WorldWideScience

Sample records for surface impoundment modeling

  1. Transport and dispersion of pollutants in surface impoundments: a finite difference model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.

  2. Transport and dispersion of pollutants in surface impoundments: a finite element model

    International Nuclear Information System (INIS)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied

  3. Transport and dispersion of pollutants in surface impoundments: a finite element model

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1980-07-01

    A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.

  4. Closure certification report: TA-35 TSL-125 surface impoundment

    International Nuclear Information System (INIS)

    1991-01-01

    This report summarizes the actions that were taken to clean close the TA-35 TSL-125 surface impoundment Building 125 is used for developing electron guns and related laser assemblies/equipment for a Laser Technology Research Program at the Laboratory. There is no permanent outfall from the surface impoundment; however, the impoundment accidentally overtopped on December 3, 1986, spilling an unknown volume of insulating oil and water into Ten Site Canyon. Sandbags were installed around the surface impoundment on June 25, 1988, to provide additional freeboard in the impoundment and reduce the risk of overtopping during a precipitation event. On July 1, 1988, the impoundment again overtopped releasing an unknown volume of insulating oil and water. Actions taken include removal of waste from the surface impoundment and its associated structures, decontamination of the floor trough and piping inside Building 125, grouting of the piping connecting the floor drain/trough system to the impoundment, decontamination, removal, and disposal of the impoundment liner and sandbags lining the top of the impoundment, and removal and disposal of contaminated soil underlying the impoundment area. Procedures followed to verify that clean closure objectives have been met are also documented in this report. Initial verification was performed through an extensive soil sampling and analysis program

  5. Closure certification report: TA-35 TSL-125 surface impoundment

    International Nuclear Information System (INIS)

    1991-01-01

    This closure report documents closure activities for the TA-35 TSL-125 surface impoundment and associated structures at Los Alamos National Laboratory (the Laboratory). Prior to formal approval of the closure plan, the decision was made to proceed with closure activities to prevent any further releases from the site following informal discussions with New Mexico Environment Department (NMED) personnel. The closure plan is a revision of the previously submitted draft dated July 1988. Clean closure of the TSL-125 site was accomplished through: Removal and proper disposal of all wastes contained within the surface impoundment system; Decontamination and/or removal and proper disposal of the surface impoundment, its associated structures, and contaminated soil underlying the impoundment area; Sampling and analysis of soil to determine the presence and concentrations of any hazardous constituents remaining in the soil at the TSL-125 site; and Demonstration through a risk assessment that any constituents remaining in the soil at the TSL-125 site pose no threat to human health and the environment. All remaining soil concentrations of hazardous constituents were below health-based action levels. Analytical results indicated that benzidine, n-nitrosodimethylamine, and n-nitrosodi-n-propylamine were not detected at or above their limits of quantitation and beryllium was not present at or above its laboratory detection limit. However, the limits of quantitation and detection for these constituents were greater than their calculated health-based action levels. To demonstrate that these constituents were not present, historical data was researched and it was determined that the constituents were not utilized at the Building 125 site. 4 refs., 8 figs., 1 tab

  6. 40 CFR 268.4 - Treatment surface impoundment exemption.

    Science.gov (United States)

    2010-07-01

    ... residues may not be placed in any other surface impoundment for subsequent management. (iv) Recordkeeping... exemption. 268.4 Section 268.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID...), the residues from treatment are analyzed, as specified in § 268.7 or § 268.32, to determine if they...

  7. Erosion protection of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.; Foley, M.G.; Beedlow, P.A.

    1986-09-01

    Pacific Northwest Laboratory (PNL) prepared this report to assist in the design and review of erosion protection works for decommissioned uranium tailings impoundments. The major causes of erosion over the long-term decommissioning period are from rainfall-runoff (overland flow) and stream channel flooding. The method of protection recommended for the impoundment side slopes and site drainage channels is rock riprap. Combinations of vegetation and rock mulch are recommended for the top surface. The design methods were developed from currently available procedures supplemented by field, laboratory, and mathematical model studies performed by PNL. Guidelines for the placement of riprap, inspection, and maintenance are presented. Other subjects discussed are rock selection and testing, slope stability, and overland erosion modeling

  8. UAV Remote Sensing Surveillance of a Mine Tailings Impoundment in Sub-Arctic Conditions

    Directory of Open Access Journals (Sweden)

    Anssi Rauhala

    2017-12-01

    Full Text Available Mining typically involves extensive areas where environmental monitoring is spatially sporadic. New remote sensing techniques and platforms such as Structure from Motion (SfM and unmanned aerial vehicles (UAVs may offer one solution for more comprehensive and spatially continuous measurements. We conducted UAV campaigns in three consecutive summers (2015–2017 at a sub-Arctic mining site where production was temporarily suspended. The aim was to monitor a 0.5 km2 tailings impoundment and measure potential subsidence of tailings. SfM photogrammetry was used to produce yearly topographical models of the tailings surface, which allowed the amount of surface displacement between years to be tracked. Ground checkpoints surveyed in stable areas of the impoundment were utilized in assessing the vertical accuracy of the models. Observed surface displacements were linked to a combination of erosion, tailings settlement, and possible compaction of the peat layer underlying the tailings. The accuracy obtained indicated that UAV-assisted monitoring of tailings impoundments is sufficiently accurate for supporting impoundment management operations and for tracking surface displacements in the decimeter range.

  9. Hydrologic effects of impoundments in Sherburne National Wildlife Refuge, Minnesota

    Science.gov (United States)

    Brown, R.G.

    1984-01-01

    The hydrologic effects of proposed impoundments in Sherburne National Wildlife Refuge were found to be insignificant with respect to both ground- and surface-water flow patterns and water quality. Monitoring of water levels in 23 observation wells and of discharge in the St. Francis River during 1980 and 1981 has shown that ground water in the surf icial aquifer responds quickly to areal recharge and subsequently discharges to the St. Francis River. The impoundment of surface water in the refuge was not found to affect water levels in the refuge significantly. The impoundments may affect ground-water-flow systems beneath and adjacent to the impoundments. Quality of ground and surface water was found to be similar except ground water contained higher concentrations of dissolved nitrite plus nitrate nitrogen than surface water. Phytoplankton removed dissolved nitrite plus nitrate nitrogen from surface water. The effects of impoundments on water quality are expected to be minor.

  10. The Role of Small Impoundments on Flow Alteration Within River Networks

    Science.gov (United States)

    Brogan, C. O.; Keys, T.; Scott, D.; Burgholzer, R.; Kleiner, J.

    2017-12-01

    Numerous water quality and quantity models have been established to illustrate the ecologic and hydrologic effects of large reservoirs. Smaller, unregulated ponds are often assumed to have a negligible impact on watershed flow regimes even though they overwhelmingly outnumber larger waterbodies. Individually, these small impoundments impart merely a fraction of the flow alteration larger reservoirs do; however, a network of ponds may act cumulatively to alter the flow regime. Many models have attempted to study smaller impoundments but rely on selectively available rating curves or bathymetry surveys. This study created a generalized process to model impoundments of varying size across a 58 square mile watershed exclusively using satellite imagery and publicly available information as inputs. With information drawn from public Army Corps of Engineers databases and LiDAR surveys, it was found that impoundment surface and drainage area served as useful explanatory variables, capable of predicting both pond bathymetry and outlet structure area across the 37 waterbodies modeled within the study area. Working within a flow routing model with inputs from the Chesapeake Bay HSPF model and verified with USGS gauge data, flow simulations were conducted with increasing number of impoundments to quantify how small ponds affect the overall flow regime. As the total impounded volume increased, simulations showed a notable reduction in both low and peak flows. Medium-sized floods increased as the network of ponds and reservoirs stabilized the catchment's streamflow. The results of this study illustrate the importance of including ponded waters into river corridor models to improve downstream management of both water quantity and quality.

  11. Run-of-River Impoundments Can Remain Unfilled While Transporting Gravel Bedload: Numerical Modeling Results

    Science.gov (United States)

    Pearson, A.; Pizzuto, J. E.

    2015-12-01

    Previous work at run-of-river (ROR) dams in northern Delaware has shown that bedload supplied to ROR impoundments can be transported over the dam when impoundments remain unfilled. Transport is facilitated by high levels of sand in the impoundment that lowers the critical shear stresses for particle entrainment, and an inversely sloping sediment ramp connecting the impoundment bed (where the water depth is typically equal to the dam height) with the top of the dam (Pearson and Pizzuto, in press). We demonstrate with one-dimensional bed material transport modeling that bed material can move through impoundments and that equilibrium transport (i.e., a balance between supply to and export from the impoundment, with a constant bed elevation) is possible even when the bed elevation is below the top of the dam. Based on our field work and previous HEC-RAS modeling, we assess bed material transport capacity at the base of the sediment ramp (and ignore detailed processes carrying sediment up and ramp and over the dam). The hydraulics at the base of the ramp are computed using a weir equation, providing estimates of water depth, velocity, and friction, based on the discharge and sediment grain size distribution of the impoundment. Bedload transport rates are computed using the Wilcock-Crowe equation, and changes in the impoundment's bed elevation are determined by sediment continuity. Our results indicate that impoundments pass the gravel supplied from upstream with deep pools when gravel supply rate is low, gravel grain sizes are relatively small, sand supply is high, and discharge is high. Conversely, impoundments will tend to fill their pools when gravel supply rate is high, gravel grain sizes are relatively large, sand supply is low, and discharge is low. The rate of bedload supplied to an impoundment is the primary control on how fast equilibrium transport is reached, with discharge having almost no influence on the timing of equilibrium.

  12. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    International Nuclear Information System (INIS)

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided

  13. Technical work plan for Surface Impoundments Operable Unit engineering support studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This document provides a comprehensive work plan which, when utilized as a data collection guide for field activities, will provide the necessary information required to complete a report on geotechnical properties of the sediments contained in the Surface Impoundments Operable Unit at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Detailed guidance is provided for the following activities: collection of samples from the impoundments; compressive strength testing of the raw sediments; compressive strength testing of the structurally modified (lime and cement additives) sediments; testing for sediment physical properties and settling rates; testing for sediment dewatering characteristics; testing for radiation activity during the field work; testing for polymer additions that may enhance settling. The work plan additionally provides guidance and examples for the preparation of documents necessary to establish readiness for safe and satisfactory performance of the field activities. An outline for the format requested for a report of these data is also provided.

  14. Wind erosion of waste impoundments in arid climates and mitigation of dust pollution.

    Science.gov (United States)

    Blight, G E

    2008-12-01

    Wind can erode and disperse fine-grained material from an impoundment of mining, industrial or municipal waste that stands above the level of its surroundings. Such dust dispersion can be a serious nuisance as well as a health hazard to inhabitants and animals in nearby settlements. It can also degrade crops, making them less marketable, and pollute soil, surface water and ground water. Wind can seasonally erode waste impoundments in all types of climate, but the erosion intensifies and persists for more of each year as regional aridity increases. As clouds of dust are often observed billowing across the top surfaces of waste impoundments in dry windy weather, there is a common misconception that dust arises from erosion of the top surface of an impoundment, resulting in much effort and money being misspent on top treatments when in fact the sloped sides of the impoundments are the true source of blown dust. This paper offers a brief review of general waste impoundment wind erosion issues and then focuses in more detail on the mechanics of how wind erodes surfaces of waste impoundments. Recommendations are offered for mitigating the effects of wind-eroded dust.

  15. An experimental approach to determining subsurface leakage from a surface impoundment using a radioisotope tracer

    International Nuclear Information System (INIS)

    Ashwood, T.L.; Story, J.D.; Larsen, I.L.; Schultz, F.J.

    1987-01-01

    Bromine-82, a 35.3-h half-life radionuclide, was used as a tracer to determine the paths and rates of leakage from an unlined, 1,000,000-gal (3,785,000 L), surface impoundment at the Oak Ridge National Laboratory. Since the impoundment is underlain and surrounded by storm sewer and sanitary sewer lines (most of them predating the impoundment), known and suspected leak sites in storm drain catch basins and sanitary sewer manholes were sampled periodically and analyzed for 82 Br. A series of four ground water monitoring wells - three downgradient and one upgradient from the impoundment - were also sampled for 82 Br. Although the catch basin and manhole samples picked up 82 Br in leakage from the impoundment less than 5 h after application of the tracer, the monitoring well samples did not contain detectable levels of the radionuclide. It was concluded that the monitoring wells were sampling groundwater moving through the formation, whereas the storm drains and manholes were sampling water leading rapidly through secondary porosity and along preferred pathways. The decline in tracer concentration as a function of time was used to determine the residence time of water in the pond and hence the flow rate through the pond. This flow rate, when compared with the known outflow rate, indicated that the leakage flow was small. Hence, the main value of the test was to identify rapid leakage pathways. The experiment demonstrates the need for sampling subsurface drain systems as part of an integrated monitoring system for leak detection. The effectiveness of 82 Br as a tracer for rapid leaks was also shown

  16. Protection of uranium tailings impoundments against overland erosion

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.

    1986-01-01

    This study investigates the problems involved in designing protection methods to prevent erosion of a uranium tailings impoundment cover from rainfall and runoff (overland flow) processes. The study addresses the side slopes and top surface as separate elements. The side slopes are more subject to gully erosion and require absolute protection such as that provided by rock riprap. The flatter top surface needs much less protection (vegetation/rock combinations) but some estimate of erosion rates are needed to compare alternatives. A literature review indicated that, currently, procedures are not available for the design of rock riprap to prevent gully erosion. Therefore, rock protection on the side slope will have to be based upon engineering judgment determined by the particular site conditions. The Manning-kinetic equations (velocity and depth of runoff) were investigated as a possible aid to the design of gully erosion protection. Guidelines are suggested for the use of rock riprap to prevent gully erosion. Three mathematical models were used to compute erosion rates for the top surface of a hypothetical tailings impoundment. The results recommend that one or possibly both of the regression models could be used to evaluate preliminary protection designs for the top surface. A physical process simulation model should be used for the final design. 30 refs., 13 figs., 16 tabs

  17. 30 CFR 816.84 - Coal mine waste: Impounding structures.

    Science.gov (United States)

    2010-07-01

    ... control, the probable maximum precipitation of a 6-hour precipitation event, or greater event as specified.... Runoff from areas above the disposal facility or runoff from surface of the facility that may cause...-hour design precipitation event. (e) Impounding structures constructed of or impounding coal mine waste...

  18. Post-remediation action radiological report for Surface Impoundments C (3539) and D (3540) at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-12-01

    During August and September 1998, Bechtel Jacobs Company LLC performed a remedial action within Impoundments 3539 and 3540 (Impoundments C and D, respectively) in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision (ROD) for the Surface Impoundments Operable Unit. The remedial action included removal of sediments and 0.1 ft of subimpoundment soil. A post-remedial action radiological survey was conducted to provide data to support the Bethel Valley ROD. Data was obtained from (1) a walkover survey for residual gamma radiation on the base of the impoundments, (2) smear surveys for transferable contamination on remaining riprap, and (3) representative sampling of subimpoundment soils. Walkover surveys identified no locations outside the impoundments with gamma exposure levels greater than three times background levels. Smear surveys detected no removable contamination above release limits as specified in 10 CFR 835, Appendix D. Subimpoundment soil samples quantified low levels of residual contamination

  19. Influence of lake surface area and total phosphorus on annual bluegill growth in small impoundments of central Georgia

    Science.gov (United States)

    Jennings, Cecil A.; Sundmark, Aaron P.

    2017-01-01

    The relationships between environmental variables and the growth rates of fishes are important and rapidly expanding topics in fisheries ecology. We used an informationtheoretic approach to evaluate the influence of lake surface area and total phosphorus on the age-specific growth rates of Lepomis macrochirus (Bluegill) in 6 small impoundments in central Georgia. We used model averaging to create composite models and determine the relative importance of the variables within each model. Results indicated that surface area was the most important factor in the models predicting growth of Bluegills aged 1–4 years; total phosphorus was also an important predictor for the same age-classes. These results suggest that managers can use water quality and lake morphometry variables to create predictive models specific to their waterbody or region to help develop lake-specific management plans that select for and optimize local-level habitat factors for enhancing Bluegill growth.

  20. Results of the radiological and chemical characterization of surface impoundments 3539 and 3540 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Winton, W.; Dean, R.A.; Coe, R.H. III

    1998-03-01

    A radiological and chemical characterization survey of impoundments 3539 and 3540 at the Oak Ridge National Laboratory (ORNL) was conducted during December 1997. Impoundments 3539 and 3540 are located in the Surface Impoundments Operable Unit (SIOU) of Waste Area Group 1. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of the Department of Energy (DOE) Office of Environmental Restoration. Sampling was conducted in order to quantify the presence of polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) constituents, and other contaminants of interest in support of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation for the SIOU> The survey included collection of sediment/clay samples, quality control blank water samples and equipment rinsate samples for chemical and radiological analysis. Results show the samples contain traces of various organic, inorganic, and radioactive materials. Of particular interest are PCB values which demonstrate the impoundments are not regulated under the Toxic Substances Control Act

  1. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    Science.gov (United States)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  2. Methodologies for evaluating long-term stabilization designs of uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Nelson, J.D.; Abt, S.R.; Volpe, R.L.; Van Zye, D.; Hinkle, N.E.; Staub, W.P.

    1986-06-01

    Uranium mill tailings impoundments require long-term (200 to 1000 years) stabilization. This report reviews currently available methodologies for evaluating factors that can have a significant influence on tailings stabilization and develops methodologies in technical areas where none presently exist. Mill operators can use these methodologies to assist with (1) the selection of sites for mill tailings impoundments, (2) the design of stable impoundments, and (3) the development of reclamation plans for existing impoundments. These methodologies would also be useful for regulatory agency evaluations of proposals in permit or license applications. Methodologies were reviewed or developed in the following technical areas: (1) prediction of the Probable Maximum Precipitation (PMP) and an accompanying Probable Maximum Flood (PMF); (2) prediction of the stability of local and regional fluvial systems; (3) design of impoundment surfaces resistant to gully erosion; (4) evaluation of the potential for surface sheet erosion; (5) design of riprap for protecting embankments from channel flood flow and overland flow; (6) selection of riprap with appropriate durability for its intended use; and (7) evaluation of oversizing required for marginal quality riprap

  3. Design and construction of an impoundment for precious metal mill tailings

    International Nuclear Information System (INIS)

    Moldt, S.F.; Miller, R.G.; Johnson, K.

    1985-01-01

    An engineering study and design of impoundments for the disposal of mill tailings is presented. The site is located in central Nevada, and the mill will incorporate conventional flotation followed by a carbon-in-pulp cyanide process for extraction of gold from ore. Mill process waste will be generated as flotation tailings and cyanide residue. Permeable site soils and environmental considerations required the prevention of infiltration of cyanide residue leachate into the subgrade. Geochemical modeling of flotation tailings indicated the potential for high concentration of iron and nickel to be present in the flotation tailings leachate. On-site soils were optimized for use in construction of the separate flotation tailings and cyanide residue impoundments. Embankments were constructed on compacted on-site sandy gravels. The cyanide residue impoundment was designed using a four-layer liner, utilizing all on-site soils and chemical soil additives. The liner consists of a leachate collection system over a low-permeability layer, which in turn is underlain by a leak detection drainage blanket and a low permeability subliner. The geochemical modeling performed in the analysis indicated that placement of a thin layer of oxidized surface soils, high in soluble sulfates, on the bottom of the flotation tailings impoundment would be sufficient to react with tailings leachate and cause precipitation of ferric oxide and the associated removal of nickel, permitting flotation tailings leachate to dilute acceptably with natural groundwater

  4. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  5. Probabilistic risk assessment for the Sandia National Laboratories Technical Area V Liquid Waste Disposal System surface impoundments

    International Nuclear Information System (INIS)

    Dawson, L.A.; Eidson, A.F.

    1996-01-01

    A probabilistic risk assessment was completed for a former radioactive waste disposal site. The site, two unlined surface impoundment, was designed as part of the Liquid Waste Disposal System (LWDS) to receive radioactive effluent from nuclear reactors in Technical Area-V (TA-V) at Sandia National Laboratories/New Mexico (SNL/NM). First, a statistical comparison of site sampling results to natural background, using EPA methods, and a spatial distribution analysis were performed. Risk assessment was conducted with SNL/NM's Probabilistic Risk Evaluation and Characterization Investigation System model. The risk assessment indicated that contamination from several constituents might have been high enough to require remediation. However, further analysis based on expected site closure activities and recent EPA guidance indicated that No Further Action was acceptable

  6. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Arvind Murali; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa [gamma]-proteobacteria, [alpha]-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the [alpha]-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments.

  7. Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-12-01

    Hydraulic fracturing for natural gas extraction from shale produces waste brine known as flowback that is impounded at the surface prior to reuse and/or disposal. During impoundment, microbial activity can alter the fate of metals including radionuclides, give rise to odorous compounds, and result in biocorrosion that complicates water and waste management and increases production costs. Here, we describe the microbial ecology at multiple depths of three flowback impoundments from the Marcellus shale that were managed differently. 16S rRNA gene clone libraries revealed that bacterial communities in the untreated and biocide-amended impoundments were depth dependent, diverse, and most similar to species within the taxa γ-proteobacteria, α-proteobacteria, δ-proteobacteria, Clostridia, Synergistetes, Thermotogae, Spirochetes, and Bacteroidetes. The bacterial community in the pretreated and aerated impoundment was uniform with depth, less diverse, and most similar to known iodide-oxidizing bacteria in the α-proteobacteria. Archaea were identified only in the untreated and biocide-amended impoundments and were affiliated to the Methanomicrobia class. This is the first study of microbial communities in flowback water impoundments from hydraulic fracturing. The findings expand our knowledge of microbial diversity of an emergent and unexplored environment and may guide the management of flowback impoundments. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. 30 CFR 816.49 - Impoundments.

    Science.gov (United States)

    2010-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  9. 50 CFR 28.42 - Impounding of domestic animals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Impounding of domestic animals. 28.42... VIOLATIONS OF PARTS 25, 26, AND 27 Impoundment Procedures § 28.42 Impounding of domestic animals. (a) Any animal trespassing on the lands of any national wildlife refuge may be impounded and disposed of in...

  10. Coal combustion waste management at landfills and surface impoundments 1994-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Ranek, N. L.; Environmental Science Division

    2006-09-08

    On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data

  11. Design, permitting, and construction issues associated with closure of the Panna Maria uranium tailings impoundment

    International Nuclear Information System (INIS)

    Strachan, C.L.; Raabe, K.L.

    1997-01-01

    In 1992, Panna Maria Uranium Operations (PMUO) initiated licensing and engineering activities for closure of the Panna Maria mill and 150-acre tailings impoundment located in southeast Texas. Closure of the tailings impoundment is permitted by license amendment through the Texas Natural Resources Conservation Commission (TNRCC), and based on closure criteria outlined in Texas regulations. The closure plan for the Panna Maria tailings impoundment was submitted for Texas regulatory agency review in April 1993, with details of the closure plan modified in 1994, 1995, and 1996. The closure plan included a multi-layered cover over the regraded tailings surface which was designed for long-term isolation of tailings, reduction of radon emanation to regulated levels, and reduction of infiltration to TNRCC-accepted levels. The cover and embankment slope surfaces and surrounding areas were designed to provide acceptable erosional stability as compared to runoff velocities from the Probable Maximum Precipitation event. Cover materials were selected from on-site materials and evaluated for suitability based on permeability, radon attenuation, and soil dispersivity characteristics. Off-site materials were used when necessary. The cover over the tailings has a maximum slope of 0.5 percent, and the regraded embankment slopes outside the perimeter of the impoundment have a maximum slope of 20 percent. All reclaimed slopes are covered with topsoil and revegetated. A riprap-lined channel is to be used to convey runoff from within the perimeter of the reclaimed impoundment to the north of the impoundment

  12. 36 CFR 262.11 - Impounding of dogs.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Impounding of dogs. 262.11... ENFORCEMENT SUPPORT ACTIVITIES Impoundments and Removals § 262.11 Impounding of dogs. Any dog found running at large in a part of the National Forest System, which has been closed to dogs running at large, may be...

  13. A generic model of contaminant migration from uranium tailings impoundments

    International Nuclear Information System (INIS)

    Shepherd, T.A.; Brown, S.E.

    1982-01-01

    This paper presents an analytical hydrogeochemical model based upon acid consumption-neutralization front movement. The development of contaminant plumes is discussed and distinct zones within these plumes are identified and characterized. The most important process influencing the rate and extent of contaminant migration at acid-leach uranium tailings impoundments is the neutralization of seepage water by soils along ground water flow paths. The chemical characteristics of the ground water is determined in order to identify and characterize zones within migrating plumes of tailings-derived water. It is concluded that the characterization of specific zones is useful in the interpretation of existing conditions, in the evaluation of future migration, and in the determination of appropriate models for the specific situation

  14. 49 CFR 193.2181 - Impoundment capacity: LNG storage tanks.

    Science.gov (United States)

    2010-10-01

    ... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Impoundment Design and Capacity § 193.2181 Impoundment capacity: LNG storage tanks. Each impounding system serving an LNG storage tank must have a... 49 Transportation 3 2010-10-01 2010-10-01 false Impoundment capacity: LNG storage tanks. 193.2181...

  15. 30 CFR 817.84 - Coal mine waste: Impounding structures.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Impounding structures. 817.84... ACTIVITIES § 817.84 Coal mine waste: Impounding structures. New and existing impounding structures constructed of coal mine waste or intended to impound coal mine waste shall meet the requirements of § 817.81...

  16. Responsiveness summary for the engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring Chemical Plant Area

    International Nuclear Information System (INIS)

    Maxey, M.L.; MacDonell, M.M.; Peterson, J.M.

    1991-01-01

    The US Department of Energy (DOE) issued the Engineering Evaluation/Cost Analysis for the Proposed Management of Contaminated Water Impounded at the Weldon Spring Chemical Plant Area in July 1990. The engineering evaluation/cost analysis (EE/CA) examines various alternatives for the proposed action to manage contaminated surface water impounded at the chemical plant area. The primary objective is to minimize potential migration of contaminants from surface impoundments to the local environment. The EE/CA addresses water currently impounded in four waste raffinate pits and two small ponds and water that will be impounded in the future as a result of upcoming response actions. Radioactive and chemical contaminants are migrating from the currently impounded water to underlying on-site groundwater via seepage and to off-site surface water via runoff. The treatment process and facilities that will be provided for management of currently impounded water can subsequently be used to manage other contaminated water in the future. Based on the evaluation of various alternatives in the EE/CA, DOE determined that the best approach for managing surface water impounded at the chemical plant area would be to remove contaminants from the water and release the treatment water to the Missouri River via a natural drainage channel. To establish requirements for releasing this treated water, DOE applied for a modification to its existing discharge permit from the Missouri Department of Natural Resources (DNR) under the National Pollutant Discharge Elimination System (NPDES) program. The EE/CA provided a major source of technical input to the application for modifying the permit. This responsiveness summary has been prepared to address the major issues identified in oral and written comments on the proposed action. 1 tab

  17. Effects of rock riprap design parameters on flood protection costs for uranium tailings impoundments

    International Nuclear Information System (INIS)

    Ecker, R.M.

    1984-07-01

    The Pacific Northwest Laboratory (PNL) is studying the problem of long-term protection of earthen covers on decommissioned uranium tailings impoundments. The major erosive forces acting on these covers will be river flooding and overland flow from rainfall-runoff. For impoundments adjacent to rivers, overbank flooding presents the greater potential for significant erosion. To protect the earthen covers against flood erosion, rock riprap armoring will be placed over the cover surface. Because of the large size rock usually required for riprap, the quarrying, transport, and placement of the rock could be a significant part of the decommissioning cost. This report examines the sensitivity of riprap protection costs to certain design parameters at tailings impoundments. The parameters include flood discharge, riprap materials, impoundment side slopes, and an added safety factor. Two decommissioned tailings impoundments are used as case studies for the evaluation. These are the Grand Junction, Colorado, impoundment located adjacent to the Colorado River and the Slickrock, Colorado, impoundment located adjacent to the Dolores River. The evaluation considers only the cost of riprap protection against flood erosion. The study results show that embankment side slope and rock specific gravity can have optimum values or ranges at a specific site. For both case study sites the optimum side slope is about 5H:1V. Of the rock sources considered at Grand Junction, the optimum specific gravity would be about 2.50; however, an optimum rock specific gravity for the Slickrock site could not be determined. Other results indicate that the arbitrary safety factor usually added in riprap design can lead to large increases in protection costs. 22 references, 19 figures, 15 tables

  18. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  19. Results of the measurement survey of elevation and environmental media in surface impoundments 3513 (B) and 3524 (A) at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Coe, R.H.C. III; Lawrence, J.D.; Winton, W.

    1998-07-01

    A measurement survey of the elevation and environmental media in impoundments 3513 (B) and 3524 (A) at the Oak Ridge National Laboratory (ORNL) was conducted during April 1998. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of Bechtel Jacobs Company. Measurement activities were conducted at selected locations in order to determine the depth and appearance of the sediment and describe the clay underlying the impoundments prior to remediation. The survey was a follow-up to a previous elevation survey. The survey included the following: collection of sediment/clay cores from selected locations in each impoundment; measurement and documentation of the elevation at the water surface, at the top of sediment, at the top of clay, and at the bottom of each core; visual inspection of each core by a soil scientist to confirm the presence of clay and not material such as fly ash and soda lime compacted over the last 50 years; measurement and documentation of the background beta-gamma radiation level at the time and location of collection of each core, the highest beta-gamma level along the sediment portion of each core, and the highest beta-gamma level along the clay portion of each core; measurement and documentation of the length of the clay and of the sediment portion of each core; photographic documentation of each core; and replacement of each core in the impoundment

  20. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  1. Effects of seasonal drawdowns on fish assemblages in sections of an impounded river-canal system in upstate New York

    Science.gov (United States)

    George, Scott D.; Baldigo, Barry P.; Wells, Scott M

    2016-01-01

    The Mohawk River and New York State Barge Canal run together as a series of permanent and temporary impoundments for most of the distance between Rome and Albany, New York. The downstream or lower section is composed of two permanent impoundments, the middle section of a series of temporary (seasonal) impoundments, and the upper section of a series of permanent impoundments. In the middle section, movable dams are lifted from the water during winter and the wetted surface area decreases by 36–56%. We used boat electrofishing during spring 2014 and 2015 to compare the relative abundance of fish populations and the composition of fish assemblages between the permanently and seasonally impounded sections of the Barge Canal and to infer the effects of the two flow management practices. A total of 3,264 individuals from 38 species were captured, and total catch per unit effort (CPUE) ranged from 46.0 to 134.7 fish/h at sites in the seasonally impounded section, compared with 140.0–342.0 fish/h in the permanent lower section and 89.0–282.0 fish/h in the permanent upper section. The amount of drawdown explained 55% of the variation in total CPUE and was a highly significant predictor variable. Mean total CPUE in the seasonally impounded section was significantly lower (by about 50%) than that in either permanently impounded section, and the assemblage composition differed significantly between sections. The relative abundance of many lentic species was markedly lower in the seasonally impounded section, while the relative abundance of several native cyprinids and the percentage of individuals belonging to species that are native to the watershed was greater in this section. Overall, these findings suggest that winter dam removal in impounded rivers may reduce the abundance of fish but may also create more natural riverine conditions that favor some native species.

  2. Dewatering tailings impoundments : interior drains

    International Nuclear Information System (INIS)

    Charlie, W.A.; Doehring, D.O.; Durnford, D.S.

    1984-01-01

    For the design of a new uranium tailings impoundment in the western United States, it was proposed that an interior drainage system be considered to economically and reliably minimize potential short- and long-term environmental impacts. The objectives were to decrease the effective hydraulic head on the clay liner, to dewater and stabilize the tailings, and to increase the amount of water recycled to the mill. In addition, desaturation of the impoundment would induce capillary pressure (negative porewater pressure), further reducing the potential movement of dissolved pollutants. This paper presents saturated and unsaturated seepage principles and reviews the concept, criteria and design of the various interior drainage systems considered

  3. Distribution and migration of pesticide residues in mosquito control impoundments St. Lucie County, Florida, USA

    Science.gov (United States)

    Parkinson, R. W.; Wang, T. C.; White, J. R.; David, J. R.; Hoffman, M. E.

    1993-09-01

    This project was designed to: (1) document the distribution and migration of organochlorine pesticide residues within marsh substrates of 18 St. Lucie County mosquito control impoundments located along the Indian River Lagoon estuary, and (2) evaluate the impact of water management techniques on residue mobility. Our results indicate that detectible concentrations of organochlorine compounds, applied between the late 1940s and early 1950s, are present in 16 of the 18 St. Lucie County mosquito control impoundments. These compounds are primarily restricted to the surficial, organic-rich wetland sediment, which, based upon geotechnical analysis, was exposed to the atmosphere at a time when the impoundments were subjected to pesticide treatment. Contaminated sediments are present below the surficial, organic-rich layer, suggesting that some vertical migration of pesticides has occurred. It is unlikely that leaching associated with the downward percolation of impounded water was responsible for this migration as pesticide residues were never detected within the in situ pore waters. An alternative explanation is that biological processes (e.g., rooting, burrowing) facilitated the downward flux of organochlorine compounds into sediment horizons not subjected to direct treatment. Eighty-eight surface water samples obtained from two impoundments subjected to contrasting water management techniques were analyzed for pesticide content. None of the surficial water samples collected in association with these impoundments contained detectible concentrations of organochlorine compounds. These samples were unfiltered and contained as much as 25 mg/1 of particulate organic matter. This suggests that the currently preferred management technique (RIM), which is designed to maintain water quality, limit mosquito production, and provide for ecological continuity, does not hydraulically mobilize pesticide residues into the Indian River Lagoon estuary.

  4. Cumulative impoundment evaporation in water resource management within the mid-Atlantic: A case study in Virginia

    Science.gov (United States)

    Scott, D.; Burgholzer, R.; Kleiner, J.; Brogan, C. O.; Julson, C.; Withers, E.

    2017-12-01

    Across the eastern United States, successful management of water resources to satisfy the competing demands for human consumption, industry, agriculture, and ecosystems requires both water quality and water quantity considerations. Over the last 2 decades, low streamflows during dry summers have increased scrutiny on water supply withdrawals. Within Virginia, a statewide hydrologic model provides quantitative assessments on impacts from proposed water withdrawals to downstream river flow. Currently, evaporative losses are only accounted for from the large reservoirs. In this study, we sought to provide a baseline estimate for the cumulative evaporation from impoundments across all of the major river basins in Virginia. Virginia provides an ideal case study for the competing water demands in the mid-Atlantic region given the unique tracking of water withdrawals throughout the river corridor. In the over 73,000 Virginia impoundments, the cumulative annual impoundment evaporation was 706 MGD, or 49% of the permitted water withdrawal. The largest reservoirs (>100 acres) represented over 400 MGD, and 136 MGD for the smaller impoundments (water loss (evaporation + demand), with some areas where impoundment evaporation was greater than human water demand. Seasonally, our results suggest that cumulative impoundment evaporation in some watersheds greatly impacts streamflow during low flow periods. Our results demonstrate that future water supply planning will require not only understanding evaporation within large reservoirs, but also the thousands of small impoundments across the landscape.

  5. A model for evaluating effects of climate, water availability, and water management on wetland impoundments--a case study on Bowdoin, Long Lake, and Sand Lake National Wildlife Refuges

    Science.gov (United States)

    Tangen, Brian A.; Gleason, Robert A.; Stamm, John F.

    2013-01-01

    Many wetland impoundments managed by the U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge System throughout the northern Great Plains rely on rivers as a primary water source. A large number of these impoundments currently are being stressed from changes in water supplies and quality, and these problems are forecast to worsen because of projected changes to climate and land use. For example, many managed wetlands in arid regions have become degraded owing to the long-term accumulation of salts and increased salinity associated with evapotranspiration. A primary goal of the USFWS is to provide aquatic habitats for a diversity of waterbirds; thus, wetland managers would benefit from a tool that facilitates evaluation of wetland habitat quality in response to current and anticipated impacts of altered hydrology and salt balances caused by factors such as climate change, water availability, and management actions. A spreadsheet model that simulates the overall water and salinity balance (WSB model) of managed wetland impoundments is presented. The WSB model depicts various habitat metrics, such as water depth, salinity, and surface areas (inundated, dry), which can be used to evaluate alternative management actions under various water-availability and climate scenarios. The WSB model uses widely available spreadsheet software, is relatively simple to use, relies on widely available inputs, and is readily adaptable to specific locations. The WSB model was validated using data from three National Wildlife Refuges with direct and indirect connections to water resources associated with rivers, and common data limitations are highlighted. The WSB model also was used to conduct simulations based on hypothetical climate and management scenarios to demonstrate the utility of the model for evaluating alternative management strategies and climate futures. The WSB model worked well across a range of National Wildlife Refuges and could be a valuable tool for USFWS

  6. Modelling of contaminant migration in acidic groundwater plumes at uranium tailings impoundments: ADNEUT3

    International Nuclear Information System (INIS)

    Cherry, J.A.; Morin, K.A.; Dubrovsky, N.M.

    1984-06-01

    This report describes the creation and application of ADNEUT3, the latest addition to the ADNEUT (Acid-Drainage NEUTralization) family of computer programs for simulating acid-drainage transport and neutralization. The creation of ADNEUT3 involved the expansion of ADNEUT1 to allow variable input conditions such as changing input solution with time, variable initial amounts of minerals through the simulated streamtube, variable velocities through the streamtube, and variable solubilities for relevant minerals dependent on aqueous chemical composition. Concepts for simulating acid-drainage neutralization are reviewed and ADNEUT3 is then applied to a field-study site of acidic contaminant migration from the Nordic Main uranium-tailings impoundment near Elliot Lake, Ontario. A sensitivity study is first implemented to calibrate ADNEUT3 to the results of the 1979 to 1983 field studies. Then ADNEUT3 is used to define probable past conditions at the site which are not reliably known. In particular, ADNEUT3 is used to help identify: 1) the approximate year when acidic seepage began leaving the tailings impoundment (1966-1967), 2) the past chemical composition of the seepage (somewhat more acidic for a short period of time), and 3) the location of the source area within the tailings for the acidic seepage (near the impoundment dam, close to the field site). Finally, ADNEUT3 is used to predict future contaminant migration. Results indicate that hundreds of years are required under present conditions for the most acidic water with associated high levels of contaminants to migrate about 100 m from the tailings impoundment. The cause of this slow movement is the significant neutralization capacity of the aquifer. If acid production within the tailings decreases in the future, migration rates of contaminants will also decrease

  7. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Science.gov (United States)

    2013-01-01

    Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb), and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn) considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3-) with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied impoundments were found to

  8. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2013-01-01

    Full Text Available Abstract Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb, and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3- with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied

  9. The geo-environmental design of a coal refuse impoundment in Illinois

    International Nuclear Information System (INIS)

    Ripp, B.J.

    1997-01-01

    The coal refuse impoundment discussed was one of the first permitted under new regulatory standards within the State of Illinois. The new standards go beyond the geotechnial stability of the structure and must address the groundwater quality of the area and the impact of the impoundment on the groundwater system. The geotechnial design of the coal refuse impoundment dam and associated structures had its own particular challenges such as: 1) the construction of the structure over mined workings; 2) the close proximity of seismically active fault zones; and 3) the embankment configuration being controlled by the material balance of the mine refuse. The implementation of the groundwater protection plan included: 1) incorporating the groundwater quality standards and sampling protocols of several state agencies while the standards were being drafted; 2) sampling of the potential sources of groundwater impact; 3) establishing background levels; and 4) establishing the groundwater class. An initial groundwater transport model was developed and used as the basis for recommending a groundwater monitoring design in place of constructing a soil or synthetic liner. 15 refs., 2 figs., 3 tabs

  10. Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using instrumentation data and numerical modeling

    Directory of Open Access Journals (Sweden)

    Mohammad Rashidi

    2017-08-01

    Full Text Available In this study, the behavior of Gavoshan dam was evaluated during construction and the first impounding. A two-dimensional (2D numerical analysis was conducted based on a finite difference method on the largest cross-section of the dam using the results of instrument measurements and back analysis. These evaluations will be completed in the case that back analysis is carried out in order to control the degree of the accuracy and the level of confidence of the measured behavior since each of the measurements could be controlled by comparing it to the result obtained from the numerical model. Following that, by comparing the results of the numerical analysis with the measured values, it is indicated that there is a proper consistency between these two values. Moreover, it was observed that the dam performance was suitable regarding the induced pore water pressure, the pore water pressure ratio ru, settlement, induced stresses, arching degree, and hydraulic fracturing probability during the construction and initial impounding periods. The results demonstrated that the maximum settlement of the core was 238 cm at the end of construction. In the following 6 years after construction (initial impounding and exploitation period, the accumulative settlement of the dam was 270 cm. It is clear that 88% of the total settlement of the dam took place during dam construction. The reason is that the clay core was smashed in the wet side, i.e. the optimum moisture content. Whereas the average curving ratio was 0.64 during dam construction; at the end of the initial impounding, the maximum amount of curving ratio in the upstream was 0.81, and the minimum (critical amount in the downstream was 0.52. It was also concluded that this dam is safe in comparison with the behaviors of other similar dams in the world.

  11. Investigation, assessment and remediation of the water pathway in the surroundings of the Culmitzsch A tailings impoundment

    International Nuclear Information System (INIS)

    Schulze, G.; Paul, M.; Priester, J.; Schoepfer, C.

    1998-01-01

    Several large tailings impoundments in Saxony and Thuringia are the result of the extensive uranium mining and milling in Eastern Germany after World War II. The Culmitzsch tailings pond in Eastern Thuringia was constructed within a former uranium open pit mine and is located within the Culmitzsch trench fault. The tailings impoundment includes two ponds (Culmitzsch A and B) which are separated by an internal dam with an impervious core. The Culmitzsch A pond covers an area of 158 ha, the maximum tailings thickness is 70 m. Between this pond (elevation of up to 340 m above sea-level) and the Lerchenbach creek (265.. 280 m above sea-level) a steep gradient exists. So the valley of the Lerchenbach is the general discharge area for the seepage of the pond which is a result of dewatering by gravity and consolidation. The seepage water migrates through the southern dam of the impoundment and through permeable layers which are in contact with the tailings. About 400 groundwater wells were installed within three aquifers in order to clarify the flow direction and the degree of contamination of the groundwater as well as to investigate the geohydraulic properties of the rocks in the surroundings of the pond. Based on the results of this investigation programme a three-dimensional hydrogeological model was built up which reflects the general relationships between the pond and its geological setting as well as the water balance of the whole system. Presently a catchment system exists which gathers all surface waters with significant uranium and salt concentrations. Moreover dewatering wells on the beach zone of the pond and catchment wells in the downstream area of the impoundment have been installed. Before being released to the receiving streams seepage and freewater are treated in a two-step water treatment plant in order to decrease their uranium, radium and arsenic contents. (orig.) [de

  12. 25 CFR 700.727 - Impoundment and disposal of unauthorized livestock.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Impoundment and disposal of unauthorized livestock. 700... RELOCATION PROCEDURES New Lands Grazing § 700.727 Impoundment and disposal of unauthorized livestock. Unauthorized livestock within any range unit of the New Lands which are not removed therefrom within the...

  13. 25 CFR 168.16 - Impoundment and disposal of unauthorized livestock.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Impoundment and disposal of unauthorized livestock. 168... REGULATIONS FOR THE HOPI PARTITIONED LANDS AREA § 168.16 Impoundment and disposal of unauthorized livestock. Unauthorized livestock within any range unit of the Hopi Partitioned Lands which are not removed therefrom...

  14. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    Energy Technology Data Exchange (ETDEWEB)

    Francis, C. W.; Stansfield, R. G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, /sup 90/Sr, /sup 137/Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either /sup 90/Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites.

  15. Groundwater monitoring at three Oak Ridge National Laboratory inactive waste impoundments: results after one year

    International Nuclear Information System (INIS)

    Francis, C.W.; Stansfield, R.G.

    1986-10-01

    To determine if the migration of potential contaminants from three inactive waste impoundments at Oak Ridge National Laboratory poses a threat to groundwater quality, at least one upgradient groundwater monitoring well and threee downgradient monitoring wells were installed at each impoundment in early 1985. These three unlined impoundments, formerly used to collect and, in some instances, treat wastewater are: the 3513 impoundment; the Old Hydrofracture Facility (OHF) impoundment; and the Homogeneous Reactor Experimnt No. 2 impoundment. Groundwater samples were collected quarterly for one year. Analyses were conducted for the groundwater protection parameters promulgated by the Resource Conservation and Recovery Act. The groundwater samples were also analyzed for polychlorinated biphenyls, copper, nickel, zinc, 90 Sr, 137 Cs, and tritium. The contaminants found most often to affect groundwater quality at all three waste impoundments were radionuclides. For example, mean concentrations of gross beta and gross alpha activity exceeded drinking water limits at all three sites. The gross beta limit was exceeded at the 3513 and OHF impoundments by either 90 Sr or tritium levels. At the 3513 impoundment, there was substantial evidence that the downgradient groundwater has been contaminated by chromium and lead and possibly by halogenated organic compounds. At the OHF impoundment, the mean level of tritium measured in the upgradient well (about 91,000 Bq/L as compared with 80,000 Bq/L in the downgradient wells) indicated that the groundwater quality has been affected by the radioactive wastes buried in the low-level radioactive waste burial ground solid waste storage area-5 upgradient of the impoundment. Testing for groundwater contamination, disclosed statistically significant contamination at all three sites

  16. Characterization plan for the waste holding basin (3513 impoundment)

    International Nuclear Information System (INIS)

    Stansfield, R.G.; Francis, C.W.

    1986-09-01

    US Department of Energy (DOE) facilities are required to comply fully with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established the remedial action program, to provide comprehensive management of areas where past research, development, and waste management activities have been conducted and have resulted in residual contamination of facilities or the environment. One of the objectives of this program is to define the extent of contamination at these sites. The intent is to document the known environmental characteristics of the sites and identify the additional actions, such as sampling, analytical measurements, and modeling, necessary to confirm contamination and the possible migration of contaminants from the sites. One of these sites is the waste holding basin (3513 impoundment). The 3513 impoundment is an unlined waste settling basin constructed in 1944 for collection of ORNL wastewater before its discharge into White Oak Creek. Operation of the facility ceased in 1976 when a new process waste treatment plant came into operation. Considerable site-specific environmental information has been developed over the years relative to the type and quantities of radionuclides and hazardous substances contained in the pond water and sediment. The concentrations and patterns of distribution for many of the radionuclides in the aquatic biota as well as for the terrestrial plants growing on the berm of the impoundment have been determined by DOE ecological studies. Recently, some data were collected that evaluate the extent of contaminant movement to the groundwater. Results from these studies are summarized in this report. Also included in this report is an outline of additional tasks needed to obtain the necessary information to model the transport and dose pathways of hazardous substances from the site

  17. Evaluation of Major Dike-Impounded Ground-Water Reservoirs, Island of Oahu

    Science.gov (United States)

    Takasaki, Kiyoshi J.; Mink, John Francis

    1985-01-01

    Ground-water reservoirs impounded by volcanic dikes receive a substantial part of the total recharge to ground water on the island of Oahu because they generally underlie the rainiest areas. These reservoirs accumulate the infiltration from rainfall, store it temporarily, and steadily leak it to abutting basal reservoirs or to streams cutting into them. The dike reservoirs have high hydraulic heads and are mostly isolated from saline water. The most important and productive of the dike-impounded reservoirs are in an area of about 135 square miles in the main fissure zone of the Koolau volcano where the top of the dike-impounded water reaches an altitude of at least 1,000 feet. Water is impounded and stored both above and below sea level. The water stored above sea level in the 135 square mile area has been roughly estimated at 560 billion gallons. In comparison, the water stored above sea level in reservoirs underlying a dike-intruded area of about 53 square miles in the Waianae Range has been roughly estimated at 100 billion gallons. Storage below sea level is indeterminable, owing to uncertainties about the ability of the rock to store water as dike density increases and porosity decreases. Tunnels, by breaching dike controls, have reduced the water stored above sea level by at least 50 billion gallons in the Koolau Range and by 5 1/2 billion gallons in the Waianae Range, only a small part of the total water stored. Total leakage from storage in the Koolau Range has been estimated at about 280 Mgal/d (million gallons per day). This estimated leakage from the dike-impounded reservoirs makes up a significant part of the ground-water yield of the Koolau Range, which has been estimated to range from 450 to 580 Mgal/d. The largest unused surface leakage is in the Kaneohe, Kahana, and Punaluu areas, and the largest unused underflow occurs in the Waialee, Hauula-Laie, Punaluu, and Kahana areas. The unused underflow leakage is small in areas near and east of Waialae, but

  18. 30 CFR 817.49 - Impoundments.

    Science.gov (United States)

    2010-07-01

    ... runoff from the design precipitation event when it is demonstrated by the operator and certified by a... constructed to safely pass the applicable design precipitation event specified in paragraph (a)(9)(ii) of this... this section, the required design precipitation event for an impoundment meeting the spillway...

  19. French Modular Impoundment: Final Cost and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drown, Peter [French Development Enterprises, LLC, North Billerica, MA (United States); French, Bill [French Development Enterprises, LLC, North Billerica, MA (United States)

    2017-05-17

    This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)

  20. Evaluation of Co and Cr mobility in soil profiles collected in a scrapyard of impounded vehicles

    International Nuclear Information System (INIS)

    Lange, Camila N.; Figueiredo, Ana Maria G.; Enzweiler, Jacinta

    2015-01-01

    The number of motor vehicles in urban environments has increased dramatically in the past years. As a result, so has the number of impounded and end-of-life vehicles. Car wastes can have a very high metal content, which can cause important environmental impacts to the soil where these vehicles are kept. Most Brazilian vehicle impound scrapyards are currently operating at their maximum capacity and soils may have become contaminated by past or current vehicle handling practices. Most of these areas do not present an impermeable surface. The level of soil contamination with heavy metals depends on the type of soil, climate and management practices. Metals, such as Co and Cr, that are present in many auto-parts, may be considered potentially toxic elements in these areas. The aim of this study was to evaluate Co and Cr levels and behavior in soil profiles located in a scrapyard of impounded vehicles of Ribeirao Pires-SP city. For this purpose, samples from distinct horizons of three soil profiles were collected. Element concentrations were determined by Instrumental Neutron Activation Analysis (INAA). Soil parameters such as pH, organic matter content and clay, silt and sand percentage were also determined. The obtained data were statistically analyzed in order to establish correlations between elemental concentrations and the impounded vehicles scrapyard soil. Soil acidity showed to be the most remarkable property for Cr and Co mobility through soil profile. (author)

  1. Evaluation of Co and Cr mobility in soil profiles collected in a scrapyard of impounded vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Camila N.; Figueiredo, Ana Maria G., E-mail: clange@usp.br, E-mail: anamaria@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Enzweiler, Jacinta, E-mail: jacinta@ige.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Instituto de Geociencias

    2015-07-01

    The number of motor vehicles in urban environments has increased dramatically in the past years. As a result, so has the number of impounded and end-of-life vehicles. Car wastes can have a very high metal content, which can cause important environmental impacts to the soil where these vehicles are kept. Most Brazilian vehicle impound scrapyards are currently operating at their maximum capacity and soils may have become contaminated by past or current vehicle handling practices. Most of these areas do not present an impermeable surface. The level of soil contamination with heavy metals depends on the type of soil, climate and management practices. Metals, such as Co and Cr, that are present in many auto-parts, may be considered potentially toxic elements in these areas. The aim of this study was to evaluate Co and Cr levels and behavior in soil profiles located in a scrapyard of impounded vehicles of Ribeirao Pires-SP city. For this purpose, samples from distinct horizons of three soil profiles were collected. Element concentrations were determined by Instrumental Neutron Activation Analysis (INAA). Soil parameters such as pH, organic matter content and clay, silt and sand percentage were also determined. The obtained data were statistically analyzed in order to establish correlations between elemental concentrations and the impounded vehicles scrapyard soil. Soil acidity showed to be the most remarkable property for Cr and Co mobility through soil profile. (author)

  2. Gully potential in soil-covered uranium waste impoundments

    International Nuclear Information System (INIS)

    Abt, S.R.; Hogan, S.A.; Johnson, T.L.

    1994-01-01

    Soil covers are routinely considered a design alternative to stabilize uranium waste impoundments. Gully intrusion into the cover is one of the greatest potential threats to the long-term stability of an impoundment. An investigation was conducted to estimate the maximum depth of gully intrusion, the approximate top width of the gully at the point of maximum incision, and the approximate location of the maximum intrusion. A large-scale laboratory study was conducted on seven embankments in which approximately 200 years of rainfall was simulated and the resulting gullies were documented. In addition, 11 gullies occurring in actual reclaimed impoundments were documented. An analysis of the laboratory and field data sets was performed in which the maximum depth of gully incision, top width of the gully, and location of the maximum gully incision were related to the pile height, tributary volume of runoff, and soil composition. These relations provide the designers with a means for assessing the cover design to meet the long-term stability of the waste

  3. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    Science.gov (United States)

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  4. The Authority of the President to Impound Funds Appropriated by Congress.

    Science.gov (United States)

    Adams, James R.

    During fiscal year 1973, President Nixon ordered the impoundment of about 18 billion dollars in Federal funds for domestic programs. A large portion of that amount was used to slash federal funding for education programs. The entire impoundment controversy revolves around the doctrine of separation of powers. Insofar as the President has refused…

  5. Geomorphological assessment of sites and impoundments for the long term containment of uranium mill tailings in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    East, T.J.

    1985-01-01

    Current and future research into the geomorphological processes likely to affect the long term containment of uranium mill tailings in the Alligator Rivers Region is directed at three main areas: identification of geomorphic hazards at proposed impoundment sites; determination of erosion rates on impoundment slopes; and prediction of patterns of fluvial dispersal of released tailings. Each necessitates consideration of present and future geomorphic processes. Process rates during the next few thousand years might be predictable by extrapolation of contemporary and past (i.e. Holocene) climates, sea-levels and depositional environments, evidence for which is preserved in the sedimentary record. In current projects, the Late Quarternary stratigraphy of Magela Creek are examined to provide data for modelling of present and future sedimentological processes. Site stability evaluation entails recognition of present and future geomorphic hazards at impoundment sites, and includes fluvial and hillslope erosion, extreme flood events and mass movements. The life of a tailings impoundment is further determined by the intensity of erosional processes acting upon its slopes and their cover materials. A knowledge of present and future erosion rates will allow the optimisation of slope characteristics and materials in the impoundment design

  6. Assessment of sediments in the riverine impoundments of national wildlife refuges in the Souris River Basin, North Dakota

    Science.gov (United States)

    Tangen, Brian A.; Laubhan, Murray K.; Gleason, Robert A.

    2014-01-01

    Accelerated sedimentation of reservoirs and riverine impoundments is a major concern throughout the United States. Sediments not only fill impoundments and reduce their effective life span, but they can reduce water quality by increasing turbidity and introducing harmful chemical constituents such as heavy metals, toxic elements, and nutrients. U.S. Fish and Wildlife Service national wildlife refuges in the north-central part of the United States have documented high amounts of sediment accretion in some wetlands that could negatively affect important aquatic habitats for migratory birds and other wetland-dependent wildlife. Therefore, information pertaining to sediment accumulation in refuge impoundments potentially is important to guide conservation planning, including future management actions of individual impoundments. Lands comprising Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges, collectively known as the Souris River Basin refuges, encompass reaches of the Des Lacs and Souris Rivers of northwestern North Dakota. The riverine impoundments of the Souris River Basin refuges are vulnerable to sedimentation because of the construction of in-stream dams that interrupt and slow river flows and because of post-European settlement land-use changes that have increased the potential for soil erosion and transport to rivers. Information regarding sediments does not exist for these refuges, and U.S. Fish and Wildlife Service personnel have expressed interest in assessing refuge impoundments to support refuge management decisions. Sediment cores and surface sediment samples were collected from impoundments within Des Lacs, Upper Souris, and J. Clark Salyer National Wildlife Refuges during 2004–05. Cores were used to estimate sediment accretion rates using radioisotope (cesium-137 [137Cs], lead-210 [210Pb]) dating techniques. Sediment cores and surface samples were analyzed for a suite of elements and agrichemicals, respectively. Examination of

  7. The hydrogeochemistry of four inactive tailings impoundments: Perspectives on tailings pore-water evolution

    International Nuclear Information System (INIS)

    Blowes, D.W.; Cherry, J.A.; Reardon, E.J.

    1987-01-01

    Extensive hydrogeochemical investigations are currently underway at three inactive tailings impoundments in Canada. These programs include detailed measurements of pore-water and gas-phase geochemistry through the vadose zone and the groundwater zone. An extensive piezometer network has been installed at each location to monitor the groundwater flow regime. All of the impoundments studied have been inactive for 15 to 25 years, sufficient time for extensive tailings pore-water evolution. The study areas include a very high-sulfide impoundment, a low-sulfide, high-carbonate impoundment, a low-sulfide, very low-carbonate impoundment, and a moderately high-sulfide impoundment. The pore water at each of the sites has evolved in a distinctly different and characteristic manner, representing broad styles of tailings pore-water evolution. At the high sulfide impoundment the oxidation of sulfide minerals has resulted in low pH, high redox potential conditions, with Fe 2+ concentrations in excess of 60,000 mg/L. At a depth of about 40 cm a 10 cm thick layer of ferrous and calcium sulfate minerals has precipitated. This hardpan layer limits the downward movement of O 2 and infiltrating pore waters. As a result, the pore water chemistry, both above and below the hardpan layer, has remained relatively unchanged over the past 10 years. The low-sulfide, high-carbonate tailings are sufficiently well buffered that no low pH conditions are present. The high pH conditions limit the concentrations of the metals released by sulfide mineral oxidation to levels that are two or three orders of magnitude less than is observed at the high-sulfide site. Pore waters at the low-sulfide, low-carbonate site were sampled by other researchers from the University of Waterloo

  8. 32 CFR 634.51 - Procedures for impoundment.

    Science.gov (United States)

    2010-07-01

    ... complete DD Form 2506 (Vehicle Impoundment Report) as a record of the actions taken. (i) An inventory... not be inventoried. Such articles should be opened only if necessary to identify the owner of the...

  9. Using Helicopter Electromagnetic Surveys to Identify Potential Hazards at Mine Waste Impoundments

    Energy Technology Data Exchange (ETDEWEB)

    Hammack, R.W.

    2008-01-01

    In July 2003, helicopter electromagnetic surveys were conducted at 14 coal waste impoundments in southern West Virginia. The purpose of the surveys was to detect conditions that could lead to impoundment failure either by structural failure of the embankment or by the flooding of adjacent or underlying mine works. Specifically, the surveys attempted to: 1) identify saturated zones within the mine waste, 2) delineate filtrate flow paths through the embankment or into adjacent strata and receiving streams, and 3) identify flooded mine workings underlying or adjacent to the waste impoundment. Data from the helicopter surveys were processed to generate conductivity/depth images. Conductivity/depth images were then spatially linked to georeferenced air photos or topographic maps for interpretation. Conductivity/depth images were found to provide a snapshot of the hydrologic conditions that exist within the impoundment. This information can be used to predict potential areas of failure within the embankment because of its ability to image the phreatic zone. Also, the electromagnetic survey can identify areas of unconsolidated slurry in the decant basin and beneath the embankment. Although shallow, flooded mineworks beneath the impoundment were identified by this survey, it cannot be assumed that electromagnetic surveys can detect all underlying mines. A preliminary evaluation of the data implies that helicopter electromagnetic surveys can provide a better understanding of the phreatic zone than the piezometer arrays that are typically used.

  10. Pre- and post-impoundment nitrogen in the lower Missouri River

    Science.gov (United States)

    Blevins, Dale W.; Wilkison, Donald H.; Niesen, Shelley L.

    2013-01-01

    Large water-sample sets collected from 1899 through 1902, 1907, and in the early 1950s allow comparisons of pre-impoundment and post-impoundment (1969 through 2008) nitrogen concentrations in the lower Missouri River. Although urban wastes were not large enough to detectably increase annual loads of total nitrogen at the beginning of the 20th century, carcass waste, stock-yard manure, and untreated human wastes measurably increased ammonia and organic-nitrogen concentrations during low flows. Average total-nitrogen concentrations in both periods were about 2.5 mg/l, but much of the particulate-organic nitrogen, which was the dominant form of nitrogen around 1900, has been replaced by nitrate. This change in speciation was caused by the nearly 80% decrease in suspended-sediment concentrations that occurred after impoundment, modern agriculture, drainage of riparian wetlands, and sewage treatment. Nevertheless, bioavailable nitrogen has not been low enough to limit primary production in the Missouri River since the beginning of the 20th century. Nitrate concentrations have increased more rapidly from 2000 through 2008 (5 to 12% per year), thus increasing bioavailable nitrogen delivered to the Mississippi River and affecting Gulf Coast hypoxia. The increase in nitrate concentrations with distance downstream is much greater during the post-impoundment period. If strategies to decrease total-nitrogen loads focus on particulate N, substantial decreases will be difficult because particulate nitrogen is now only 23% of total nitrogen in the Missouri River. A strategy aimed at decreasing particulates also could further exacerbate land loss along the Gulf of Mexico, which has been sediment starved since Missouri River impoundment. In contrast, strategies or benchmarks aimed at decreasing nitrate loads could substantially decrease nitrogen loadings because nitrates now constitute over half of the Missouri's nitrogen input to the Mississippi. Ongoing restoration and creation

  11. [Influence of 175-m-impoundment in Three Gorges Reservoir area on the food web energy sources of main commercial fishes in backwater area of xiaojiang River].

    Science.gov (United States)

    Li, Bin; Wang, Zhi-Jian; Yue, Xing-Jian; Wang, Yong-Ming; Jin, Li; Zhang, Yao-Guang

    2013-06-01

    The impoundment in the Three Gorges Reservoir Area (TGRA) was first reached 175 m in 2010. To approach the influence of this impoundment on the food web energy sources of fishes in the tributaries of TRGA, an analysis was made on the food web energy sources of seven economically important fishes (Carassius auratus, Cyprinus carpio, Silurus asotus, Culter mongolicus mongolicus, Mystus macropterus, Pelteobagrus vachelli, and Pelteobagrus nitidus) in the backwater area of Xiaojiang River by using stable isotope method in combining with IsoSource Model. The results showed that before this impoundment (July 2010), microalgae were the main energy sources for the seven species. After this impoundment (December 2010), the contribution ratio of the microalgae decreased somewhat, while the relative contribution of terrestrial C4 plants had an obvious increase. Especially for crucian carp (C. auratus) and catfish (S. asotus), the contribution rate of the C4 plants reached 38-54% and 32-50%, respectively. After the impoundment, at least 30% of the energy resources of these two fishes were come from terrestrial C4 plants, suggesting that the impoundment in TGRA increased the contribution rate of exogenous terrestrial C4 plants as the energy sources of fishes.

  12. Effect of ship locking on sediment oxygen uptake in impounded rivers

    DEFF Research Database (Denmark)

    Lorke, A.; McGinnis, D. F.; Maeck, A.

    2012-01-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy....... Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed. Citation: Lorke, A., D. F. McGinnis, A. Maeck, and H. Fischer (2012), Effect of ship locking on sediment oxygen uptake in impounded rivers, Water Resour. Res., 48, W12514, doi: 10....... These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 +/- 0.1 g m(-2) d(-1), it increased by about a factor of 2 to 1.0 +/- 0.5 g m(-2) d(-1) within time periods with ship locking. Following the daily...

  13. Characterization of transient groundwater flow through a high arch dam foundation during reservoir impounding

    Directory of Open Access Journals (Sweden)

    Yifeng Chen

    2016-08-01

    Full Text Available Even though a large number of large-scale arch dams with height larger than 200 m have been built in the world, the transient groundwater flow behaviors and the seepage control effects in the dam foundations under difficult geological conditions are rarely reported. This paper presents a case study on the transient groundwater flow behaviors in the rock foundation of Jinping I double-curvature arch dam, the world's highest dam of this type to date that has been completed. Taking into account the geological settings at the site, an inverse modeling technique utilizing the time series measurements of both hydraulic head and discharge was adopted to back-calculate the permeability of the foundation rocks, which effectively improves the uniqueness and reliability of the inverse modeling results. The transient seepage flow in the dam foundation during the reservoir impounding was then modeled with a parabolic variational inequality (PVI method. The distribution of pore water pressure, the amount of leakage, and the performance of the seepage control system in the dam foundation during the entire impounding process were finally illustrated with the numerical results.

  14. An Object-Based Machine Learning Classification Procedure for Mapping Impoundments in Brazil's Amazon-Cerrado Agricultural Frontier

    Science.gov (United States)

    Solvik, K.; Macedo, M.; Graesser, J.; Lathuilliere, M. J.

    2017-12-01

    Large-scale agriculture and cattle ranching in Brazil has driving the creation of tens of thousands of small stream impoundments to provide water for crops and livestock. These impoundments are a source of methane emissions and have significant impacts on stream temperature, connectivity, and water use over a large region. Due to their large numbers and small size, they are difficult to map using conventional methods. Here, we present a two-stage object-based supervised classification methodology for identifying man-made impoundments in Brazil. First, in Google Earth Engine pixels are classified as water or non-water using satellite data and HydroSHEDS products as predictors. Second, using Python's scikit-learn and scikit-image modules the water objects are classified as man-made or natural based on a variety of shape and spectral properties. Both classifications are performed by a random forest classifier. Training data is acquired by visually identifying impoundments and natural water bodies using high resolution satellite imagery from Google Earth.This methodology was applied to the state of Mato Grosso using a cloud-free mosaic of Sentinel 1 (10m resolution) radar and Sentinel 2 (10-20m) multispectral data acquired during the 2016 dry season. Independent test accuracy was estimated at 95% for the first stage and 93% for the second. We identified 54,294 man-made impoundments in Mato Grosso in 2016. The methodology is generalizable to other high resolution satellite data and has been tested on Landsat 5 and 8 imagery. Applying the same approach to Landsat 8 images (30 m), we identified 35,707 impoundments in the 2015 dry season. The difference in number is likely because the coarser-scale imagery fails to detect small (work will apply this approach to satellite time series for the entire Amazon-Cerrado frontier, allowing us to track changes in the number, size, and distribution of man-made impoundments. Automated impoundment mapping over large areas may help with

  15. Diet and trophic structure of the fish fauna in a subtropical ecosystem: impoundment effects

    Directory of Open Access Journals (Sweden)

    Rosilene Luciana Delariva

    Full Text Available This study examined the diet and trophic structure of the fish fauna, over temporal and spatial scales, as affected by the impoundment of the Iguaçu River in the region of Salto Caxias, Paraná State, Brazil. Sampling was conducted before (March 1997 - February 1998 and after the impoundment (March 1999 - February 2000, at four sampling sites. The stomach contents were analyzed by the volumetric method. The species could be organized in 10 trophic guilds: algivores, carcinophages, detritivores, herbivores, aquatic insectivores, terrestrial insectivores, invertivores, omnivores, piscivores, and planktivores; the first and last guilds were represented only in the post-impoundment period. Similarity patterns and feeding changes were summarized by a non-metric Multi-dimensional Scaling (nMDS analysis and statistically tested by a Permutational multivariate analysis of variance (PERMANOVA. Most species showed feeding changes, except for the piscivores and detritivores. These changes were related to the temporal factor (impoundment phases, such as reduced intake of benthic organisms and allochthonous food, which were usually replaced by resources from the reservoir itself (algae, microcrustaceans, and fish, simplifying the food spectrum of the fish fauna. A different indicator of food resources (IndVal corroborated these changes in the feeding of the species. The proportions of the trophic guilds evaluated based on the catch per unit of effort (CPUE and tested by ANOSIM were significantly different before and after the impoundment. Herbivores and piscivores were the guilds that contributed (SIMPER to these differences, especially the high increase in biomass of the piscivore guild after the impoundment. Variations in the abundance of trophic guilds were more directly related to changes in the feeding habits of the fish fauna than to increases in the number and biomass of the species that constitute these guilds.

  16. Effects of impoundment and regulation upon the stomach contents of fish at Cow Green, Upper Teesdale

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, D.T.; Mann, R.H.K.; McCormack, J.C.

    1978-04-01

    The stomach contents of 1003 brown trout, 1551 bullheads and 800 minnows taken from the reservoir basin and below the dam, before and after impoundment of the river Tees, were examined. Their composition reflected observations by other workers on river and reservoir benthos, except for the increase in numbers of Hydra and Nais below the dam, and Mollusca, Hirudinea and oligochaetes in the reservoir. Trout below the dam ate more Ephemeroptera nymphs and Chironomidae larvae but fewer terrestrial casualties after river regulation, whereas bullheads ate more Mollusca but fewer Plecoptera nymphs. In both species Baetidae nymphs increased in numerical importance relative to Ecdyonuridae. Trout, but not bullheads, took zooplankton discharged from the reservoir. Before impoundment, trout within the reservoir basin ate chiefly benthic organisms and terrestrial casualties. Inundated terrestrial material, mainly earthworms, formed the bulk of their food for at least three years after impoundment, whilst from the second year onwards Chironomidae and, in some years, Gammarus became increasingly important. Zooplankton was taken by all sizes of reservoir trout. Bullheads within the reservoir basin ate chiefly river benthos before impoundment, with Ephemeroptera and Plecoptera nymphs predominant in older fish, and aquatic Diptera and Coleoptera also important in the fry. After impoundment, Chironomidae and Gammarus were the main items taken by older bullheads, and Chironomidae and micro-crustacea by the fry. Among all sizes of minnow, Chironomidae, micro-crustacea and detritus increased in numerical importance after impoundment.

  17. The impact of impoundment on the rotifer communities in two tropical floodplain environments: interannual pulse variations

    Directory of Open Access Journals (Sweden)

    CC. Bonecker

    Full Text Available Hydrological pulses are the main factor regulating the structure of biological communities in floodplains. Reservoirs above this ecosystem change the environment's dynamics and the community's biodiversity. This study evaluated the structure and stability of the rotifer community in response to changes in hydrological pulses after the Porto Primavera impoundment in the Upper Paraná River floodplain. The community was studied in a river and in a floodplain lake downstream of the dam over a four-year period before and after the impoundment. A decrease in species richness and abundance was observed soon after the impoundment, followed by an increase in these attributes and in specific diversity when the hydrometric level of the Paraná River rose and, consequently, increased the connectivity between the floodplain environments. Conochilus coenobasis, Filinia longiseta, Keratella cochlearis, Lecane proiecta and Polyarthra dolichoptera persisted throughout the study and contributed to community stability (the maintenance of rank in species abundance over time, which was high in the floodplain lake, mainly after the impoundment. Reductions in the frequency, intensity and amplitude of potamophase pulses after the impoundment led to the decrease in species richness and the increases in abundance, community stability, and species diversity, which determine community resilience.

  18. Profiling of Sediment Microbial Community in Dongting Lake before and after Impoundment of the Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-06-01

    Full Text Available The sediment microbial community in downstream-linked lakes can be affected by the operation of large-scale water conservancy projects. The present study determined Illumina reads (16S rRNA gene amplicons to analyze and compare the bacterial communities from sediments in Dongting Lake (China before and after impoundment of the Three Gorges Dam (TGD, the largest hydroelectric project in the world. Bacterial communities in sediment samples in Dongting Lake before impoundment of the TGD (the high water period had a higher diversity than after impoundment of the TGD (the low water period. The most abundant phylum in the sediment samples was Proteobacteria (36.4%–51.5%, and this result was due to the significant abundance of Betaproteobacteria and Deltaproteobacteria in the sediment samples before impoundment of the TGD and the abundance of Gammaproteobacteria in the sediment samples after impoundment of the TGD. In addition, bacterial sequences of the sediment samples are also affiliated with Acidobacteria (11.0% on average, Chloroflexi (10.9% on average, Bacteroidetes (6.7% on average, and Nitrospirae (5.1% on average. Variations in the composition of the bacterial community within some sediment samples from the river estuary into Dongting Lake were related to the pH values. The bacterial community in the samples from the three lake districts of Dongting Lake before and after impoundment of the TGD was linked to the nutrient concentration.

  19. Moist Soil Management of Wetland Impoundments for Plants and Invertebrates

    Data.gov (United States)

    Department of the Interior — In year’s past an impoundment was drained (a drawdown) when floating-leaved plants covered more than 50% of the water area. Drawdowns encourage beneficial moist soil...

  20. Engineering evaluation/cost analysis for the proposed management of contaminated water impounded at the Weldon Spring chemical plant area

    International Nuclear Information System (INIS)

    MacDonell, M.M.; Maxey, M.L.; Peterson, J.M.; Joya, I.E.

    1990-07-01

    This engineering evaluation/cost analysis (EE/CA) report has been prepared to support the proposed removal action for managing contaminated surface waters impounded at the chemical plant area of the Weldon Spring site, located near Weldon Spring, Missouri. The US Department of Energy is responsible for cleanup activities at the site under its Surplus Facilities Management Program (SFMP). The major goals of SFMP are to eliminate potential hazards to human health and the environment that are associated with contamination at SFMP sites and to make surplus real property available for other uses, to the extent possible. The objectives of this EE/CA report are to identify the cleanup as a removal action, document the selection of a response that will mitigate the potential release of radioactive or chemical contaminants from the impounded waters into the nearby environment, and address environmental impacts associated with the proposed action. 41 refs., 8 figs., 8 tabs

  1. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  2. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  3. The use of artificial impoundments by two amphibian species in the Delaware Water Gap National Recreation Area

    Science.gov (United States)

    Julian, J.T.; Snyder, C.D.; Young, J.A.

    2006-01-01

    We compared breeding activity of Ambystoma maculatum (Spotted Salamander) and Rana sylvatica (Wood Frog) in artificial impoundments to patterns in natural wetlands over a three-year period in the Delaware Water Gap National Recreation Area. Rana sylvatica were 5.6 times more likely to use natural bodies of water for breeding than artificial impoundments, while A. maculatum were 2.7 times more likely to use natural bodies of water. Both species were approximately 9 times more likely to breed in fishless bodies of water than in waters with predatory fish. Ambystoma maculatum were 6 times more likely to breed in wetlands with more stable seasonal hydroperiods, while R. sylvatica were only 2 times more likely to do so. We conclude that the high likelihood of fish presence in impoundments was the primary explanation for why both species were less likely to use impoundments than natural wetlands, while the tendency of A. maculatum to avoid natural wetlands with shorter hydroperiods explained why differences in use between pond types was more pronounced for R. sylvatica.

  4. The Impact of Impoundment on Mercury Bioaccumulation in Fish Downstream from a Newly Constructed Reservoir, Wujiang River, Southwest China.

    Science.gov (United States)

    Li, Sixin; Zhou, Lianfeng; Chang, Jianbo; Yang, Zhi; Hu, Juxiang; Hongjun, Wang

    2017-11-01

    Mercury concentrations in fish were investigated downstream from a newly impounded subtropical reservoir in August 2008. After 6-7 months of reservoir impoundment, mean mercury concentration in fish from downstream is significantly increased by 1.9 times. Not only carnivorous fish but also benthic fish had significantly higher total mercury concentrations than others. No significant correlation was found between total mercury concentrations and body length or weight of 13 fish species. Compared with the pre-impoundment, total mercury in fish from downstream is significantly increased by reservoir impoundment, but the increased rate is lower than those in subarctic and temperate areas. Fish samples surpassed the Chinese hygienic standard for tolerances of mercury in foods increased by 4.3%. More attention should be given to fish mercury levels from downstream sites to prevent possible adverse effects on the health of local people.

  5. Acidity of Lakes and Impoundments in North-Central Minnesota

    Science.gov (United States)

    Elon S. Verry

    1981-01-01

    Measurements of lake and impoundment pH for several years, intensive sampling within years, and pH-calcium plots verify normal pH levels and do not show evidence of changes due to acid precipitation. These data in comparison with general lake data narrow the northern Lake States area in which rain or snow may cause lake acidification.

  6. Conversion of a tailing impoundment to a freshwater reservoir, the Eagle Park Reservoir project, Climax Mine, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Romig, B.R.; Cupp, J.L.; Ford, R.C.

    1999-07-01

    The Climax Molybdenum Mine, located near Leadville, Colorado, is the site of a lengthy mining history spanning more than 80 years. In the 1960's, extraction of molybdenum from oxide ore located adjacent to the massive molybdenite sulfide deposit resulted in the construction of an earthen core dam to impound fine-grained oxide tailing in the Eagle River Valley. Through recognized value of water storage and reclamation opportunities, a tailing removal project was initiated in 1993 to convert the impoundment facilities to a post-mining beneficial land use of developed water resources. An evaluation of the effect residual materials and lake dynamics would have on in-stream water quality was performed. Eagle Park Reservoir stands as a model for future reclamation efforts that involve water delivery to highly sensitive receiving waters. This paper provides a case study on project development, the evolution of water quality assessment, and the regulatory framework that contributed to this project's success.

  7. Effects of increased summer flooding on nitrogen dynamics in impounded mangroves

    NARCIS (Netherlands)

    Verhoeven, Jos T A; Laanbroek, Hendrikus J; Rains, Mark C; Whigham, Dennis F

    2014-01-01

    Mangroves are important for coastal protection, carbon sequestration and habitat provision for plants and animals in the tropics and subtropics. Mangroves are threatened by habitat destruction and sea level rise, but management activities such as impounding for mosquito control can also have

  8. Rock riprap design methods and their applicability to long-term protection of uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.

    1982-08-01

    This report reviews the more accepted or recommended riprap design methods currently used to design rock riprap protection against soil erosion by flowing water. The basic theories used to develop the various methods are presented. The Riprap Design with Safety Factors Method is identified as the logical choice for uranium mill tailings impoundments. This method is compared to the other methods and its applicability to the protection requirements of tailings impoundments is discussed. Other design problems are identified and investigative studies recommended

  9. Effect of weir impoundments on methane dynamics in a river

    Czech Academy of Sciences Publication Activity Database

    Bednařík, A.; Blaser, M.; Matoušů, Anna; Hekera, P.; Rulík, M.

    2017-01-01

    Roč. 584, April (2017), s. 164-174 ISSN 0048-9697 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : methane production * methane emission * methane ebullition * river impoundment * river sediment Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 4.900, year: 2016

  10. Reestablishment of woody plants on mine spoils and management of mine water impoundments: an overview of Forest Service research on the northern High Plain

    Energy Technology Data Exchange (ETDEWEB)

    Bjugstad, A J

    1977-01-01

    The function of the research unit at Rapid city, S. Dakota, is to provide guidelines for the reestablisment of shrubs and trees on land characteristic of the High Plains, and for the mitigation of possible detrimental effects of surface mining on ground water and surface water. One possible problem posed by surface mining concerns the formation of land drainage patterns that could result in post-mining formations of large salt playas. Surface mining could affect shallow ground water aquifers up to /sup 1///sub 4/ mile from the mine site. Research is being conducted on the reclamation of mine spoils and on the rehabilitation and management of impounded mine water.

  11. Predictive geochemical modeling of contaminant concentrations in laboratory columns and in plumes migrating from uranium mill tailings waste impoundments

    International Nuclear Information System (INIS)

    Peterson, S.R.; Martin, W.J.; Serne, R.J.

    1986-04-01

    A computer-based conceptual chemical model was applied to predict contaminant concentrations in plumes migrating from a uranium mill tailings waste impoundment. The solids chosen for inclusion in the conceptual model were selected based on reviews of the literature, on ion speciation/solubility calculations performed on the column effluent solutions and on mineralogical characterization of the contacted and uncontacted sediments. The mechanism of adsorption included in the conceptual chemical model was chosen based on results from semiselective extraction experiments and from mineralogical characterization procedures performed on the sediments. This conceptual chemical model was further developed and partially validated in laboratory experiments where assorted acidic uranium mill tailings solutions percolated through various sediments. This document contains the results of a partial field and laboratory validation (i.e., test of coherence) of this chemical model. Macro constituents (e.g., Ca, SO 4 , Al, Fe, and Mn) of the tailings solution were predicted closely by considering their concentrations to be controlled by the precipitation/dissolution of solid phases. Trace elements, however, were generally predicted to be undersaturated with respect to plausible solid phase controls. The concentration of several of the trace elements were closely predicted by considering their concentrations to be controlled by adsorption onto the amorphous iron oxyhydroxides that precipitated

  12. The fish community of a small impoundment in upstate New York

    Science.gov (United States)

    McCoy, C. Mead; Madenjian, Charles P.; Adams, Jean V.; Harman, Willard N.

    2001-01-01

    Moe Pond is a dimictic impoundment with surface area of 15.6 ha, a mean depth of 1.8 m, and an unexploited fish community of only two species: brown bullhead (Ameiurus nebulosus) and golden shiner (Notemigonus crysoleucas). The age-1 and older brown bullhead population was estimated to be 4,057 individuals, based on the Schnabel capture-recapture method of population estimation. Density and biomass were respectively estimated at 260 individuals/ha and 13 kg/ha. Annual survival rate of age-2 through age-5 brown bullheads was estimated at 48%. The golden shiner length-frequency distribution was unimodal with modal length of 80 mm and maximum total length of 115 m. The golden shiner population estimate was 7,154 individuals, based on seven beach seine haul replicate samples; the density and biomass were 686 shiners/ha and 5 kg/ha, respectively. This study provides an information baseline that may be useful in understanding food web interactions and whole-pond nutrient flux.

  13. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  14. Synchronous response of sedimentary organic carbon accumulation on the inner shelf of the East China Sea to the water impoundment of Three Gorges and Gezhouba Dams

    Science.gov (United States)

    Lin, Jia; Zhu, Qing; Hong, Yuehui; Yuan, Lirong; Liu, Jinzhong; Xu, Xiaoming; Wang, Jianghai

    2018-01-01

    Coastal seas, located between continents and the open ocean, are an important active carbon pool. The sedimentary total organic carbon (TOC) in these areas is a mixture of terrestrial and marine sources, and can be a powerful proxy for tracing natural processes and human activities. In this study, one fine-grained sediment core (DH5-1) from the inner shelf of the East China Sea was systematically analyzed for TOC and black carbon (BC) contents and TOC stable carbon isotope ratios (δ13C). By combining these data with 210Pb dating, an improved carbon correction model and a two end-member mixing model, we reconstructed century-scale high-resolution sequences of corrected TOC, terrestrial TOC and marine TOC contents and identified two carbon depletion events in the DH5-1 record. The two events, shown as two minima in the TOC profiles, correspond temporally to 1985-1987 AD and 2003-2006 AD, which exactly matches the water impoundment of the Gezhouba Dam and Three Gorges Dam, respectively. In addition, the variations in TOC contents and δ13C values before, during or after the minima demonstrate a relationship between the depletion events and water impoundment of the dams on the Changjiang River. The TOC reductions may represent synchronous responses of sedimentary TOC and resultant ecological effects on the inner shelf of the East China Sea to the water impoundment of the dams. These new TOC records reflect the interaction between natural and anthropogenic processes and, accordingly, provide a deep insight and important references for assessing marine ecological effects resulting from water impoundment of largescale dams.

  15. Reestablishing the Dominance of Biogeochemical Pathways for Reducing Downstream Nutrient Losses from Aged Impounded Features

    Science.gov (United States)

    Shukla, S.; Shukla, A.

    2017-12-01

    Water and phosphorus (P) dynamics and loss pathways at two stormwater impoundments (SIs) were analyzed using measured fluxes between 2008 and 2011. These SIs are a decade old. Analyses of water and P budgets along with the discernment of various P pools and characterization of the intermediary processes revealed that soil adsorption and plant uptake are secondary to volume reduction apropos of P treatment. At one site, extreme wet conditions in a year combined with soil P saturation resulted in it being a P source rather than a sink. The impoundment (SI-1) discharged 12% more P than incoming due to soil P desorption, a consequence of dilution of incoming stormwater with large water input from an extreme tropical rain event. The second impoundment (SI-2) was a consistent sink of P; 55% and 95% of the incoming total P was retained in the two years, mainly as a result of 49% and 84% volume retention, respectively. Analysis of plant available aluminum, iron, and phosphorus showed the surface soil to be P saturated and at risk of releasing P to a limit of environmental concern. These results when seen in light of more frequent extreme precipitation events under the changed climate scenario call for alternatives to revive the role of biogeochemical processes in P treatment because volume reduction may not always be the viable option, especially for wet conditions. Aboveground biomass harvesting and removal was evaluated to transform the SIs from a frequent P source to sink and maintain the long-term sink functions of the SIs. Use of harvested biomass as a source of nutrients (N and P) and carbon to agricultural soil can result in beneficial use of biomass and offset the cost of harvesting. Other avenues such as altering the hydrology of the SIs by compartmentalizing the system and increasing the storage were also explored for short-term benefits. Results provided a combination of hydraulic and biochemical options for achieving long-term water and nutrient retentions in

  16. Dynamics of dissolved organic matter in riverine sediments affected by weir impoundments: Production, benthic flux, and environmental implications.

    Science.gov (United States)

    Chen, Meilian; Kim, Sung-Han; Jung, Heon-Jae; Hyun, Jung-Ho; Choi, Jung Hyun; Lee, Hyo-Jin; Huh, In-Ae; Hur, Jin

    2017-09-15

    In order to understand the characteristics and dynamics of dissolved organic matter (DOM) in the sediment of rivers affected by impoundments, we examined the vertical profiles and the benthic fluxes of DOM in four different core sediments located at upstream sites of weirs in major rivers of South Korea. In three out of four sites, exponential accumulation of dissolved organic carbon (DOC) with depth was observed with the signature of seasonal variability. Except for the site displaying a below-detection limit of Fe(II), the general accumulation trends of DOC with depth was concurrent with the increases of Fe(II) and NH 4 + and the decrease of PO 4 3- , signifying a close linkage of the DOM dynamics with anaerobic respiration via iron reduction, an important early diagenesis pathway. The estimated benthic fluxes from the cores revealed that the sediments likely serve as DOC, chromophoric DOM (CDOM), and fluorescent DOM (FDOM) sources to the overlying water. The benthic effluxes based on DOC were comparable to the ranges previously reported in lake and coastal areas, and those of CDOM and FDOM showed even higher levels. These findings imply that impoundment-affected river systems would change the DOM composition of the overlying water, ultimately influencing the subsequent water treatment processes such as disinfection byproducts production and membrane fouling. A simple mass balance model indicated that the impoundment-affected river sediments may operate as a net carbon sink in the environments due to a greater extent of sedimentation compared to the estimated benthic efflux and sediment biological respiration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Modelling of contaminant release from a uranium mine tailings site

    International Nuclear Information System (INIS)

    Kahnt, Rene; Metschies, Thomas

    2007-01-01

    Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m 3 . Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k d -approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)

  18. Dose assessment of remedial action for uranium tailing impoundment of a nuclear factory

    International Nuclear Information System (INIS)

    Li Xutong; Ma Ruwei; Guo Zede

    2000-01-01

    A large uranium tailing impoundment in China will be closure and remedial action have been planned. The remedial action will include shaping and covering the dam and beach in order to prevent the impoundment from damage and restrict spread of tailing sands and emission of radon. The author presents the analysis and estimation of the exposure to workers for remedial action and to public after the remedial action. To estimate the exposure to workers, the pathway of inhalation of radon, tailing sands in suspension and external γ exposure were taken into consideration. The exposure scenario is considered as probably maximum exposure to the workers who work on the tailing pile without any protection measures, the dose is 6.0 mSv/a. Two situation for the exposure to public after remedial action were considered: normal and abnormal condition. For the normal condition, inhalation of radon emitted from impoundment is only the pathway to public for the exposure, and individual dose for critical group of public is 0.053 mSv/a, collective dose for population within 80 km is 1.0 man·Sv/a. For the abnormal conditions, four scenarios were considered, i.e. dwelling on tailing pile, farming on tailing pile, living in a house built by contaminated materials and some temporal activities on the pile. The scenarios of dwellings is living in a house on the pile and drinking contaminated water. The maximum individual dose is 27 mSv/a

  19. Rehabilitation of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Crawley, A.H.

    1983-01-01

    Under Australian environmental controls relating to the management of uranium tailings, it is no longer acceptable practice to search for a rehabilitation strategy at the end of production when the generation of tailings has ceased. The uranium projects currently in production and those being proposed are tightly regulated by the authorities. The waste management plans must consider site specific factors and must include selection of appropriate disposal sites and design for long term containment. The final encapsulation in engineered facilities must take into account the probable routes to the environment of the tailings. Rehabilitation shoud be undertaken by the mining and milling operators to standards approved by appropriate authorities. Appropriate administrative arrangements are required, by way of technical committees and financial bonds to ensure that agreed standards of rehabilitation may be achieved. Past and present experience with the rehabilitation of uranium tailings impoundments in Australia is discussed

  20. Recovery of the Three-Gorges Reservoir Impoundment Signal from ICESat altimetry and GRACE

    Science.gov (United States)

    Carabajal, C. C.; Boy, J.; Luthcke, S. B.; Harding, D. J.; Rowlands, D. D.; Lemoine, F. G.

    2006-12-01

    The Three Gorges Dam along the Yangtze River in China is one of the largest dams in the world. The water impoundment of the Three-Gorges Reservoir started in June 2003, and the volume of water will continuously increase up to about 40 km3 in 2009, over a length of about 600 km. Although water-level changes along the Yangtze River and the Three Gorges Reservoir are measured by in situ water gauges, access to these data can be quite difficult. Estimates of inland water height and extent can also be recovered from altimetry measurements performed from satellite platforms, such as those acquired by the Geoscience laser Altimetry System (GLAS) on board the Ice, Cloud and Land Elevation Satellite (ICESat). ICESat has produced a comprehensive, highly precise, set of along-track elevation measurements, every three months since its launch in 2003, which intersect the Yangtze River along its East-West extent. In addition, the water impoundment of major artificial reservoirs induces variations of global geodetic quantities, such as the gravity field and Earth rotation (Chao, 1995, Boy & Chao, 2002). Water level changes within the reservoir are compared to GRACE (Gravity Recovery And Climate Experiment) recovered water mass changes. In addition, we compare the GRACE observations of mass change in the Yangtze region to hydrological changes computed from different global soil-moisture and snow models, such as GLDAS (Global Land Data Assimilation System).

  1. Restoration of Tidal Flow to Impounded Salt Marsh Exerts Mixed Effect on Leaf Litter Decomposition

    Science.gov (United States)

    Henry, B. A.; Schade, J. D.; Foreman, K.

    2015-12-01

    Salt marsh impoundments (e.g. roads, levees) disconnect marshes from ocean tides, which impairs ecosystem services and often promotes invasive species. Numerous restoration projects now focus on removing impoundments. Leaf litter decomposition is a central process in salt marsh carbon and nutrient cycles, and this study investigated the extent to which marsh restoration alters litter decomposition rates. We considered three environmental factors that can potentially change during restoration: salinity, tidal regime, and dominant plant species. A one-month field experiment (Cape Cod, MA) measured decay of litter bags in impounded, restored, and natural marshes under ambient conditions. A two-week lab experiment measured litter decay in controlled incubations under experimental treatments for salinity (1ppt and 30 ppt), tidal regime (inundated and 12 hr wet-dry cycles), and plant species (native Spartina alterniflora and invasive Phragmites australis). S. alterniflora decomposed faster in situ than P. australis (14±1.0% mass loss versus 0.74±0.69%). Corroborating this difference in decomposition, S. alterniflora supported greater microbial respiration during lab incubation, measured as CO2 flux from leaf litter and biological oxygen demand of water containing leached organic matter (OM). However, nutrient analysis of plant tissue and leached OM show P. australis released more nitrogen than S. alterniflora. Low salinity treatments in both lab and field experiments decayed more rapidly than high salinity treatments, suggesting that salinity inhibited microbial activity. Manipulation of inundation regime did not affect decomposition. These findings suggest the reintroduction of tidal flow to an impounded salt marsh can have mixed effects; recolonization by the native cordgrass could supply labile OM to sediment and slow carbon sequestration, while an increase in salinity might inhibit decomposition and accelerate sequestration.

  2. Sharptooth catfish shows its metal: a case study of metal contamination at two impoundments in the Olifants River, Limpopo river system, South Africa.

    Science.gov (United States)

    Jooste, Antoinette; Marr, Sean M; Addo-Bediako, Abraham; Luus-Powell, Wilmien J

    2015-02-01

    Clarias gariepinus is increasing in importance as a global aquaculture species with a 100 fold increase in production over the past decade but this species still remains one of the most important wild harvested freshwater food fish throughout rural Africa. However, this species has been shown to accumulate metals from contaminated inland waters. In this paper, the metal concentrations in muscle tissue of C. gariepinus from two main-stem impoundments in the Olifants River, Limpopo Basin, were measured and a desktop risk assessment based on the US-EPA methodology completed to evaluate whether long-term consumption of C. gariepinus from these impoundments may pose a health risk to rural communities. Our results show that metals are accumulating in the muscle tissue of C. gariepinus and have appeared to have increased in the last two decades. Risk assessment generated Hazard quotients (HQ) greater than 1 indicate that long term consumption of fish from these impoundments may cause adverse health impacts. We found that lead (HQ=9), antimony (HQ=14), cobalt (HQ=2) and chromium (HQ=1) at one impoundment and lead (HQ=2) at the other impoundment were above acceptable levels for weekly consumption of 150 g C. gariepinus muscle tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Geomorphological assessment of sites and impoundments for the long term containment of uranium mill tailings in the Alligator Rivers Region

    International Nuclear Information System (INIS)

    East, T.J.

    1986-01-01

    This paper presents a program of current and future research into those geomorphological processes likely to affect the long term containment of uranium mill tailings in the Alligator Rivers Region of the Northern Territory. Research is directed at three main areas: identification of geomorphic hazards at proposed impoundment sites; determination of erosion rates on impoundment slopes; and prediction of patterns of fluvial dispersal of released tailings. Each necessitates consideration of present and future geomorphic processes

  4. contaminant migration in a sand aquifer near an inactive uranium tailings impoundment, Elliot Lake, Ontario

    International Nuclear Information System (INIS)

    Morin, K.A.; Cherry, J.A.

    1982-01-01

    An investigation of the movement of contaminated groundwater from inactive uranium tailings through a sand aquifer is being conducted at the Nordic Main tailings impoundment near Elliot Lake, Ontario. During 1979 and 1980, multilevel bundle-type piezometers were installed at several locations around the edge of the tailings impoundment. Chemical analysis of water samples from the bundle piezometers indicate that a major contaminant plume extends outward through a sand aquifer from the southeastern part of the Nordic Main impoundment dam. In the vincinity of the contaminant plume, the sand aquifer varies in thickness from about 9 to 15 m. The plume has two distinct segments, referred to as the inner core and the outer zone. The inner core, which has a pH of 4.3-5.0 and extends about 15 m from the foot of the tailings dam, contains several grams per litre of iron and sulfate, and tens of pCi/L of 226 Ra and 210 Pb. Water levels in piezometers within the inner core show that groundwater is moving horizontally, away from the tailings impoundment, with a velocity of up to several hundred metres per year. The outer zone, which extends a few hundred metres downgradient from the dam, is characterized by hundreds to thousands of milligrams per litre of iron and sulfate, less than 15pCi/L of 226 Ra, and a pH greater than 5.7. Comparison of 1979 and 1980 data shows that the front of the inner core is advancing a few metres per year, which is less than a few percent of the groundwater velocity. This retardation of movement of the inner core is caused by neutralization of the acidic water as a result of dissolution of calcium carbonate in the sand. With the rise in pH, precipitation of iron carbonate and possibly some iron hydroxide occurs and the contaminants of main concern such as 226 Ra, 210 Pb, and uranium are removed from solution by adsorption or coprecipitation

  5. Arsenic mobility from anthropogenic impoundment sediments - Consequences of contamination to biota, water and sediments, Posa, Eastern Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, E.; Jurkovic, L.; Kordik, J.; Slaninka, I.; Jankular, M.; Majzlan, J.; Gottlicher, J.; Steininger, R. [Geological Survey of Slovak Republic, Bratislava (Slovakia). Dept. of Environmental Geochemistry

    2009-11-15

    An impoundment located near the village of Posa, Slovakia, is a significant source of contamination with As originating from the deposited coal fly-ash. Waters penetrating the impoundment are enriched in As and other potentially toxic elements. As a consequence of the contamination, the Kyjov Brook and the Ondava River have been extensively polluted. The mobility and solid-state partitioning of As in the impoundment material and stream sediments were investigated using column leaching and batch extraction tests, and a five-step sequential extraction procedure. Moreover, to investigate the bioavailability of As, two native plant species (Typha latifolia, or cattail, and Phragmites australis, or common reed) growing at the site were collected and analyzed. The As concentrations in representative sediment and water samples ranged from 36.3 to 3210 mg/kg and from 4.05 to 613 {mu} g/L, respectively, both being many times above the background levels. Although a part of As was present in a readily soluble form (6.6%), the majority of As was mainly associated with Fe and Mn oxides (37%) and residual phases (51%). Combined results of the column leaching, batch extraction, and sequential extraction tests, as well as mineralogical analysis, indicated that As mobilisation potential from the sediments is likely controlled by Fe, Al and Mn oxides, and by pH. There was no influence of various anions (PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-}, NO{sup 3-}, Cl{sup -} and HCO{sub 3}{sup -}) on As mobility when present in aqueous solution at concentrations analogous to those in the water of the Kyjov Brook. Plants growing in the impoundment had As concentrations 10-100 times greater than did the same plants growing in a relatively non-polluted area.

  6. Hypersalinity reduces the risk of cyanide toxicosis to insectivorous bats interacting with wastewater impoundments at gold mines.

    Science.gov (United States)

    Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme

    2014-01-01

    Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS. © 2013 Published by Elsevier Inc.

  7. Reservoir Operation Rules for Controlling Algal Blooms in a Tributary to the Impoundment of Three Gorges Dam

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2014-10-01

    Full Text Available Since the first impoundment of Three Gorges Dam in 2003, algal blooms occur frequently in the near-dam tributaries. It is widely recognized that the impoundment-induced change in hydrodynamic condition with the lower current velocity will make the eutrophication problem even more severe when an excessive amount of nutrients is already loaded into a reservoir and/or its tributaries. Operation tests carried out by Three Gorges Corporation in 2010 point to some feasible reservoir operation schemes that may have positive impacts on reducing the algal bloom level. In our study, an attempt is made to obtain, through a numerical hydrodynamic and water quality modeling and analysis, the reservoir operation rules that would reduce the level of algal blooms in the Xiangxi River (XXR, a near-dam tributary. Water movements and algal blooms in XXR are simulated and analyzed under different scenarios of one-day water discharge fluctuation or two-week water level variation. The model results demonstrate that the reservoir operations can further increase the water exchange between the mainstream of the Three Gorges Reservoir (TGR and the XXR tributary and thus move a larger amount of algae into the deep water where it will die. Analysis of the model results indicate that the water discharge fluctuation constituted of a lower valley-load flow and a larger flow difference for the short-term operation (within a day, the rise in water level for the medium-term operation (e.g., over weeks, and the combination of the above two for the long-term operation (e.g., over months can be the feasible reservoir operation rules in the non-flood season for TGR.

  8. Impacts of Freshwater Impoundment in the West Loch of Pearl Harbor

    Science.gov (United States)

    1993-05-01

    absence of applicable non-point standards, the "Yellow Book" criteria for freshwater aquatic life or domestic water supply could be applied to evaluate the...Waimalu, Waipahu, Wahiawa, and Ewa water use districts and contains the largest groundwater body on Oahu, supplying more than 50 percent of the island’s...irrigation; desalt existing brackish water supplies, and; 3 create a freshwater impoundment in West Loch. 6I I I The Board of Water Supply (BWS) and

  9. Eutrophication levels of some South African impoundments. IV. Vaal Dam

    CSIR Research Space (South Africa)

    Steyn, DJ

    1976-04-01

    Full Text Available inere;iae(l the \\G P In? between 7,1- and I 1,2 mg/r? lbr t?verv nile pet? t?t?ttt v/v) added_Nitrogen and phosphorus wert? the important algal growth?limiting ntltrients in the impoundment. Plant nntt-ients adsorbed onto clay particles could ht... stream_source_info Steyn2_1976.pdf.txt stream_content_type text/plain stream_size 20870 Content-Encoding ISO-8859-1 stream_name Steyn2_1976.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Za~3n Abstract The Vital...

  10. Relationships among catch, angler catisfaction, and fish assemblage characteristics of an urban small impoundment fishery

    Science.gov (United States)

    Ivasauskas, Tomas J.; Xiong, Wilson N.; Engman, Augustin C.; Fischer, Jesse R.; Kwak, Thomas J.; Rundle, Kirk R.

    2017-01-01

    Urban fisheries provide unique angling opportunities for people from traditionally underrepresented demographics. Lake Raleigh is a 38-ha impoundment located on the North Carolina State University campus in Raleigh. Like many urban fisheries, little is known about angler use and satisfaction or how angling catch rate is related to fish availability in Lake Raleigh. We characterized the recreational fishery and fish assemblage with concurrent creel and boat electrofishing surveys over the course of one year. In total, 245 anglers were interviewed on 68 survey days. On average, anglers spent 1.7 h fishing per trip and caught 0.385 fish h –1. A large proportion of anglers (43.9%) targeted multiple species, whereas 36.5% targeted largemouth bass (Micropterus salmoides), 10.0% targeted panfish (i.e., sunfishes [Lepomis spp.] and crappies [Pomoxis spp.]), and 9.6% targeted catfish (Ameiurus spp. and Ictalurus spp.). Most anglers (69.4%) were satisfied with their experience, and overall satisfaction was unrelated to catch rate. Pulsed-DC boat electrofishing was conducted on 25 dates, and 617 fish were sampled. Angler catch rate was unrelated to electrofishing catch rate, implying that anglers' catch rate was independent of fish density or availability. Our results demonstrate that even minimally managed urban fisheries can provide high angler satisfaction, with limited dedication of management resources. Relationships Among Catch, Angler Satisfaction, and Fish Assemblage Characteristics of an Urban Small Impoundment Fishery (PDF Download Available). Available from: https://www.researchgate.net/publication/316636550_Relationships_Among_Catch_Angler_Satisfaction_and_Fish_Assemblage_Characteristics_of_an_Urban_Small_Impoundment_Fishery [accessed Aug 11, 2017].

  11. Evaluation of factors related to increased zooplankton biomass and altered species composition following impoundment of a Newfoundland reservoir

    International Nuclear Information System (INIS)

    Campbell, C.E.; Knoechel, R.; Copeman, D.

    1998-01-01

    An 11-year study of the zooplankton community in Cat Arm Hydroelectric Reservoir in Newfoundland was conducted to assess long-term zooplankton community dynamics in a subarctic system. Zooplankton biomass and species compositions were monitored from 1983 to 1993. The monitoring program documented the trophic evolution of the Cat Arm system as it changed from a shallow lake with short water retention time to a deep reservoir with a much lower flushing rate. Zooplankton biomass increased approximately 19-fold in the oligotrophic hydroelectric reservoir following impoundment in 1984, relative to biomass in the preexisting lake. During the first three years of impoundment, there were no increases in either phytoplankton biomass or primary productivity. Natality of the dominant cladoceran (Daphnia catawba) did not increase. Summer water retention time increased from pre-impoundment levels of 4 days in 1983 to 338 days in 1993. The study showed that zooplankton biomass was greatly correlated with water retention time, and showed no major correlation with phytoplankton biomass, primary productivity, nutrient concentrations, pH, colour, or epilimnetic temperature. It was concluded that changes in the zooplankton community in the hydroelectric reservoir were a result of decreases in losses due to washout. 41 refs., 2 tabs., 6 figs

  12. A long-term comparison of carbon sequestration rates in impounded and naturally tidal freshwater marshes along the lower Waccamaw River, South Carolina

    Science.gov (United States)

    Drexler, Judith Z.; Krauss, Ken W.; Sasser, M. Craig; Fuller, Christopher C.; Swarzenski, Christopher M.; Powell, Amber; Swanson, Kathleen M.; Orlando, James L.

    2013-01-01

    Carbon storage was compared between impounded and naturally tidal freshwater marshes along the Lower Waccamaw River in South Carolina, USA. Soil cores were collected in (1) naturally tidal, (2) moist soil (impounded, seasonally drained since ~1970), and (3) deeply flooded “treatments” (impounded, flooded to ~90 cm since ~2002). Cores were analyzed for % organic carbon, % total carbon, bulk density, and 210Pb and 137Cs for dating purposes. Carbon sequestration rates ranged from 25 to 200 g C m−2 yr−1 (moist soil), 80–435 g C m−2 yr−1 (naturally tidal), and 100–250 g C m−2 yr−1 (deeply flooded). The moist soil and naturally tidal treatments were compared over a period of 40 years. The naturally tidal treatment had significantly higher carbon storage (mean = 219 g C m−2 yr−1 vs. mean = 91 g C m−2 yr−1) and four times the vertical accretion rate (mean = 0.84 cm yr−1 vs. mean = 0.21 cm yr−1) of the moist soil treatment. The results strongly suggest that the long drainage period in moist soil management limits carbon storage over time. Managers across the National Wildlife Refuge system have an opportunity to increase carbon storage by minimizing drainage in impoundments as much as practicable.

  13. [Effects of Three Gorges Reservoir impoundment on the wetland ecosystem service value of Dongting Lake, South-central China].

    Science.gov (United States)

    Li, Jing-Bao; Dai, Yong; Yin, Ri-Xin; Yang, Yan; Li, Yu-dan; Wang, Ke-ying

    2013-03-01

    Based on the field investigation and measurement, and by using the monetary method, this paper estimated the wetland ecosystem service value of Dongting Lake before and after the impoundment of Three Gorges Reservoir (in 1996 and 2010, respectively). After the impoundment, the total ecosystem service value increased from 156.69x10(8) yuan in 1996 to 177.11x10(8) yuan in 2010. The main services value in 1996 was in the order of flood storage and regulation > water storage and supply > air regulation > scientific research and education, while that in 2010 was leisure tourism > shipping transportation > air regulation > water storage and supply. In the total service value of the wetland ecosystem, the direct value associated with water decreased from 110. 85x10(8) in 1996 to 27.47x10(8) in 2010, with a decrement of 75.2%. Though the proportion of the direct value in the production and supply of material products had somewhat increase, the indirect value in ecological environment regulation and maintenance and in culture and society still maintained at about 80% of the total value. In addition to climate factors, the impoundment of Three Gorges Reservoir and the reduction of water and sediment from Yangtze River to the Lake were the crucial reasons leading to the changes of the wetland ecosystem service value of Dongting Lake.

  14. Modulation of Extreme Flood Levels by Impoundment Significantly Offset by Floodplain Loss Downstream of the Three Gorges Dam

    Science.gov (United States)

    Mei, Xuefei; Dai, Zhijun; Darby, Stephen E.; Gao, Shu; Wang, Jie; Jiang, Weiguo

    2018-04-01

    River flooding—the world's most significant natural hazard—is likely to increase under anthropogenic climate change. Most large rivers have been regulated by damming, but the extent to which these impoundments can mitigate extreme flooding remains uncertain. Here the catastrophic 2016 flood on the Changjiang River is first analyzed to assess the effects of both the Changjiang's reservoir cascade and the Three Gorges Dam (TGD), the world's largest hydraulic engineering project on downstream flood discharge and water levels. We show that the Changjiang's reservoir cascade impounded over 30.0 × 103 m3/s of flow at the peak of the flood on 25 July 2016, preventing the occurrence of what would otherwise have been the second largest flood ever recorded in the reach downstream of the TGD. Half of this flood water storage was retained by the TGD alone, meaning that impoundment by the TGD reduced peak water levels at the Datong hydrometric station (on 25 July) by 1.47 m, compared to pre-TGD conditions. However, downstream morphological changes, in particular, extensive erosion of the natural floodplain, offset this reduction in water level by 0.22 m, so that the full beneficial impact of floodwater retention by the TGD was not fully realized. Our results highlight how morphological adjustments downstream of large dams may inhibit their full potential to mitigate extreme flood risk.

  15. Cyanobacteria and cyanotoxins are present in drinking water impoundments and groundwater wells in desert environments.

    Science.gov (United States)

    Chatziefthimiou, Aspassia D; Metcalf, James S; Glover, W Broc; Banack, Sandra A; Dargham, Soha R; Richer, Renee A

    2016-05-01

    Desert environments and drylands experience a drastic scarcity of water resources. To alleviate dependence on freshwater for drinking water needs, countries have invested in infrastructure development of desalination plants. Collectively, the countries of the Arabian Gulf produce 45% of the world's desalinated water, which is stored in dams, mega-reservoirs and secondary house water tanks to secure drinking water beyond daily needs. Improper storage practices of drinking water in impoundments concomitant with increased temperatures and light penetration may promote the growth of cyanobacteria and accumulation of cyanotoxins. To shed light on this previously unexplored research area in desert environments, we examined drinking and irrigation water of urban and rural environments to determine whether cyanobacteria and cyanotoxins are present, and what are the storage and transportation practices as well as the environmental parameters that best predict their presence. Cyanobacteria were present in 80% of the urban and 33% of the rural water impoundments. Neurotoxins BMAA, DAB and anatoxin-a(S) were not detected in any of the water samples, although they have been found to accumulate in the desert soils, which suggests a bioaccumulation potential if they are leached into the aquifer. A toxic BMAA isomer, AEG, was found in 91.7% of rural but none of the urban water samples and correlated with water-truck transportation, light exposure and chloride ions. The hepatotoxic cyanotoxin microcystin-LR was present in the majority of all sampled impoundments, surpassing the WHO provisional guideline of 1 μg/l in 30% of the urban water tanks. Finally, we discuss possible management strategies to improve storage and transportation practices in order to minimize exposure to cyanobacteria and cyanotoxins, and actions to promote sustainable use of limited water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Organochlorine pesticide levels in Clarias gariepinus from polluted freshwater impoundments in South Africa and associated human health risks

    CSIR Research Space (South Africa)

    Barnhoorn, IEJ

    2014-02-01

    Full Text Available There are increasing concerns regarding the safe human consumption of fish from polluted, freshwater impoundments. The aim of this study was to analyse the muscle tissue of the sharptooth catfish Clarias gariepinus for selected organo-chlorine...

  17. Analysis of spatial distribution and inventory of radioactivity within the uranium mill tailings impoundment

    Directory of Open Access Journals (Sweden)

    D. O. Bugai

    2015-10-01

    Full Text Available Results are presented of the characterization of radioactivity inventory of Zapadnoe uranium mill tailings impoundment situated at Pridneprovsky Chemical Plant (PChP; Dneprodzerzhinsk, Ukraine. Analyses of radioactivity data set based on analytical studies of core material from 15 characterization boreholes allowed significantly refining waste volume and radioactivity inventory estimates. Geostatistical analyses using variogram function have established that radioactivity distribution in Zapadnoe tailings is characterized by regular spatial correlation patterns. Ordinary kriging method was applied to assess distribution of radioactivity in 3D. Results of statistical analyses suggest significant redistribution of uranium in the dissolved form in the residues (presumably due to water infiltration process. The developed structural model for radioactivity distribution is used for further risk assessment analyses. Derived radioactivity correlation scales can be used for optimization of sample collection when characterizing the PChP Site and similar contaminated sites elsewhere.

  18. Use of special oedometer tests for the remediation of large uranium mill tailings impoundments at Wismut, Germany

    International Nuclear Information System (INIS)

    Barnekow, U.; Paul, M.

    2002-01-01

    The paper presents the use of recently developed special oedometer tests for designing the remediation of large uranium tailings ponds at WISMUT, Germany. Uranium ore mining and milling in eastern Germany by the former Soviet-German WISMUT company lasted from 1946 to 1990. Wastes from the hydrometallurgical uranium extraction processes were discharged into large tailings impoundments covering a total area of 5.5 km 2 and containing about 150 x 10 6 m 3 of uranium mill tailings. Tailings pond remediation is ongoing by in-place decommissioning with dewatering by technical means. Geotechnical properties and the most suitable so-called non-linear finite strain consolidation behaviour of fine uranium mill tailings are described. Decommissioning techniques comprise, among others, interim covering of under consolidated fine tailings, contouring of tailings surfaces and final covering. Contouring, in particular, has a huge potential for optimization in terms of cost reduction. For contouring total settlement portions, the spatial distribution of differential settlement portions and the time-dependent settlement rates, especially of the cohesive fine uranium mill tailings are of critical importance. A new special oedometer KD 314 S has been developed to generate all the input data needed to derive the fundamental geotechnical relationships of void ratio vs. effective stress and of permeability coefficient vs. void ratio for consolidation calculations. Since December 1999 the new special oedometer KD 314 S has been working successfully on fine uranium mill tailings from both acid and from soda alkaline milling. Results coincide with non-linear finite strain consolidation theory. The geotechnical functions derived were used as input parameters for consolidation modelling. An example of the consolidation modelling on Helmsdorf tailings pond is presented. (author)

  19. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.

    Science.gov (United States)

    Romero, Francisco Martín; Canet, Carles; Alfonso, Pura; Zambrana, Rubén N; Soto, Nayelli

    2014-05-15

    The surface water contamination by potentially toxic elements (PTE) leached from mine tailings is a major environmental concern. However, the formation of insoluble solid phases can control the mobility of PTE, with subsequent decrease of the risk that tailings suppose to the environment. We characterized the tailings from a tin inactive mine in Llallagua, Bolivia in order to assess the risk for surface water quality. These tailings contain high concentrations of PTE, with up to 94,344 mg/kg Fe, 9,135 mg/kg Sn, 4,606 mg/kg As, 1,362 mg/kg Cu, 1,220 mg/kg Zn, 955 mg/kg Pb and 151 mg/kg Cd. Oxidation of sulfide minerals in these tailings generates acid leachates (pH=2.5-3.5), rich in SO4(2-) and dissolved PTE, thereby releasing contaminants to the surface waters. Nevertheless, the concentrations of dissolved Sn, As and Pb in acid leachates are low (Sntailing deposits; it should be the main solid phase controlling Sn and As mobility in the impoundment. Additionally, jarosite and plumbojarosite, identified among the secondary minerals, could also play an important role controlling the mobility of As and Pb. Taking into account (a) the low solubility constants of cassiterite (Ksp=10(-64.2)), jarosite (Ksp=10(-11)) and plumbojarosite (Ksp=10(-28.66)), and (b) the stability of these minerals under acidic conditions, we can conclude that they control the long-term fate of Sn, As and Pb in the studied tailings. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Water-quality study of Tulpehocken Creek, Berks County, Pennsylvania, prior to impoundment of Blue Marsh Lake

    Science.gov (United States)

    Barker, James L.

    1977-01-01

    Blue Marsh Lake is planned as a multipurpose impoundment to be constructed on Tulpehocken Creek near Bernville, Berks County, Pennsylvania. Prior to construction, samples of water, bed material, and soil were collected throughout the impoundment site to determine concentrations of nutrients, insecticides, trace metals, suspended sediment, and bacteria. Analyses of water suggest the Tulpehocken Creek basin to be a highly fertile environment. Nitrogen and phosphorus concentrations near the proposed dam site had median values of 4.5 and 0.13 mg/L, respectively. Suspended sediment discharges average between 100 and 200 tons (90.7 to 181.4 metric tons) per day during normal flows but may exceed 10,000 tons (9,070 metric tons) per day during storm runoff. Highest yields were measured during winter and early spring. Concentrations range from 3 mg/L to more than 500 mg/L. Bed material samples contain trace quantities of aldrin, DDT, DDD, DDE, dieldrin, and chlordane. Polychlorinated biphyenyls (PCB's) ranged from 10 to 100 μg/kg. Soils at the impoundment site are of average fertility. However, the silt loam texture is ideal for attachment and growth of aquatic plants. Bacteria populations indicative of recent fecal contamination are prevalent in the major inflows to the proposed lake. Fecal Coliform exceeded the standards recommended by the Federal Water Pollution Administration Committee on Water Quality Criteria for public water supply in 29 percent of the monthly samples, and exceeded the recommended public bathing waters standard in 83 percent of the samples collected from June to September. Arsenic from an industrial waste was found in the water, suspended sediment, and bed material of Tulpehocken Creek in concentrations of 0 to 30 μg/l, 2 to 879 μg/l, and 1 to 79 μg/g, respectively. It represents a potential environmental hazard; however, the measured concentrations are less than that known to be harmful to man, fish, or wildlife, according to published water

  1. Limnology and fisheries of three recently impounded reservoirs in Sri Lanka

    International Nuclear Information System (INIS)

    Silva, K.H.G.M De

    1990-01-01

    The hydroelectric reservoirs of Kotmale, Victoria, and Randenigala were impounded in 1985, 1984, and 1986, respectively, by damming the Mahaweli River. The surface area, maximum depth, and mean depth of the three reservoirs are 6.3 km 2 , 78 m, 27.6 m; 23.7 km 2 , 102 m, 30.8 m; and 23.5 km 2 , 90 m, 36.6 m respectively, at their full supply levels of 703, 438, and 232 m above mean sea level. Important physicochemical factors and phytoplankton were studied by sampling of subsurface waters every two weeks in 12 randomly chosen stations in Randenigala and Victoria, and in 10 stations in Kotmale over 24 months. Mean water temperature, pH, conductivity, and the total alkalinity during the study period were 25.6 degree C, 6.6, 50.7 μsieverts, and 0.31 millimoles/l in Kotmale, 26.9 degree C, 7.1, 77.4 μsieverts, and 0.62 millimoles/l in Victoria, and 28.3 degree C, 7.4, 90.0 μsieverts, and 0.79 millimoles/l in Randenigala. The gill-net catches of Kotmale and Victoria are ca 38 and 70 kg/hectare/y, respectively. Randenigala has a fishery potential of ca 70 kg/hectare/y. Tilapia formed ca 68%, 59%, and 69% of the catches of Kotmale, Victoria, and Randenigala, respectively. The catch at Kotmale was mainly Java tilapia and Nile tilapia, whereas at the other two reservoirs it was mainly Java tilapia. Indigenous species constituted only ca 10% of the catch. 16 refs., 2 figs., 4 tabs

  2. Presentations from the 1992 Coal Mining Impoundment Informational Meeting

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

  3. Evaluating the effect of vehicle impoundment policy on illegal construction and demolition waste dumping: Israel as a case study.

    Science.gov (United States)

    Seror, Nissim; Hareli, Shlomo; Portnov, Boris A

    2014-08-01

    Construction and demolition (C&D) waste dumped alongside roads and in open areas is a major source of soil and underground water pollution. Since 2006, Israeli ministry for environmental protection enacted a policy of vehicle impoundment (VI) according to which track drivers caught while dumping C&D waste illegally have their vehicles impounded. The present study attempted to determine whether the VI policy was effective in increasing the waste hauling to authorized landfill sites, thus limiting the number of illegal unloads of C&D waste at unauthorized landfill sites and in open areas. During the study, changes in the ratio between the monthly amount of C&D waste brought to authorized landfills sites and the estimated total amount of C&D waste generated in different administrative districts of Israel were examined, before and after the enactment of the 2006 VI policy. Short questionnaires were also distributed among local track drivers in order to determine the degree of awareness about the policy in question and estimate its deterrence effects. According to the study's results, in the district of Haifa, in which the VI policy was stringently enacted, the ratio between C&D waste, dumped in authorized landfill sites, and the total amount of generated C&D waste, increased, on the average, from 20% in January 2004 to 35% in October 2009, with the effect attributed to the number of vehicle impoundments being highly statistically significant (t=2.324; p0.1). The analysis of the questionnaires, distributed among the local truck drivers further indicated that the changes observed in the district of Haifa are not coincident and appeared to be linked to the VI policy's enactment. In particular, 62% of the truck drivers, participated in the survey, were aware of the policy and 47% of them personally knew a driver whose vehicle was impounded. Furthermore, the drivers estimated the relative risk of being caught for unloading C&D waste in unauthorized sites, on the average, as

  4. Mercury concentrations of fish in Southern Indian Lake and Issett Lake, Manitoba 1975-88: The effect of lake impoundment and Churchill River diversion

    International Nuclear Information System (INIS)

    Strange, N.E.; Bodaly, R.A.; Fudge, R.J.P.

    1991-01-01

    Southern Indian and Issett Lakes in northern Manitoba were flooded in 1976 as part of Manitoba Hydro's Churchill River diversion project. Fish were collected from 1975 to 1988 from five regional sites on the lakes to examine the effects of impoundment and river diversion on muscle mercury concentrations. Raw data for individual fish caught in 1987 and 1988 are presented, along with means and analyses calculated over the entire 1975-1988 study period. Mercury concentrations in whitefish, pike, and walleye increased significantly after impoundment. Whitefish mercury levels peaked in 1978 and have since declined to near pre-flooding levels. Northern pike and walleye mercury levels were much higher than for whitefish. Pike mercury concentrations showed no indication of declining after 12 years of impoundment, but walleye mercury levels at 2 of the 5 Southern Indian Lake sites declined from maximum recorded levels. Significant variability in fish mercury concentrations was noted both from year to year and among the sites. It is suggested that site-to-site variations are due to varying conditions in the reservoir which stimulate mercury methylation. Since there appears to be an ongoing long-term source of mercury and organic material from the eroding shorelines, pike and walleye mercury concentrations are expected to remain high for many years. 25 refs., 7 figs., 20 tabs

  5. Change characteristics of DSi and nutrition structure at the Yangtze River Estuary after Three Gorges Project impounding and their ecological effect

    Directory of Open Access Journals (Sweden)

    Li Lei

    2017-06-01

    Full Text Available The variation law of dissolved silica (DSi, dissolved inorganic nitrogen (DIN, dissolved inorganic phosphorus (DIP and nutrition structure after the Three Gorges Project (TGP impounding as well as their ecological effect were analyzed according to monitoring survey of the Yangtze River Estuary in spring (May and summer (August from 2004-2009. The results showed that after impounding, DSi and DIN concentration decreased and increased, respectively. During the study period, DSi decreased by about 63%, while DIN almost tripled. DIP concentration fluctuated slightly. With respect to nutrition structure, N:P increased, whereas Si:P and Si:N declined. According to chemometry standard of nutrient limits, nutrition structure tended to be imbalanced and the limiting factor of phytoplankton growth (P was studied. Changes of nutrition structure have largely decreased diatom and caused different composition of dominant phytoplankton species. This may change ecosystem structure of the Yangtze River Estuary.

  6. A Risk Assessment Approach to Manage Inundation of Elseya albagula Nests in Impounded Waters: A Win-Win Situation?

    Science.gov (United States)

    McDougall, A. J.; Espinoza, T.; Hollier, C.; Limpus, D. J.; Limpus, C. J.

    2015-03-01

    A risk assessment process was used to trial the impact of potential new operating rules on the frequency of nest inundation for the White-throated snapping turtle, Elseya albagula, in the impounded waters of the Burnett River, Queensland, Australia. The proposed operating rules would increase the barrage storage level during the turtle nesting season (May-July) and then would be allowed to reduce to a lower level for incubation for the rest of the year. These proposed operating rules reduce rates of nest inundation by altering water levels in the Ben Anderson Barrage impoundment of the Burnett River. The rules operate throughout the turtle reproductive period and concomitantly improve stability of littoral habitat and fishway operation. Additionally, the proposed rules are expected to have positive socio-economic benefits within the region. While regulated water resources will inherently have a number of negative environmental implications, these potential new operating rules have the capacity to benefit the environment while managing resources in a more sustainable manner. The operating rules have now been enacted in subordinate legislation and require the operator to maintain water levels to minimize turtle nest inundation.

  7. Microcrustaceans (Branchipoda and Copepoda) of Wetland Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    DeBiase, Adrienne E; Taylor, Barbara E

    2005-09-21

    The United States Department of Energy’s Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  8. Environmental systems and management activities on the Kennedy Space Center, Merritt Island, Florida: results of a modeling workshop

    Science.gov (United States)

    Hamilton, David B.; Andrews, Austin K.; Auble, Gregor T.; Ellison, Richard A.; Farmer, Adrian H.; Roelle, James E.

    1985-01-01

    four connected submodels. The Uplands submodel calculates changes in acres and structural components of vegetation communities resulting from succession, fire, facilities development, and shuttle launch depositions, as well as the quantity and quality of surface runoff and aquifer input to an impoundment and an estuary. The Impoundment submodel next determines water quality and quantity and changes in vegetation resulting from water level manipulation and prescribed burning. The Estuary submodel than determines water quality parameters and acres of seagrass beds. Finally, the Wildlife submodel calculates habitat suitability indices for key species of interest, based on vegetation conditions in the uplands and impoundments and on several hydrologic parameters. The model represents a hypothetical management unit with 2,500 acres of uplands, a 600-acre impoundment, and a 1,500-acre section of estuary. Two management scenarios were run to analyze model behavior. The scenarios differ in the frequency of shuttle launches and prescribed burning, the extent of facilities development, the amount of land disposed waste material applied, and the nature and timing of impoundment water level control. Early in a model development project, the process of building the model is usually of greater benefit than the model itself. The model building process stimulates interaction among agencies, assists in integrating existing information, and helps identify research needs. These benefits usually accrue even in the absence of real predictive power in the resulting model. Open communication occurs among the Federal, State, and local agencies involved with activities on Merritt Island and the agencies have a cooperative working relationship. The workshop provided an opportunity for all of these agencies to meet at one time and have focused discussions on the key environmental and multiagency resource management issues. The workshop framework helped to integrate information and assumptions

  9. A new model for the simplification of particle counting data

    Directory of Open Access Journals (Sweden)

    M. F. Fadal

    2012-06-01

    Full Text Available This paper proposes a three-parameter mathematical model to describe the particle size distribution in a water sample. The proposed model offers some conceptual advantages over two other models reported on previously, and also provides a better fit to the particle counting data obtained from 321 water samples taken over three years at a large South African drinking water supplier. Using the data from raw water samples taken from a moderately turbid, large surface impoundment, as well as samples from the same water after treatment, typical ranges of the model parameters are presented for both raw and treated water. Once calibrated, the model allows the calculation and comparison of total particle number and volumes over any randomly selected size interval of interest.

  10. Chlorophyll Detection and Mapping of Shallow Water Impoundments Using Image Spectrometry

    International Nuclear Information System (INIS)

    Artigas, F.; Pechmann, I.; Marti, A.; Yao, N.; Pechmann, I.

    2008-01-01

    There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in the impoundments, ditches, and associated waterways of the Hackensack Meadow lands (NJ, USA). The resulting images clearly depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary. Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address water quality management issues in fragmented urban estuaries.

  11. Hydrologic considerations for rock RIPRAP protection of uranium tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.

    1984-02-01

    Pacific Northwest Laboratory is conducting an in-depth study of the application of rock riprap for the long-term protection of uranium tailings impoundments. Decommissioned tailings sites at Grand Junction and Slickrock, Colorado were selected to review the application of riprap design methods and evaluate variable sensitivity and data requirements. Preliminary results from the Grand Junction case study indicate that the use of a safety factor in sizing the rock riprap may provide an overly conservative design that may not be justified. Some safety factor, usually a value of 1.5 to 2.0 is normally used in riprap design to allow for the uncertainties in the hydraulic calculations. The computation of the hydraulic designs variables using the probable maximum flood (PMF) event introduces conservatism into the design and the added safety factor may not be warranted. This paper presents some preliminary results from the Grand Junction site concerning the implications of using a safety factor for riprap design. 9 references, 2 figures, 2 tables

  12. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    Science.gov (United States)

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Fishers' knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers.

    Science.gov (United States)

    Hallwass, Gustavo; Lopes, Priscila F; Juras, Anastácio A; Silvano, Renato A M

    2013-03-01

    The long-term impacts of large hydroelectric dams on small-scale fisheries in tropical rivers are poorly known. A promising way to investigate such impacts is to compare and integrate the local ecological knowledge (LEK) of resource users with biological data for the same region. We analyzed the accuracy of fishers' LEK to investigate fisheries dynamics and environmental changes in the Lower Tocantins River (Brazilian Amazon) downstream from a large dam. We estimated fishers' LEK through interviews with 300 fishers in nine villages and collected data on 601 fish landings in five of these villages, 22 years after the dam's establishment (2006-2008). We compared these two databases with each other and with data on fish landings from before the dam's establishment (1981) gathered from the literature. The data obtained based on the fishers' LEK (interviews) and from fisheries agreed regarding the primary fish species caught, the most commonly used type of fishing gear (gill nets) and even the most often used gill net mesh sizes but disagreed regarding seasonal fish abundance. According to the interviewed fishers, the primary environmental changes that occurred after the impoundment were an overall decrease in fish abundance, an increase in the abundance of some fish species and, possibly, the local extinction of a commercial fish species (Semaprochilodus brama). These changes were corroborated by comparing fish landings sampled before and 22 years after the impoundment, which indicated changes in the composition of fish landings and a decrease in the total annual fish production. Our results reinforce the hypothesis that large dams may adversely affect small-scale fisheries downstream and establish a feasible approach for applying fishers' LEK to fisheries management, especially in regions with a low research capacity.

  14. Screening Assessment of Radionuclide Migration in Groundwater from the “Dneprovskoe” Tailings Impoundment (Dneprodzerzhynsk City) and Evaluation of Remedial Options

    Energy Technology Data Exchange (ETDEWEB)

    Skalskyi, O.; Bugai, D. [Institute of Geological Sciences, National Academy of Sciences of Ukraine (Ukraine); Ryazantsev, V. [State Nuclear Regularity Committee of Ukraine, Kiev (Ukraine)

    2014-05-15

    The paper presents results of mathematical modeling of the hydrogeological conditions at the “Dneprovskoe” (“D”) tailings impoundment –object of the former industrial association of “Pridneprovsky Chemical Plant”, which contains uranium ore processing wastes. This radioactively polluted site is located in a densely populated region (at the outskirts of Dneprodzerginsk City) near the major watercourse of the Ukraine — Dnieper River.The mathematical modeling utilized Visual Modflow (for groundwater flow) and Ecolego (Facilia AB, Sweden) radioecology modeling software (for radionuclide transport).Modeling results indicate the possibility of essential radioactive contamination in future of the phreatic aquifer in alluvial deposits between the “D” tailings and the Dnieper River (mainly due to migration of uranium). Therefore long-term management strategies should preclude water usage from the aquifer in the zone of the in-fluence of the “D” tailings. Filtration discharge of uranium to the Dnepr River does not represent a significant risk due to large dilution by surface waters. The important modeling conclusion is that besides the uranium ore processing wastes inside the tailings, the major source of radionuclide migration to groundwater is represented by contaminated geological deposits below the tailings. This last source was formed due to leakage of wastewaters during the operational period of the “D” tailings (1954–1968). Therefore an exemption and re-disposal of wastes from the “D” tailings to a more safe storage location (proposed by some remedial plans) will not provide significant benefit from the viewpoint of minimizing of radionuclide transport to the groundwater and Dnieper River (especially in short-and medium-term perspective). The rational remedial strategy for the “D” tailings is conservation of tailing wastes in-situ by means of specially designed “zero flux” soil screen, which would minimize infiltration of

  15. Three-dimensional geologic modeling and groundwater flow modeling of the Töllinperä aquifer in the Hitura nickel mine area, Finland – providing the framework for restoration and protection of the aquifer

    Directory of Open Access Journals (Sweden)

    Sami Saraperä

    2004-01-01

    Full Text Available Elevated concentrations of sulphate, chloride, and nickel were discovered in water samples taken from the Töllinperä aquifer in western Finland. The area is located adjacent to the tailings area of the Hitura nickel mine. Earlier studies revealed that the groundwater contamination resulted from tailings-derived mine waters leaking from a tailings impoundment area. The tailings area directly overlies the Weichselian esker system, part of which is the Töllinperä classified groundwater area. The observed groundwater and surface water contamination resulted in a need to characterize the subsurface geology in the whole area of the contaminated esker aquifer. The primary sedimentary units were introduced into a three-dimensional (3-D geologic model of the aquifer made with EarthVision geologic modeling software. The information obtained from the 3-D geological model was then introduced into a numerical groundwater flow model made with MODFLOW code, which was calibrated with MODFLOWP code.The results of this study were used to guide the sealing of the tailings impoundment in order to prevent the further contamination of the Töllinperä aquifer. The groundwater flow model was used to interpret and simulate the flow system, and to provide a plan to safely continue water supply to local inhabitants from the unpolluted parts of the aquifer.

  16. Hydrologic Change during the Colonial Era of the United States: Beavers and the Energy Cost of Impoundments (Invited)

    Science.gov (United States)

    Green, M. B.; Bain, D. J.; Arrigo, J. S.; Duncan, J. M.; Kumar, S.; Parolari, A.; Salant, N.; Vorosmarty, C. J.; Aloysius, N. R.; Bray, E. N.; Ruffing, C. M.; Witherell, B. B.

    2009-12-01

    Europeans colonized North America in the early 17th century with intentions ranging between long-term inhabitation and quick extraction of resources for economic gain in Europe. Whatever the intentions, the colonists relied on the landscape for resources resulting in dramatic change to the forest and fur-bearing mammal population. We demonstrate that initial exploitation of North American forest and furs caused a substantial decrease in mean water residence time (τ) between 1600 and 1800 A.D. That loss, which regionally changed from 51 to 41 days, contrasts with conventional wisdom that humans tend to diminish variability in water resources by increasing storage capacity and thus increasing τ. The loss of τ resulted from over-hunted beaver for the hat market in Europe. Analysis suggests that colonial era demographics and economics did not allow human resource allocation to impoundment construction on a level matching the historic beaver effort. However, the τ appears to have regionally increased during the 19th century, suggesting that humans eventually began replacing the water storage lost with the beaver. The analysis highlights the energy cost of impounding water, which is likely to continue to be an important factor given the increasing need for stable water resources and finite energy resources.

  17. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  18. Microcrustaceans (Branchiopoda and Copepoda) of Wetland Ponds and Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Adrienne E. DeBiase; Barbara E. Taylor

    2005-09-21

    The United States Department of Energy's Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  19. 40 CFR 270.17 - Specific part B information requirements for surface impoundments.

    Science.gov (United States)

    2010-07-01

    ... migration of any hazardous constituents into the ground water or surface water at any future time; (2) The....19 of this chapter; (5) Proposed action leakage rate, with rationale, if required under § 264.222 of..., including the double liner system, leak detection system, cover system, and appurtenances for control of...

  20. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.

    Science.gov (United States)

    Hiller, Edgar; Petrák, Marián; Tóth, Roman; Lalinská-Voleková, Bronislava; Jurkovič, L'ubomír; Kučerová, Gabriela; Radková, Anežka; Sottník, Peter; Vozár, Jaroslav

    2013-11-01

    mineral assemblage and their occurrence follows the order: chalcopyrite > pyrite > tetrahedrite>arsenopyrite. The mineralogical composition of the tailings corresponds well to the primary mineralization mined. The neutralization capacity of the tailings is high, as confirmed by the values of neutralization potential to acid generation potential ratio, ranging from 6.7 to 63.9, and neutral to slightly alkaline pH of the tailings (paste pH 7.16-8.12) and the waters (pH 7.00-8.52). This is explained by abundant occurrence of carbonate minerals in the tailings, which readily neutralize the acidity generated by sulfide oxidation. The total solid-phase concentrations of metal(loid)s decrease as Cu>Sb>Hg>As and reflect the proportions of sulfides present in the tailings. Sulfide oxidation generally extends to a depth of 2 m. μ-XRD and EMPA were used to study secondary products developed on the surface of sulfide minerals and within the tailings. The main secondary minerals identified are goethite and X-ray amorphous Fe oxyhydroxides and their occurrence decreases with increasing tailings depth. Secondary Fe phases are found as mineral coatings or individual grains and retain relatively high amounts of metal(loid)s (up to 57.6 wt% Cu, 1.60 wt% Hg, 23.8 wt% As, and 2.37 wt% Sb). Based on batch leaching tests and lysimeter results, the mobility of potentially toxic elements in the tailings is low. The limited mobility of metals and metalloids is due to their retention by Fe oxyhydroxides and low solubilities of metal(loid)-bearing sulfides. The observations are consistent with PHREEQC calculations, which predict the precipitation of Fe oxyhydroxides as the main solubility-controlling mineral phases for As, Cu, Hg, and Sb. Waters discharging from tailings impoundment are characterized by a neutral to slightly alkaline pH (7.52-7.96) and low concentrations of dissolved metal(loid)s (tailings impoundment.

  1. Effects of hydrologic variables on rock riprap design for uranium tailings impoundments

    International Nuclear Information System (INIS)

    Walters, W.H.; Skaggs, R.L.

    1985-01-01

    Pacific Northwest Laboratory is studying the mitigation of erosion of earthen radon suppression covers for uranium tailings impoundments. Because the covers will require erosion protection for upwards of 1000 years, rock riprap (armoring) has been proposed as the primary protection method. This study investigates the sensitivity of riprap design procedures to extreme flood events that can generate high flow velocities and shear stresses. The study uses two decommissioned tailings sites (Grand Junction and Slick Rock, Colorado) as case studies to evaluate the sensitivity of design rock size with respect to variables such as flood discharge, side slope, specific gravity, safety factor, and channel roughness. The results indicate that design rock size can vary significantly for different design procedures. Other significant results indicate that embankment side slopes of about 4H:1V are optimum for rock riprap and that the use of rock material with specific gravities less than about 2.50 may prove too costly

  2. Effect of fishing effort on catch rate and catchability of largemouth bass in small impoundments

    Science.gov (United States)

    Wegener, M. G.; Schramm, Harold; Neal, J. W.; Gerard, P.D.

    2018-01-01

    Largemouth bass Micropterus salmoides (Lacepède) catch rates decline with sustained fishing effort, even without harvest. It is unclear why declines in catch rate occur, and little research has been directed at how to improve catch rate. Learning has been proposed as a reason for declining catch rate, but has never been tested on largemouth bass. If catch rate declines because fish learn to avoid lures, periods of no fishing could be a management tool for increasing catch rate. In this study, six small impoundments with established fish populations were fished for two May to October fishing seasons to evaluate the effect of fishing effort on catch rate. Closed seasons were implemented to test whether a 2‐month period of no fishing improved catch rates and to determine whether conditioning from factors other than being captured reduced catch rate. Mixed‐model analysis indicated catch rate and catchability declined throughout the fishing season. Catch rate and catchability increased after a 2‐month closure but soon declined to the lowest levels of the fishing season. These changes in catch rate and catchability support the conclusion of learned angler avoidance, but sustained catchability of fish not previously caught does not support that associative or social learning affected catchability.

  3. LADTAP-2, Organ Doses to Man and Other Biota from Aquatic Environment

    International Nuclear Information System (INIS)

    Strenge, D.L.; Peloquin, R.A.; Whelan, G.

    1989-01-01

    1 - Description of problem or function: LADTAP2 performs environmental dose analyses for releases of liquid effluents from light-water nuclear power plants into surface waters during routine operation. The analyses estimate radiation doses to individuals, population groups, and biota from ingestion (aquatic foods, water, and terrestrial irrigated foods) and external exposure (shoreline, swimming, and boating) pathways. The calculated doses provide information for National Environmental Policy Act (NEPA) evaluations and for determining compliance with Appendix I of 10 CFR 50 (the 'ALARA' philosophy). The program consists of a hydrologic model chosen to represent mixing in the effluent impoundment system and the receiving surface waters and the exposure pathway models which estimate exposure of selected groups at various water usage locations in the environment. Two types of population doses are calculated. An ALARA analysis is performed based on exposure of people within 50 miles of the site, and a NEPA analysis is performed based on exposure of the entire U.S. population to effluents from the site. A population-dose analysis prepared in the form of a cost-benefit table presents the total-body and thyroid doses from each radionuclide released and the population doses (total-body and thyroid) per curie of each radionuclide released. 2 - Method of solution: The impoundment system is represented by one of four hydrologic models: direct release to the receiving water, linear flow with no mixing (the plug-flow model), linear flow through the impoundment with partial recirculation through the reactor (the partially mixed model), or complete mixing in the impoundment with partial recirculation through the reactor (the completely mixed model). The last three account for radiological decay during transit through the impoundment system. Optional models are available to estimate dilution in nontidal rivers and near-shore lake environments. The consequence calculation part of

  4. Surface Flux Modeling for Air Quality Applications

    Directory of Open Access Journals (Sweden)

    Limei Ran

    2011-08-01

    Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.

  5. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  6. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...

  7. 40 CFR 264.227 - Emergency repairs; contingency plans.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Emergency repairs; contingency plans... FACILITIES Surface Impoundments § 264.227 Emergency repairs; contingency plans. (a) A surface impoundment... days after detecting the problem. (c) As part of the contingency plan required in subpart D of this...

  8. Automated detection of submerged navigational obstructions in freshwater impoundments with hull mounted sidescan sonar

    Science.gov (United States)

    Morris, Phillip A.

    The prevalence of low-cost side scanning sonar systems mounted on small recreational vessels has created improved opportunities to identify and map submerged navigational hazards in freshwater impoundments. However, these economical sensors also present unique challenges for automated techniques. This research explores related literature in automated sonar imagery processing and mapping technology, proposes and implements a framework derived from these sources, and evaluates the approach with video collected from a recreational grade sonar system. Image analysis techniques including optical character recognition and an unsupervised computer automated detection (CAD) algorithm are employed to extract the transducer GPS coordinates and slant range distance of objects protruding from the lake bottom. The retrieved information is formatted for inclusion into a spatial mapping model. Specific attributes of the sonar sensors are modeled such that probability profiles may be projected onto a three dimensional gridded map. These profiles are computed from multiple points of view as sonar traces crisscross or come near each other. As lake levels fluctuate over time so do the elevation points of view. With each sonar record, the probability of a hazard existing at certain elevations at the respective grid points is updated with Bayesian mechanics. As reinforcing data is collected, the confidence of the map improves. Given a lake's current elevation and a vessel draft, a final generated map can identify areas of the lake that have a high probability of containing hazards that threaten navigation. The approach is implemented in C/C++ utilizing OpenCV, Tesseract OCR, and QGIS open source software and evaluated in a designated test area at Lake Lavon, Collin County, Texas.

  9. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... by the hydrological model is found to be insensitive to model resolution. Furthermore, this study highlights the effect of bias precipitation by regional climate model and it implications for hydrological modelling....

  10. Joint surface modeling with thin-plate splines.

    Science.gov (United States)

    Boyd, S K; Ronsky, J L; Lichti, D D; Salkauskas, K; Chapman, M A; Salkauskas, D

    1999-10-01

    Mathematical joint surface models based on experimentally determined data points can be used to investigate joint characteristics such as curvature, congruency, cartilage thickness, joint contact areas, as well as to provide geometric information well suited for finite element analysis. Commonly, surface modeling methods are based on B-splines, which involve tensor products. These methods have had success; however, they are limited due to the complex organizational aspect of working with surface patches, and modeling unordered, scattered experimental data points. An alternative method for mathematical joint surface modeling is presented based on the thin-plate spline (TPS). It has the advantage that it does not involve surface patches, and can model scattered data points without experimental data preparation. An analytical surface was developed and modeled with the TPS to quantify its interpolating and smoothing characteristics. Some limitations of the TPS include discontinuity of curvature at exactly the experimental surface data points, and numerical problems dealing with data sets in excess of 2000 points. However, suggestions for overcoming these limitations are presented. Testing the TPS with real experimental data, the patellofemoral joint of a cat was measured with multistation digital photogrammetry and modeled using the TPS to determine cartilage thicknesses and surface curvature. The cartilage thickness distribution ranged between 100 to 550 microns on the patella, and 100 to 300 microns on the femur. It was found that the TPS was an effective tool for modeling joint surfaces because no preparation of the experimental data points was necessary, and the resulting unique function representing the entire surface does not involve surface patches. A detailed algorithm is presented for implementation of the TPS.

  11. Single-layer model for surface roughness.

    Science.gov (United States)

    Carniglia, C K; Jensen, D G

    2002-06-01

    Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.

  12. Understanding Surface Adhesion in Nature: A Peeling Model.

    Science.gov (United States)

    Gu, Zhen; Li, Siheng; Zhang, Feilong; Wang, Shutao

    2016-07-01

    Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.

  13. Finsler Geometry Modeling of an Orientation-Asymmetric Surface Model for Membranes

    Science.gov (United States)

    Proutorov, Evgenii; Koibuchi, Hiroshi

    2017-12-01

    In this paper, a triangulated surface model is studied in the context of Finsler geometry (FG) modeling. This FG model is an extended version of a recently reported model for two-component membranes, and it is asymmetric under surface inversion. We show that the definition of the model is independent of how the Finsler length of a bond is defined. This leads us to understand that the canonical (or Euclidean) surface model is obtained from the FG model such that it is uniquely determined as a trivial model from the viewpoint of well definedness.

  14. Surface Adsorption in Nonpolarizable Atomic Models.

    Science.gov (United States)

    Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J

    2014-12-09

    Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.

  15. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  16. Surface-complexation models for sorption onto heterogeneous surfaces

    International Nuclear Information System (INIS)

    Harvey, K.B.

    1997-10-01

    This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)

  17. Analytical fitting model for rough-surface BRDF.

    Science.gov (United States)

    Renhorn, Ingmar G E; Boreman, Glenn D

    2008-08-18

    A physics-based model is developed for rough surface BRDF, taking into account angles of incidence and scattering, effective index, surface autocovariance, and correlation length. Shadowing is introduced on surface correlation length and reflectance. Separate terms are included for surface scatter, bulk scatter and retroreflection. Using the FindFit function in Mathematica, the functional form is fitted to BRDF measurements over a wide range of incident angles. The model has fourteen fitting parameters; once these are fixed, the model accurately describes scattering data over two orders of magnitude in BRDF without further adjustment. The resulting analytical model is convenient for numerical computations.

  18. Modeling of ion beam surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Stinnett, R W [Quantum Manufacturing Technologies, Inc., Albuquerque, NM (United States); Maenchen, J E; Renk, T J [Sandia National Laboratories, Albuquerque, NM (United States); Struve, K W [Mission Research Corporation, Albuquerque, NM (United States); Campbell, M M [PASTDCO, Albuquerque, NM (United States)

    1997-12-31

    The use of intense pulsed ion beams is providing a new capability for surface engineering based on rapid thermal processing of the top few microns of metal, ceramic, and glass surfaces. The Ion Beam Surface Treatment (IBEST) process has been shown to produce enhancements in the hardness, corrosion, wear, and fatigue properties of surfaces by rapid melt and re-solidification. A new code called IBMOD was created, enabling the modeling of intense ion beam deposition and the resulting rapid thermal cycling of surfaces. This code was used to model the effect of treatment of aluminum, iron, and titanium using different ion species and pulse durations. (author). 3 figs., 4 refs.

  19. Survivability of ancient man-made earthen mounds: implications for uranium mill tailings impoundments

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Mishima, J.; King, S.E.; Walters, W.H.

    1983-06-01

    As part of a study for the Nuclear Regulatory Commission (NRC), the Pacific Northwest Laboratory (PNL) is investigating long-term stabilization techniques for uranium mill impoundments. Part of this investigation involves the design of a rock armoring blanket (riprap) to mitigate wind and water erosion of the underlying soil cover, which in turn prevents exposure of the tailings to the environment. However, the need for the armoring blanket, as well as the blanket's effectiveness, depends on the stability of the underlying soil cap (radon suppression cover) and on the tailings themselves. Compelling evidence in archaeological records suggests that large man-made earthen structures can remain sound and intact for time periods comparable to those required for the stabilization of the tailings piles if properly constructed. We present archaeological evidence on the existence and survivability of man-made earthen and rock structures through specific examples of such structures from around the world. We also review factors contributing to their survival or destruction and address the influence of climate, building materials, and construction techniques on survivability

  20. 40 CFR 264.231 - Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27.

    Science.gov (United States)

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.231 Special requirements for hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27. (a) Hazardous Wastes FO20, FO21, FO22... surface impoundments managing hazardous wastes FO20, FO21, FO22, FO23, FO26, and FO27 in order to reduce...

  1. Alternative model of random surfaces

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.

    1992-01-01

    We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)

  2. Modelling nanostructures with vicinal surfaces

    International Nuclear Information System (INIS)

    Mugarza, A; Schiller, F; Kuntze, J; Cordon, J; Ruiz-Oses, M; Ortega, J E

    2006-01-01

    Vicinal surfaces of the (111) plane of noble metals are characterized by free-electron-like surface states that scatter at one-dimensional step edges, making them ideal model systems to test the electronic properties of periodic lateral nanostructures. Here we use high-resolution, angle-resolved photoemission to analyse the evolution of the surface state on a variety of vicinal surface structures where both the step potential barrier and the superlattice periodicity can vary. A transition in the electron dimensionality is found as we vary the terrace size in single-phase step arrays. In double-phase, periodic faceted surfaces, we observe surface states that characterize each of the phases

  3. Enhancing the representation of subgrid land surface characteristics in land surface models

    Directory of Open Access Journals (Sweden)

    Y. Ke

    2013-09-01

    Full Text Available Land surface heterogeneity has long been recognized as important to represent in the land surface models. In most existing land surface models, the spatial variability of surface cover is represented as subgrid composition of multiple surface cover types, although subgrid topography also has major controls on surface processes. In this study, we developed a new subgrid classification method (SGC that accounts for variability of both topography and vegetation cover. Each model grid cell was represented with a variable number of elevation classes and each elevation class was further described by a variable number of vegetation types optimized for each model grid given a predetermined total number of land response units (LRUs. The subgrid structure of the Community Land Model (CLM was used to illustrate the newly developed method in this study. Although the new method increases the computational burden in the model simulation compared to the CLM subgrid vegetation representation, it greatly reduced the variations of elevation within each subgrid class and is able to explain at least 80% of the total subgrid plant functional types (PFTs. The new method was also evaluated against two other subgrid methods (SGC1 and SGC2 that assigned fixed numbers of elevation and vegetation classes for each model grid (SGC1: M elevation bands–N PFTs method; SGC2: N PFTs–M elevation bands method. Implemented at five model resolutions (0.1°, 0.25°, 0.5°, 1.0°and 2.0° with three maximum-allowed total number of LRUs (i.e., NLRU of 24, 18 and 12 over North America (NA, the new method yielded more computationally efficient subgrid representation compared to SGC1 and SGC2, particularly at coarser model resolutions and moderate computational intensity (NLRU = 18. It also explained the most PFTs and elevation variability that is more homogeneously distributed spatially. The SGC method will be implemented in CLM over the NA continent to assess its impacts on

  4. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention.

    Science.gov (United States)

    Kroeger, Kevin D; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-09-20

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as "Blue Carbon"), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH 4 ) and CO 2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH 4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  5. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention

    Science.gov (United States)

    Kroeger, Kevin D.; Crooks, Stephen; Moseman-Valtierra, Serena; Tang, Jianwu

    2017-01-01

    Coastal wetlands are sites of rapid carbon (C) sequestration and contain large soil C stocks. Thus, there is increasing interest in those ecosystems as sites for anthropogenic greenhouse gas emission offset projects (sometimes referred to as “Blue Carbon”), through preservation of existing C stocks or creation of new wetlands to increase future sequestration. Here we show that in the globally-widespread occurrence of diked, impounded, drained and tidally-restricted salt marshes, substantial methane (CH4) and CO2 emission reductions can be achieved through restoration of disconnected saline tidal flows. Modeled climatic forcing indicates that tidal restoration to reduce emissions has a much greater impact per unit area than wetland creation or conservation to enhance sequestration. Given that GHG emissions in tidally-restricted, degraded wetlands are caused by human activity, they are anthropogenic emissions, and reducing them will have an effect on climate that is equivalent to reduced emission of an equal quantity of fossil fuel GHG. Thus, as a landuse-based climate change intervention, reducing CH4 emissions is an entirely distinct concept from biological C sequestration projects to enhance C storage in forest or wetland biomass or soil, and will not suffer from the non-permanence risk that stored C will be returned to the atmosphere.

  6. Reclamation plans at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Abt, S.R.; Nelson, J.D.

    1990-01-01

    Long-term stability of waste impoundments is of concern because of the long time periods over which various types of waste may remain active. Over the past decade much technology has been developed specifically for reclamation of uranium mill tailings impoundments. Aspects of this technology will be discussed here and is presented as also being directly applicable to reclamation of industrial waste impoundments in general. The paper discusses Title I and Title II sites which represent two different generations in uranium tailings impoundment construction. The comparison between the two represent differences in philosophies as well as in impoundment type. Reclamation of uranium mill tailings impoundments in the U.S. is controlled by Federal legislation, which has set forth the regulatory framework for reclamation plan approval. Title I requirements govern government owned inactive sites and Title II requirements govern active tailings impoundments or those operated by private industries. While the Title I and Title II designation may result in a slightly different regulatory process, reclamation of uranium tailings sites has the same. Differences between Title I and Title II reclamation plans to achieve surface stability relate primarily to the embankment and surface covers. The differences in the cover designs result from site-specific conditions, rather than from differences in engineering approaches or the regulatory process. This paper discusses the site-specific conditions that affect the selection of cover designs, and provides a comparative example to illustrate the effect of this condition

  7. Digital Modeling Phenomenon Of Surface Ground Movement

    Directory of Open Access Journals (Sweden)

    Ioan Voina

    2016-11-01

    Full Text Available With the development of specialized software applications it was possible to approach and resolve complex problems concerning automating and process optimization for which are being used field data. Computerized representation of the shape and dimensions of the Earth requires a detailed mathematical modeling, known as "digital terrain model". The paper aims to present the digital terrain model of Vulcan mining, Hunedoara County, Romania. Modeling consists of a set of mathematical equations that define in detail the surface of Earth and has an approximate surface rigorously and mathematical, that calculated the land area. Therefore, the digital terrain model means a digital representation of the earth's surface through a mathematical model that approximates the land surface modeling, which can be used in various civil and industrial applications in. To achieve the digital terrain model of data recorded using linear and nonlinear interpolation method based on point survey which highlights the natural surface studied. Given the complexity of this work it is absolutely necessary to know in detail of all topographic elements of work area, without the actions to be undertaken to project and manipulate would not be possible. To achieve digital terrain model, within a specialized software were set appropriate parameters required to achieve this case study. After performing all steps we obtained digital terrain model of Vulcan Mine. Digital terrain model is the complex product, which has characteristics that are equivalent to the specialists that use satellite images and information stored in a digital model, this is easier to use.

  8. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    Science.gov (United States)

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  9. Land-surface modelling in hydrological perspective

    DEFF Research Database (Denmark)

    Overgaard, Jesper; Rosbjerg, Dan; Butts, M.B.

    2006-01-01

    The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches......, and the difficulties inherent in various evaluation procedures are presented. Finally, the dynamic coupling of hydrological and atmospheric models is explored, and the perspectives of such efforts are discussed......., because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opportunities for evaluation of distributed land-surface models through application of remote sensing are discussed in detail...

  10. Foundations of elastoplasticity subloading surface model

    CERN Document Server

    Hashiguchi, Koichi

    2017-01-01

    This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...

  11. Windblown Dust Deposition Forecasting and Spread of Contamination around Mine Tailings.

    Science.gov (United States)

    Stovern, Michael; Guzmán, Héctor; Rine, Kyle P; Felix, Omar; King, Matthew; Ela, Wendell P; Betterton, Eric A; Sáez, Avelino Eduardo

    2016-02-01

    Wind erosion, transport and deposition of windblown dust from anthropogenic sources, such as mine tailings impoundments, can have significant effects on the surrounding environment. The lack of vegetation and the vertical protrusion of the mine tailings above the neighboring terrain make the tailings susceptible to wind erosion. Modeling the erosion, transport and deposition of particulate matter from mine tailings is a challenge for many reasons, including heterogeneity of the soil surface, vegetative canopy coverage, dynamic meteorological conditions and topographic influences. In this work, a previously developed Deposition Forecasting Model (DFM) that is specifically designed to model the transport of particulate matter from mine tailings impoundments is verified using dust collection and topsoil measurements. The DFM is initialized using data from an operational Weather Research and Forecasting (WRF) model. The forecast deposition patterns are compared to dust collected by inverted-disc samplers and determined through gravimetric, chemical composition and lead isotopic analysis. The DFM is capable of predicting dust deposition patterns from the tailings impoundment to the surrounding area. The methodology and approach employed in this work can be generalized to other contaminated sites from which dust transport to the local environment can be assessed as a potential route for human exposure.

  12. 40 CFR 264.1085 - Standards: Surface impoundments.

    Science.gov (United States)

    2010-07-01

    ... materials of construction and designing the cover and closure devices shall include: Organic vapor... closure device in the closed position, as applicable. (B) To remove accumulated sludge or other residues... construction and designing the cover and closure devices shall include: Organic vapor permeability; the effects...

  13. 40 CFR 265.1086 - Standards: Surface impoundments.

    Science.gov (United States)

    2010-07-01

    ... materials of construction and designing the cover and closure devices shall include: Organic vapor... closure device in the closed position, as applicable. (B) To remove accumulated sludge or other residues... construction and designing the cover and closure devices shall include: Organic vapor permeability; the effects...

  14. Hydraulic modelling at the Piedra del Aguila dam

    Energy Technology Data Exchange (ETDEWEB)

    Bruschin, J

    1985-01-01

    Piedra del Aguila is a major hydroelectric scheme in Argentina. Extensive tests, aimed to help and check the design of the main hydraulic structures, were run for more than two years on five models at scales from 1:20 to 1:130. High priority problems were identified as: the river diversion and closure; spillway capacity, chute flows, hydraulic jump sweepout, jet impact location and flow aeration; bottom outlet free surface flows, aeration, jet impact location and discharge capacity at various impact location and discharge capacity at various reservoir levels during impoundment; erosion-deposition pattern of alluvium and weathered rocks at jet impact locations, back-water effects and their prevention and/or elimination; and, vibration risks of the very large spillway crest taintergates, specifically suppression of air entraining vortices. Much attention is given to the prevention of cavitation. 12 references, 7 figures, 1 table.

  15. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was

  16. Internal Physical Features of a Land Surface Model Employing a Tangent Linear Model

    Science.gov (United States)

    Yang, Runhua; Cohn, Stephen E.; daSilva, Arlindo; Joiner, Joanna; Houser, Paul R.

    1997-01-01

    The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate system. Land surface heterogeneity, such as the type and amount of vegetative covering., has a profound effect on local weather variability and therefore on regional variations of the global climate. Surface conditions affect local weather and climate through a number of mechanisms. First, they determine the re-distribution of the net radiative energy received at the surface, through the atmosphere, from the sun. A certain fraction of this energy increases the surface ground temperature, another warms the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration and distribution of greenhouse gases such as carbon dioxide. The processes through which these mechanisms interact with the atmosphere can be modeled mathematically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land surface model provides predictive capability for surface variables including ground temperature, surface humidity, and soil moisture and temperature. This information is important for agriculture and industry, as well as for addressing fundamental scientific questions concerning global and local climate change. In this study we apply a methodology known as tangent linear modeling to help us understand more deeply, the behavior of the Mosaic land surface model, a model that has been developed over the past several years at NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence of prediction errors in land surface variables upon different vegetation conditions. The work also highlights the importance of accurate soil moisture information. Although surface

  17. Modeling Surface Roughness to Estimate Surface Moisture Using Radarsat-2 Quad Polarimetric SAR Data

    Science.gov (United States)

    Nurtyawan, R.; Saepuloh, A.; Budiharto, A.; Wikantika, K.

    2016-08-01

    Microwave backscattering from the earth's surface depends on several parameters such as surface roughness and dielectric constant of surface materials. The two parameters related to water content and porosity are crucial for estimating soil moisture. The soil moisture is an important parameter for ecological study and also a factor to maintain energy balance of land surface and atmosphere. Direct roughness measurements to a large area require extra time and cost. Heterogeneity roughness scale for some applications such as hydrology, climate, and ecology is a problem which could lead to inaccuracies of modeling. In this study, we modeled surface roughness using Radasat-2 quad Polarimetric Synthetic Aperture Radar (PolSAR) data. The statistical approaches to field roughness measurements were used to generate an appropriate roughness model. This modeling uses a physical SAR approach to predicts radar backscattering coefficient in the parameter of radar configuration (wavelength, polarization, and incidence angle) and soil parameters (surface roughness and dielectric constant). Surface roughness value is calculated using a modified Campbell and Shepard model in 1996. The modification was applied by incorporating the backscattering coefficient (σ°) of quad polarization HH, HV and VV. To obtain empirical surface roughness model from SAR backscattering intensity, we used forty-five sample points from field roughness measurements. We selected paddy field in Indramayu district, West Java, Indonesia as the study area. This area was selected due to intensive decreasing of rice productivity in the Northern Coast region of West Java. Third degree polynomial is the most suitable data fitting with coefficient of determination R2 and RMSE are about 0.82 and 1.18 cm, respectively. Therefore, this model is used as basis to generate the map of surface roughness.

  18. [Modeling polarimetric BRDF of leaves surfaces].

    Science.gov (United States)

    Xie, Dong-Hui; Wang, Pei-Juan; Zhu, Qi-Jiang; Zhou, Hong-Min

    2010-12-01

    The purpose of the present paper is to model a physical polarimetric bidirectional reflectance distribution function (pBRDF), which can character not only the non-Lambertian but also the polarized features in order that the pBRDF can be applied to analyze the relationship between the degree of polarization and the physiological and biochemical parameters of leaves quantitatively later. Firstly, the bidirectional polarized reflectance distributions from several leaves surfaces were measured by the polarized goniometer developed by Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences. The samples of leaves include two pieces of zea mays L. leaves (young leaf and mature leaf) and a piece of E. palcherrima wild leaf. Non-Lambertian characteristics of directional reflectance from the surfaces of these three leaves are obvious. A Cook-Torrance model was modified by coupling the polarized Fresnel equations to simulate the bidirectional polarized reflectance properties of leaves surfaces. The three parameters in the modified pBRDF model, such as diffuse reflectivity, refractive index and roughness of leaf surface were inversed with genetic algorithm (GA). It was found that the pBRDF model can fit with the measured data well. In addition, these parameters in the model are related with both the physiological and biochemical properties and the polarized characteristics of leaves, therefore it is possible to build the relationships between them later.

  19. Numerical Study of Wind Turbine Wake Modeling Based on a Actuator Surface Model

    DEFF Research Database (Denmark)

    Zhou, Huai-yang; Xu, Chang; Han, Xing Xing

    2017-01-01

    In the Actuator Surface Model (ALM), the turbine blades are represented by porous surfaces of velocity and pressure discontinuities to model the action of lifting surfaces on the flow. The numerical simulation is implemented on FLUENT platform combined with N-S equations. This model is improved o...

  20. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...

  1. An Improved MUSIC Model for Gibbsite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.

    2004-06-01

    Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.

  2. A diffuse radar scattering model from Martian surface rocks

    Science.gov (United States)

    Calvin, W. M.; Jakosky, B. M.; Christensen, P. R.

    1987-01-01

    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed.

  3. Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    Science.gov (United States)

    Kumar, Sujay V.; Peters-Lidard, Christa D.; Santanello, Joseph; Harrison, Ken; Liu, Yuqiong; Shaw, Michael

    2011-01-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  4. Land surface Verification Toolkit (LVT) - a generalized framework for land surface model evaluation

    Science.gov (United States)

    Kumar, S. V.; Peters-Lidard, C. D.; Santanello, J.; Harrison, K.; Liu, Y.; Shaw, M.

    2012-06-01

    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it supports hydrological data products from non-LIS environments as well. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community.

  5. INTEGRATION OF HETEROGENOUS DIGITAL SURFACE MODELS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2012-08-01

    Full Text Available The application of extended digital surface models often reveals, that despite an acceptable global accuracy for a given dataset, the local accuracy of the model can vary in a wide range. For high resolution applications which cover the spatial extent of a whole country, this can be a major drawback. Within the Swiss National Forest Inventory (NFI, two digital surface models are available, one derived from LiDAR point data and the other from aerial images. Automatic photogrammetric image matching with ADS80 aerial infrared images with 25cm and 50cm resolution is used to generate a surface model (ADS-DSM with 1m resolution covering whole switzerland (approx. 41000 km2. The spatially corresponding LiDAR dataset has a global point density of 0.5 points per m2 and is mainly used in applications as interpolated grid with 2m resolution (LiDAR-DSM. Although both surface models seem to offer a comparable accuracy from a global view, local analysis shows significant differences. Both datasets have been acquired over several years. Concerning LiDAR-DSM, different flight patterns and inconsistent quality control result in a significantly varying point density. The image acquisition of the ADS-DSM is also stretched over several years and the model generation is hampered by clouds, varying illumination and shadow effects. Nevertheless many classification and feature extraction applications requiring high resolution data depend on the local accuracy of the used surface model, therefore precise knowledge of the local data quality is essential. The commercial photogrammetric software NGATE (part of SOCET SET generates the image based surface model (ADS-DSM and delivers also a map with figures of merit (FOM of the matching process for each calculated height pixel. The FOM-map contains matching codes like high slope, excessive shift or low correlation. For the generation of the LiDAR-DSM only first- and last-pulse data was available. Therefore only the point

  6. Impact of improved Greenland ice sheet surface representation in the NASA GISS ModelE2 GCM on simulated surface mass balance and regional climate

    Science.gov (United States)

    Alexander, P. M.; LeGrande, A. N.; Fischer, E.; Tedesco, M.; Kelley, M.; Schmidt, G. A.; Fettweis, X.

    2017-12-01

    Towards achieving coupled simulations between the NASA Goddard Institute for Space Studies (GISS) ModelE2 general circulation model (GCM) and ice sheet models (ISMs), improvements have been made to the representation of the ice sheet surface in ModelE2. These include a sub-grid-scale elevation class scheme, a multi-layer snow model, a time-variable surface albedo scheme, and adjustments to parameterization of sublimation/evaporation. These changes improve the spatial resolution and physical representation of the ice sheet surface such that the surface is represented at a level of detail closer to that of Regional Climate Models (RCMs). We assess the impact of these changes on simulated Greenland Ice Sheet (GrIS) surface mass balance (SMB). We also compare ModelE2 simulations in which winds have been nudged to match the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis with simulations from the Modèle Atmosphérique Régionale (MAR) RCM forced by the same reanalysis. Adding surface elevation classes results in a much higher spatial resolution representation of the surface necessary for coupling with ISMs, but has a negligible impact on overall SMB. Implementing a variable surface albedo scheme increases melt by 100%, bringing it closer to melt simulated by MAR. Adjustments made to the representation of topography-influenced surface roughness length in ModelE2 reduce a positive bias in evaporation relative to MAR. We also examine the impact of changes to the GrIS surface on regional atmospheric and oceanic climate in coupled ocean-atmosphere simulations with ModelE2, finding a general warming of the Arctic due to a warmer GrIS, and a cooler North Atlantic in scenarios with doubled atmospheric CO2 relative to pre-industrial levels. The substantial influence of changes to the GrIS surface on the oceans and atmosphere highlight the importance of including these processes in the GCM, in view of potential feedbacks between the ice sheet

  7. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  8. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Science.gov (United States)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin-Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  9. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    International Nuclear Information System (INIS)

    Ghavanloo, Esmaeal; Fazelzadeh, S. Ahmad; Rafii-Tabar, Hashem

    2014-01-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  10. Nonlocal continuum-based modeling of breathing mode of nanowires including surface stress and surface inertia effects

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Fazelzadeh, S. Ahmad [School of Mechanical Engineering, Shiraz University, Shiraz 71963-16548 (Iran, Islamic Republic of); Rafii-Tabar, Hashem [Department of Medical Physics and Biomedical Engineering, Research Center for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of); Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of)

    2014-05-01

    Nonlocal and surface effects significantly influence the mechanical response of nanomaterials and nanostructures. In this work, the breathing mode of a circular nanowire is studied on the basis of the nonlocal continuum model. Both the surface elastic properties and surface inertia effect are included. Nanowires can be modeled as long cylindrical solid objects. The classical model is reformulated using the nonlocal differential constitutive relations of Eringen and Gurtin–Murdoch surface continuum elasticity formalism. A new frequency equation for the breathing mode of nanowires, including small scale effect, surface stress and surface inertia is presented by employing the Bessel functions. Numerical results are computed, and are compared to confirm the validity and accuracy of the proposed method. Furthermore, the model is used to elucidate the effect of nonlocal parameter, the surface stress, the surface inertia and the nanowire orientation on the breathing mode of several types of nanowires with size ranging from 0.5 to 4 nm. Our results reveal that the combined surface and small scale effects are significant for nanowires with diameter smaller than 4 nm.

  11. Three-dimensional modeling of chloroprene rubber surface topography upon composition

    Energy Technology Data Exchange (ETDEWEB)

    Žukienė, Kristina, E-mail: kristina.zukiene@ktu.lt [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Jankauskaitė, Virginija [Department of Clothing and Polymer Products Technology, Kaunas University of Technology, Studentu St. 56, LT-51424 Kaunas (Lithuania); Petraitienė, Stase [Department of Applied Mathematics, Kaunas University of Technology, Studentu 50, LT-51368 Kaunas (Lithuania)

    2014-02-15

    In this study the effect of polymer blend composition on the surface roughness has been investigated and simulated. Three-dimensional modeling of chloroprene rubber film surface upon piperylene-styrene copolymer content was conducted. The efficiency of various surface roughness modeling methods, including Monte Carlo, surface growth and proposed method, named as parabolas, were compared. The required parameters for modeling were obtained from atomic force microscopy topographical images of polymer films surface. It was shown that experimental and modeled surfaces have the same correlation function. The quantitative comparison of function parameters was made. It was determined that novel parabolas method is suitable for three-dimensional polymer blends surface roughness description.

  12. Evidence for serial discontinuity in the fish community of a heavily impounded river

    Science.gov (United States)

    Miranda, Leandro E.; Dembkowski, D.J.

    2016-01-01

    In the Tennessee River, USA, we examined lengthwise patterns in fish community structure and species richness within and among nine reservoirs organized in sequence and connected through navigational locks. Within reservoirs, the riverine, transition and lacustrine zones supported distinct, although overlapping, nearshore fish assemblages; differences were also reflected in measures of species richness. Spatial patterns were most apparent for rheophilic species, which increased in species richness and representation upstream within each reservoir and downstream across the chain of reservoirs. This pattern resembled a sawtooth wave, with the amplitude of the wave peaking in the riverine zone below each dam, and progressively higher wave amplitude developing downstream in the reservoir chain. The observed sawtooth pattern supports the serial discontinuity concept in that the continuity of the riverine fish community is interrupted by the lacustrine conditions created behind each dam. Upstream within each reservoir, and downstream in the chain of reservoirs, habitat characteristics become more riverine. To promote sustainability of rheophilic fishes and maintain biodiversity in impounded rivers, conservation plans could emphasize maintenance and preservation of riverine environments of the reservoir's upper reaches, while remaining cognizant of the broader basin trends that provide opportunities for a lengthwise array of conservation and management policy. 

  13. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  14. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  15. Fugitive emissions control on dry copper tailing with crushed rock armor

    International Nuclear Information System (INIS)

    Haase, E.F.

    1992-01-01

    Four inactive copper tailing impoundments totalling 1,900 acres near Ajo in southwestern Arizona were covered on horizontal surfaces with a 2 in. nominal thickness of crushed rock to control particulate emissions. The tailings are typically dominated by sand-sized particles but may also include significant PM 10 fractions towards the centers of the impoundments. The technology was selected by Phelps Dodge Corporation, after investigation of several alternatives, as a permanent and practical cover that essentially eliminates fugitive emissions. It simulates the natural desert pavement that characterizes this arid area of the Sonoran Desert. Rocky overburden was crushed to minus 3 in. diameter and broadcast on dry surfaces of tailing impoundments with all-terrain, balloon-tired spreaders. Stony residues in the rock armor tend to cement together following rainfall, forming a crust that enhances surface stability and erosion control. Slopes with windblown tailing deposition were covered to a nominal 6 in. thickness by conventional dozer pushing and blading of minus 10 in. rock over the sides. Athel trees, planted extensively since 1970 on two of the four inactive impoundments, provided partial control of fugitives, but were subjected to harsh environmental conditions, including abrasion from saltating particles. The rock armor functions as a mulch which is expected to improve water relations for existing vegetation and areas seeded with native species. New surface microenvironments, and the virtual elimination of surface creep and saltation, are expected to support native plant growth under favorable climatic conditions

  16. Simplified models for surface hyperchannelling

    International Nuclear Information System (INIS)

    Evdokimov, I.N.; Webb, R.; Armour, D.G.; Karpuzov, D.S.

    1979-01-01

    Experimental and detailed, three-dimensional computer simulation studies of the scattering of low energy argon ions incident at grazing angles onto a nickel single crystal have shown that under certain, well defined conditions, surface hyperchannelling dominates the reflection process. The applicability of simple computer simulation models to the study of this type of scattering has been investigated by comparing the results obtained using a 'summation of binary collisions' model and a continuous string model with both the experimental observations and the three dimensional model calculations. It has been shown that all the major features of the phenomenon can be reproduced in a qualitative way using the simple models and that the continuous string represents a good approximation to the 'real' crystal over a wide range of angles. The saving in computer time compared with the more complex model makes it practicable to use the simple models to calculate cross-sections and overall scattering intensities for a wide range of geometries. The results of these calculations suggest that the critical angle for the onset of surface hyperchannelling, which is associated with a reduction in scattering intensity and which is thus not too sensitive to the parameters of experimental apparatus is a useful quantity from the point of view of comparison of theoretical calculations with experimental measurements. (author)

  17. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Science.gov (United States)

    2010-07-01

    ... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND... instrumentation. (9) Graphs showing area-capacity curves. (10) A statement of the runoff attributable to the probable maximum precipitation of 6-hour duration and the calculations used in determining such runoff. (11...

  18. Surface tension modelling of liquid Cd-Sn-Zn alloys

    Science.gov (United States)

    Fima, Przemyslaw; Novakovic, Rada

    2018-06-01

    The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.

  19. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  20. Conformally parametrized surfaces associated with CPN-1 sigma models

    International Nuclear Information System (INIS)

    Grundland, A M; Hereman, W A; Yurdusen, I-dot

    2008-01-01

    Two-dimensional parametrized surfaces immersed in the su(N) algebra are investigated. The focus is on surfaces parametrized by solutions of the equations for the CP N-1 sigma model. The Lie-point symmetries of the CP N-1 model are computed for arbitrary N. The Weierstrass formula for immersion is determined and an explicit formula for a moving frame on a surface is constructed. This allows us to determine the structural equations and geometrical properties of surfaces in R N 2 -1 . The fundamental forms, Gaussian and mean curvatures, Willmore functional and topological charge of surfaces are given explicitly in terms of any holomorphic solution of the CP 2 model. The approach is illustrated through several examples, including surfaces immersed in low-dimensional su(N) algebras

  1. A new class of actuator surface models for wind turbines

    Science.gov (United States)

    Yang, Xiaolei; Sotiropoulos, Fotis

    2018-05-01

    Actuator line model has been widely employed in wind turbine simulations. However, the standard actuator line model does not include a model for the turbine nacelle which can significantly impact turbine wake characteristics as shown in the literature. Another disadvantage of the standard actuator line model is that more geometrical features of turbine blades cannot be resolved on a finer mesh. To alleviate these disadvantages of the standard model, we develop a new class of actuator surface models for turbine blades and nacelle to take into account more geometrical details of turbine blades and include the effect of turbine nacelle. In the actuator surface model for blade, the aerodynamic forces calculated using the blade element method are distributed from the surface formed by the foil chords at different radial locations. In the actuator surface model for nacelle, the forces are distributed from the actual nacelle surface with the normal force component computed in the same way as in the direct forcing immersed boundary method and the tangential force component computed using a friction coefficient and a reference velocity of the incoming flow. The actuator surface model for nacelle is evaluated by simulating the flow over periodically placed nacelles. Both the actuator surface simulation and the wall-resolved large-eddy simulation are carried out. The comparison shows that the actuator surface model is able to give acceptable results especially at far wake locations on a very coarse mesh. It is noted that although this model is employed for the turbine nacelle in this work, it is also applicable to other bluff bodies. The capability of the actuator surface model in predicting turbine wakes is assessed by simulating the flow over the MEXICO (Model experiments in Controlled Conditions) turbine and a hydrokinetic turbine.

  2. Modelling the appearance of heritage metallic surfaces

    Directory of Open Access Journals (Sweden)

    L. MacDonald

    2014-06-01

    Full Text Available Polished metallic surfaces exhibit a high degree of specularity, which makes them difficult to reproduce accurately. We have applied two different techniques for modelling a heritage object known as the Islamic handbag. Photogrammetric multi-view stereo enabled a dense point cloud to be extracted from a set of photographs with calibration targets, and a geometrically accurate 3D model produced. A new method based on photometric stereo from a set of images taken in an illumination dome enabled surface normals to be generated for each face of the object and its appearance to be rendered, to a high degree of visual realism, when illuminated by one or more light sources from any angles. The specularity of the reflection from the metal surface was modelled by a modified Lorentzian function.

  3. Simple model of surface roughness for binary collision sputtering simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, Sloan J. [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Hobler, Gerhard, E-mail: gerhard.hobler@tuwien.ac.at [Institute of Solid-State Electronics, TU Wien, Floragasse 7, A-1040 Wien (Austria); Maciążek, Dawid; Postawa, Zbigniew [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30348 Kraków (Poland)

    2017-02-15

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  4. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  5. Fractal modeling of fluidic leakage through metal sealing surfaces

    Science.gov (United States)

    Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong

    2018-04-01

    This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.

  6. Advances in land modeling of KIAPS based on the Noah Land Surface Model

    Science.gov (United States)

    Koo, Myung-Seo; Baek, Sunghye; Seol, Kyung-Hee; Cho, Kyoungmi

    2017-08-01

    As of 2013, the Noah Land Surface Model (LSM) version 2.7.1 was implemented in a new global model being developed at the Korea Institute of Atmospheric Prediction Systems (KIAPS). This land surface scheme is further refined in two aspects, by adding new physical processes and by updating surface input parameters. Thus, the treatment of glacier land, sea ice, and snow cover are addressed more realistically. Inconsistencies in the amount of absorbed solar flux at ground level by the land surface and radiative processes are rectified. In addition, new parameters are available by using 1-km land cover data, which had usually not been possible at a global scale. Land surface albedo/emissivity climatology is newly created using Moderate-Resolution Imaging Spectroradiometer (MODIS) satellitebased data and adjusted parameterization. These updates have been applied to the KIAPS-developed model and generally provide a positive impact on near-surface weather forecasting.

  7. The Multimedia Environmental Pollutant Assessment System (MEPAS)reg-sign: Riverine pathway formulations

    International Nuclear Information System (INIS)

    Whelan, G.; McDonald, J.P.

    1996-11-01

    This report describes the mathematical formulations used for contaminant fate and transport in the riverine pathway of the Multimedia Environmental Pollutant Assessment System (MEPAS). Of the many types of surface-water bodies (e.g., nontidal rivers, estuaries, lakes, open coasts, reservoirs, impoundments, etc.) in which contaminant fate and transport could be simulated, only a nontidal river model is currently incorporated into MEPAS. Nontidal rivers refer to freshwater bodies with unidirectional flow in definable channels. Because the MEPAS methodology is compositely coupled, other surface-water models can be added when deemed necessary

  8. Minimal model for spoof acoustoelastic surface states

    Directory of Open Access Journals (Sweden)

    J. Christensen

    2014-12-01

    Full Text Available Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  9. The Use of Numerical Modeling to Address Surface and Subsurface Water Contamination due to Fracwater Spills in Larry's Creek, Pennsylvania

    Science.gov (United States)

    Simon, C. A.; Arjmand, S.; Abad, J. D.

    2012-12-01

    Because of its relatively low carbon dioxide emissions, natural gas is considered to be more efficient and environmentally friendly than other non-renewable fuels. As a result of this, among other factors, in recent years natural gas has become one of the world's primary energy sources. In the United States, drilling to extract natural gas has substantially increased over the past few years. In the Marcellus Shale, unconventional gas is currently extracted by using two new techniques: horizontal drilling and hydraulic fracturing. Today, fracking fluids which have been applied as part of the hydraulic fracturing process to fracture the shale rock and release the gas, pose a major environmental concern. These fluids are highly contaminated with radionuclides and toxic metals and any exposure of this highly polluted water to surface water or soil could heavily contaminate the media. The area selected for the current study is the Larry's Creek, located in Lycoming County in Pennsylvania. Larry's Creek Watershed was adversely affected by coal and iron mines activities in the 19th century. Though, the water quality in this creek was considered to be good as of 2006. Recently, oil and gas drilling activities have raised concerns about the creek's water quality again. A major environmental hazard is the freshwater contamination by frac/flowback water. Drilling companies are using impoundments on site to keep fracwater, and to store and evaporate flowback water. However, these ponds may fail or leak due to construction problems and/or accidents. Close to Saladasburg, Larry's Creek's stream was observed running rich with clay in October 19, 2011. Historical measurements show very high turbidity during this period which has raised questions about water contamination by the gas industry activities in the upper stream of the watershed. An interstate watershed agency has reported spills in Wolf Run in different drilling sites in the Larry's Creek basin. The focus of this study

  10. Holocene Record of Major and Trace Components in the Sediments of an Urban Impoundment on the Mississippi River: Lake Pepin, Minnesota and Wisconsin

    Science.gov (United States)

    Dean, Walter E.

    2009-01-01

    Lake Pepin is a natural impoundment formed by damming of the Mississippi River about 9,180 radiocarbon years ago (19,600 calendar years) by an alluvial fan deposited by the Chippewa River, a tributary of the Mississippi in Wisconsin. Unique among 26 Mississippi River impoundments, Lake Pepin has stratigraphically preserved Holocene materials, including pollutants, that have been transported down the Mississippi. This natural Holocene record can then be compared to changes that have occurred since European settlement (ca. AD 1830), and since enactment of clean air and water legislation. The most immediate response to settlement in the sediments of Lake Pepin was an increase in bulk-sediment accumulation rate. This was accompanied by gradual increases in concentrations of phosphorus (P), and organic carbon (OC), followed by dramatic increases in these elements beginning about 1940. The increase in P was far greater than any of the minor fluctuations in P that occurred throughout the Holocene, but the increase in OC was comparable to an increase in OC that occurred in the mid-Holocene. The concentrations of several metals (for example, cadmium [Cd], and lead [Pb]) also are elevated in recent sediments. Increased Cd concentrations lasted only about two decades during the industrial era between World War II and the enactment of clean water standards in the 1970s. Increased Pb emissions, on the other hand, occurred over more than 100 years, first from burning of coal and smelting of lead ores, and then, beginning in the 1930s, burning of leaded gasoline. Concentrations of Pb in the sediments of Lake Pepin decreased to about two times preindustrial levels within a decade of enactment of unleaded gasoline restrictions.

  11. Specification for a surface-search radar-detection-range model

    Science.gov (United States)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  12. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  13. Simple model of surface roughness for binary collision sputtering simulations

    Science.gov (United States)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  14. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  15. On a model simulating lack of hydraulic connection between a man ...

    Indian Academy of Sciences (India)

    The idea that a direct hydraulic connection between a man-made reservoir and the foci of post- impoundment earthquakes may not exist at all sites is eminently credible on geological grounds. Our aim is to provide a simple earth model and related theory for use during investigations of earthquakes near new man-made ...

  16. Increasing the reliability of the Olkiluoto surface and near-surface hydrological model

    International Nuclear Information System (INIS)

    Karvonen, T.

    2009-05-01

    The aim of the study was to improve the reliability of the Olkiluoto surface hydrological model that calculates the overall water balance components of Olkiluoto Island. ONKALO and Korvensuo reservoir were added as explicit structures to the model. The model links the unsaturated and saturated soil water in the overburden and groundwater in bedrock to a continuous pressure system. With the model it is possible to evaluate the influence of water leaking to ONKALO on groundwater level in overburden soils and pressure head in shallow bedrock drillholes. Anisotropy was added to the surface hydrological model and several model runs were carried out using anisotropy factors 1, 5 and 10. Anisotropy factor of 10 is used in the 2008 version of the deep hydrogeological model and the same anisotropy will be used in future calculations of the surface hydrological model to ensure consistency of the parameter values in the two models. The correspondence between measured and computed groundwater levels has been improved due to new soil type delineation and the calibration of the soil water retention curve parameters. Computed groundwater level variation can be characterized by a measure ΔH COMP , which is difference between maximum and minimum value during the calibration period. Average ΔH COMP in groundwater tubes was 1.98 m and the corresponding measured value ΔH MEAS was 2.08 m, i.e. the difference between measured and computed value was around 0.1 m (0.16 m in the 2007 version). Temporal variation (difference between maximum and minimum pressure head) was simulated well also in most of the shallow bedrock drillholes. ONKALO was added to the 2008 version of the Olkiluoto surface hydrological model. Influence of ONKALO is taken into account by giving the total discharge as input data from existing measurements or from calculations of the deep hydrogeological model of the Olkiluoto Island. The computed results show that ONKALO has a temporal effect on groundwater level in

  17. Overland erosion of uranium-mill-tailings impoundments: physical processes and computational methods

    International Nuclear Information System (INIS)

    Walters, M.H.

    1983-03-01

    The surface runoff and erosional processes of watersheds caused by rainfall-runoff are reviewed. Soil properties, topography, and rainstorm distribution are discussed with respect to their effects on soil erosion. The effects of climate and vegetation are briefly presented. Regression models and physical process simulation models are reviewed

  18. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  19. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    Directory of Open Access Journals (Sweden)

    Shaun M. Baesman

    2015-06-01

    Full Text Available The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5 medium via methane oxidation.

  20. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    Science.gov (United States)

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  1. Surface Winds and Dust Biases in Climate Models

    Science.gov (United States)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  2. Mathematical modeling of rainwater runoff over catchment surface ...

    African Journals Online (AJOL)

    The subject of an article is the mathematical modeling of the rainwater runoff along the surface catchment taking account the transport of pollution which permeates into the water flow from a porous media of soil at the certain areas of this surface. The developed mathematical model consists of two types of equations: the ...

  3. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  4. The Effect of Zebra Mussels on Algal Community Structure in an Impounded River System

    Science.gov (United States)

    Trumble, A. F.; Luttenton, M.

    2005-05-01

    The zebra mussel, Dreissena polymorpha, invaded the Great Lakes Region in the mid 1980's, and subsequently colonized inland lakes and coastal river systems through secondary invasions. The Muskegon River below Croton Dam was colonized by zebra mussels in 2000 following their introduction into Croton impoundment in the late 1990's. No zebra mussels were found below Croton Dam in 1999 but had increased to 25,000 m-2 by 2001. We examined the affect of zebra mussels on epilithic periphyton communities by comparing plots that were and were not colonized by zebra mussels. Chlorophyll a increased in both treatments over time but was significantly higher in control plots than in zebra mussel plots. The concentration of chlorophyll a in the control plots increased from 14 µgcm-2 to 26 µgcm-2 and the concentration in the zebra mussel plots started at 12 µgcm-2, peaked at 19 µgcm-2, and then decreased to 15 µgcm-2 over a 6 week period. In a related experiment using artificial streams, chlorophyll a increased with increasing zebra mussel density, but differences were not significant. The different trends observed between the two experiments may be explained in part by arthropod invertebrates associated with zebra mussel populations.

  5. Surface Ship Shock Modeling and Simulation: Two-Dimensional Analysis

    Directory of Open Access Journals (Sweden)

    Young S. Shin

    1998-01-01

    Full Text Available The modeling and simulation of the response of a surface ship system to underwater explosion requires an understanding of many different subject areas. These include the process of underwater explosion events, shock wave propagation, explosion gas bubble behavior and bubble-pulse loading, bulk and local cavitation, free surface effect, fluid-structure interaction, and structural dynamics. This paper investigates the effects of fluid-structure interaction and cavitation on the response of a surface ship using USA-NASTRAN-CFA code. First, the one-dimensional Bleich-Sandler model is used to validate the approach, and second, the underwater shock response of a two-dimensional mid-section model of a surface ship is predicted with a surrounding fluid model using a constitutive equation of a bilinear fluid which does not allow transmission of negative pressures.

  6. Depletion of barium and radium-226 in Black Sea surface waters over the past thirty years

    International Nuclear Information System (INIS)

    Kenison Falkner, K.K.; Edmond, J.M.; O'Neill, D.J.; Todd, J.F.; Moore, W.S.

    1991-01-01

    The nearly landlocked waters of the Black Sea support a valuable fishery, but are also particularly vulnerable to anthropogenic disturbance. Here we use dissolved barium and radium-226 as tracers, to investigate the biogeochemical health of the sea. Both elements are brought to surface waters by vertical mixing of deeper, enriched waters, and by rivers; these inputs should ordinarily be balanced by outflow of surface waters at the Bosphorus, and by biologically mediated removal of 226 Ra-bearing barite. We show, however, that surface-water inventories have been substantially depleted over the past few decades: recent (1988-89) barium concentrations were 1.6 times lower than in 1958 and 1967. These observations suggest that steady-state cycling of these elements has been perturbed by increased primary productivity, presumably fuelled by nutrients from industry and agricultural runoff, and to a lesser extent by decreased fluvial sediment loads owing to extensive impoundment of rivers in the region. (author)

  7. Quantitative Modeling of Earth Surface Processes

    Science.gov (United States)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes. More details...

  8. Alternative approach to the surface-excitation model

    International Nuclear Information System (INIS)

    Krohn, V.E.

    1981-01-01

    Although the development of the surface-excitation model of sputtered-ion emission involved a detailed description of the ionization process, one can arrive at the same result by assuming an equilibrium treatment, e.g. the Saha-Langmuir equation, with the temperature falling as the collision casade develops. This suggests that, even if situations are found where the surface-excitation model is successful, it does not follow that the original detailed description of the ionization process is correct. Nevertheless, the surface-excitation model does contain an interesting new idea which should not be overlooked, i.e. that atoms sputtered during the early stages of a collision cascade will be relatively energetic, and to the extent that the Saha-Langmuir equation has some applicability, will have a probability of positive ionization which will be low for atoms of low ionization potential (I phi), relative to lower-energy atoms emitted during the later stages of the collision cascade. The extended abstract will discuss recent experimental results

  9. Modelling Periglacial Processes on Low-Relief High-Elevation Surfaces

    DEFF Research Database (Denmark)

    Andersen, Jane Lund; Knudsen, Mads Faurschou; Egholm, D.L.

    history in many regions of the world. The glacial buzzsaw concept suggests that intense glacial erosion focused at the equilibrium-line altitude (ELA) leads to a concentration in surface area close to the ELA. However, even in predominantly glacial landscapes, such as the Scandinavian Mountains, the high...... as a function of mean annual air temperature and sediment thickness. This allows us to incorporate periglacial processes into a long-term landscape evolution model where surface elevation, sediment thickness, and climate evolve over time. With this model we are able to explore the slow feedbacks between...... evolution model can be used for obtaining more insight into the conditions needed for formation of low-relief surfaces at high elevation. Anderson, R. S. Modeling the tor-dotted crests, bedrock edges, and parabolic profiles of high alpine surfaces of the Wind River Range, Wyoming. Geomorphology, 46, 35...

  10. Proceedings of the 15. annual British Columbia MEND ML/ARD workshop : the management of tailings and tailings impoundments

    International Nuclear Information System (INIS)

    2009-02-01

    This Mine Environment Neutral Drainage (MEND) workshop was held to promote the exchange of information and ideas on environmental protection and reclamation associated with mining. The workshop covered a broad spectrum of reclamation issues and the key environmental challenges facing the mining industry, such as acid mine drainage (AMD) control, and metal leaching and acid rock drainage (ML/ARD). The theme for the 2008 workshop was the management of tailings and tailings impoundments. Topics of discussion included hydrogeology and geochemistry; tailings disposal; mitigation; closure plans; and postclosure performance. The emphasis was on full-scale case studies, practical constraints and sustaining successful disposal strategies and remediation. The session on tailings management reviewed overarching policies and practices; methods of subaerial tailings disposal and case studies of tailings management; and detailed investigations of geochemical properties and processes. The conference featured 22 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs

  11. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Bonten, Luc T.C., E-mail: luc.bonten@wur.nl [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Groenenberg, Jan E. [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Meesenburg, Henning [Northwest German Forest Research Station, Abt. Umweltkontrolle, Sachgebiet Intensives Umweltmonitoring, Goettingen (Germany); Vries, Wim de [Alterra-Wageningen UR, Soil Science Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands)

    2011-10-15

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: > Surface complexation models can be well applied in field studies. > Soil chemistry under a forest site is adequately modelled using generic parameters. > The model is easily extended with extra elements within the existing framework. > Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  12. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany

    International Nuclear Information System (INIS)

    Bonten, Luc T.C.; Groenenberg, Jan E.; Meesenburg, Henning; Vries, Wim de

    2011-01-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well. - Highlights: → Surface complexation models can be well applied in field studies. → Soil chemistry under a forest site is adequately modelled using generic parameters. → The model is easily extended with extra elements within the existing framework. → Surface complexation models can show the linkages between major soil chemistry and trace element behaviour. - Surface complexation models with generic parameters make calibration of sorption superfluous in dynamic modelling of deposition impacts on soil chemistry under nature areas.

  13. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  14. Modeling apple surface temperature dynamics based on weather data.

    Science.gov (United States)

    Li, Lei; Peters, Troy; Zhang, Qin; Zhang, Jingjin; Huang, Danfeng

    2014-10-27

    The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST) dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed) was recorded for seven hours between 11:00-18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of "Fuji" apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  15. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  16. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  17. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  18. Surface science models of CoMoS hydrodesulfurisation catalysts

    NARCIS (Netherlands)

    Jong, de A.M.; Beer, de V.H.J.; Veen, van J.A.R.; Niemantsverdriet, J.W.; Froment, G.F.; Delmon, B.; Grange, P.

    1997-01-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of

  19. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  20. Modelling surface-water depression storage in a Prairie Pothole Region

    Science.gov (United States)

    Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie

    2018-01-01

    In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.

  1. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori; McCabe, Matthew; Evans, Jason P.

    2015-01-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence

  2. Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan)

    International Nuclear Information System (INIS)

    Matveyeva, Ilona; Burkitbayev, Mukhambetkali

    2016-01-01

    The activity concentrations of isotopes of uranium, thorium and radium-226 in dominant species of plants (Xantium strumarium, Phragmites communis, Artemisia nitrosa and Artemisia serotina) growing on the territories contaminated by uranium industry of Kazakhstan (close to dam impoundment Tasotkel and the Lower Shu region) are presented. The obtained data showed the significant variations of activity concentrations of isotopes of uranium, thorium and radium-226 in above ground parts. The concentrations of most of the investigated radionuclides in the root system are higher than in the aboveground parts; it can be explained by root barrier. It was found that the highest root barrier has Xantium strumarium, especially for uranium isotopes. The concentration ratios of radionuclides were calculated, and as the result it was found that the highest accumulation ability in the investigated region has Artemisia serotina.

  3. Uptake of uranium, thorium and radium isotopes by plants growing in dam impoundment Tasotkel and the Lower Shu region (Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Matveyeva, Ilona; Burkitbayev, Mukhambetkali [al-Farabi Kazakh National University, Almaty (Kazakhstan). Faculty of Chemistry and Chemical Technology; Jacimovic, Radojko [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences; Planinsek, Petra; Smodis, Borut [Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences; Jozef Stefan International Postgraduate School, Ljubljana (Slovenia)

    2016-04-01

    The activity concentrations of isotopes of uranium, thorium and radium-226 in dominant species of plants (Xantium strumarium, Phragmites communis, Artemisia nitrosa and Artemisia serotina) growing on the territories contaminated by uranium industry of Kazakhstan (close to dam impoundment Tasotkel and the Lower Shu region) are presented. The obtained data showed the significant variations of activity concentrations of isotopes of uranium, thorium and radium-226 in above ground parts. The concentrations of most of the investigated radionuclides in the root system are higher than in the aboveground parts; it can be explained by root barrier. It was found that the highest root barrier has Xantium strumarium, especially for uranium isotopes. The concentration ratios of radionuclides were calculated, and as the result it was found that the highest accumulation ability in the investigated region has Artemisia serotina.

  4. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  5. Surfaces foliated by planar geodesics: a model forcurved wood design

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens

    2017-01-01

    Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle......Surfaces foliated by planar geodesics are a natural model for surfaces made from wood strips. We outline how to construct all solutions, and produce non-trivial examples, such as a wood-strip Klein bottle...

  6. Land-Surface-Atmosphere Coupling in Observations and Models

    Directory of Open Access Journals (Sweden)

    Alan K Betts

    2009-07-01

    Full Text Available The diurnal cycle and the daily mean at the land-surface result from the coupling of many physical processes. The framework of this review is largely conceptual; looking for relationships and information in the coupling of processes in models and observations. Starting from the surface energy balance, the role of the surface and cloud albedos in the shortwave and longwave fluxes is discussed. A long-wave radiative scaling of the diurnal temperature range and the night-time boundary layer is summarized. Several aspects of the local surface energy partition are presented: the role of soilwater availability and clouds; vector methods for understanding mixed layer evolution, and the coupling between surface and boundary layer that determines the lifting condensation level. Moving to larger scales, evaporation-precipitation feedback in models is discussed; and the coupling of column water vapor, clouds and precipitation to vertical motion and moisture convergence over the Amazon. The final topic is a comparison of the ratio of surface shortwave cloud forcing to the diabatic precipitation forcing of the atmosphere in ERA-40 with observations.

  7. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  8. Model for the Evolving Bed Surface around an Offshore Monopile

    DEFF Research Database (Denmark)

    Hartvig, Peres Akrawi

    2012-01-01

    This paper presents a model for the bed surface around an offshore monopile. The model has been designed from measured laboratory bed surfaces and is shown to reproduce these satisfactorily for both scouring and backfilling. The local rate of the bed elevation is assumed to satisfy a certain...... general parametrized surface. The model also accounts for sliding of sediment particles when the angle of the local bed slope exceeds the angle of repose....

  9. Coupling of the FLake model to the Surfex externalized surface model

    Energy Technology Data Exchange (ETDEWEB)

    Salgado, R. (Univ. of Evora, Centro de Geofisica de Evora (Portugal)); Le Moigne, P. (CNRM/GAME, Meteo-France/CNRS, Toulouse (France))

    2010-07-01

    The FLake model parameterizes the local-scale energy exchanges between lake surfaces and the atmosphere. FLake simulates the temperature profile as well as the budgets of heat and turbulent kinetic energy in water. Its implementation into the Surfex system, the externalized surface scheme devoted to research and operational forecasts, is presented here. The paper describes a validation of the coupled system Surfex-FLake based on measurements carried out on the Alqueva reservoir in southern Portugal. This paper shows how the use of FLake in the Surfex system improves surface temperature and turbulent fluxes at the water-atmosphere interface and explains the minor changes made in the computation of the shape function in order to adapt the FLake model to warm lakes, like the one used for this study. (orig.)

  10. Infrared Analysis Of Enzymes Adsorbed Onto Model Surfaces

    Science.gov (United States)

    Story, Gloria M.; Rauch, Deborah S.; Brode, Philip F.; Marcott, Curtis A.

    1989-12-01

    The adsorption of the enzymes, subtilisin BPN' and lysozyme, onto model surfaces was examined using attenuated total reflectance (ATR) infrared (IR) spectroscopy. Using a cylindrical internal reflection (CIRcle) cell with a Germanium (Ge) internal reflection element (IRE), model hydrophilic surfaces were made by plasma cleaning the IRE and model hydrophobic surfaces were made by precoating the IRE with a thin film of polystyrene. Gas chromatography (GC)-IR data collection software was used to monitor adsorption kinetics during the first five minutes after injection of the enzyme into the CIRcle cell. It was found that for both lysozyme and BPN', most of the enzyme that was going to adsorb onto the model surface did so within ten seconds after injection. Nearly an order-of-magnitude more BPN' adsorbed on the hydrophobic Ge surface than the hydrophilic one, while lysozyme adsorbed somewhat more strongly to the hydrophilic Ge surface. Overnight, the lysozyme layer continued to increase in thickness, while BPN' maintained its initial coverage. The appearance of carboxylate bands in some of the adsorbed BPN' spectra suggests the occurrence of peptide bond hydrolysis. A Au/Pd coating on the CIRcle cell o-rings had a significant effect on the adsorption of BPN'. (This coating was applied in an attempt to eliminate interfering Teflon absorption bands.) An apparent electrochemical reaction occurred, involving BPN', Ge, Au/Pd, and the salt solution used to stabilize BPN'. The result of this reaction was enhanced adsorption of the enzyme around the coated o-rings, etching of the Ge IRE at the o-ring site, and some autolysis of the enzyme. No such reaction was observed with lysozyme.

  11. Surface EXAFS - A mathematical model

    International Nuclear Information System (INIS)

    Bateman, J.E.

    2002-01-01

    Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study

  12. Surface chemistry of cellulose : from natural fibres to model surfaces

    NARCIS (Netherlands)

    Kontturi, E.J.

    2005-01-01

    The theme of the thesis was to link together the research aspects of cellulose occurring in nature (in natural wood fibres) and model surfaces of cellulose. Fundamental changes in cellulose (or fibre) during recycling of paper was a pragmatic aspect which was retained throughout the thesis with

  13. Surface CUrrents from a Diagnostic model (SCUD): Pacific

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SCUD data product is an estimate of upper-ocean velocities computed from a diagnostic model (Surface CUrrents from a Diagnostic model). This model makes daily...

  14. Analysis of the behaviour of embankment dams during and after impoundment; Analyse du comportement de barrages en remblai pendant et apres leur mise en eau

    Energy Technology Data Exchange (ETDEWEB)

    Massiera, M. [Moncton Univ., Moncton, NB (Canada). Dept. of Civil Engineering; Szostak-Chrzanowski, A; Bazanowski, M. [New Brunswick Univ., Fredericton, NB (Canada). Canadian Centre for Geodetic Engineering; Withaker, C. [Metropolitan Water District of Southern California MWD, Glendora, CA (United States)

    2009-07-01

    This paper analyzed the behaviour of 2 embankment dams during impoundment. The study compared the values of the observed and calculated displacements of the crest during the initial filling of the reservoirs at the zoned earth West Dam in California and the Tounustouc concrete face rockfill dam (CFRD) in Quebec. The calculations were performed using finite element analysis. Rock and earthfill dams constructed on moraine deposits are known to deform under the influence of water load as the reservoir is filled. Therefore, this study also analyzed the long term deformations of the West Dam during 4 subsequent years of operation of the reservoir. Modelling rock and earthfill dams takes into account the nonlinear behaviour of the construction materials; interaction between the structure and the underlying soil and rock strata; influence of water load on the structure and on the foundation bedrock; and the effects of water saturation. This paper showed that geotechnical and geodetic monitoring may provide a warning system in case of abnormal behaviour of the embankment dam. In tectonically active zones, monitoring surveys may also provide information on the effects of seismic disturbances. 18 refs., 11 figs.

  15. Comparison on the forecast model of landfill surface

    International Nuclear Information System (INIS)

    Zhou Xiaozhi; Sang Shuxun; Cao Liwen; Ji Xiaoyan

    2010-01-01

    Using four large-scale simulated landfill equipments, indoor parallel simulation landfill experiment was carried out. By monitoring the cumulative settlement of MSW, comparable researches indicate the actual effects of 'empirical model' and 'biodegradation model' on landfill surface settlement forecast, and the optimization measures are proposed on the basis of model defects analysis. Research leaded to following results: To the short-term prediction of MSW settlement, two types of models all have satisfactory predictive validity. When performing medium and long-term prediction, 'empirical model' predicted a significant deviation from the actual, and the forecasting error of 'biodegradation model' is also gradually enlarge with the extending forecast period. For optimizing these two types of model, long-term surface settlement monitoring is fundamental method, and constantly modify the model parameters is the key according to the dynamic monitoring data. (authors)

  16. Matching Images to Models: Camera Calibration for 3-D Surface Reconstruction

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Cheeseman. Peter C.; Norvig, Peter (Technical Monitor)

    2001-01-01

    In a previous paper we described a system which recursively recovers a super-resolved three dimensional surface model from a set of images of the surface. In that paper we assumed that the camera calibration for each image was known. In this paper we solve two problems. Firstly, if an estimate of the surface is already known, the problem is to calibrate a new image relative to the existing surface model. Secondly, if no surface estimate is available, the relative camera calibration between the images in the set must be estimated. This will allow an initial surface model to be estimated. Results of both types of estimation are given.

  17. Estimates of population distributions and tailings areas around licensed uranium mill sites. Final report

    International Nuclear Information System (INIS)

    Hans, J.M.; Hall, J.B.; Moore, W.E.

    1986-08-01

    Population distributions and tailings areas were estimated from aerial photography for each of 21 licensed uranium millsites. Approximately 11,600 persons live within 5 kilometers of the tailings impoundments at the millsites. About 82% of these persons live near five of the millsites. No persons were found living within 5 kilometers of six of the millsites. Tailings area measurements include the surface area of tailings in impoundments, heap-leached ore, and carryover tailings in evaporation ponds. Approximately 4,000 acres of tailings surfaces were measured for the 21 millsites. About 55% of the tailings surfaces were dry, 11% wet, and the remainder ponded. The average tailings surface area for the millsites is about 200 acres and ranges from 7 to 813 acres

  18. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  19. Improving weather predictability by including land-surface model parameter uncertainty

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  20. Impacts of model initialization on an integrated surface water - groundwater model

    KAUST Repository

    Ajami, Hoori

    2015-04-01

    Integrated hydrologic models characterize catchment responses by coupling the subsurface flow with land surface processes. One of the major areas of uncertainty in such models is the specification of the initial condition and its influence on subsequent simulations. A key challenge in model initialization is that it requires spatially distributed information on model states, groundwater levels and soil moisture, even when such data are not routinely available. Here, the impact of uncertainty in initial condition was explored across a 208 km2 catchment in Denmark using the ParFlow.CLM model. The initialization impact was assessed under two meteorological conditions (wet vs dry) using five depth to water table and soil moisture distributions obtained from various equilibrium states (thermal, root zone, discharge, saturated and unsaturated zone equilibrium) during the model spin-up. Each of these equilibrium states correspond to varying computation times to achieve stability in a particular aspect of the system state. Results identified particular sensitivity in modelled recharge and stream flow to the different initializations, but reduced sensitivity in modelled energy fluxes. Analysis also suggests that to simulate a year that is wetter than the spin-up period, an initialization based on discharge equilibrium is adequate to capture the direction and magnitude of surface water–groundwater exchanges. For a drier or hydrologically similar year to the spin-up period, an initialization based on groundwater equilibrium is required. Variability of monthly subsurface storage changes and discharge bias at the scale of a hydrological event show that the initialization impacts do not diminish as the simulations progress, highlighting the importance of robust and accurate initialization in capturing surface water–groundwater dynamics.

  1. A multi-scale modeling of surface effect via the modified boundary Cauchy-Born model

    Energy Technology Data Exchange (ETDEWEB)

    Khoei, A.R., E-mail: arkhoei@sharif.edu; Aramoon, A.

    2012-10-01

    In this paper, a new multi-scale approach is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface effects of nano-structures. The salient point of the MBCB model is the definition of radial quadrature used in the surface elements which is an indicator of material behavior. The characteristics of quadrature are derived by interpolating data from atoms laid in a circular support around the quadrature, in a least-square scene. The total-Lagrangian formulation is derived for the equivalent continua by employing the Cauchy-Born hypothesis for calculating the strain energy density function of the continua. The numerical results of the proposed method are compared with direct atomistic and finite element simulation results to indicate that the proposed technique provides promising results for modeling surface effects of nano-structures. - Highlights: Black-Right-Pointing-Pointer A multi-scale approach is presented to model the surface effects in nano-structures. Black-Right-Pointing-Pointer The total-Lagrangian formulation is derived by employing the Cauchy-Born hypothesis. Black-Right-Pointing-Pointer The radial quadrature is used to model the material behavior in surface elements. Black-Right-Pointing-Pointer The quadrature characteristics are derived using the data at the atomistic level.

  2. A numerical model of p-n junctions bordering on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Altermatt, P.P.; Aberle, A.G.; Jianhua Zhao; Aihua Wang; Heiser, G. [University of New South Wales, Sydney (Australia). Centre for Photovolatic Engineering

    2002-10-01

    Many solar cell structures contain regions where the emitter p-n junction borders on the surface. If the surface is not well passivated, a large amount of recombination occurs in such regions. This type of recombination is influenced by the electrostatics of both the p-n junction and the surface, and hence it is different from the commonly described recombination phenomena occurring in the p-n junction within the bulk. We developed a two-dimensional model for the recombination mechanisms occurring in emitter p-n junctions bordering on surfaces. The model is validated by reproducing the experimental I-V curves of specially designed silicon solar cells. It is shown under which circumstances a poor surface passivation, near where the p-n junction borders on the surface, reduces the fill factor and the open-circuit voltage. The model can be applied to many other types of solar cells. (author)

  3. Assessing modeled Greenland surface mass balance in the GISS Model E2 and its sensitivity to surface albedo

    Science.gov (United States)

    Alexander, Patrick; LeGrande, Allegra N.; Koenig, Lora S.; Tedesco, Marco; Moustafa, Samiah E.; Ivanoff, Alvaro; Fischer, Robert P.; Fettweis, Xavier

    2016-04-01

    The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) plays an important role in global sea level change. Regional Climate Models (RCMs) such as the Modèle Atmosphérique Régionale (MAR) have been employed at high spatial resolution with relatively complex physics to simulate ice sheet SMB. Global climate models (GCMs) incorporate less sophisticated physical schemes and provide outputs at a lower spatial resolution, but have the advantage of modeling the interaction between different components of the earth's oceans, climate, and land surface at a global scale. Improving the ability of GCMs to represent ice sheet SMB is important for making predictions of future changes in global sea level. With the ultimate goal of improving SMB simulated by the Goddard Institute for Space Studies (GISS) Model E2 GCM, we compare simulated GrIS SMB against the outputs of the MAR model and radar-derived estimates of snow accumulation. In order to reproduce present-day climate variability in the Model E2 simulation, winds are constrained to match the reanalysis datasets used to force MAR at the lateral boundaries. We conduct a preliminary assessment of the sensitivity of the simulated Model E2 SMB to surface albedo, a parameter that is known to strongly influence SMB. Model E2 albedo is set to a fixed value of 0.8 over the entire ice sheet in the initial configuration of the model (control case). We adjust this fixed value in an ensemble of simulations over a range of 0.4 to 0.8 (roughly the range of observed summer GrIS albedo values) to examine the sensitivity of ice-sheet-wide SMB to albedo. We prescribe albedo from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 v6 to examine the impact of a more realistic spatial and temporal variations in albedo. An age-dependent snow albedo parameterization is applied, and its impact on SMB relative to observations and the RCM is assessed.

  4. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  5. Modelling of surface evolution of rough surface on divertor target in fusion devices

    International Nuclear Information System (INIS)

    Dai, Shuyu; Liu, Shengguang; Sun, Jizhong; Kirschner, A.; Kawamura, G.; Tskhakaya, D.; Ding, Rui; Luo, Guangnan; Wang, Dezhen

    2015-01-01

    Highlights: • We study the surface evolution of rough surface on divertor target in fusion devices. • The effects of gyration motion and E × B drift affect 3D angular distribution. • A larger magnetic field angle leads to a reduced net eroded areal density. • The rough surface evolution affects the physical sputtering yield. - Abstract: The 3D Monte-Carlo code SURO has been used to study the surface evolution of rough surface on the divertor target in fusion devices. The edge plasma at divertor region is modelled by the SDPIC code and used as input data for SURO. Coupled with SDPIC, SURO can perform more sophisticated simulations to calculate the local angle and surface evolution of rough surface. The simulation results show that the incident direction of magnetic field, gyration and E × B force has a significant impact on 3D angular distribution of background plasma and accordingly on the erosion of rough surface. The net eroded areal density of rough surface is studied by varying the magnetic field angle with surface normal. The evolution of the microscopic morphology of rough surface can lead to a significant change in the physical sputtering yield

  6. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  7. Improved Modeling and Prediction of Surface Wave Amplitudes

    Science.gov (United States)

    2017-05-31

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0162 TR-2017-0162 IMPROVED MODELING AND PREDICTION OF SURFACE WAVE AMPLITUDES Jeffry L. Stevens, et al. Leidos...data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented...SUBTITLE Improved Modeling and Prediction of Surface Wave Amplitudes 5a. CONTRACT NUMBER FA9453-14-C-0225 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  8. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    Science.gov (United States)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  9. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  10. Direct Monte Carlo dose calculation using polygon-surface computational human model

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Kim, Chan Hyeong; Yeom, Yeon Su; Cho, Sungkoo; Chung, Min Suk; Cho, Kun-Woo

    2011-01-01

    In the present study, a voxel-type computational human model was converted to a polygon-surface model, after which it was imported directly to the Geant4 code without using a voxelization process, that is, without converting back to a voxel model. The original voxel model was also imported to the Geant4 code, in order to compare the calculated dose values and the computational speed. The average polygon size of the polygon-surface model was ∼0.5 cm 2 , whereas the voxel resolution of the voxel model was 1.981 × 1.981 × 2.0854 mm 3 . The results showed a good agreement between the calculated dose values of the two models. The polygon-surface model was, however, slower than the voxel model by a factor of 6–9 for the photon energies and irradiation geometries considered in the present study, which nonetheless is considered acceptable, considering that direct use of the polygon-surface model does not require a separate voxelization process. (author)

  11. Modeling of surface tension effects in venturi scrubbing

    Science.gov (United States)

    Ott, Robert M.; Wu, Tatsu K. L.; Crowder, Jerry W.

    A modified model of venturi scrubber performance has been developed that addresses two effects of liquid surface tension: its effect on droplet size and its effect on particle penetration into the droplet. The predictions of the model indicate that, in general, collection efficiency increases with a decrease in liquid surface tension, but the range over which this increase is significant depends on the particle size and on the scrubber operating parameters. The predictions further indicate that the increases in collection efficiency are almost totally due to the effect of liquid surface tension on the mean droplet size, and that the collection efficiency is not significantly affected by the ability of the particle to penetrate the droplet.

  12. Verification of land-atmosphere coupling in forecast models, reanalyses and land surface models using flux site observations.

    Science.gov (United States)

    Dirmeyer, Paul A; Chen, Liang; Wu, Jiexia; Shin, Chul-Su; Huang, Bohua; Cash, Benjamin A; Bosilovich, Michael G; Mahanama, Sarith; Koster, Randal D; Santanello, Joseph A; Ek, Michael B; Balsamo, Gianpaolo; Dutra, Emanuel; Lawrence, D M

    2018-02-01

    We confront four model systems in three configurations (LSM, LSM+GCM, and reanalysis) with global flux tower observations to validate states, surface fluxes, and coupling indices between land and atmosphere. Models clearly under-represent the feedback of surface fluxes on boundary layer properties (the atmospheric leg of land-atmosphere coupling), and may over-represent the connection between soil moisture and surface fluxes (the terrestrial leg). Models generally under-represent spatial and temporal variability relative to observations, which is at least partially an artifact of the differences in spatial scale between model grid boxes and flux tower footprints. All models bias high in near-surface humidity and downward shortwave radiation, struggle to represent precipitation accurately, and show serious problems in reproducing surface albedos. These errors create challenges for models to partition surface energy properly and errors are traceable through the surface energy and water cycles. The spatial distribution of the amplitude and phase of annual cycles (first harmonic) are generally well reproduced, but the biases in means tend to reflect in these amplitudes. Interannual variability is also a challenge for models to reproduce. Our analysis illuminates targets for coupled land-atmosphere model development, as well as the value of long-term globally-distributed observational monitoring.

  13. Resource use by the facultative lepidophage Roeboides affinis (Günther, 1868: a comparison of size classes, seasons and environment types related to impoundment

    Directory of Open Access Journals (Sweden)

    Miriam P. Albrecht

    Full Text Available We report the consumption of scales and other food resources by the facultative lepidophage Roeboides affinis in the upper Tocantins River where it was impounded by the Serra da Mesa Hydroelectric Dam. We compared the diet among size classes, between dry and wet seasons, and between sites with distinct water flow characteristics (lotic vs. lentic related to the distance from the dam and phase of reservoir development. As transparency and fish abundance increased after impoundment, we expected a higher consumption of scales in lentic sites. Likewise, habitat contraction, higher transparency and decrease in terrestrial resources availability, would promote a higher consumption of scales. Scales were consumed by 92% of individuals and represented 26% of the total volume of resources ingested by R. affinis. Diet composition varied significantly among size classes, with larger individuals consuming more scales and larger items, especially odonatans and ephemeropterans. Scale consumption was not significantly different between dry and wet seasons. Roeboides affinis incorporated some food items into the diet as a response to the impoundment, like other species. Scale consumption was higher in lotic sites, refuting our initial hypothesis, what suggests that the lepidophagous habit is related the rheophilic nature of R. affinis.Caracterizamos o consumo de escamas e outros recursos alimentares por Roeboides affinis, um lepidófago facultativo, no alto rio Tocantins, na região represada pela Usina Hidrelétrica de Serra da Mesa. A dieta foi avaliada em relação a classes de tamanho, estações chuvosa e seca, e entre locais com características distintas de fluxo d'água (lótico vs. lêntico relacionadas com a distância da barragem e fase de desenvolvimento do reservatório. Com o aumento da abundância de peixes e da transparência da água após o represamento, esperamos um maior consumo de escamas nos locais lênticos. Da mesma forma, na época seca

  14. Adhesion of perfume-filled microcapsules to model fabric surfaces.

    Science.gov (United States)

    He, Yanping; Bowen, James; Andrews, James W; Liu, Min; Smets, Johan; Zhang, Zhibing

    2014-01-01

    The retention and adhesion of melamine formaldehyde (MF) microcapsules on a model fabric surface in aqueous solution were investigated using a customised flow chamber technique and atomic force microscopy (AFM). A cellulose film was employed as a model fabric surface. Modification of the cellulose with chitosan was found to increase the retention and adhesion of microcapsules on the model fabric surface. The AFM force-displacement data reveal that bridging forces resulting from the extension of cellulose chains dominate the adhesion between the microcapsule and the unmodified cellulose film, whereas electrostatic attraction helps the microcapsules adhere to the chitosan-modified cellulose film. The correlation between results obtained using these two complementary techniques suggests that the flow chamber device can be potentially used for rapid screening of the effect of chemical modification on the adhesion of microparticles to surfaces, reducing the time required to achieve an optimal formulation.

  15. A statistical model for the wettability of surfaces with heterogeneous pore geometries

    Science.gov (United States)

    Brockway, Lance; Taylor, Hayden

    2016-10-01

    We describe a new approach to modeling the wetting behavior of micro- and nano-textured surfaces with varying degrees of geometrical heterogeneity. Surfaces are modeled as pore arrays with a Gaussian distribution of sidewall reentrant angles and a characteristic wall roughness. Unlike conventional wettability models, our model considers the fraction of a surface’s pores that are filled at any time, allowing us to capture more subtle dependences of a liquid’s apparent contact angle on its surface tension. The model has four fitting parameters and is calibrated for a particular surface by measuring the apparent contact angles between the surface and at least four probe liquids. We have calibrated the model for three heterogeneous nanoporous surfaces that we have fabricated: a hydrothermally grown zinc oxide, a film of polyvinylidene fluoride (PVDF) microspheres formed by spinodal decomposition, and a polytetrafluoroethylene (PTFE) film with pores defined by sacrificial polystyrene microspheres. These three surfaces show markedly different dependences of a liquid’s apparent contact angle on the liquid’s surface tension, and the results can be explained by considering geometric variability. The highly variable PTFE pores yield the most gradual variation of apparent contact angle with probe liquid surface tension. The PVDF microspheres are more regular in diameter and, although connected in an irregular manner, result in a much sharper transition from non-wetting to wetting behavior as surface tension reduces. We also demonstrate, by terminating porous zinc oxide with three alternative hydrophobic molecules, that a single geometrical model can capture a structure’s wetting behavior for multiple surface chemistries and liquids. Finally, we contrast our results with those from a highly regular, lithographically-produced structure which shows an extremely sharp dependence of wettability on surface tension. This new model could be valuable in designing and

  16. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  17. New method for model coupling using Stampi. Application to the coupling of atmosphere model (MM5) and land-surface model (SOLVEG)

    International Nuclear Information System (INIS)

    Nagai, Haruyasu

    2003-12-01

    A new method to couple atmosphere and land-surface models using the message passing interface (MPI) was proposed to develop an atmosphere-land model for studies on heat, water, and material exchanges around the land surface. A non-hydrostatic atmospheric dynamic model of Pennsylvania State University and National Center for Atmospheric Research (PUS/NCAR-MM5) and a detailed land surface model (SOLVEG) including the surface-layer atmosphere, soil, and vegetation developed at Japan Atomic Energy Research Institute (JAERI) are used as the atmosphere and land-surface models, respectively. Concerning the MPI, a message passing library named Stampi developed at JAERI that can be used between different parallel computers is used. The models are coupled by exchanging calculation results by using MPI on their independent parallel calculations. The modifications for this model coupling are easy, simply adding some modules for data exchanges to each model code without changing each model's original structure. Moreover, this coupling method is flexible and allows the use of independent time step and grid interval for each model. (author)

  18. Computer-aided design of curved surfaces with automatic model generation

    Science.gov (United States)

    Staley, S. M.; Jerard, R. B.; White, P. R.

    1980-01-01

    The design and visualization of three-dimensional objects with curved surfaces have always been difficult. The paper given below describes a computer system which facilitates both the design and visualization of such surfaces. The system enhances the design of these surfaces by virtue of various interactive techniques coupled with the application of B-Spline theory. Visualization is facilitated by including a specially built model-making machine which produces three-dimensional foam models. Thus, the system permits the designer to produce an inexpensive model of the object which is suitable for evaluation and presentation.

  19. Evaluation of surface-wave waveform modeling for lithosphere velocity structure

    Science.gov (United States)

    Chang, Tao-Ming

    Surface-waveform modeling methods will become standard tools for studying the lithosphere structures because they can place greater constraints on earth structure and because of interest in the three-dimensional earth. The purpose of this study is to begin to learn the applicabilities and limitations of these methods. A surface-waveform inversion method is implemented using generalized seismological data functional theory. The method has been tested using synthetic and real seismic data and show that this method is well suited for teleseismic and regional seismograms. Like other linear inversion problems, this method also requires a good starting model. To ease reliance on good starting models, a global search technique, the genetic algorithm, has been applied to surface waveform modeling. This method can rapidly find good models for explaining surface-wave waveform at regional distance. However, this implementation also reveals that criteria which are widely used in seismological studies are not good enough to indicate the goodness of waveform fit. These two methods with the linear waveform inversion method, and traditional surface wave dispersion inversion method have been applied to a western Texas earthquake to test their abilities. The focal mechanism of the Texas event has been reestimated using a grid search for surface wave spectral amplitudes. A comparison of these four algorithms shows some interesting seismic evidences for lithosphere structure.

  20. Modeling the microstructure of surface by applying BRDF function

    Science.gov (United States)

    Plachta, Kamil

    2017-06-01

    The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.

  1. Surface physics theoretical models and experimental methods

    CERN Document Server

    Mamonova, Marina V; Prudnikova, I A

    2016-01-01

    The demands of production, such as thin films in microelectronics, rely on consideration of factors influencing the interaction of dissimilar materials that make contact with their surfaces. Bond formation between surface layers of dissimilar condensed solids-termed adhesion-depends on the nature of the contacting bodies. Thus, it is necessary to determine the characteristics of adhesion interaction of different materials from both applied and fundamental perspectives of surface phenomena. Given the difficulty in obtaining reliable experimental values of the adhesion strength of coatings, the theoretical approach to determining adhesion characteristics becomes more important. Surface Physics: Theoretical Models and Experimental Methods presents straightforward and efficient approaches and methods developed by the authors that enable the calculation of surface and adhesion characteristics for a wide range of materials: metals, alloys, semiconductors, and complex compounds. The authors compare results from the ...

  2. A surface-renewal model of cross-flow microfiltration

    Directory of Open Access Journals (Sweden)

    A. Hasan

    2013-03-01

    Full Text Available A mathematical model using classical cake-filtration theory and the surface-renewal concept is formulated for describing cross-flow microfiltration under dynamic and steady-state conditions. The model can predict the permeate flux and cake buildup in the filter. The three basic parameters of the model are the membrane resistance, specific cake resistance and rate of surface renewal. The model is able to correlate experimental permeate flow rate data in the microfiltration of fermentation broths in laboratory- and pilot-scale units with an average root-mean-square (RMS error of 4.6%. The experimental data are also compared against the critical-flux model of cross-flow microfiltration, which has average RMS errors of 6.3, 5.5 and 6.1% for the cases of cake filtration, intermediate blocking and complete blocking mechanisms, respectively.

  3. A surface hydrology model for regional vector borne disease models

    Science.gov (United States)

    Tompkins, Adrian; Asare, Ernest; Bomblies, Arne; Amekudzi, Leonard

    2016-04-01

    Small, sun-lit temporary pools that form during the rainy season are important breeding sites for many key mosquito vectors responsible for the transmission of malaria and other diseases. The representation of this surface hydrology in mathematical disease models is challenging, due to their small-scale, dependence on the terrain and the difficulty of setting soil parameters. Here we introduce a model that represents the temporal evolution of the aggregate statistics of breeding sites in a single pond fractional coverage parameter. The model is based on a simple, geometrical assumption concerning the terrain, and accounts for the processes of surface runoff, pond overflow, infiltration and evaporation. Soil moisture, soil properties and large-scale terrain slope are accounted for using a calibration parameter that sets the equivalent catchment fraction. The model is calibrated and then evaluated using in situ pond measurements in Ghana and ultra-high (10m) resolution explicit simulations for a village in Niger. Despite the model's simplicity, it is shown to reproduce the variability and mean of the pond aggregate water coverage well for both locations and validation techniques. Example malaria simulations for Uganda will be shown using this new scheme with a generic calibration setting, evaluated using district malaria case data. Possible methods for implementing regional calibration will be briefly discussed.

  4. Dissolution model for a glass having an adherent insoluble surface layer

    International Nuclear Information System (INIS)

    Harvey, K.B.; Larocque, C.A.B.

    1990-01-01

    Waste form glasses that contain substantial quantities of iron, manganese, and aluminum oxides, such as the Savannah River SRL TDS-131 glass, form a thick, hydrated surface layer when placed in contact with water. The dissolution of such a glass has been modeled with the Savannah River Model. The authors showed previously that the equations of the Savannah River Model could be fitted to published experimental data if a time-dependent diffusion coefficient was assumed for species of diffusing through the surface layer. The Savannah River Model assumes that all of the material dissolved from the glass enters solution, whereas it was observed that substantial quantities of material were retained in the surface layer. An alternative model, presented contains a mass balance equation that allows material either to enter solution or to be retained in the surface layer. It is shown that the equations derived using this model can be fitted to the published experimental data assuming a constant diffusion coefficient for species diffusing through the surface layer

  5. Influence of World and Gravity Model Selection on Surface Interacting Vehicle Simulations

    Science.gov (United States)

    Madden, Michael M.

    2007-01-01

    A vehicle simulation is surface-interacting if the state of the vehicle (position, velocity, and acceleration) relative to the surface is important. Surface-interacting simulations perform ascent, entry, descent, landing, surface travel, or atmospheric flight. Modeling of gravity is an influential environmental factor for surface-interacting simulations. Gravity is the free-fall acceleration observed from a world-fixed frame that rotates with the world. Thus, gravity is the sum of gravitation and the centrifugal acceleration due to the world s rotation. In surface-interacting simulations, the fidelity of gravity at heights above the surface is more significant than gravity fidelity at locations in inertial space. A surface-interacting simulation cannot treat the gravity model separately from the world model, which simulates the motion and shape of the world. The world model's simulation of the world's rotation, or lack thereof, produces the centrifugal acceleration component of gravity. The world model s reproduction of the world's shape will produce different positions relative to the world center for a given height above the surface. These differences produce variations in the gravitation component of gravity. This paper examines the actual performance of world and gravity/gravitation pairs in a simulation using the Earth.

  6. Towards a public, standardized, diagnostic benchmarking system for land surface models

    Directory of Open Access Journals (Sweden)

    G. Abramowitz

    2012-06-01

    Full Text Available This work examines different conceptions of land surface model benchmarking and the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. It additionally demonstrates how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and gives an example of how these expectations might be quantified. Finally, the Protocol for the Analysis of Land Surface models (PALS is introduced – a free, online land surface model benchmarking application that is structured to meet both of these goals.

  7. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    International Nuclear Information System (INIS)

    Stotler, D.P.

    2005-01-01

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model

  8. Closure plan for the M-Area settling basin and vicinity at the Savannah River Plant

    International Nuclear Information System (INIS)

    Colven, W.P.; Pickett, J.B.

    1985-07-01

    The areas addressed in this closure plan include a process sewer line, surface impoundment (settling basin), overflow ditch, seepage area, and a Carolina Bay known as Lost Lake. Since it is proposed that the basin and vicinity be closed with the hazardous wastes placed and stabilized in the basin, it will be closed pursuant to regulations for closing a hazardous waste landfill. No free liquids will remain in the impoundment after closure is completed

  9. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  10. Calibration of Chaboche Model with a Memory Surface

    Directory of Open Access Journals (Sweden)

    Radim HALAMA

    2013-06-01

    Full Text Available This paper points out a sufficient description of the stress-strain behaviour of the Chaboche nonlinear kinematic hardening model only for materials with the Masing's behaviour, regardless of the number of backstress parts. Subsequently, there are presented two concepts of most widely used memory surfaces: Jiang-Sehitoglu concept (deviatoric plane and Chaboche concept (strain-space. On the base of experimental data of steel ST52 is then shown the possibility of capturing hysteresis loops and cyclic strain curve simultaneously in the usual range for low cycle fatigue calculations. A new model for cyclic hardening/softening behaviour modeling has been also developed based on the Jiang-Sehitoglu memory surface concept. Finally, there are formulated some recommendations for the use of individual models and the direction of further research in conclusions.

  11. Scale-adaptive surface modeling of vascular structures

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2010-11-01

    Full Text Available Abstract Background The effective geometric modeling of vascular structures is crucial for diagnosis, therapy planning and medical education. These applications require good balance with respect to surface smoothness, surface accuracy, triangle quality and surface size. Methods Our method first extracts the vascular boundary voxels from the segmentation result, and utilizes these voxels to build a three-dimensional (3D point cloud whose normal vectors are estimated via covariance analysis. Then a 3D implicit indicator function is computed from the oriented 3D point cloud by solving a Poisson equation. Finally the vessel surface is generated by a proposed adaptive polygonization algorithm for explicit 3D visualization. Results Experiments carried out on several typical vascular structures demonstrate that the presented method yields both a smooth morphologically correct and a topologically preserved two-manifold surface, which is scale-adaptive to the local curvature of the surface. Furthermore, the presented method produces fewer and better-shaped triangles with satisfactory surface quality and accuracy. Conclusions Compared to other state-of-the-art approaches, our method reaches good balance in terms of smoothness, accuracy, triangle quality and surface size. The vessel surfaces produced by our method are suitable for applications such as computational fluid dynamics simulations and real-time virtual interventional surgery.

  12. Replication of surface features from a master model to an amorphous metallic article

    Science.gov (United States)

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  13. Constructing irregular surfaces to enclose macromolecular complexes for mesoscale modeling using the discrete surface charge optimization (DISCO) algorithm.

    Science.gov (United States)

    Zhang, Qing; Beard, Daniel A; Schlick, Tamar

    2003-12-01

    Salt-mediated electrostatics interactions play an essential role in biomolecular structures and dynamics. Because macromolecular systems modeled at atomic resolution contain thousands of solute atoms, the electrostatic computations constitute an expensive part of the force and energy calculations. Implicit solvent models are one way to simplify the model and associated calculations, but they are generally used in combination with standard atomic models for the solute. To approximate electrostatics interactions in models on the polymer level (e.g., supercoiled DNA) that are simulated over long times (e.g., milliseconds) using Brownian dynamics, Beard and Schlick have developed the DiSCO (Discrete Surface Charge Optimization) algorithm. DiSCO represents a macromolecular complex by a few hundred discrete charges on a surface enclosing the system modeled by the Debye-Hückel (screened Coulombic) approximation to the Poisson-Boltzmann equation, and treats the salt solution as continuum solvation. DiSCO can represent the nucleosome core particle (>12,000 atoms), for example, by 353 discrete surface charges distributed on the surfaces of a large disk for the nucleosome core particle and a slender cylinder for the histone tail; the charges are optimized with respect to the Poisson-Boltzmann solution for the electric field, yielding a approximately 5.5% residual. Because regular surfaces enclosing macromolecules are not sufficiently general and may be suboptimal for certain systems, we develop a general method to construct irregular models tailored to the geometry of macromolecules. We also compare charge optimization based on both the electric field and electrostatic potential refinement. Results indicate that irregular surfaces can lead to a more accurate approximation (lower residuals), and the refinement in terms of the electric field is more robust. We also show that surface smoothing for irregular models is important, that the charge optimization (by the TNPACK

  14. A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures.

    Science.gov (United States)

    Almatroudi, Ahmad; Hu, Honghua; Deva, Anand; Gosbell, Iain B; Jacombs, Anita; Jensen, Slade O; Whiteley, Greg; Glasbey, Trevor; Vickery, Karen

    2015-10-01

    The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12 days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 10(7) CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued

  15. Use of upscaled elevation and surface roughness data in two-dimensional surface water models

    Science.gov (United States)

    Hughes, J.D.; Decker, J.D.; Langevin, C.D.

    2011-01-01

    In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.

  16. 40 CFR 421.11 - Specialized definitions.

    Science.gov (United States)

    2010-07-01

    ... pond water surface area for the purpose of calculating the volume of waste water shall mean the area within the impoundment for rainfall and the actual water surface area for evaporation. [39 FR 12825, Apr...

  17. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  18. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  19. Generating CT-TH-PM surfaces using EPT-based aggregate modelling

    NARCIS (Netherlands)

    Veeger, C.P.L.; Etman, L.F.P.; Herk, van J.; Rooda, J.E.

    2010-01-01

    Cycle Time-Throughput-Product mix (CT-TH-PM) surfaces give the mean cycle time as a function of throughput and product mix for manufacturing workstations. To generate the CT-TH-PM surface, detailed simulation models may be used. However, detailed models require much development time, and it may not

  20. Radiation properties modeling for plasma-sprayed-alumina-coated rough surfaces for spacecrafts

    International Nuclear Information System (INIS)

    Li, R.M.; Joshi, Sunil C.; Ng, H.W.

    2006-01-01

    Spacecraft thermal control materials (TCMs) play a vital role in the entire service life of a spacecraft . Most of the conventional TCMs degrade in the harmful space environment . In the previous study, plasma sprayed alumina (PSA) coating was established as a new and better TCM for spacecrafts, in view of its stability and reliability compared to the traditional TCMs . During the investigation, the surface roughness of PSA was found important, because the roughness affects the radiative heat exchange between the surface and its surroundings. Parameters such as root-mean-square roughness cannot properly evaluate surface roughness effects on radiative properties of opaque surfaces . Some models have been developed earlier to predict the effects, such as Davies' model , Tang and Buckius's statistical geometric optics model . However, they are valid only in their own specific situations. In this paper, an energy absorption geometry model was developed and applied to investigate the roughness effects with the help of 2D surface profile of PSA coated substrate scanned at micron level. This model predicts effective normal solar absorptance (α ne ) and effective hemispherical infrared emittance (ε he ) of a rough PSA surface. These values, if used in the heat transfer analysis of an equivalent, smooth and optically flat surface, lead to the prediction of the same rate of heat exchange and temperature as that of for the rough PSA surface. The model was validated through comparison between a smooth and a rough PSA coated surfaces. Even though not tested for other types of materials, the model formulation is generic and can be used to incorporate the rough surface effects for other types of thermal coatings, provided the baseline values of normal solar absorptance (α n ) and hemispherical infrared emittance (ε h ) are available for a generic surface of the same material

  1. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  2. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Empirical model for estimating the surface roughness of machined ... as well as surface finish is one of the most critical quality measure in mechanical products. ... various cutting speed have been developed using regression analysis software.

  3. Consolidation of tailings

    International Nuclear Information System (INIS)

    Nelson, J.D.; Wardwell, R.E.; Abt, S.R.; Staub, W.P.

    1983-09-01

    The integrity of cover systems placed on tailings impoundments will be affected by the potential for differential settlement of the tailings surface. Settlement of the sand fraction will occur relatively rapidly. The slimes will take longer time for consolidation and will produce greater settlement. This report reviews the phenomenon of consolidation for saturated and unsaturated tailings. The effect of load application by cover placement and the extent to which dewatering of tailings will cause consolidation are considered. In addition, the feasibility of inducing consolidation by alternative means and the potential applicability of these methods to tailings impoundments reclamation are discussed. Differential settlement of the tailings will cause tensile strain to be developed in covers. This strain could be large enough to cause cracking within a relatively brittle compacted clay. Dewatering of tailings by drainage can cause settlement even greater than that by placement of a cover material. Dewatering of the tailings would also increase the stability of the tailings surface, thereby enhancing reclamation operations. Consequently, in view of the enhanced surface stability and the fact that a portion of the differential settlement can be accomplished prior to cover placement, dewatering of tailings impoundments during operations may have benefical effects

  4. A deformable surface model for real-time water drop animation.

    Science.gov (United States)

    Zhang, Yizhong; Wang, Huamin; Wang, Shuai; Tong, Yiying; Zhou, Kun

    2012-08-01

    A water drop behaves differently from a large water body because of its strong viscosity and surface tension under the small scale. Surface tension causes the motion of a water drop to be largely determined by its boundary surface. Meanwhile, viscosity makes the interior of a water drop less relevant to its motion, as the smooth velocity field can be well approximated by an interpolation of the velocity on the boundary. Consequently, we propose a fast deformable surface model to realistically animate water drops and their flowing behaviors on solid surfaces. Our system efficiently simulates water drop motions in a Lagrangian fashion, by reducing 3D fluid dynamics over the whole liquid volume to a deformable surface model. In each time step, the model uses an implicit mean curvature flow operator to produce surface tension effects, a contact angle operator to change droplet shapes on solid surfaces, and a set of mesh connectivity updates to handle topological changes and improve mesh quality over time. Our numerical experiments demonstrate a variety of physically plausible water drop phenomena at a real-time rate, including capillary waves when water drops collide, pinch-off of water jets, and droplets flowing over solid materials. The whole system performs orders-of-magnitude faster than existing simulation approaches that generate comparable water drop effects.

  5. Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions.

    Science.gov (United States)

    Khayet, Mohamed; Fernández, Victoria

    2012-11-14

    Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions.

  6. Surface roughness retrieval by inversion of the Hapke model: A multiscale approach

    Science.gov (United States)

    Labarre, S.; Ferrari, C.; Jacquemoud, S.

    2017-07-01

    Surface roughness is a key property of soils that controls many surface processes and influences the scattering of incident electromagnetic waves at a wide range of scales. Hapke (2012b) designed a photometric model providing an approximate analytical solution of the Bidirectional Reflectance Distribution Function (BRDF) of a particulate medium: he introduced the effect of surface roughness as a correction factor of the BRDF of a smooth surface. This photometric roughness is defined as the mean slope angle of the facets composing the surface, integrated over all scales from the grain size to the local topography. Yet its physical meaning is still a question at issue, as the scale at which it occurs is not clearly defined. This work aims at better understanding the relative influence of roughness scales on soil BRDF and to test the ability of the Hapke model to retrieve a roughness that depicts effectively the ground truth. We apply a wavelet transform on millimeter digital terrain models (DTM) acquired over volcanic terrains. This method allows splitting the frequency band of a signal in several sub-bands, each corresponding to a spatial scale. We demonstrate that sub-centimeter surface features dominate both the integrated roughness and the BRDF shape. We investigate the suitability of the Hapke model for surface roughness retrieval by inversion on optical data. A global sensitivity analysis of the model shows that soil BRDF is very sensitive to surface roughness, nearly as much as the single scattering albedo according to the phase angle, but also that these two parameters are strongly correlated. Based on these results, a simplified two-parameter model depending on surface albedo and roughness is proposed. Inversion of this model on BRDF data simulated by a ray-tracing code over natural targets shows a good estimation of surface roughness when the assumptions of the model are verified, with a priori knowledge on surface albedo.

  7. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  8. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation

    Science.gov (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan

    2017-07-01

    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  9. Uranium(VI) sorption onto magnetite. Increasing confidence in surface complexation models using chemically evident surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    Surface complexation models have made great efforts in describing the sorption of various radionuclides on naturally occurring mineral phases. Unfortunately, many of the published sorption parameter sets are built upon unrealistic or even wrong surface chemistry. This work describes the benefit of combining spectroscopic and batch sorption experimental data to create a reliable and consistent surface complexation parameter set.

  10. An operator calculus for surface and volume modeling

    Science.gov (United States)

    Gordon, W. J.

    1984-01-01

    The mathematical techniques which form the foundation for most of the surface and volume modeling techniques used in practice are briefly described. An outline of what may be termed an operator calculus for the approximation and interpolation of functions of more than one independent variable is presented. By considering the linear operators associated with bivariate and multivariate interpolation/approximation schemes, it is shown how they can be compounded by operator multiplication and Boolean addition to obtain a distributive lattice of approximation operators. It is then demonstrated via specific examples how this operator calculus leads to practical techniques for sculptured surface and volume modeling.

  11. Surface chemistry and microstructural analysis of CexZr1-xO2-y model catalyst surfaces

    International Nuclear Information System (INIS)

    Nelson, Alan E.; Schulz, Kirk H.

    2003-01-01

    Cerium-zirconium mixed metal oxides are widely used as promoters in automotive emissions control catalyst systems (three-way catalysts). The addition of zirconium in the cubic lattice of ceria improves the redox properties and the thermal stability, thereby increasing the catalyst efficiency and longevity. The surface composition and availability of surface oxygen of model ceria-zirconia catalyst promoters was considered to develop a reference for future catalytic reactivity studies. The microstructure was characterized with X-ray diffraction (XRD) to determine the effect of zirconium substitution on crystalline structure and grain size. Additionally, the Ce/Zr surface atomic ratio and existence of Ce 3+ defect sites were examined with X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) for samples with different zirconium concentrations. The surface composition of the model systems with respect to cerium and zirconium concentration is representative of the bulk, indicating no appreciable surface species segregation during model catalyst preparation or exposure to ultrahigh vacuum conditions and analysis techniques. Additionally, the concentration of Ce 3+ defect sites was constant and independent of composition. The quantity of surface oxygen was unaffected by electron bombardment or prolonged exposure to ultrahigh vacuum conditions. Additionally, XRD analysis did not indicate the presence of additional crystalline phases beyond the cubic structure for compositions from 100 to 25 at.% cerium, although additional phases may be present in undetectable quantities. This analysis is an important initial step for determining surface reactions and pathways for the development of efficient and sulfur-tolerant automotive emissions control catalysts

  12. A theoretical model of semi-elliptic surface crack growth

    Directory of Open Access Journals (Sweden)

    Shi Kaikai

    2014-06-01

    Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.

  13. The monocular visual imaging technology model applied in the airport surface surveillance

    Science.gov (United States)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  14. Description of surfaces associated with Grassmannian sigma models on Minkowski space

    International Nuclear Information System (INIS)

    Grundland, A.M.; Snobl, L.

    2005-01-01

    We construct and investigate smooth orientable surfaces in su(N) algebras. The structural equations of surfaces associated with Grassmannian sigma models on Minkowski space are studied using moving frames adapted to the surfaces. The first and second fundamental forms of these surfaces as well as the relations between them as expressed in the Gauss-Weingarten and Gauss-Codazzi-Ricci equations are found. The scalar curvature and the mean curvature vector expressed in terms of a solution of Grassmanian sigma model are obtained

  15. Mathematical modeling for surface hardness in investment casting applications

    International Nuclear Information System (INIS)

    Singh, Rupinder

    2012-01-01

    Investment casting (IC) has many potential engineering applications. Not much work hitherto has been reported for modeling the surface hardness (SH) in IC of industrial components. In the present study, outcome of Taguchi based macro model has been used for developing a mathematical model for SH; using Buckingham's π theorem. Three input parameters namely volume/surface area (V/A) ratio of cast components, slurry layer's combination (LC) and molten metal pouring temperature were selected to give output in form of SH. This study will provide main effects of these variables on SH and will shed light on the SH mechanism in IC. The comparison with experimental results will also serve as further validation of model

  16. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  17. Modelling episodic acidification of surface waters: the state of science.

    Science.gov (United States)

    Eshleman, K N; Wigington, P J; Davies, T D; Tranter, M

    1992-01-01

    Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.

  18. Olkiluoto surface and near-surface hydrological modelling in 2010

    International Nuclear Information System (INIS)

    Karvonen, T.

    2011-08-01

    The modeling approaches carried out with the Olkiluoto surface hydrological model (SHYD) include palaeohydrological evolution of the Olkiluoto Island, examination of the boundary condition at the geosphere-biosphere interface zone, simulations related to infiltration experiment, prediction of the influence of ONKALO on hydraulic head in shallow and deep bedrock and optimisation of the shallow monitoring network. A so called short-term prediction system was developed for continuous updating of the estimated drawdowns caused by ONKALO. The palaeohydrological simulations were computed for a period starting from the time when the highest hills on Olkiluoto Island rose above sea level around 2 500 years ago. The input data needed in the model were produced by the UNTAMO-toolbox. The groundwater flow evolution is primarily driven by the postglacial land uplift and the uncertainty in the land uplift model is the biggest single factor that influences the accuracy of the results. The consistency of the boundary condition at the geosphere-biosphere interface zone (GBIZ) was studied during 2010. The comparison carried out during 2010 showed that pressure head profiles computed with the SHYD model and deep groundwater flow model FEFTRA are in good agreement with each other in the uppermost 100 m of the bedrock. This implies that flux profiles computed with the two approaches are close to each other and hydraulic heads computed at level z=0 m with the SHYD can be used as head boundary condition in the deep groundwater flow model FEFTRA. The surface hydrological model was used to analyse the results of the infiltration experiment. Increase in bedrock recharge inside WCA explains around 60-63 % from the amount of water pumped from OL-KR14 and 37-40 % of the water pumped from OL-KR14 flows towards pumping section via the hydrogeological zones. Pumping from OL-KR14 has only a minor effect on heads and fluxes in zones HZ19A and HZ19C compared to responses caused by leakages into

  19. 40 CFR 63.134 - Process wastewater provisions-surface impoundments.

    Science.gov (United States)

    2010-07-01

    ..., and semi-annually thereafter, for improper work practices and control equipment failures in accordance... this subpart, when an improper work practice or a control equipment failure is identified, first... treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the owner or...

  20. Interfacial stability of soil covers on lined surface impoundments

    International Nuclear Information System (INIS)

    Mitchell, D.H.; Gates, T.E.

    1986-04-01

    The factors affecting the interfacial stability of soil covers on geomembranes were examined to determine the maximum stable slopes for soil cover/geomembrane systems. Several instances of instability of soil covers on geomembranes have occurred at tailings ponds, leaving exposed geomembranes with the potential for physical ddamage and possibly chemical and ultraviolet degradation. From an operator's viewpoint, it is desirable to maximize the slope of lined facilities in order to maximize the volume-to-area ratio; however, the likelihood for instability also increases with increasing slope. Frictional data obtained from direct shear tests are compared with stability data obtained using a nine-square-meter (m 2 ) engineering-scale test stand to verify that direct shear test data are valid in slope design calculations. Interfacial frictional data from direct shear tests using high-density polyethylene and a poorly graded sand cover agree within several degrees with the engineering-scale tests. Additional tests with other soils and geomembranes are planned. The instability of soil covers is not always an interfacial problem; soil erosion and limited drainage capacity are additional factors that must be considered in the design of covered slopes. 7 refs., 5 figs., 2 tabs

  1. Surface complexation modeling of zinc sorption onto ferrihydrite.

    Science.gov (United States)

    Dyer, James A; Trivedi, Paras; Scrivner, Noel C; Sparks, Donald L

    2004-02-01

    A previous study involving lead(II) [Pb(II)] sorption onto ferrihydrite over a wide range of conditions highlighted the advantages of combining molecular- and macroscopic-scale investigations with surface complexation modeling to predict Pb(II) speciation and partitioning in aqueous systems. In this work, an extensive collection of new macroscopic and spectroscopic data was used to assess the ability of the modified triple-layer model (TLM) to predict single-solute zinc(II) [Zn(II)] sorption onto 2-line ferrihydrite in NaNO(3) solutions as a function of pH, ionic strength, and concentration. Regression of constant-pH isotherm data, together with potentiometric titration and pH edge data, was a much more rigorous test of the modified TLM than fitting pH edge data alone. When coupled with valuable input from spectroscopic analyses, good fits of the isotherm data were obtained with a one-species, one-Zn-sorption-site model using the bidentate-mononuclear surface complex, (triple bond FeO)(2)Zn; however, surprisingly, both the density of Zn(II) sorption sites and the value of the best-fit equilibrium "constant" for the bidentate-mononuclear complex had to be adjusted with pH to adequately fit the isotherm data. Although spectroscopy provided some evidence for multinuclear surface complex formation at surface loadings approaching site saturation at pH >/=6.5, the assumption of a bidentate-mononuclear surface complex provided acceptable fits of the sorption data over the entire range of conditions studied. Regressing edge data in the absence of isotherm and spectroscopic data resulted in a fair number of surface-species/site-type combinations that provided acceptable fits of the edge data, but unacceptable fits of the isotherm data. A linear relationship between logK((triple bond FeO)2Zn) and pH was found, given by logK((triple bond FeO)2Znat1g/l)=2.058 (pH)-6.131. In addition, a surface activity coefficient term was introduced to the model to reduce the ionic strength

  2. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    Science.gov (United States)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  3. Modeling radon flux from the earth's surface

    International Nuclear Information System (INIS)

    Schery, S.D.; Wasiolek, M.A.

    1998-01-01

    We report development of a 222 Rn flux density model and its use to estimate the 222 Rn flux density over the earth's land surface. The resulting maps are generated on a grid spacing of 1 0 x 1 0 using as input global data for soil radium, soil moisture, and surface temperature. While only a first approximation, the maps suggest a significant regional variation (a factor of three is not uncommon) and a significant seasonal variation (a factor of two is not uncommon) in 222 Rn flux density over the earth's surface. The estimated average global flux density from ice-free land is 34 ± 9 mBq m -2 s -1 . (author)

  4. Surface models of the male urogenital organs built from the Visible Korean using popular software

    Science.gov (United States)

    Shin, Dong Sun; Park, Jin Seo; Shin, Byeong-Seok

    2011-01-01

    Unlike volume models, surface models, which are empty three-dimensional images, have a small file size, so they can be displayed, rotated, and modified in real time. Thus, surface models of male urogenital organs can be effectively applied to an interactive computer simulation and contribute to the clinical practice of urologists. To create high-quality surface models, the urogenital organs and other neighboring structures were outlined in 464 sectioned images of the Visible Korean male using Adobe Photoshop; the outlines were interpolated on Discreet Combustion; then an almost automatic volume reconstruction followed by surface reconstruction was performed on 3D-DOCTOR. The surface models were refined and assembled in their proper positions on Maya, and a surface model was coated with actual surface texture acquired from the volume model of the structure on specially programmed software. In total, 95 surface models were prepared, particularly complete models of the urinary and genital tracts. These surface models will be distributed to encourage other investigators to develop various kinds of medical training simulations. Increasingly automated surface reconstruction technology using commercial software will enable other researchers to produce their own surface models more effectively. PMID:21829759

  5. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  6. Response Surface Design Model to Predict Surface Roughness when Machining Hastelloy C-2000 using Uncoated Carbide Insert

    International Nuclear Information System (INIS)

    Razak, N H; Rahman, M M; Kadirgama, K

    2012-01-01

    This paper presents to develop of the response surface design model to predict the surface roughness for end-milling operation of Hastelloy C-2000 using uncoated carbide insert. Mathematical model is developed to study the effect of three input cutting parameters includes the feed rate, axial depth of cut and cutting speed. Design of experiments (DOE) was implemented with the aid of the statistical software package. Analysis of variance (ANOVA) has been performed to verify the fit and adequacy of the developed mathematical model. The result shows that the feed rate gave the more effect on the both prediction values of Ra compared to the cutting speed and axial depth of cut. SEM and EDX analyses were performed in different cutting conditions. It can be concluded that the feed rate and cutting force give the higher impact to influence the machining characteristics of surface roughness. Thus, the optimizing the cutting conditions are essential in order to improve the surface roughness in machining of Hastlelloy C-2000.

  7. Influence of vegetation and sewage sludge on sealing layer of fly ashes in post-treatment of mine tailings impoundments; Inverkan av vegetation och roetslam paa taetskikt av flygaska vid efterbehandling av sandmagasin

    Energy Technology Data Exchange (ETDEWEB)

    Greger, Maria; Neuschuetz, Clara (Inst. of Bothany, Stockholm Univ., Stockholm (Sweden)); Isaksson, Karl-Erik (Boliden Mineral AB, Stockholm (Sweden))

    2009-03-15

    Mining industry produces 25 Mton mine tailings yearly that are deposited in impoundments in the nature. When this sand, containing sulphur rich minerals, reacts with oxygen and water it starts to weather and acidic metal rich water is formed. To prevent this, the sand can be covered with a sealing layer and a protective cover layer with vegetation. As sealing and cover materials fly ashes and sewage sludge can be used. The aim of this investigation was to find out: 1) how sealing layer of fly ashes with and without sewage sludge, and a cover with sewage sludge can be placed practically on mine tailings in a cold climate. 2) how such a cover should be constructed to minimize the risk of root penetration and leakage of nutrients and metals 3) which vegetation that is most suitable This was investigated in field- and greenhouse tests with a sealing layer of fly ash and/or sewage sludge with a cover layer of sewage sludge in which different plant species were established. The practical application was performed in 0.3-1 ha plots at a mine tailings impoundments at Boliden. The ability of plant roots to penetrate a sealing layer was investigated, as well as the effect of simulated root exudates on the penetration resistance in hardened ash. Leakage of nutrients and metals from cover layer of sewage sludge, in some cases with sealing layers beneath, was investigated in field and greenhouse lysimeters. Various plant species were compared on their ability to affect metal and nutrient leakage as well as root penetration and shattering of the hardened ashes. The project was a cooperation between Stockholm University and Boliden Mineral AB, and the field tests were performed at the impoundment Gillervattnet in Boliden and in Garpenberg. Cooperating were also Iggesund Paperboard, Skellefteaa Kraft, Stora Enso Fors, Umeaa Energi and Vattenfall, all producers of ashes that were used, as well as Stockholm Vatten AB, which produced the sewage sludge. The most important conclusions

  8. Finite element modeling of surface subsidence induced by underground coal mining

    International Nuclear Information System (INIS)

    Su, D.W.H.

    1992-01-01

    The ability to predict the effects of longwall mining on topography and surface structures is important for any coal company in making permit applications and anticipating potential mining problems. The sophisticated finite element model described and evaluated in this paper is based upon five years of underground and surface observations and evolutionary development of modeling techniques and attributes. The model provides a very powerful tool to address subsidence and other ground control questions. The model can be used to calculate postmining stress and strain conditions at any horizon between the mine and the ground surface. This holds the promise of assisting in the prediction of mining-related hydrological effects

  9. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  10. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  11. Measuring and modeling surface sorption dynamics of organophosphate flame retardants on impervious surfaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — The data presented in this data file is a product of a journal publication. The dataset contains measured and model predicted OPFRs gas-phase and surface-phase...

  12. Reinforcement Toolbox, a Parametric Reinforcement Modelling Tool for Curved Surface Structures

    NARCIS (Netherlands)

    Lauppe, J.; Rolvink, A.; Coenders, J.L.

    2013-01-01

    This paper presents a computational strategy and parametric modelling toolbox which aim at enhancing the design- and production process of reinforcement in freeform curved surface structures. The computational strategy encompasses the necessary steps of raising an architectural curved surface model

  13. Film mass transfer coefficient for the prediction of volatile organic compound evaporation rate from open water basin

    OpenAIRE

    Charun Bunyakan; Preyaporn Tongsoi; Chakrit Tongurai

    2001-01-01

    The evaporation of volatile organic compounds(VOCs) from treatment, storage, disposal facility(TSDF) is an important air pollution issue because of the evaporation quantity and toxicity and/or carcinogenicity. This paper concerns VOC evaporation from open water basins such as the equalization basin and nonaerate surface impoundments in a wastewater treatment plant. The amount of VOCs evaporation from open water basins can be predicted by using the two-film model that requires two mass transfe...

  14. Comparison of two perturbation methods to estimate the land surface modeling uncertainty

    Science.gov (United States)

    Su, H.; Houser, P.; Tian, Y.; Kumar, S.; Geiger, J.; Belvedere, D.

    2007-12-01

    In land surface modeling, it is almost impossible to simulate the land surface processes without any error because the earth system is highly complex and the physics of the land processes has not yet been understood sufficiently. In most cases, people want to know not only the model output but also the uncertainty in the modeling, to estimate how reliable the modeling is. Ensemble perturbation is an effective way to estimate the uncertainty in land surface modeling, since land surface models are highly nonlinear which makes the analytical approach not applicable in this estimation. The ideal perturbation noise is zero mean Gaussian distribution, however, this requirement can't be satisfied if the perturbed variables in land surface model have physical boundaries because part of the perturbation noises has to be removed to feed the land surface models properly. Two different perturbation methods are employed in our study to investigate their impact on quantifying land surface modeling uncertainty base on the Land Information System (LIS) framework developed by NASA/GSFC land team. One perturbation method is the built-in algorithm named "STATIC" in LIS version 5; the other is a new perturbation algorithm which was recently developed to minimize the overall bias in the perturbation by incorporating additional information from the whole time series for the perturbed variable. The statistical properties of the perturbation noise generated by the two different algorithms are investigated thoroughly by using a large ensemble size on a NASA supercomputer and then the corresponding uncertainty estimates based on the two perturbation methods are compared. Their further impacts on data assimilation are also discussed. Finally, an optimal perturbation method is suggested.

  15. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  16. Band-structure-based collisional model for electronic excitations in ion-surface collisions

    International Nuclear Information System (INIS)

    Faraggi, M.N.; Gravielle, M.S.; Alducin, M.; Silkin, V.M.; Juaristi, J.I.

    2005-01-01

    Energy loss per unit path in grazing collisions with metal surfaces is studied by using the collisional and dielectric formalisms. Within both theories we make use of the band-structure-based (BSB) model to represent the surface interaction. The BSB approach is based on a model potential and provides a precise description of the one-electron states and the surface-induced potential. The method is applied to evaluate the energy lost by 100 keV protons impinging on aluminum surfaces at glancing angles. We found that when the realistic BSB description of the surface is used, the energy loss obtained from the collisional formalism agrees with the dielectric one, which includes not only binary but also plasmon excitations. The distance-dependent stopping power derived from the BSB model is in good agreement with available experimental data. We have also investigated the influence of the surface band structure in collisions with the Al(100) surface. Surface-state contributions to the energy loss and electron emission probability are analyzed

  17. Soliton surfaces associated with sigma models: differential and algebraic aspects

    International Nuclear Information System (INIS)

    Goldstein, P P; Grundland, A M; Post, S

    2012-01-01

    In this paper, we consider both differential and algebraic properties of surfaces associated with sigma models. It is shown that surfaces defined by the generalized Weierstrass formula for immersion for solutions of the CP N-1 sigma model with finite action, defined in the Riemann sphere, are themselves solutions of the Euler–Lagrange equations for sigma models. On the other hand, we show that the Euler–Lagrange equations for surfaces immersed in the Lie algebra su(N), with conformal coordinates, that are extremals of the area functional, subject to a fixed polynomial identity, are exactly the Euler–Lagrange equations for sigma models. In addition to these differential constraints, the algebraic constraints, in the form of eigenvalues of the immersion functions, are systematically treated. The spectrum of the immersion functions, for different dimensions of the model, as well as its symmetry properties and its transformation under the action of the ladder operators are discussed. Another approach to the dynamics is given, i.e. description in terms of the unitary matrix which diagonalizes both the immersion functions and the projectors constituting the model. (paper)

  18. Bedload transport over run-of-river dams, Delaware, U.S.A.

    Science.gov (United States)

    Pearson, Adam J.; Pizzuto, Jim

    2015-11-01

    We document the detailed morphology and bed sediment size distribution of a stream channel upstream and downstream of a 200-year-old run-of-river dam on the Red Clay Creek, a fifth order stream in the Piedmont of northern Delaware, and combine these data with HEC-RAS modeling and bedload transport computations. We hypothesize that coarse bed material can be carried through run-of-river impoundments before they completely fill with sediment, and we explore mechanisms to facilitate this transport. Only 25% of the accommodation space in our study site is filled with sediment, and maximum water depths are approximately equal to the dam height. All grain-size fractions present upstream of the impoundment are also present throughout the impoundment. A characteristic coarse-grained sloping ramp leads from the floor of the impoundment to the crest of the dam. A 2.3-m-deep plunge pool has been excavated below the dam, followed immediately downstream by a mid-channel bar composed of coarse bed material similar in size distribution to the bed material of the impoundment. The mid-channel bar stores 1472 m3 of sediment, exceeding the volume excavated from the plunge pool by a factor of 2.8. These field observations are typical of five other sites nearby and suggest that all bed material grain-size fractions supplied from upstream can be transported through the impoundment, up the sloping ramp, and over the top of the dam. Sediment transport computations suggest that all grain sizes are in transport upstream and within the impoundment at all discharges with return periods from 1 to 50 years. Our computations suggest that transport of coarse bed material through the impoundment is facilitated by its smooth, sandy bed. Model results suggest that the impoundment is currently aggrading at 0.26 m/year, but bed elevations may be recovering after recent scour from a series of large floods during water year 2011-2012. We propose that impoundments upstream of these run-of-river dams

  19. Active surface model improvement by energy function optimization for 3D segmentation.

    Science.gov (United States)

    Azimifar, Zohreh; Mohaddesi, Mahsa

    2015-04-01

    This paper proposes an optimized and efficient active surface model by improving the energy functions, searching method, neighborhood definition and resampling criterion. Extracting an accurate surface of the desired object from a number of 3D images using active surface and deformable models plays an important role in computer vision especially medical image processing. Different powerful segmentation algorithms have been suggested to address the limitations associated with the model initialization, poor convergence to surface concavities and slow convergence rate. This paper proposes a method to improve one of the strongest and recent segmentation algorithms, namely the Decoupled Active Surface (DAS) method. We consider a gradient of wavelet edge extracted image and local phase coherence as external energy to extract more information from images and we use curvature integral as internal energy to focus on high curvature region extraction. Similarly, we use resampling of points and a line search for point selection to improve the accuracy of the algorithm. We further employ an estimation of the desired object as an initialization for the active surface model. A number of tests and experiments have been done and the results show the improvements with regards to the extracted surface accuracy and computational time of the presented algorithm compared with the best and recent active surface models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. SO(N) WZNW models on higher-genus Riemann surfaces

    International Nuclear Information System (INIS)

    Alimohammadi, M.; Arfaei, H.; Bonn Univ.

    1993-08-01

    With the help of the string functions and fusion rules of SO(2N) 1 , we show that the results on SU(N) 1 correlators on higher-genus Riemann surfaces (HGRS) can be extended to the SO(2N) 1 and other level-one simply-laced WZNW models. Using modular invariance and factorization properties of Green functions we find multipoint correlators of primary and descendant fields of SO(2N+1) 1 WZNW models on higher genus Riemann surfaces. (orig.)

  1. Role of equipotential and equidensity surfaces for constructing models of galaxies

    International Nuclear Information System (INIS)

    Kutuzov, S.A.; Osipkov, L.P.

    1987-01-01

    The role played by the specification of the equipotential surfaces and equidensity surfaces in the general problem of constructing models of galaxies is examined. If the equipotential surfaces are specified, Poisson's equation makes it possible to find the spatial density from the circular velocity. The problem of determining the potential and the spatial density from the equatorial density is considered. If equidensity surfaces are specified, then the kernel of the integral equation that relates the density to the circular velocity can be determined. The corresponding expressions for known models are obtained

  2. A methodology for modeling surface effects on stiff and soft solids

    Science.gov (United States)

    He, Jin; Park, Harold S.

    2018-06-01

    We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.

  3. Surface photovoltage measurements and finite element modeling of SAW devices.

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, Christine

    2012-03-01

    Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.

  4. Surface science models of CoMoS hydrodesulfurisation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, A.M.; De Beer, V.H.J.; Van Veen, J.A.R.; Niemantsverdriet, J.W. [Schuit Institute of Catalysis, Eindhoven University of Technology, Eindhoven (Netherlands)

    1997-07-01

    Characterization of supported catalysts with surface spectroscopic techniques is often limited due to restraints imposed by the support material. The use of flat conducting substrates as a model support offers a way to apply these techniques to their full potential. Such surface science models of silica and alumina supported CoMoS catalysts have been made by impregnating thin SiO{sub 2} and Al{sub 2}O{sub 3} films with a solution of nitrilotriacetic acid (NTA) complexes of cobalt and molybdenum. X-ray Photoelectron Spectroscopy (XPS) spectra indicate that the order in which cobalt and molybdenum transfer to the sulfided state is reversed with respect to oxidic Co and Mo systems prepared by conventional methods, implying that NTA complexation retards the sulfidation of cobalt to temperatures where MoS{sub 2} is already formed. Catalytic tests show that the CoMoS model catalysts exhibit activities for thiophene desulfurisation and product distributions similar to those of their high surface area counterparts. 25 refs.

  5. Land-surface modelling in hydrological perspective ? a review

    OpenAIRE

    Overgaard , J.; Rosbjerg , D.; Butts , M. B.

    2006-01-01

    International audience; The purpose of this paper is to provide a review of the different types of energy-based land-surface models (LSMs) and discuss some of the new possibilities that will arise when energy-based LSMs are combined with distributed hydrological modelling. We choose to focus on energy-based approaches, because in comparison to the traditional potential evapotranspiration models, these approaches allow for a stronger link to remote sensing and atmospheric modelling. New opport...

  6. Surface roughness prediction model in end milling of Al/SiCp MMC ...

    African Journals Online (AJOL)

    user

    2 Department of Mechanical Engineering, Pondicherry Engineering College, ... Keywords: Surface roughness (Ra), Response surface method (RSM), End milling, .... To establish the initial model and refined model, a software package MiniTab ..... The After building the regression model, a numerical optimization technique ...

  7. Surface analysis of Li-ion battery model anodes

    Energy Technology Data Exchange (ETDEWEB)

    Seemayer, Andreas; Bach, Philipp; Renner, Frank Uwe [Max Planck Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany)

    2011-07-01

    Lithium ion batteries are the most promising power source for future electromobility applications. Research on the battery systems aims to achieve higher rate capability, cycle life, or better safety. To achieve necessary further improvements a better understanding of the basic processes is needed. Following a surface science approach we focus on the investigation of simple model systems (like single crystals or thin film electrodes) of relevant anode materials. We report investigations of the electrochemical insertion of lithium in Au, Ag, Al, Mg and Si model surfaces, i.e. alloying and dealloying of lithium alloys. As electrolyte we use the ionic liquid 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesolfonyl)imide (PYR14TFSI) with 0.3M LiTFSI. The electrochemical characterisation is performed by cyclic voltammetry (CV). The surface and film characterisation regarding its geometrical structure is investigated by means of scanning electron microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical composition is characterised ex-situ by photoelectron spectroscopy (PES) and secondary ion mass spectrometry (SIMS).

  8. Advancing land surface model development with satellite-based Earth observations

    Science.gov (United States)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-05-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts, we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability, and understanding of climate system feedbacks.

  9. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas

    Science.gov (United States)

    Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.

    2005-07-01

    As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.

  10. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model

    International Nuclear Information System (INIS)

    Xie Tao; Zhao Shang-Zhuo; Fang He; Yu Wen-Jin; He Yi-Jun; Perrie, William

    2016-01-01

    Sea surface current has a significant influence on electromagnetic (EM) backscattering signals and may constitute a dominant synthetic aperture radar (SAR) imaging mechanism. An effective EM backscattering model for a one-dimensional drifting fractal sea surface is presented in this paper. This model is used to simulate EM backscattering signals from the drifting sea surface. Numerical results show that ocean currents have a significant influence on EM backscattering signals from the sea surface. The normalized radar cross section (NRCS) discrepancies between the model for a coupled wave-current fractal sea surface and the model for an uncoupled fractal sea surface increase with the increase of incidence angle, as well as with increasing ocean currents. Ocean currents that are parallel to the direction of the wave can weaken the EM backscattering signal intensity, while the EM backscattering signal is intensified by ocean currents propagating oppositely to the wave direction. The model presented in this paper can be used to study the SAR imaging mechanism for a drifting sea surface. (paper)

  11. Thermomechanical modelling of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Tamanna, N.; Naher, S.

    2018-03-01

    A two-dimensional thermomechanical finite element (FE) model of laser surface glazing (LSG) has been developed for H13 tool steel. The direct coupling technique of ANSYS 17.2 (APDL) has been utilised to solve the transient thermomechanical process. A H13 tool steel cylindrical cross-section has been modelled for laser power 200 W and 300 W at constant 0.2 mm beam width and 0.15 ms residence time. The model can predict temperature distribution, stress-strain increments in elastic and plastic region with time and space. The crack formation tendency also can be assumed by analysing the von Mises stress in the heat-concentrated zone. Isotropic and kinematic hardening models have been applied separately to predict the after-yield phenomena. At 200 W laser power, the peak surface temperature achieved is 1520 K which is below the melting point (1727 K) of H13 tool steel. For laser power 300 W, the peak surface temperature is 2523 K. Tensile residual stresses on surface have been found after cooling, which are in agreement with literature. Isotropic model shows higher residual stress that increases with laser power. Conversely, kinematic model gives lower residual stress which decreases with laser power. Therefore, both plasticity models could work in LSG for H13 tool steel.

  12. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    Science.gov (United States)

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  14. Improvement of a land surface model for accurate prediction of surface energy and water balances

    International Nuclear Information System (INIS)

    Katata, Genki

    2009-02-01

    In order to predict energy and water balances between the biosphere and atmosphere accurately, sophisticated schemes to calculate evaporation and adsorption processes in the soil and cloud (fog) water deposition on vegetation were implemented in the one-dimensional atmosphere-soil-vegetation model including CO 2 exchange process (SOLVEG2). Performance tests in arid areas showed that the above schemes have a significant effect on surface energy and water balances. The framework of the above schemes incorporated in the SOLVEG2 and instruction for running the model are documented. With further modifications of the model to implement the carbon exchanges between the vegetation and soil, deposition processes of materials on the land surface, vegetation stress-growth-dynamics etc., the model is suited to evaluate an effect of environmental loads to ecosystems by atmospheric pollutants and radioactive substances under climate changes such as global warming and drought. (author)

  15. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  16. Surface spectroscopic characterization of a model methane-activation catalyst

    International Nuclear Information System (INIS)

    Chen, J.G.; Weisel, M.D.; Hoffmann, F.M.; Hall, R.B.

    1992-01-01

    In an effort to understand the details concerning the alkali-promoted selectivity for the oxidative coupling of methane, the authors have carried out a detailed characterization of a model K/NiO/Ni(100) catalyst under well-controlled, ultrahigh vacuum conditions. The authors' systematic approach involved the following procedures: detailed investigation of the formation and structure of NiO on a clean Ni(100) surface; spectroscopic characterization of K-doped NiO by in situ deposition of potassium onto well-characterized NiO/Ni(100) substrate; and determination of the reactivities of NiO/Ni(100) and K/NiO/Ni(100) towards H 2 and CH 4 . In this paper, the authors will use the model K/NiO/Ni(100) system as an example to demonstrate that a detailed, complementary characterization of the model catalyst could best be achieved by using a combination of a variety of surface techniques: The methods of HREELS, LEED, XPS and AES could be applied to obtain properties on and near the surface regions; the technique of FYNES, being a photon-in/photon-out method could be utilized to investigate the bulk properties up to 2000 Angstrom below the surface; the method of FTIR using CO as a probing molecule is, on the other hand, sensitive only to the properties of the top-most surface layer. The result is to be presented in this paper will be mainly those obtained by using the two vibrational spectroscopies (HREELS and FTIR). Results from other surface techniques will also be discussed or presented when they provide additional information to the vibrational data

  17. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  18. Development and implementation of a Variable Infiltration Capacity model of surface hydrology into the General Circulation Model

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Stamm, J.F.; Wood, E.F.

    1993-04-01

    A Variable Infiltration Capacity (VIC) model is described for the representation of land surface hydrology in General Circulation Models (GCMs). The VIC model computes runoff as a function of the distribution of soil moisture capacity within a GCM grid cell. The major distinguishing feature of the VIC model relative to the bucket model currently used to represent the land surface in many GCMs is that it parameterizes the nonlinearity of the fraction of precipitation that infiltrates over a large area (hence the production of direct runoff) as a function of spatial average soil moisture storage, and that it models subsurface runoff between storms via a simple recession mechanism. The VIC model was incorporated into the Geophysical Fluid Dynamics Laboratory (GFDL) GCM at R15 resolution (roughly 4.5 degrees latitude by 7.5 degrees longitude). Ten-year simulations of global climate were produced using the GFDL GCM with both VIC land surface hydrology, and, for comparison purposes, the standard bucket representation. Comparison of the ten year runs using the VIC model with those using bucket hydrology showed that for the VIC run, global average runoff increased, soil moisture decreased, evaporation decreased, land surface temperature increased, and precipitation decreased. As expected, changes in precipitation occurred primarily over the continents, especially in the northern hemisphere. Changes in the surface water balance for Africa, Australia, and South America were much less than for North American and Eurasia. Both VIC and bucket simulations of surface air temperature and precipitation were compared with gridded monthly average observation fields. These comparisons indicated that the VIC hydrology reproduced winter temperatures better, and summer temperatures worse, than the bucket model. The VIC hydrology better represented global precipitation, primarily as a result of partially reducing the upward bias in precipitation associated with the GFDL R15 bucket runs

  19. Model error assessment of burst capacity models for energy pipelines containing surface cracks

    International Nuclear Information System (INIS)

    Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing

    2014-01-01

    This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines

  20. A theoretical model on surface electronic behavior: Strain effect

    International Nuclear Information System (INIS)

    Qin, W.G.; Shaw, D.

    2009-01-01

    Deformation from mechanical loading can affect surface electronic behavior. Surface deformation and electronic behavior can be quantitatively expressed using strain and work function, respectively, and their experimental relationship can be readily determined using the Kelvin probing technique. However, the theoretical correlation between work function and strain has been unclear. This study reports our theoretical exploration, for the first time, of the effect of strain on work function. We propose a simple electrostatic action model by considering the effect of a dislocation on work function of a one-dimensional lattice and further extend this model to the complex conditions for the effect of dislocation density. Based on this model, we established successfully a theoretical correlation between work function and strain.

  1. Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing

    Science.gov (United States)

    Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon

    2017-06-01

    The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after

  2. Whole object surface area and volume of partial-view 3D models

    International Nuclear Information System (INIS)

    Mulukutla, Gopal K; Proussevitch, Alexander A; Genareau, Kimberly D; Durant, Adam J

    2017-01-01

    Micro-scale 3D models, important components of many studies in science and engineering, are often used to determine morphological characteristics such as shape, surface area and volume. The application of techniques such as stereoscopic scanning electron microscopy on whole objects often results in ‘partial-view’ models with a portion of object not within the field of view thus not captured in the 3D model. The nature and extent of the surface not captured is dependent on the complex interaction of imaging system attributes (e.g. working distance, viewing angle) with object size, shape and morphology. As a result, any simplistic assumptions in estimating whole object surface area or volume can lead to significant errors. In this study, we report on a novel technique to estimate the physical fraction of an object captured in a partial-view 3D model of an otherwise whole object. This allows a more accurate estimate of surface area and volume. Using 3D models, we demonstrate the robustness of this method and the accuracy of surface area and volume estimates relative to true values. (paper)

  3. A New Empirical Model for Radar Scattering from Bare Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Nicolas Baghdadi

    2016-11-01

    Full Text Available The objective of this paper is to propose a new semi-empirical radar backscattering model for bare soil surfaces based on the Dubois model. A wide dataset of backscattering coefficients extracted from synthetic aperture radar (SAR images and in situ soil surface parameter measurements (moisture content and roughness is used. The retrieval of soil parameters from SAR images remains challenging because the available backscattering models have limited performances. Existing models, physical, semi-empirical, or empirical, do not allow for a reliable estimate of soil surface geophysical parameters for all surface conditions. The proposed model, developed in HH, HV, and VV polarizations, uses a formulation of radar signals based on physical principles that are validated in numerous studies. Never before has a backscattering model been built and validated on such an important dataset as the one proposed in this study. It contains a wide range of incidence angles (18°–57° and radar wavelengths (L, C, X, well distributed, geographically, for regions with different climate conditions (humid, semi-arid, and arid sites, and involving many SAR sensors. The results show that the new model shows a very good performance for different radar wavelengths (L, C, X, incidence angles, and polarizations (RMSE of about 2 dB. This model is easy to invert and could provide a way to improve the retrieval of soil parameters.

  4. Modeling the Soul Surface Seal from a Filtration Perspective

    Directory of Open Access Journals (Sweden)

    N.M. Somaratne

    1998-01-01

    Full Text Available A physically based model of soil surface scaling is proposed. The governing equations are formulated on the principle of conservation of mass assuming Darcy's law applies to suspension flowing through the soil surface. The model incorporates the physics of surface sealing by mechanisms that capture suspended particles moving with infiltrating water. As a result of particle retention in the soil system, the intrinsic porosity is reduced and hulk density is increased, resulting in changes to soil hydraulic properties such as moisture retention and hydraulic conductivity. Empirical functions are developed to describe the changes of these properties as the seal develops. With this approach, the seal can be mathematically described by well defined initial and boundary conditions and transient seal properties can be simulated in a physically realistic manner.

  5. Surface complexation models for uranium adsorption in the sub-surface environment

    International Nuclear Information System (INIS)

    Payne, T.E.

    2007-01-01

    Adsorption experiments with soil component minerals under a range of conditions are being used to develop models of uranium(VI) uptake in the sub-surface environment. The results show that adsorption of U on iron oxides and clay minerals is influenced by chemical factors including the pH, partial pressure of CO 2 , and the presence of ligands such as phosphate. Surface complexation models (SCMs) can be used to simulate U adsorption on these minerals. The SCMs are based on plausible mechanistic assumptions and describe the experimental data more adequately than Kd values or sorption isotherms. It is conceptually possible to simulate U sorption data on complex natural samples by combining SCMs for individual component minerals. This approach was used to develop a SCM for U adsorption to mineral assemblages from Koongarra (Australia), and produced a reasonable description of U uptake. In order to assess the applicability of experimental data to the field situation, in-situ measurements of U distributions between solid and liquid phases were undertaken at the Koongarra U deposit. This field partitioning data showed a satisfactory agreement with laboratory sorption data obtained under comparable conditions. (author)

  6. Soil Structure - A Neglected Component of Land-Surface Models

    Science.gov (United States)

    Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.

    2017-12-01

    Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity

  7. Modeling Bacteria Surface Acid-Base Properties: The Overprint Of Biology

    Science.gov (United States)

    Amores, D. R.; Smith, S.; Warren, L. A.

    2009-05-01

    Bacteria are ubiquitous in the environment and are important repositories for metals as well as nucleation templates for a myriad of secondary minerals due to an abundance of reactive surface binding sites. Model elucidation of whole cell surface reactivity simplifies bacteria as viable but static, i.e., no metabolic activity, to enable fits of microbial data sets from models derived from mineral surfaces. Here we investigate the surface proton charging behavior of live and dead whole cell cyanobacteria (Synechococcus sp.) harvested from a single parent culture by acid-base titration using a Fully Optimized ContinUouS (FOCUS) pKa spectrum method. Viability of live cells was verified by successful recultivation post experimentation, whereas dead cells were consistently non-recultivable. Surface site identities derived from binding constants determined for both the live and dead cells are consistent with molecular analogs for organic functional groups known to occur on microbial surfaces: carboxylic (pKa = 2.87-3.11), phosphoryl (pKa = 6.01-6.92) and amine/hydroxyl groups (pKa = 9.56-9.99). However, variability in total ligand concentration among the live cells is greater than those between the live and dead. The total ligand concentrations (LT, mol- mg-1 dry solid) derived from the live cell titrations (n=12) clustered into two sub-populations: high (LT = 24.4) and low (LT = 5.8), compared to the single concentration for the dead cell titrations (LT = 18.8; n=5). We infer from these results that metabolic activity can substantively impact surface reactivity of morphologically identical cells. These results and their modeling implications for bacteria surface reactivities will be discussed.

  8. Modeling superhydrophobic surfaces comprised of random roughness

    Science.gov (United States)

    Samaha, M. A.; Tafreshi, H. Vahedi; Gad-El-Hak, M.

    2011-11-01

    We model the performance of superhydrophobic surfaces comprised of randomly distributed roughness that resembles natural surfaces, or those produced via random deposition of hydrophobic particles. Such a fabrication method is far less expensive than ordered-microstructured fabrication. The present numerical simulations are aimed at improving our understanding of the drag reduction effect and the stability of the air-water interface in terms of the microstructure parameters. For comparison and validation, we have also simulated the flow over superhydrophobic surfaces made up of aligned or staggered microposts for channel flows as well as streamwise or spanwise ridge configurations for pipe flows. The present results are compared with other theoretical and experimental studies. The numerical simulations indicate that the random distribution of surface roughness has a favorable effect on drag reduction, as long as the gas fraction is kept the same. The stability of the meniscus, however, is strongly influenced by the average spacing between the roughness peaks, which needs to be carefully examined before a surface can be recommended for fabrication. Financial support from DARPA, contract number W91CRB-10-1-0003, is acknowledged.

  9. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  10. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.

  11. High-resolution surface analysis for extended-range downscaling with limited-area atmospheric models

    Science.gov (United States)

    Separovic, Leo; Husain, Syed Zahid; Yu, Wei; Fernig, David

    2014-12-01

    High-resolution limited-area model (LAM) simulations are frequently employed to downscale coarse-resolution objective analyses over a specified area of the globe using high-resolution computational grids. When LAMs are integrated over extended time frames, from months to years, they are prone to deviations in land surface variables that can be harmful to the quality of the simulated near-surface fields. Nudging of the prognostic surface fields toward a reference-gridded data set is therefore devised in order to prevent the atmospheric model from diverging from the expected values. This paper presents a method to generate high-resolution analyses of land-surface variables, such as surface canopy temperature, soil moisture, and snow conditions, to be used for the relaxation of lower boundary conditions in extended-range LAM simulations. The proposed method is based on performing offline simulations with an external surface model, forced with the near-surface meteorological fields derived from short-range forecast, operational analyses, and observed temperatures and humidity. Results show that the outputs of the surface model obtained in the present study have potential to improve the near-surface atmospheric fields in extended-range LAM integrations.

  12. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  13. Surface and subsurface soils at the Pond B dam: July 1998

    International Nuclear Information System (INIS)

    Halverson, N.V.

    1999-01-01

    Pond B, 685-13G, is an inactive reactor cooling impoundment built in 1961 on the Savannah River Site (SRS). Between 1961 and 1964, Pond B received R-Reactor cooling water discharges that were contaminated with 137 Cs, 90 Sr and plutonium. Though the pond has not been used since 1964, radionuclides from the contaminated cooling water remain in the water and in the surface sediments of the pond. The current proposal to fix and repair the Pond B dam structure includes installing a new drain system and monitoring equipment. The dam will be reinforced with additional previous material on the downstream face of the dam. The objectives of this report are to describe the sampling methodology used during the July 1998 sampling event at the downstream face of the Pond B dam and in Pond B, present the results of the sampling event, and compare, where possible, these results to related risk-based standards

  14. On modeling biomolecular–surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces

    International Nuclear Information System (INIS)

    Akdim, B; Pachter, R; Day, P N; Kim, S S; Naik, R R

    2012-01-01

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson–Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange–correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular–macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson–Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface. (paper)

  15. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  16. Geometry of surfaces associated to Grassmannian sigma models

    International Nuclear Information System (INIS)

    Delisle, L; Hussin, V; Zakrzewski, W J

    2015-01-01

    We investigate the geometric characteristics of constant Gaussian curvature surfaces obtained from solutions of the G(m, n) sigma model. Most of these solutions are related to the Veronese sequence. We show that we can distinguish surfaces with the same Gaussian curvature using additional quantities like the topological charge and the mean curvature. The cases of G(1,n) = CP n-1 and G(2,n) are used to illustrate these characteristics. (paper)

  17. Validating modeled turbulent heat fluxes across large freshwater surfaces

    Science.gov (United States)

    Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.

    2017-12-01

    Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.

  18. Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling

    International Nuclear Information System (INIS)

    Levesque, M.

    2010-11-01

    Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that

  19. An Effective Surface Modeling Method for Car Styling from a Side-View Image

    Institute of Scientific and Technical Information of China (English)

    LIBao-jun; ZHANGXue-fang; LVZhang-quan; QIYi-chao

    2014-01-01

    We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.

  20. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R.

    2010-01-01

    The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed α-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

  1. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  2. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  3. Water surface modeling from a single viewpoint video.

    Science.gov (United States)

    Li, Chuan; Pickup, David; Saunders, Thomas; Cosker, Darren; Marshall, David; Hall, Peter; Willis, Philip

    2013-07-01

    We introduce a video-based approach for producing water surface models. Recent advances in this field output high-quality results but require dedicated capturing devices and only work in limited conditions. In contrast, our method achieves a good tradeoff between the visual quality and the production cost: It automatically produces a visually plausible animation using a single viewpoint video as the input. Our approach is based on two discoveries: first, shape from shading (SFS) is adequate to capture the appearance and dynamic behavior of the example water; second, shallow water model can be used to estimate a velocity field that produces complex surface dynamics. We will provide qualitative evaluation of our method and demonstrate its good performance across a wide range of scenes.

  4. Numerical modelling of needle-grid electrodes for negative surface corona charging system

    International Nuclear Information System (INIS)

    Zhuang, Y; Chen, G; Rotaru, M

    2011-01-01

    Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.

  5. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  6. The Community Surface Dynamics Modeling System: Experiences on Building a Collaborative Modeling Platform

    Science.gov (United States)

    Overeem, I.; Hutton, E.; Kettner, A.; Peckham, S. D.; Syvitski, J. P.

    2012-12-01

    The Community Surface Dynamics Modeling System - CSDMS- develops a software platform with shared and coupled modules for modeling earth surface processes as a community resource. The framework allows prediction of water, sediment and nutrient transport through the landscape and seacape. The underlying paradigm is that the Earth surface we live on is a dynamic system; topography changes with seasons, with landslides and earthquakes, with erosion and deposition. The Earth Surface changes due to storms and floods, and important boundaries, like the coast, are ever-moving features. CSDMS sets out to make better predictions of these changes. Earth surface process modeling bridges the terrestrial, coastal and marine domains and requires understanding of the system over a range of time scales, which inherently needs interdisciplinarity. Members of CSDMS (~830 in July 2012) are largely from academic institutions (˜75%), followed by federal agencies (˜17%), and oil and gas companies (˜5%). Members and governmental bodies meet once annually and rely additionally on web-based information for communication. As an organization that relies on volunteer participation, CSDMS faces challenges to scientific collaboration. Encouraging volunteerism among its members to provide and adapt metadata and model code to be sufficiently standardized for coupling is crucial to building an integrated community modeling system. We here present CSDMS strategies aimed at providing the appropriate technical tools and cyberinfrastructure to support a variety of user types, ranging from advanced to novice modelers. Application of these advances in science is key, both into the educational realm and for managers and decision-makers. We discuss some of the implemented ideas to further organizational transparency and user engagement in small-scale governance, such as advanced trackers and voting systems for model development prioritization through the CSDMS wiki. We analyzed data on community

  7. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Science.gov (United States)

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  8. Surface chemistry of first wall materials - From fundamental data to modeling

    International Nuclear Information System (INIS)

    Linsmeier, Ch.; Reinelt, M.; Schmid, K.

    2011-01-01

    The application of different materials at the first wall of fusion devices, like beryllium, carbon, and tungsten in the case of ITER, unavoidably leads to the formation of compounds. These compounds are created dynamically during operation and depend on the local parameters like surface temperature, incoming particle energies and species. In dedicated, well-defined laboratory experiments, using mainly X-ray photoelectron spectroscopy and Rutherford backscattering analysis for qualitative and quantitative chemical surface analysis, the parameter space in relevant element combinations are investigated. These studies lead to a deep understanding of the reaction mechanisms under the applied conditions and to a quantitative description of reaction and diffusion processes. These data can be parameterized and integrated into a modeling approach which combines dynamic surface chemistry with the modeling of the transport in the plasma. Two different approaches for surface reaction modeling are compared and benchmarked with experimental data.

  9. Prevalence of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa.

    Science.gov (United States)

    Mukaratirwa, S; Singh, V P

    2010-06-01

    Coprological examination was used to determine the prevalence and intensity of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA), Durban and Coast, South Africa. Helminth and protozoan parasites were found in faeces of 240 dogs with an overall prevalence of 82.5% (helminth parasites 93.1% and protozoan parasites 6.9%). The following parasites and their prevalences were detected; Ancylostoma sp. (53.8%), Trichuris vulpis (7.9%), Spirocerca lupi (5.4%), Toxocara canis (7.9%), Toxascaris leonina (0.4%) Giardia intestinalis (5.6%) and Isospora sp. (1.3%). Dogs harbouring a single parasite species were more common (41.7%) than those harbouring 2 (15%) or multiple (2.1%) species. Ancylostoma sp., Toxocara canis and Giardia intestinalis have zoonotic potential and were detected in 66.7% of the samples.

  10. Impacts of boreal hydroelectric reservoirs on seasonal climate and precipitation recycling as simulated by the CRCM5: a case study of the La Grande River watershed, Canada

    Science.gov (United States)

    Irambona, C.; Music, B.; Nadeau, D. F.; Mahdi, T. F.; Strachan, I. B.

    2018-02-01

    Located in northern Quebec, Canada, eight hydroelectric reservoirs of a 9782-km2 maximal area cover 6.4% of the La Grande watershed. This study investigates the changes brought by the impoundment of these reservoirs on seasonal climate and precipitation recycling. Two 30-year climate simulations, corresponding to pre- and post-impoundment conditions, were used. They were generated with the fifth-generation Canadian Regional Climate Model (CRCM5), fully coupled to a 1D lake model (FLake). Seasonal temperatures and annual energy budget were generally well reproduced by the model, except in spring when a cold bias, probably related to the overestimation of snow cover, was seen. The difference in 2-m temperature shows that reservoirs induce localized warming in winter (+0.7 ± 0.02 °C) and cooling in the summer (-0.3 ± 0.02 °C). The available energy at the surface increases throughout the year, mostly due to a decrease in surface albedo. Fall latent and sensible heat fluxes are enhanced due to additional energy storage and availability in summer and spring. The changes in precipitation and runoff are within the model internal variability. At the watershed scale, reservoirs induce an additional evaporation of only 5.9 mm year-1 (2%). We use Brubaker's precipitation recycling model to estimate how much of the precipitation is recycled within the watershed. In both simulations, the maximal precipitation recycling occurs in July (less than 6%), indicating weak land-atmosphere coupling. Reservoirs do not seem to affect this coupling, as precipitation recycling only decreased by 0.6% in July.

  11. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    Science.gov (United States)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  12. Coupling a groundwater model with a land surface model to improve water and energy cycle simulation

    Directory of Open Access Journals (Sweden)

    W. Tian

    2012-12-01

    Full Text Available Water and energy cycles interact, making these two processes closely related. Land surface models (LSMs can describe the water and energy cycles on the land surface, but their description of the subsurface water processes is oversimplified, and lateral groundwater flow is ignored. Groundwater models (GWMs describe the dynamic movement of the subsurface water well, but they cannot depict the physical mechanisms of the evapotranspiration (ET process in detail. In this study, a coupled model of groundwater flow with a simple biosphere (GWSiB is developed based on the full coupling of a typical land surface model (SiB2 and a 3-D variably saturated groundwater model (AquiferFlow. In this coupled model, the infiltration, ET and energy transfer are simulated by SiB2 using the soil moisture results from the groundwater flow model. The infiltration and ET results are applied iteratively to drive the groundwater flow model. After the coupled model is built, a sensitivity test is first performed, and the effect of the groundwater depth and the hydraulic conductivity parameters on the ET are analyzed. The coupled model is then validated using measurements from two stations located in shallow and deep groundwater depth zones. Finally, the coupled model is applied to data from the middle reach of the Heihe River basin in the northwest of China to test the regional simulation capabilities of the model.

  13. Applicability of surface complexation modelling in TVO's studies on sorption of radionuclides

    International Nuclear Information System (INIS)

    Carlsson, T.

    1994-03-01

    The report focuses on the possibility of applying surface complexation theories to the conditions at a potential repository site in Finland and of doing proper experimental work in order to determine necessary constants for the models. The report provides background information on: (1) what type experiments should be carried out in order to produce data for surface complexation modelling of sorption phenomena under potential Finnish repository conditions, and (2) how to design and perform properly such experiments, in order to gather data, develop models or both. The report does not describe in detail how proper surface complexation experiments or modelling should be carried out. The work contains several examples of information that may be valuable in both modelling and experimental work. (51 refs., 6 figs., 4 tabs.)

  14. Acid base properties of a goethite surface model: A theoretical view

    Science.gov (United States)

    Aquino, Adelia J. A.; Tunega, Daniel; Haberhauer, Georg; Gerzabek, Martin H.; Lischka, Hans

    2008-08-01

    Density functional theory is used to compute the effect of protonation, deprotonation, and dehydroxylation of different reactive sites of a goethite surface modeled as a cluster containing six iron atoms constructed from a slab model of the (1 1 0) goethite surface. Solvent effects were treated at two different levels: (i) by inclusion of up to six water molecules explicitly into the quantum chemical calculation and (ii) by using additionally a continuum solvation model for the long-range interactions. Systematic studies were made in order to test the limit of the fully hydrated cluster surfaces by a monomolecular water layer. The main finding is that from the three different types of surface hydroxyl groups (hydroxo, μ-hydroxo, and μ 3-hydroxo), the hydroxo group is most active for protonation whereas μ- and μ 3-hydroxo sites undergo deprotonation more easily. Proton affinity constants (p Ka values) were computed from appropriate protonation/deprotonation reactions for all sites investigated and compared to results obtained from the multisite complexation model (MUSIC). The approach used was validated for the consecutive deprotonation reactions of the [Fe(H 2O) 6] 3+ complex in solution and good agreement between calculated and experimental p Ka values was found. The computed p Ka for all sites of the modeled goethite surface were used in the prediction of the pristine point of zero charge, pH PPZN. The obtained value of 9.1 fits well with published experimental values of 7.0-9.5.

  15. Triton: Scattering models and surface/atmosphere constraints

    International Nuclear Information System (INIS)

    Thompson, W.R.

    1989-01-01

    Modeling of Triton's spectrum indicates a bright scattering layer of optical depth τ≅3 overlying an optically deep layer of CH 4 with high absorption and little scattering. UV absorption in the spectrum indicates τ≅0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p=0.62 +0.18 -0.12 , radius r = 1480 ± 180 km, and temperature T = 48 ± 6 K. With scattering optical depths of 0.3-3 and ∼1-10 mb of N 2 , a Mars-like atmospheric density and surface visibility pertain. Imaging with the 0.62μm CH 4 filter of the Voyager 2 wide angle camera could show ∼20% contrast between the average surface and clean exposures of CH 4 ice (which is not limited to the polar caps). Low far-infrared atmospheric opacity will in principle allow the detection of thermal gradients in the surface caused by optically transmitting but infrared opaque CH 4 and N 2 ice

  16. Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters

    International Nuclear Information System (INIS)

    Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Xiang, Yang; Reynolds, Matthew D.; Davis, James A.; Lin, Tiffany; Jay, Jennifer A.

    2016-01-01

    Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L −1 , sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 μg L −1 . The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. - Highlights: • Samples were collected from an oxidizing aquifer where high pH waste has led to mobilization of naturally occurring As. • Three surface complexation modeling approaches were used in modeling adsorption

  17. Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model

    KAUST Repository

    Ajami, Hoori

    2014-03-01

    Integrated land surface-groundwater models are valuable tools in simulating the terrestrial hydrologic cycle as a continuous system and exploring the extent of land surface-subsurface interactions from catchment to regional scales. However, the fidelity of model simulations is impacted not only by the vegetation and subsurface parameterizations, but also by the antecedent condition of model state variables, such as the initial soil moisture, depth to groundwater, and ground temperature. In land surface modeling, a given model is often run repeatedly over a single year of forcing data until it reaches an equilibrium state: the point at which there is minimal artificial drift in the model state or prognostic variables (most often the soil moisture). For more complex coupled and integrated systems, where there is an increased computational cost of simulation and the number of variables sensitive to initialization is greater than in traditional uncoupled land surface modeling schemes, the challenge is to minimize the impact of initialization while using the smallest spin-up time possible. In this study, multicriteria analysis was performed to assess the spin-up behavior of the ParFlow.CLM integrated groundwater-surface water-land surface model over a 208 km2 subcatchment of the Ringkobing Fjord catchment in Denmark. Various measures of spin-up performance were computed for model state variables such as the soil moisture and groundwater storage, as well as for diagnostic variables such as the latent and sensible heat fluxes. The impacts of initial conditions on surface water-groundwater interactions were then explored. Our analysis illustrates that the determination of an equilibrium state depends strongly on the variable and performance measure used. Choosing an improper initialization of the model can generate simulations that lead to a misinterpretation of land surface-subsurface feedback processes and result in large biases in simulated discharge. Estimated spin

  18. Modeling of a Surface Acoustic Wave Strain Sensor

    Science.gov (United States)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  19. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  20. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  1. Experimental use of Land Surface Models in the La Plata Basin

    Science.gov (United States)

    Goncalves, L.; de Mattos, J. Z.; Sapucci, L. F.; Herdies, D. L.; Berbery, E. H.

    2009-12-01

    Soil moisture is a key variable that controls the partitioning between sensible and latent heat flux, and under favorable conditions, it can modulate precipitation. The overlying boundary layer can be affected by soil moisture anomalies when persisting for an enough period of time. Several studies have shown the influence of surface processes in the South American atmospheric circulation and precipitation patterns. However the absence of a comprehensive observation network over that region represents a disadvantage for determining and quantifying memory and coupling between the land surface and the atmosphere. The La Plata Basin (LPB) in southeastern South America is recognized as an area of great importance for the economic and social development of several countries. Vast areas of this basin have experienced changes in land cover conditions due to the expansion of the agriculture (replacing natural vegetation), but also due to changes in crop types. This work presents results from an ensemble of four land surface models (Noah, CLM, MOSAIC and SiB2) used for climatic characterization of the past 30 years of soil moisture and temperature over the LPB. The Modern Era Retrospective-Analysis for Research and Applications (MERRA), from NASA’s Global Modeling and Assimilation Office (GMAO) was downscaled to be used to force the land surface models at 10Km, 3-hourly resolutions. Two sets of runs were made for this study: first, the LSMs were forced using reanalysis data to characterize the climatological states at coarse resolution, and second, the models were run using South American LDAS forcing fields from 2000 until present at higher resolution. The resulting spread among the different models was used as a measure of uncertainty in the initial states. In particular, the surface states derived from the Noah model were rescaled and used as initial conditions for atmospheric model simulations using the coupled ETA/Noah models. The control run was performed using

  2. Modelling the static contact between a fingertip and a rigid wavy surface

    NARCIS (Netherlands)

    Rodriguez Urribarri, Adriana; van der Heide, Emile; Zeng, Xiangqiong; de Rooij, Matthias B.

    2016-01-01

    Surface topography is one of the major parameters affecting friction during touch and consequently tactility. In order to understand and control friction, fine controlled surfaces with a sinusoidal topography are studied to derive an analytical contact model. The Westergaard model on a

  3. Time-Domain Modeling of RF Antennas and Plasma-Surface Interactions

    Directory of Open Access Journals (Sweden)

    Jenkins Thomas G.

    2017-01-01

    Full Text Available Recent advances in finite-difference time-domain (FDTD modeling techniques allow plasma-surface interactions such as sheath formation and sputtering to be modeled concurrently with the physics of antenna near- and far-field behavior and ICRF power flow. Although typical sheath length scales (micrometers are much smaller than the wavelengths of fast (tens of cm and slow (millimeter waves excited by the antenna, sheath behavior near plasma-facing antenna components can be represented by a sub-grid kinetic sheath boundary condition, from which RF-rectified sheath potential variation over the surface is computed as a function of current flow and local plasma parameters near the wall. These local time-varying sheath potentials can then be used, in tandem with particle-in-cell (PIC models of the edge plasma, to study sputtering effects. Particle strike energies at the wall can be computed more accurately, consistent with their passage through the known potential of the sheath, such that correspondingly increased accuracy of sputtering yields and heat/particle fluxes to antenna surfaces is obtained. The new simulation capabilities enable time-domain modeling of plasma-surface interactions and ICRF physics in realistic experimental configurations at unprecedented spatial resolution. We will present results/animations from high-performance (10k-100k core FDTD/PIC simulations of Alcator C-Mod antenna operation.

  4. Implicit Three-Dimensional Geo-Modelling Based on HRBF Surface

    Science.gov (United States)

    Gou, J.; Zhou, W.; Wu, L.

    2016-10-01

    Three-dimensional (3D) geological models are important representations of the results of regional geological surveys. However, the process of constructing 3D geological models from two-dimensional (2D) geological elements remains difficult and time-consuming. This paper proposes a method of migrating from 2D elements to 3D models. First, the geological interfaces were constructed using the Hermite Radial Basis Function (HRBF) to interpolate the boundaries and attitude data. Then, the subsurface geological bodies were extracted from the spatial map area using the Boolean method between the HRBF surface and the fundamental body. Finally, the top surfaces of the geological bodies were constructed by coupling the geological boundaries to digital elevation models. Based on this workflow, a prototype system was developed, and typical geological structures (e.g., folds, faults, and strata) were simulated. Geological modes were constructed through this workflow based on realistic regional geological survey data. For extended applications in 3D modelling of other kinds of geo-objects, mining ore body models and urban geotechnical engineering stratum models were constructed by this method from drill-hole data. The model construction process was rapid, and the resulting models accorded with the constraints of the original data.

  5. Multipoint contact modeling of nanoparticle manipulation on rough surface

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M., E-mail: m.zakeri@tabrizu.ac.ir; Faraji, J.; Kharazmi, M. [University of Tabriz, School of Engineering Emerging Technologies (Iran, Islamic Republic of)

    2016-12-15

    In this paper, the atomic force microscopy (AFM)-based 2-D pushing of nano/microparticles investigated on rough substrate by assuming a multipoint contact model. First, a new contact model was extracted and presented based on the geometrical profiles of Rumpf, Rabinovich and George models and the contact mechanics theories of JKR and Schwartz, to model the adhesion forces and the deformations in the multipoint contact of rough surfaces. The geometry of a rough surface was defined by two main parameters of asperity height (size of roughness) and asperity wavelength (compactness of asperities distribution). Then, the dynamic behaviors of nano/microparticles with radiuses in range of 50–500 nm studied during their pushing on rough substrate with a hexagonal or square arrangement of asperities. Dynamic behavior of particles were simulated and compared by assuming multipoint and single-point contact schemes. The simulation results show that the assumption of multipoint contact has a considerable influence on determining the critical manipulation force. Additionally, the assumption of smooth surfaces or single-point contact leads to large error in the obtained results. According to the results of previous research, it anticipated that a particles with the radius less than about 550 nm start to slide on smooth substrate; but by using multipoint contact model, the predicted behavior changed, and particles with radii of smaller than 400 nm begin to slide on rough substrate for different height of asperities, at first.

  6. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  7. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  8. Surface states of a system of Dirac fermions: A minimal model

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  9. Site characterization design and techniques used at the Southern Shipbuilding Corporation site

    International Nuclear Information System (INIS)

    Mueller, J.P.; Geraghty, C.A.; Moore, G.W.; Mullins, J.R.

    1995-01-01

    The Southern Shipbuilding Corporation (SSC) site is an inactive barge/ship manufacturing and repair facility situated on approximately 54 acres in Slidell, St. Tammany Parish, Louisiana. Two unlined surface impoundments (North and South impoundments) are situated on the northwest portion of the site and are surrounded on three sides by Bayou Bonfouca. These impoundments are the sources of carcinogenic polynuclear aromatic hydrocarbon (CPAH) contamination at the site. Inadequate containment has resulted in the release of impoundment wastes into the bayou. To evaluate potential response alternatives for the site, an Engineering Evaluation/Cost Analysis (EE/CA) field investigation was conducted from July through October 1994. A two phase sampling approach was used in combination with innovative and traditional sampling techniques, field screening technologies, and exploitation of the visual characteristics of the waste to determine the extent of waste migration with limited off-site laboratory confirmation. A skid-mounted mobile drilling unit, secured to a specialized sampling platform designed for multiple applications, was used for collection of sediment cores from the bayou as well as tarry sludge cores from the impoundments. Field screening of core samples was accomplished on site using an organic vapor analyzer and a total petroleum hydrocarbon (TPH) field analyzer. Pollutants of concern include metals, cyanide, dioxin, and organic compounds. This paper presents details on the sampling design and characterization techniques used to accomplish the EE/CA field investigation

  10. 40 CFR 265.1 - Purpose, scope, and applicability.

    Science.gov (United States)

    2010-07-01

    ... issued under the Marine Protection, Research, and Sanctuaries Act; [Comment: These part 265 regulations... wastewater treatment sludge is generated in a surface impoundment as part of the plant's wastewater treatment...

  11. An investigation of the sensitivity of a land surface model to climate change using a reduced form model

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, A.H.; McIlwaine, S. [PAOS/CIRES, Univ. of Colorado, Boulder, CO (United States); Beringer, J. [Inst. of Arctic Biology, Univ. of Alaska, Fairbanks (United States); Bonan, G.B. [National Center for Atmospheric Research, Boulder, CO (United States)

    2001-05-01

    In an illustration of a model evaluation methodology, a multivariate reduced form model is developed to evaluate the sensitivity of a land surface model to changes in atmospheric forcing. The reduced form model is constructed in terms of a set of ten integrative response metrics, including the timing of spring snow melt, sensible and latent heat fluxes in summer, and soil temperature. The responses are evaluated as a function of a selected set of six atmospheric forcing perturbations which are varied simultaneously, and hence each may be thought of as a six-dimensional response surface. The sensitivities of the land surface model are interdependent and in some cases illustrate a physically plausible feedback process. The important predictors of land surface response in a changing climate are the atmospheric temperature and downwelling longwave radiation. Scenarios characterized by warming and drying produce a large relative response compared to warm, moist scenarios. The insensitivity of the model to increases in precipitation and atmospheric humidity is expected to change in applications to coupled models, since these parameters are also strongly implicated, through the representation of clouds, in the simulation of both longwave and shortwave radiation. (orig.)

  12. A new MRI land surface model HAL

    Science.gov (United States)

    Hosaka, M.

    2011-12-01

    A land surface model HAL is newly developed for MRI-ESM1. It is used for the CMIP simulations. HAL consists of three submodels: SiByl (vegetation), SNOWA (snow) and SOILA (soil) in the current version. It also contains a land coupler LCUP which connects some submodels and an atmospheric model. The vegetation submodel SiByl has surface vegetation processes similar to JMA/SiB (Sato et al. 1987, Hirai et al. 2007). SiByl has 2 vegetation layers (canopy and grass) and calculates heat, moisture, and momentum fluxes between the land surface and the atmosphere. The snow submodel SNOWA can have any number of snow layers and the maximum value is set to 8 for the CMIP5 experiments. Temperature, SWE, density, grain size and the aerosol deposition contents of each layer are predicted. The snow properties including the grain size are predicted due to snow metamorphism processes (Niwano et al., 2011), and the snow albedo is diagnosed from the aerosol mixing ratio, the snow properties and the temperature (Aoki et al., 2011). The soil submodel SOILA can also have any number of soil layers, and is composed of 14 soil layers in the CMIP5 experiments. The temperature of each layer is predicted by solving heat conduction equations. The soil moisture is predicted by solving the Darcy equation, in which hydraulic conductivity depends on the soil moisture. The land coupler LCUP is designed to enable the complicated constructions of the submidels. HAL can include some competing submodels (precise and detailed ones, and simpler ones), and they can run at the same simulations. LCUP enables a 2-step model validation, in which we compare the results of the detailed submodels with the in-situ observation directly at the 1st step, and follows the comparison between them and those of the simpler ones at the 2nd step. When the performances of the detailed ones are good, we can improve the simpler ones by using the detailed ones as reference models.

  13. Daily Based Morgan–Morgan–Finney (DMMF Model: A Spatially Distributed Conceptual Soil Erosion Model to Simulate Complex Soil Surface Configurations

    Directory of Open Access Journals (Sweden)

    Kwanghun Choi

    2017-04-01

    Full Text Available In this paper, we present the Daily based Morgan–Morgan–Finney model. The main processes in this model are based on the Morgan–Morgan–Finney soil erosion model, and it is suitable for estimating surface runoff and sediment redistribution patterns in seasonal climate regions with complex surface configurations. We achieved temporal flexibility by utilizing daily time steps, which is suitable for regions with concentrated seasonal rainfall. We introduce the proportion of impervious surface cover as a parameter to reflect its impacts on soil erosion through blocking water infiltration and protecting the soil from detachment. Also, several equations and sequences of sub-processes are modified from the previous model to better represent physical processes. From the sensitivity analysis using the Sobol’ method, the DMMF model shows the rational response to the input parameters which is consistent with the result from the previous versions. To evaluate the model performance, we applied the model to two potato fields in South Korea that had complex surface configurations using plastic covered ridges at various temporal periods during the monsoon season. Our new model shows acceptable performance for runoff and the sediment loss estimation ( NSE ≥ 0.63 , | PBIAS | ≤ 17.00 , and RSR ≤ 0.57 . Our findings demonstrate that the DMMF model is able to predict the surface runoff and sediment redistribution patterns for cropland with complex surface configurations.

  14. Improving Frozen Precipitation Density Estimation in Land Surface Modeling

    Science.gov (United States)

    Sparrow, K.; Fall, G. M.

    2017-12-01

    The Office of Water Prediction (OWP) produces high-value water supply and flood risk planning information through the use of operational land surface modeling. Improvements in diagnosing frozen precipitation density will benefit the NWS's meteorological and hydrological services by refining estimates of a significant and vital input into land surface models. A current common practice for handling the density of snow accumulation in a land surface model is to use a standard 10:1 snow-to-liquid-equivalent ratio (SLR). Our research findings suggest the possibility of a more skillful approach for assessing the spatial variability of precipitation density. We developed a 30-year SLR climatology for the coterminous US from version 3.22 of the Daily Global Historical Climatology Network - Daily (GHCN-D) dataset. Our methods followed the approach described by Baxter (2005) to estimate mean climatological SLR values at GHCN-D sites in the US, Canada, and Mexico for the years 1986-2015. In addition to the Baxter criteria, the following refinements were made: tests were performed to eliminate SLR outliers and frequent reports of SLR = 10, a linear SLR vs. elevation trend was fitted to station SLR mean values to remove the elevation trend from the data, and detrended SLR residuals were interpolated using ordinary kriging with a spherical semivariogram model. The elevation values of each station were based on the GMTED 2010 digital elevation model and the elevation trend in the data was established via linear least squares approximation. The ordinary kriging procedure was used to interpolate the data into gridded climatological SLR estimates for each calendar month at a 0.125 degree resolution. To assess the skill of this climatology, we compared estimates from our SLR climatology with observations from the GHCN-D dataset to consider the potential use of this climatology as a first guess of frozen precipitation density in an operational land surface model. The difference in

  15. Computational model of surface ablation from tokamak disruptions

    International Nuclear Information System (INIS)

    Ehst, D.; Hassanein, A.

    1993-10-01

    Energy transfer to material surfaces is dominated by photon radiation through low temperature plasma vapors if tokamak disruptions are due to low kinetic energy particles ( < 100 eV). Simple models of radiation transport are derived and incorporated into a fast-running computer routine to model this process. The results of simulations are in fair agreement with plasma gun erosion tests on several metal targets

  16. CHF Enhancement by Surface Patterning based on Hydrodynamic Instability Model

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2015-05-15

    If the power density of a device exceeds the CHF point, bubbles and vapor films will be covered on the whole heater surface. Because vapor films have much lower heat transfer capabilities compared to the liquid layer, the temperature of the heater surface will increase rapidly, and the device could be damaged due to the heater burnout. Therefore, the prediction and the enhancement of the CHF are essential to maximizing the efficient heat removal region. Numerous studies have been conducted to describe the CHF phenomenon, such as hydrodynamic instability theory, macrolayer dryout theory, hot/dry spot theory, and bubble interaction theory. The hydrodynamic instability model, proposed by Zuber, is the predominant CHF model that Helmholtz instability attributed to the CHF. Zuber assumed that the Rayleigh-Taylor (RT) instability wavelength is related to the Helmholtz wavelength. Lienhard and Dhir proposed a CHF model that Helmholtz instability wavelength is equal to the most dangerous RT wavelength. In addition, they showed the heater size effect using various heater surfaces. Lu et al. proposed a modified hydrodynamic theory that the Helmholtz instability was assumed to be the heater size and the area of the vapor column was used as a fitting factor. The modified hydrodynamic theories were based on the change of Helmholtz wavelength related to the RT instability wavelength. In the present study, the change of the RT instability wavelength, based on the heater surface modification, was conducted to show the CHF enhancement based on the heater surface patterning in a plate pool boiling. Sapphire glass was used as a base heater substrate, and the Pt film was used as a heating source. The patterning surface was based on the change of RT instability wavelength. In the present work the study of the CHF was conducted using bare Pt and patterned heating surfaces.

  17. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    Science.gov (United States)

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in

  18. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  19. Land Surface Model (LSM 1.0) for Ecological, Hydrological, Atmospheric Studies

    Data.gov (United States)

    National Aeronautics and Space Administration — The NCAR LSM 1.0 is a land surface model developed to examine biogeophysical and biogeochemical land-atmosphere interactions, especially the effects of land surfaces...

  20. Aquaplaning : Development of a Risk Pond Model from Road Surface Measurements

    OpenAIRE

    Nygårdhs, Sara

    2003-01-01

    Aquaplaning accidents are relatively rare, but could have fatal effects. The task of this master’s thesis is to use data from the Laser Road Surface Tester to detect road sections with risk of aquaplaning. A three-dimensional model based on data from road surface measurements is created using MATLAB (version 6.1). From this general geometrical model of the road, a pond model is produced from which the theoretical risk ponds are detected. A risk pond indication table is fur-ther created. The...

  1. A Monte Carlo reflectance model for soil surfaces with three-dimensional structure

    Science.gov (United States)

    Cooper, K. D.; Smith, J. A.

    1985-01-01

    A Monte Carlo soil reflectance model has been developed to study the effect of macroscopic surface irregularities larger than the wavelength of incident flux. The model treats incoherent multiple scattering from Lambertian facets distributed on a periodic surface. Resulting bidirectional reflectance distribution functions are non-Lambertian and compare well with experimental trends reported in the literature. Examples showing the coupling of the Monte Carlo soil model to an adding bidirectional canopy of reflectance model are also given.

  2. Reclamation Strategies and Geomorphic Outcomes in Coal Surface Mines of Eastern Ohio

    Science.gov (United States)

    Pollock, M.; Jaeger, K. L.

    2014-12-01

    Coal surface mining is a significant landscape disturbance in the United States. Since 1977, the reclamation of mined lands has been regulated by the Surface Mine Control and Reclamation Act (SMCRA). Prior to the act, many coalfields were left un-reclaimed or partially reclaimed, with highly irregular topology and drainage networks. Under the act, the reverse is often true; adherence to SMCRA often leads to the homogenization of surfaces and channel networks. While both pre and post-SMCRA landscapes are highly altered, they exhibit strongly dissimilar characteristics. We examine pre-SMCRA, post-SMCRA and unmined watersheds at 3 spatial scales in order to compare the geomorphic differences between reclamation strategies. In particular, we attempt to separate anthropogenic factors from pre-existing, natural factors via comparisons to unmined watersheds. Our study design incorporates a 3 scale top-down analysis of 21 independent watersheds (7 of each treatment type). Each watershed has an area of approximately 1km2. All watersheds share similar geography, climate and geology. At the landscape scale, characteristics are derived from 0.762m (2.5ft) resolution Digital Elevation Models (DEMs). At the channel network scale, DEMs, as well as remote sensing data (including the National Wetlands Inventory database) are used. Finally, the reach scale incorporates longitudinal and cross-section surveys (using a total station) as well as a particle size distribution. At each scale, attributes are parameterized for statistical comparison. Post-SMCRA sites are characterized by a general reduction of watershed surface slopes (11.9% median) compared to pre-SMCRA (19.3%) and unmined (19.8%) sites. Both pre and post-SMCRA channel networks are characterized by significant surface impoundments (in the form of remnant headwall trenches on pre-SMCRA sites and engineered retention basins on post-SMCRA sites). Pre-SMCRA outlet reaches have significantly steeper bed slopes (2.79% mean) than

  3. Modeling land-surface/atmosphere dynamics for CHAMMP

    International Nuclear Information System (INIS)

    Gutowski, W.J. Jr.

    1993-01-01

    Project progress is described on a DOE CHAMP project to model the land-surface/atmosphere coupling in a heterogeneous environment. This work is a collaboration between scientists at Iowa State University and the University of New Hampshire. Work has proceeded in two areas: baseline model coupling and data base development for model validation. The core model elements (land model, atmosphere model) have been ported to the Principal Investigator's computing system and baseline coupling has commenced. The initial target data base is the set of observations from the FIFE field campaign, which is in the process of being acquired. For the remainder of the project period, additional data from the region surrounding the FIFE site and from other field campaigns will be acquired to determine how to best extrapolate results from the initial target region to the rest of the globe. In addition, variants of the coupled model will be used to perform experiments examining resolution requirements and coupling strategies for land-atmosphere coupling in a heterogeneous environment

  4. Modeling and analysis for surface roughness and material removal ...

    African Journals Online (AJOL)

    The cutting parameters considered were tool nose radius, tool rake angle, feed rate, cutting speed, depth of cut and cutting environment (dry, wet and cooled) on the surface roughness and material removal ... A second order mathematical model in terms of cutting parameters is also developed using regression modeling.

  5. Axelrod's model with surface tension

    Science.gov (United States)

    Pace, Bruno; Prado, Carmen P. C.

    2014-06-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding from the set of potentially interacting neighbors those that would never possibly exchange. Although the alteration proposed does not alter the state space topologically, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behavior is considerably richer, and cultural regions become stable leading to the formation of different spatiotemporal patterns. A metastable "glassy" phase emerges between the globalized phase and the disordered, multicultural phase.

  6. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  7. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  8. Predicted effects on ground water of construction of Divide Cut section, Tennessee-Tombigbee Waterway, northeastern Mississippi, using a digital model

    Science.gov (United States)

    McBride, Mark S.

    1981-01-01

    The Tennessee-Tombigbee Waterway, connecting the Tennessee River in northeastern Mississippi with the Gulf of Mexico, is currently (1980) under construction. The Divide Section, the northernmost 39 miles of the Waterway, will consist, from north to south, of (1) a dredged channel, (2) the Divide Cut, and (3) an artifical lake impounded by the Bay Springs Dam. In all three , water will be at Tennessee River level. A three-dimensional digital model covering 3,273 square miles was constructed to simulate ground-water flow in the Gordo and Eutaw Formations and the Coffee Sand in the vicinity of the Divide Section. The model was calibrated to preconstruction water levels, then used to simulate the effects of stresses imposed by the construction of the Divide Section. The model indicates that the system stabilizes after major changes in conditions within a few months. The Divide Cut acts as a drain, lowering water levels as much as 55 feet. Drawdowns of 5 feet occur as much as 8 miles from the Cut. The 80-foot-high Bay Springs Dam raises ground-water levels by 5 feet as far as 6 miles from its impoundment. Drawdown is not likely to affect public water supplies significantly, but probably will adversely affect a relatively small number of private wells. (USGS)

  9. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.

    Science.gov (United States)

    Szundi, I; Stoeckenius, W

    1989-08-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.

  10. Calibration of a distributed hydrology and land surface model using energy flux measurements

    DEFF Research Database (Denmark)

    Larsen, Morten Andreas Dahl; Refsgaard, Jens Christian; Jensen, Karsten H.

    2016-01-01

    In this study we develop and test a calibration approach on a spatially distributed groundwater-surface water catchment model (MIKE SHE) coupled to a land surface model component with particular focus on the water and energy fluxes. The model is calibrated against time series of eddy flux measure...

  11. Energy exchange in thermal energy atom-surface scattering: impulsive models

    International Nuclear Information System (INIS)

    Barker, J.A.; Auerbach, D.J.

    1979-01-01

    Energy exchange in thermal energy atom surface collisions is studied using impulsive ('hard cube' and 'hard sphere') models. Both models reproduce the observed nearly linear relation between outgoing and incoming energies. In addition, the hard-sphere model accounts for the widths of the outcoming energy distributions. (Auth.)

  12. Model-driven harmonic parameterization of the cortical surface: HIP-HOP.

    Science.gov (United States)

    Auzias, G; Lefèvre, J; Le Troter, A; Fischer, C; Perrot, M; Régis, J; Coulon, O

    2013-05-01

    In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.

  13. Cellular automaton model for hydrogen transport dynamics through metallic surface

    International Nuclear Information System (INIS)

    Shimura, K.; Yamaguchi, K.; Terai, T.; Yamawaki, M.

    2002-01-01

    Hydrogen re-emission and re-combination at the surface of first wall materials are a crucial issue for the understanding of the fuel recycling and for the tritium inventory in plasma facing materials. It is know to be difficult to model the transient behaviour of those processes due to their complex time-transient nature. However, cellular automata (CA) are powerful tools to model such complex systems because of their nature of discreteness in both dependent and independent variables. Then the system can be represented by the fully local interactions between cells. For that reason, complex physical and chemical systems can be described by fairly simple manner. In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in CA. Thermal desorption is simulated with this model and the comparison with the theory of rate processes is performed to identify the validity of this model. The overall results show that this model is reasonable to express the desorption kinetics

  14. Modeling of the pliant surfaces of the thigh and leg during gait

    Science.gov (United States)

    Ball, Kevin A.; Pierrynowski, Michael R.

    1998-05-01

    Rigid Body Modeling, a 6 degree of freedom (DOF) method, provides state of the art human movement analysis, but with one critical limitation; it assumes segment rigidity. A non- rigid 12 DOF method, Pliant Surface Modeling (PSM) was developed to model the simultaneous pliant characteristics (scaling and shearing) of the human body's soft tissues. For validation, bone pins were surgically inserted into the tibia and femur of three volunteers. Infrared markers (44) were placed upon the thigh, leg, and bone pin surfaces. Two synchronized OPTOTRAK/3020TM cameras (Northern Digital Inc., Waterloo, ON) were used to record 120 seconds of treadmill gait per subject. In comparison to the 'gold standard' bone pin rotational results, PSM located the tibia, femur and tibiofemoral joint with root mean square (RMS) errors of 2.4 degrees, 4.0 degrees and 4.6 degrees, respectively. These performances met or exceeded (P less than .01) the current state of the art for surface data, Rigid Surface Modeling. The thigh's measured surface experienced uniform repeatable changes in scale: 40% mediolateral, 5% anterioposterior, 5% superioinferior, and planar shears of: 25 degrees transverse, 15 degrees sagittal, 5 degrees frontal. With the brief exception of push-off, the lower leg demonstrated much greater rigidity: less than 5% scaling and less than 5 degrees shearing. Thus, PSM offers superior 'rigid' estimates of knee motion with the ability to quantify 'pliant' surface changes.

  15. An interaction analysis of twin surface cracks by the line-spring model

    International Nuclear Information System (INIS)

    Kim, Y.J.; Yang, W.H.; Choy, Y.S.; Lee, J.S.

    1992-01-01

    The fracture mechanics analysis of surface cracks is important for the integrity evaluation of flawed structural components. The objective of this paper is to numerically investigate the interaction effect of twin surface cracks in plate and cylindrical geometrie. First the usefulness of the line-spring model is verified by analyzing a single surface crack in a plate, and then the model is extended to twin surface crack in plate and cylindrical geometries. For the case of a finite plate under uniaxial loading, the effect of crack spacing on the stress intensity factor is negligible. However, for the case of a cylinder under moderate internal pressure, a significant increase in stress intensity factor is observed at the deepest point of the surface crack. (orig.)

  16. Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR

    Science.gov (United States)

    Singh, D.; Flanner, M.; Millour, E.

    2017-12-01

    The current version of Laboratoire de Météorologie Dynamique (LMD) Mars GCM (original-MGCM) uses annually repeating (prescribed) albedo values from the Thermal Emission Spectrometer observations. We integrate the Snow, Ice, and Aerosol Radiation (SNICAR) model with MGCM (SNICAR-MGCM) to prognostically determine H2O and CO2 ice cap albedos interactively in the model. Over snow-covered regions mean SNICAR-MGCM albedo is higher by about 0.034 than original-MGCM. Changes in albedo and surface dust content also impact the shortwave energy flux at the surface. SNICAR-MGCM model simulates a change of -1.26 W/m2 shortwave flux on a global scale. Globally, net CO2 ice deposition increases by about 4% over one Martian annual cycle as compared to original-MGCM simulations. SNICAR integration reduces the net mean global surface temperature, and the global surface pressure of Mars by about 0.87% and 2.5% respectively. Changes in albedo also show a similar distribution as dust deposition over the globe. The SNICAR-MGCM model generates albedos with higher sensitivity to surface dust content as compared to original-MGCM. For snow-covered regions, we improve the correlation between albedo and optical depth of dust from -0.91 to -0.97 with SNICAR-MGCM as compared to original-MGCM. Using new diagnostic capabilities with this model, we find that cryospheric surfaces (with dust) increase the global surface albedo of Mars by 0.022. The cryospheric effect is severely muted by dust in snow, however, which acts to decrease the planet-mean surface albedo by 0.06.

  17. A review of measurement and modelling results of particle atmosphere-surface exchange

    DEFF Research Database (Denmark)

    Pryor, Sara; Gallagher, M.; Sievering, H.

    2008-01-01

    Atmosphere-surface exchange represents one mechanism by which atmospheric particle mass and number size distributions are modified. Deposition velocities (upsilon(d)) exhibit a pronounced dependence on surface type, due in part to turbulence structure (as manifest in friction velocity), with minima...... agreement between models and observations is found over less-rough surfaces though those data also imply substantially higher surface collection efficiencies than were originally proposed and are manifest in current models. We review theorized dependencies for particle fluxes, describe and critique model...... of approximately 0.01 and 0.2 cm s(-1) over grasslands and 0.1-1 cm s(-1) over forests. However, as noted over 20 yr ago, observations over forests generally do not support the pronounced minimum of deposition velocity (upsilon(d)) for particle diameters of 0.1-2 mu m as manifest in theoretical predictions. Closer...

  18. Numerical modelling of microdroplet self-propelled jumping on micro-textured surface

    Science.gov (United States)

    Attarzadeh, S. M. Reza; Dolatabadi, Ali; Chun Kim, Kyung

    2015-11-01

    Understanding various stages of single and multiple droplet impact on a super-hydrophobic surface is of interest for many industrial applications such as aerospace industry. In this study, the phenomenon of coalescence induced droplets self-propelled jumping on a micro-textured super-hydrophobic surface is numerically simulated using Volume of Fluid (VOF) method. This model mimics the scenario of coalescing cloud-sized particles over the surface structure of an aircraft. The VOF coupled with a dynamic contact angle model is used to simulate the coalescence of two equal size droplets, that are initially placed very closed to each other with their interface overlapping with each other's which triggers the incipience of their coalescence. The textured surface is modeled as a series of equally spaced squared pillars, with 111° as the intrinsic contact angle all over the solid contact area. It is shown that the radial velocity of coalescing liquid bridge is reverted to upward direction due to the counter action of the surface to the basal area of droplet in contact. The presence of air beneath the droplet inside micro grooves which aimed at repelling water droplet is also captured in this model. The simulated results are found in good agreement with experimental observations. The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Consortium de Recherche et d'innovation en Aerospatiale au Quebec (CRIAQ), Bombardier Aerospace, Pratt Whitney Canada.

  19. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  20. Liners and Leak Detection Systems for Hazardous Waste Land Disposal Units - Federal Register Notice, January 29, 1992

    Science.gov (United States)

    The EPA is amending its current regulations under the Resource Conservation and Recovery Act (RCRA) concerning liner and leachate collection and removal systems for hazardous waste surface impoundments, landfills, and waste piles.

  1. Quantifying watershed surface depression storage: determination and application in a hydrologic model

    Science.gov (United States)

    Joseph K. O. Amoah; Devendra M. Amatya; Soronnadi. Nnaji

    2012-01-01

    Hydrologic models often require correct estimates of surface macro-depressional storage to accurately simulate rainfall–runoff processes. Traditionally, depression storage is determined through model calibration or lumped with soil storage components or on an ad hoc basis. This paper investigates a holistic approach for estimating surface depressional storage capacity...

  2. Modeling marine surface microplastic transport to assess optimal removal locations

    OpenAIRE

    Sherman, Peter; Van Sebille, Erik

    2016-01-01

    Marine plastic pollution is an ever-increasing problem that demands immediate mitigation and reduction plans. Here, a model based on satellite-tracked buoy observations and scaled to a large data set of observations on microplastic from surface trawls was used to simulate the transport of plastics floating on the ocean surface from 2015 to 2025, with the goal to assess the optimal marine microplastic removal locations for two scenarios: removing the most surface microplastic and reducing the ...

  3. Comparison of observed and modeled surface fluxes of heat for the Volta river basin

    NARCIS (Netherlands)

    Burose, D.; Moene, A.F.; Holtslag, A.A.M.

    2002-01-01

    Land-surface processes and their modeling play an important role in planetary boundary modeling, due to their role of providing the surface boundary conditions to the atmosphere. In particular, processes regarding clouds and precipitation are strongly influenced by land-surface processes. To get a

  4. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  5. An orbital-overlap model for minimal work functions of cesiated metal surfaces

    International Nuclear Information System (INIS)

    Chou, Sharon H; Bargatin, Igor; Howe, Roger T; Voss, Johannes; Vojvodic, Aleksandra; Abild-Pedersen, Frank

    2012-01-01

    We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.

  6. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  7. Analytical models for the rewetting of hot surfaces

    International Nuclear Information System (INIS)

    Olek, S.

    1988-10-01

    Some aspects concerning analytical models for the rewetting of hot surface are discussed. These include the problems with applying various forms of boundary conditions, compatibility of boundary conditions with the physics of the rewetting problems, recent analytical models, the use of the separation of variables method versus the Wiener-Hopf technique, and the use of transformations. The report includes an updated list of rewetting models as well as benchmark solutions in tabular form for several models. It should be emphasized that this report is not meant to cover the topic of rewetting models. It merely discusses some points which are less commonly referred to in the literature. 93 refs., 3 figs., 22 tabs

  8. Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc

    2015-01-01

    We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.

  9. Hydrous ferric oxide: evaluation of Cd-HFO surface complexation models combining Cd(K) EXAFS data, potentiometric titration results, and surface site structures identified from mineralogical knowledge.

    Science.gov (United States)

    Spadini, Lorenzo; Schindler, Paul W; Charlet, Laurent; Manceau, Alain; Vala Ragnarsdottir, K

    2003-10-01

    The surface properties of ferrihydrite were studied by combining wet chemical data, Cd(K) EXAFS data, and a surface structure and protonation model of the ferrihydrite surface. Acid-base titration experiments and Cd(II)-ferrihydrite sorption experiments were performed within 3titration data could be adequately modeled by triple bond Fe- OH(2)(+1/2)-H(+)triple bond Fe-OH(-1/2),logk((int))=-8.29, assuming the existence of a unique intrinsic microscopic constant, logk((int)), and consequently the existence of a single significant type of acid-base reactive functional groups. The surface structure model indicates that these groups are terminal water groups. The Cd(II) data were modeled assuming the existence of a single reactive site. The model fits the data set at low Cd(II) concentration and up to 50% surface coverage. At high coverage more Cd(II) ions than predicted are adsorbed, which is indicative of the existence of a second type of site of lower affinity. This agrees with the surface structure and protonation model developed, which indicates comparable concentrations of high- and low-affinity sites. The model further shows that for each class of low- and high-affinity sites there exists a variety of corresponding Cd surface complex structure, depending on the model crystal faces on which the complexes develop. Generally, high-affinity surface structures have surface coordinations of 3 and 4, as compared to 1 and 2 for low-affinity surface structures.

  10. MODELING THE INTERACTION OF AGROCHEMICALS WITH ENVIRONMENTAL SURFACES: PESTICIDES ON RUTILE AND ORGANO-RUTILE SURFACES

    Science.gov (United States)

    Non-bonded interactions between model pesticides and organo-mineral surfaces have been studied using molecular mechanical conformational calculations and molecular dynamics simulations. The minimum energy conformations and relative binding energies for the interaction of atrazine...

  11. Some practical notes on the land surface modeling in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    K. Yang

    2009-05-01

    Full Text Available The Tibetan Plateau is a key region of land-atmosphere interactions, as it provides an elevated heat source to the middle-troposphere. The Plateau surfaces are typically characterized by alpine meadows and grasslands in the central and eastern part while by alpine deserts in the western part. This study evaluates performance of three state-of-the-art land surface models (LSMs for the Plateau typical land surfaces. The LSMs of interest are SiB2 (the Simple Biosphere, CoLM (Common Land Model, and Noah. They are run at typical alpine meadow sites in the central Plateau and typical alpine desert sites in the western Plateau.

    The identified key processes and modeling issues are as follows. First, soil stratification is a typical phenomenon beneath the alpine meadows, with dense roots and soil organic matters within the topsoil, and it controls the profile of soil moisture in the central and eastern Plateau; all models, when using default parameters, significantly under-estimate the soil moisture within the topsoil. Second, a soil surface resistance controls the surface evaporation from the alpine deserts but it has not been reasonably modeled in LSMs; an advanced scheme for soil water flow is implemented in a LSM, based on which the soil resistance is determined from soil water content and meteorological conditions. Third, an excess resistance controls sensible heat fluxes from dry bare-soil or sparsely vegetated surfaces, and all LSMs significantly under-predict the ground-air temperature gradient, which would result in higher net radiation, lower soil heat fluxes and thus higher sensible heat fluxes in the models. A parameterization scheme for this resistance has been shown to be effective to remove these biases.

  12. Surface characterisation of synthetic coal chars made from model compounds

    Energy Technology Data Exchange (ETDEWEB)

    Arenillas, A.; Pevida, C.; Rubiera, F.; Palacios, J.M.; Navarrete, R.; Denoyel, R.; Rouquerol, J.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2004-07-01

    Knowledge of surface properties is essential for understanding the reaction mechanisms involved in several coal conversion processes. However, due to the complexity and heterogeneity of coal this is rather difficult and the use of known model compounds could be a valuable tool. Single model compounds have been widely used, but they give a quite simplified picture. In this work a mixture of model compounds in a phenol-formaldehyde matrix was cured in order to create cross-linked structures. The obtained synthetic coal was pyrolysed in a fixed bed reactor, under helium atmosphere. The surface composition of the chars was evaluated by XPS, adsorption gravimetry of water vapour, temperature-programmed desorption and potentiometric titration. Texture was characterised by N{sub 2} and CO{sub 2} adsorption isotherms at 77 and 273 K, respectively, and immersion calorimetry in benzene. The results obtained from the different techniques were contrasted in order to give an overview of the surface properties (chemical and physical) of the samples studied. Chars obtained under the same operating conditions from a high volatile bituminous coal were used as a reference.

  13. Utilization of Large Scale Surface Models for Detailed Visibility Analyses

    Science.gov (United States)

    Caha, J.; Kačmařík, M.

    2017-11-01

    This article demonstrates utilization of large scale surface models with small spatial resolution and high accuracy, acquired from Unmanned Aerial Vehicle scanning, for visibility analyses. The importance of large scale data for visibility analyses on the local scale, where the detail of the surface model is the most defining factor, is described. The focus is not only the classic Boolean visibility, that is usually determined within GIS, but also on so called extended viewsheds that aims to provide more information about visibility. The case study with examples of visibility analyses was performed on river Opava, near the Ostrava city (Czech Republic). The multiple Boolean viewshed analysis and global horizon viewshed were calculated to determine most prominent features and visibility barriers of the surface. Besides that, the extended viewshed showing angle difference above the local horizon, which describes angular height of the target area above the barrier, is shown. The case study proved that large scale models are appropriate data source for visibility analyses on local level. The discussion summarizes possible future applications and further development directions of visibility analyses.

  14. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  15. Spatially-varying surface roughness and ground-level air quality in an operational dispersion model

    International Nuclear Information System (INIS)

    Barnes, M.J.; Brade, T.K.; MacKenzie, A.R.; Whyatt, J.D.; Carruthers, D.J.; Stocker, J.; Cai, X.; Hewitt, C.N.

    2014-01-01

    Urban form controls the overall aerodynamic roughness of a city, and hence plays a significant role in how air flow interacts with the urban landscape. This paper reports improved model performance resulting from the introduction of variable surface roughness in the operational air-quality model ADMS-Urban (v3.1). We then assess to what extent pollutant concentrations can be reduced solely through local reductions in roughness. The model results suggest that reducing surface roughness in a city centre can increase ground-level pollutant concentrations, both locally in the area of reduced roughness and downwind of that area. The unexpected simulation of increased ground-level pollutant concentrations implies that this type of modelling should be used with caution for urban planning and design studies looking at ventilation of pollution. We expect the results from this study to be relevant for all atmospheric dispersion models with urban-surface parameterisations based on roughness. -- Highlights: • Spatially variable roughness improved performance of an operational model. • Scenario modelling explored effect of reduced roughness on air pollution. • Reducing surface roughness can increase modelled ground-level pollution. • Damped vertical mixing outweighs increased horizontal advection in model study. • Result should hold for any model with a land-surface coupling based on roughness. -- Spatially varying roughness improves model simulations of urban air pollutant dispersion. Reducing roughness does not always decrease ground-level pollution concentrations

  16. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  17. Nested 1D-2D approach for urban surface flood modeling

    Science.gov (United States)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  18. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    Science.gov (United States)

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times

  19. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  20. Surface modeling of workpiece and tool trajectory planning for spray painting robot.

    Directory of Open Access Journals (Sweden)

    Yang Tang

    Full Text Available Automated tool trajectory planning for spray-painting robots is still a challenging problem, especially for a large free-form surface. A grid approximation of a free-form surface is adopted in CAD modeling in this paper. A free-form surface model is approximated by a set of flat patches. We describe here an efficient and flexible tool trajectory optimization scheme using T-Bézier curves calculated in a new way from trigonometrical bases. The distance between the spray gun and the free-form surface along the normal vector is varied. Automotive body parts, which are large free-form surfaces, are used to test the scheme. The experimental results show that the trajectory planning algorithm achieves satisfactory performance. This algorithm can also be extended to other applications.

  1. Simulating Surface-Enhanced Hyper-Raman Scattering Using Atomistic Electrodynamics-Quantum Mechanical Models.

    Science.gov (United States)

    Hu, Zhongwei; Chulhai, Dhabih V; Jensen, Lasse

    2016-12-13

    Surface-enhanced hyper-Raman scattering (SEHRS) is the two-photon analogue of surface-enhanced Raman scattering (SERS), which has proven to be a powerful tool to study molecular structures and surface enhancements. However, few theoretical approaches to SEHRS exist and most neglect the atomistic descriptions of the metal surface and molecular resonance effects. In this work, we present two atomistic electrodynamics-quantum mechanical models to simulate SEHRS. The first is the discrete interaction model/quantum mechanical (DIM/QM) model, which combines an atomistic electrodynamics model of the nanoparticle with a time-dependent density functional theory description of the molecule. The second model is a dressed-tensors method that describes the molecule as a point-dipole and point-quadrupole object interacting with the enhanced local field and field-gradients (FG) from the nanoparticle. In both of these models, the resonance effects are treated efficiently by means of damped quadratic response theory. Using these methods, we simulate SEHRS spectra for benzene and pyridine. Our results show that the FG effects in SEHRS play an important role in determining both the surface selection rules and the enhancements. We find that FG effects are more important in SEHRS than in SERS. We also show that the spectral features of small molecules can be accurately described by accounting for the interactions between the molecule and the local field and FG of the nanoparticle. However, at short distances between the metal and molecule, we find significant differences in the SEHRS enhancements predicted using the DIM/QM and the dressed-tensors methods.

  2. Surface and Flow Field Measurements on the FAITH Hill Model

    Science.gov (United States)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  3. 75 FR 5076 - American Hydro Power, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Science.gov (United States)

    2010-02-01

    ..., 346-foot-long Diamond Mills Dam; (2) an existing 140-acre impoundment with a normal water surface... the feasibility of the Diamond Mills Dam Hydroelectric Project No. 13587, to be located on Esopus...

  4. Modeling and simulation for fewer-axis grinding of complex surface

    Science.gov (United States)

    Li, Zhengjian; Peng, Xiaoqiang; Song, Ci

    2017-10-01

    As the basis of fewer-axis grinding of complex surface, the grinding mathematical model is of great importance. A mathematical model of the grinding wheel was established, and then coordinate and normal vector of the wheel profile could be calculated. Through normal vector matching at the cutter contact point and the coordinate system transformation, the grinding mathematical model was established to work out the coordinate of the cutter location point. Based on the model, interference analysis was simulated to find out the right position and posture of workpiece for grinding. Then positioning errors of the workpiece including the translation positioning error and the rotation positioning error were analyzed respectively, and the main locating datum was obtained. According to the analysis results, the grinding tool path was planned and generated to grind the complex surface, and good form accuracy was obtained. The grinding mathematical model is simple, feasible and can be widely applied.

  5. Documentation of the Surface-Water Routing (SWR1) Process for modeling surface-water flow with the U.S. Geological Survey Modular Ground-Water Model (MODFLOW-2005)

    Science.gov (United States)

    Hughes, Joseph D.; Langevin, Christian D.; Chartier, Kevin L.; White, Jeremy T.

    2012-01-01

    A flexible Surface-Water Routing (SWR1) Process that solves the continuity equation for one-dimensional and two-dimensional surface-water flow routing has been developed for the U.S. Geological Survey three-dimensional groundwater model, MODFLOW-2005. Simple level- and tilted-pool reservoir routing and a diffusive-wave approximation of the Saint-Venant equations have been implemented. Both methods can be implemented in the same model and the solution method can be simplified to represent constant-stage elements that are functionally equivalent to the standard MODFLOW River or Drain Package boundary conditions. A generic approach has been used to represent surface-water features (reaches) and allows implementation of a variety of geometric forms. One-dimensional geometric forms include rectangular, trapezoidal, and irregular cross section reaches to simulate one-dimensional surface-water features, such as canals and streams. Two-dimensional geometric forms include reaches defined using specified stage-volume-area-perimeter (SVAP) tables and reaches covering entire finite-difference grid cells to simulate two-dimensional surface-water features, such as wetlands and lakes. Specified SVAP tables can be used to represent reaches that are smaller than the finite-difference grid cell (for example, isolated lakes), or reaches that cannot be represented accurately using the defined top of the model. Specified lateral flows (which can represent point and distributed flows) and stage-dependent rainfall and evaporation can be applied to each reach. The SWR1 Process can be used with the MODFLOW Unsaturated Zone Flow (UZF1) Package to permit dynamic simulation of runoff from the land surface to specified reaches. Surface-water/groundwater interactions in the SWR1 Process are mathematically defined to be a function of the difference between simulated stages and groundwater levels, and the specific form of the reach conductance equation used in each reach. Conductance can be

  6. Comparison of parametric methods for modeling corneal surfaces

    Science.gov (United States)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  7. ANFIS Modeling of the Surface Roughness in Grinding Process

    OpenAIRE

    H. Baseri; G. Alinejad

    2011-01-01

    The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions...

  8. Modeling large-scale human alteration of land surface hydrology and climate

    Science.gov (United States)

    Pokhrel, Yadu N.; Felfelani, Farshid; Shin, Sanghoon; Yamada, Tomohito J.; Satoh, Yusuke

    2017-12-01

    Rapidly expanding human activities have profoundly affected various biophysical and biogeochemical processes of the Earth system over a broad range of scales, and freshwater systems are now amongst the most extensively altered ecosystems. In this study, we examine the human-induced changes in land surface water and energy balances and the associated climate impacts using a coupled hydrological-climate model framework which also simulates the impacts of human activities on the water cycle. We present three sets of analyses using the results from two model versions—one with and the other without considering human activities; both versions are run in offline and coupled mode resulting in a series of four experiments in total. First, we examine climate and human-induced changes in regional water balance focusing on the widely debated issue of the desiccation of the Aral Sea in central Asia. Then, we discuss the changes in surface temperature as a result of changes in land surface energy balance due to irrigation over global and regional scales. Finally, we examine the global and regional climate impacts of increased atmospheric water vapor content due to irrigation. Results indicate that the direct anthropogenic alteration of river flow in the Aral Sea basin resulted in the loss of 510 km3 of water during the latter half of the twentieth century which explains about half of the total loss of water from the sea. Results of irrigation-induced changes in surface energy balance suggest a significant surface cooling of up to 3.3 K over 1° grids in highly irrigated areas but a negligible change in land surface temperature when averaged over sufficiently large global regions. Results from the coupled model indicate a substantial change in 2 m air temperature and outgoing longwave radiation due to irrigation, highlighting the non-local (regional and global) implications of irrigation. These results provide important insights on the direct human alteration of land surface

  9. Surface-based geometric modelling using teaching trees for advanced robots

    International Nuclear Information System (INIS)

    Nakamura, Akira; Ogasawara, Tsukasa; Tsukune, Hideo; Oshima, Masaki

    2000-01-01

    Geometric modelling of the environment is important in robot motion planning. Generally, shapes can be stored in a data base, so the elements that need to be decided are positions and orientations. In this paper, surface-based geometric modelling using a teaching tree is proposed. In this modelling, combinations of surfaces are considered in order to decide positions and orientations of objects. The combinations are represented by a depth-first tree, which makes it easy for the operator to select one combination out of several. This method is effective not only in the case when perfect data can be obtained, but also when conditions for measurement of three-dimensional data are unfavorable, which often occur in the environment of a working robot. (author)

  10. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.

    Science.gov (United States)

    Lemonsu, A.; Grimmond, C. S. B.; Masson, V.

    2004-02-01

    The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.

  11. A Simulation Model of Focus and Radial Servos in Compact Disc Players with Disc Surface Defects

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2004-01-01

    Compact Disc players have been on the market in more than two decades.As a consequence most of the control servo problems have been solved. A large remaining problem to solve is the handling of Compact Discs with severe surface defects like scratches and fingerprints. This paper introduces a method...... for making the design of controllers handling surface defects easier. A simulation model of Compact Disc players playing discs with surface defects is presented. The main novel element in the model is a model of the surface defects. That model is based on data from discs with surface defects. This model...

  12. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  13. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.

    2008-01-01

    an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From......In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  14. Conversion of a Surface Model of a Structure of Interest into a Volume Model for Medical Image Retrieval

    Directory of Open Access Journals (Sweden)

    Sarmad ISTEPHAN

    2015-06-01

    Full Text Available Volumetric medical image datasets contain vital information for noninvasive diagnosis, treatment planning and prognosis. However, direct and unlimited query of such datasets is hindered due to the unstructured nature of the imaging data. This study is a step towards the unlimited query of medical image datasets by focusing on specific Structures of Interest (SOI. A requirement in achieving this objective is having both the surface and volume models of the SOI. However, typically, only the surface model is available. Therefore, this study focuses on creating a fast method to convert a surface model to a volume model. Three methods (1D, 2D and 3D are proposed and evaluated using simulated and real data of Deep Perisylvian Area (DPSA within the human brain. The 1D method takes 80 msec for DPSA model; about 4 times faster than 2D method and 7.4 fold faster than 3D method, with over 97% accuracy. The proposed 1D method is feasible for surface to volume conversion in computer aided diagnosis, treatment planning and prognosis systems containing large amounts of unstructured medical images.

  15. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  16. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  17. Surface tension and Wulff shape for a lattice model without spin flip symmetry.

    CERN Document Server

    Bodineau, T

    2003-01-01

    We propose a new definition of surface tension and check it in a spin model of the Pirogov-Sinai class where the spin flip symmetry is broken. We study the model at low temperatures on the phase transitions line and prove: (i) existence of the surface tension in the thermodynamic limit, for any orientation of the surface and in all dimensions $d\\ge 2$; (ii) the Wulff shape constructed with such a surface tension coincides with the equilibrium shape of the cluster which appears when fixing the total spin magnetization (Wulff problem).

  18. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  19. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  20. An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

    Directory of Open Access Journals (Sweden)

    Taekyeong Jin

    2018-04-01

    Full Text Available We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

  1. 3D thermal model of laser surface glazing for H13 tool steel

    Science.gov (United States)

    Kabir, I. R.; Yin, D.; Naher, S.

    2017-10-01

    In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.

  2. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  3. Investigation and modelling of rubber stationary friction on rough surfaces

    International Nuclear Information System (INIS)

    Le Gal, A; Klueppel, M

    2008-01-01

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks

  4. Investigation and modelling of rubber stationary friction on rough surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Gal, A; Klueppel, M [Deutsches Institut fuer Kautschuktechnologie, Eupener Strasse 33, D-30519 Hannover (Germany)

    2008-01-09

    This paper presents novel aspects regarding the physically motivated modelling of rubber stationary sliding friction on rough surfaces. The description of dynamic contact is treated within the framework of a generalized Greenwood-Williamson theory for rigid/soft frictional pairings. Due to the self-affinity of rough surfaces, both hysteresis and adhesion friction components arise from a multi-scale excitation of surface roughness. Beside a complete analytical formulation of contact parameters, the morphology of macrotexture is considered via the introduction of a second scaling range at large length scales which mostly contribute to hysteresis friction. Moreover, adhesion friction is related to the real area of contact combined with the kinetics of interfacial peeling effects. Friction experiments carried out with different rubbers on rough granite and asphalt point out the relevance of hysteresis and adhesion friction concepts on rough surfaces. The two scaling ranges approach significantly improves the description of wet and dry friction behaviour within the range of low sliding velocity. In addition, material and surface effects are predicted and understood on a physical basis. The applicability of such modelling is of high interest for materials developers and road constructors regarding the prediction of wet grip performance of tyres on road tracks.

  5. Modeling of laser damage initiated by surface contamination

    International Nuclear Information System (INIS)

    Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.

    1996-11-01

    The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations

  6. A Modified Approach in Modeling and Calculation of Contact Characteristics of Rough Surfaces

    Directory of Open Access Journals (Sweden)

    J.A. Abdo

    2005-12-01

    Full Text Available A mathematical formulation for the contact of rough surfaces is presented. The derivation of the contact model is facilitated through the definition of plastic asperities that are assumed to be embedded at a critical depth within the actual surface asperities. The surface asperities are assumed to deform elastically whereas the plastic asperities experience only plastic deformation. The deformation of plastic asperities is made to obey the law of conservation of volume. It is believed that the proposed model is advantageous since (a it provides a more accurate account of elasticplastic behavior of surfaces in contact and (b it is applicable to model formulations that involve asperity shoulder-to shoulder contact. Comparison of numerical results for estimating true contact area and contact force using the proposed model and the earlier methods suggest that the proposed approach provides a more realistic prediction of elastic-plastic contact behavior.

  7. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    This paper is an extension of a previous paper where the natural and purified clay in the homoionic Na form were physico-chemically characterized (doi:10.1016/j.clay.2008.04.014). In this study, the adsorption behavior of U (VI) on a purified Na-smectite suspension is studied using batch adsorption experiments and surface complexation modeling (double layer model). The sorption of uranium was investigated as a function of pH, uranium concentration, solid to liquid ratio, effect of natural organic matter (NOM) and NaNO(3) background electrolyte concentration. Using the MINTEQA2 program, the speciation of uranium was calculated as a function of pH and uranium concentration. Model predicted U (VI) aqueous speciation suggests that important aqueous species in the [U (VI)]=1mg/L and pH range 3-7 including UO(2)(2+), UO(2)OH(+), and (UO(2))(3)(OH)(5)(+). The concentration of UO(2)(2+) decreased and that of (UO(2))(3)(OH)(5)(+) increased with increasing pH. The potentiometric titration values and uptake of uranium in the sodium smectite suspension were simulated by FITEQL 4.0 program using a two sites model, which is composed of silicate and aluminum reaction sites. We compare the acidity constants values obtained by potentiometric titration from the purified sodium smectite with those obtained from single oxides (quartz and alpha-alumina), taking into account the surface heterogeneity and the complex nature of natural colloids. We investigate the uranium sorption onto purified Na-smectite assuming low, intermediate and high edge site surfaces which are estimated from specific surface area percentage. The sorption data is interpreted and modeled as a function of edge site surfaces. A relationship between uranium sorption and total site concentration was confirmed and explained through variation in estimated edge site surface value. The modeling study shows that, the convergence during DLM modeling is related to the best estimation of the edge site surface from the N(2

  8. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  9. A radiosity-based model to compute the radiation transfer of soil surface

    Science.gov (United States)

    Zhao, Feng; Li, Yuguang

    2011-11-01

    A good understanding of interactions of electromagnetic radiation with soil surface is important for a further improvement of remote sensing methods. In this paper, a radiosity-based analytical model for soil Directional Reflectance Factor's (DRF) distributions was developed and evaluated. The model was specifically dedicated to the study of radiation transfer for the soil surface under tillage practices. The soil was abstracted as two dimensional U-shaped or V-shaped geometric structures with periodic macroscopic variations. The roughness of the simulated surfaces was expressed as a ratio of the height to the width for the U and V-shaped structures. The assumption was made that the shadowing of soil surface, simulated by U or V-shaped grooves, has a greater influence on the soil reflectance distribution than the scattering properties of basic soil particles of silt and clay. Another assumption was that the soil is a perfectly diffuse reflector at a microscopic level, which is a prerequisite for the application of the radiosity method. This radiosity-based analytical model was evaluated by a forward Monte Carlo ray-tracing model under the same structural scenes and identical spectral parameters. The statistics of these two models' BRF fitting results for several soil structures under the same conditions showed the good agreements. By using the model, the physical mechanism of the soil bidirectional reflectance pattern was revealed.

  10. Models of the solvent-accessible surface of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  11. Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces

    Science.gov (United States)

    Wang, Chi R.

    2005-01-01

    This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one

  12. Mathematical modelling of contact of ruled surfaces: theory and practical application

    Science.gov (United States)

    Panchuk, K. L.; Niteyskiy, A. S.

    2016-04-01

    In the theory of ruled surfaces there are well known researches of contact of ruled surfaces along their common generator line (Klein image is often used [1]). In this paper we propose a study of contact of non developable ruled surfaces via the dual vector calculus. The advantages of this method have been demonstrated by E. Study, W. Blaschke and D. N. Zeiliger in differential geometry studies of ruled surfaces in space R3 over the algebra of dual numbers. A practical use of contact is demonstrated by the example modeling of the working surface of the progressive tool for tillage.

  13. Empirical model for estimating the surface roughness of machined ...

    African Journals Online (AJOL)

    Michael Horsfall

    one of the most critical quality measure in mechanical products. In the ... Keywords: cutting speed, centre lathe, empirical model, surface roughness, Mean absolute percentage deviation ... The factors considered were work piece properties.

  14. Prevalence of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA, Durban and Coast, South Africa : short communication

    Directory of Open Access Journals (Sweden)

    S. Mukaratirwa

    2010-05-01

    Full Text Available Coprological examination was used to determine the prevalence and intensity of gastrointestinal parasites of stray dogs impounded by the Society for the Prevention of Cruelty to Animals (SPCA, Durban and Coast, South Africa. Helminth and protozoan parasites were found in faeces of 240 dogs with an overall prevalence of 82.5% (helminth parasites 93.1% and protozoan parasites 6.9 %. The following parasites and their prevalences were detected; Ancylostoma sp. (53.8 %, Trichuris vulpis (7.9 %, Spirocerca lupi (5.4 %, Toxocara canis (7.9 %, Toxascaris leonina (0.4 % Giardia intestinalis (5.6 % and Isospora sp. (1.3 %. Dogs harbouring a single parasite species were more common (41.7 % than those harbouring 2 (15 % or multiple (2.1 % species. Ancylostoma sp., Toxocara canis and Giardia intestinalis have zoonotic potential and were detected in 66.7 % of the samples.

  15. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  16. Surface Complexation Modeling in Variable Charge Soils: Charge Characterization by Potentiometric Titration

    Directory of Open Access Journals (Sweden)

    Giuliano Marchi

    2015-10-01

    Full Text Available ABSTRACT Intrinsic equilibrium constants of 17 representative Brazilian Oxisols were estimated from potentiometric titration measuring the adsorption of H+ and OH− on amphoteric surfaces in suspensions of varying ionic strength. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. The former was fitted by calculating total site concentration from curve fitting estimates and pH-extrapolation of the intrinsic equilibrium constants to the PZNPC (hand calculation, considering one and two reactive sites, and by the FITEQL software. The latter was fitted only by FITEQL, with one reactive site. Soil chemical and physical properties were correlated to the intrinsic equilibrium constants. Both surface complexation models satisfactorily fit our experimental data, but for results at low ionic strength, optimization did not converge in FITEQL. Data were incorporated in Visual MINTEQ and they provide a modeling system that can predict protonation-dissociation reactions in the soil surface under changing environmental conditions.

  17. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  18. Minimal models on Riemann surfaces: The partition functions

    International Nuclear Information System (INIS)

    Foda, O.

    1990-01-01

    The Coulomb gas representation of the A n series of c=1-6/[m(m+1)], m≥3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius) 2 of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.)

  19. Minimal models on Riemann surfaces: The partition functions

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)

    1990-06-04

    The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).

  20. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    KAUST Repository

    Shao, Sihong

    2012-01-01

    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.