Similarly, treated panel traps captured significantly more Xylotrechus sagittatus (Germar), Ips calligraphus (Germar), Pissodes nemorensis (Germar), Monochamus spp., A. obsoletus, Thanasimus dubius (F.), and Ibalia leucospoides (Hochenwarth) than untreated traps. This study demonstrates that treating multiple-funnel and panel traps with an aerosol dry film lubricant can increase their capture efficiencies for large woodborers (e.g., Cerambycidae) as well as bark beetles, a weevil, a woodwasp parasitoid and a bark beetle natural enemy (Coleoptera: Cleridae).

  2. Contributions by Host Trees and Insect Activity to Bacterial Communities in Dendroctonus valens (Coleoptera: Curculionidae) Galleries, and Their High Overlap With Other Microbial Assemblages of Bark Beetles.

    Science.gov (United States)

    Mason, Charles J; Hanshew, Alissa S; Raffa, Kenneth F

    2016-04-01

    Bark beetles are associated with a diversity of symbiotic microbiota that can mediate interactions with their host plants. Dendroctonus valens LeConte is a widely distributed bark beetle in North and Central America, and initiates solitary attacks on several species of Pinus in the Great Lakes region. In this study, we aimed to further characterize the bacterial community associated with D. valens feeding galleries using next-generation sequencing, and the possible contributions of both tree-resident and insect-associated bacteria to these consortia. We found that D. valens galleries harbor a diversity of microbial associates. Many of these associates were classified into a few taxonomic groups, of which Gammaproteobacteria were the most abundant class. Of the Gammaproteobacteria detected, many formed clades with 16S-rRNA sequences of bacteria previously associated with D. valens Many of the bacteria sequences detected in the galleries were similar to bacteria that function in detoxification, kairomone metabolism, and nitrogen fixation and cycling. The abundance of bacteria in galleries were 7× and 44× higher than in the surrounding uninfested tissues, and that were not attacked by D. valens, respectively. This suggests that the bacteria present in beetle galleries are largely introduced by D. valens and proliferate in this environment. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. On-line solid phase extraction-liquid chromatography-tandem mass spectrometry for insect repellent residue analysis in surface waters using atmospheric pressure photoionization.

    Science.gov (United States)

    Molins-Delgado, Daniel; García-Sillero, Daniel; Díaz-Cruz, M Silvia; Barceló, Damià

    2018-04-06

    Insect repellents (IRs) are a group of organic chemicals whose function is to prevent the ability of insects of landing in a surface. These compounds have been found in the environment and may pose a risk to non-target organisms. In this study, an on-line solid phase extraction - high performance liquid chromatography-tandem mass spectrometry multiresidue method was developed using an atmospheric photoionization source (SPE-HPLC-(APPI)-MS/MS). The use of the APPI as an alternative ionization technique to electrospray (ESI) and atmospheric pressure chemical ionization (APCI) allowed expanding the range of analytical techniques suitable for the analysis of IRs, so far relied in gas chromatography. High sensitivity and precision was reached with method limits of quantification between 0.2 and 4.6 ng l -1 and interday and intraday precision equal or below 15%. The validated method was applied to the study of surface water samples from three European river basins with different flow regime (Adige River in Italy, Sava River in the Balkans, and Evrotas River in Greece). The results showed that two IRs (DEET and Bayrepel) were ubiquitous in the Sava and Evrotas basins, reaching concentrations as high as 105 μg l -1 of Bayrepel in the Sava River, and 5 μg l -1 of DEET in the Evrotas River. Densely populated areas and effluent waste waters are pointed out as the responsible for this pollution. In the alpine river Adige, only three samples showed low levels of IRs (6.01-37.8 ng l -1 ). The concentrations measured were used to perform an environmental risk assessment based on the hazard quotients (HQs) estimation approach by using the chronic and acute eco-toxicity data available. The results revealed that despite the high frequency and eventually high concentrations of these IRs determined in the three basins, only few sites were at risk, with 1 < HQs < 3.3. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    ... - Metabolic homeostasis - Myotropic factors and regulation of pigmentation - Novel systems for studying insect endocrines - Pheromones - Intracellular communication - Distribution and role of insect hormones...

  5. Insect transgenesis and the sterile insect technique

    Science.gov (United States)

    The establishment of broadly applicable insect transgenesis systems will enable the analyses of gene function in diverse insect species. This will greatly increase our understanding of diverse aspects of biology so far not functionally addressable. Moreover, insect transgenesis will provide novel st...

  6. Light structures phototroph, bacterial and fungal communities at the soil surface.

    Directory of Open Access Journals (Sweden)

    Lawrence O Davies

    Full Text Available The upper few millimeters of soil harbour photosynthetic microbial communities that are structurally distinct from those of underlying bulk soil due to the presence of light. Previous studies in arid zones have demonstrated functional importance of these communities in reducing soil erosion, and enhancing carbon and nitrogen fixation. Despite being widely distributed, comparative understanding of the biodiversity of the soil surface and underlying soil is lacking, particularly in temperate zones. We investigated the establishment of soil surface communities on pasture soil in microcosms exposed to light or dark conditions, focusing on changes in phototroph, bacterial and fungal communities at the soil surface (0-3 mm and bulk soil (3-12 mm using ribosomal marker gene analyses. Microbial community structure changed with time and structurally similar phototrophic communities were found at the soil surface and in bulk soil in the light exposed microcosms suggesting that light can influence phototroph community structure even in the underlying bulk soil. 454 pyrosequencing showed a significant selection for diazotrophic cyanobacteria such as Nostoc punctiforme and Anabaena spp., in addition to the green alga Scenedesmus obliquus. The soil surface also harboured distinct heterotrophic bacterial and fungal communities in the presence of light, in particular, the selection for the phylum Firmicutes. However, these light driven changes in bacterial community structure did not extend to the underlying soil suggesting a discrete zone of influence, analogous to the rhizosphere.

  7. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (p... of the biofilm community decreased significantly (p=0.004) compared to the metacommunity. These observations indicate that the selection towards Nitrotoga and Nitrospira dominated community assembly under different nitrite loadings. Lastly, we compared our observations of community composition...

  8. Book Review: Insect Virology

    Science.gov (United States)

    Viruses that infect insects have long been of interest both as a means for controlling insect pest populations in an environmentally safe manner, and also as significant threats to beneficial insects of great value, such as honey bees and silkworms. Insect viruses also have been of intrinsic intere...

  9. Love Games that Insects Play

    Indian Academy of Sciences (India)

    Take the case of the black tipped hanging fly, so named because these predatory insects have black tipped wings and are found hanging upside down on the under surface of plant leaves. The ... suffer evolutionary death (i.e, they may be unable· to sire any offspring and thereby do not pass on their genes to the next.

  10. Methanotrophs, methanogens, and microbial community structure in livestock slurry surface crusts

    DEFF Research Database (Denmark)

    Duan, Yun-Feng (Kevin); Abu Al-Soud, Waleed; Brejnrod, Asker Daniel

    2014-01-01

    Aims: Crusts forming at the surface of liquid manure (slurry) during storage has been shown to harbor a potential for mitigating CH4 emissions. This study investigated the microbial community in surface crusts, with a focus on microorganisms related to CH4 metabolism. Methods and Results: Microbial...

  11. Biofouling in membrane bioreactors: nexus between polyacrylonitrile surface charge and community composition.

    Science.gov (United States)

    Marbelia, Lisendra; Hernalsteens, Marie-Aline; Ilyas, Shazia; Öztürk, Basak; Szymczyk, Anthony; Springael, Dirk; Vankelecom, Ivo

    2018-02-15

    The influence of membrane surface charge on biofouling community composition during activated sludge filtration in a membrane bioreactor was investigated in this study using polyacrylonitrile-based membranes. Membranes with different surface properties were synthesized by phase inversion followed by a layer-by-layer modification. Various characterization results showed that the membranes differed only in their surface chemical composition and charge, ie two of them were negative, one neutral and one positive. Membrane fouling experiments were performed for 40 days and the biofouling communities were analyzed. PCR-DGGE fingerprinting indicated selective enrichment of bacterial populations from the sludge suspension within the biofilms at any time point. The biofilm community composition seemed to change with time. However, no difference was observed between the biofilm community of differently charged membranes at specific time points. It could be concluded that membrane charges do not play a decisive role in the long-term selection of the key bacterial foulants.

  12. Spatial distributions of Southern Ocean mesozooplankton communities have been resilient to long-term surface warming.

    Science.gov (United States)

    Tarling, Geraint A; Ward, Peter; Thorpe, Sally E

    2018-01-01

    The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long-term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926-1938) and contemporary campaigns (1996-2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s-1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It

  13. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China.

    Science.gov (United States)

    Hu, Yinhong; Dou, Xiaolin; Li, Juanyong; Li, Feng

    2018-01-01

    The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete), permeable pavement (bricks with round holes), shrub coverage ( Buxus megistophylla Levl. ), lawns ( Festuca elata Keng ex E. Alexeev ), and roadside trees ( Sophora japonica Linn. ) in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria , Actinobacteria , Acidobacteria , Bacteroidetes , Chloroflexi , and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC), and soil moisture content (SMC). The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and diversity

  14. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  15. Studying the Effects of Hardwood Stand Modifications, Periodic Flooding, and Fire on Insect and Disease Communities in the Lower Mississippi River Ecosystem.

    Science.gov (United States)

    E.T. Nebeker; Theodor D. Leininger; J.S. Meadows

    1998-01-01

    Abstract - The relationship between stand modification and pest organisms (insects and diseases) has been noted in general with few specific studies to evaluate this relationship in the southern hardwoods. As a prerequisite to making the best improvement cut prescription, it is essential to have a perspective on thinning impacts that at present can...

  16. A 2-Year Field Study Shows Little Evidence That the Long-Term Planting of Transgenic Insect-Resistant Cotton Affects the Community Structure of Soil Nematodes

    Science.gov (United States)

    Li, Xiaogang; Liu, Biao

    2013-01-01

    Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants. PMID:23613899

  17. A 2-year field study shows little evidence that the long-term planting of transgenic insect-resistant cotton affects the community structure of soil nematodes.

    Directory of Open Access Journals (Sweden)

    Xiaogang Li

    Full Text Available Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010, we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages, collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical 'real world' conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects-adverse or otherwise-on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants.

  18. Insects: An Interdisciplinary Unit

    Science.gov (United States)

    Leger, Heather

    2007-01-01

    The author talks about an interdisciplinary unit on insects, and presents activities that can help students practice communication skills (interpersonal, interpretive, and presentational) and learn about insects with hands-on activities.

  19. Insect Bites and Stings

    Science.gov (United States)

    Most insect bites are harmless, though they sometimes cause discomfort. Bee, wasp, and hornet stings and fire ant bites usually hurt. Mosquito and flea bites usually itch. Insects can also spread diseases. In the United States, ...

  20. Insects and Scorpions

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH INSECTS AND SCORPIONS Recommend on Facebook Tweet Share Compartir Stinging or biting insects or scorpions can be hazardous to outdoor workers. ...

  1. Insects of the riparian

    Science.gov (United States)

    Terrence J. Rogers

    1996-01-01

    This paper describes life histories, defoliation problems and other activities of insects associated with forest tree species growing along high elevation streams and river banks. In addition, examples of insects and diseases associated with lower elevation riparian areas are given.

  2. Biochemical characteristics and bacterial community structure of the sea surface microlayer in the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    I. Obernosterer

    2008-05-01

    Full Text Available The chemical and biological characteristics of the surface microlayer were determined during a transect across the South Pacific Ocean in October-December 2004. Concentrations of particulate organic carbon (1.3 to 7.6-fold and nitrogen (1.4 to 7-fold, and POC:PON ratios were consistently higher in the surface microlayer as compared to surface waters (5 m. The large variability in particulate organic matter enrichment was negatively correlated to wind speed. No enhanced concentrations of dissolved organic carbon were detectable in the surface microlayer as compared to 5 m, but chromophoric dissolved organic matter was markedly enriched (by 2 to 4-fold at all sites. Based on pigment analysis and cell counts, no consistent enrichment of any of the major components of the autotrophic and heterotrophic microbial community was detectable. CE-SSCP fingerprints and CARD FISH revealed that the bacterial communities present in the surface microlayer had close similarity (>76% to those in surface waters. By contrast, bacterial heterotrophic production (3H-leucine incorporation was consistently lower in the surface microlayer than in surface waters. By applying CARD-FISH and microautoradiography, we observed that Bacteroidetes and Gammaproteobacteria dominated leucine uptake in the surface microlayer, while in surface waters Bacteroidetes and Alphaproteobacteria were the major groups accounting for leucine incorporation. Our results demonstrate that the microbial community in the surface microlayer closely resembles that of the surface waters of the open ocean. Even a short residence in the surface microlayer influences leucine incorporation by different bacterial groups, probably as a response to the differences in the physical and chemical nature of the two layers.

  3. Exploring Sound with Insects

    Science.gov (United States)

    Robertson, Laura; Meyer, John R.

    2010-01-01

    Differences in insect morphology and movement during singing provide a fascinating opportunity for students to investigate insects while learning about the characteristics of sound. In the activities described here, students use a free online computer software program to explore the songs of the major singing insects and experiment with making…

  4. Factors influencing prokaryotic community structure composition in sub-surface coastal sediments

    Science.gov (United States)

    Molari, Massimiliano; Giovannelli, Donato; d'Errico, Giuseppe; Manini, Elena

    2012-01-01

    Despite the major influence of the marine sub-surface area in carbon cycling and global biogeochemistry, there is little known of prokaryotic distribution and community structure information of the marine sub-surface and the factors that influence sub-surface prokaryotic assemblages. We provide quantitative estimations of active Bacteria and Archaea down vertical profiles of sub-surface coastal sediments from the southern Adriatic Sea (Manfredonia Gulf). Prokaryotic biomass, carbon incorporation and the metabolically active fraction were compared with environmental, trophic, and predatory variables down 100-cm sediment cores sectioned into 21 layers. Multiple regression analysis was used to identify variables that can explain the variance of community compositions down vertical profiles. CARD-FISH analysis showed Bacteria dominance for the first 11 cm below sediment surface. The community then changed significantly at increasing depth, towards Archaea dominance. The models tested show that prokaryotic abundance in superficial marine sediments is controlled by organic trophic resources, while in sub-surface sediments, active prokaryotic abundance is driven by environmental factors and predatory pressure, suggesting that the shift in prokaryotic community structure could be coupled to a change in life-style of microbial assemblages.

  5. Cooling our communities: A guidebook on tree planting and light-colored surfacing

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, H.; Davis, S.; Huang, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Dorsano, S. (ed.) (The Bruce Co., (United States)); Winnett, S. (ed.) (Environmental Protection Agency, Washington, DC (United States). Climate Change Div.)

    1992-01-01

    This book is a practical guide that presents the current state of knowledge on potential environmental and economic benefits of strategic landscaping and altering surface colors in our communities. The guidebook, reviews the causes, magnitude, and impacts of increased urban warming, then focuses on actions by citizens and communities that can be undertaken to improve the quality of our homes and towns in cost-effective ways.

  6. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    Campylobacter in flies Flies of the Muscidae family forage on all kind of faeces – various fly species have different preferences. M domestica prefer pigs, horses and cattle faeces, animals which are all known to frequently excrete Campylobacter. As a result, the insects pick up pathogenic micro...... organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... of several species of flies collected outside broiler houses, merely ~1% of the flies were found Campylobacter positive. However, the prevalence varied considerably with fly species, time of the year, and availability of Campylobacter sources. Influx of flies to broiler houses As the influx of flies...

  7. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  8. Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica)

    NARCIS (Netherlands)

    Blanco, Yolanda; Prieto-Ballesteros, Olga; Gómez, Manuel J.; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Rodríguez-Manfredi, José Antonio; Cruz-Gil, Patricia; Sánchez-Román, Mónica; Rivas, Luis A.; Parro, Victor

    In this study we examined the microbial community composition and operating metabolisms on the surface and in the permafrost of Deception Island, (Antarctica) with an on site antibody microarray biosensor. Samples (down to a depth of 4.2m) were analysed with LDChip300 (Life Detector Chip), an

  9. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure

    Science.gov (United States)

    Thomas P. Albright; Anna M. Pidgeon; Chadwick D. Rittenhouse; Murray K. Clayton; Curtis H. Flather; Patrick D. Culbert; Volker C. Radeloff

    2011-01-01

    Heat waves are expected to become more frequent and severe as climate changes, with unknown consequences for biodiversity. We sought to identify ecologically-relevant broad-scale indicators of heat waves based on MODIS land surface temperature (LST) and interpolated air temperature data and assess their associations with avian community structure. Specifically, we...

  10. A cross-taxon analysis of insect-associated bacterial diversity.

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Jones

    Full Text Available Although it is well known that plants and animals harbor microbial symbionts that can influence host traits, the factors regulating the structure of these microbial communities often remain largely undetermined. This is particularly true for insect-associated microbial communities, as few cross-taxon comparisons have been conducted to date. To address this knowledge gap and determine how host phylogeny and ecology affect insect-associated microbial communities, we collected 137 insect specimens representing 39 species, 28 families, and 8 orders, and characterized the bacterial communities associated with each specimen via 16S rRNA gene sequencing. Bacterial taxa within the phylum Proteobacteria were dominant in nearly all insects sampled. On average, the insect-associated bacterial communities were not very diverse, with individuals typically harboring fewer than 8 bacterial phylotypes. Bacterial communities also tended to be dominated by a single phylotype; on average, the most abundant phylotype represented 54.7% of community membership. Bacterial communities were significantly more similar among closely related insects than among less-related insects, a pattern driven by within-species community similarity but detected at every level of insect taxonomy tested. Diet was a poor predictor of bacterial community composition. Individual insect species harbored remarkably unique communities: the distribution of 69.0% of bacterial phylotypes was limited to unique insect species, whereas only 5.7% of phylotypes were detected in more than five insect species. Together these results suggest that host characteristics strongly regulate the colonization and assembly of bacterial communities across insect lineages, patterns that are driven either by co-evolution between insects and their symbionts or by closely related insects sharing conserved traits that directly select for similar bacterial communities.

  11. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik

    2016-01-01

    Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first......-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local...

  12. Hard-bottom succession of subtidal epibenthic communities colonizing hidden and exposed surfaces off northern Chile

    Directory of Open Access Journals (Sweden)

    Aldo S. Pacheco

    2010-03-01

    Full Text Available The biodiversity of hard-bottom substrata comprises species growing on exposed rock and in hidden microhabitats, such as cracks and crevices. This study examines the succession of epibenthic organisms colonizing an artificial substratum with one surface exposed and one surface hidden on a vertical wall off northern Chile. On each sampling date species coverage of three replicate panels on both surfaces was assessed. The hidden surface was dominated in terms of coverage by the bryozoans Membranipora isabelleana and Lagenicella variabilis, while algae were absent. In contrast, the exposed surface was dominated by encrusting red corallines and the red alga Rhodymenia corallina. At the end of the experimental period both surfaces were dominated by colonial suspension feeders, but showed a different community structure and successional pattern. On the exposed surface, competitive exclusion was identified as an important aspect of succession, whereas on the hidden surface this pattern was not observed. These findings have implications for overall biodiversity, because pioneer species that are not able to survive long periods on exposed surfaces become restricted to hidden surfaces, from where they spread laterally. Thus, hidden microhabitats provide refuges for certain species, and may play an important role in the overall succession on rock faces. We conclude that examination of hidden microhabitats is necessary in order to fully understand succession in hard-bottom habitats.

  13. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards

    OpenAIRE

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-01-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total ...

  14. Architectural diversity and galling insects on Caryocar brasiliense trees.

    Science.gov (United States)

    Leite, Germano Leão Demolin; Veloso, Ronnie Von Dos Santos; Zanuncio, José Cola; Azevedo, Alcinei Mistico; Silva, Júlia Letícia; Wilcken, Carlos Frederico; Soares, Marcus Alvarenga

    2017-11-30

    Galling insects are a highly sophisticated herbivore group on Caryocar brasiliense, a tree that represents the main income source for many communities. The effect of architectural diversity of C. brasiliense trees on galling insect community diversity and abundance was studied. The abundance of adult insects and galled leaves were seven and 1.6 times higher in trees with a greater height/width of canopy (RHW) ratio, respectively. Gall parasitoid richness was 1.8 times greater on trees with higher RHW. Zelus armillatus (Lepeletier & Serville) (Hemiptera: Reduviidae) and ant numbers were 5.8 and 2.7 higher on trees with the largest and smallest RHW, respectively. More complex plant architectures favored species diversity for galling insects and their natural enemies. The competition among four galling insect species for space and feeding and the evidence of "prudence strategy" were, for the first time, observed for galling insects in the Brazilian Cerrado biome.

  15. The lost micro-deserts of the Patuxent River using landscape history, insect and plant specimens, and field work to detect and define a unique community

    Science.gov (United States)

    Droege, S.; Davis, C.A.; Steiner, W.E.; =Mawdsley, J.

    2009-01-01

    Historical and recent records of both plants and insects are synthesized for uplands along the eastern edge of Maryland?s Patuxent River from the edge of the Piedmont south to Jug Bay. This strip is characterized by deep sandy soils found in the Evesboro and Galestown sandy loams soil series. Within this narrow strip there exists a unique flora and fauna adapted to open dry sandy soils and occurring in small remnant patches associated with old sand mining operations and scattered protected areas. We illustrate the uniqueness of these sites using four groups, vascular plants, tenebrionid beetles (Coleoptera: Tenebrionidae), tiger beetles (Coleoptera: Cicindelidae), and bees (Hymenoptera: Apoidea: Anthophila). Within each of these groups, rare species were detected whose populations were locally restricted to this soil type and whose nearest known populations were often hundreds of kilometers away. In addition to documenting the direct conservation importance of these small sandy openings along the Patuxent, we contrast the lack of any indication from vertebrate inventories that this region is unique. The combination of plant and insect inventories appears to be a better means of clarifying a site?s importance than does any survey of a single taxonomic group.

  16. Insect enemies of birch

    Science.gov (United States)

    James G. Conklin

    1969-01-01

    Native birches are subject to attack by insects at all stages of growth from the germinating seedling to the mature tree. All parts of the tree—roots, stem, branches, foliage, and even the developing seed—may be utilized as feeding sites by insects of one kind or another. An enumeration of the many insects recorded in the literature as feeders on...

  17. Endocrinology of insects

    National Research Council Canada - National Science Library

    Downer, Roger G. H; Laufer, Hans

    1983-01-01

    Contents: Organization of the neuroendocrine system - Chemistry of insect hormones and neurohormones - Regulation of metamorphosis - Regulation of reproduction - Regulation of growth and development...

  18. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America

    Directory of Open Access Journals (Sweden)

    Trisha Atwood

    2012-04-01

    Full Text Available Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition, and may also “bulldoze” insect larvae from the surfaces of stones (interference competition. Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems.

  19. Trophic Interactions Between Insects and Stream-Associated Amphibians in Steep, Cobble-Bottom Streams of the Pacific Coast of North America.

    Science.gov (United States)

    Atwood, Trisha; Richardson, John S

    2012-04-10

    Two native, stream-associated amphibians are found in coastal streams of the west coast of North America, the tailed frog and the coastal giant salamander, and each interacts with stream insects in contrasting ways. For tailed frogs, their tadpoles are the primary life stage found in steep streams and they consume biofilm from rock surfaces, which can have trophic and non-trophic effects on stream insects. By virtue of their size the tadpoles are relatively insensitive to stream insect larvae, and tadpoles are capable of depleting biofilm levels directly (exploitative competition), and may also "bulldoze" insect larvae from the surfaces of stones (interference competition). Coastal giant salamander larvae, and sometimes adults, are found in small streams where they prey primarily on stream insects, as well as other small prey. This predator-prey interaction with stream insects does not appear to result in differences in the stream invertebrate community between streams with and without salamander larvae. These two examples illustrate the potential for trophic and non-trophic interactions between stream-associated amphibians and stream insects, and also highlights the need for further research in these systems.

  20. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-01-30

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Spatial diversity of bacterioplankton communities in surface water of northern South China Sea.

    Directory of Open Access Journals (Sweden)

    Jialin Li

    Full Text Available The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS. Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.

  2. Insects and diseases

    Science.gov (United States)

    John W. Couston

    2009-01-01

    Insects and diseases are a natural part of forested ecosystems. Their activity is partially regulated by biotic factors, e.g., host abundance, host quality; physical factors, e.g., soil, climate; and disturbances (Berryman 1986). Insects and diseases can influence both forest patterns and forest processes by causing, for example, defoliation and mortality. These...

  3. Great Basin insect outbreaks

    Science.gov (United States)

    Barbara Bentz; Diane Alston; Ted Evans

    2008-01-01

    Outbreaks of native and exotic insects are important drivers of ecosystem dynamics in the Great Basin. The following provides an overview of range, forest, ornamental, and agricultural insect outbreaks occurring in the Great Basin and the associated management issues and research needs.

  4. Insects: Bugged Out!

    Science.gov (United States)

    Piehl, Kathy

    2011-01-01

    Insects really need no introduction. They have lived on earth much longer than humans and vastly outnumber people and all other animal species combined. People encounter them daily in their houses and yards. Yet, when children want to investigate insects, books can help them start their explorations. "Paleo Bugs" carries readers back to the time…

  5. Insects and Bugs

    Science.gov (United States)

    Sutherland, Karen

    2009-01-01

    They have been around for centuries. They sting, they bite. They cause intense itching or painful sores. They even cause allergic reactions and sometimes death. There are two types of insects that are pests to humans--those that sting and those that bite. The insects that bite do so with their mouths and include mosquitoes, chiggers, and ticks.…

  6. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    management, vector management in public health, produc- tion of medically important proteins and genetic improve- ment of beneficial insects like parasitoids, predators, silk worm and honey bee. The proposed release of genetically engineered insects is evoking serious debate among research- ers and environmental ...

  7. Magnetic compasses in insects

    Science.gov (United States)

    The use of magnetic information for orientation and navigation is a widespread phenomenon in animals. In contrast to navigational systems in vertebrates, our understanding of the mechanisms underlying the insect magnetic perception and use of the information is at an early stage. Some insects use ma...

  8. UASB followed by Sub-Surface Horizontal Flow Phytodepuration for the Treatment of the Sewage Generated by a Small Rural Community

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2014-10-01

    Full Text Available The paper presents the results of an experimental process designed for the treatment of the sewage generated by a rural community located in the north-east of Brazil. The process consists of a preliminary mechanical treatment adopting coarse screens and grit traps, followed by a biological treatment in a UASB reactor and a sub-surface horizontal flow phytodepuration step. The use of a UASB reactor equipped with a top cover, as well as of the phytodepuration process employing a porous medium, showed to present important health advantages. In particular, there were no significant odor emissions and there was no evidence of the proliferation of insects and other disease vectors. The plant achieved the following mean abatement efficiencies: 92.9% for BOD5, 79.2% for COD and 94% for Suspended Solids. With regard to fecal indicators average efficiencies of 98.8% for fecal coliforms and 97.9% for fecal enterococci were achieved. The UASB reactor showed an important role in achieving this result. The research was also aimed at evaluating the optimal operating conditions for the UASB reactor in terms of hydraulic load and organic volumetric loading. The achieved results hence indicated that the process may be highly effective for small rural communities in tropical and sub-tropical areas.

  9. Phylogenetic analysis of epibacterial communities on the surfaces of four red macroalgae

    Science.gov (United States)

    Wu, Hongqing; Liu, Min; Zhang, Wuchang; Xiao, Tian

    2014-12-01

    Macroalgal surfaces are prone to being attached by bacteria. Epibacterial community structures on marine macroalgae are host-specific but temporally and spatially variable. In this study, we investigated the structure of epibacterial communities on the surfaces of four red macroalgae, Gracilaria lemaneiformis, Gloiopeltis furcata, Mazzaella sp. and Porphyra yezoensis, by analyzing the sequences of 16S rRNA gene libraries. Healthy individuals of all macroalgae species were collected in winter from a farm at Dalian, China. The results showed that the epibacterial communities were mainly dominated by α-Proteobacteria, γ-Proteobacteria and Bacteroidetes. Deinococcus-Thermus, Spirochaetes and ɛ-Proteobacteria were also found. The majority of cloned sequences shared the greatest similarity to those of culturable organisms. A large portion of sequences from the α-Proteobacteria homed in Roseobacter clade, i.e., genera Ahrensia, Roseovarius, Litoreibacter, Octadecabacter, Thaiassobacter and Sulfitobacter, while members of Bacteroidetes mainly belonged to family Flavobacteriaceae. The cloned sequences could be separated into 66 OTUs at 0.01 distance value, and rare common OTUs were found among libraries. At genus level, Pseudoalteromonas dominated Gr. lemaneiformis and Gl. furcata libraries, accounting for 72.2% and 47.3%, respectively. Sulfitobacter dominated P. yezoensis library, accounting for 35.4%. A previously undefined cluster within Deinococcus-Thermus dominated Mazzaella sp. library, accounting for 24.6% of the all. These results indicated that a broad range of bacteria inhabited the surfaces of these macroalgae.

  10. Riparian forestry management and adult stream insects

    OpenAIRE

    Briers, R. A.; Gee, J. H. R.

    2004-01-01

    The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive) phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a po...

  11. Broadening insect gastronomy

    DEFF Research Database (Denmark)

    Halloran, Afton Marina Szasz; Münke, Christopher; Vantomme, Paul

    2015-01-01

    In recent years there has been a trend among chefs to diversify their ingredients and techniques, drawing inspiration from other cultures and creating new foods by blending this knowledge with the flavours of their local region. Edible insects, with their plethora of taste, aromatic, textural...... as an ingredient in its own right – not collectively as ‘insects’, as it is easy for many uninitiated to do. Many of these insects frequently fetch higher prices than other meat sources in the market, and it is this approach of investigating insects as a delicious gastronomic product that interests us. Indeed...

  12. Urban Transit System Microbial Communities Differ by Surface Type and Interaction with Humans and the Environment.

    Science.gov (United States)

    Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L; Morgan, Xochitl C; Spengler, John D; Huttenhower, Curtis

    2016-01-01

    Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium , Corynebacterium , Staphylococcus , and Streptococcus . The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa . Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we

  13. Beneficial Insects and Insect Pollinators on Milkweed in South Georgia

    Science.gov (United States)

    Insect pollinators are essential for the reproduction of more than two-thirds of the world’s crops, and beneficial insects play an important role in managing pest insects in agricultural farmscapes. These insects depend on nectar for their survival in these farmscapes. The flowers of tropical milkwe...

  14. The gut microbiota of insects - diversity in structure and function.

    Science.gov (United States)

    Engel, Philipp; Moran, Nancy A

    2013-09-01

    Insect guts present distinctive environments for microbial colonization, and bacteria in the gut potentially provide many beneficial services to their hosts. Insects display a wide range in degree of dependence on gut bacteria for basic functions. Most insect guts contain relatively few microbial species as compared to mammalian guts, but some insects harbor large gut communities of specialized bacteria. Others are colonized only opportunistically and sparsely by bacteria common in other environments. Insect digestive tracts vary extensively in morphology and physicochemical properties, factors that greatly influence microbial community structure. One obstacle to the evolution of intimate associations with gut microorganisms is the lack of dependable transmission routes between host individuals. Here, social insects, such as termites, ants, and bees, are exceptions: social interactions provide opportunities for transfer of gut bacteria, and some of the most distinctive and consistent gut communities, with specialized beneficial functions in nutrition and protection, have been found in social insect species. Still, gut bacteria of other insects have also been shown to contribute to nutrition, protection from parasites and pathogens, modulation of immune responses, and communication. The extent of these roles is still unclear and awaits further studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. The composite insect trap: an innovative combination trap for biologically diverse sampling.

    Directory of Open Access Journals (Sweden)

    Laura Russo

    Full Text Available Documentation of insect diversity is an important component of the study of biodiversity, community dynamics, and global change. Accurate identification of insects usually requires catching individuals for close inspection. However, because insects are so diverse, most trapping methods are specifically tailored to a particular taxonomic group. For scientists interested in the broadest possible spectrum of insect taxa, whether for long term monitoring of an ecosystem or for a species inventory, the use of several different trapping methods is usually necessary. We describe a novel composite method for capturing a diverse spectrum of insect taxa. The Composite Insect Trap incorporates elements from four different existing trapping methods: the cone trap, malaise trap, pan trap, and flight intercept trap. It is affordable, resistant, easy to assemble and disassemble, and collects a wide variety of insect taxa. Here we describe the design, construction, and effectiveness of the Composite Insect Trap tested during a study of insect diversity. The trap catches a broad array of insects and can eliminate the need to use multiple trap types in biodiversity studies. We propose that the Composite Insect Trap is a useful addition to the trapping methods currently available to ecologists and will be extremely effective for monitoring community level dynamics, biodiversity assessment, and conservation and restoration work. In addition, the Composite Insect Trap will be of use to other insect specialists, such as taxonomists, that are interested in describing the insect taxa in a given area.

  16. Insect bites and stings

    Science.gov (United States)

    ... Insect and spider bites cause more deaths from venom reactions than bites from snakes. ... Some people have severe, life-threatening reactions to bee stings ... or lightheadedness Abdominal pain or vomiting Rash or flushing

  17. Survey for potential insect biological control agents of Ligustrum sinense (Scrophulariales: Oleaceae) in China.

    Science.gov (United States)

    Y-Z Zhang; J.L. Hanula; J. Sun

    2008-01-01

    A systematic survey of Chinese privet foliage, stems, seeds, and roots for associated phytophagous insects was conducted in China during 2005 and 2006 in order to establish basic information about the insect communities that Chinese privet harbors and to evaluate the abundance and damage caused by these insects. A total of 170...

  18. Effects of lignite surface mining on local communities: controversies and areas of negotiation

    Directory of Open Access Journals (Sweden)

    Badera Jarosław

    2017-09-01

    Full Text Available Selecting locations for lignite mining and power generation complexes has been the subject of intense controversy. As a result, there have been many conflicts in society due to environmental and economic concerns. This paper poses the question of how lignite surface mining affects local communities. These effects may be both negative and positive and some of them are intangible. It is very difficult to balance the pros and cons objectively as it depends on the assumed objectives and criteria of the analysis. Different social and economic structures in different communities, and various additional factors, are just some of the reasons why this balance may significantly differ around a country. The authors hold opposing views on the role of lignite in the energy mix and the balance of negative and positive effects that surface mining exerts on local communities. They agree, however, that the most important elements of the societal debate on lignite mining have not yet been adequately studied or presented in public discourse. The authors propose to introduce the procedure of Social Impact Assessment to the Polish legal system. This could be effective as a means to prevent many conflicts in the energy sector and be the best way to reach a compromise.

  19. Evolution of the Insects

    Science.gov (United States)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  20. Insects and other invertebrates

    Science.gov (United States)

    John R. Jones; Norbert V. DeByle; Diane M. Bowers

    1985-01-01

    Quaking aspen throughout its range appears to be host to several insect and other invertebrate pests (fig. 1). It is a short-lived species that is palatable to a large variety of animals. Furniss and Carolin (1977) listed 33 insect species that use aspen as a food source. Some are quite damaging and may kill otherwise healthy stands of aspen; others feed on weakened or...

  1. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  2. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  3. Interactive effects of large herbivores and plant diversity on insect abundance in a meadow steppe in China

    Science.gov (United States)

    Hui Zhu; Deli Wang; Qinfeng Guo; Jun Liu; Ling Wang

    2015-01-01

    The structure and dynamics of insect community in grasslands can be influenced by grazing management via altered characteristics of plant community. However, attempts to better understand the complex relationships among plants, insects, and large herbivores is still hampered largely by the interactive effects of plants, insects, and large grazers on each other. In this...

  4. Ecology of forest insect invasions

    Science.gov (United States)

    E.G. Brockerhoff; A.M. Liebhold

    2017-01-01

    Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions...

  5. Diversity of Bacterial Communities of Fitness Center Surfaces in a U.S. Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Nabanita Mukherjee

    2014-12-01

    Full Text Available Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc. within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water. Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  6. Diversity of bacterial communities of fitness center surfaces in a U.S. metropolitan area.

    Science.gov (United States)

    Mukherjee, Nabanita; Dowd, Scot E; Wise, Andy; Kedia, Sapna; Vohra, Varun; Banerjee, Pratik

    2014-12-03

    Public fitness centers and exercise facilities have been implicated as possible sources for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial community residing on the surfaces in these indoor environments is still unknown. In this study, we investigated the overall bacterial ecology of selected fitness centers in a metropolitan area (Memphis, TN, USA) utilizing culture-independent pyrosequencing of the 16S rRNA genes. Samples were collected from the skin-contact surfaces (e.g., exercise instruments, floor mats, handrails, etc.) within fitness centers. Taxonomical composition revealed the abundance of Firmicutes phyla, followed by Proteobacter and Actinobacteria, with a total of 17 bacterial families and 25 bacterial genera. Most of these bacterial genera are of human and environmental origin (including, air, dust, soil, and water). Additionally, we found the presence of some pathogenic or potential pathogenic bacterial genera including Salmonella, Staphylococcus, Klebsiella, and Micrococcus. Staphylococcus was found to be the most prevalent genus. Presence of viable forms of these pathogens elevates risk of exposure of any susceptible individuals. Several factors (including personal hygiene, surface cleaning and disinfection schedules of the facilities) may be the reasons for the rich bacterial diversity found in this study. The current finding underscores the need to increase public awareness on the importance of personal hygiene and sanitation for public gym users.

  7. Engaging the Applications Community of the future Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Srinivasan, M.; Andral, A.; Dejus, M.; Hossain, F.; Peterson, C.; Beighley, E.; Pavelsky, T.; Chao, Y.; Doorn, B.; Bronner, E.; Houpert, L.

    2015-04-01

    NASA and the French space agency, CNES, with contributions from the Canadian Space Agency (CSA) and United Kingdom Space Agency (UKSA) are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies. The proposed Surface Water and Ocean Topography (SWOT) mission will have the capability to make observations of surface water (lakes, rivers, wetland) heights and measurements of ocean surface topography with unprecedented spatial coverage, temporal sampling, and spatial resolution compared to existing technologies. These data will be useful for monitoring the hydrologic cycle, flooding, and characterizing human impacts on a changing environment. The applied science community is a key element in the success of the SWOT mission, demonstrating the high value of the science and data products in addressing societal issues and needs. The SWOT applications framework includes a working group made up of applications specialists, SWOT science team members, academics and SWOT Project members to promote applications research and engage a broad community of potential SWOT data users. A defined plan and a guide describing a program to engage early adopters in using proxies for SWOT data, including sophisticated ocean and hydrology simulators, an airborne analogue for SWOT (AirSWOT), and existing satellite datasets, are cornerstones for the program. A user survey is in development and the first user workshop was held in 2015, with annual workshops planned. The anticipated science and engineering advances that SWOT will provide can be transformed into valuable services to decision makers and civic organizations focused on addressing global disaster risk reduction initiatives and potential science-based mitigation activities for water resources challenges of the future. With the surface water measurements anticipated from SWOT, a broad range of applications can inform inland and coastal managers and marine operators of

  8. Thermocouple design for measuring temperatures of small insects

    Science.gov (United States)

    A.A. Hanson; R.C. Venette

    2013-01-01

    Contact thermocouples often are used to measure surface body temperature changes of insects during cold exposure. However, small temperature changes of minute insects can be difficult to detect, particularly during the measurement of supercooling points. We developed two thermocouple designs, which use 0.51 mm diameter or 0.127 mm diameter copper-constantan wires, to...

  9. Agricultural applications of insect ecological genomics.

    Science.gov (United States)

    Poelchau, Monica F; Coates, Brad S; Childers, Christopher P; Peréz de León, Adalberto A; Evans, Jay D; Hackett, Kevin; Shoemaker, DeWayne

    2016-02-01

    Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance. Published by Elsevier Inc.

  10. Bacterial communities of surface and deep hydrocarbon-contaminated waters of the Deepwater Horizon oil spill

    Science.gov (United States)

    Yang, T.; Nigro, L. M.; McKay, L.; Ziervogel, K.; Gutierrez, T.; Teske, A.

    2010-12-01

    We performed a 16S rRNA gene sequencing survey of bacterial communities within oil-contaminated surface water, deep hydrocarbon plume water, and deep water samples above and below the plume to determine spatial and temporal patterns of oil-degrading bacteria growing in response to the Deepwater Horizon oil leak. In addition, we are reporting 16S rRNA sequencing results from time series incubation, enrichment and cultivation experiments. Surface oil slick samples were collected 3 nautical miles from ground zero, (5/6/10, RV Pelican) and were added to uncontaminated surface water (collected within a 30 nautical mile radius of ground zero, 5/6/10 - 5/9/10, RV Pelican). This mixture was incubated for 20 days in a rolling bottle at 25°C. 16S rRNA clone libraries from marine snow-like microbial flocs that had formed during the incubation yielded a highly diverse bacterial community, predominately composed of the Alpha- and Gammaproteobacteria, and a smaller number of Planktomycetes and other bacterial lineages. The most frequently recovered proteobacterial sequences were closely related to cultured species of the genus Cycloclasticus, specialists in aerobic oxidation of aromatic hydrocarbons. These time series incubation results will be compared to the microbial community structure of contaminated surface water, sampled on the same cruise with RV Pelican (5/6/10-5/9/10) and frozen immediately. Stable isotope probing (SIP) experiments with C13-labelled alkanes and polycyclic aromatic substrates and gulf water samples have yielded different enrichments. With naphthalene, predominantly Alteromonas-related clones and a smaller share of Cycloclasticus clones were recovered; phenanthrene yielded predominantly clones related to Cycloclasticus, and diverse other Gamma- and Alphaproteobacteria. Analyses of SIP experiments with hexadecane are in progress. The microbial community composition of the deep hydrocarbon plume was characterized using water column profile samples taken

  11. Comportamento de adultos de diferentes raças de Rhyzopertha dominica (Fabricius (Coleoptera, Bostrichidae em superfície tratada com deltamethrin Adult insect behaviour of different Rhyzopertha dominica (Fabricius (Coleoptera, Bostrichidae strains on treated surface of deltamethrin

    Directory of Open Access Journals (Sweden)

    Helenara Beckel

    2004-03-01

    Full Text Available A principal praga de trigo armazenado, no Brasil, Rhyzopertha dominica (Fabricius, foi testada na Embrapa Trigo, em Passo Fundo-RS, em papel filtro impregnado com deltametrina nas concentrações letais CL5, CL25 e CL50 para verificar alterações no comportamento de deslocamento do inseto, as quais podem contribuir para o manejo da resistência de pragas em grãos armazenados. Foram testados insetos de quatro raças, duas resistentes, BR6 e BR12, e duas suscetíveis, BR4 e UK1, que foram coletadas em unidades armazenadoras no Rio Grande do Sul e criadas em laboratório. Espécimes da raça UK1 foram obtidos do laboratório do Imperial College of Science and Technology, Reino Unido. Os resultados mostraram diferenças no comportamento ambulatorial das raças durante o período de 24 horas. Os espécimes das raças resistentes reduziram sua locomoção sobre a superfície contaminada na tentativa de evitar o contato com o inseticida.The most important pest of stored wheat in Brazil, Rhyzopertha dominica (Fabricius, 1792, was tested at Embrapa Trigo, in Passo Fundo-RS, on filter paper impregnated with LC5, LC25, and LC50 of deltamethrin to verify alterations in its walking behaviour that may contribute for pest resistance management in grain storage. Insects of four strains were used, two resistant, BR6 and BR12, and two susceptible, BR4 and UK1, which were collected in storage facilities in Rio Grande do Sul and reared in the laboratory. Insects of the UK1 strain were brought from the laboratory of the Imperial College of Science and Technology, United Kingdom. The results showed differences in the walking behaviour between individuals of strains during the 24 h of the assessment period. Insects of the resistant strains reduced their walking activities on contaminated surface, in an attempt to avoid the insecticide .

  12. Teaching Near-Surface Geophysics within the Matlab/Octave Community

    Science.gov (United States)

    Plattner, A.

    2016-12-01

    Being able to simulate near-surface geophysical data using simple programs can help students grasp the relationship between instrument response and subsurface structure. Computer programs to perform such tasks are sometimes provided with textbooks, but they rarely are open source. This limits the adaptability to the instructor's needs and students cannot look inside the programs to see how the data are simulated and/or processed. The simplicity and efficiency with which MATLAB and Octave allow turning physics and mathematics into computer programs simplifies writing, reading, and editing basic educational near-surface geophysical programs and makes them accessible to students. Here we highlight two Octave/MATLAB-based software packages that are openly available through the GitHub organization NSGeophysics https://github.com/NSGeophysics. The first software package, GPR-O (https://github.com/NSGeophysics/GPR-O), allows for basic ground penetrating radar data analysis and representation. The second software package, Seism-O (https://github.com/NSGeophysics/Seism-O), can be used to simulate various data sets for simple near-surface seismic refraction/reflection investigations. We invite the community to download from, use, change, and contribute to the NSGeophysics repository in the hope that it will serve as a platform for exchanging and developing teaching software for near-surface geophysics.

  13. Time-Dependent Cryospheric Longwave Surface Emissivity Feedback in the Community Earth System Model

    Science.gov (United States)

    Kuo, Chaincy; Feldman, Daniel R.; Huang, Xianglei; Flanner, Mark; Yang, Ping; Chen, Xiuhong

    2018-01-01

    Frozen and unfrozen surfaces exhibit different longwave surface emissivities with different spectral characteristics, and outgoing longwave radiation and cooling rates are reduced for unfrozen scenes relative to frozen ones. Here physically realistic modeling of spectrally resolved surface emissivity throughout the coupled model components of the Community Earth System Model (CESM) is advanced, and implications for model high-latitude biases and feedbacks are evaluated. It is shown that despite a surface emissivity feedback amplitude that is, at most, a few percent of the surface albedo feedback amplitude, the inclusion of realistic, harmonized longwave, spectrally resolved emissivity information in CESM1.2.2 reduces wintertime Arctic surface temperature biases from -7.2 ± 0.9 K to -1.1 ± 1.2 K, relative to observations. The bias reduction is most pronounced in the Arctic Ocean, a region for which Coupled Model Intercomparison Project version 5 (CMIP5) models exhibit the largest mean wintertime cold bias, suggesting that persistent polar temperature biases can be lessened by including this physically based process across model components. The ice emissivity feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel-based approach, and it is found that emissivity radiative kernels exhibit water vapor and cloud cover dependence, thereby varying spatially and decreasing in magnitude over the course of the scenario from secular changes in atmospheric thermodynamics and cloud patterns. Accounting for the temporally varying radiative responses can yield diagnosed feedbacks that differ in sign from those obtained from conventional climatological feedback analysis methods.

  14. High wind speeds prevent formation of a distinct bacterioneuston community in the sea-surface microlayer.

    Science.gov (United States)

    Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver

    2017-05-01

    The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.

  15. Remote sensing of forest insect disturbances: Current state and future directions.

    Science.gov (United States)

    Senf, Cornelius; Seidl, Rupert; Hostert, Patrick

    2017-08-01

    Insect disturbance are important agents of change in forest ecosystems around the globe, yet their spatial and temporal distribution and dynamics are not well understood. Remote sensing has gained much attention in mapping and understanding insect outbreak dynamics. Consequently, we here review the current literature on the remote sensing of insect disturbances. We suggest to group studies into three insect types: bark beetles, broadleaved defoliators, and coniferous defoliators. By so doing, we systematically compare the sensors and methods used for mapping insect disturbances within and across insect types. Results suggest that there are substantial differences between methods used for mapping bark beetles and defoliators, and between methods used for mapping broadleaved and coniferous defoliators. Following from this, we highlight approaches that are particularly suited for each insect type. Finally, we conclude by highlighting future research directions for remote sensing of insect disturbances. In particular, we suggest to: 1) Separate insect disturbances from other agents; 2) Extend the spatial and temporal domain of analysis; 3) Make use of dense time series; 4) Operationalize near-real time monitoring of insect disturbances; 5) Identify insect disturbances in the context of coupled human-natural systems; and 6) Improve reference data for assessing insect disturbances. Since the remote sensing of insect disturbances has gained much interest beyond the remote sensing community recently, the future developments identified here will help integrating remote sensing products into operational forest management. Furthermore, an improved spatiotemporal quantification of insect disturbances will support an inclusion of these processes into regional to global ecosystem models.

  16. The Sterile Insect Technique

    International Nuclear Information System (INIS)

    Kiragu, J.

    2006-01-01

    Insect pests have caused an increasing problem in agriculture and human health through crop losses and disease transmission to man and livestock. Intervention to ensure food security and human health has relied on Integrated Pest Management (IPM) strategies to keep the pests population below economic injury levels. IPM integrate a variety of methods, but there has been over-reliance on chemical control following the discovery of insecticidal properties of DDT. It is now realized that, maintaining pest populations at controlled levels is unsustainable and eradication options is now being considered. Although the Sterile Insect Technique(SIT) could be used for insect suppression, it is gaining favour in the elimination (eradication) of the target pest population through Areawide-based IPM (Author)

  17. Behavioral Immunity in Insects

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    2012-08-01

    Full Text Available Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied.

  18. Egg dumping in insects.

    Science.gov (United States)

    Tallamy, Douglas W

    2005-01-01

    Females that place eggs under the care of conspecifics have been labeled egg dumpers. Egg dumping is an effective reproductive alternative that lowers risks for, and has the potential to increase fecundity in, its practitioners. Although insect egg dumpers can be social parasites of the maternal behavior of egg recipients, dumping is more likely to be a viable reproductive alternative when the costs to egg recipients are low and thus the defense by potential hosts against egg dumping intrusions is minimal. These conditions are met in insects that guard only eggs or in insects whose eggs hatch into self-supporting precocial young that need little beyond defense from parents. When this is the case, egg dumping is favored by natural and/or kin selection as a mechanism by which dumpers can avoid parental risks and increase fecundity, and egg recipients can enhance offspring survival by diluting predation.

  19. Greenland Surface Mass Balance as Simulated by the Community Earth System Model. Part II: Twenty-First-Century Changes

    NARCIS (Netherlands)

    Vizcaino, M.; Lipscomb, W.H.; Sacks, W.J.; van den Broeke, M.R.

    2014-01-01

    This study presents the first twenty-first-century projections of surface mass balance (SMB) changes for the Greenland Ice Sheet (GIS) with the Community Earth System Model (CESM), which includes a new ice sheet component. For glaciated surfaces, CESM includes a sophisticated calculation of energy

  20. The effect of surface colour on the formation of marine micro and macrofouling communities

    KAUST Repository

    Dobretsov, Sergey V.

    2013-07-01

    The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies. © 2013 Copyright Taylor and Francis Group, LLC.

  1. Predator-prey interaction reveals local effects of high-altitude insect migration.

    Science.gov (United States)

    Krauel, Jennifer J; Brown, Veronica A; Westbrook, John K; McCracken, Gary F

    2018-01-01

    High-altitude nocturnal insect migrations are ubiquitous and represent significant pulses of biomass, which impact large areas and multiple trophic levels, yet are difficult to study and poorly understood. Predation on migratory insects by high-flying bats provides potential for investigating flows of migratory insects across a landscape. Brazilian free-tailed bats, Tadarida brasiliensis, provide valuable ecosystem services by consuming migratory pests, and research suggests migratory insects are an important resource to bats in autumn. We sequenced insect DNA from bat feces collected during the 2010-2012 autumn migrations of insects over southern Texas, and tested the utility of predator-prey interactions for monitoring migratory insect populations by asking: 1) how extensively do bats consume migratory insects during autumn? (2) does the prey community reflect known drivers of insect migrations, e.g. cold fronts? and (3) are migratory insects increasingly important to bats when local food resources decline in autumn? Bats consumed at least 21 species of migratory insects and 44 species of agricultural pests. Prey community richness increased with cold front passage. Bats consumed migratory moths over the entire autumn season, and the proportion of migratory moths in the bat diet increased over the course of the autumn season in all 3 years. This study confirms extensive consumption of migratory insects by bats, links patterns in prey communities to mechanisms driving insect migration, and documents a novel approach to tracking patterns of migratory insect movement. As an important resource for T. brasiliensis in autumn, migratory insects provide stabilizing effects to the local animal community.

  2. Insect Repellents: Protect Your Child from Insect Bites

    Science.gov (United States)

    ... Español Text Size Email Print Share Choosing an Insect Repellent for Your Child Page Content Mosquitoes, biting ... sunscreen needs to be reapplied often. Reactions to Insect Repellents If you suspect that your child is ...

  3. Flood-Induced Surface Blooms Alter Deep Chlorophyll Maxima Community Structure in Lake Michigan.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.; Seline, L.

    2008-12-01

    Watershed-wide floods can bring increased nutrients and phytoplankton to receiving waters. This input can alter physical, chemical and phytoplankton community structure in a major way. Phytoplankton species composition and size distribution are key factors in their use as ecological indicators. Since 2003, phytoplankton communities in Lake Michigan have shifted from diatom and big cell (>10μm)- dominated to small cell picocyanobacteria-dominated phytoplankton (Quagga Mussels, dampened seasonal cycling of silicate indicated a basin-wide reduction of diatom production, and unicellular Cyanobacteria became dominant in deep chlorophyll maximum (DCM) zones. In the DCM, Synechococcus-like cells reached populations of at least 210,000 cells/ml. DCM chlorophyll (chl) remained similar (3-4μg/l) but late summer species composition changed dramatically to mostly 10μm fraction increased from previous years, and over 75% of the particulate Si was also in this size fraction. Because of the rapid sinking of diatoms during calm weather of late June-early July of 2008, particulate Si did not reach high values in surfaces waters (ca. 1.5μM) but remained at a consistently higher level than in 2007. Sinking of diatoms from the surface depleted chl in a progression from inshore to offshore during July 2008. In July surface chl was higher 40-70 km offshore than in the coastal zone. Surface phytoplankton waxed and waned in population density as if a wave or lens moved continuously further offshore, with sinking cells depleting the surface algae following behind the crest. In the wake, strong DCM populations with higher chl and particulate Si accumulated in the 30-45m zone at the bottom of the thermocline. However, in 2008 DCM zones, picocyanobacteria attained only 70,000 cells/mL, one-third of the same dates in 2007. The ratio of chlorophyll per Synechococcus cell in 2008 was about 5-fold higher than in 2007, corroborating microscopic observations of lowered picoplanktonic abundance

  4. Sterile insect technique and radiation in insect control

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 39 papers and 6 summaries of the poster presentations published in this proceeding series, 23 respectively fall within the INIS subject scope. Four main topics were covered: a review of the sterile insect technique against various insect pests; its application to tsetse flies in eradication programmes; quality control of mass-reared insects for release; and the development of genetic approaches to insect mass rearing and control. Other topics emphasized integrated pest management, computer models and radioisotope labelling

  5. Survey of phytophagous insects and foliar pathogens in China for a biocontrol perspective on kudzu, Pueraria montana var. lobata (Willd.) Maesen and S. Almeida (Fabaceae)

    Science.gov (United States)

    Jiang-Hua Sun; Zhu-Dong Liu; Ping Cai; David Orr; Judith Hough-Goldstein

    2006-01-01

    A three-year survey of kudzu foliage, seed, stems, and roots for associated phytophagous insects was conducted to establish basic information about the insect communities that kudzu harbors in China and to assess the abundance, diversity and damage caused by these insects. Diseases of kudzu were also surveyed in southern China. A total of 116 phytophagous insect...

  6. Genetic Engineering of Insects

    Indian Academy of Sciences (India)

    Insects, which constitute one of the most abundant groups of living creatures on Earth, are significant to human life in numerous ways. There are many beneficial ones like the honey bee, silk worm, etc. and quite a few that are harmful and cause direct or indirect damage to the well being of human beings. Researchers have ...

  7. Culture of insect tissues

    International Nuclear Information System (INIS)

    Cestari, A.N.; Simoes, L.C.G.

    1978-01-01

    Several aspects are discussed related to the behavior of politenic chromosomes from Rhyncosciara salivary glands kept in culture during different periods of time, without interference of insect hormones. Nucleic acid-and protein synthesis in isolated nuclei and chromosomes are also investigated. Autoradiographic techniques and radioactive precursors for nucleic acids and proteins are used in the research. (M.A.) [pt

  8. Dispersal of forest insects

    Science.gov (United States)

    Mcmanus, M. L.

    1979-01-01

    Dispersal flights of selected species of forest insects which are associated with periodic outbreaks of pests that occur over large contiguous forested areas are discussed. Gypsy moths, spruce budworms, and forest tent caterpillars were studied for their massive migrations in forested areas. Results indicate that large dispersals into forested areas are due to the females, except in the case of the gypsy moth.

  9. Insects and sex

    NARCIS (Netherlands)

    Beukeboom, Leo

    2005-01-01

    Most organisms reproduce sexually, but the evolution of sexual reproduction is not yet well understood. Sexual reproduction leads to new variation and adaptations to the environment, but sex is also costly. Some insects reproduce without sex through parthenogenesis or paedogenesis. Almost all sexual

  10. Investigation--Insects!

    Science.gov (United States)

    Fay, Janice

    2000-01-01

    Presents activities on insects for second grade students. In the first activity, students build a butterfly garden. In the second activity, students observe stimuli reactions with mealworms in the larval stage. Describes the assessment process and discusses the effects of pollution on living things. (YDS)

  11. Insects, isotopes and radiations

    International Nuclear Information System (INIS)

    Lingkvist, D.A.

    1987-01-01

    The IAEA activity on coordinating the IAEA member-state efforts in the field of pest control is considered. A complex program of agricultural pest control (IPM), applied in many parts of the world is developed. The program provides for the use of natural means of control and cases of critical pest numbers-the use of insecticides. When controlling certain types of insects it is advisable to apply the 'large area control' methods which provide for the insect destruction in places of their concentration prior to migration. Methods of pest control over large areas also include radiation sexual sterilization method (SSM), application of insect phoromons (sexual attractants) to prevent mating, other types of chemical attractants, traps, mass cultivation and reproduction of parasite plants and animals, destroying insects, as well as improvement of host-plant resistance. A great attention is paid to isotope and radiation application in pest control (labelling, sexual sterilization using ionising radiation, radiation application in genetic engineering, mutant plant cultivation)

  12. Insects for turkeys

    NARCIS (Netherlands)

    Niekerk, van T.G.C.M.; Veldkamp, T.

    2017-01-01

    In a trial with 14 pens with in each 20 turkey pullets (males, not treated) research has been conducted to the effect of feeding 12% insect larvae (Black Soldier Fly) on technical results and behaviour. The birds were kept until 5 weeks of age. The larvae fed groups ate less, had a higher growth

  13. Trypanosoma (megatrypanum) melophagium in the sheep ked, Melophagus ovinus. A scanning electron microscope (SEM) study of the parasites and the insect gut wall surfaces.

    Science.gov (United States)

    Molyneux, D H; Selkirk, M; Lavin, D

    1978-12-01

    A description of the different stages of Trypanosoma (M.) melophagium in different regions of the gut of the sheep ked (Melophagus ovinus) as observed by the SEM is presented. The extensive pile carpet or palisade colonization of the midgut and pylorus is described. The method of attachment and the relationship of the parasites to the microvilli in the midgut and the cuticle of the pylorus and ileum observed by other methods are confirmed. The micro-structure of the surfaces themselves in the regions of the gut to which parasites attach are described. The use of the technique for the study of other similar systems is discussed.

  14. Riparian forestry management and adult stream insects

    OpenAIRE

    R. A. Briers; R. A. Briers; J. H. R. Gee; J. H. R. Gee

    2004-01-01

    The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive) phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of...

  15. Biomass assessment of microbial surface communities by means of hyperspectral remote sensing data.

    Science.gov (United States)

    Rodríguez-Caballero, Emilio; Paul, Max; Tamm, Alexandra; Caesar, Jennifer; Büdel, Burkhard; Escribano, Paula; Hill, Joachim; Weber, Bettina

    2017-05-15

    Dryland vegetation developed morphological and physiological strategies to cope with drought. However, as aridity increases, vascular plant coverage gets sparse and microbially-dominated surface communities (MSC), comprising cyanobacteria, algae, lichens and bryophytes together with heterotropic bacteria, archaea and fungi, gain relevance. Nevertheless, the relevance of MSC net primary productivity has only rarely been considered in ecosystem scale studies, and detailed information on their contribution to the total photosynthetic biomass reservoir is largely missing. In this study, we mapped the spatial distribution of two different MSC (biological soil crusts and quartz fields hosting hypolithic crusts) at two different sites within the South African Succulent Karoo (Soebatsfontein and Knersvlakte). Then we characterized both types of MSC in terms of chlorophyll content, and combining these data with the biocrust and quartz field maps, we estimated total biomass values of MSCs and their spatial patterns within the two different ecosystems. Our results revealed that MSC are important vegetation components of the South African Karoo biome, revealing clear differences between the two sites. At Soebatsfontein, MSC occurred as biological soil crusts (biocrusts), which covered about one third of the landscape reaching an overall biomass value of ~480gha -1 of chlorophyll a+b at the landscape scale. In the Knersvlakte, which is characterized by harsher environmental conditions (i.e. higher solar radiation and potential evapotranspiration), MSC occurred as biocrusts, but also formed hypolithic crusts growing on the lower soil-immersed parts of translucent quartz pebbles. Whereas chlorophyll concentrations of biocrusts and hypolithic crusts where insignificantly lower in the Knersvlakte, the overall MSC biomass reservoir was by far larger with ~780gha -1 of chlorophyll a+b. Thus, the complementary microbially-dominated surface communities promoted biomass formation within

  16. Characterization of the bacterial community associated with the surface and mucus layer of whiting (Merlangius merlangus).

    Science.gov (United States)

    Smith, Cindy J; Danilowicz, Bret S; Meijer, Wim G

    2007-10-01

    The bacterial community inhabiting the mucus layer and surface of whiting was examined to determine whether the bacteria present are a reflection of the surrounding water or an indigenous bacterial flora is present. The outer mucus, mouth mucus and gut of four whiting harvested from a site in the Irish Sea and the surrounding water were examined by terminal restriction fragment length polymorphism (tRFLP) analysis of the 16S rRNA gene and clone library construction. The water community was the most diverse, with only a small number of shared water-mucus phylotypes present. The bacterial flora associated with the outer mucus layer were more diverse than that of the mouth mucus and gut. All three mucus layers were characterized by the presence of a dominant phylotype, identified as clone wom-1, highly similar to Photobacterium iliopiscarium. In addition to other Photobacterium phylotypes, members of the CFB and Clostridia groups were also detected. Subsequently, whiting from 11 different sites along the east and south coast of Ireland were compared by tRFLP analysis. Strikingly, the mucus layer of whiting at all sites was characterized by the presence and dominance of a TRF corresponding to the clone wom-1 which was virtually absent from the water column.

  17. Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient.

    Science.gov (United States)

    Thiyagarajan, V; Tsoi, M M Y; Zhang, W; Qian, P Y

    2010-07-01

    Terminal restriction fragment length polymorphism analysis (T-RFLP) was used to track the changes of bacterial community compositions (BCC) in coastal surface sediments along an environmental pollution gradient between 2004 and 2006. BCC in the chronically contaminated sites showed the largest deviation from those in the adjacent sites. Surprisingly, BCC at two contrasting environments (oceanic vs. river-influenced) were more similar. Unexpectedly, the BCC did not recover (when compared to oceanic control site) even after 5 years of pollution abatement initiatives in Victoria Harbour, Hong Kong. On the other hand, disposal of treated sewage for 5 years in one of the sites did not significantly affect the BCC. A striking seasonal variation in the BCC was observed at only the polluted sites. Although factors other than pollution gradients may explain the observed BCC patterns, the information presented here can be useful in predicting long-term effects of pollution on BCC. Furthermore, this study suggests that BCC analysis using T-RFLP is a faster, reliable and easier approach to monitor microbenthic community response to environmental pollution gradient in coastal sediments. 2010 Elsevier Ltd. All rights reserved.

  18. Effects of a surfacing effluent plume on a coastal phytoplankton community

    KAUST Repository

    Reifel, Kristen M.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100mgm-3 and densities between 100 and 2000cellsmL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition. © 2013 Elsevier Ltd.

  19. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  20. Insect and disease activity (2003)

    Science.gov (United States)

    John W. Coulston

    2007-01-01

    Why Are Insects and Diseases Important? Native insects and diseases are a natural part of ecosystems and are essential to the ecological balance in natural forests (Castello and others 1995). In contrast, nonnative insects and diseases can pose a particular threat because ecosystems often lack natural internal controls of these agents. The activity of both native and...

  1. Protecting Yourself from Stinging Insects

    Science.gov (United States)

    ... from St ing in g In sect s Flying Insects Outdoor workers are at risk of being stung by flying insects (bees, wasps, and hornets) and fire ants. While ... If a worker is stung by a stinging insect: ■■ Have someone stay with the worker to be ...

  2. The promise of insect genomics

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, Cornelis J P; Cazzamali, Giuseppe; Williamson, Michael

    2007-01-01

    Insects are the largest animal group in the world and are ecologically and economically extremely important. This importance of insects is reflected by the existence of currently 24 insect genome projects. Our perspective discusses the state-of-the-art of these genome projects and the impacts...

  3. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...

  4. Effects of alien plants on insect abundance and biomass: a food-web approach.

    Science.gov (United States)

    Heleno, Rúben H; Ceia, Ricardo S; Ramos, Jaime A; Memmott, Jane

    2009-04-01

    The replacement of native plants by alien species is likely to affect other trophic levels, particularly phytophagous insects. Nevertheless, the effect of alien plants on insect biomass has not yet been quantified. Given their critical role in transferring energy from plants to higher trophic levels, if alien plants do affect insect biomass, this could have far-reaching consequences for community structure. We used 35 food webs to evaluate the impacts of alien plants on insect productivity in a native forest in the Azores. Our food webs quantified plants, insect herbivores, and their parasitoids, which allowed us to test the effects of alien plants on species richness and evenness, insect abundance, insect biomass, and food-web structure. Species richness of plants and insects, along with plant species evenness, declined as the level of plant invasion increased. Nevertheless, none of the 4 quantitative food-web descriptors (number of links, link density, connectance, and interaction evenness) varied significantly with plant invasion independent of the size of the food web. Overall, insect abundance was not significantly affected by alien plants, but insect biomass was significantly reduced. This effect was due to the replacement of large insects on native plants with small insects on alien plants. Furthermore, the impact of alien plants was sufficiently severe to invert the otherwise expected pattern of species-richness decline with increased elevation. We predict a decrease in insect productivity by over 67% if conservation efforts fail to halt the invasion of alien plants in the Azores.

  5. Size effects on insect hovering aerodynamics: an integrated computational study.

    Science.gov (United States)

    Liu, H; Aono, H

    2009-03-01

    Hovering is a miracle of insects that is observed for all sizes of flying insects. Sizing effect in insect hovering on flapping-wing aerodynamics is of interest to both the micro-air-vehicle (MAV) community and also of importance to comparative morphologists. In this study, we present an integrated computational study of such size effects on insect hovering aerodynamics, which is performed using a biology-inspired dynamic flight simulator that integrates the modelling of realistic wing-body morphology, the modelling of flapping-wing and body kinematics and an in-house Navier-Stokes solver. Results of four typical insect hovering flights including a hawkmoth, a honeybee, a fruit fly and a thrips, over a wide range of Reynolds numbers from O(10(4)) to O(10(1)) are presented, which demonstrate the feasibility of the present integrated computational methods in quantitatively modelling and evaluating the unsteady aerodynamics in insect flapping flight. Our results based on realistically modelling of insect hovering therefore offer an integrated understanding of the near-field vortex dynamics, the far-field wake and downwash structures, and their correlation with the force production in terms of sizing and Reynolds number as well as wing kinematics. Our results not only give an integrated interpretation on the similarity and discrepancy of the near- and far-field vortex structures in insect hovering but also demonstrate that our methods can be an effective tool in the MAVs design.

  6. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores

    NARCIS (Netherlands)

    Poelman, E.H.; Van Dam, N.M.; van Loon, J.J.A.; Vet, L.E.M.; Dicke, M.

    2009-01-01

    Intraspecific variation in plants plays a major role in the composition and diversity of the associated insect community. Resistance traits of plants are likely candidates mediating community composition. However, it is debated whether total concentrations of chemical compounds or specific compounds

  7. Patterns of resource use by milkweed insects in Sinai | Elbanna ...

    African Journals Online (AJOL)

    Plant morphology and defensive chemistry are related to the insect community of herbivores on Gomphocarpus sinaicus (Boiss.) (Apocynaceae) in Sinai (Egypt). There appears to be significant variation among individual plants in the components of their chemical defences. The different components of the community ...

  8. Inverse modeling of hydrologic parameters using surface flux and runoff observations in the Community Land Model

    Science.gov (United States)

    Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby

    2013-12-01

    This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.

  9. Comunidades de insectos acuáticos de charcos temporarios y lagunas en la ciudad de Buenos Aires (Argentina Aquatic insect communities of temporary pools and permanent ponds in Buenos Aires City (Argentina

    Directory of Open Access Journals (Sweden)

    María S. Fontanarrosa

    2004-12-01

    Full Text Available Se realizó un estudio comparativo de la comunidad de insectos acuáticos presente en charcos temporarios de parques y plazas de la ciudad de Buenos Aires, y en lagunas permanentes de la Reserva Ecológica Costanera Sur, situada en la ribera del Río de la Plata. Se revisaron 3436 charcos y se visitaron, en 149 oportunidades, seis lagunas de la reserva. Para el conjunto de ambientes, se registraron 85 taxones pertenecientes a cinco órdenes de insectos. Los coleópteros fueron los más diversos (36 taxones, seguidos por los dípteros (27, heterópteros (17, odonatos (4 y efemerópteros (1. Se observaron altos valores de riqueza en los charcos temporarios (58 taxones y las lagunas sin vegetación flotante (64 taxones. La diversidad estimada de los charcos temporarios fue significativamente (pWe studied the community of aquatic insects inhabiting both temporary pools and permanent ponds occuring in Buenos Aires City. A total of 3436 rain pools were examined, and six permanent ponds at the "Reserva Ecológica Costanera Sur" in the Río de la Plata riverside were visited 149 times. A total of 85 taxa were recorded from both habitats, included in five orders of Insecta. The order Coleoptera showed the highest diversity values (36 taxa, followed by Diptera (27, Heteroptera (17, Odonata (4, and Ephemeroptera (1. High values of richness were observed in temporary pools (58 taxa and permanent ponds without floating vegetation (64 taxa. The diversity index for temporary ponds was significantly (p<0,05 lower than in permanent habitats.

  10. Riparian forestry management and adult stream insects

    Directory of Open Access Journals (Sweden)

    R. A. Briers

    2004-01-01

    Full Text Available The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of adult stages through alteration of microclimate, habitat structure and potential food sources, in addition to effects carried over from larval stages. Here, current riparian management strategies are analysed in the light of available information on the ecology of adult stream insects. On the whole, management practices appear to favour adult stream insects, although an increase in tree cover in riparian areas could be beneficial, by providing more favourable microclimatic conditions for adults. This conclusion is drawn based on rather limited information, and the need for further research into the effects of riparian forestry management on adult stream insects is highlighted. Keywords: microclimate, plantation, life history, riparian vegetation

  11. Polyphenism in insects.

    Science.gov (United States)

    Simpson, Stephen J; Sword, Gregory A; Lo, Nathan

    2011-09-27

    Polyphenism is the phenomenon where two or more distinct phenotypes are produced by the same genotype. Examples of polyphenism provide some of the most compelling systems for the study of epigenetics. Polyphenisms are a major reason for the success of the insects, allowing them to partition life history stages (with larvae dedicated to feeding and growth, and adults dedicated to reproduction and dispersal), to adopt different phenotypes that best suit predictable environmental changes (seasonal morphs), to cope with temporally heterogeneous environments (dispersal morphs), and to partition labour within social groups (the castes of eusocial insects). We survey the status of research on some of the best known examples of insect polyphenism, in each case considering the environmental cues that trigger shifts in phenotype, the neurochemical and hormonal pathways that mediate the transformation, the molecular genetic and epigenetic mechanisms involved in initiating and maintaining the polyphenism, and the adaptive and life-history significance of the phenomenon. We conclude by highlighting some of the common features of these examples and consider future avenues for research on polyphenism. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Differentiated surface fungal communities at point of harvest on apple fruits from rural and peri-urban orchards.

    Science.gov (United States)

    Shen, Youming; Nie, Jiyun; Li, Zhixia; Li, Haifei; Wu, Yonglong; Dong, Yafeng; Zhang, Jianyi

    2018-02-01

    The diverse fungal communities that colonize fruit surfaces are closely associated with fruit development, preservation and quality control. However, the overall fungi adhering to the fruit surface and the inference of environmental factors are still unknown. Here, we characterized the fungal signatures on apple surfaces by sequencing internal transcribed spacer 1 (ITS1) region. We collected the surface fungal communities from apple fruits cultivated in rural and peri-urban orchards. A total of 111 fungal genera belonging to 4 phyla were identified, showing remarkable fungal diversity on the apple surface. Comparative analysis of rural samples harboured higher fungal diversity than those from peri-urban orchards. In addition, fungal composition varied significantly across apple samples. At the genus level, the protective genera Coniothyrium, Paraphaeosphaeria and Periconia were enriched in rural samples. The pathogenic genera Acremonium, Aspergillus, Penicillium and Tilletiposis were enriched in peri-urban samples. Our findings indicate that rural samples maintained more diverse fungal communities on apple surfaces, whereas peri-urban-planted apple carried potential pathogenic risks. This study sheds light on ways to improve fruit cultivation and disease prevention practices.

  13. Thermoregulation in endothermic insects.

    Science.gov (United States)

    Heinrich, B

    1974-08-30

    On the basis of body weight, most flying insects have higher rates of metabolism, and hence heat production, than other animals. However, rapid rates of cooling because of small body size in most cases precludes appreciable endothermy. The body temperature of small flies in flight is probably close to ambient temperature, and that of flying butterflies and locusts is 5 degrees to 10 degrees C above ambient temperature. Many moths and bumblebees are insulated with scales and hair, and their metabolism during flight can cause the temperature of the flight muscles to increase 20 degrees to 30 degrees C above ambient temperature. Curiously, those insects which (because of size, insulation) retain the most heat in the thorax during flight, also require the highest muscle temperature in order to maintain sufficient power output to continue flight. The minimum muscle temperature for flight varies widely between different species, while the maximum temperature varies over the relatively narrow range of 40 degrees to 45 degrees C. As a consequence, those insects that necessarily generate high muscle temperatures during flight must maintain their thoracic temperature within a relatively narrow range during flight. Active heat loss from the thorax to the abdomen prevents overheating of the flight motor and allows some large moths to be active over a wide range of ambient temperatures. Bumblebees similarly transfer heat from the flight musculature into the abdomen while incubating their brood by abdominal contact. Many of the larger insects would remain grounded if they did not actively increase the temperature of their flight muscles prior to flight. Male tettigoniid grasshoppers elevate their thoracic temperature prior to singing. In addition, some of the social Hymenoptera activate the "flight" muscles specifically to produce heat not only prior to flight but also during nest temperature regulation. During this "shivering" the "flight" muscles are often activated in

  14. Edible insects are the future?

    Science.gov (United States)

    van Huis, Arnold

    2016-08-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of low greenhouse gas emissions, high feed conversion efficiency, low land use, and their ability to transform low value organic side streams into high value protein products. More than 2000 insect species are eaten mainly in tropical regions. The role of edible insects in the livelihoods and nutrition of people in tropical countries is discussed, but this food source is threatened. In the Western world, there is an increasing interest in edible insects, and examples are given. Insects as feed, in particular as aquafeed, have a large potential. Edible insects have about the same protein content as conventional meat and more PUFA. They may also have some beneficial health effects. Edible insects need to be processed and turned into palatable dishes. Food safety may be affected by toxicity of insects, contamination with pathogens, spoilage during conservation and allergies. Consumer attitude is a major issue in the Western world and a number of strategies are proposed to encourage insect consumption. We discuss research pathways to make insects a viable sector in food and agriculture: an appropriate disciplinary focus, quantifying its importance, comparing its nutritional value to conventional protein sources, environmental benefits, safeguarding food safety, optimising farming, consumer acceptance and gastronomy.

  15. Mite communities (Acari: Mesostigmata) in young and mature coniferous forests after surface wildfire.

    Science.gov (United States)

    Kamczyc, Jacek; Urbanowski, Cezary; Pers-Kamczyc, Emilia

    2017-06-01

    Density, diversity and assemblage structure of Mesostigmata (cohorts Gamasina and Uropodina) were investigated in Scots pine forests differing in forest age (young: 9-40 years and mature: 83-101 years) in which wildfire occurred. This animal group belongs to the dominant acarine predators playing a crucial role in soil food webs and being important as biological control agents. In total, six forests (three within young and three within mature stands) were inspected in Puszcza Knyszyńska Forest Complex in May 2015. At each forest area, sampling was done from burned and adjacent control sites with steel cylinders for heat extraction of soil fauna. Data were analyzed statistically with nested ANOVA. We found a significant effect on mite density of both fire and forest age, with more mites in mature forests and control plots. In total, 36 mite taxa were identified. Mite diversity differed significantly between forest ages but not between burned versus control. Our study indicated that all studied forests are characterized by unique mite species and that the mite communities are dominated by different mite species depending on age forest and surface wildfire occurrence. Finally, canonical correspondence analysis ranked the mite assemblages from control mature, through burned young and burned mature, away from the control young.

  16. Community composition of ammonia-oxidizing archaea from surface and anoxic depths of oceanic oxygen minimum zones

    Directory of Open Access Journals (Sweden)

    Xuefeng ePeng

    2013-07-01

    Full Text Available Ammonia-oxidizing archaea (AOA have been reported at high abundance in much of the global ocean, even in environments, such as pelagic oxygen minimum zones (OMZs, where conditions seem unlikely to support aerobic ammonium oxidation. Due to the lack of information on any potential alternative metabolism of AOA, the AOA community composition might be expected to differ between oxic and anoxic environments, indicating some difference in ecology and/or physiology of the AOA assemblage. This hypothesis was tested by evaluating AOA community composition using a functional gene microarray that targets the ammonia monooxygenase gene subunit A (amoA. The relationship between environmental parameters and the biogeography of the Arabian Sea and the Eastern Tropical South Pacific (ETSP AOA assemblages was investigated using principal component analysis (PCA and redundancy analysis (RDA. In both the Arabian Sea and the ETSP, AOA communities within the core of the OMZ were not significantly different from those inhabiting the oxygenated surface waters above the OMZ. The AOA communities in the Arabian Sea were significantly different from those in the ETSP. In both oceans, the abundance of archaeal amoA gene in the core of the OMZ was higher than that in the surface waters. Our results indicate that AOA communities are distinguished by their geographic origin. RDA suggested that temperature was the main factor that correlated with the differences between the AOA communities from the Arabian Sea and those from the ETSP. Physicochemical properties that characterized the different environments of the OMZ and surface waters played a less important role, than did geography, in shaping the AOA community composition.

  17. Convergent bacterial microbiotas in the fungal agricultural systems of insects.

    Science.gov (United States)

    Aylward, Frank O; Suen, Garret; Biedermann, Peter H W; Adams, Aaron S; Scott, Jarrod J; Malfatti, Stephanie A; Glavina del Rio, Tijana; Tringe, Susannah G; Poulsen, Michael; Raffa, Kenneth F; Klepzig, Kier D; Currie, Cameron R

    2014-11-18

    The ability to cultivate food is an innovation that has produced some of the most successful ecological strategies on the planet. Although most well recognized in humans, where agriculture represents a defining feature of civilization, species of ants, beetles, and termites have also independently evolved symbioses with fungi that they cultivate for food. Despite occurring across divergent insect and fungal lineages, the fungivorous niches of these insects are remarkably similar, indicating convergent evolution toward this successful ecological strategy. Here, we characterize the microbiota of ants, beetles, and termites engaged in nutritional symbioses with fungi to define the bacterial groups associated with these prominent herbivores and forest pests. Using culture-independent techniques and the in silico reconstruction of 37 composite genomes of dominant community members, we demonstrate that different insect-fungal symbioses that collectively shape ecosystems worldwide have highly similar bacterial microbiotas comprised primarily of the genera Enterobacter, Rahnella, and Pseudomonas. Although these symbioses span three orders of insects and two phyla of fungi, we show that they are associated with bacteria sharing high whole-genome nucleotide identity. Due to the fine-scale correspondence of the bacterial microbiotas of insects engaged in fungal symbioses, our findings indicate that this represents an example of convergence of entire host-microbe complexes. The cultivation of fungi for food is a behavior that has evolved independently in ants, beetles, and termites and has enabled many species of these insects to become ecologically important and widely distributed herbivores and forest pests. Although the primary fungal cultivars of these insects have been studied for decades, comparatively little is known of their bacterial microbiota. In this study, we show that diverse fungus-growing insects are associated with a common bacterial community composed of the

  18. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar......, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce...

  19. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO 3 - -N and TN in winter; and in summer with NH 4 + N, NO 3 - -N, NO 2 - -N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Sterilizing insects with ionizing radiation

    International Nuclear Information System (INIS)

    Bakri, A.; Mehta, K.; Lance, D.R.

    2005-01-01

    Exposure to ionizing radiation is currently the method of choice for rendering insects reproductively sterile for area-wide integrated pest management (AW-IPM) programmes that integrate the sterile insect technique (SIT). Gamma radiation from isotopic sources (cobalt-60 or caesium-137) is most often used, but high-energy electrons and X-rays are other practical options. Insect irradiation is safe and reliable when established safety and quality-assurance guidelines are followed. The key processing parameter is absorbed dose, which must be tightly controlled to ensure that treated insects are sufficiently sterile in their reproductive cells and yet able to compete for mates with wild insects. To that end, accurate dosimetry (measurement of absorbed dose) is critical. Irradiation data generated since the 1950s, covering over 300 arthropod species, indicate that the dose needed for sterilization of arthropods varies from less than 5 Gy for blaberid cockroaches to 300 Gy or more for some arctiid and pyralid moths. Factors such as oxygen level, and insect age and stage during irradiation, and many others, influence both the absorbed dose required for sterilization and the viability of irradiated insects. Consideration of these factors in the design of irradiation protocols can help to find a balance between the sterility and competitiveness of insects produced for programmes that release sterile insects. Many programmes apply 'precautionary' radiation doses to increase the security margin of sterilization, but this overdosing often lowers competitiveness to the point where the overall induced sterility in the wild population is reduced significantly. (author)

  1. Insects vis a vis radiations

    International Nuclear Information System (INIS)

    Srivastava, Meera

    2014-01-01

    Insects have turned out to be much more radiation resistant. For most insects a dose of about 500-700 Gy is required to kill them within a few weeks of exposure; although cockroaches require 900-1000 Gy. Killing insects in less than a few days requires much higher doses. These doses are for mature insects, the immature stages of some insects can be killed by doses as low as 40 Gy. Some insects can be sterilized at even lower doses, and this has application in insect control. Screw-worms, for example, can be sterilized with doses of 25-50 Gy. By contrast, doses as low as 3 Gy caused death of humans in Hiroshima and Nagasaki and doses of about 6 Gy caused death of fire fighters in the Chernobyl accident. It is not exactly certain what the basis is for the resistance of insects to ionizing radiation. It is not animal size by itself, nor lack of penetration. It is also not because of few dividing cells as these are more radiosensitive than non-dividing ones. The speculation that insects might have lower oxygen tensions, and the lack of oxygen is known to protect cells from radiation also does not work. Insect cells might have an enhanced capacity to repair radiation damage also could not be proven. The number of chromosomes influenced radio-sensitivity, and that insects had fewer chromosomes could be true. The radiation resistance is inherent to the cells, since cells derived from insects are also radiation resistant when grown in cell culture. For example, a dose of 60 Gy is required to produce a 80% kill of insect cells, while doses of 1-2 Gy are sufficient to generate this level of killing in mammalian cells. But, nevertheless, according to recent researches, radiation from Japan's leaking Fukushima nuclear plant has caused mutations in some butterflies. It is therefore clear that insects are resistant to ionizing radiation and that this resistance is an inherent property of their cells. But it is not clear exactly what the basis of this cellular resistance is

  2. Community.

    Science.gov (United States)

    Grauer, Kit, Ed.

    1995-01-01

    Art in context of community is the theme of this newsletter. The theme is introduced in an editorial "Community-Enlarging the Definition" (Kit Grauer). Related articles include: (1) "The Children's Bridge is not Destroyed: Heart in the Middle of the World" (Emil Robert Tanay); (2) "Making Bridges: The Sock Doll…

  3. Hydrodynamics of insect spermatozoa

    Science.gov (United States)

    Pak, On Shun; Lauga, Eric

    2010-11-01

    Microorganism motility plays important roles in many biological processes including reproduction. Many microorganisms propel themselves by propagating traveling waves along their flagella. Depending on the species, propagation of planar waves (e.g. Ceratium) and helical waves (e.g. Trichomonas) were observed in eukaryotic flagellar motion, and hydrodynamic models for both were proposed in the past. However, the motility of insect spermatozoa remains largely unexplored. An interesting morphological feature of such cells, first observed in Tenebrio molitor and Bacillus rossius, is the double helical deformation pattern along the flagella, which is characterized by the presence of two superimposed helical flagellar waves (one with a large amplitude and low frequency, and the other with a small amplitude and high frequency). Here we present the first hydrodynamic investigation of the locomotion of insect spermatozoa. The swimming kinematics, trajectories and hydrodynamic efficiency of the swimmer are computed based on the prescribed double helical deformation pattern. We then compare our theoretical predictions with experimental measurements, and explore the dependence of the swimming performance on the geometric and dynamical parameters.

  4. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  5. The insect-trapping rim of Nepenthes pitchers

    Science.gov (United States)

    Federle, Walter

    2009-01-01

    Carnivorous pitcher plants of the genus Nepenthes capture prey with a pitfall trap that relies on a micro-structured, slippery surface. The upper pitcher rim (peristome) is fully wettable and causes insects to slip by aquaplaning on a thin water film. The high wettability of the peristome is probably achieved by a combination of hydrophilic surface chemistry, surface roughness and the presence of hygroscopic nectar. Insect foot attachment could be prevented by the delayed drainage of the thin water film between the adhesive pad and the surface. Drainage should be faster for insects with a hairy adhesive system; however, they slip equally on the wet peristome. Therefore the stability of the water film against dewetting appears to be the key factor for aquaplaning. New experimental techniques may help to clarify the detailed function of the pitcher plant peristome and to explore its potential for biomimetic applications. PMID:20009546

  6. Insect symbionts as hidden players in insect-plant interactions

    NARCIS (Netherlands)

    Frago, E.; Dicke, M.; Godfray, H.C.J.

    2012-01-01

    There is growing evidence of the importance of microbial mutualistic symbioses in insect-plant interactions. Mutualists may affect host plant range and enable insects to manipulate plant physiology for their own benefit. The plant can also be a route for the horizontal transfer of mutualistic

  7. Edible insects in Sustainable Food Systems

    DEFF Research Database (Denmark)

    Halloran, Afton; Flore, Roberto; Vantomme, Paul

    Edible insects in Sustainable Food Systems comprehensively covers the basic principles of entomology and population dynamics; edible insects and culture; nutrition and health; gastronomy; insects as animal feed; factors influencing preferences and acceptability of insects; environmental impacts...... and conservation; considerations for insect farming and policy and legislation. The book contains practical information for researchers, NGOs and international organizations, decision-makers, entrepreneurs and students...

  8. 7 CFR 51.2122 - Insect injury.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2122 Section 51.2122 Agriculture... Standards for Grades of Shelled Almonds Definitions § 51.2122 Insect injury. Insect injury means that the insect, web, or frass is present or there is definite evidence of insect feeding. ...

  9. 7 CFR 51.2290 - Insect injury.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2290 Section 51.2290 Agriculture... Standards for Shelled English Walnuts (Juglans Regia) Definitions § 51.2290 Insect injury. Insect injury means that the insect, web, frass or other evidence of insects is present on the portion of kernel. ...

  10. 7 CFR 51.2008 - Insect injury.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Insect injury. 51.2008 Section 51.2008 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2008 Insect injury. Insect injury means that the insect, frass or web is present inside the nut or the kernel shows definite evidence of insect...

  11. Insect cells for human food

    NARCIS (Netherlands)

    Verkerk, M.C.; Tramper, J.; Trijp, van J.C.M.; Martens, D.E.

    2007-01-01

    There is a need for novel protein sources. Insects are a possible interesting source of protein. They are nutritious in terms of protein (40-75 g/100g dry weight) and minerals. Insect protein is of high quality and has a high digestibility (77-98%) and concentration of essential amino acids (46-96%

  12. Reader Survey for INSECT ALERTS.

    Science.gov (United States)

    Miller, Mason E.; Sauer, Richard J.

    To determine what might be done to improve "Insect Alerts," which is a newsletter that carries "information on insect biology, abundance, activity and interpretation of control need," put out through the Michigan Cooperative Extension Service 26 weeks a year, a survey was conducted. A mail questionnaire was sent to all 120 county extension…

  13. Ethical issues in insect production

    DEFF Research Database (Denmark)

    Röcklinsberg, Helena; Gamborg, Christian; Gjerris, Mickey

    2017-01-01

    welfare and present an account of what is known, or can be inferred, about the capability of insects to experience welfare and where future research needs lie. (2) Animal integrity: Do insects possess integrity and can it be violated through large-scale production systems? To clarify this, we will discuss...

  14. Plant Defense against Insect Herbivores

    Science.gov (United States)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal. PMID:23681010

  15. Love Games that Insects Play

    Indian Academy of Sciences (India)

    ... Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Love Games that Insects Play - The Evolution of Sexual Behaviours in Insects. K N Ganeshaiah ... Author Affiliations. K N Ganeshaiah1. Department of Genetics & Plant Breeding University of Agricultural Sciences, GKVK Bangalore 560 065, India ...

  16. Love Games that Insects Play

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 1. Love Games that Insects Play - The Evolution of Sexual Behaviours in Insects. K N Ganeshaiah. General Article Volume 3 Issue 1 January 1998 pp 36-46. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Polarization Imaging and Insect Vision

    Science.gov (United States)

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  18. Forest insect pests in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The papers presented in this book cover the range of forest insect pest management activities in Canada. The first section contains papers on the current status of insect pests by region, including data on insect populations and extent of defoliation caused by the insect. The next section covers pest management technology, including the use of insecticides, insect viruses, fungal pathogens, growth regulators, antifeedants, pheromones, natural predators, and aerial spraying. The third section contains papers on the application of technology and equipment for forest pest control, and includes papers on the impacts of insecticides on the forest environment. The fourth section describes operational control programs by province. The final paper presents future strategies for the management of forest pests. An author index is included.

  19. Insect Immunity to Entomopathogenic Fungi.

    Science.gov (United States)

    Lu, H-L; St Leger, R J

    2016-01-01

    The study of infection and immunity in insects has achieved considerable prominence with the appreciation that their host defense mechanisms share many fundamental characteristics with the innate immune system of vertebrates. Studies on the highly tractable model organism Drosophila in particular have led to a detailed understanding of conserved innate immunity networks, such as Toll. However, most of these studies have used opportunistic human pathogens and may not have revealed specialized immune strategies that have arisen through evolutionary arms races with natural insect pathogens. Fungi are the commonest natural insect pathogens, and in this review, we focus on studies using Metarhizium and Beauveria spp. that have addressed immune system function and pathogen virulence via behavioral avoidance, the use of physical barriers, and the activation of local and systemic immune responses. In particular, we highlight studies on the evolutionary genetics of insect immunity and discuss insect-pathogen coevolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Patterns in Abundance and Seasonality of Insects in the Siruvani Forest of Western Ghats, Nilgiri Biosphere Reserve, Southern India

    Directory of Open Access Journals (Sweden)

    P. R. Arun

    2004-01-01

    Full Text Available The seasonal abundance patterns of insects inhabiting the understory vegetation of a mixed deciduous forest were examined with the help of the sweep-net sampling method. During the study period of 2 years, insects were sampled regularly from the understory vegetation of the three selected habitats (moist-deciduous, riverine, and teak plantation of the mixed deciduous forest. Insect abundance was maximum in the moist-deciduous habitat and minimum in the teak plantation. Generally, insect abundance was the highest during the southwest monsoon in all habitats. The temporal pattern of fluctuations in the insect abundance followed more or less the same pattern in all the three habitats studied. The insect abundance of the understory vegetation varied among the habitats studied, while the pattern of seasonal fluctuations in insect abundance was comparable among habitats. Composition of the insect community also indicated prominent seasonal changes within habitats than interhabitat changes within a season.

  1. The indirect impact of long-term overbrowsing on insects in the Allegheny National Forest region of Pennsylvania

    Science.gov (United States)

    Michael J. Chips; Ellen H. Yerger; Arpad Hervanek; Tim Nuttle; Alex Royo; Jonathan N. Pruitt; Terrence P. McGlynn; Cynthia L. Riggall; Walter P. Carson

    2015-01-01

    Overbrowsing has created depauperate plant communities throughout the eastern deciduous forest. We hypothesized these low-diversity plant communities are associated with lower insect diversity. We compared insects inside and outside a 60-year-old fenced deer exclosure where plant species richness is 5x higher inside versus outside. We sampled aboveground and litter...

  2. Variation in susceptibility of laboratory and field strains of three stored-grain insect species to beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to concrete surfaces

    Science.gov (United States)

    The efficacy of beta-cyfluthrin and chlorpyrifos-methyl plus deltamethrin applied to clean, concrete floors of empty bins prior to grain storage against field strains of stored-grain insects is unknown. We exposed adults of 16 strains of the red flour beetle, Tribolium castaneum (Herbst); 8 strains ...

  3. Insect diversity and its influencing factors in Jiuduansha wetland national nature reserve,Shanghai

    Directory of Open Access Journals (Sweden)

    CHEN Xiuzhi

    2012-08-01

    Full Text Available Investigations were made on insect diversity on order and family levels in five dominant plant communities on four shoals and different gradient tidal creeks in Jiuduansha Nature Reserve.A total of 35444 specimens were collected,belonging to 64 families and 13 orders.According to species number,the dominant families ranked as Chloropidae (42,Eulophidae (29,Pteromalidae (24,Braconidae (22,Ichneumonidae (15,Scelionidae (12,and the dominant orders as Hymenoptera (137,Diptera (85,Coleoptera (32,Hemiptera (10.Our analyses showed:(1 The insect species richness in summer was higher than those in other three seasons;(2 In Phragmites australis community on low tidal flat in summer,the species richness of insects was the highest,that on high tidal flat ranked the second,then that on middle tidal flat.On the low tidal flat,the individual number of Blissidae,Chloropidae,Coccinellidae and Anthicidae was much higher than those on the middle and high tidal flats.The individual number of Blissidae and Delphacidae increased from Lower to High tidal flat.Compared with that on the low tidal flat,the insect composition on the middle tidal flat was closer to that on the high tidal flat.(3 The family and individual numbers of insects in Spartina alterniflora community were higher than those in Phragmite australis community on Middle shoal in summer.Psocoptera and Chloropidae were two dominant families in Spartina alterniflora community,their individuals accounting for 86.83% of the total.While in Phragmite australis community,Chloropidae,Anthicidae and Coccinellidae were three dominant families,their individuals accounting for 79% of the total.In the Scirpus mariqueter-S.triqueter community on Jiangyanansha,the dominant insect families were Phlaeothripidae,Cicadellidae,Chloropidae,Chironomidae and Braconidae,their individual accounting for 96.82% of the total,those in Zizania latifolia community only accounting for 31.52% of the total.(4 The shannon

  4. Guild composition and seasonal distribution of insects on Protea ...

    African Journals Online (AJOL)

    1990-06-12

    Jun 12, 1990 ... with special reference to insect-plant interactions. Ph.D. thesis, University of Stellenbosch, Stellenbosch. 117 pp. DONNELLY, D. & GILIOMEE, J.H. 1985. Community structure of epigaeic ants (Hymenoptera: Formicidae) in fynbos. 249 vegetation in the Jonkershoek Valley. J. eN. Soc. sth. Afr. 48: 247-257.

  5. Field grain losses and insect pest management practices in ...

    African Journals Online (AJOL)

    A farm survey was conducted in subsistence farming communities to document the major grain crops, insect pests, indigenous pest control methods (PCM) and farmer perceptions of grain losses associated with identifiable pest species and perceived efficacies of the PCMs. Maize, beans and sorghum were identified as the ...

  6. Insect herbivore- associated organisms affect plant responses to herbivory

    NARCIS (Netherlands)

    Zhu, F.; Poelman, E.H.; Dicke, M.

    2014-01-01

    In nature, plants interact with many organisms and need to integrate their responses to these diverse community members. Knowledge on plant-insect relationships has accumulated rapidly during the last decades. Yet most studies on direct or indirect defences of plants against herbivory have treated

  7. Host-foraging behavior of 4th throphic level insects

    NARCIS (Netherlands)

    Salis, L.

    2016-01-01

    Hyperparasitoids play a major role in insect-plant community as they determine populations dynamics of their host species as well as the lower trophic levels. Yet, little is known on their life-hystories and host-foraging behaviour. Here we present a study aimed to identify which odour cues

  8. Microbial community structure of surface sediments from a tropical estuarine environment using next generation sequencing

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Kuchi, N.; Kale, D.; Anil, A.C.

    Microbial community structure was analyzed from tropical monsoon influenced Mandovi-Zuari (Ma-Zu) estuarine sediment by means of Next Gen Sequencing (NGS) approach using Ion Torrent PGM™. The sequencing generated 80,282 raw sequence reads. Barcoding...

  9. Bacterial communities associated with the surfaces of fresh fruits and vegetables.

    Directory of Open Access Journals (Sweden)

    Jonathan W Leff

    Full Text Available Fresh fruits and vegetables can harbor large and diverse populations of bacteria. However, most of the work on produce-associated bacteria has focused on a relatively small number of pathogenic bacteria and, as a result, we know far less about the overall diversity and composition of those bacterial communities found on produce and how the structure of these communities varies across produce types. Moreover, we lack a comprehensive view of the potential effects of differing farming practices on the bacterial communities to which consumers are exposed. We addressed these knowledge gaps by assessing bacterial community structure on conventional and organic analogs of eleven store-bought produce types using a culture-independent approach, 16 S rRNA gene pyrosequencing. Our results demonstrated that the fruits and vegetables harbored diverse bacterial communities, and the communities on each produce type were significantly distinct from one another. However, certain produce types (i.e., sprouts, spinach, lettuce, tomatoes, peppers, and strawberries tended to share more similar communities as they all had high relative abundances of taxa belonging to the family Enterobacteriaceae when compared to the other produce types (i.e., apples, peaches, grapes, and mushrooms which were dominated by taxa belonging to the Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria phyla. Although potentially driven by factors other than farming practice, we also observed significant differences in community composition between conventional and organic analogs within produce types. These differences were often attributable to distinctions in the relative abundances of Enterobacteriaceae taxa, which were generally less abundant in organically-grown produce. Taken together, our results suggest that humans are exposed to substantially different bacteria depending on the types of fresh produce they consume with differences between conventionally and organically

  10. Shelter-Building Insects and Their Role as Ecosystem Engineers.

    Science.gov (United States)

    Cornelissen, T; Cintra, F; Santos, J C

    2016-02-01

    Amelioration of harsh conditions, manipulation of host plant quality, and protection from natural enemies have all been suggested as potential forces in the evolution and maintenance of concealed feeding in insects. The construction of shelters--either in the form of mines, galls, and leaf rolls--are expected to increase larval survivorship and might influence other organisms of the community through non-trophic direct and indirect effects when shelters are co-occupied or occupied after abandonment, placing leaf and stem shelter-builders within the context of ecosystem engineering. In this review, we evaluate the potential of shelter built by insects to reduce pressure exerted by natural enemies, increase tissue quality, and provide shelter against abiotic conditions experienced during insect development. Through a quantitative analysis, we also examined the effects of insect shelters on patterns of richness and abundance of local communities, reviewing the data published in the last 15 years. We demonstrate strong effects of shelters on several arthropods, with increased richness and abundance when shelters are present in the host plants. These results reinforce the importance of the physical structures created by insects that although subtle, might have important roles in facilitative interactions.

  11. Pathogens and insect herbivores drive rainforest plant diversity and composition.

    Science.gov (United States)

    Bagchi, Robert; Gallery, Rachel E; Gripenberg, Sofia; Gurr, Sarah J; Narayan, Lakshmi; Addis, Claire E; Freckleton, Robert P; Lewis, Owen T

    2014-02-06

    Tropical forests are important reservoirs of biodiversity, but the processes that maintain this diversity remain poorly understood. The Janzen-Connell hypothesis suggests that specialized natural enemies such as insect herbivores and fungal pathogens maintain high diversity by elevating mortality when plant species occur at high density (negative density dependence; NDD). NDD has been detected widely in tropical forests, but the prediction that NDD caused by insects and pathogens has a community-wide role in maintaining tropical plant diversity remains untested. We show experimentally that changes in plant diversity and species composition are caused by fungal pathogens and insect herbivores. Effective plant species richness increased across the seed-to-seedling transition, corresponding to large changes in species composition. Treating seeds and young seedlings with fungicides significantly reduced the diversity of the seedling assemblage, consistent with the Janzen-Connell hypothesis. Although suppressing insect herbivores using insecticides did not alter species diversity, it greatly increased seedling recruitment and caused a marked shift in seedling species composition. Overall, seedling recruitment was significantly reduced at high conspecific seed densities and this NDD was greatest for the species that were most abundant as seeds. Suppressing fungi reduced the negative effects of density on recruitment, confirming that the diversity-enhancing effect of fungi is mediated by NDD. Our study provides an overall test of the Janzen-Connell hypothesis and demonstrates the crucial role that insects and pathogens have both in structuring tropical plant communities and in maintaining their remarkable diversity.

  12. Social-insect fungus farming

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Boomsma, Jacobus Jan

    2006-01-01

    Which social insects rear their own food? Growing fungi for food has evolved twice in social insects: once in new-world ants about 50 million years ago; and once in old-world termites between 24 and 34 million years ago [1] and [2] . The termites domesticated a single fungal lineage - the extant...... the farming insects with most of their food ( Figure 1 ). No secondary reversals to the ancestral life style are known in either group, which suggests that the transitions to farming were as drastically innovative and irreversible as when humans made this step about 10,000 years ago....

  13. Spatial distribution of aquatic insects

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann

    and shape the habitat requirements and distribution of one of the most affected groups of freshwater species: aquatic insects. It comprises four chapters each addressing different spatial factors in relation to the occurrence of aquatic insects in Europe. Chapter I examine two spatial ecological processes...... niche is derived from local distribution patterns, without incorporating landscape history it can lead to an erroneous niche definition. Chapter III provides some of the first evidence for differences in dispersal phenology related to flight potential in aquatic insects. The chapter highlights...

  14. Aquatic insects of lowland rainforest in Papua New Guinea: assemblage structure in relation to habitat type

    Czech Academy of Sciences Publication Activity Database

    Klečka, Jan

    2015-01-01

    Roč. 70, č. 12 (2015), s. 1621-1630 ISSN 0006-3088 Institutional support: RVO:60077344 Keywords : community structure * biodiversity * aquatic insects Subject RIV: EH - Ecology, Behaviour Impact factor: 0.719, year: 2015

  15. Insect mycophagy: a preliminary bibliography.

    Science.gov (United States)

    Robert. Fogel

    1975-01-01

    Insects that feed on fungi are primary dispersal agents for many beneficial and pathogenic species. Nearly 300 references on the subject, published since the mid-19th century are listed in this bibliography.

  16. Radar Observation of Insects - Mosquitoes

    Science.gov (United States)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  17. Social insects inspire human design

    Science.gov (United States)

    Holbrook, C. Tate; Clark, Rebecca M.; Moore, Dani; Overson, Rick P.; Penick, Clint A.; Smith, Adrian A.

    2010-01-01

    The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design. PMID:20392721

  18. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    Science.gov (United States)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total

  19. How Do Insects Help the Environment?

    Science.gov (United States)

    Hevel, Gary

    2005-01-01

    There are some 5 to 30 million insect species estimated in the world--and the majority of these have yet to be collected or named by science! Of course, the most well known insects are those that cause disease or compete for human agricultural products, but these insects represent only a small fraction of the world's insect population. In reality,…

  20. 46 CFR 108.215 - Insect screens.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Insect screens. 108.215 Section 108.215 Shipping COAST... Construction and Arrangement Accommodation Spaces § 108.215 Insect screens. (a) Accommodation spaces must be protected against the admission of insects. (b) Insect screens must be installed when natural ventilation is...

  1. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    Science.gov (United States)

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  2. Spatial variations of prokaryotic communities in surface water from India Ocean to Chinese marginal seas and their underlining environmental determinants

    Directory of Open Access Journals (Sweden)

    Xiaowei eZheng

    2016-02-01

    Full Text Available To illustrate the biogeographic patterns of prokaryotic communities in surface sea water, 24 samples were systematically collected across a large distance from Indian Ocean to Chinese marginal seas, with an average distance of 453 km between two adjacent stations. A total of 841,364 quality reads was produced by the high throughput DNA sequencing of the 16S rRNA genes. Phylogenetic analysis showed that Proteobacteria were predominant in all samples, with Alphaproteobacteria and Gammaproteobacteria being the two most abundant components. Cyanobacteria represented the second largest fraction of the total quality reads, and mainly included Prochlorococcus and Synechococcus. The semi-closed marginal seas, including South China Sea (SCS and nearby regions, exhibited a transition in community composition between oceanic and coastal seas, based on the distribution patterns of Prochlorococcus and Synechococcus as well as a non-metric multidimensional scaling (NMDS analysis. Distinct clusters of prokaryotes from coastal and open seas, and from different water masses in Indian Ocean were obtained by Bray-Curtis dissimilarity analysis at the OTU level, revealing a clear spatial heterogeneity. The major environmental factors correlated with the community variation in this broad scale were identified as salinity, temperature and geographic distance. Community comparison among regions shows that anthropogenic contamination is another dominant factor in shaping the biogeographic patterns of the microorganisms. These results suggest that environmental factors involved in complex interactions between land and sea act synergistically in driving spatial variations in coastal areas.

  3. An insect-bacteria bioindicator for assessing detrimental nutrient enrichment in wetlands.

    Science.gov (United States)

    A. Dennis Lemly; Ryan S. King

    2000-01-01

    Field and laboratory studies were conducted to evaluate the use of bacterial growth on aquatic insects as a metric for determining the existence of nutrient impacts in wetlands. Results from field investigations indicated that elevated concentrations of nitrate and phosphate were associated with growth of filamentous bacteria on insect body surfaces and that there were...

  4. Can Insects Develop Resistance to Insect Pathogenic Fungi?

    Science.gov (United States)

    Yaroslavtseva, Olga N.; Greig, Carolyn; Kryukov, Vadim Y.; Grizanova, Ekaterina V.; Mukherjee, Krishnendu; Vilcinskas, Andreas; Glupov, Viktor V.; Butt, Tariq M.

    2013-01-01

    Microevolutionary adaptations and mechanisms of fungal pathogen resistance were explored in a melanic population of the Greater wax moth, Galleria mellonella. Under constant selective pressure from the insect pathogenic fungus Beauveria bassiana, 25th generation larvae exhibited significantly enhanced resistance, which was specific to this pathogen and not to another insect pathogenic fungus, Metarhizium anisopliae. Defense and stress management strategies of selected (resistant) and non-selected (susceptible) insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. We hypothesize that the insects developed a transgenerationally primed resistance to the fungus B. bassiana, a costly trait that was achieved not by compromising life-history traits but rather by prioritizing and re-allocating pathogen-species-specific augmentations to integumental front-line defenses that are most likely to be encountered by invading fungi. Specifically during B. bassiana infection, systemic immune defenses are suppressed in favour of a more limited but targeted repertoire of enhanced responses in the cuticle and epidermis of the integument (e.g. expression of the fungal enzyme inhibitor IMPI, and cuticular phenoloxidase activity). A range of putative stress-management factors (e.g. antioxidants) is also activated during the specific response of selected insects to B. bassiana but not M. anisopliae. This too occurs primarily in the integument, and probably contributes to antifungal defense and/or helps ameliorate the damage inflicted by the fungus or the host’s own immune responses. PMID:23560083

  5. Non-native grass invasion associated with increases in insect diversity in temperate forest understory

    Science.gov (United States)

    Metcalf, Judith L.; Emery, Sarah M.

    2015-11-01

    Invasive plants can alter the structure and function of plant communities to such a degree that they can also have significant impacts on the insect communities. Because insects play an important role in many ecosystems, changes in these communities could have important implications, beyond their biodiversity value, for ecosystem function and diversity at other trophic levels. Microstegium vimineum is an annual C4 grass that is invasive in many eastern North American deciduous forests. Because this grass plays an important role in determining the plant community structure in the understory of these forests, it also has the potential to significantly alter understory insect communities. In this study we evaluated the relationship between M. vimineum and understory insect communities in a forest reserve in Kentucky, USA. Total insect abundance, richness and diversity showed a positive association with M. vimineum presence. Trophic analysis showed significantly higher abundances of herbivores where M. vimineum was present. Forb abundance, which serves as the primary food source for herbivorous insects in this system, was lower in sites invaded with M. vimineum. Invasion by this non-native was also associated with significant increases in aboveground plant biomass which was nearly 50% greater in invaded sites. These results indicate that the understory insect community may be responding to increased biomass rather than the loss of native forb food resources, which contradicts other studies that have examined relationships between M. vimineum invasion and insects. Our results provide evidence that invasive plants can provide benefits for other trophic levels, even when native plant biodiversity is lost.

  6. The Sterile Insect Technique as a method of pest control

    International Nuclear Information System (INIS)

    Argiles Herrero, R.

    2011-01-01

    In the Valencia community is doing one of the most ambitious project in the field of plant protection at European level: the fight against fruit fly, one of the most damaging pests of citrus and fruit; by Insect Technique Sterile. This technique consists of laboratory breeding and release into the fields of huge quantities of insects of the pest species that have previously been sterilized. Sterile insect looking for wild individuals of the same species to mate with them and the result is a clutch of viable eggs, causing a decrease in pest populations. After three years of application of the technique on an area of 150,000 hectares, the pest populations have been reduced by 90%. Other benefits have been the reduced used of insecticides and improved the quality of exported fruit. (Author)

  7. The ecology of nest movement in social insects.

    Science.gov (United States)

    McGlynn, Terrence P

    2012-01-01

    Social insect colonies are typically mobile entities, moving nests from one location to another throughout the life of a colony. The majority of social insect species-ants, bees, wasps, and termites-have likely adopted the habit of relocating nests periodically. The syndromes of nest relocation include legionary nomadism, unstable nesting, intrinsic nest relocation, and adventitious nest relocation. The emergence of nest movement is a functional response to a broad range of potential selective forces, including colony growth, competition, foraging efficiency, microclimate, nest deterioration, nest quality, parasitism, predation, and seasonality. Considering the great taxonomic and geographic distribution of nest movements, assumptions regarding the nesting biology of social insects should be reevaluated, including our understanding of population genetics, life-history evolution, and the role of competition in structuring communities. Copyright © 2012 by Annual Reviews. All rights reserved.

  8. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  9. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet.

    Science.gov (United States)

    Yallop, Marian L; Anesio, Alexandre M; Perkins, Rupert G; Cook, Joseph; Telling, Jon; Fagan, Daniel; MacFarlane, James; Stibal, Marek; Barker, Gary; Bellas, Chris; Hodson, Andy; Tranter, Martyn; Wadham, Jemma; Roberts, Nicholas W

    2012-12-01

    Darkening of parts of the Greenland ice sheet surface during the summer months leads to reduced albedo and increased melting. Here we show that heavily pigmented, actively photosynthesising microalgae and cyanobacteria are present on the bare ice. We demonstrate the widespread abundance of green algae in the Zygnematophyceae on the ice sheet surface in Southwest Greenland. Photophysiological measurements (variable chlorophyll fluorescence) indicate that the ice algae likely use screening mechanisms to downregulate photosynthesis when exposed to high intensities of visible and ultraviolet radiation, rather than non-photochemical quenching or cell movement. Using imaging microspectrophotometry, we demonstrate that intact cells and filaments absorb light with characteristic spectral profiles across ultraviolet and visible wavelengths, whereas inorganic dust particles typical for these areas display little absorption. Our results indicate that the phototrophic community growing directly on the bare ice, through their photophysiology, most likely have an important role in changing albedo, and subsequently may impact melt rates on the ice sheet.

  10. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, N., E-mail: touzet.nicolas@itsligo.ie [Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo (Ireland); McCarthy, D.; Gill, A.; Fleming, G.T.A. [Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway (Ireland)

    2016-05-15

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  11. The global distribution of diet breadth in insect herbivores.

    Science.gov (United States)

    Forister, Matthew L; Novotny, Vojtech; Panorska, Anna K; Baje, Leontine; Basset, Yves; Butterill, Philip T; Cizek, Lukas; Coley, Phyllis D; Dem, Francesca; Diniz, Ivone R; Drozd, Pavel; Fox, Mark; Glassmire, Andrea E; Hazen, Rebecca; Hrcek, Jan; Jahner, Joshua P; Kaman, Ondrej; Kozubowski, Tomasz J; Kursar, Thomas A; Lewis, Owen T; Lill, John; Marquis, Robert J; Miller, Scott E; Morais, Helena C; Murakami, Masashi; Nickel, Herbert; Pardikes, Nicholas A; Ricklefs, Robert E; Singer, Michael S; Smilanich, Angela M; Stireman, John O; Villamarín-Cortez, Santiago; Vodka, Stepan; Volf, Martin; Wagner, David L; Walla, Thomas; Weiblen, George D; Dyer, Lee A

    2015-01-13

    Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.

  12. Flower Constancy, Insect Psychology, and Plant Evolution

    Science.gov (United States)

    Chittka, Lars; Thomson, James D.; Waser, Nickolas M.

    Individuals of some species of pollinating insects tend to restrict their visits to only a few of the available plant species, in the process bypassing valuable food sources. The question of why this flower constancy exists is a rich and important one with implications for the organization of natural communities of plants, floral evolution, and our understanding of the learning processes involved in finding food. Some scientists have assumed that flower constancy is adaptive per se. Others argued that constancy occurs because memory capacity for floral features in insects is limited, but attempts to identify the limitations often remained rather simplistic. We elucidate now different sensory and motor memories from natural foraging tasks are stored and retrieved, using concepts from modern learning science and visual search, and conclude that flower constancy is likely to have multiple causes. Possible constraints favoring constancy are interference sensitivity of short-term memory, and temporal limitations on retrieving information from long-term memory as rapidly as from short-term memory, but further empirical evidence is needed to substantiate these possibilities. In addition, retrieving memories may be slower and more prone to errors when there are several options than when an insect copes with only a single task. In addition to memory limitations, we also point out alternative explanations for flower constancy. We then consider the way in which floral parameters, such as interplant distances, nectar rewards, flower morphology, and floral color (as seen through bees' eyes) affect constancy. Finally, we discuss the implications of pollinator constancy for plant evolution. To date there is no evidence that flowers have diverged to favor constancy, although the appropriate tests may not have yet been conducted. However, there is good evidence against the notion that pollinator constancy is involved in speciation or maintenance of plant species integrity.

  13. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    Science.gov (United States)

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation

  14. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Directory of Open Access Journals (Sweden)

    Sergio E Morales

    Full Text Available Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2 emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA and activity (mRNA of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface CO2 using FACE (Free-Air CO2 Enrichment systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  15. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Dustin W Kemp

    Full Text Available Coral surface mucus layer (SML microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance, underside (low irradiance, and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  16. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    Science.gov (United States)

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  17. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics

    Science.gov (United States)

    Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.

    2017-01-01

    Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.

  18. A survey of insect assemblages responding to volatiles from a ubiquitous fungus in an agricultural landscape.

    Science.gov (United States)

    Davis, Thomas Seth; Landolt, Peter J

    2013-07-01

    We report here a first survey of insect orientation to fungal cultures and fungal volatiles from a community ecology perspective. We tested whether volatiles from a ubiquitous yeast-like fungus (Aureobasidium pullulans) are broadly attractive to insects in an agricultural landscape. We evaluated insect attraction to fungal cultures and synthetic compounds identified in fungal headspace (2-methyl-1-butanol, 3-methyl-1-butanol, 2-phenylethanol) in a spearmint (Mentha spicata L.) plantation. Three findings emerged: (1) 1,315 insects representing seven orders and 39 species oriented to traps, but 65 % of trapped insects were Dipterans, of which 80 % were hoverflies (Diptera: Syrphidae); (2) traps baited with A. pullulans caught 481 % more insects than unbaited control traps on average, and contained more diverse (Shannon's H index) and species rich assemblages than control traps, traps baited with Penicillium expansum, or uninoculated media; and (3) insects oriented in greatest abundance to a 1:1:1 blend of A. pullulans volatiles, but mean diversity scores were highest for traps baited with only 2-phenylethanol or 2-methyl-1-butanol. Our results show that individual components of fungal headspace are not equivalent in terms of the abundance and diversity of insects that orient to them. The low abundance of insects captured with P. expansum suggests that insect assemblages do not haphazardly orient to fungal volatiles. We conclude that volatiles from a common fungal species (A. pullulans) are attractive to a variety of insect taxa in an agricultural system, and that insect orientation to fungal volatiles may be a common ecological phenomenon.

  19. The incredible shrinking bee insects as models for microelectromechanical devices

    CERN Document Server

    Lawry, James V

    2006-01-01

    Because vertebrate circulations do not work when shrunk to insect sizes, insects may help us design our smallest machines. Within small bodies, bees separate diffusing substances in an open cavity assisted by locomotion and the beat of the heart. The open arthropod circulation, however, is most efficient when shrunk until its large three-dimensional volume of blood turns into a two-dimensional film of fluid covering only the internal surfaces. This transformation increases the chances to near-certainty that molecules can diffuse from one point to another without getting lost.The Incredible Shr

  20. On the factors that promote the diversity of herbivorous insects and plants in tropical forests.

    Science.gov (United States)

    Becerra, Judith X

    2015-05-12

    Some of the most fascinating and challenging questions in ecology are why biodiversity is highest in tropical forests and whether the factors involved are unique to these habitats. I did a worldwide test of the hypotheses that plant community divergence in antiherbivore traits results in higher insect herbivore diversity, and that predominant attack by specialized herbivores promotes plant richness. I found strong correlative support for both ideas. Butterfly diversity was greatest in regions where the community average species-pairwise dissimilarity in antiherbivore traits among plant species was highest. There was also a strong positive relationship between specialized (insect) vs. generalized (mammal) herbivores and plant richness. Regions where herbivory impact by mammals was higher than that of insects tended to have lower plant diversities. In contrast, regions in which insects are the main consumers, particularly in the Central and South American tropics, had the highest plant richness. Latitude did not explain any residual variance in insect or plant richness. The strong connections found between insect specialization, plant defense divergence, and plant and insect diversities suggest that increasing our understanding of the ecology of biological communities can aid in considerations of how to preserve biodiversity in the future.

  1. Biogenic Amines in Insect Antennae

    Directory of Open Access Journals (Sweden)

    Marianna I. Zhukovskaya

    2017-06-01

    Full Text Available Insect antenna is a multisensory organ, each modality of which can be modulated by biogenic amines. Octopamine (OA and its metabolic precursor tyramine (TA affect activity of antennal olfactory receptor neurons. There is some evidence that dopamine (DA modulates gustatory neurons. Serotonin can serve as a neurotransmitter in some afferent mechanosensory neurons and both as a neurotransmitter and neurohormone in efferent fibers targeted at the antennal vessel and mechanosensory organs. As a neurohormone, serotonin affects the generation of the transepithelial potential by sensillar accessory cells. Other possible targets of biogenic amines in insect antennae are hygro- and thermosensory neurons and epithelial cells. We suggest that the insect antenna is partially autonomous in the sense that biologically active substances entering its hemolymph may exert their effects and be cleared from this compartment without affecting other body parts.

  2. Insects, infestations and nutrient fluxes

    Science.gov (United States)

    Michalzik, B.

    2012-04-01

    Forest ecosystems are characterized by a high temporal and spatial variability in the vertical transfer of energy and matter within the canopy and the soil compartment. The mechanisms and controlling factors behind canopy processes and system-internal transfer dynamics are imperfectly understood at the moment. Seasonal flux diversities and inhomogeneities in throughfall composition have been reported from coniferous and deciduous forests, and in most cases leaf leaching has been considered as principle driver for differences in the amount and quality of nutrients and organic compounds (Tukey and Morgan 1963). Since herbivorous insects and the processes they initiate received less attention in past times, ecologists now emphasize the need for linking biological processes occurring in different ecosystem strata to explain rates and variability of nutrient cycling (Bardgett et al. 1998, Wardle et al. 2004). Consequently, herbivore insects in the canopies of forests are increasingly identified to play an important role for the (re)cycling and availability of nutrients, or, more generally, for the functioning of ecosystems not only in outbreak situations but also at endemic (non-outbreak) density levels (Stadler et al. 2001, Hunter et al. 2003). Before, little attention was paid to insect herbivores when quantifying element and energy fluxes through ecosystems, although the numerous and different functions insects fulfill in ecosystems (e.g. as pollinators, herbivores or detritivores) were unanimously recognized (Schowalter 2000). Amongst the reasons for this restraint was the argument that the total biomass of insects tends to be relatively low compared to the biomass of trees or the pool of soil organic matter (Ohmart et al. 1983). A second argument which was put forward to justify the inferior role of insects in nutrient cycling were the supposed low defoliation losses between 5-10% of the annual leaf biomass, or net primary production, due to insect herbivory under

  3. Radiations: tool for insect pest management

    International Nuclear Information System (INIS)

    Swami, Kailash Kumar; Kiradoo, M.M.; Srivastava, Meera

    2012-01-01

    The discovery that X-rays or gamma radiation could cause sufficient genetic damage to insect reproductive systems to induce sterility resulted from work conducted by H.J. Muller starting in the 1920s. The sterilizing effect of radiation was noted by scientists of the US Department of Agriculture who had been seeking a method to sterilize insects for many years. These scientists had theorized that if large numbers of the target insect species were reared, sterilized, and released into the field, the sterile insects would mate with the wild insects. These mating would result in no offspring and thus a decline in the population would be obtained. They calculated that if sufficient numbers of sterile insects were released, reproductive rate for the wild population would rapidly decline and reach zero. In simple language, birth control of insects. Radiation sterilization was the answer. In a SIT operation, radiation is used to sexually sterilize insects. Since the SIT is species specific, the selection the insect pest or group of pests on which to work is of primary importance. The Joint Division of the IAEA Food and Agriculture Organization (FAO) has been involved in the use of isotopes and radiation in insect control since 1964. Isotopes are used as tags or markers, for instance, of chemical molecules, insects, or plants. For example, with these tags one can follow the fate of insecticides within insects and the environment; the incorporation of nutrients into the insect; and the movements of insects under field conditions. They also can plants on which insects feed so that the quantity of consumed food can be measured and directly correlated with plant resistance. They can be used as well to follow parasites and predators of insects - for example, their movements, numbers, and ability to help control insect pests. Radiations therefore have come as a novel tool to combat insect pest problem and in future could be very helpful in various other ways, of be it be cost

  4. Fungal Communities Including Plant Pathogens in Near Surface Air Are Similar across Northwestern Europe

    Directory of Open Access Journals (Sweden)

    Mogens Nicolaisen

    2017-09-01

    Full Text Available Information on the diversity of fungal spores in air is limited, and also the content of airborne spores of fungal plant pathogens is understudied. In the present study, a total of 152 air samples were taken from rooftops at urban settings in Slagelse, DK, Wageningen NL, and Rothamsted, UK together with 41 samples from above oilseed rape fields in Rothamsted. Samples were taken during 10-day periods in spring and autumn, each sample representing 1 day of sampling. The fungal content of samples was analyzed by metabarcoding of the fungal internal transcribed sequence 1 (ITS1 and by qPCR for specific fungi. The metabarcoding results demonstrated that season had significant effects on airborne fungal communities. In contrast, location did not have strong effects on the communities, even though locations were separated by up to 900 km. Also, a number of plant pathogens had strikingly similar patterns of abundance at the three locations. Rooftop samples were more diverse than samples taken above fields, probably reflecting greater mixing of air from a range of microenvironments for the rooftop sites. Pathogens that were known to be present in the crop were also found in air samples taken above the field. This paper is one of the first detailed studies of fungal composition in air with the focus on plant pathogens and shows that it is possible to detect a range of pathogens in rooftop air samplers using metabarcoding.

  5. Ionizing radiation perception by insects

    International Nuclear Information System (INIS)

    Campanhola, C.

    1980-04-01

    The proof of the existence of a perception for ionizing radiation by insects was aimed at, as well as the determination of its processing mechanism. It was tried also to check if such perception induces the insects to keep away from the radiation source, proving therefore a protection against the harms caused by ionizing radiation, or else the stimulus for such behaviour is similar to that caused by light radiations. 60 Co and 241 Am were used as gamma radiation sources, the 60 Co source of 0.435mCi and the 241 Am of 99.68mCi activity. Adult insects were used with the following treatments : exposure to 60 Co and 241 Am radiation and non-exposure (control). A total of approximately 50 insects per replication was released in the central region of an opaque white wooden barrier divided into 3 sections with the same area - 60.0 cm diameter and 7.5 cm height - covered with a nylon screen. 5 replications per treatment were made and the distribution of the insects was evaluated by photographs taken at 15, 30, 45, and 60 minutes after release. Sitophilus oryzae (l., 1763) and Ephestia cautella (Walker, 1864) showed some response to 241 Am gamma radiation, i.e. negative tactism. It was concluded that ionizing radiations can be detected by insects through direct visual stimulus or by visual stimulus reslting from interaction of radiation-Cerenkov radiation - with some other occular component with a refraction index greater than water. Also, the activity of the radioactive source with regard to perception for ionizing radiation, is of relevance in comparison with the energy of the radiation emitted by same, or in other words, what really matters is the radiation dose absorbed. (Author) [pt

  6. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert

    Directory of Open Access Journals (Sweden)

    Rakesh Mogul

    2017-10-01

    Full Text Available In this study, we expand upon the biogeography of biological soil crusts (BSCs and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%, Proteobacteria (26 ± 6%, and Chloroflexi (12 ± 4%, with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%, Actinobacteria (20 ± 5%, and Chloroflexi (18 ± 3%, with an unidentified genus from Chloroflexi (AKIW781, order being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439 and genus (p < 0.006 levels, including multiple biochemical and geochemical trends (p < 0.05, positively correlated with increasing BSC surface coverage. This included increases in (a Chloroflexi abundance, (b abundance and diversity of Cyanobacteria, (b OTU-level diversity in the topsoil, (c OTU-level differentiation between the topsoil and subsurface, (d intracellular ATP abundances and catalase activities, and (e enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.

  7. Microbial Community and Biochemical Dynamics of Biological Soil Crusts across a Gradient of Surface Coverage in the Central Mojave Desert.

    Science.gov (United States)

    Mogul, Rakesh; Vaishampayan, Parag; Bashir, Mina; McKay, Chris P; Schubert, Keith; Bornaccorsi, Rosalba; Gomez, Ernesto; Tharayil, Sneha; Payton, Geoffrey; Capra, Juliana; Andaya, Jessica; Bacon, Leonard; Bargoma, Emily; Black, David; Boos, Katie; Brant, Michaela; Chabot, Michael; Chau, Danny; Cisneros, Jessica; Chu, Geoff; Curnutt, Jane; DiMizio, Jessica; Engelbrecht, Christian; Gott, Caroline; Harnoto, Raechel; Hovanesian, Ruben; Johnson, Shane; Lavergne, Britne; Martinez, Gabriel; Mans, Paul; Morales, Ernesto; Oei, Alex; Peplow, Gary; Piaget, Ryan; Ponce, Nicole; Renteria, Eduardo; Rodriguez, Veronica; Rodriguez, Joseph; Santander, Monica; Sarmiento, Khamille; Scheppelmann, Allison; Schroter, Gavin; Sexton, Devan; Stephenson, Jenin; Symer, Kristin; Russo-Tait, Tatiane; Weigel, Bill; Wilhelm, Mary B

    2017-01-01

    In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum ( p < 0.0439) and genus ( p < 0.006) levels, including multiple biochemical and geochemical trends ( p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.

  8. ESR signals of irradiated insects

    International Nuclear Information System (INIS)

    Ukai, Mitsuko; Kameya, Hiromi; Imamura, Taro; Miyanoshita, Akihiro; Todoriki, Setsuko; Shimoyama, Yuhei

    2009-01-01

    Analysis of irradiated insects using Electron Spin Resonance (ESR) spectroscopy was reported. The insects were maize weevil, red flour beetle, Indian meal moth and cigarette beetle that are hazardous to crops. The ESR spectra were consisted of a singlet at g=2 and a sextet centered at the similar g-value. The singlet signal is due to an organic free radical. The sextet signal is attributable to the hyperfine interactions from Mn 2+ ions. Upon irradiation, new signals were not detected. The relaxation times, T 1 and T 2 , showed no variations before and after irradiation. (author)

  9. Social-insect fungus farming

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Boomsma, Jacobus Jan

    2006-01-01

    Which social insects rear their own food? Growing fungi for food has evolved twice in social insects: once in new-world ants about 50 million years ago; and once in old-world termites between 24 and 34 million years ago [1] and [2] . The termites domesticated a single fungal lineage - the extant...... basidiomycete genus Termitomyces - whereas the ants are associated with a larger diversity of fungal lineages (all basidiomycetes). The ants and termites forage for plant material to provision their fungus gardens. Their crops convert this carbon-rich plant material into nitrogen-rich fungal biomass to provide...

  10. Effects of two decades of rising sea surface temperatures on sublittoral macrobenthos communities in Northern Ireland, UK.

    Science.gov (United States)

    Goodwin, Claire E; Strain, Elisabeth M A; Edwards, Hugh; Bennett, Stephanie C; Breen, Joe P; Picton, Bernard E

    2013-04-01

    We examined whether two decades of rising sea surface temperatures have resulted in significant changes in the benthic community and frequency of occurrence of Northern and Southern species in three areas of Northern Ireland, using visual census data collected by SCUBA surveys undertaken during two periods: pre-1986 and post-2006. We found little evidence to suggest that rising sea surface temperatures have contributed to the changes in benthic assemblage structure between the pre-1986 and post-2006 surveys. However, there were slight but not significant declines in extreme Northern species at Rathlin Island, and increases in the mean number and frequency of occurrence of extreme Southern species in all three areas. There were also substantial declines in the spatial presence of 7 extreme Northern species and notable increases in distribution of 19 extreme Southern species. In contrast, there were no clear trends in the intermediate to Northern and intermediate to Southern species. These results suggest that rising sea surface temperatures have had significant impacts on the occurrence of rarer marine invertebrate species at the edges of their biogeographic range however the trends differed between areas in Northern Ireland. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Flying insects and Campylobacter

    DEFF Research Database (Denmark)

    Hald, Birthe; Sommer, Helle Mølgaard; Skovgård, Henrik

    organisms, which may collect on their bodies or survive passage through the fly gut. Campylobacter and other pathogens are then easily transferred to other surfaces, for instance peoples food – or to broiler houses where they may be swallowed by chickens or contaminate the environment. On a large material...... period was rather short, as even high doses of Campylobacter remained viable for less than 24 hours in flies, when they were incubated at temperatures from 20 ºC and higher. Lower temperatures are less- or irrelevant, as flies become slow or immobile below 15-20 ºC....

  12. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  13. Insects as a Nitrogen Source for Plants

    Science.gov (United States)

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  14. Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle.

    Science.gov (United States)

    Behie, Scott W; Bidochka, Michael J

    2014-03-01

    The study of symbiotic nitrogen transfer in soil has largely focused on nitrogen-fixing bacteria. Vascular plants can lose a substantial amount of their nitrogen through insect herbivory. Previously, we showed that plants were able to reacquire nitrogen from insects through a partnership with the endophytic, insect-pathogenic fungus Metarhizium robertsii. That is, the endophytic capability and insect pathogenicity of M. robertsii are coupled so that the fungus acts as a conduit to provide insect-derived nitrogen to plant hosts. Here, we assess the ubiquity of this nitrogen transfer in five Metarhizium species representing those with broad (M. robertsii, M. brunneum, and M. guizhouense) and narrower insect host ranges (M. acridum and M. flavoviride), as well as the insect-pathogenic fungi Beauveria bassiana and Lecanicillium lecanii. Insects were injected with (15)N-labeled nitrogen, and we tracked the incorporation of (15)N into two dicots, haricot bean (Phaseolus vulgaris) and soybean (Glycine max), and two monocots, switchgrass (Panicum virgatum) and wheat (Triticum aestivum), in the presence of these fungi in soil microcosms. All Metarhizium species and B. bassiana but not L. lecanii showed the capacity to transfer nitrogen to plants, although to various degrees. Endophytic association by these fungi increased overall plant productivity. We also showed that in the field, where microbial competition is potentially high, M. robertsii was able to transfer insect-derived nitrogen to plants. Metarhizium spp. and B. bassiana have a worldwide distribution with high soil abundance and may play an important role in the ecological cycling of insect nitrogen back to plant communities.

  15. Diversity of insect intestinal microflora

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Štrosová, Lenka; Fliegerová, Kateřina; Kott, T.; Kopečný, Jan

    2008-01-01

    Roč. 53, č. 3 (2008), s. 229-233 ISSN 0015-5632 R&D Projects: GA ČR GA303/06/0974 Institutional research plan: CEZ:AV0Z50450515 Keywords : insect intestinal microflora Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  16. Edible insects are the future?

    NARCIS (Netherlands)

    Huis, van Arnold

    2016-01-01

    The global increase in demand for meat and the limited land area available prompt the search for alternative protein sources. Also the sustainability of meat production has been questioned. Edible insects as an alternative protein source for human food and animal feed are interesting in terms of

  17. Insects and Diseases of Cottonwood

    Science.gov (United States)

    R.C. Morris; T.H. Filer; J.D. Solomon; Francis I. McCracken; N.A. Overgaard; M.J. Weiss

    1975-01-01

    Insects and disease organisms are a continuing threat to cottonwood (Populus deltoides Bartr.), especially during the tree's first 5 years. The danger is intensified in large plantings of a single species and age because rapid buildup of damaging agents can occur. This booklet, will help forest nurserymen and plantation managers identify and...

  18. Insect Detectives-Forensic Entomology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 8. Insect Detectives - Forensic Entomology. P K Sumodan. General Article Volume 7 Issue 8 August 2002 pp 51-58. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/007/08/0051-0058. Keywords.

  19. The Curious Connection Between Insects and Dreams

    Directory of Open Access Journals (Sweden)

    Barrett A. Klein

    2011-12-01

    Full Text Available A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives.

  20. The Curious Connection Between Insects and Dreams

    Science.gov (United States)

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psychiatry, and scientific study, then from fictional writings and popular culture, and finally in the etymology of entomology by highlighting insects with dream-inspired Latinate names. A wealth of insects in dreams, as documented clinically and culturally, attests to the perceived relevance of dreams and to the ubiquity of insects in our lives. PMID:26467945

  1. First Aid: Insect Stings and Bites

    Science.gov (United States)

    ... a known severe allergy to a stinging or biting insect injectable epinephrine (EpiPen) was used the site ... Insect Repellents With DEET Safe for Kids? Bug Bites and Stings Can I Use Bug Killers and Repellents During ...

  2. Trapping of insects in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pathak, S.C.; Parulekar, A.H.

    Some insects caught on RV Gaveshani, while on a cruise in the Arabian Sea in May-June 1986 is reported Of the 23 insects caught, 16 were lepidopterans An interesting flight behaviour of Psychota sp is described...

  3. Oviposition of aquatic insects in a tropical high altitude stream.

    Science.gov (United States)

    Rios-Touma, Blanca; Encalada, A C; Prat, N

    2012-12-01

    The persistence of aquatic insect populations in streams depends on the recruitment of larval populations from egg masses deposited by adults, especially after disturbance. However, recruitment of aquatic populations by oviposition is a process that remains unstudied in streams and rivers. The objectives of our study were to document flying and oviposition patterns of aquatic insects in a high altitude tropical stream during both dry and wet seasons. In particular we studied 1) richness and abundance of adult forms of aquatic insects flying and ovipositing; 2) number of eggs (oviposition pattern), egg mass identity, and morphology; and 3) substrate preferences by ovipositing females. We found 2,383 aquatic insects corresponding to 28 families, with dipterans representing 89% of total individuals collected. Adult insects had lower richness (28 taxa) than larval diversity (up to 52 taxa) and distinct community composition. Richness and relative abundance of most taxa (adults) were not significantly different between seasons, behaviors, diel period, or all three. During both sampling periods we found females with eggs in a total of 15 different families (13 in the dry season and 14 in the wet season). There were no significant differences in the proportion of females with eggs between seasons, diel periods, or different behaviors (flying versus ovipositing traps) of the different female taxa. Few types of egg masses were found in rocks at the stream during both seasons, and most egg masses found corresponded to families Baetidae and Chironomidae. Finally, we provide the first description of eggs masses (size, shape, color, and number of eggs per female) of gravid females (10 taxa) and those found in the stream substrate (six taxa) of Andean macroinvertebrates. This is the first study reporting oviposition, adult diversity, and oviposition patterns of aquatic insects in the Andean region.

  4. Buckling failures in insect exoskeletons.

    Science.gov (United States)

    Parle, Eoin; Herbaj, Simona; Sheils, Fiona; Larmon, Hannah; Taylor, David

    2015-12-17

    Thin walled tubes are often used for load-bearing structures, in nature and in engineering, because they offer good resistance to bending and torsion at relatively low weight. However, when loaded in bending they are prone to failure by buckling. It is difficult to predict the loading conditions which cause buckling, especially for tubes whose cross sections are not simple shapes. Insights into buckling prevention might be gained by studying this phenomenon in the exoskeletons of insects and other arthropods. We investigated the leg segments (tibiae) of five different insects: the locust (Schistocerca gergaria), American cockroach (Periplaneta americana), death's head cockroach (Blaberus discoidalis), stick insect (Parapachymorpha zomproi) and bumblebee (Bombus terrestris audax). These were tested to failure in cantilever bending and modelled using finite element analysis (FEA). The tibiae of the locust and the cockroaches were found to be approximately circular in shape. Their buckling loads were well predicted by linear elastic FEA, and also by one of the analytical solutions available in the literature for elastic buckling. The legs of the stick insect are also circular in cross section but have several prominent longitudinal ridges. We hypothesised that these ridges might protect the legs against buckling but we found that this was not the case: the loads necessary for elastic buckling were not reached in practice because yield occurred in the material, causing plastic buckling. The legs of bees have a non-circular cross section due to a pollen-carrying feature (the corbicula). We found that this did not significantly affect their resistance to buckling. Our results imply that buckling is the dominant failure mode in the tibia of insects; it likely to be a significant consideration for other arthropods and any organisms with stiff exoskeletons. The interactions displayed here between material properties and cross sectional geometry may provide insights for the

  5. Insect pests of stored grain products

    International Nuclear Information System (INIS)

    Chuaqui-Offermanns, N.

    1987-01-01

    The presence of insects in stored products is a worldwide recognized problem. In this report chemical and physical methods to control insect infestations in stored products are discussed. Special attention is given to the use of ionizing radiation to control insect pests in stored grains. The radiosensitivity of the most common insect pests at their different developmental stages is presented and discussed. The conclusions of this review are compiled in an executive summary. 62 refs

  6. Beneficial interactions between insects and gut bacteria

    OpenAIRE

    Rajagopal, R.

    2009-01-01

    Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populatio...

  7. Radioisotopes and food preservation against insects

    International Nuclear Information System (INIS)

    Hachem Ahmad, M.S.

    1998-01-01

    The book describes how to preserve food from harmful insects by using radioisotopes. It focusses on the impact of ionized radiation on the different stages of insect growth and on its metabolism and immunity. It also discusses the relationship between radiation doses and insect reproduction. It explains the various methods to detect the irradiated foods

  8. How Insects Survive Winter in the Midwest

    Science.gov (United States)

    Understanding how insects cope with cold temperatures can not only help entomologists more accurately forecast when and where insects are active, but it may also help us understand how climate change will influence insect pests. This newsletter article provides a comprehensive overview of how Midwes...

  9. Seed and Cone Insects of Southern Pines

    Science.gov (United States)

    Southeastern Forest Experiment Station

    1980-01-01

    Distribution maps are included for all insect species, providing at a glance each insect's expected southern distribution. Knowledge of some distributions is incomplete. Accordingly, the range maps should be used as general rather than absolute guides.Insect species and their pine hosts are tabulated for each of the three damage...

  10. 21 CFR 1250.95 - Insect control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Insect control. 1250.95 Section 1250.95 Food and... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.95 Insect control. Vessels shall be maintained free of infestation by flies, mosquitoes, fleas, lice, and other insects known to be vectors in...

  11. Genetics of insect resistance to plant defence

    NARCIS (Netherlands)

    Vermeer, K.M.C.A.

    2014-01-01

    Plants are chemically defended against insect herbivory in various ways. They produce a broad range of secondary metabolites that may be toxic or deterrent to insects. Specialist insects, however, are often capable of overcoming these defences. The yellow striped flea beetle

  12. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  13. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

    Science.gov (United States)

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-09-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    Science.gov (United States)

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  15. Age and activation of microbial communities in soils under burial mounds and in recent surface soils of steppe zone

    Science.gov (United States)

    Demkina, T. S.; Khomutova, T. E.; Kashirskaya, N. N.; Demkina, E. V.; Stretovich, I. V.; El-Registan, G. I.; Demkin, V. A.

    2008-12-01

    Chestnut paleosols buried under steppe kurgans about 4800, 4000, and 2000 years ago and their background analogues were studied in the dry steppe zone on the Volga-Don interfluve. Morphological, chemical, microbiological, biochemical, and radiocarbon studies were performed. Paleoclimatic conditions in the region were reconstructed on the basis of paleosol data. The ages of microbial fractions isolated from the buried and surface soils were determined using the method of 14C atomic mass-spectrometry. It reached 2100 years in the A1 horizon of the buried paleosol, which corresponded to the archaeological age of the kurgan (1st century AD). The ages of microbial biomass isolated from the B2 horizons of the buried paleosol and the background surface soil comprised 3680 ± 35 and 3300 ± 30 years, respectively. The obtained data confirmed our assumption about preservation of microorganisms of the past epochs in the paleosols buried under archaeological monuments. It is ensured by various mechanisms of adaptation of soil microbial communities to unfavorable environmental conditions (anabiosis, transformation of bacteria into nanoforms, etc.). The possibility to stimulate germination of the ancient dormant microbial pool isolated from the buried paleosols by 2-3 orders of magnitude with the use of β-indolyl-3-acetic acid as a signal substance was demonstrated.

  16. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse

    Science.gov (United States)

    Zuccato, Ettore; Chiabrando, Chiara; Castiglioni, Sara; Calamari, Davide; Bagnati, Renzo; Schiarea, Silvia; Fanelli, Roberto

    2005-01-01

    Background Cocaine use seems to be increasing in some urban areas worldwide, but it is not straightforward to determine the real extent of this phenomenon. Trends in drug abuse are currently estimated indirectly, mainly by large-scale social, medical, and crime statistics that may be biased or too generic. We thus tested a more direct approach based on 'field' evidence of cocaine use by the general population. Methods Cocaine and its main urinary metabolite (benzoylecgonine, BE) were measured by mass spectrometry in water samples collected from the River Po and urban waste water treatment plants of medium-size Italian cities. Drug concentration, water flow rate, and population at each site were used to estimate local cocaine consumption. Results We showed that cocaine and BE are present, and measurable, in surface waters of populated areas. The largest Italian river, the Po, with a five-million people catchment basin, steadily carried the equivalent of about 4 kg cocaine per day. This would imply an average daily use of at least 27 ± 5 doses (100 mg each) for every 1000 young adults, an estimate that greatly exceeds official national figures. Data from waste water treatment plants serving medium-size Italian cities were consistent with this figure. Conclusion This paper shows for the first time that an illicit drug, cocaine, is present in the aquatic environment, namely untreated urban waste water and a major river. We used environmental cocaine levels for estimating collective consumption of the drug, an approach with the unique potential ability to monitor local drug abuse trends in real time, while preserving the anonymity of individuals. The method tested here – in principle extendable to other drugs of abuse – might be further refined to become a standardized, objective tool for monitoring drug abuse. PMID:16083497

  17. Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse

    Directory of Open Access Journals (Sweden)

    Bagnati Renzo

    2005-08-01

    Full Text Available Abstract Background Cocaine use seems to be increasing in some urban areas worldwide, but it is not straightforward to determine the real extent of this phenomenon. Trends in drug abuse are currently estimated indirectly, mainly by large-scale social, medical, and crime statistics that may be biased or too generic. We thus tested a more direct approach based on 'field' evidence of cocaine use by the general population. Methods Cocaine and its main urinary metabolite (benzoylecgonine, BE were measured by mass spectrometry in water samples collected from the River Po and urban waste water treatment plants of medium-size Italian cities. Drug concentration, water flow rate, and population at each site were used to estimate local cocaine consumption. Results We showed that cocaine and BE are present, and measurable, in surface waters of populated areas. The largest Italian river, the Po, with a five-million people catchment basin, steadily carried the equivalent of about 4 kg cocaine per day. This would imply an average daily use of at least 27 ± 5 doses (100 mg each for every 1000 young adults, an estimate that greatly exceeds official national figures. Data from waste water treatment plants serving medium-size Italian cities were consistent with this figure. Conclusion This paper shows for the first time that an illicit drug, cocaine, is present in the aquatic environment, namely untreated urban waste water and a major river. We used environmental cocaine levels for estimating collective consumption of the drug, an approach with the unique potential ability to monitor local drug abuse trends in real time, while preserving the anonymity of individuals. The method tested here – in principle extendable to other drugs of abuse – might be further refined to become a standardized, objective tool for monitoring drug abuse.

  18. Exploring the Influence of Differentiated Nutrition Information on Consumers' Mental Models Regarding Foods from Edible Insects: A Means-End Chain Analysis.

    Science.gov (United States)

    Pambo, Kennedy O; Okello, Julius J; Mbeche, Robert M; Kinyuru, John N

    2017-01-01

    This study used a field experiment and means-end chain analysis to examine the effects of positive and perceived negative nutrition information on the households' motivations to consume insect-based foods. It used a random sample of households drawn from rural communities in Kenya. The study found that provision of nutrition information on benefits of edible insects and perceived negative aspects of insect-based foods influences participants' perceptions of insect-based foods and hence acceptance. We also found that tasting real products influenced the nature of mental constructs. The results provide marketers of edible insects with potential marketing messages for promotion.

  19. The Curious Connection Between Insects and Dreams

    OpenAIRE

    Klein, Barrett A.

    2011-01-01

    A majority of humans spend their waking hours surrounded by insects, so it should be no surprise that insects also appear in humans’ dreams as we sleep. Dreaming about insects has a peculiar history, marked by our desire to explain a dream’s significance and by the tactic of evoking emotions by injecting insects in dream-related works of art, film, music, and literature. I surveyed a scattered literature for examples of insects in dreams, first from the practices of dream interpretation, psyc...

  20. Insect diversity in the fossil record

    Science.gov (United States)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  1. Public infrastructure disparities and the microbiological and chemical safety of drinking and surface water supplies in a community bordering a landfill.

    Science.gov (United States)

    Heaney, Christopher D; Wing, Steve; Wilson, Sacoby M; Campbell, Robert L; Caldwell, David; Hopkins, Barbara; O'Shea, Shannon; Yeatts, Karin

    2013-06-01

    The historically African-American Rogers-Eubanks community straddles unincorporated boundaries of two municipalities in Orange County, North Carolina, and predates a regional landfill sited along its border in 1972. Community members from the Rogers-Eubanks Neighborhood Association (RENA), concerned about deterioration of private wells and septic systems and a lack of public drinking water and sewer services, implemented a community-driven research partnership with university scientists and community-based organizations to investigate water and sewer infrastructure disparities and the safety of drinking and surface water supplies. RENA drafted memoranda of agreement with partners and trained community monitors to collect data (inventory households, map water and sewer infrastructure, administer household water and sewer infrastructure surveys, and collect drinking and surface water samples). Respondents to the surveys reported pervasive signs of well vulnerability (100%) and septic system failure (68%). Each 100-m increase in distance from the landfill was associated with a 600 most probable number/100 mL decrease in enterococci concentrations in surface water (95% confidence interval = -1106, -93). Pervasive private household water and sewer infrastructure failures and poor water quality were identified in this community bordering a regional landfill, providing evidence of a need for improved water and sanitation services.

  2. Wolbachia and DNA barcoding insects: patterns, potential, and problems.

    Directory of Open Access Journals (Sweden)

    M Alex Smith

    Full Text Available Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein--wsp, and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts for endosymbionts is one of the ancillary benefits of such a large scale endeavor--which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region.

  3. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    Science.gov (United States)

    Smith, M. Alex; Bertrand, Claudia; Crosby, Kate; Eveleigh, Eldon S.; Fernandez-Triana, Jose; Fisher, Brian L.; Gibbs, Jason; Hajibabaei, Mehrdad; Hallwachs, Winnie; Hind, Katharine; Hrcek, Jan; Huang, Da-Wei; Janda, Milan; Janzen, Daniel H.; Li, Yanwei; Miller, Scott E.; Packer, Laurence; Quicke, Donald; Ratnasingham, Sujeevan; Rodriguez, Josephine; Rougerie, Rodolphe; Shaw, Mark R.; Sheffield, Cory; Stahlhut, Julie K.; Steinke, Dirk; Whitfield, James; Wood, Monty; Zhou, Xin

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region. PMID:22567162

  4. Low beta diversity of herbivorous insects in tropical forests.

    Science.gov (United States)

    Novotny, Vojtech; Miller, Scott E; Hulcr, Jiri; Drew, Richard A I; Basset, Yves; Janda, Milan; Setliff, Gregory P; Darrow, Karolyn; Stewart, Alan J A; Auga, John; Isua, Brus; Molem, Kenneth; Manumbor, Markus; Tamtiai, Elvis; Mogia, Martin; Weiblen, George D

    2007-08-09

    Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.

  5. Insects used for animal feed in West Africa

    Directory of Open Access Journals (Sweden)

    M. Kenis

    2014-10-01

    Full Text Available In West Africa, as in many parts of the world, livestock and fish farming suffer from the increasing cost of feed, especially protein ingredients, which are hardly available for village poultry farming and small-scale fish farming. Insects, which are a natural food source of poultry and fish and are rich in protein and other valuable nutrients, can be used to improve animal diets, a practice which is now strongly promoted by the FAO as a tool for poverty alleviation. This paper reviews practices and research on the use of insects as animal feed in West Africa and the perspectives to further develop the techniques, in particular for smallholder farmers and fish farmers. The most promising insects are flies, especially the house fly (Musca domestica (Diptera Muscidae and the black soldier fly (Hermetia illucens (Diptera Stratiomyiidae, which can be mass reared on-farm for domestic use, in small production units at the community or industrial level. Flies have the advantage over most other insects of developing on freely available waste material and could even contribute to rural sanitation. Termites are traditionally used by smallholder farmers to feed village poultry. While their mass production is problematic, methods to enhance populations on-farm and facilitate collection can be developed. In any case, new methods will need to demonstrate their economic profitability, social acceptability and environmental sustainability

  6. Estimating benthic secondary production from aquatic insect emergence in streams affected by mountaintop removal coal mining, West Virginia USA

    Science.gov (United States)

    Mountaintop removal and valley fill (MTR/VF) coal mining recountours the Appalachian landscape, buries headwater stream channels, and degrades downstream water quality. The goal of this study was to compare benthic community production estimates, based on seasonal insect emergen...

  7. Herbivorous insect response to group selection cutting in a southeastern bottomland hardwood forest.

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Ulyshen; James L. Hanula; Scott Horn; Christopher E. Moorman.

    2005-04-01

    ABSTRACT Malaise and pitfall traps were used to sample herbivorous insects in canopy gaps created by group-selection cutting in a bottomland hardwood forest in South Carolina. The traps were placed at the centers, edges, and in the forest adjacent to gaps of different sizes (0.13, 0.26, and 0.50 ha) and ages (1 and 7 yr old) during four sampling periods in 2001. Overall, the abundance and species richness of insect herbivores were greater at the centers of young gaps than at the edge of young gaps or in the forest surrounding young gaps. There were no differences in abundance or species richness among old gap locations (i.e., centers, edges, and forest), and we collected significantly more insects in young gaps than old gaps. The insect communities in old gaps were more similar to the forests surrounding them than young gap communities were to their respective forest locations, but the insect communities in the two forests locations (surrounding young and old gaps) had the highest percent similarity of all. Although both abundance and richness increased in the centers of young gaps with increasing gap size, these differences were not significant.Weattribute the increased numbers of herbivorous insects to the greater abundance of herbaceous plants available in young gaps.

  8. Newly discovered insect RNA viruses in China.

    Science.gov (United States)

    Qiu, Yang; Wang, ZhaoWei; Liu, YongXiang; Qi, Nan; Si, Jie; Xiang, Xue; Xia, XiaoLing; Hu, YuanYang; Zhou, Xi

    2013-08-01

    Insects are a group of arthropods and the largest group of animals on Earth, with over one million species described to date. Like other life forms, insects suffer from viruses that cause disease and death. Viruses that are pathogenic to beneficial insects cause dramatic economic losses on agriculture. In contrast, viruses that are pathogenic to insect pests can be exploited as attractive biological control agents. All of these factors have led to an explosion in the amount of research into insect viruses in recent years, generating impressive quantities of information on the molecular and cellular biology of these viruses. Due to the wide variety of insect viruses, a better understanding of these viruses will expand our overall knowledge of their virology. Here, we review studies of several newly discovered RNA insect viruses in China.

  9. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Odorant Receptor Desensitization in Insects

    Directory of Open Access Journals (Sweden)

    Hao Guo

    2017-12-01

    Full Text Available Insects and other arthropods transmit devastating human diseases, and these vectors use chemical senses to target humans. Understanding how these animals detect, respond, and adapt to volatile odorants may lead to novel ways to disrupt host localization or mate recognition in these pests. The past decade has led to remarkable progress in understanding odorant detection in arthropods. Insects use odorant-gated ion channels, first discovered in Drosophila melanogaster , to detect volatile chemicals. In flies, 60 “tuning” receptor subunits combine with a common subunit, Orco ( o dorant r eceptor co receptor to form ligand-gated ion channels. The mechanisms underlying odorant receptor desensitization in insects are largely unknown. Recent work reveals that dephosphorylation of serine 289 on the shared Orco subunit is responsible for slow, odor-induced receptor desensitization. Dephosphorylation has no effect on the localization of the receptor protein, and activation of the olfactory neurons in the absence of odor is sufficient to induce dephosphorylation and desensitization. These findings reveal a major component of receptor modulation in this important group of disease vectors, and implicate a second messenger feedback mechanism in this process.

  11. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  12. The Importance of Insects in Energy Transfers Across Riparian Ecotones Along Hong Kong Streams

    Science.gov (United States)

    Chan, E. K.; Dudgeon, D.

    2005-05-01

    Energy and materials in the form of insects transfer reciprocally between land and water through stream riparian ecotones, and may provide important energy subsidies to aquatic and terrestrial consumers. Variation in the magnitude and extent of this transfer was investigated in 2004-05 in six Hong Kong streams: four shaded and two unshaded. A combination of pan traps and light traps were used to investigate seasonal activity of aquatic and terrestrial insects. Both were more abundant during the wet season (April to September). Over 80% of emerging aquatic insects stayed within 20 m of the stream bank at all sites, suggesting that the water to land subsidy was spatially restricted. Inputs of terrestrial insects into shaded streams were 30% greater than at open sites, and drift-feeding Parazacco spilurus (Cyprinidae) ate more terrestrial insects in shaded (>40% of prey) than unshaded streams (25% of prey). Stable isotope analysis (SIA; C & N) of potential prey and fish tissues confirmed the dietary importance of terrestrial insects. The spider Leucauge celebesiana (Tetragnathidae) builds orb web parallel to the water surface during the main period of aquatic insect emergence, and SIA indicated that aquatic insects were the primary prey of this terrestrial consumer.

  13. Hypoxia and hypercarbia in endophagous insects: Larval position in the plant gas exchange network is key.

    Science.gov (United States)

    Pincebourde, Sylvain; Casas, Jérôme

    2016-01-01

    Gas composition is an important component of any micro-environment. Insects, as the vast majority of living organisms, depend on O2 and CO2 concentrations in the air they breathe. Low O2 (hypoxia), and high CO2 (hypercarbia) levels can have a dramatic effect. For phytophagous insects that live within plant tissues (endophagous lifestyle), gas is exchanged between ambient air and the atmosphere within the insect habitat. The insect larva contributes to the modification of this environment by expiring CO2. Yet, knowledge on the gas exchange network in endophagous insects remains sparse. Our study identified mechanisms that modulate gas composition in the habitat of endophagous insects. Our aim was to show that the mere position of the insect larva within plant tissues could be used as a proxy for estimating risk of occurrence of hypoxia and hypercarbia, despite the widely diverse life history traits of these organisms. We developed a conceptual framework for a gas diffusion network determining gas composition in endophagous insect habitats. We applied this framework to mines, galls and insect tunnels (borers) by integrating the numerous obstacles along O2 and CO2 pathways. The nature and the direction of gas transfers depended on the physical structure of the insect habitat, the photosynthesis activity as well as stomatal behavior in plant tissues. We identified the insect larva position within the gas diffusion network as a predictor of risk exposure to hypoxia and hypercarbia. We ranked endophagous insect habitats in terms of risk of exposure to hypoxia and/or hypercarbia, from the more to the less risky as cambium mines>borer tunnels≫galls>bark mines>mines in aquatic plants>upper and lower surface mines. Furthermore, we showed that the photosynthetically active tissues likely assimilate larval CO2 produced. In addition, temperature of the microhabitat and atmospheric CO2 alter gas composition in the insect habitat. We predict that (i) hypoxia indirectly favors

  14. Fabrication of corrugated artificial insect wings using laser micromachined molds

    International Nuclear Information System (INIS)

    Tanaka, Hiroto; Wood, Robert J

    2010-01-01

    This paper describes the fabrication of an artificial insect wing with a rich set of topological features by micromolding a thermosetting resin. An example 12 mm long hoverfly-like wing is fabricated with 50–125 µm vein heights and 100 µm corrugation heights. The solid veins and membrane were simultaneously formed and integrated by a single molding process. Employing a layered laser ablation technique, three-dimensional molds were created with 5 µm resolution in height. Safe demolding of the wing was achieved with a water-soluble sacrificial layer on the mold. Measured surface profiles of the wing matched those of the molds, demonstrating the high replication accuracy of this molding process. Using this process, the morphological features of insect wings can be replicated at-scale with high precision, enabling parametric experiments of the functional morphology of insect wings. This fabrication capability also makes it possible to create a variety of wing types for micro air vehicles on scales similar to insects.

  15. Microbial communities on glacier surfaces in Svalbard: the impact of physical and chemical properties on abundance and structure of cyanobacteria and algae

    Czech Academy of Sciences Publication Activity Database

    Stibal, Marek; Šabacká, Marie; Kaštovská, Klára

    2006-01-01

    Roč. 52, č. 4 (2006), s. 644-654 ISSN 0095-3628 R&D Projects: GA AV ČR KJB6005409 Institutional research plan: CEZ:AV0Z60050516 Keywords : Microbial community * Svalbard * glacier surface Subject RIV: EF - Botanics Impact factor: 2.332, year: 2006

  16. Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Lauridsen, T. L.

    2003-01-01

    To elucidate the possibilities of using zooplankton remains in the surface sediment to describe present-days community structure and population dynamics of zooplankton, fish abundance and temperature, we compared contemporary data sampled in the pelagial during summer with the sediment record fro...

  17. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations.

    Science.gov (United States)

    Arroyo-López, F N; Bautista-Gallego, J; Domínguez-Manzano, J; Romero-Gil, V; Rodriguez-Gómez, F; García-García, P; Garrido-Fernández, A; Jiménez-Díaz, R

    2012-12-01

    This work examines the formation of poly-microbial communities adhered to the surface of Manzanilla olive fruits processed according to the Spanish style. The experimental design consisted of four pilot fermenters inoculated with four Lactobacillus pentosus strains, plus another fermenter which was not inoculated and fermented spontaneously. Lactic acid bacteria and yeasts were analysed in depth on olive epidermis throughout fermentation by plate count, molecular techniques and scanning electron microscopy. Data show that in all cases high population levels (above 8 log(10) CFU per olive) were reached for both groups of microorganisms at the second week of fermentation and that these counts never fell below 6 log(10) CFU per olive during the 3 months that fermenters were monitored. In situ observation of olive epidermis slices revealed a strong aggregation and adhesion between bacteria and yeasts by the formation of a matrix which embedded the microorganisms. Geotrichum candidum, Pichia galeiformis and Candida sorbosa were the main yeast species isolated from these biofilms at the end of fermentation (confirmed by RFLP analysis of the 5.8S-ITS region), while molecular characterization of lactobacilli isolates by means of RAPD-PCR with primer OPL(5) showed in many cases a high similarity in their banding profiles with the inoculated strains. Results obtained in this survey show the importance of studying the olive epidermis throughout fermentation, because ultimately, olives are ingested by consumers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. RELEVANCE OF OCULAR SURFACE DISEASE INDEX (OSDI QUESTIONNAIRE IN MINIMISING OPTIC NERVE DAMAGE AMONG GLAUCOMA POPULATION IN THE COMMUNITY

    Directory of Open Access Journals (Sweden)

    Subhra Sarkar

    2017-11-01

    Full Text Available BACKGROUND Glaucoma is one of the leading causes of blindness worldwide. Majority of these patients need lifelong medical therapy in the form of topical medications. Most of these medications contain preservatives, which have deleterious effects on eyes of patients causing Ocular Surface Disorder (OSD. When left undiagnosed, OSD can lead to noncompliance further deteriorating the situation and causing progression of glaucoma. Dry eye symptoms in glaucoma patients under topical medications can be ascertained with a simple 12-query OSDI (ocular surface disease index questionnaire. But, it needs to be assessed whether this can be relied on to establish a clinical diagnosis. The aim of the study is to correlate subjective OSDI scores with objective clinical findings in glaucoma patients using topical medications. MATERIALS AND METHODS 110 patients of primary open-angle glaucoma on antiglaucoma medications for >3 months underwent OSDI scoring and three clinical tests, Tear Film Break-Up Time (TBUT, Schirmer-1 Test and Lissamine-Green (LG staining of ocular surface. A clinical diagnosis of dry eye was considered if either eye showed TBUT <10 seconds or on Schirmer-1 test <10 mm or positive LG staining. Statistical analysis was done to know the correlation between OSDI scores and clinical diagnosis. Setting and Design- Prospective, single visit, comparative study carried in a tertiary care hospital. RESULTS 44 patients (40% had OSDI scores ≥13 indicating dry eye disease. 54 patients (49.1% had TBUT <10 seconds, 41 patients (37.27% had Schirmer-1 test <10 mm and 18 patients (16.36% had positive Lissamine-Green staining. So, dry eye was diagnosed in 54 patients (49.1%. We found that OSDI scores have a sensitivity of 81.48% and specificity of 100% in diagnosing dry eye. On Chi-square test, OSDI scores and diagnosis of dry eye have statistically significant correlation (p value <0.0001. CONCLUSION In our study, OSDI scores significantly correlates with

  19. Effect of rice husk biochar application to soil insect diversity on potato cultivation

    Science.gov (United States)

    Meilin, A.; Rubiana, R.

    2018-02-01

    High intensity of disease infection and the intensive use of fertilizers and pesticidescause saturated fertilizer and pesticide to the land. Remediation using biochar rice husk is one of the technology to decrease fertilizer and pesticide residue. The diversity of soil insects can be used as bioindicators because of their existence dependsg on soil structure and condition. This study was aimed to study the diversity and structure communities of soil insect in potatoes on difference husk rice biochar application. The sampling of soil insects was done on potato farmer’s land with four treatments i.e control (farmers’ technique), trichokompos without biochar, trichokompos + biochar with dose 1 ton/ha, and trichokompos + biochar with dose 2 ton / ha. At each point a single pitfall trap was installed for two nights and then it was taken for identification. The results showed that biochar application had significant effect on the number of soil insect species (P = 0.037). The soil insect species composition pattern also showed significant differences between the four treatments (R: 0.2306, Pvalue = 0.001). This mean that the application of biochar affects the number of insects species and plays a role in the formation of soil insect diversity beta patterns.

  20. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology.

    Science.gov (United States)

    Barah, Pankaj; Bones, Atle M

    2015-02-01

    The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene

    DEFF Research Database (Denmark)

    Bowman, Jeff S.; Rasmussen, Simon; Blom, Nikolaj

    2011-01-01

    community in MYI at two sites near the geographic North Pole using parallel tag sequencing of the 16S rRNA gene. Although the composition of the MYI microbial community has been characterized by previous studies, microbial community structure has not been. Although richness was lower in MYI than...

  2. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  3. Breeding and maintaining high-quality insects

    DEFF Research Database (Denmark)

    Jensen, Kim; Kristensen, Torsten Nygård; Heckmann, Lars-Henrik

    2017-01-01

    Insects have a large potential for sustainably enhancing global food and feed production, and commercial insect production is a rising industry of high economic value. Insects suitable for production typically have fast growth, short generation time, efficient nutrient utilization, high...... reproductive potential, and thrive at high density. Insects may cost-efficiently convert agricultural and industrial food by-products into valuable protein once the technology is finetuned. However, since insect mass production is a new industry, the technology needed to efficiently farm these animals is still...... in a starting phase. Here, we discuss the challenges and precautions that need to be considered when breeding and maintaining high-quality insect populations for food and feed. This involves techniques typically used in domestic animal breeding programs including maintaining genetically healthy populations...

  4. Primary health clinic toilet/bathroom surface swab sampling can indicate community profile of sexually transmitted infections

    Directory of Open Access Journals (Sweden)

    Philip M. Giffard

    2017-06-01

    Full Text Available Background The microbiome of built environment surfaces is impacted by the presence of humans. In this study, we tested the hypothesis that analysis of surface swabs from clinic toilet/bathroom yields results correlated with sexually transmitted infection (STI notifications from corresponding human populations. We extended a previously reported study in which surfaces in toilet/bathroom facilities in primary health clinics in the Australian Northern Territory (NT were swabbed then tested for nucleic acid from the STI agents Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis. This was in the context of assessing the potential for such nucleic acid to contaminate specimens collected in such facilities. STIs are notifiable in the NT, thus allowing comparison of swab and notification data. Methods An assumption in the design was that while absolute built environment loads of STI nucleic acids will be a function of patient traffic density and facility cleaning protocols, the relative loads of STI nucleic acids from different species will be largely unaffected by these processes. Another assumption was that the proportion of swabs testing positive for STIs provides a measure of surface contamination. Accordingly, “STI profiles” were calculated. These were the proportions that each of the three STIs of interest contributed to the summed STI positive swabs or notifications. Three comparisons were performed, using swab data from clinics in remote Indigenous communities, clinics in small-medium towns, and a single urban sexual health clinic. These data were compared with time and place-matched STI notifications. Results There were significant correlations between swab and notifications data for the both the remote Indigenous and regional data. For the remote Indigenous clinics the p values ranged from 0.041 to 0.0089, depending on data transformation and p value inference method. Further, the swab data appeared to strongly indicate

  5. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  6. Impacts of urbanization process on insect diversity

    OpenAIRE

    Shuisong Ye; Yan Fang; Kai Li

    2013-01-01

    Rapid worldwide urbanization during the last century has led to more than half the world’s population living in urban regions. Studies of how urbanization affects insect diversity have focused on the following: insect abundance, distribution, extinction, food habits and ecosystem services. Native insect populations have declined greatly in urban areas, where studies of their spatial distribution have revealed that abundance decreases along what is termed the rural–city center gradient (RCG), ...

  7. The Evolution of Agriculture in Insects

    DEFF Research Database (Denmark)

    Mueller, Ulrich G.; Gerardo, Nicole M.; Aanen, Duur Kornelis

    2005-01-01

    Agriculture has evolved independently in three insect orders: once in ants, once in termites, and seven times in ambrosia beetles. Although these insect farmers are in some ways quite different from each other, in many more ways they are remarkably similar, suggesting convergent evolution. All...... domestication in the context of coevolving and codomesticated microbial consortia may explain the 50-million year old agricultural success of insect farmers....

  8. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site.

    Science.gov (United States)

    Tan, Gui-Liang; Shu, Wen-Sheng; Zhou, Wen-Hua; Li, Xiang-Li; Lan, Chong-Yu; Huang, Li-Nan

    2009-11-01

    This study examined the microbial community in an acidic stream draining across the Yun-Fu pyrite mine (Guangdong, China), where extremely acidic mine water is a persistent feature due to the intensive surface mining activities. Analysis of terminal restriction fragment length polymorphism (TRFLP) of 16S rRNA gene sequences showed that microbial populations varied spatially and seasonally and correlated with geochemical and physical conditions. After the stream moves from underground to the surface, the microbial community in the acidic water rapidly evolves into a distinct community close to that in the downstream storage pond. Comparisons of TRFLP peaks with sequenced clone libraries indicated that bacteria related to the recently isolated iron-oxidizer Ferrovum myxofaciens dominated the acidophilic community throughout the year except for the samples collected in spring from the storage pond, where Ferroplasma acidiphilum-like archaea represented the most abundant group. Acidithiobacillus ferrooxidans-affiliated organisms increased along the acid stream and remained common over the year, whereas Leptospirillum ferrooxidans-like bacteria were negligible or even not detected in the analyzed samples. The data indicate that changes in environmental conditions are accompanied by significant shifts in community structure of the prokaryotic assemblages at this opencast mining site.

  10. Predicting the potential establishment of two insect species using the simulation environment INSIM (INsect SIMulation)

    NARCIS (Netherlands)

    Hemerik, Lia; Nes, van Egbert H.

    2016-01-01

    Degree-day models have long been used to predict events in the life cycle of insects and therewith the timing of outbreaks of insect pests and their natural enemies. This approach assumes, however, that the effect of temperature is linear, whereas developmental rates of insects are non-linearly

  11. Seasonal bat activity related to insect emergence at three temperate lakes.

    Science.gov (United States)

    Salvarina, Ioanna; Gravier, Dorian; Rothhaupt, Karl-Otto

    2018-04-01

    Knowledge of aquatic food resources entering terrestrial systems is important for food web studies and conservation planning. Bats, among other terrestrial consumers, often profit from aquatic insect emergence and their activity might be closely related to such events. However, there is a lack of studies which monitor bat activity simultaneously with aquatic insect emergence, especially from lakes. Thus, our aim was to understand the relationship between insect emergence and bat activity, and investigate whether there is a general spatial or seasonal pattern at lakeshores. We assessed whole-night bat activity using acoustic monitoring and caught emerging and aerial flying insects at three different lakes through three seasons. We predicted that insect availability and seasonality explain the variation in bat activity, independent of the lake size and characteristics. Spatial (between lakes) differences of bat activity were stronger than temporal (seasonal) differences. Bat activity did not always correlate to insect emergence, probably because other factors, such as habitat characteristics, or bats' energy requirements, play an important role as well. Aerial flying insects explained bat activity better than the emerged aquatic insects in the lake with lowest insect emergence. Bats were active throughout the night with some activity peaks, and the pattern of their activity also differed among lakes and seasons. Lakes are important habitats for bats, as they support diverse bat communities and activity throughout the night and the year when bats are active. Our study highlights that there are spatial and temporal differences in bat activity and its hourly nocturnal pattern, that should be considered when investigating aquatic-terrestrial interactions or designing conservation and monitoring plans.

  12. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    Science.gov (United States)

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  13. Analysis of potential risks from the bacterial communities associated with air-contact surfaces from tilapia (Oreochromis niloticus) fish farming.

    Science.gov (United States)

    Grande Burgos, Maria Jose; Romero, Jose Luis; Pérez Pulido, Rubén; Cobo Molinos, Antonio; Gálvez, Antonio; Lucas, Rosario

    2018-01-01

    Tilapia farming is a promising growing sector in aquaculture. Yet, there are limited studies on microbiological risks associated to tilapia farms. The aim of the present study was to analyse the bacterial communities from solid surfaces in contact with air in a tilapia farm in order to evaluate the presence of bacteria potentially toxinogenic or pathogenic to humans or animals. Samples from a local tilapia farm (tank wall, aerator, water outlets, sink and floor) were analyzed by high throughput sequencing technology. Sequences were assigned to operational taxonomic units (OTUs). Proteobacteria was the main phylum represented in most samples (except for one). Cyanobacteria were a relevant phylum in the inner wall from the fattening tank and the wet floor by the pre-fattening tank. Bacteroidetes were the second phylum in relative abundance for samples from the larval rearing tank and the pre-fattening tank and one sample from the fattening tank. Fusobacteria showed highest relative abundances in samples from the larval rearing tank and pre-fattening tank. Other phyla (Verrucomicrobia, Actinobacteria, Firmicutes, Planktomycetes, Acidobacteria, Chloroflexi, Chlorobi, Gemmatiomonadetes or Fibrobacters) had lower relative abundances. A large fraction of the reads (ranging from 43.67% to 72.25%) were assigned to uncultured bacteria. Genus Acinetobacter (mainly A. calcoaceticus/baumanni) was the predominant OTU in the aerator of the fattening tank and also in the nearby sink on the floor. The genera Cetobacterium and Bacteroides showed highest relative abundances in the samples from the larval rearing tank and the pre-fattening tank. Genera including fish pathogens (Fusobacterium, Aeromonas) were only detected at low relative abundances. Potential human pathogens other than Acinetobacter were either not detected or had very low relative abundances (< 0.01%). The results of the study suggest that the main risk factors to be monitored in tilapia farm are putative human

  14. Local community opinions regarding the socio-environmental aspects of lignite surface mining: Experiences from central Poland

    International Nuclear Information System (INIS)

    Badera, Jarosław; Kocoń, Paweł

    2014-01-01

    Surface lignite mining covers large areas and usually generates social conflicts which pose one of several energy security threats to certain states. Therefore, defining the social conditions determines the success of a mining project. Two communes were chosen for a public opinion study: Kleszczów, where the Bełchatów mine is located, and Złoczew, where a lignite deposit will soon be developed. The analysis shows, as opposed to other areas in Poland that have been projected for development, that both local communities are characterised by a high level of acceptance for lignite mining. In both cases, awareness about the profits was stronger than anxiety about the investment's negative effects. However, most inhabitants could not assess the mining company's diligence concerning its responsibility for mining damages as well as the diligence of external experts assessing the environmental impacts of excavation. Most respondents also could not assess if the legal regulations of public participation in the decision process were sufficient, but the negative opinions outweighed the positive ones. From the perspective of the energy policy, dialogue-type social communication is needed for every case of a new energy-mining project. Research on local public opinion should be the first step to opening up a social debate. - Highlights: • Lignite mining can generate social conflicts, which may threaten energy security. • Examined communes are characterised by a high level of acceptance for lignite mining. • Inhabitants cannot assess if the legal regulations of mining activity are sufficient. • From the perspective of the energy policy, broader social communication is needed. • Research on the public opinion should be the first step to open up a social debate

  15. Variable effects of temperature on insect herbivory

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2014-05-01

    Full Text Available Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.

  16. Insect Pathogenic Bacteria in Integrated Pest Management.

    Science.gov (United States)

    Ruiu, Luca

    2015-04-14

    The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt), novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  17. Insect Pathogenic Bacteria in Integrated Pest Management

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2015-04-01

    Full Text Available The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt, novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  18. An immunological axis of biocontrol: infections in field-trapped insects

    Science.gov (United States)

    Tunaz, Hasan; Stanley, David

    2009-09-01

    Insect immunology is an active research arena, however, the vast majority of research in the area is conducted on model species taken from laboratory cultures. We tested the hypothesis that insects are regularly exposed to infections or invasions in nature and here report results of a field study designed to assess the extent of natural infections in insects collected from agrarian fields surrounding Kahramanmaraş, Turkey. Specimens were dissected to assess numbers of nodules. Formation of darkened, melanotic nodules is the predominant cellular immune reaction to microbial and parasitic infection, and once formed, the nodules are permanently attached to internal surfaces. The collected insects were healthy. Of the >400 examined specimens, at least some nodules were found in 98%. Numbers of nodules ranged from ˜2/individual to >100 nodules/individual. We conclude that insects are regularly challenged by microbial and parasitic infections from which they recover. The novel implication of our data is that insect immune systems may limit the host range and effectiveness of agents deployed in biological control programs. Knowledge of insect immune systems may contribute to increased use of biopesticides globally.

  19. Insect monitoring with fluorescence lidar techniques: feasibility study.

    Science.gov (United States)

    Brydegaard, Mikkel; Guan, Zuguang; Wellenreuther, Maren; Svanberg, Sune

    2009-10-20

    We investigate the possibilities of light detection and ranging (lidar) techniques to study migration of the damselfly species Calopteryx splendens and C. virgo. Laboratory and testing-range measurements at a distance of 60 m were performed using dried, mounted damselfly specimens. Laboratory measurements, including color photography in polarized light and spectroscopy of reflectance and induced fluorescence, reveal that damselflies exhibit reflectance and fluorescence properties that are closely tied to the generation of structural color. Lidar studies on C. splendens of both genders show that gender can be remotely determined, especially for specimens that were marked with Coumarin 102 and Rhodamine 6G dyes. The results obtained in this study will be useful for future field experiments, and provide guidelines for studying damselflies in their natural habitat using lidar to survey the air above the river surface. The findings will be applicable for many other insect species and should, therefore, bring new insights into migration and movement patterns of insects in general.

  20. Ants and their effects on an insect herbivore community associated with the inflorescences of Byrsonima crassifolia (Linnaeus H.B.K. (Malpighiaceae Formigas e seus efeitos em uma comunidade de insetos herbívoros associada com as inflorescências de Byrsonima crassifolia (Linnaeus H.B.K. (Malpighiaceae

    Directory of Open Access Journals (Sweden)

    G. Wilson Fernandes

    2005-06-01

    Full Text Available The effects of ants on the insect community on inflorescences of Byrsonima crassifolia (Malpighiaceae were tested in an ant exclusion experiment in a cerrado vegetation in southeastern Brazil. Forty-four species of insects (23 families and nine species of ants (6 genera and 3 subfamilies were found on the inflorescences of B. crassifolia. The exclusion of ants, primarily Camponotus sericeiventris and Camponotus spp., reduced the treehopper population to 20% of the original abundance. Ant exclusion and time influenced the abundance of chewing (Exclusion, POs efeitos de formigas na comunidade de insetos em inflorescências de Byrsonima crassifolia (Malpighiaceae foram testados em um experimento de exclusão em uma vegetação de cerrado no Sudeste do Brasil. Quarenta e quatro espécies de insetos (23 famílias e nove espécies de formigas (seis gêneros e três subfamílias foram encontradas nas inflorescências de B. crassifolia. A exclusão das formigas, principalmente de Camponotus sericeiventris e de Camponotus spp. reduziu a população de membracídeos para 20% da abundância original. Exclusão das formigas e o tempo influenciaram a abundância de insetos mastigadores (exclusão, P<0,001; tempo, P<0,002 e sugadores (exclusão, P<0,02; tempo, P<0,01. Insetos mastigadores e sugadores foram encontrados duas vezes mais em inflorescências com formigas excluídas quando comparados com inflorescências controle (P<0,001. Insetos sugadores foram encontrados 1,5 vezes mais em inflorescências com formigas excluídas do que no controle. Apenas o tempo influenciou significativamente a riqueza de insetos mastigadores e sugadores associados com as inflorescências de B. crassifolia. Inflorescências em ramos controle foram significativamente menos atacadas por herbívoros do que inflorescências em ramos com formigas excluídas (P<0,001. Portanto, estes resultados sugerem que a presença das formigas influencia a estrutura da comunidade de insetos herb

  1. Edible insects contributing to food security?

    NARCIS (Netherlands)

    Huis, van Arnold

    2015-01-01

    Because of growing demand for meat and declining availability of agricultural land, there is an urgent need to find alternative protein sources. Edible insects can be produced with less environmental impact than livestock. Insect meal can replace scarce fishmeal as feed ingredient, in particular

  2. Feeding studies of irradiated foods with insects

    International Nuclear Information System (INIS)

    Loaharanu, S.

    1978-01-01

    Insects are of value to man in many scientific studies. Microsomal detoxication systems exist in both insects and mammals. In the preliminary investigations it was found that irradiated cocoa beans and white and red kidney beans (Phaseolus spp.) did not significantly change the percentage of egg-hatch in the insects tested. In more detailed investigations food samples that are susceptible to insect spoilage and are representatives of widely consumed human foods were fed to various insect species. The development, sex distortion and reproductivity of the insects were investigated. Cytogenetic aberrations as related to dominant lethality were studied in insects with reasonably clear chromosomal patterns. The meiosis stage was examined, using the squash technique and Aceto-orcein staining. Black beans, Phaseolus spp., irradiated with up to 200 krad of gamma rays did not apparently change the percentage of survival and the sex ratio of the bean weevil, Zabrotes subfasciatus. Dominant lethality in the German cockroach, Blatella germanica, fed on irradiated black beans did not apparently occur when considering the results of cytological investigation and the number of offspring obtained. Dried sardine samples irradiated with up to 400 krad of gamma rays neither apparently affected the survival nor caused sex distortion in the cheese skipper, Piophila casei. This irradiated product apparently did not induce dominant lethality in the German cockroach as tested. Coffee processed from coffee beans that had been irradiated with up to 100 krad of gamma rays did not apparently cause adverse effects on the experimental insects. (author)

  3. Social insect symbionts: evolution in homeostatic fortresses

    DEFF Research Database (Denmark)

    Hughes, David P; Pierce, Naomi E; Boomsma, Jacobus J

    2008-01-01

    The massive environmentally buffered nests of some social insects can contain millions of individuals and a wide variety of parasites, commensals and mutualists. We suggest that the ways in which these homeostatic fortress environments affect the evolution of social insect symbionts are relevant ...

  4. Insect and pest control newsletter. No. 52

    International Nuclear Information System (INIS)

    1998-12-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  5. Insect and pest control newsletter. No. 53

    International Nuclear Information System (INIS)

    1999-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  6. Insect and pest control newsletter. No. 50

    International Nuclear Information System (INIS)

    1997-10-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  7. Insect and Disease Pests of Southern Hardwoods

    Science.gov (United States)

    L. P. Abrahamson; F. I. McCracken

    1971-01-01

    Insects and diseases seldom kill southern hardwood trees in managed stands, but they cause major economic losses by lowering wood quality and reducing tree growth. In discussing the most important insects and diseases of southern hardwoods, let us consider first those that attack natural hardwood stands and then those associated with plantation culture.

  8. Diseases and insects of Giant Sequoia

    Science.gov (United States)

    Jr. Parmeter

    1986-01-01

    Giant sequoias (Sequoiadendron giganteum [Lindl.] Buchholz) are susceptible to a number of diseases and insects at each state of development from seeds to overmature trees. We presently have little more than a catalog of occurrences. The impacts and the management implications of disease and insect losses have scarcely been investigated or evaluated...

  9. Insect and pest control newsletter. No. 54

    International Nuclear Information System (INIS)

    2000-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  10. Insect and pest control newsletter. No. 55

    International Nuclear Information System (INIS)

    2000-07-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  11. Polyphenism in insects and the juvenile hormone

    Indian Academy of Sciences (India)

    PRAKASH

    During the past four decades or so, there has been a growing realization that juvenile hormone (JH) is widely involved in the development of polyphenism in insects. Recently, a significant paper on an experimental study on polyphenism in an insect has been published (Suzuki and Nijhout. 2006), and it carried the thesis ...

  12. Comparative insect mitochondrial genomes: Differences despite ...

    African Journals Online (AJOL)

    We present a comparative analysis of select insect mitochondrial DNA (mtDNA) representing four insect orders (Diptera, Hymenoptera, Orthoptera and Coleoptera) consisting of 12 different species in an effort to study a common set of genes and to understand the evolution of mitochondrial genome. A functional analysis of ...

  13. Potential applications of insect symbionts in biotechnology.

    Science.gov (United States)

    Berasategui, Aileen; Shukla, Shantanu; Salem, Hassan; Kaltenpoth, Martin

    2016-02-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biotechnological value. In addition, the knowledge on insect symbiosis can provide novel avenues for the control of agricultural pest insects and vectors of human diseases, through targeted manipulation of the symbionts or the host-symbiont associations. Here, we discuss different insect-microbe interactions that can be exploited for insect pest and human disease control, as well as in human medicine and industrial processes. Our aim is to raise awareness that insect symbionts can be interesting sources of biotechnological applications and that knowledge on insect ecology can guide targeted efforts to discover microorganisms of applied value.

  14. Insects associated with ponderosa pine in Colorado

    Science.gov (United States)

    Robert E. Stevens; J. Wayne Brewer; David A. Leatherman

    1980-01-01

    Ponderosa pine serves as a host for a wide variety of insects. Many of these, including all the particularly destructive ones in Colorado, are discussed in this report. Included are a key to the major insect groups, an annotated list of the major groups, a glossary, and a list of references.

  15. Notes on collecting flower-visiting insects

    NARCIS (Netherlands)

    Willemstein, S.C.

    1974-01-01

    Flower-visiting insects may play a role in the pollination of the flowers they visit. An important indication for this is the pollen they carry on their body. The transport of pollen does not prove pollination without observations of the behaviour of the insects on the flowers, but at least it

  16. Insect and pest control newsletter. No. 51

    International Nuclear Information System (INIS)

    1998-06-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  17. Insect and pest control newsletter. No. 56

    International Nuclear Information System (INIS)

    2001-01-01

    This Newsletter announces research coordination meetings, status of existing research coordinated research programmes on the use of nuclear applications such as the sterile insect technique (SIT) in insect and pest control. Training courses as well as new coordinated research programmes in the pipeline are also highlighted

  18. Exploring miniature insect brains using micro-CT scanning techniques

    Science.gov (United States)

    Smith, Dylan B.; Bernhardt, Galina; Raine, Nigel E.; Abel, Richard L.; Sykes, Dan; Ahmed, Farah; Pedroso, Inti; Gill, Richard J.

    2016-01-01

    The capacity to explore soft tissue structures in detail is important in understanding animal physiology and how this determines features such as movement, behaviour and the impact of trauma on regular function. Here we use advances in micro-computed tomography (micro-CT) technology to explore the brain of an important insect pollinator and model organism, the bumblebee (Bombus terrestris). Here we present a method for accurate imaging and exploration of insect brains that keeps brain tissue free from trauma and in its natural stereo-geometry, and showcase our 3D reconstructions and analyses of 19 individual brains at high resolution. Development of this protocol allows relatively rapid and cost effective brain reconstructions, making it an accessible methodology to the wider scientific community. The protocol describes the necessary steps for sample preparation, tissue staining, micro-CT scanning and 3D reconstruction, followed by a method for image analysis using the freeware SPIERS. These image analysis methods describe how to virtually extract key composite structures from the insect brain, and we demonstrate the application and precision of this method by calculating structural volumes and investigating the allometric relationships between bumblebee brain structures. PMID:26908205

  19. INFLUENCE OF ELEVATED OZONE AND CARBON DIOXIDE ON INSECT DENSITIES.

    Energy Technology Data Exchange (ETDEWEB)

    DELUCIA, E.; DERMODY, O.; O' NEILL, B.; ALDEA, M.; HAMILTON, J.; ZANGERL, A.; ROGER, A.; BERENBAUM, M.

    2005-01-05

    The combustion of fossil fuels is profoundly altering the chemical composition of the atmosphere. Beginning with the Industrial Revolution, the concentration of carbon dioxide in the atmosphere has increased from approximately 280 to 370 {micro}l l{sup -1} in 2004, and it is expected to exceed 550 {micro}l l{sup -1} by 2050. Tropospheric ozone has risen even more rapidly than CO{sub 2} and average summer concentrations in the Northern Hemisphere are expected to continue to increase by 0.5-2.5% per year over the next 30 years. Although elevated CO{sub 2} stimulates photosynthesis and productivity of terrestrial ecosystems, ozone (O{sub 3}) is deleterious. In addition to directly affecting the physiology and productivity of crops, increased concentrations of tropospheric CO{sub 2} and O{sub 3} are predicted to lower the nutritional quality of leaves, which has the potential to increase herbivory as insects eat more to meet their nutritional demands. We tested the hypothesis that changes in tropospheric chemistry affect the relationship between plants and insect herbivores by changing leaf quality. The susceptibility to herbivory of soybean grown in elevated CO{sub 2} or O{sub 3} was examined using free air gas concentration enrichment (SoyFACE). FACE technology has the advantage that plants are cultivated under realistic field conditions with no unwanted alteration of microclimate or artificial constraints on the insect community.

  20. Predictable patterns of trait mismatches between interacting plants and insects

    Directory of Open Access Journals (Sweden)

    Ellis Allan G

    2010-07-01

    Full Text Available Abstract Background There are few predictions about the directionality or extent of morphological trait (mismatches between interacting organisms. We review and analyse studies on morphological trait complementarity (e.g. floral tube length versus insect mouthpart length at the population and species level. Results Plants have consistently more exaggerated morphological traits than insects at high trait magnitudes and in some cases less exaggerated traits than insects at smaller trait magnitudes. This result held at the population level, as well as for phylogenetically adjusted analyses at the species-level and for both pollination and host-parasite interactions, perhaps suggesting a general pattern. Across communities, the degree of trait mismatch between one specialist plant and its more generalized pollinator was related to the level of pollinator specialization at each site; the observed pattern supports the "life-dinner principle" of selection acting more strongly on species with more at stake in the interaction. Similarly, plant mating system also affected the degree of trait correspondence because selfing reduces the reliance on pollinators and is analogous to pollination generalization. Conclusions Our analyses suggest that there are predictable "winners" and "losers" of evolutionary arms races and the results of this study highlight the fact that breeding system and the degree of specialization can influence the outcome.

  1. The earliest known holometabolous insects.

    Science.gov (United States)

    Nel, André; Roques, Patrick; Nel, Patricia; Prokin, Alexander A; Bourgoin, Thierry; Prokop, Jakub; Szwedo, Jacek; Azar, Dany; Desutter-Grandcolas, Laure; Wappler, Torsten; Garrouste, Romain; Coty, David; Huang, Diying; Engel, Michael S; Kirejtshuk, Alexander G

    2013-11-14

    The Eumetabola (Endopterygota (also known as Holometabola) plus Paraneoptera) have the highest number of species of any clade, and greatly contribute to animal species biodiversity. The palaeoecological circumstances that favoured their emergence and success remain an intriguing question. Recent molecular phylogenetic analyses have suggested a wide range of dates for the initial appearance of the Holometabola, from the Middle Devonian epoch (391 million years (Myr) ago) to the Late Pennsylvanian epoch (311 Myr ago), and Hemiptera (310 Myr ago). Palaeoenvironments greatly changed over these periods, with global cooling and increasing complexity of green forests. The Pennsylvanian-period crown-eumetabolan fossil record remains notably incomplete, particularly as several fossils have been erroneously considered to be stem Holometabola (Supplementary Information); the earliest definitive beetles are from the start of the Permian period. The emergence of the hymenopterids, sister group to other Holometabola, is dated between 350 and 309 Myr ago, incongruent with their current earliest record (Middle Triassic epoch). Here we describe five fossils--a Gzhelian-age stem coleopterid, a holometabolous larva of uncertain ordinal affinity, a stem hymenopterid, and early Hemiptera and Psocodea, all from the Moscovian age--and reveal a notable penecontemporaneous breadth of early eumetabolan insects. These discoveries are more congruent with current hypotheses of clade divergence. Eumetabola experienced episodes of diversification during the Bashkirian-Moscovian and the Kasimovian-Gzhelian ages. This cladogenetic activity is perhaps related to notable episodes of drying resulting from glaciations, leading to the eventual demise in Euramerica of coal-swamp ecosystems, evidenced by floral turnover during this interval. These ancient species were of very small size, living in the shadow of Palaeozoic-era 'giant' insects. Although these discoveries reveal unexpected Pennsylvanian

  2. Survival strategies of freshwater insects in cold environments

    Directory of Open Access Journals (Sweden)

    Valeria LENCIONI

    2004-09-01

    Full Text Available At high latitudes and altitudes, ice formation is a major variable affecting survival of freshwater fauna and hence the abundance and composition of invertebrate communities. Freezing, but also desiccation and anoxia, are lethal threats to all life stages of aquatic insects, from the eggs to the adults. During cold periods, the aquatic stages commonly remain in or move to a portion of the water body that will not freeze or dry (e.g., deep waters of lakes, springs and hyporheic zone where they can remain active. Less frequently they migrate to habitats that will freeze at the onset of winter. Insects have developed a complex of strategies to survive at their physiological temperature minimum, comprising (a morphological (melanism, reduction in size, hairiness/pubescence, brachyptery and aptery, (b behavioural (basking in the sun, changes in feeding and mating habit, parthenogenesis, polyploidy, ovoviviparity, habitat selection and cocoon building, (c ecological (extension of development to several years by quiescence or diapause and reduction of the number of generations per year, (d physiological and biochemical (freezing tolerance and freezing avoidance adaptations. Most species develop a combination of these survival strategies that can be different in the aquatic and terrestrial phase. Freezing avoidance and freezing tolerance may be accompanied by diapause. Both cold hardiness and diapause manifest during the unfavourable season and: (i involve storage of food resources (commonly glycogen and lipids; (ii are under hormonal control (ecdysone and juvenile hormone; (iii involve a depression or suppression of the oxidative metabolism with mitochondrial degradation. However, where the growing season is reduced to a few weeks, insects may develop cold hardiness without entering diapause, maintaining in the haemolymph a high concentration of Thermal Hysteris Proteins (THPs for the entire year and a slow but continuous growth. A synthesis of

  3. Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure

    Directory of Open Access Journals (Sweden)

    Deric R Learman

    2016-03-01

    Full Text Available Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5,500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP and Western Antarctica (WA, including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, nitrogen, and δ13C. Overall, samples from the AP were higher in nutrient content (TOC, nitrogen, and NH4+ and communities in these samples had higher relative abundances of operational taxonomic units (OTUs classified as the diatom, Chaetoceros, a marine cercozoan and four OTUs classified as Cytophaga or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a

  4. Multiorganismal insects: diversity and function of resident microorganisms.

    Science.gov (United States)

    Douglas, Angela E

    2015-01-07

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contributing to nutrition, especially by providing essential amino acids, B vitamins, and, for fungal partners, sterols. Some microorganisms protect their insect hosts against pathogens, parasitoids, and other parasites by synthesizing specific toxins or modifying the insect immune system. Priorities for future research include elucidation of microbial contributions to detoxification, especially of plant allelochemicals in phytophagous insects, and resistance to pathogens; as well as their role in among-insect communication; and the potential value of manipulation of the microbiota to control insect pests.

  5. Patterns and Drivers of Vertical Distribution of the Ciliate Community from the Surface to the Abyssopelagic Zone in the Western Pacific Ocean.

    Science.gov (United States)

    Zhao, Feng; Filker, Sabine; Xu, Kuidong; Huang, Pingping; Zheng, Shan

    2017-01-01

    The deep sea is one of the largest but least understood ecosystems on earth. Knowledge about the diversity and distribution patterns as well as drivers of microbial eukaryote (including ciliates) along the water column, particularly below the photic zone, is scarce. In this study, we investigated the diversity of pelagic ciliates, the main group of marine microeukaryotes, their vertical distribution from the surface to the abyssopelagic zone, as well as their horizontal distribution over a distance of 1,300 km in the Western Pacific Ocean, using high-throughput DNA and cDNA (complementary DNA) sequencing. No distance-decay relationship could be detected along the horizontal scale; instead, a distinct vertical distribution within the ciliate communities was revealed. The alpha diversity of the ciliate communities in the deep chlorophyll maximum (DCM) and the 200 m layer turned out to be significantly higher compared with the other water layers. The ciliate communities in the 200 m water layer appeared to be more similar to those in deeper layers from 1,000 m to about 5,000 m than to the surface and DCM ciliate communities. Dominant species in the bathypelagic and abyssopelagic zone, particularly some parasites, were also detected in the 200 m layer, but were almost absent in the surface layer. The 200 m layer, therefore, seems to be an important "species bank" for deep ocean layers. Statistical analyses further revealed significant effects of temperature and chlorophyll a on the partitioning of ciliate diversity, indicating that environmental factors are a stronger force in shaping marine pelagic ciliate communities than the geographic distance.

  6. Non-biting flying insects as carriers of pathogenic bacteria in a Brazilian hospital

    Directory of Open Access Journals (Sweden)

    Henrique Borges Kappel

    2013-04-01

    Full Text Available Introduction Insects have been described as mechanical vectors of nosocomial infections. Methods Non-biting flying insects were collected inside a pediatric ward and neonatal-intensive care unit (ICU of a Brazilian tertiary hospital. Results Most (86.4% of them were found to carry one or more species of bacteria on their external surfaces. The bacteria isolated were Gram-positive bacilli (68.2% or cocci (40.9%, and Gram-negative bacilli (18.2%. Conclusions Insects collected inside a hospital were carrying pathogenic bacteria; therefore, one must consider the possibility they may act as mechanical vectors of infections, in especially for debilitated or immune-compromised patients in the hospital environments where the insects were collected.

  7. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill

    OpenAIRE

    Liu, Zhanfei; Liu, Jiqing

    2013-01-01

    Bacterial community structures were evaluated in oil samples using culture-independent pyrosequencing, including oil mousses collected on sea surface and salt marshes during the Deepwater Horizon oil spill, and oil deposited in sediments adjacent to the wellhead 1 year after the spill. Phylogenetic analysis suggested that Erythrobacter, Rhodovulum, Stappia, and Thalassospira of Alphaproteobacteria were the prevailing groups in the oil mousses, which may relate to high temperatures and strong ...

  8. Interactions of Root-Feeding Insects with Fungal and Oomycete Plant Pathogens

    Science.gov (United States)

    Willsey, Telsa; Chatterton, Syama; Cárcamo, Héctor

    2017-01-01

    Soilborne fungal and oomycete pathogens are the causal agents of several important plant diseases. Infection frequently co-occurs with herbivory by root-feeding insects, facilitating tripartite interactions that modify plant performance and mortality. In an agricultural context, interactions between pathogens, herbivores, and plants can have important consequences for yield protection. However, belowground interactions are inherently difficult to observe and are often overlooked. Here, we review the impact of direct and indirect interactions between root-associated insects, fungi, and oomycetes on the development of plant disease. We explore the relationship between insect feeding injury and pathogen infection, as well as the role of insects as vectors of fungal and oomycete pathogens. Synergistic interactions between insects and phytopathogens may be important in weed suppression, and we highlight several promising candidates for biocontrol. Bridging the gap between entomological and pathological research is a critical step in understanding how interactions between insects and microorganisms modify the community structure of the rhizosphere, and how this impacts plant functioning. Furthermore, the identification of belowground interactions is required to develop effective pest monitoring and management strategies. PMID:29104577

  9. Interactions of Root-Feeding Insects with Fungal and Oomycete Plant Pathogens

    Directory of Open Access Journals (Sweden)

    Telsa Willsey

    2017-10-01

    Full Text Available Soilborne fungal and oomycete pathogens are the causal agents of several important plant diseases. Infection frequently co-occurs with herbivory by root-feeding insects, facilitating tripartite interactions that modify plant performance and mortality. In an agricultural context, interactions between pathogens, herbivores, and plants can have important consequences for yield protection. However, belowground interactions are inherently difficult to observe and are often overlooked. Here, we review the impact of direct and indirect interactions between root-associated insects, fungi, and oomycetes on the development of plant disease. We explore the relationship between insect feeding injury and pathogen infection, as well as the role of insects as vectors of fungal and oomycete pathogens. Synergistic interactions between insects and phytopathogens may be important in weed suppression, and we highlight several promising candidates for biocontrol. Bridging the gap between entomological and pathological research is a critical step in understanding how interactions between insects and microorganisms modify the community structure of the rhizosphere, and how this impacts plant functioning. Furthermore, the identification of belowground interactions is required to develop effective pest monitoring and management strategies.

  10. Climate-driven diversity dynamics in plants and plant-feeding insects.

    Science.gov (United States)

    Nyman, Tommi; Linder, Hans Peter; Peña, Carlos; Malm, Tobias; Wahlberg, Niklas

    2012-08-01

    The origin of species-rich insect-plant food webs has traditionally been explained by diversifying antagonistic coevolution between plant defences and herbivore counter-defences. However, recent studies combining paleoclimatic reconstructions with time-calibrated phylogenies suggest that variation in global climate determines the distribution, abundance and diversity of plant clades and, hence, indirectly influences the balance between speciation and extinction in associated herbivore groups. Extant insect communities tend to be richest on common plant species that have many close relatives. This could be explained either by climate-driven diffuse cospeciation between plants and insects, or by elevated speciation and reduced extinction in herbivore lineages associated with expanding host taxa (resources). Progress in paleovegetation reconstructions in combination with the rapidly increasing availability of fossil-calibrated phylogenies provide means to discern between these alternative hypotheses. In particular, the 'Diffuse cospeciation' scenario predicts closely matching main diversification periods in plants and in the insects that feed upon them, while the 'Resource abundance-dependent diversification' hypothesis predicts that both positive and negative responses of insect diversity are lagged in relation to host-plant availability. The dramatic Cenozoic changes in global climate provide multiple possibilities for studying the mechanisms by which climatic shifts may drive diversity dynamics in plants and insect herbivores. © 2012 Blackwell Publishing Ltd/CNRS.

  11. Plant interactions with microbes and insects: from molecular mechanisms to ecology

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Dicke, M.

    2007-01-01

    Plants are members of complex communities and interact both with antagonists and beneficial organisms. An important question in plant defense-signaling research is how plants integrate signals induced by pathogens, beneficial microbes and insects into the most appropriate adaptive response.

  12. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    NARCIS (Netherlands)

    Fatouros, N.E.; Lucas-Barbosa, D.; Weldegergis, B.T.; Pashalidou, F.G.; Loon, van J.J.A.; Dicke, M.; Harvey, J.A.; Gols, R.; Huigens, M.E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their

  13. Yeast-insect associations: It takes guts.

    Science.gov (United States)

    Stefanini, Irene

    2018-01-23

    Insects interact with microorganisms in several situations, ranging from the accidental interaction to locate attractive food or the acquisition of essential nutrients missing in the main food source. Despite a wealth of studies recently focused on bacteria, the interactions between insects and yeasts have relevant implications for both of the parties involved. The insect intestine shows several structural and physiological differences among species, but it is generally a hostile environment for many microorganisms, selecting against the most sensitive and at the same time guaranteeing a less competitive environment to resistant ones. An intensive characterization of the interactions between yeasts and insects has highlighted their relevance not only for attraction to food but also for the insect's development and behaviour. Conversely, some yeasts have been shown to benefit from interactions with insects, in some cases by being carried among different environments. In addition, the insect intestine may provide a place to reside for prolonged periods and possibly mate or generate sexual forms able to mate once back in the external environments. YEA-May-17-0084.R3. Copyright © 2018 John Wiley & Sons, Ltd.

  14. Insect prophenoloxidase: the view beyond immunity

    Directory of Open Access Journals (Sweden)

    Anrui eLu

    2014-07-01

    Full Text Available Insect prophenoloxidase (PPO is an important innate immunity protein due to its involvement in cellular and humoral defense. It belongs to a group of type-3 copper-containing proteins that occurs in almost all organisms. Insect PPO has been studied for over a century, and the PPO activation cascade is becoming clearer. The insect PPO activation pathway incorporates several important proteins, including pattern-recognition receptors (PGRP, βGRP and C-type lectins, serine proteases, and serine protease inhibitors (serpins. Due to their complexity, PPO activation mechanisms vary among insect species. Activated phenoloxidase (PO oxidizes phenolic molecules to produce melanin around invading pathogens and wounds. The crystal structure of Manduca sexta PPO shows that a conserved amino acid, phenylalanine (F, can block the active site pocket. During activation, this blocker must be dislodged or even cleaved at the N-terminal sequence to expose the active site pockets and allow substrates to enter. Thanks to the crystal structure of M. sexta PPO, some domains and specific amino acids that affect PPO activities have been identified. Further studies of the relationship between PPO structure and enzyme activities will provide an opportunity to examine other type-3 copper proteins, and trace when and why their various physiological functions evolved. Recent researches show that insect PPO has a relationship with neuron activity, longevity, feces melanization (phytophagous insects and development, which suggests that it is time for us to look back on insect PPO beyond the view of immunity in this review.

  15. Modern Stored-Product Insect Pest Management

    Directory of Open Access Journals (Sweden)

    Hagstrum David William

    2014-07-01

    Full Text Available Stored-product entomologists have a variety of new monitoring, decision-making, biological, chemical, and physical pest management tools available to them. Two types of stored-product insect populations are of interest: insects of immediate economic importance infesting commodities, and insects that live in food residues in equipment and facilities. The sampling and control methods change as grain and grain products move from field to consumer. There are also some changes in the major insect pest species to take into consideration. In this review, we list the primary insect pests at each point of the marketing system, and indicate which sampling methods and control strategies are most appropriate. Economic thresholds for insect infestation levels developed for raw commodity storage, processing plants, and retail business allow sampling-based pest management to be done before insect infestations cause economic injury. Taking enough samples to have a representative sample (20-30 samples will generally provide enough information to classify a population as above or below an economic threshold.

  16. Rapid Formation of Microbe-Oil Aggregates and Changes in Community Composition in Coastal Surface Water Following Exposure to Oil and the Dispersant Corexit

    Directory of Open Access Journals (Sweden)

    Shawn M. Doyle

    2018-04-01

    Full Text Available During the Deepwater Horizon (DWH oil spill, massive quantities of oil were deposited on the seafloor via a large-scale marine oil-snow sedimentation and flocculent accumulation (MOSSFA event. The role of chemical dispersants (e.g., Corexit applied during the DWH oil spill clean-up in helping or hindering the formation of this MOSSFA event are not well-understood. Here, we present the first experiment related to the DWH oil spill to specifically investigate the relationship between microbial community structure, oil and Corexit®, and marine oil-snow in coastal surface waters. We observed the formation of micron-scale aggregates of microbial cells around droplets of oil and dispersant and found that their rate of formation was directly related to the concentration of oil within the water column. These micro-aggregates are potentially important precursors to the formation of larger marine oil-snow particles. Therefore, our observation that Corexit® significantly enhanced their formation suggests dispersant application may play a role in the development of MOSSFA events. We also observed that microbial communities in marine surface waters respond to oil and oil plus Corexit® differently and much more rapidly than previously measured, with major shifts in community composition occurring within only a few hours of experiment initiation. In the oil-amended treatments without Corexit®, this manifested as an increase in community diversity due to the outgrowth of several putative aliphatic- and aromatic-hydrocarbon degrading genera, including phytoplankton-associated taxa. In contrast, microbial community diversity was reduced in mesocosms containing chemically dispersed oil. Importantly, different consortia of hydrocarbon degrading bacteria responded to oil and chemically dispersed oil, indicating that functional redundancy in the pre-spill community likely results in hydrocarbon consumption in both undispersed and dispersed oils, but by different

  17. Phytoplasmas: bacteria that manipulate plants and insects.

    Science.gov (United States)

    Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou

    2008-07-01

    Superkingdom Prokaryota; Kingdom Monera; Domain Bacteria; Phylum Firmicutes (low-G+C, Gram-positive eubacteria); Class Mollicutes; Candidatus (Ca.) genus Phytoplasma. Ca. Phytoplasma comprises approximately 30 distinct clades based on 16S rRNA gene sequence analyses of approximately 200 phytoplasmas. Phytoplasmas are mostly dependent on insect transmission for their spread and survival. The phytoplasma life cycle involves replication in insects and plants. They infect the insect but are phloem-limited in plants. Members of Ca. Phytoplasma asteris (16SrI group phytoplasmas) are found in 80 monocot and dicot plant species in most parts of the world. Experimentally, they can be transmitted by approximately 30, frequently polyphagous insect species, to 200 diverse plant species. In plants, phytoplasmas induce symptoms that suggest interference with plant development. Typical symptoms include: witches' broom (clustering of branches) of developing tissues; phyllody (retrograde metamorphosis of the floral organs to the condition of leaves); virescence (green coloration of non-green flower parts); bolting (growth of elongated stalks); formation of bunchy fibrous secondary roots; reddening of leaves and stems; generalized yellowing, decline and stunting of plants; and phloem necrosis. Phytoplasmas can be pathogenic to some insect hosts, but generally do not negatively affect the fitness of their major insect vector(s). In fact, phytoplasmas can increase fecundity and survival of insect vectors, and may influence flight behaviour and plant host preference of their insect hosts. The most common practices are the spraying of various insecticides to control insect vectors, and removal of symptomatic plants. Phytoplasma-resistant cultivars are not available for the vast majority of affected crops.

  18. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  19. Multi-scale responses to warming in an experimental insect metacommunity.

    Science.gov (United States)

    Grainger, Tess Nahanni; Gilbert, Benjamin

    2017-12-01

    In metacommunities, diversity is the product of species interactions at the local scale and dispersal between habitat patches at the regional scale. Although warming can alter both species interactions and dispersal, the combined effects of warming on these two processes remains uncertain. To determine the independent and interactive effects of warming-induced changes to local species interactions and dispersal, we constructed experimental metacommunities consisting of enclosed milkweed patches seeded with five herbivorous milkweed specialist insect species. We treated metacommunities with two levels of warming (unwarmed and warmed) and three levels of connectivity (isolated, low connectivity, high connectivity). Based on metabolic theory, we predicted that if plant resources were limited, warming would accelerate resource drawdown, causing local insect declines and increasing both insect dispersal and the importance of connectivity to neighboring patches for insect persistence. Conversely, given abundant resources, warming could have positive local effects on insects, and the risk of traversing a corridor to reach a neighboring patch could outweigh the benefits of additional resources. We found support for the latter scenario. Neither resource drawdown nor the weak insect-insect associations in our system were affected by warming, and most insect species did better locally in warmed conditions and had dispersal responses that were unchanged or indirectly affected by warming. Dispersal across the matrix posed a species-specific risk that led to declines in two species in connected metacommunities. Combined, this scaled up to cause an interactive effect of warming and connectivity on diversity, with unwarmed metacommunities with low connectivity incurring the most rapid declines in diversity. Overall, this study demonstrates the importance of integrating the complex outcomes of species interactions and spatial structure in understanding community response to climate

  20. Relative densities of natural enemy and pest insects within California hedgerows.

    Science.gov (United States)

    Gareau, Tara L Pisani; Letourneau, Deborah K; Shennan, Carol

    2013-08-01

    Research on hedgerow design for supporting communities of natural enemies for biological control lags behind farmer innovation in California, where assemblages of perennial plant species have been used on crop field margins in the last decade. We compared natural enemy to pest ratios between fields with hedgerows and fields with weedy margins by sampling beneficial insects and key pests of vegetables on sticky cards. We used biweekly vacuum samples to measure the distribution of key insect taxa among native perennial plant species with respect to the timing and intensity of bloom. Sticky cards indicated a trend that field margins with hedgerows support a higher ratio of natural enemies to pests compared with weedy borders. Hedgerow plant species hosted different relative densities of a generally overlapping insect community, and the timing and intensity of bloom only explained a small proportion of the variation in insect abundance at plant species and among hedgerows, with the exception of Orius spp. on Achillea millefolium L. and Baccharis pilularis De Candolle. Indicator Species Analysis showed an affinity of parasitic wasps, especially in the super-family Chalcidoidea, for B. pilularis whether or not it was in flower. A. millefolium was attractive to predatory and herbivorous homopterans; Heteromeles arbutifolia (Lindley) Roemer and B. pilularis to Diabrotica undecimpunctata undecimpunctata Mannerheim; and Rhamnus californica Eschsch to Hemerobiidae. Perennial hedgerows can be designed through species selection to support particular beneficial insect taxa, but plant resources beyond floral availability may be critical in providing structural refuges, alternative prey, and other attractive qualities that are often overlooked.

  1. Insect and avian fauna presence on the Ford assembly plant ecoroof

    Energy Technology Data Exchange (ETDEWEB)

    Coffman, R.R. [Ohio State Univ., Columbus, OH (United States). Dept. of Horticulture; Davis, G. [Ohio State Univ., Columbus, OH (United States). Dept. of Entomology

    2005-07-01

    This paper presented the results of a single season descriptive study of the insect and avian fauna present on a green roof installed at the Ford Motor Company's River Rouge assembly plant in Dearborn, Michigan. The study was part of a larger project investigating the similarities and differences between green roofs and terrestrial urban landscapes. Sweep netting was used to collect the insects, which were then placed in killing jars, separated, identified and stored. Invertebrates were identified and confirmed by entomology and arachnology taxonomic specialists. Bird observation times coincided with the insect sweeps, and data were recorded a total of 4 times during a period of 4 weeks. The study identified 29 insect species, 7 spider species, and 2 bird species. Winged insect families included flies, beetles, wasps, grasshoppers, plant bugs and leaf hoppers. Several types of spider and several species of birds were also observed. Findings supported the general assumption that ecoroofs create habitat. It was concluded that more studies are needed to better comprehend the behavior of invertebrate species and birds, as well as the population dynamics and community structure of the ecosystem. Future ecoroof community ecology studies may include varied collection methods and seasonal distribution of collection times. 10 refs., 4 tabs., 5 figs.

  2. [Effects of Corbicula fluminea bioturbation on the community composition and abundance of ammonia-oxidizing archaea and bacteria in surface sediments].

    Science.gov (United States)

    Wang, Xue; Zhao, Da-Yong; Zeng, Jin; Yu, Duo-Wei; Wu, Qing-Long

    2014-06-01

    To better understand the effects of Corbicula fluminea bioturbation on the ammonia-oxidizing microorganisms in the surface sediment, sediment-water microcosms with different densities of Corbicula fluminea were constructed. Clone libraries and real-time qPCR were applied to analyze the community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the surface sediments. The results obtained indicated that the bioturbation of Corbicula fluminea accelerated the release of nitrogen from the surface sediment. In the amoA gene clone libraries, the identified AOA amoA gene sequences affiliated with the two known clusters (marine and soil clusters). The identified AOB amoA gene sequences mostly belonged to the Nitrosomonas of beta-Proteobacteria. The abundance of the bacterial amoA gene was higher than that of the archaeal amoA gene in all treatments. With increasing density of Corbicula fluminea, decreased abundances of the bacterial amoA gene were observed. At the same time, the diversity of AOA and AOB reduced in the Corbicula fluminea containing microcosms. In conclusion, the bioturbation of Corbicula fluminea could affected the community composition and abundance of ammonia-oxidizing microorganisms in surface sediments.

  3. Volume XIII: The tertiary insects of North America

    Science.gov (United States)

    Scudder, Samuel H.

    1890-01-01

    That creatures so minute and fragile as insects, creatures which can so feebly withstand the changing seasons as to live, so to speak, but a moment, are to be found fossil, engraved, as it were, upon the rocks or embedded in their hard mass, will never cease to be a surprise to those unfamiliar with the fact. "So fragile," says Quinet, "so easy to crush, you would readily believe the insect one of the latest beings produced by nature, one of those which has least resisted the action of time; that its type, its genera, its forms, must have been ground to powder a thousand times, annihilated by the revolutions of the globe, and perpetually thrown into the crucible. For where is its defense? Of what value its antennae, its shield, its wings of gauze, against the commotions and the tempests which change the surface of the earth? When the mountains themselves are overthrown and the seas uplifted, when the giants of structure, the mighty quadrupeds, change form and habit under the pressure of circumstances, will the insect withstand them? Is it it which will display most character in nature? Yes! The universe flings itself against a gnat. Where will it find refuge? In its very diminutiveness, its nothingness."

  4. An Automated Flying-Insect Detection System

    Science.gov (United States)

    Vann, Timi; Andrews, Jane C.; Howell, Dane; Ryan, Robert

    2007-01-01

    An automated flying-insect detection system (AFIDS) was developed as a proof-of-concept instrument for real-time detection and identification of flying insects. This type of system has use in public health and homeland-security decision support, agriculture and military pest management, and/or entomological research. Insects are first lured into the AFIDS integrated sphere by insect attractants. Once inside the sphere, the insect s wing beats cause alterations in light intensity that is detected by a photoelectric sensor. Following detection, the insects are encouraged (with the use of a small fan) to move out of the sphere and into a designated insect trap where they are held for taxonomic identification or serological testing. The acquired electronic wing-beat signatures are preprocessed (Fourier transformed) in real time to display a periodic signal. These signals are sent to the end user where they are graphically. All AFIDS data are preprocessed in the field with the use of a laptop computer equipped with LabVIEW. The AFIDS software can be programmed to run continuously or at specific time intervals when insects are prevalent. A special DC-restored transimpedance amplifier reduces the contributions of low-frequency background light signals, and affords approximately two orders of magnitude greater AC gain than conventional amplifiers. This greatly increases the signal-to-noise ratio and enables the detection of small changes in light intensity. The AFIDS light source consists of high-intensity Al-GaInP light-emitting diodes (LEDs). The AFIDS circuitry minimizes brightness fluctuations in the LEDs and when integrated with an integrating sphere, creates a diffuse uniform light field. The insect wing beats isotropically scatter the diffuse light in the sphere and create wing-beat signatures that are detected by the sensor. This configuration minimizes variations in signal associated with insect flight orientation. Preliminary data indicate that AFIDS has

  5. Consuming insects:Are there health benefits?

    OpenAIRE

    Roos, Nanna; van Huis, A.

    2017-01-01

    How healthy are insects? This is a highly relevant question in view of the global interest in the potential of insects as a sustainable food source in food systems and diets. Edible insects, like other foods, can provide nutrients and dietary energy to meet the requirements of the human body as a part of a varied diet. They also have the potential to provide bioactive compounds that have health benefits beyond simple nutritional values, as is the case for other food groups such as fruits and ...

  6. Improving the representation of river-groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model

    KAUST Repository

    Zampieri, Matteo

    2012-02-01

    Groundwater is an important component of the hydrological cycle, included in many land surface models to provide a lower boundary condition for soil moisture, which in turn plays a key role in the land-vegetation-atmosphere interactions and the ecosystem dynamics. In regional-scale climate applications land surface models (LSMs) are commonly coupled to atmospheric models to close the surface energy, mass and carbon balance. LSMs in these applications are used to resolve the momentum, heat, water and carbon vertical fluxes, accounting for the effect of vegetation, soil type and other surface parameters, while lack of adequate resolution prevents using them to resolve horizontal sub-grid processes. Specifically, LSMs resolve the large-scale runoff production associated with infiltration excess and sub-grid groundwater convergence, but they neglect the effect from loosing streams to groundwater. Through the analysis of observed data of soil moisture obtained from the Oklahoma Mesoscale Network stations and land surface temperature derived from MODIS we provide evidence that the regional scale soil moisture and surface temperature patterns are affected by the rivers. This is demonstrated on the basis of simulations from a land surface model (i.e., Community Land Model - CLM, version 3.5). We show that the model cannot reproduce the features of the observed soil moisture and temperature spatial patterns that are related to the underlying mechanism of reinfiltration of river water to groundwater. Therefore, we implement a simple parameterization of this process in CLM showing the ability to reproduce the soil moisture and surface temperature spatial variabilities that relate to the river distribution at regional scale. The CLM with this new parameterization is used to evaluate impacts of the improved representation of river-groundwater interactions on the simulated water cycle parameters and the surface energy budget at the regional scale. © 2011 Elsevier B.V.

  7. Basic studies on the efficacy of gamma irradiation as insect disinfestation and sterilising techniques for stored rice insects

    International Nuclear Information System (INIS)

    Abdul Rahim Muda.

    1987-01-01

    Basic laboratory evaluations on the efficacy of gamma irradiation on the insect sitophilus zeamais, Motch. showed this method of insect control is effective to disinfest both internal and surface infestations in stored milled rice, and substantially reduced reproductive potentials of the weevil. Adult emergence of treated larvae developing within the rice kernel reduced by an average of 82% for treatment doses of 0.05 to 1 kGy. All emerged adults died within 16 days upon emergence at all tested doses. Radiated adult insects showed 100% mortality within 18 days at doses above 0.15 kGy; 26 days at 0.1 kGy and 33 days at 0.05 kGy. However none of the tested doses recorded total immediate mortality after treatment. Significant sterility effects through 93% reduction in F 1 progenies can be achieved by sterilising both parents; but none of the tested doses showed potential for employment as male sterilising technique alone. (author)

  8. Effects of habitat management on different feeding guilds of herbivorous insects in cacao agroforestry systems.

    Science.gov (United States)

    Novais, Samuel M A; Macedo-Reis, Luiz E; DaRocha, Wesley D; Neves, Frederico S

    2016-06-01

    Human pressure on natural habitats increases the importance of agroforests for biodiversity conservation. The objective of this study was to evaluate the role of cacao traditional cultivation system (CTCS) on the conservation of the herbivorous insect community when compared with a monodominant rubber agroforest, a type of agricultural system for cacao cultivation. The insects were sampled in three habitats in Southeastern Bahia, Brazil: native forests, CTCS and rubber agroforests. In each habitat, 18 plots of 10 m2 were established, and the structural measures were collected and herbivorous insects were sampled with a Malaise/window trap. The diversity of folivorous decreased with the simplification of vegetation structure, but species composition was similar among habitats. In addition to a decrease in the availability of resources in monodominant rubber agroforests, the latex present in these systems have limited the occurrence of species that cannot circumvent latex toxicity. The diversity of sap-sucking insects was similar among habitats, but species composition was similar only in the CTCS and native forest, and it was different in the rubber agroforest. We observed turnover and a higher frequency of individuals of the family Psyllidae in the rubber agroforest. The biology and behavior of Psyllids and absence of natural enemies enable their diversity to increase when they are adapted to a new host. We observed a shift in the composition of xylophagous insects in the rubber agroforest compared to that in other habitats. Moreover, this agroforest has low species richness, but high individual abundance. Latex extraction is likely an important additional source of volatile compounds discharged into the environment, and it increases the attraction and recruitment of coleoborers to these sites. We concluded that CTCS has an herbivorous insect community with a structure similar to the community found in native forests of the region, and they present a more

  9. Specialized Pathogen of a Social Insect

    DEFF Research Database (Denmark)

    Małagocka, Joanna

    Entomopathogenic fungi from the order Entomophthorales are highly specialized, host-specific and obligatory pathogens, which infect, consume and eventually kill their host insect within a few days. Established infection can effectively wipe out the majority of a host population. Social insects......, on the other hand, are remarkably efficient at preventing disease, a trait which necessarily arose together with social organization. In the one known example of social insects, in this case wood ants of the genus Formica, being attacked by an entomophthoralean fungus – Pandora formicae, social behaviors......, various aspects of the interaction with a social insect host are studied. Like a number of other entomophthoralean fungi, P. formicae manipulates pre-death behavior of its host to secure favorable position for transmission of actively discharged conidia to new hosts. Before dying, infected ants climb...

  10. Most Costly Insects & Diseases of Southern Hardwoods

    Science.gov (United States)

    T. H. Filer; J. D. Solomon

    1987-01-01

    Insect borers, especially carpenter worms and red oak borers, cause degrade in oaks, an average of $45 per thousand board feet, and an annual loss of $112 million in the 2.5 billion board feet of oaks cut annually.

  11. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  12. Allergen immunotherapy for insect venom allergy

    DEFF Research Database (Denmark)

    Dhami, S; Zaman, H; Varga, E-M

    2016-01-01

    of AIT in the management of insect venom allergy. METHODS: We undertook a systematic review, which involved searching 15 international biomedical databases for published and unpublished evidence. Studies were independently screened and critically appraised using established instruments. Data were...

  13. Principles of Insect Identification. MP-20.

    Science.gov (United States)

    Lawson, Fred A.; Burkhardt, Chris C.

    This document provides information for the complete classification of members of the phylum Arthropoda. Both major and minor insect orders are discussed relative to their anatomical characteristics and importance. (CS)

  14. Symbiont-mediated RNA interference in insects

    Science.gov (United States)

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  15. Evaluating bacterial community structures in oil collected from the sea surface and sediment in the northern Gulf of Mexico after the Deepwater Horizon oil spill.

    Science.gov (United States)

    Liu, Zhanfei; Liu, Jiqing

    2013-06-01

    Bacterial community structures were evaluated in oil samples using culture-independent pyrosequencing, including oil mousses collected on sea surface and salt marshes during the Deepwater Horizon oil spill, and oil deposited in sediments adjacent to the wellhead 1 year after the spill. Phylogenetic analysis suggested that Erythrobacter, Rhodovulum, Stappia, and Thalassospira of Alphaproteobacteria were the prevailing groups in the oil mousses, which may relate to high temperatures and strong irradiance in surface Gulf waters. In the mousse collected from the leaves of Spartina alterniflora, Vibrio of Gammaproteobacteria represented 57% of the total operational taxonomic units, suggesting that this indigenous genus is particularly responsive to the oil contamination in salt marshes. The bacterial communities in oil-contaminated sediments were highly diversified. The relatively high abundance of the Methylococcus, Methylobacter, Actinobacteria, Firmicutes, and Chlorofexi bacteria resembles those found in certain cold-seep sediments with gas hydrates. Bacterial communities in the overlying water of the oil-contaminated sediment were dominated by Ralstonia of Betaproteobacteria, which can degrade small aromatics, and Saccharophagus degradans of Gammaproteobacteria, a cellulose degrader, suggesting that overlying water was affected by the oil-contaminated sediments, possibly due to the dissolution of small aromatics and biosurfactants produced during biodegradation. Overall, these results provided key information needed to evaluate oil degradation in the region and develop future bioremediation strategies. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  16. Mechanics and aerodynamics of insect flight control.

    Science.gov (United States)

    Taylor, G K

    2001-11-01

    Insects have evolved sophisticated fight control mechanisms permitting a remarkable range of manoeuvres. Here, I present a qualitative analysis of insect flight control from the perspective of flight mechanics, drawing upon both the neurophysiology and biomechanics literatures. The current literature does not permit a formal, quantitative analysis of flight control, because the aerodynamic force systems that biologists have measured have rarely been complete and the position of the centre of gravity has only been recorded in a few studies. Treating the two best-known insect orders (Diptera and Orthoptera) separately from other insects, I discuss the control mechanisms of different insects in detail. Recent experimental studies suggest that the helicopter model of flight control proposed for Drosophila spp. may be better thought of as a facultative strategy for flight control, rather than the fixed (albeit selected) constraint that it is usually interpreted to be. On the other hand, the so-called 'constant-lift reaction' of locusts appears not to be a reflex for maintaining constant lift at varying angles of attack, as is usually assumed, but rather a mechanism to restore the insect to pitch equilibrium following a disturbance. Differences in the kinematic control mechanisms used by the various insect orders are related to differences in the arrangement of the wings, the construction of the flight motor and the unsteady mechanisms of lift production that are used. Since the evolution of insect flight control is likely to have paralleled the evolutionary refinement of these unsteady aerodynamic mechanisms, taxonomic differences in the kinematics of control could provide an assay of the relative importance of different unsteady mechanisms. Although the control kinematics vary widely between orders, the number of degrees of freedom that different insects can control will always be limited by the number of independent control inputs that they use. Control of the moments

  17. Insect monitoring with fluorescence lidar techniques: field experiments.

    Science.gov (United States)

    Guan, Zuguang; Brydegaard, Mikkel; Lundin, Patrik; Wellenreuther, Maren; Runemark, Anna; Svensson, Erik I; Svanberg, Sune

    2010-09-20

    Results from field experiments using a fluorescence lidar system to monitor movements of insects are reported. Measurements over a river surface were made at distances between 100 and 300 m, detecting, in particular, damselflies entering the 355 nm pulsed laser beam. The lidar system recorded the depolarized elastic backscattering and two broad bands of laser-induced fluorescence, with the separation wavelength at 500 nm. Captured species, dusted with characteristic fluorescent dye powders, could be followed spatially and temporally after release. Implications for ecological research are discussed.

  18. Genetic Diversity in Insect Metal Tolerance

    OpenAIRE

    Thomas J. S. Merritt; Adam J. Bewick

    2017-01-01

    Insects encounter a variety of metals in their environment, many of which are required at some concentration for normal organismal homeostasis, but essentially all of which are toxic at higher concentrations. Insects have evolved a variety of genetic, and likely epigenetic, mechanisms to deal with metal stress. A recurring theme in all these systems is complexity and diversity; even simple, single gene, cases are complex. Of the known gene families, the metallothioneins are perhaps the best u...

  19. Why Does Insect RNA Look Degraded?

    OpenAIRE

    Winnebeck, Eva C.; Millar, Craig D.; Warman, Guy R.

    2010-01-01

    The integrity of extracted ribonucleic acid (RNA) is commonly assessed by gel electrophoresis and subsequent analysis of the ribosomal RNA (rRNA) bands. Using the honey bee, Apis mellifera (Hymenoptera: Apidae), as an example, the electrophoretic rRNA profile of insects is explained. This profile differs significantly from the standard benchmark since the 28S rRNA of most insects contains an endogenous ?hidden break.? Upon denaturation, the masking hydrogen bonds are disrupted, releasing two ...

  20. Minor lipophilic compounds in edible insects

    OpenAIRE

    Monika Sabolová; Anna Adámková; Lenka Kouřimská; Diana Chrpová; Jan Pánek

    2016-01-01

    Contemporary society is faced with the question how to ensure suffiecient nutrition (quantity and quality) for rapidly growing population. One solution can be consumption of edible insect, which can have very good nutritional value (dietary energy, protein, fatty acids, fibers, dietary minerals and vitamins composition). Some edible insects species, which contains a relatively large amount of fat, can have a potential to be a „good" (interesting, new) source of minor lipophilic compound...

  1. Insect trypanosomatids: the need to know more

    Directory of Open Access Journals (Sweden)

    Sergei A Podlipaev

    2000-08-01

    Full Text Available Of ten recognized trypanosomatid genera, only two -- pathogenic Trypanosoma and Leishmania -- have been actively investigated for any length of time while the plant flagellates -- Phytomonas -- have recently begun to attract attention due to their role as agricultural parasites. The remaining genera that comprise parasites associated with insects have been largely neglected except for two or three containing popular isolates. This publication reviews current knowledge of trypanosomatids from insects.

  2. Potential applications of insect symbionts in biotechnology

    OpenAIRE

    Berasategui, A.; Shukla, S.; Salem, H.; Kaltenpoth, M.

    2016-01-01

    Symbiotic interactions between insects and microorganisms are widespread in nature and are often the source of ecological innovations. In addition to supplementing their host with essential nutrients, microbial symbionts can produce enzymes that help degrade their food source as well as small molecules that defend against pathogens, parasites, and predators. As such, the study of insect ecology and symbiosis represents an important source of chemical compounds and enzymes with potential biote...

  3. Insect sodium channels and insecticide resistance

    OpenAIRE

    Dong, Ke

    2007-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent...

  4. IMp: The customizable LEGO® Pinned Insect Manipulator

    Directory of Open Access Journals (Sweden)

    Steen Dupont

    2015-02-01

    Full Text Available We present a pinned insect manipulator (IMp constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  5. Mode of action of nanoparticles against insects.

    Science.gov (United States)

    Benelli, Giovanni

    2018-04-03

    The employment of nanoparticles obtained through various synthesis routes as novel pesticides recently attracted high research attention. An impressive number of studies have been conducted to test their toxic potential against a wide number of arthropod pests and vectors, with major emphasis on mosquitoes and ticks. However, precise information on the mechanisms of action of nanoparticles against insects and mites are limited, with the noteworthy exception of silica, alumina, silver, and graphene oxide nanoparticles on insects, while no information is available for mites. Here, I summarize current knowledge about the mechanisms of action of nanoparticles against insects. Both silver and graphene oxide nanoparticles have a significant impact on insect antioxidant and detoxifying enzymes, leading to oxidative stress and cell death. Ag nanoparticles also reduced acetylcholinesterase activity, while polystyrene nanoparticles inhibited CYP450 isoenzymes. Au nanoparticles can act as trypsin inhibitors and disrupt development and reproduction. Metal nanoparticles can bind to S and P in proteins and nucleic acids, respectively, leading to a decrease in membrane permeability, therefore to organelle and enzyme denaturation, followed by cell death. Besides, Ag nanoparticles up- and downregulate key insect genes, reducing protein synthesis and gonadotrophin release, leading to developmental damages and reproductive failure. The toxicity of SiO 2 and Al 2 O 3 nanoparticles is due to their binding to the insect cuticle, followed by physico-sorption of waxes and lipids, leading to insect dehydration. In the final section, insect nanotoxicology research trends are critically discussed, outlining major challenges to predict the ecotoxicological consequences arising from the real-world use of nanoparticles as pesticides.

  6. A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems

    Directory of Open Access Journals (Sweden)

    Kim Meijer

    2016-12-01

    Full Text Available A suggested mechanism for the success of introduced non-native species is the enemy release hypothesis (ERH. Many studies have tested the predictions of the ERH using the community approach (native and non-native species studied in the same habitat or the biogeographical approach (species studied in their native and non-native range, but results are highly variable, possibly due to large variety of study systems incorporated. We therefore focused on one specific system: plants and their herbivorous insects. We performed a systematic review and compiled a large number (68 of datasets from studies comparing herbivorous insects on native and non-native plants using the community or biogeographical approach. We performed a meta-analysis to test the predictions from the ERH for insect diversity (number of species, insect load (number of individuals and level of herbivory for both the community and biogeographical approach. For both the community and biogeographical approach insect diversity was significantly higher on native than on non-native plants. Insect load tended to be higher on native than non-native plants at the community approach only. Herbivory was not different between native and non-native plants at the community approach, while there was too little data available for testing the biogeographical approach. Our meta-analysis generally supports the predictions from the ERH for both the community and biogeographical approach, but also shows that the outcome is importantly determined by the response measured and approach applied. So far, very few studies apply both approaches simultaneously in a reciprocal manner while this is arguably the best way for testing the ERH.

  7. Potential of Insect-Derived Ingredients for Food Applications

    NARCIS (Netherlands)

    Tzompa Sosa, D.A.; Fogliano, V.

    2017-01-01

    Insects are a sustainable and efficient protein and lipid source, compared with conventional livestock. Moreover, insect proteins and lipids are highly nutritional. Therefore, insect proteins and lipids can find its place as food ingredients. The use of insect proteins and lipids as food ingredients

  8. DDT, pyrethrins, pyrethroids and insect sodium channels.

    Science.gov (United States)

    Davies, T G E; Field, L M; Usherwood, P N R; Williamson, M S

    2007-03-01

    The long term use of many insecticides is continually threatened by the ability of insects to evolve resistance mechanisms that render the chemicals ineffective. Such resistance poses a serious threat to insect pest control both in the UK and worldwide. Resistance may result from either an increase in the ability of the insect to detoxify the insecticide or by changes in the target protein with which the insecticide interacts. DDT, the pyrethrins and the synthetic pyrethroids (the latter currently accounting for around 17% of the world insecticide market), act on the voltage-gated sodium channel proteins found in insect nerve cell membranes. The correct functioning of these channels is essential for normal transmission of nerve impulses and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein which prevent the binding of the insecticide and result in the insect developing resistance. Here we review some of the work (done at Rothamsted Research and elsewhere) that has led to the identification of specific residues on the sodium channel that may constitute the DDT and pyrethroid binding sites.

  9. Insect Pathogenic Fungi as Endophytes.

    Science.gov (United States)

    Moonjely, S; Barelli, L; Bidochka, M J

    2016-01-01

    In this chapter, we explore some of the evolutionary, ecological, molecular genetics, and applied aspects of a subset of insect pathogenic fungi that also have a lifestyle as endophytes and we term endophytic insect pathogenic fungi (EIPF). We focus particularly on Metarhizium spp. and Beauveria bassiana as EIPF. The discussion of the evolution of EIPF challenges a view that these fungi were first and foremost insect pathogens that eventually evolved to colonize plants. Phylogenetic evidence shows that the lineages of EIPF are most closely related to grass endophytes that diverged c. 100MYA. We discuss the relationship between genes involved in "insect pathogenesis" and those involved in "endophytism" and provide examples of genes with potential importance in lifestyle transitions toward insect pathogenicity. That is, some genes for insect pathogenesis may have been coopted from genes involved in endophytic colonization. Other genes may be multifunctional and serve in both lifestyle capacities. The interactions of EIPF with their host plants are discussed in some detail. The genetic basis for rhizospheric competence, plant communication, and nutrient exchange is examined and we highlight, with examples, the benefits of EIPF to plants, and the potential reservoir of secondary metabolites hidden within these beneficial symbioses. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Geophysical Evidence to Link Terrestrial Insect Diversity and Groundwater Availability in Non-Riparian Ecosystems

    Science.gov (United States)

    Pehringer, M.; Carr, G.; Long, H.; Parsekian, A.

    2015-12-01

    Wyoming, the third driest state in the United States, is home to a high level of biodiversity. In many cases, ecosystems are dependent on the vast systems of water resting just below the surface. This groundwater supports a variety of organisms that live far from surface water and its surrounding riparian zone, where more than 70% of species reside. In order to observe the correlation of groundwater presence and biodiversity in non-riparian ecosystems, a study was conducted to look specifically at terrestrial insect species linked to groundwater in Bighorn National Forest, WY. It was hypothesized that the more groundwater present, the greater the diversity of insects would be. Sample areas were randomly selected in non-riparian zones and groundwater was evaluated using a transient electromagnetic (TEM) geophysical instrument. Electrical pulses were transmitted through a 40m by 40m square of wire to measure levels of resistivity from near the surface to several hundred meters below ground. Pulses are echoed back to the surface and received by a smaller 10m by 10m square of wire, and an even smaller 1m by 1m square of wire set inside the larger transmitting wire. An insect population and species count was then conducted within the perimeter set by the outer transmitting wire. The results were not as hypothesized. More inferred groundwater below the surface resulted in a smaller diversity of species. Inversely, the areas with a smaller diversity held a larger total population of terrestrial insects.

  11. Insect herbivores change the outcome of plant competition through both inter- and intraspecific processes.

    Science.gov (United States)

    Kim, Tania N; Underwood, Nora; Inouye, Brian D

    2013-08-01

    Insect herbivores can affect plant abundance and community composition, and theory suggests that herbivores influence plant communities by altering interspecific interactions among plants. Because the outcome of interspecific interactions is influenced by the per capita competitive ability of plants, density dependence, and intrinsic rates of increase, measuring herbivore effects on all these processes is necessary to understand the mechanisms by which herbivores influence plant communities. We fit alternative competition models to data from a response surface experiment conducted over four years to examine how herbivores affected the outcome of competition between two perennial plants, Solidago altissima and Solanum carolinense. Within a growing season, herbivores reduced S. carolinense plant size but did not affect the size of S. altissima, which exhibited compensatory growth. Across seasons, herbivores did not affect S. carolinense density or biomass but reduced both the density and population growth of S. altissima. The best-fit models indicated that the effects of herbivores varied with year. In some years, herbivores increased the per capita competitive effect of S. altissima on S. carolinense; in other years, herbivores influenced the intrinsic rate of increase of S. altissima. We examined possible herbivore effects on the longer-term outcome of competition (over the time scale of a typical old-field habitat), using simulations based on the best-fit models. In the absence of herbivores, plant coexistence was observed. In the presence of herbivores, S. carolinense was excluded by S. altissima in 72.3% of the simulations. We demonstrate that herbivores can influence the outcome of competition through changes in both per capita competitive effects and intrinsic rates of increase. We discuss the implications of these results for ecological succession and biocontrol.

  12. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    Science.gov (United States)

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. From communities to continents: beta diversity of herbivorous insects

    Czech Academy of Sciences Publication Activity Database

    Novotný, Vojtěch; Weiblen, G. D.

    2005-01-01

    Roč. 42, č. 4 (2005), s. 463-475 ISSN 0003-455X R&D Projects: GA ČR(CZ) GA206/04/0725; GA AV ČR(CZ) IAA6007106; GA MŠk(CZ) ME 646 Grant - others:U. S. National Science Foundation(US) DEB-02-11591; Darwin Initiative for the Survival of Species(GB) 162/10/030; National Geographic Society(US) 7649-04 Institutional research plan: CEZ:AV0Z5007907 Keywords : beta diversity Subject RIV: EH - Ecology, Behaviour Impact factor: 0.992, year: 2005

  14. Applying the sterile insect technique to the control of insect pests

    International Nuclear Information System (INIS)

    LaChance, L.E.; Klassen, W.

    1991-01-01

    The sterile insect technique (SIT) is basically a novel twentieth century approach to insect birth control. It is species specific and exploits the mate seeking behaviour of the insect. The basic principle is simple. Insects are mass reared in 'factories' and sexually sterilized by gamma rays from a 60 Co source. The sterile insects are then released in a controlled fashion into nature. Matings between the sterile insects released and native insects produced no progeny. If enough of these matings take place, reproduction of the pest population decreases. With continued release, the pest population can be controlled and in some cases eradicated. In the light of the many important applications of the SIT worldwide and the great potential that SIT concepts hold for insect and pest control in developing countries, two special benefits should be stressed. Of greatest significance is the fact that the SIT permits suppression and eradication of insect pests in an environmentally harmless manner. It combines nuclear techniques with genetic approaches and, in effect, replaces intensive use of chemicals in pest control. Although chemicals are used sparingly at the outset in some SIT programmes to reduce the size of the pest population before releases of sterilized insects are started, the total amount of chemicals used in an SIT programme is a mere fraction of what would be used without the SIT. It is also of great importance that the SIT is not designed strictly for the eradication of pest species but can readily be used in the suppression of insect populations. In fact, the SIT is ideally suited for use in conjunction with other agricultural pest control practices such as the use of parasites and predators, attractants and cultural controls (e.g. ploughing under or destruction of crop residues) in integrated pest management programmes to achieve control at the lowest possible price and with a minimum of chemical contamination of the environment

  15. Cascade effects of crop species richness on the diversity of pest insects and their natural enemies.

    Science.gov (United States)

    Shi, PeiJian; Hui, Cang; Men, XingYuan; Zhao, ZiHua; Ouyang, Fang; Ge, Feng; Jin, XianShi; Cao, HaiFeng; Li, B Larry

    2014-07-01

    Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology. We explore the effects of crop species richness on the diversity of pest insects and their natural enemies. Using data from a four-year experiment with five levels of crop species richness, we found that crop species richness significantly affected the pest species richness, but there were no significant effects on richness of the pests' natural enemies. In contrast, the species richness of pest insects significantly affected their natural enemies. These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels, while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level. High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops. Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.

  16. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  17. Insect-Inspired Flight Control for Unmanned Aerial Vehicles

    Science.gov (United States)

    Thakoor, Sarita; Stange, G.; Srinivasan, M.; Chahl, Javaan; Hine, Butler; Zornetzer, Steven

    2005-01-01

    Flight-control and navigation systems inspired by the structure and function of the visual system and brain of insects have been proposed for a class of developmental miniature robotic aircraft called "biomorphic flyers" described earlier in "Development of Biomorphic Flyers" (NPO-30554), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 54. These form a subset of biomorphic explorers, which, as reported in several articles in past issues of NASA Tech Briefs ["Biomorphic Explorers" (NPO-20142), Vol. 22, No. 9 (September 1998), page 71; "Bio-Inspired Engineering of Exploration Systems" (NPO-21142), Vol. 27, No. 5 (May 2003), page 54; and "Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration" (NPO-30286), Vol. 28, No. 5 (May 2004), page 36], are proposed small robots, equipped with microsensors and communication systems, that would incorporate crucial functions of mobility, adaptability, and even cooperative behavior. These functions are inherent to biological organisms but are challenging frontiers for technical systems. Biomorphic flyers could be used on Earth or remote planets to explore otherwise difficult or impossible to reach sites. An example of an exploratory task of search/surveillance functions currently being tested is to obtain high-resolution aerial imagery, using a variety of miniaturized electronic cameras. The control functions to be implemented by the systems in development include holding altitude, avoiding hazards, following terrain, navigation by reference to recognizable terrain features, stabilization of flight, and smooth landing. Flying insects perform these and other functions remarkably well, even though insect brains contains fewer than 10(exp -4) as many neurons as does the human brain. Although most insects have immobile, fixed-focus eyes and lack stereoscopy (and hence cannot perceive depth directly), they utilize a number of ingenious strategies for perceiving, and navigating in, three dimensions. Despite

  18. Comparison of Techniques for Sampling Adult Necrophilous Insects From Pig Carcasses.

    Science.gov (United States)

    Cruise, Angela; Hatano, Eduardo; Watson, David W; Schal, Coby

    2018-02-06

    Studies of the pre-colonization interval and mechanisms driving necrophilous insect ecological succession depend on effective sampling of adult insects and knowledge of their diel and successional activity patterns. The number of insects trapped, their diversity, and diel periodicity were compared with four sampling methods on neonate pigs. Sampling method, time of day and decomposition age of the pigs significantly affected the number of insects sampled from pigs. We also found significant interactions of sampling method and decomposition day, time of sampling and decomposition day. No single method was superior to the other methods during all three decomposition days. Sampling times after noon yielded the largest samples during the first 2 d of decomposition. On day 3 of decomposition however, all sampling times were equally effective. Therefore, to maximize insect collections from neonate pigs, the method used to sample must vary by decomposition day. The suction trap collected the most species-rich samples, but sticky trap samples were the most diverse, when both species richness and evenness were factored into a Shannon diversity index. Repeated sampling during the noon to 18:00 hours period was most effective to obtain the maximum diversity of trapped insects. The integration of multiple sampling techniques would most effectively sample the necrophilous insect community. However, because all four tested methods were deficient at sampling beetle species, future work should focus on optimizing the most promising methods, alone or in combinations, and incorporate hand-collections of beetles. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Agricultural production - Phase 2. Indonesia. Insect ecology studies and insect pest control

    International Nuclear Information System (INIS)

    Butt, B.

    1992-01-01

    This document reviews the activities of the Pest Control Research Group in Indonesia. Pests under study are the diamondback moth (Plutella xylostella), the rice stem borer (Chilo suppressalis), the sugar cane borer (Chilo auricilius), bean flies (Agromyza spp.), tobacco insects (Heliothis armigera and Spodoptera litura) and cotton insects, especially the pink bollworm

  20. Shrinkage of body size of small insects: A possible link to global warming?

    International Nuclear Information System (INIS)

    He Jihuan

    2007-01-01

    The increase of global mean surface temperature leads to the increase of metabolic rate. This might lead to an unexpected threat from the small insect world. Global warming shrinks cell size, shorten lifespan, and accelerate evolution. The present note speculates on possible connections between allometry and E-infinity theory

  1. Shrinkage of body size of small insects: A possible link to global warming?

    Energy Technology Data Exchange (ETDEWEB)

    He Jihuan [College of Science, Donghua University, 1882 Yan' an Xilu Road, Shanghai 200051 (China)]. E-mail: jhhe@dhu.edu.cn

    2007-11-15

    The increase of global mean surface temperature leads to the increase of metabolic rate. This might lead to an unexpected threat from the small insect world. Global warming shrinks cell size, shorten lifespan, and accelerate evolution. The present note speculates on possible connections between allometry and E-infinity theory.

  2. Secondary production of benthic insects in three cold-desert streams

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, W.L.

    1987-07-01

    Aquatic insect production was studied in three cold-desert streams in eastern Washington (Douglas Creek, Snively Springs, and Rattlesnake Springs). The size-frequency method was applied to individual taxa to estimate total insect production. production was also assessed for functional groups and trophic levels in each stream. Optioservus sp. (riffle beetles) and Baetis sp. (mayflies) accounted for 72% of the total insect numbers and 50% of the total biomass in Douglas Creek. Baetis sp. accounted for 42% of the total insect numbers and 25% of the total biomass in Snively Springs. Simulium sp. (blackflies) and Baetis sp. comprised 74% of the total insect numbers and 55% of the total biomass in Rattlesnake Springs. Grazer-scrapers (49%) and collectors (48%) were the most abundant functional groups in Douglas Creek. Collectors were the most abundant functional group in Snively Springs and Rattlesnake Springs. Herbivores and detritivores were the most abundant trophic level in Snively Springs and Rattlesnake Springs. Dipterans (midges and blackflies) were the most productive taxa within the study streams, accounting for 40% to 70% of the total community production. Production by collectors and detritivores was the highest of all functional groups and trophic levels in all study streams.

  3. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  4. Interacting effects of insects and flooding on wood decomposition.

    Directory of Open Access Journals (Sweden)

    Michael D Ulyshen

    Full Text Available Saproxylic arthropods are thought to play an important role in wood decomposition but very few efforts have been made to quantify their contributions to the process and the factors controlling their activities are not well understood. In the current study, mesh exclusion bags were used to quantify how arthropods affect loblolly pine (Pinus taeda L. decomposition rates in both seasonally flooded and unflooded forests over a 31-month period in the southeastern United States. Wood specific gravity (based on initial wood volume was significantly lower in bolts placed in unflooded forests and for those unprotected from insects. Approximately 20.5% and 13.7% of specific gravity loss after 31 months was attributable to insect activity in flooded and unflooded forests, respectively. Importantly, minimal between-treatment differences in water content and the results from a novel test carried out separately suggest the mesh bags had no significant impact on wood mass loss beyond the exclusion of insects. Subterranean termites (Isoptera: Rhinotermitidae: Reticulitermes spp. were 5-6 times more active below-ground in unflooded forests compared to flooded forests based on wooden monitoring stakes. They were also slightly more active above-ground in unflooded forests but these differences were not statistically significant. Similarly, seasonal flooding had no detectable effect on above-ground beetle (Coleoptera richness or abundance. Although seasonal flooding strongly reduced Reticulitermes activity below-ground, it can be concluded from an insignificant interaction between forest type and exclusion treatment that reduced above-ground decomposition rates in seasonally flooded forests were due largely to suppressed microbial activity at those locations. The findings from this study indicate that southeastern U.S. arthropod communities accelerate above-ground wood decomposition significantly and to a similar extent in both flooded and unflooded forests

  5. Acoustic communication in insect disease vectors

    Directory of Open Access Journals (Sweden)

    Felipe de Mello Vigoder

    2013-01-01

    Full Text Available Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  6. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  7. Neuropeptidergic regulation of reproduction in insects.

    Science.gov (United States)

    Van Wielendaele, Pieter; Badisco, Liesbeth; Vanden Broeck, Jozef

    2013-07-01

    Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Insect-virus relationships: sifting by informatics.

    Science.gov (United States)

    Dall, D; Luque, T; O'Reilly, D

    2001-02-01

    Several groups of large DNA viruses successfully utilise the rich resource provided by insect hosts. Defining the mechanisms that enable these pathogens to optimise their relationships with their hosts is of considerable scientific and practical importance, but our understanding of the processes involved is, as yet, rudimentary. Here we describe an informatics-based approach that uses comparison of viral genomic sequences to identify candidate genes likely to be specifically involved in this process. We hypothesise that such genes should satisfy two essential criteria, namely, that they should be (i) present in those members of a virus family that infect insects, but absent from those that infect other hosts, and (ii) found in at least two unrelated taxa of insect viruses. These criteria currently identify six groups of viral genes, including one that encodes the fusolin/gp37 proteins. Demonstration that the fusolin/gp37 proteins can enhance oral infectivity of insect viruses provides a primary validation of this approach to the examination of insect-virus relationships.

  9. Recombinant DNA technology and insect control

    International Nuclear Information System (INIS)

    Seawright, J.A.; Cockburn, Andrew F.

    1989-01-01

    In the past, the most successful avenue for the use of genetics in insect control has been the employment of the sterile insect technique, in which huge numbers of a species are produced in a factory, sterilized by exposure to ionizing radiation and released into the native habitat. this method is suitable for some species, but for logistical, economical, and biological reasons this control technique is not suitable for many economically important species. Our ability to use genetic approaches to cope with the myriad of insect pests will improve in the near future because of progress in the biochemical manipulation of genes. Molecular geneticists have created bacteria, plants, animals, and fungi that have useful new properties, and many of these are being used or tested for commercial use. A reasonable forecast is that a virtual revolution will occur in the way that we currently practice and perceive the genetic control of insects. Using genetic engineering manipulations to develop control techniques for insects of agricultural and public health importance is an exciting prospect and a highly desirable goal

  10. Evolution of DNA Methylation across Insects

    Science.gov (United States)

    Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.

    2017-01-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279

  11. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight. © 2016. Published by The Company of Biologists Ltd.

  12. Contact chemosensation of phytochemicals by insect herbivores

    Science.gov (United States)

    Burse, Antje

    2017-01-01

    Contact chemosensation, or tasting, is a complex process governed by nonvolatile phytochemicals that tell host-seeking insects whether they should accept or reject a plant. During this process, insect gustatory receptors (GRs) contribute to deciphering a host plant's metabolic code. GRs recognise many different classes of nonvolatile compounds; some GRs are likely to be narrowly tuned and others, broadly tuned. Although primary and/or secondary plant metabolites influence the insect's feeding choice, their decoding by GRs is challenging, because metabolites in planta occur in complex mixtures that have additive or inhibitory effects; in diverse forms composed of structurally unrelated molecules; and at different concentrations depending on the plant species, its tissue and developmental stage. Future studies of the mechanism of insect herbivore GRs will benefit from functional characterisation taking into account the spatio-temporal dynamics and diversity of the plant's metabolome. Metabolic information, in turn, will help to elucidate the impact of single ligands and complex natural mixtures on the insect's feeding choice. PMID:28485430

  13. Antibiotic resistance and community analysis of surface and subsurface drainage waters in the South Fork Iowa River watershed

    Science.gov (United States)

    The Midwest is a center for swine production leading to application of swine manure onto lands that have artificial subsurface drainage. Previous reports have indicated elevated levels of antibiotic resistance genes (ARGs) in surface water and groundwater around confined animal feeding operations wh...

  14. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    Science.gov (United States)

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and

  15. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre.

    Directory of Open Access Journals (Sweden)

    Qi Yin

    Full Text Available Surface seawater in the South Pacific Gyre (SPG is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371 were examined, representing ~5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×10(5 to 2.55×10(6 copies ml(-1 for Bacteria and 1.17×10(3 to 1.90×10(4 copies ml(-1 for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369 are generally lower than those at sites in the gyre edge (Sites U1370 & U1371 and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml(-1. We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely

  16. Community structure and activity of sulfate-reducing bacteria in an intertidal surface sediment: a multi-method approach

    DEFF Research Database (Denmark)

    Llobet-Brossa, Enrique; Rabus, Ralf; Böttcher, Michael E.

    2002-01-01

    The community structure of sulfate-reducing bacteria (SRB) in an intertidal mud flat of the German Wadden Sea (Site Dangast, Jade Bay) was studied and related to sedimentary biogeochemical gradients and processes. Below the penetration depths of oxygen (~3 mm) and nitrate (~4 mm), the presence...... and counting viable cells with the most probable number technique. Phylogenetic groups of SRB identified with these techniques were almost evenly distributed throughout the top 20 cm of the sediment. Application of fluorescence in situ hybridization, however, demonstrated a maximum of active members...

  17. Fronts at the Surface Ocean Can Shape Distinct Regions of Microbial Activity and Community Assemblages Down to the Bathypelagic Zone: The Azores Front as a Case Study

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2017-08-01

    Full Text Available Oceanic fronts are widespread features which separate distinct water masses. They are well known to control the distribution of microbial communities in surface waters, although there is scarce information on their role in delimiting critical functions that microbes perform, and on whether their effects can be translated down into the dark ocean. Here we carried out the first study on the variability of hydrolysis of organic matter (extracellular enzymatic activity; EEA across a permanent front (the Azores Front, coupled with changes in microbial assemblage composition, from the surface down to the bathypelagic zone. The front separated the study area (enclosed into the North Atlantic Subtropical Gyral Province into two distinct latitudinal sub-regions with sharp differences in the abundance of autotrophic and heterotrophic microbial assemblages, as well as in the extracellular enzymes activities of glucosidases, alkaline phosphatase, and leucine aminopeptidase. South of the front there was an abrupt decline in the abundance of picophytoplankton as well as in heterotrophic prokaryotes with high nucleic-acid content, but an increase in the abundance of prokaryotes with high side-scatter, an indication that cells were growing attached to particles. Concomitantly, there was also an increase in the aminopeptidase to glucosidase ratio, a proxy of higher degradation of proteinaceous material relative to carbohydrates. Interestingly, these sharp changes in microbial assemblages and enzymatic activities north and south of the front were translated down to the deep ocean. Our results suggest that permanent fronts, like the Azores Front, can act as ecological boundaries in the ocean (even within a biogeographical province, in terms of microbial community structure and biogeochemical cycling. Oriented studies on oceanic fronts down to the deep ocean will help to understand how the variability of these widely-extended hydrographic futures will impact

  18. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  19. Acetic Acid Bacteria as Symbionts of Insects

    KAUST Repository

    Crotti, Elena

    2016-06-14

    Acetic acid bacteria (AAB) are being increasingly described as associating with different insect species that rely on sugar-based diets. AAB have been found in several insect orders, among them Diptera, Hemiptera, and Hymenoptera, including several vectors of plant, animal, and human diseases. AAB have been shown to associate with the epithelia of different organs of the host, they are able to move within the insect’s body and to be transmitted horizontally and vertically. Here, we review the ecology of AAB and examine their relationships with different insect models including mosquitoes, leafhoppers, and honey bees. We also discuss the potential use of AAB in symbiont-based control strategies, such as “Trojan-horse” agents, to block the transmission of vector-borne diseases.

  20. Democratizing evolutionary biology, lessons from insects.

    Science.gov (United States)

    Dunn, Robert R; Beasley, DeAnna E

    2016-12-01

    The engagement of the public in the scientific process is an old practice. Yet with recent advances in technology, the role of the citizen scientist in studying evolutionary processes has increased. Insects provide ideal models for understanding these evolutionary processes at large scales. This review highlights how insect-based citizen science has led to the expansion of specimen collections and reframed research questions in light of new observations and unexpected discoveries. Given the rapid expansion of human-modified (and inhabited) environments, the degree to which the public can participate in insect-based citizen science will allow us to track and monitor evolutionary trends at a global scale. Copyright © 2016. Published by Elsevier Inc.

  1. Why does insect RNA look degraded?

    Science.gov (United States)

    Winnebeck, Eva C; Millar, Craig D; Warman, Guy R

    2010-01-01

    The integrity of extracted ribonucleic acid (RNA) is commonly assessed by gel electrophoresis and subsequent analysis of the ribosomal RNA (rRNA) bands. Using the honey bee, Apis mellifera (Hymenoptera: Apidae), as an example, the electrophoretic rRNA profile of insects is explained. This profile differs significantly from the standard benchmark since the 28S rRNA of most insects contains an endogenous "hidden break." Upon denaturation, the masking hydrogen bonds are disrupted, releasing two similar sized fragments that both migrate closely with 18S rRNA. The resulting rRNA profile thus reflects the endogenous composition of insect rRNA and should not be misinterpreted as degradation.

  2. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams.

    Science.gov (United States)

    Gimenez, B C G; Lansac-Tôha, F A; Higuti, J

    2015-11-01

    Streams may exhibit differences in community structure of invertebrate drift, which may be a reflex of variation in environmental factors, able to change in conditions of anthropogenic interventions. The aim of this study was to analyze the composition, diversity and abundance of insects drifting in two neotropical streams under different land use and to identify the environmental factors involved in determining such patterns. 54 taxa of aquatic insects were identified in urban and rural streams. The results indicated significant differences in species composition due to the replacement of specialist species by generalist species in the urban stream. Higher diversity of taxa was recorded in the rural stream, with high levels of dissolved oxygen and high water flow, which favored the occurrence of sensitive groups to environmental disturbances, such as Ephemeroptera, Plecoptera, Trichoptera and Coleoptera taxa, that living mainly in clean and well oxygenated waters. On the other hand, a higher density of insects drifting, especially Chironomidae, was observed in the urban stream, where high values of pH, electrical conductivity and nitrogen were observed. These larvae are able to explore a wide range of environmental conditions, owing to their great capacity for physiological adaptation. Despite observing the expected patterns, there were no significant differences between streams for the diversity and abundance of species. Thus, the species composition can be considered as the best predictor of impacts on the drifting insect community.

  3. Distribution of aquatic insects in phumdis (floating island of Loktak Lake, Manipur, northeastern India

    Directory of Open Access Journals (Sweden)

    K. Takhelmayum

    2011-06-01

    Full Text Available A study was made on the temporal fluctuations of distribution of aquatic insects around Phumdi Live (PL, Phumdi Mixed (PM and Phumdi Dry (PD areas of Loktak Lake. Phumdis are a heterogeneous mass of soil, vegetation and organic matter. The study revealed the presence of predators, and the absence of herbivores and detritivores in both PL and PM, the PD area was totally devoid of insects. Although both the habitats supported the same predator groups hemiptera and odonata, diversity and density in terms of family and species were higher in PL than in PM. Temporal fluctuations revealed that the Shannon-Weiner’s Diversity Index values were highest in June for both PL (0.726 and PM (0.47. In both the sites the highest density was recorded in February. The relative abundance of hemiptera was higher than that of odonata in most of the months in PL. Phumdi Mixed was represented by one species of hemiptera only, in the month of February and dominated by odonates otherwise. Community composition of odonata larvae did not show any difference between the two habitats. Although the study revealed low diversity and density of insects in both sites, the PL community provided a better habitat to aquatic insects than that of PM. These are of value as fish food and in turn for fish production.

  4. Effect of land use on the composition, diversity and abundance of insects drifting in neotropical streams

    Directory of Open Access Journals (Sweden)

    B. C. G. Gimenez

    Full Text Available Abstract Streams may exhibit differences in community structure of invertebrate drift, which may be a reflex of variation in environmental factors, able to change in conditions of anthropogenic interventions. The aim of this study was to analyze the composition, diversity and abundance of insects drifting in two neotropical streams under different land use and to identify the environmental factors involved in determining such patterns. 54 taxa of aquatic insects were identified in urban and rural streams. The results indicated significant differences in species composition due to the replacement of specialist species by generalist species in the urban stream. Higher diversity of taxa was recorded in the rural stream, with high levels of dissolved oxygen and high water flow, which favored the occurrence of sensitive groups to environmental disturbances, such as Ephemeroptera, Plecoptera, Trichoptera and Coleoptera taxa, that living mainly in clean and well oxygenated waters. On the other hand, a higher density of insects drifting, especially Chironomidae, was observed in the urban stream, where high values of pH, electrical conductivity and nitrogen were observed. These larvae are able to explore a wide range of environmental conditions, owing to their great capacity for physiological adaptation. Despite observing the expected patterns, there were no significant differences between streams for the diversity and abundance of species. Thus, the species composition can be considered as the best predictor of impacts on the drifting insect community.

  5. New feed ingredients: the insect opportunity.

    Science.gov (United States)

    van Raamsdonk, L W D; van der Fels-Klerx, H J; de Jong, J

    2017-08-01

    In the framework of sustainability and a circular economy, new ingredients for feed are desired and, to this end, initiatives for implementing such novel ingredients have been started. The initiatives include a range of different sources, of which insects are of particular interest. Within the European Union, generally, a new feed ingredient should comply with legal constraints in terms of 'yes, provided that' its safety commits to a range of legal limits for heavy metals, mycotoxins, pesticides, contaminants, pathogens etc. In the case of animal proteins, however, a second legal framework applies which is based on the principle 'no, unless'. This legislation for eradicating transmissible spongiform encephalopathy consists of prohibitions with a set of derogations applying to specific situations. Insects are currently considered animal proteins. The use of insect proteins is a good case to illustrate this difference between a positive, although restricted, modus and a negative modus for allowing animal proteins. This overview presents aspects in the areas of legislation, feed safety, environmental issues, efficiency and detection of the identity of insects. Use of insects as an extra step in the feed production chain costs extra energy and this results in a higher footprint. A measure for energy conversion should be used to facilitate the comparison between production systems based on cold- versus warm-blooded animals. Added value can be found by applying new commodities for rearing, including but not limited to category 2 animal by-products, catering and household waste including meat, and manure. Furthermore, monitoring of a correct use of insects is one possible approach for label control, traceability and prevention of fraud. The link between legislation and enforcement is strong. A principle called WISE (Witful, Indicative, Societal demands, Enforceable) is launched for governing the relationship between the above-mentioned aspects.

  6. Optic flow-based collision-free strategies: From insects to robots.

    Science.gov (United States)

    Serres, Julien R; Ruffier, Franck

    2017-09-01

    Flying insects are able to fly smartly in an unpredictable environment. It has been found that flying insects have smart neurons inside their tiny brains that are sensitive to visual motion also called optic flow. Consequently, flying insects rely mainly on visual motion during their flight maneuvers such as: takeoff or landing, terrain following, tunnel crossing, lateral and frontal obstacle avoidance, and adjusting flight speed in a cluttered environment. Optic flow can be defined as the vector field of the apparent motion of objects, surfaces, and edges in a visual scene generated by the relative motion between an observer (an eye or a camera) and the scene. Translational optic flow is particularly interesting for short-range navigation because it depends on the ratio between (i) the relative linear speed of the visual scene with respect to the observer and (ii) the distance of the observer from obstacles in the surrounding environment without any direct measurement of either speed or distance. In flying insects, roll stabilization reflex and yaw saccades attenuate any rotation at the eye level in roll and yaw respectively (i.e. to cancel any rotational optic flow) in order to ensure pure translational optic flow between two successive saccades. Our survey focuses on feedback-loops which use the translational optic flow that insects employ for collision-free navigation. Optic flow is likely, over the next decade to be one of the most important visual cues that can explain flying insects' behaviors for short-range navigation maneuvers in complex tunnels. Conversely, the biorobotic approach can therefore help to develop innovative flight control systems for flying robots with the aim of mimicking flying insects' abilities and better understanding their flight. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Phylogenetic origin and diversification of RNAi pathway genes in insects

    DEFF Research Database (Denmark)

    Dowling, Daniel; Pauli, Thomas; Donath, Alexander

    2016-01-01

    across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect...... Transcriptome Evolution) project aswell asother resources such as i5K(5000InsectGenomeProject). Specifically,we traced the origin of the double stranded RNAbinding protein R2D2 to the lastcommon ancestor of winged insects (Pterygota), the loss of Sid-1/ Tag-130 orthologs in Antliophora (fleas, flies...

  8. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  9. Oxidative stress in entomopathogenic fungi grown on insect-like hydrocarbons.

    Science.gov (United States)

    Huarte-Bonnet, Carla; Juárez, M Patricia; Pedrini, Nicolás

    2015-08-01

    Entomopathogenic fungi mostly attack their insect hosts by penetration through the cuticle. The outermost insect surface is covered by a lipid-rich layer, usually composed of very long chain hydrocarbons. These fungi are apt to grow on straight chain hydrocarbons (alkanes) as the sole carbon source. Insect-like hydrocarbons are first hydroxylated by a microsomal P450 monooxygenase system, and then fully catabolized by peroxisomal β-oxidation reactions in Beauveria bassiana. In this review, we will discuss lipid metabolism adaptations in alkane-grown fungi, and how an oxidative stress scenario is established under these conditions. Fungi have to pay a high cost for hydrocarbon utilization; high levels of reactive oxygen species are produced and a concomitant antioxidant response is triggered in fungal cells to cope with this drawback.

  10. Insect species interactions and resource effects in treeholes: are helodid beetles bottom-up facilitators of midge populations?

    Science.gov (United States)

    Paradise, C J; Dunson, William A

    1997-01-01

    The insect community living in central Pennsylvania treeholes in autumn consists primarily of larvae of two species of helodid beetles, Prionocyphon discoideus and Helodes pulchella, and larvae of one species of ceratopogonid midge,Culicoides guttipennis. We manipulated treehole volume and the densities of these insects in laboratory microcosms. We hypothesized that: (1) helodid beetle larvae, which are shredders, would enhance growth and survival of ceratopogonid midge larvae (deposit feeders) in a processing chain commensalism, and (2) the quantity of resources expressed as water volume plus leaf litter would affect helodids and protozoans directly. Intraspecific competition was not found in midges, nor was interspecific competition between the two helodid species. Protozoan population densities decreased or grew slower in the presence of insects and in smaller microcosms. Development time and adult wing length of the midge (C. guttipennis) were affected by both total microcosm volume and insect species combination. Under resource limitation, midges grew larger in the presence of helodids, and in general, midges were larger in treatments with higher ratios of helodids to midges. Water chemistry in the microcosms was affected both temporally and by insect presence. Hydrogen ion levels decreased over time, and microcosms with no insects had lower hydrogen ion levels. Specific conductance increased in all treatments over time, and microcosms with no insects had lower conductivity than most treatments. Helodid larvae have a positive effect on midges, possibly due to a processing chain facilitation. If helodids are keystone decomposers in this system, their presence could affect resource availability and affect other organisms in the community. Similar processing chain commensalisms occur in other phytotelmata. These types of interactions may therefore be important in the structure and function of detritus-based communities.

  11. Insect pest control newsletter. No. 65

    International Nuclear Information System (INIS)

    2005-07-01

    The concept of Area-wide Integrated Pest Management (AW-IPM) is defined as IPM applied against an entire pest population within a delimited geographic area. Area-wide intervention strategies require more planning and ecological understanding, longer-term commitment, a minimum infrastructure and a coordinated implementation by farmers and all other stakeholders. The spatial distribution of the pest population has to be considered not only in surrounding cultivated areas, but also in non-cultivated areas. It also involves considering the temporal distribution of the pest to determine the periods when the pest is most susceptible to preventive, rather than remedial, interventions. In 1998 FAO and the Agency sponsored the First International Conference on 'Area-Wide Control of Insect Pests, Integrating the Sterile Insect and Related Nuclear and other Techniques' in Penang, Malaysia. This Conference greatly increased the interest and awareness concerning the AW-IPM approach to insect pest control. Since then, many new technical innovations have been introduced; a better regulatory framework is being developed to encourage the involvement of the private sector, and more FAO and Agency Member States are integrating insect pest control methods on an areawide basis. Over the past months we have been heavily involved in preparing for the Second FAO/IAEA International Conference on 'Area-Wide Control of Insect Pests: Integrating the Sterile Insect and Related Nuclear and Other Techniques', which was held from 9-13 May in Vienna. The response and interest of scientists and governments, as well as the private sector and sponsors were once more very encouraging. The conference took place with the participation of over 300 delegates from 86 countries, nine international organization, and eight exhibitors. It covered the area-wide approach again in a very broad sense, including the development and integration of many non-SIT technologies, as well as genetic research on cytoplasmic

  12. Community Earth System Model Simulations Reveal the Relative Importance of Afforestation and Forest Management to Surface Temperature in Eastern North America

    Directory of Open Access Journals (Sweden)

    Benjamin J. Ahlswede

    2017-12-01

    Full Text Available Afforestation changes the land surface energy balance, though the effects on climate in temperate regions is uncertain, particularly the changes associated with forest management. In this study, we used idealized Community Earth System Model simulations to assess the influence of afforestation and afforestation management in eastern North America on climate via changes in the biophysics of the land surface. Afforestation using broadleaf deciduous trees maintained at high leaf area index (LAI in the southern part of the study region provided the greatest climate benefit by cooling summer surface air temperatures (Tsa. In contrast, the greatest warming occurred in the northern extent of the study region when afforesting with needleleaf evergreen trees maintained at high LAI. Forest management had an equal or greater influence on Tsa than the overall decision to afforest land in the southern extent of the region. Afforestation had a greater influence on Tsa than forest management in the northern extent. Integrating our results, focused on biophysical processes, with other research quantifying carbon cycle sensitivity to management can help guide the use of temperate afforestation to optimize climate benefits. Further, our results highlight the potential importance of including forest management in simulations of past and future climate.

  13. A new approach to quantify semiochemical effects on insects based on energy landscapes.

    Directory of Open Access Journals (Sweden)

    Rory P Wilson

    Full Text Available Our ability to document insect preference for semiochemicals is pivotal in pest control as these agents can improve monitoring and be deployed within integrated pest management programmes for more efficacious control of pest species. However, methods used to date have drawbacks that limit their utility. We present and test a new concept for determining insect motivation to move towards, or away from, semiochemicals by noting direction and speed of movement as animals work against a defined energy landscape (environmentally dependent variation in the cost of transport requiring different powers to negotiate. We conducted trials with the pine weevils Hylobius abietis and peach-potato aphids Myzus persicae exposed to various attractants and repellents and placed so that they either moved up defined slopes against gravity or had to travel over variously rough surfaces.Linear Mixed Models demonstrated clear reductions in travel speed by insects moving along increasingly energetically taxing energy landscapes but also that responses varied according to different semiochemicals, thus highlighting the value of energy landscapes as a new concept to help measure insect motivation to access or avoid different attractants or repellents across individuals.New sensitive, detailed indicators of insect motivation derived from this approach should prove important in pest control across the world.

  14. Insect prey eaten by Hoary Bats (Lasiurus cinereus) prior to fatal collisions with wind turbines

    Science.gov (United States)

    Valdez, Ernest W.; Cryan, Paul M.

    2013-01-01

    Wind turbines are being deployed all across the world to meet the growing demand for energy, and in many areas, these turbines are causing the deaths of insectivorous migratory bats. One of the hypothesized causes of bat susceptibility is that bats are attracted to insects on or near the turbines. We examined insect remains in the stomachs and intestines of hoary bats (Lasiurus cinereus) found dead beneath wind turbines in New York and Texas to evaluate the hypothesis that bats die while feeding at turbines. Most of the bats we examined had full stomachs, indicating that they fed in the minutes to hours leading up to their deaths. However, we did not find prey in the mouths or throats of any bats that would indicate the bats died while capturing prey. Hoary bats fed mostly on moths, but we also detected the regular presence of beetles, true bugs, and crickets. Presence of terrestrial insects in stomachs indicates that bats may have gleaned them from the ground or the turbine surfaces, yet aerial capture of winged insect stages cannot be ruled out. Our findings confirm earlier studies that indicate hoary bats feed during migration and eat mostly moths. Future studies on bat behaviors and insect presence at wind turbines could help determine whether feeding at turbines is a major fatality risk for bats.

  15. Integrative taxonomy for continental-scale terrestrial insect observations.

    Directory of Open Access Journals (Sweden)

    Cara M Gibson

    Full Text Available Although 21(st century ecology uses unprecedented technology at the largest spatio-temporal scales in history, the data remain reliant on sound taxonomic practices that derive from 18(th century science. The importance of accurate species identifications has been assessed repeatedly and in instances where inappropriate assignments have been made there have been costly consequences. The National Ecological Observatory Network (NEON will use a standardized system based upon an integrative taxonomic foundation to conduct observations of the focal terrestrial insect taxa, ground beetles and mosquitoes, at the continental scale for a 30 year monitoring program. The use of molecular data for continental-scale, multi-decadal research conducted by a geographically widely distributed set of researchers has not been evaluated until this point. The current paper addresses the development of a reference library for verifying species identifications at NEON and the key ways in which this resource will enhance a variety of user communities.

  16. Integrative Taxonomy for Continental-Scale Terrestrial Insect Observations

    Science.gov (United States)

    Gibson, Cara M.; Kao, Rebecca H.; Blevins, Kali K.; Travers, Patrick D.

    2012-01-01

    Although 21st century ecology uses unprecedented technology at the largest spatio-temporal scales in history, the data remain reliant on sound taxonomic practices that derive from 18th century science. The importance of accurate species identifications has been assessed repeatedly and in instances where inappropriate assignments have been made there have been costly consequences. The National Ecological Observatory Network (NEON) will use a standardized system based upon an integrative taxonomic foundation to conduct observations of the focal terrestrial insect taxa, ground beetles and mosquitoes, at the continental scale for a 30 year monitoring program. The use of molecular data for continental-scale, multi-decadal research conducted by a geographically widely distributed set of researchers has not been evaluated until this point. The current paper addresses the development of a reference library for verifying species identifications at NEON and the key ways in which this resource will enhance a variety of user communities. PMID:22666362

  17. Insects of war, terror and torture

    Science.gov (United States)

    From plagues to malaria transmission, insects and other arthropods have been natural or intentional health and agricultural threats to military and civilian populations throughout human history. The success or failure of military operations frequently has been determined by correctly anticipating in...

  18. STATUS OF INSECT DIVERSITY CONSERVATION IN NIGERIA

    African Journals Online (AJOL)

    Timothy Ademakinwa

    With a rapid surge in human population, there has been concomitant increase in anthropogenic threats to biodiversity, especially for ecologically-important groups such as insects. With the loss of about 79% of its forest cover, Nigeria ranked as the nation with the highest rate of forest loss in 2005. How these and other.

  19. Association mapping of plant resistance to insects

    NARCIS (Netherlands)

    Kloth, K.J.; Thoen, H.P.M.; Bouwmeester, H.J.; Jongsma, M.A.; Dicke, M.

    2012-01-01

    Association mapping is rapidly becoming an important method to explore the genetic architecture of complex traits in plants and offers unique opportunities for studying resistance to insect herbivores. Recent studies indicate that there is a trade-off between resistance against generalist and

  20. Insect Pests of Field Crops. MP-28.

    Science.gov (United States)

    Burkhardt, Chris C.

    This document addresses the principles of field crop insect control through biological, mechanical, and chemical processes. Identification, life history, damage, pesticides, pesticide use and environmental considerations are presented for the major pests of corn, alfalfa, beans, small grains, sugar beets, and potatoes. Each section is accompanied…