WorldWideScience

Sample records for surface hydrophobicity characterization

  1. Control and characterization of textured, hydrophobic ionomer surfaces

    Science.gov (United States)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  2. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  3. Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties.

    NARCIS (Netherlands)

    Hanke, A.T.; Klijn, M.E.; Verhaert, P.D.; Wielen, van der L.; Ottens, M.; Eppink, M.H.M.; Sandt, van de E.J.A.X.

    2016-01-01

    The correlation between the dimensionless retention times (DRT) of proteins in hydrophobic interaction chromatography (HIC) and their surface properties were investigated. A ternary atomic-level hydrophobicity scale was used to calculate the distribution of local average hydrophobicity across the

  4. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  5. Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties.

    Science.gov (United States)

    Hanke, Alexander T; Klijn, Marieke E; Verhaert, Peter D E M; van der Wielen, Luuk A M; Ottens, Marcel; Eppink, Michel H M; van de Sandt, Emile J A X

    2016-03-01

    The correlation between the dimensionless retention times (DRT) of proteins in hydrophobic interaction chromatography (HIC) and their surface properties were investigated. A ternary atomic-level hydrophobicity scale was used to calculate the distribution of local average hydrophobicity across the proteins surfaces. These distributions were characterized by robust descriptive statistics to reduce their sensitivity to small changes in the three-dimensional structure. The applicability of these statistics for the prediction of protein retention behaviour was looked into. A linear combination of robust statistics describing the central tendency, heterogeneity and frequency of highly hydrophobic clusters was found to have a good predictive capability (R2  = 0.78), when combined a factor to account for protein size differences. The achieved error of prediction was 35% lower than for a similar model based on a description of the protein surface on an amino acid level. This indicates that a robust and mathematically simple model based on an atomic description of the protein surface can be used for the prediction of the retention behaviour of conformationally stable globular proteins with a well determined 3D structure in HIC. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:372-381, 2016. © 2016 American Institute of Chemical Engineers.

  6. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  7. Wear resistance of hydrophobic surfaces

    Science.gov (United States)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  8. Synthesis and Characterization of Surface Modified, Fluorescent and Biocompatible ZnS Nanoparticles with a Hydrophobic Chitosan Derivative.

    Science.gov (United States)

    Jothimani, B; Sureshkumar, S; Venkatachalapathy, B

    2017-07-01

    The introduction of a hydrophobic moiety on chitosan enhances the self-assembling properties, mucoadhesion, the permeability of the macromolecule and aids in target specific delivery. Our group synthesized a hydrophobic trans N-(6,6-Dimethyl-2-hepten-4-ynyl)chitosan derivative (CSD) and studied the surface modification of ZnS nanoparticles in a single pot reaction. X-ray diffraction studies and FESEM imaging confirms the nano size and morphology of the surface modified Zinc sulfide nanoparticles (ZnS-CSD NPs). The proposed ZnS-CSD NPs showed excellent emission at 457 nm. Photostability studies indicate that the surface modified ZnS-CSD NPs possess better photostability than Rhodamine B and FITC. Cell viability tests confirmed the biocompatibility of the modified nanoparticles. All these features of ZnS- CSD NPs makes these candidates an excellent choice in a wide range of in vitro or in vivo studies as fluorescent biological labels.

  9. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Indian Institute of Technology Kharagpur, India. Liquid Water may Stick on Hydrophobic. Surfaces. Suman Chakraborty. Professor. Department of Mechanical Engineering, IIT Kharagpur, India. July, 2016 ...

  10. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: pascal.colpo@ec.europa.eu [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)

    2017-03-15

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  11. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  12. Switchable Hydrophobic-Hydrophilic Surfaces

    CERN Document Server

    Bunker, B C; Huber, D L; Kent, M S; Kushmerick, J G; Lopez, G P; Manginell, R P; Méndez, S E; Yim, H

    2002-01-01

    Tethered films of poly n-isopropylacrylamide (PNIPAM) films have been developed as materials that can be used to switch the chemistry of a surface in response to thermal activation. In water, PNIPAM exhibits a thermally-activated phase transition that is accompanied by significant changes in polymer volume, water contact angle, and protein adsorption characteristics. New synthesis routes have been developed to prepare PNIPAM films via in-situ polymerization on self-assembled monolayers. Swelling transitions in tethered films have been characterized using a wide range of techniques including surface plasmon resonance, attenuated total reflectance infrared spectroscopy, interfacial force microscopy, neutron reflectivity, and theoretical modeling. PNIPAM films have been deployed in integrated microfluidic systems. Switchable PNIPAM films have been investigated for a range of fluidic applications including fluid pumping via surface energy switching and switchable protein traps for pre-concentrating and separating...

  13. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  14. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.

    Science.gov (United States)

    Wang, Gang; Hahn, Tobias; Hubbuch, Jürgen

    2016-09-23

    Mechanistic models are successfully used for protein purification process development as shown for ion-exchange column chromatography (IEX). Modeling and simulation of hydrophobic interaction chromatography (HIC) in the column mode has been seldom reported. As a combination of these two techniques is often encountered in biopharmaceutical purification steps, accurate modeling of protein adsorption in HIC is a core issue for applying holistic model-based process development, especially in the light of the Quality by Design (QbD) approach. In this work, a new mechanistic isotherm model for HIC is derived by consideration of an equilibrium between well-ordered water molecules and bulk-like ordered water molecules on the hydrophobic surfaces of protein and ligand. The model's capability of describing column chromatography experiments is demonstrated with glucose oxidase, bovine serum albumin (BSA), and lysozyme on Capto™ Phenyl (high sub) as model system. After model calibration from chromatograms of bind-and-elute experiments, results were validated with batch isotherms and prediction of further gradient elution chromatograms. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Hydrophobic Calcium Carbonate for Cement Surface

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2017-12-01

    Full Text Available This report describes a novel way to generate a highly effective hydrophobic cement surface via a carbonation route using sodium stearate. Carbonation reaction was carried out at different temperatures to investigate the hydrophobicity and morphology of the calcium carbonate formed with this process. With increasing temperatures, the particles changed from irregular shapes to more uniform rod-like structures and then aggregated to form a plate-like formation. The contact angle against water was found to increase with increasing temperature; after 90 °C there was no further increase. The maximum contact angle of 129° was obtained at the temperature of 60 °C. It was also found that carbonation increased the micro hardness of the cement material. The micro hardness was found to be dependent on the morphology of the CaCO3 particles. The rod like structures which caused increased mineral filler produced a material with enhanced strength. The 13C cross polarization magic-angle spinning NMR spectra gave plausible explanation of the interaction of organic-inorganic moieties.

  16. Microstructural characterization of hydrophobic Ti{sub 1-x}Al{sub x}N coatings with moth-eye-like surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, V., E-mail: godinho@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Av. Americo Vespucio 49, 41092 Sevilla (Spain); Lopez-Santos, C. [NAmur Research Institute for LIfe Sciences (NARILIS), Research Center in Physics of Matter and Radiation (PMR), University of Namur -FUNDP, 61 Rue de Bruxelles, 5000 Namur (Belgium); Rojas, T.C.; Philippon, D.; Jimenez de Haro, M.C. [Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Av. Americo Vespucio 49, 41092 Sevilla (Spain); Lucas, S. [NAmur Research Institute for LIfe Sciences (NARILIS), Research Center in Physics of Matter and Radiation (PMR), University of Namur - FUNDP, 61 Rue de Bruxelles, 5000 Namur (Belgium); Fernandez, A. [Instituto de Ciencia de Materiales de Sevilla CSIC-Uni. Sevilla, Av. Americo Vespucio 49, 41092 Sevilla (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Moth-eye-like structures were obtained by changing the power supplied to the targets at a constant N{sub 2} pressure. Black-Right-Pointing-Pointer The antireflecting properties and hydrophobicity of the coatings are discussed. Black-Right-Pointing-Pointer HREM and related techniques revealed the formation of meso- and nano-columns and different degree of open porosity. - Abstract: Ti{sub 1-x}Al{sub x}N thin films with different Al content were deposited by magnetron sputtering. The combination of electron energy loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) was used to evaluate the composition of the coatings. The effect of Al content on the morphology and properties of the coatings was investigated. High resolution electron microscopy and related techniques revealed the formation of a pillared moth-eye-like nanostructure with variable size and distribution of meso- and nano-columns and different degree of open porosity that depends on the Al content on the coating. For low Al content (x {<=} 0.21) c-(Ti,Al)N highly porous columns ending in a sharp pyramidal shape present low reflectivity and high hydrophobicity. While the precipitation of h-AlN phase at the column boundaries for x = 0.71 suppresses the c-(Ti,Al)N columnar growth and produces a smother surface, with higher reflectivity and less hydrophobic character.

  17. Biofilm retention on surfaces with variable roughness and hydrophobicity.

    Science.gov (United States)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter; Schramm, Andreas; Bischoff, Claus; Meyer, Rikke Louise

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher's shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel (SS) was compared to two novel nanostructured sol-gel coatings with differing hydrophobicity. Surfaces were characterized with respect to roughness, hydrophobicity, protein adsorption, biofilm retention, and community composition of the retained bacteria. Fewer bacteria were retained on the sol-gel coated surfaces compared to the rougher SS. However, the two sol-gel coatings did not differ in either protein adsorption, biofilm retention, or microbial community composition. When polished to a roughness similar to sol-gel, the SS was colonized by the same amount of bacteria as the sol-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study.

  18. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...

  19. Synthesis and characterization of lamellar aragonite with hydrophobic property

    International Nuclear Information System (INIS)

    Wang Chengyu; Xu Yang; Liu Yalan; Li Jian

    2009-01-01

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  20. Synthesis, Characterization and Application of Hydrophobic Zeolites

    OpenAIRE

    Heidari, Rulis

    2016-01-01

    The aim of the thesis was to design and synthesize a type of zeolite with the characteristics of hydrophobicity, high porosity, and proper pore size, which can be used for high-performance adsorption of ethanol from aqueous solution. In addition, the aim was to synthesize hydrophobic microporous zeolites including theoretic and experimental content. The experiment was carried out using hydroxide basic system and hydrogen fluoride neutral based on hydrothermal methods. Pure silica zeolites...

  1. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.

    Science.gov (United States)

    Gao, Zhengxin; Zhai, Xianglin; Liu, Feng; Zhang, Ming; Zang, Deli; Wang, Chengyu

    2015-09-05

    A composite filter paper with super-hydrophobicity was obtained by adhering micro/nano structure of amorphous titanium dioxide on the filter paper surface with modifying low surface energy material. By virtue of the coupling agent, which plays an important part in bonding amorphous titanium dioxide and epoxy resin, the structure of super-hydrophobic thin film on the filter paper surface is extremely stable. The microstructure of super-hydrophobic filter paper was characterized by scanning electron microscopy (SEM), the images showed that the as-prepared filter paper was covered with uniform amorphous titanium dioxide particles, generating a roughness structure on the filter paper surface. The super-hydrophobic performance of the filter paper was characterized by water contact angle measurements. The observations showed that the wettability of filter paper samples transformed from super-hydrophilicity to super-hydrophobicity with the water contact angle of 153 ± 1°. Some experiments were also designed to test the effect of water-oil separation and UV-resistant by the super-hydrophobic filter paper. The prepared super-hydrophobic filter paper worked efficiently and simply in water-oil separation as well as enduringly in anti-UV property after the experiments. This method offers an opportunity to the practical applications of the super-hydrophobic filter paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  3. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  4. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    Science.gov (United States)

    Krishnamoorthy, Jayaraman

    studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  5. Design of textured surfaces for super-hydrophobicity

    Indian Academy of Sciences (India)

    Although the Cassie–Baxter and Wenzel equations predict contact angles for relative dimensions of micro-pillars on textured surfaces, the absolute pillar dimensions are determined by trial and error. Alternatively, geometries of natural super-hydrophobic surfaces are often imitated to design textured surfaces. Knowing the ...

  6. Reduction of surface hydrophobicity using a stimulus-responsive polysaccharide.

    Science.gov (United States)

    Sedeva, Iliana G; Fornasiero, Daniel; Ralston, John; Beattie, David A

    2010-10-19

    The adsorption of carboxymethyl cellulose (CMC) onto a hydrophobic self-assembled monolayer has been characterized using the quartz crystal microbalance (with dissipation monitoring, QCM-D). Adsorption was studied as a function of initial solution conditions. CMC adsorbs to a greater extent at high ionic strength (10(-1) M KCl as opposed to 10(-2) M KCl) or low pH (3 as opposed to 9). The solution conditions that yielded the lowest initial adsorbed amount (10(-2) M KCl, pH 9) were used as a reference to investigate the response of the adsorbed layer to a switch in solution conditions after adsorption (i.e., to higher ionic strength (10(-1) M KCl) or lower pH (pH 3)). The adsorbed layer released significant amounts of hydration water after each solution switch, as determined by the QCM-D measurements. This expulsion of hydration water was fully reversible. For the two solution switches, reducing the solution pH resulted in a more pronounced change in the amount of hydration water within the adsorbed CMC, accompanied by a distinct conformational change, as determined from a QCM D-f plot. In addition to studying adsorption using QCM-D, the effect of adsorbed CMC on surface hydrophobicity has been investigated using captive bubble contact angle measurements. The effect of the polymer on the contact angle of the surface was seen to be greatest when adsorbed at low pH or at higher ionic strength. CMC was also seen to have a significantly enhanced ability to reduce the surface hydrophobicity after both the ionic strength and pH switches, lowering the advancing water contact angle by 6 and 23° and the receding water contact angle by 10 and 40° for the ionic strength and pH switches, respectively. As with the change in hydration water content, the change in the contact angle of the polymer-coated surface following the solution switches was reversible.

  7. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    Science.gov (United States)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  8. Design of textured surfaces for super-hydrophobicity

    Indian Academy of Sciences (India)

    Prithvi Raj Jelia

    2017-11-11

    Nov 11, 2017 ... viour of a droplet on super-hydrophobic surfaces, an ana- lytical model is proposed in which a single droplet is assumed to rest on a surface bearing an array of square pillars. The objective of the model is to optimize the a b c. Figure 1. Model showing microscopic square pillars arranged in square array.

  9. Design of surface hierarchy for extreme hydrophobicity.

    Science.gov (United States)

    Kwon, Yongjoo; Patankar, Neelesh; Choi, Junkyu; Lee, Junghoon

    2009-06-02

    An extreme water-repellent surface is designed and fabricated with a hierarchical integration of nano- and microscale textures. We combined the two readily accessible etching techniques, a standard deep silicon etching, and a gas phase isotropic etching (XeF2) for the uniform formation of double roughness on a silicon surface. The fabricated synthetic surface shows the hallmarks of the Lotus effect: durable super water repellency (contact angle>173 degrees) and the sole existence of the Cassie state even with a very large spacing between roughness structures (>1:7.5). We directly demonstrate the absence of the Wenzel's or wetted state through a series of experiments. When a water droplet is squeezed or dropped on the fabricated surface, the contact angle hardly changes and the released droplet instantly springs back without remaining wetted on the surface. We also show that a ball of water droplet keeps bouncing on the surface. Furthermore, the droplet shows very small contact angle hysteresis which can be further used in applications such as super-repellent coating and low-drag microfludics. These properties are attributed to the nano/micro surface texture designed to keep the nonwetting state energetically favorable.

  10. Identification and characterization of hydrophobic gate residues in TRP channels.

    Science.gov (United States)

    Zheng, Wang; Hu, Ruikun; Cai, Ruiqi; Hofmann, Laura; Hu, Qiaolin; Fatehi, Mohammad; Long, Wentong; Kong, Tim; Tang, Jingfeng; Light, Peter; Flockerzi, Veit; Cao, Ying; Chen, Xing-Zhen

    2018-02-01

    Transient receptor potential (TRP) channels, subdivided into 6 subfamilies in mammals, have essential roles in sensory physiology. They respond to remarkably diverse stimuli, comprising thermal, chemical, and mechanical modalities, through opening or closing of channel gates. In this study, we systematically substituted the hydrophobic residues within the distal fragment of pore-lining helix S6 with hydrophilic residues and, based on Xenopus oocyte and mammalian cell electrophysiology and a hydrophobic gate theory, identified hydrophobic gates in TRPV6/V5/V4/C4/M8. We found that channel activity drastically increased when TRPV6 Ala616 or Met617 or TRPV5 Ala576 or Met577 , but not any of their adjacent residues, was substituted with hydrophilic residues. Channel activity strongly correlated with the hydrophilicity of the residues at those sites, suggesting that consecutive hydrophobic residues TRPV6 Ala616-Met617 and TRPV5 Ala576-Met577 form a double-residue gate in each channel. By the same strategy, we identified a hydrophobic single-residue gate in TRPV4 Iso715 , TRPC4 Iso617 , and TRPM8 Val976 . In support of the hydrophobic gate theory, hydrophilic substitution at the gate site, which removes the hydrophobic gate seal, substantially increased the activity of TRP channels in low-activity states but had little effect on the function of activated channels. The double-residue gate channels were more sensitive to small changes in the gate's hydrophobicity or size than single-residue gate channels. The unconventional double-reside gating mechanism in TRP channels may have been evolved to respond especially to physiologic stimuli that trigger relatively small gate conformational changes.-Zheng, W., Hu, R., Cai, R., Hofmann, L., Hu, Q., Fatehi, M., Long, W., Kong, T., Tang, J., Light, P., Flockerzi, V., Cao, Y., Chen, X.-Z. Identification and characterization of hydrophobic gate residues in TRP channels.

  11. Super-hydrophobic surface treatment as corrosion protection for aluminum in seawater

    Energy Technology Data Exchange (ETDEWEB)

    He Tian; Wang Yuanchao; Zhang Yijian; Lv Qun; Xu Tugen [College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036 (China); Liu Tao [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China)], E-mail: yys2003ouc@163.com

    2009-08-15

    'Underwater super-hydrophobic' surface applied in the corrosion protection was prepared by melting myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH) adsorbed onto the anodized aluminum. The static contact angle for seawater on the surface was measured to be 154{sup o}. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly improved the corrosion resistance of aluminum in sterile seawater. In addition, the mechanism of the underwater super-hydrophobic surface applied in the corrosion resistance was discussed using a schematic.

  12. Structures of multidomain proteins adsorbed on hydrophobic interaction chromatography surfaces.

    Science.gov (United States)

    Gospodarek, Adrian M; Sun, Weitong; O'Connell, John P; Fernandez, Erik J

    2014-12-05

    In hydrophobic interaction chromatography (HIC), interactions between buried hydrophobic residues and HIC surfaces can cause conformational changes that interfere with separations and cause yield losses. This paper extends our previous investigations of protein unfolding in HIC chromatography by identifying protein structures on HIC surfaces under denaturing conditions and relating them to solution behavior. The thermal unfolding of three model multidomain proteins on three HIC surfaces of differing hydrophobicities was investigated with hydrogen exchange mass spectrometry (HXMS). The data were analyzed to obtain unfolding rates and Gibbs free energies for unfolding of adsorbed proteins. The melting temperatures of the proteins were lowered, but by different amounts, on the different surfaces. In addition, the structures of the proteins on the chromatographic surfaces were similar to the partially unfolded structures produced in the absence of a surface by temperature as well as by chemical denaturants. Finally, it was found that patterns of residue exposure to solvent on different surfaces at different temperatures can be largely superimposed. These findings suggest that protein unfolding on various HIC surfaces might be quantitatively related to protein unfolding in solution and that details of surface unfolding behavior might be generalized. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Influence of hydrophobic surface treatment toward performance of air filter

    Science.gov (United States)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the performance of hydrophobic surface treatment by using silica aerogel powder via spray coating techniques. Hydrophobic properties were determined by measuring the level of the contact angle. Meanwhile, performance was evaluated in term of the hydrogen gas flow and humidity rejection. The results are shown by contact angle that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder. Results also showed that the absorption and rejection filter performance filter has increased after the addition of silica aerogel powder. The results showed that with the addition of 5 grams of powder of silica aerogel have the highest result of wetting angle 134.11°. The highest humidity rejection found with 5 grams of powder of silica aerogel.

  14. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  15. Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane

    Science.gov (United States)

    Han, Xiaolong; Wang, Lei; Li, Jiding; Zhan, Xia; Chen, Jian; Yang, Jichu

    2011-09-01

    ZSM-5 zeolites were modified with alkyltrichlorosilanes of various chain lengths (octyltrichlorosilane, decyltrichlorosilane, dodecyltrichlorosilane and hexadecyltrichlorosilane) and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Thermal gravimetric analysis (TGA) and contact angle measurements (CA). The results showed that a closely packed and hydrophobic layer was presented at the particles surface and the surface wetting property varied from hydrophilic to hydrophobic, even to superhydrophobic. It was interesting to notice that the hydrophobic properties of modified ZSM-5 particles could be tuned by varying the chain length of chlorosilane and changing the pretreatment temperature before silanization. With increasing the alkyl chain length of trichlorosilane, the hydrophobicity increased. However, with an increase in the pretreatment temperature, the hydrophobicity decreased. Moreover, the relationship between the wetting properties and thermal stability was also investigated, the results showed that the modified ZSM-5 particles possessed good hydrophobicity at a temperature below 250 °C in air. These modified ZSM-5 particles may be utilized for many potential applications, such as membrane fillers, selective adsorbents, catalysts, chromatographic supports and so on.

  16. High contact angle hysteresis of superhydrophobic surfaces: Hydrophobic defects

    Science.gov (United States)

    Chang, Feng-Ming; Hong, Siang-Jie; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-08-01

    A typical superhydrophobic surface is essentially nonadhesive and exhibits very low water contact angle (CA) hysteresis, so-called Lotus effect. However, leaves of some plants such as scallion and garlic with an advancing angle exceeding 150° show very serious CA hysteresis. Although surface roughness and epicuticular wax can explain the very high advancing CA, our analysis indicates that the unusual hydrophobic defect, diallyl disulfide, is the key element responsible for contact line pinning on allium leaves. After smearing diallyl disulfide on an extended polytetrafluoroethylene (PTFE) film, which is originally absent of CA hysteresis, the surface remains superhydrophobic but becomes highly adhesive.

  17. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.

    Science.gov (United States)

    Ataei, Mohammadmehdi; Chen, Huanchen; Amirfazli, Alidad

    2017-12-26

    When a liquid bridge is formed between two nonparallel identical surfaces, it can move along the surfaces. Literature indicates that the direction of bridge movement is governed by the wettability of surfaces. When the surfaces are hydrophilic, the motion of the bridge is always toward the cusp (intersection of the plane of the two bounding surfaces). On the other hand, the movement is hitherto thought to be always pointing away from the cusp when the surfaces are hydrophobic. In this study, through experiments, numerical simulations, and analytical reasoning, we demonstrate that for hydrophobic surfaces, wettability is not the only factor determining the direction of the motion. A new geometrical parameter, i.e., confinement (cf), was defined as the ratio of the distance of the farthest contact point of the bridge to the cusp, and that of the closest contact point to the cusp. The direction of the motion depends on the amount of confinement (cf). When the distance between the surfaces is large (resulting in a small cf), the bridge tends to move toward the cusp through a pinning/depinning mechanism of contact lines. When the distance between the surfaces is small (large cf), the bridge tends to move away from the cusp. For a specific system, a maximum cf value (cf max ) exists. A sliding behavior (i.e., simultaneous advancing on the wider side and receding on the narrower side) can also be seen when a liquid bridge is compressed such that the cf exceeds the cf max . Contact angle hysteresis (CAH) is identified as an underpinning phenomenon that together with cf fundamentally explains the movement of a trapped liquid between two hydrophobic surfaces. If there is no CAH, however, i.e., the case of ideal hydrophobic surfaces, the cf will be a constant; we show that the bridge slides toward the cusp when it is stretched, while it slides away from the cusp when it is compressed (note sliding motion is different from motion due to pinning/depinning mechanism of contact

  18. INVESTIGATION OF MICRO AND NANOSTRUCTURE OF HYDROPHOBIC PLANTS SURFACE

    OpenAIRE

    M. V. Zhukov

    2014-01-01

    Micro and nanostructure of petals and flowers of pink rose family having super hydrophobic phenomenon known as "lotus effect" was studied by optical and scanning probe microscopy. Quasi-ordered corrugated structure was found on the surface of the rose petals. It represents the ensemble of smoothed shape peaks like a lotus leaf structure. Structure saving during dehydration of rose petal (for 5 days) by drying in the air under normal conditions was found, the difference is apparent in the dens...

  19. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  20. Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces

    Science.gov (United States)

    Kumar, Nitin; Couzis, Alex; Maldareili, Charles; Singh, Bhim (Technical Monitor)

    2001-01-01

    Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid surfaces. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants; (i.e., amphiphiles with a hydrophobic moiety consisting of an extended chain of (aliphatic) methylene -CH2- groups attached to a large polar group to give aqueous solubility) are capable of reducing the contact angles on surfaces which are not very hydrophobic, but do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm, polyethylene or self assembled monolayers. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3) and an extended ethoxylate (-(OCH2CH2)a-) polar group in the form of a chain with four or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (termed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread. We propose that the trisiloxane surfactants superspread because their structure allows them to strongly lower the high hydrophobic solid/aqueous tension when they adsorb to the solid surface. When the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross-sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space-filling mat on the surface which

  1. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  2. Hydrophobic surface functionalization of lignocellulosic jute fabrics by enzymatic grafting of octadecylamine.

    Science.gov (United States)

    Dong, Aixue; Fan, Xuerong; Wang, Qiang; Yu, Yuanyuan; Cavaco-Paulo, Artur

    2015-08-01

    Enzymatic grafting of synthetic molecules onto lignins provides a mild and eco-friendly alternative for the functionalization of lignocellulosic materials. In this study, laccase-mediated grafting of octadecylamine (OA) onto lignin-rich jute fabrics was investigated for enhancing the surface hydrophobicity. First, the lignins in jute fabrics were isolated and analyzed in the macromolecular level by MALDI-TOF MS, (1)H NMR, (13)C NMR, and HSQC-NMR. Then, the surface of jute fabrics was characterized by FT-IR, XPS, and SEM. Subsequently, the nitrogen content of jute fabrics was determined by the micro-Kjeldahl method, and the grafting percentage (Gp) and grafting efficiency (GE) of the enzymatic reaction were calculated. Finally, the surface hydrophobicity of the jute fabrics was estimated by contact angle and wetting time measurements. The results indicate that the OA monomers were successfully grafted onto the lignin moieties on the jute fiber surface by laccase with Gp and GE values of 0.712% and 10.571%, respectively. Moreover, the modified jute fabrics via OA-grafting showed an increased wetting time of 18.5 min and a contact angle of 116.72°, indicating that the surface hydrophobicity of the jute fabrics increased after the enzymatic grafting modification with hydrophobic OA molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fabrication and surface properties of hydrophobic barium sulfate aggregates based on sodium cocoate modification

    Science.gov (United States)

    Hu, Linna; Wang, Guangxiu; Cao, Rong; Yang, Chun; Chen, Xi

    2014-10-01

    Hydrophobic barium sulfate aggregates were fabricated by the direction of cocoate anions. At 30 °C, when the weight ratio of sodium cocoate to BaSO4 particles was 2.0 wt.%, the active ratio of the product reached 99.43% and the contact angle was greater than 120°. This method could not only simplify the complex modification process, but reduce energy consumption. The surface morphology, chemical structure and composition of BaSO4 aggregates were characterized by SEM, XRD, and FTIR. The results indicated that the as-synthesized BaSO4 particles were almond-liked and were composed of many interconnected nanoballs and that their surfaces were affected by cocoate anions. The adsorption of cocoate anions reversed the charge and weakened the surface polarity of BaSO4 particles, driving the formation of aggregates. And cocoate anions induced a change of the BaSO4 particles surface from hydrophilic to hydrophobic by a self-assembly and transformation process. Due to the self-assembled structure and the surface hydrophobicity, when adding the hydrophobic BaSO4 into PVC, the mechanical properties of PVC composite materials were significantly improved.

  4. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...... surfaces in either the Wenzel or the Cassie–Baxter state as characterized by water contact angle measurements at room temperature. We find that the water freezing delay time is not significantly affected by the surface topography and discuss this finding within the classical theory of heterogeneous...... and the derived work of adhesion that are important for applications dealing with icing. In this work we address this issue by determining the temperature-dependent dynamic contact angle of microliter-sized water droplets on a smooth hydrophobic and a superhydrophobic surface with similar surface chemistry...

  5. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  6. Viscous boundary lubrication of hydrophobic surfaces by mucin.

    Science.gov (United States)

    Yakubov, Gleb E; McColl, James; Bongaerts, Jeroen H H; Ramsden, Jeremy J

    2009-02-17

    The lubricating behavior of the weakly charged short-side-chain glycoprotein mucin "Orthana" (Mw=0.55 MDa) has been investigated between hydrophobic and hydrophilic PDMS substrates using soft-contact tribometry. It was found that mucin facilitates lubrication between hydrophobic PDMS surfaces, leading to a 10-fold reduction in boundary friction coefficient for rough surfaces. The presence of mucin also results in a shift of the mixed lubrication regime to lower entrainment speeds. The observed boundary lubrication behavior of mucin was found to depend on the bulk concentration, and we linked this to the structure and dynamics of the adsorbed mucin films, which are assessed using optical waveguide light spectroscopy. We observe a composite structure of the adsorbed mucin layer, with its internal structure governed by entanglement. The film thickness of this adsorbed layer increases with concentration, while the boundary friction coefficient for rough surfaces was found to be inversely proportional to the thickness of the adsorbed film. This link between lubrication and structure of the film is consistent with a viscous boundary lubrication mechanism, i.e., a thicker adsorbed film, at a given sliding speed, results in a lower local shear rate and, hence, in a lower local shear stress. The estimated local viscosities of the adsorbed layer, derived from the friction measurements and the polymer layer density, are in agreement with each other.

  7. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  8. Fabrication of semi-transparent super-hydrophobic surface based on silica hierarchical structures

    KAUST Repository

    Chen, Ping-Hei

    2011-01-01

    This study successfully develops a versatile method of producing superhydrophobic surfaces with micro/nano-silica hierarchical structures on glass surfaces. Optically transparent super hydrophobic silica thin films were prepared by spin-coating silica particles suspended in a precursor solution of silane, ethanol, and H2O with molar ratio of 1:4:4. The resulting super hydrophobic films were characterized by scanning electron microscopy (SEM), optical transmission, and contact angle measurements. The glass substrates in this study were modified with different particles: micro-silica particles, nano-silica particles, and hierarchical structures. This study includes SEM micrographs of the modified glass surfaces with hierarchical structures at different magnifications. © 2011 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

  9. Corrosion behavior of super-hydrophobic surface on copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao; Chen Shougang; Cheng Sha; Tian Jintao; Chang Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)], E-mail: yys2003@ouc.edu.cn

    2007-11-01

    A novel super-hydrophobic film was prepared by myristic acid (n-tetradecanoic) chemically adsorbed onto the copper wafer. The film formation and its structure were characterized by means of water contact angle measurement, Fourier transformation infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The static contact angle for water on the surface of this organic film was measured to be as high as 158{sup o}. The formation of a composite interface composed of the flower-like surface nanostructures, water droplet and air trapped in the crevices was suggested to be responsible for the superior water-repellent property. The corrosion behavior of the super-hydrophobic surface was investigated with potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Due to the 'air valleys' and 'capillarity' effects, the corrosion resistance of the material was improved remarkably.

  10. Corrosion behavior of super-hydrophobic surface on copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Chen, Shougang; Cheng, Sha; Tian, Jintao; Chang, Xueting; Yin, Yansheng [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2007-11-01

    A novel super-hydrophobic film was prepared by myristic acid (n-tetradecanoic) chemically adsorbed onto the copper wafer. The film formation and its structure were characterized by means of water contact angle measurement, Fourier transformation infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The static contact angle for water on the surface of this organic film was measured to be as high as 158 . The formation of a composite interface composed of the flower-like surface nanostructures, water droplet and air trapped in the crevices was suggested to be responsible for the superior water-repellent property. The corrosion behavior of the super-hydrophobic surface was investigated with potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Due to the 'air valleys' and 'capillarity' effects, the corrosion resistance of the material was improved remarkably. (author)

  11. LapF and Its Regulation by Fis Affect the Cell Surface Hydrophobicity of Pseudomonas putida.

    Science.gov (United States)

    Lahesaare, Andrio; Ainelo, Hanna; Teppo, Annika; Kivisaar, Maia; Heipieper, Hermann J; Teras, Riho

    2016-01-01

    The ability of bacteria to regulate cell surface hydrophobicity is important for the adaptation to different environmental conditions. The hydrophobicity of cell surface can be determined by several factors, including outer membrane and surface proteins. In this study, we report that an adhesin LapF influences cell surface hydrophobicity of Pseudomonas putida. Cells lacking LapF are less hydrophobic than wild-type cells in stationary growth phase. Moreover, the overexpression of the global regulator Fis decreases surface hydrophobicity by repressing the expression of lapF. Flow cytometry analysis revealed that bacteria producing LapF are more viable when confronted with methanol (a hydrophilic compound) but are more susceptible to 1-octanol (a hydrophobic compound). Thus, these results revealed that LapF is the hydrophobicity factor for the cell surface of P. putida.

  12. Characterization of hydrophobic and hydrophilic coatings as deicing and anti-icing

    Science.gov (United States)

    Aoki, Akihito; Morita, Katsuaki; Konno, Akihisa; Sakaue, Hirotaka

    2010-11-01

    Anti-icing is necessary in various fields, such as aeronautics, roads, power lines, ships, and architectures. Deicing fluids, and sometimes hot water, work to prevent from icing. Due to environmental issue, deicing fluids are not always welcome to use. We study hydrophobic and hydrophilic coatings for anti-icing. By coating these to a target surface, it prevents icing without damaging the environment. We present a characterization method of hydrophobic and hydrophilic coatings for deicing and anti-icing. We provide a temperature-control room to create an icing condition, such as -10 to 0 degrees C. Under the controlled room, the contact angle measurement as well as the force measurement is employed. Total 15 coatings are characterized. Based on the tests of all coatings, we propose a combined coating from some characterized ones.

  13. EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces.

    Science.gov (United States)

    Jönsson-Niedziółka, M; Lapierre, F; Coffinier, Y; Parry, S J; Zoueshtiagh, F; Foat, T; Thomy, V; Boukherroub, R

    2011-02-07

    Environmental air monitoring is of great interest due to the large number of people concerned and exposed to different possible risks. From the most common particles in our environment (e.g. by-products of combustion or pollens) to more specific and dangerous agents (e.g. pathogenic micro-organisms), there are a large range of particles that need to be controlled. In this article we propose an original study on the collection of electrostatically deposited particles using electrowetting droplet displacement. A variety of particles were studied, from synthetic particles (e.g. Polystyrene Latex (PSL) microsphere) to different classes of biological particle (proteins, bacterial spores and a viral simulant). Furthermore, we have compared ElectroWetting-On-Dielectric (EWOD) collecting efficiency using either a hydrophobic or a superhydrophobic counter electrode. We observe different cleaning efficiencies, depending on the hydrophobicity of the substrate (varying from 45% to 99%). Superhydrophobic surfaces show the best cleaning efficiency with water droplets for all investigated particles (MS2 bacteriophage, BG (Bacillus atrophaeus) spores, OA (ovalbumin) proteins, and PSL).

  14. Velocity profiles of fluid flow close to a hydrophobic surface

    Science.gov (United States)

    Fialová, Simona; Pochylý, František; Kotek, Michal; Jašíková, Darina

    The results of research on viscous liquid flow upon a superhydrophobic surface are presented in the paper. In the introduction, the degrees of surface hydrophobicity in correlation with an adhesion coefficient are defined. The usage of the adhesion coefficient for the definition of a new boundary condition is employed for expressing the slip of the liquid over the superhydrophobic surface. The slip of the liquid was identified on a special experimental device. The essence of the device consists of a tunnel of rectangular cross section whose one wall is treated with a superhydrophobic layer. The other walls are made of transparent organic glass whose surface is hydrophilic. Velocity profiles are measured by PIV. The methodology is drawn so that it allows the speed determination at the closest point to the wall. The measurements were performed for different Reynolds numbers for both laminar and turbulent flow. Based on the measured velocity profiles, marginal terms of use have been verified, expressing slippage of the liquid on the wall. New forms of velocity profiles considering superhydrophobic surfaces are shown within the work.

  15. Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering.

    Science.gov (United States)

    Kahraman, Mehmet; Balz, Ben N; Wachsmann-Hogiu, Sebastian

    2013-05-21

    Surface-enhanced Raman scattering (SERS) is a promising analytical technique for the detection and characterization of biological molecules and structures. The role of hydrophobic and hydrophilic surfaces in the self-assembly of protein-metallic nanoparticle structures for label-free protein detection is demonstrated. Aggregation is driven by both the hydrophobicity of the surface as well as the charge of the proteins. The best conditions for obtaining a reproducible SERS signal that allows for sensitive, label-free protein detection are provided by the use of hydrophobic surfaces and 16 × 10(11) NPs per mL. A detection limit of approximately 0.5 μg mL(-1) is achieved regardless of the proteins' charge properties and size. The developed method is simple and can be used for reproducible and sensitive detection and characterization of a wide variety of biological molecules and various structures with different sizes and charge status.

  16. Transforming plastic surfaces with electrophilic backbones from hydrophobic to hydrophilic.

    Science.gov (United States)

    Kim, Samuel; Bowen, Raffick A R; Zare, Richard N

    2015-01-28

    We demonstrate a simple nonaqueous reaction scheme for transforming the surface of plastics from hydrophobic to hydrophilic. The chemical modification is achieved by base-catalyzed trans-esterification with polyols. It is permanent, does not release contaminants, and causes no optical or mechanical distortion of the plastic. We present contact angle measurements to show successful modification of several types of plastics including poly(ethylene terephthalate) (PET) and polycarbonate (PC). Its applicability to blood analysis is explored using chemically modified PET blood collection tubes and found to be quite satisfactory. We expect this approach will reduce the cost of manufacturing plastic devices with optimized wettability and can be generalized to other types of plastic materials having an electrophilic linkage as its backbone.

  17. Structure of aqueous electrolyte solutions near a hydrophobic surface

    Directory of Open Access Journals (Sweden)

    M.Kinoshita

    2007-09-01

    Full Text Available The structure of aqueous solutions of 1:1 salts (KCl, NaCl, KF,and CsI near a hydrophobic surface is analysed using the angle-dependent integral equation theory. Water molecules are taken to be hard spheres imbedded with multipolar moments including terms up to octupole order, and hard spherical ions are immersed in this model water. The many-body interactions associated with molecular polarizability are treated at the self-consistent mean field level. The effects of cationic and anionic sizes and salt concentration in the bulk are discussed in detail. As the salt concentration increases, the layer of water molecules next to the surface becomes denser but its orientational order remains almost unchanged. The concentration of each ion at the surface can be drastically different from that in the bulk. Asa striking example, at sufficiently low salt concentrations, the concentration of I- is about 500 times higher than that of F- at the surface.

  18. Comparison of SF₆ and CF₄ Plasma Treatment for Surface Hydrophobization of PET Polymer.

    Science.gov (United States)

    Resnik, Matic; Zaplotnik, Rok; Mozetic, Miran; Vesel, Alenka

    2018-02-21

    The fluorination of the polymer polyethylene terephthalate in plasma created from SF₆ or CF₄ gas at various pressures was investigated. The surface was analysed by X-ray photoelectron spectroscopy and water contact angle measurements, whereas the plasma was characterized by optical emission spectroscopy. The extent of the polymer surface fluorination was dependent on the pressure. Up to a threshold pressure, the amount of fluorine on the polymer surface and the surface hydrophobicity were similar, which was explained by the full dissociation of the SF₆ and CF₄ gases, leading to high concentrations of fluorine radicals in the plasma and thus causing the saturation of the polymer surface with fluorine functional groups. Above the threshold pressure, the amount of fluorine on the polymer surface significantly decreased, whereas the oxygen concentration increased, leading to the formation of the hydrophilic surface. This effect, which was more pronounced for the SF₆ plasma, was explained by the electronegativity of both gases.

  19. Comparison of SF6 and CF4 Plasma Treatment for Surface Hydrophobization of PET Polymer

    Science.gov (United States)

    Mozetic, Miran

    2018-01-01

    The fluorination of the polymer polyethylene terephthalate in plasma created from SF6 or CF4 gas at various pressures was investigated. The surface was analysed by X-ray photoelectron spectroscopy and water contact angle measurements, whereas the plasma was characterized by optical emission spectroscopy. The extent of the polymer surface fluorination was dependent on the pressure. Up to a threshold pressure, the amount of fluorine on the polymer surface and the surface hydrophobicity were similar, which was explained by the full dissociation of the SF6 and CF4 gases, leading to high concentrations of fluorine radicals in the plasma and thus causing the saturation of the polymer surface with fluorine functional groups. Above the threshold pressure, the amount of fluorine on the polymer surface significantly decreased, whereas the oxygen concentration increased, leading to the formation of the hydrophilic surface. This effect, which was more pronounced for the SF6 plasma, was explained by the electronegativity of both gases. PMID:29466293

  20. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  1. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  2. Analyzing the Molecular Kinetics of Water Spreading on Hydrophobic Surfaces via Molecular Dynamics Simulation.

    Science.gov (United States)

    Zhao, Lei; Cheng, Jiangtao

    2017-09-07

    In this paper, we report molecular kinetic analyses of water spreading on hydrophobic surfaces via molecular dynamics simulation. The hydrophobic surfaces are composed of amorphous polytetrafluoroethylene (PTFE) with a static contact angle of ~112.4° for water. On the basis of the molecular kinetic theory (MKT), the influences of both viscous damping and solid-liquid retarding were analyzed in evaluating contact line friction, which characterizes the frictional force on the contact line. The unit displacement length on PTFE was estimated to be ~0.621 nm and is ~4 times as long as the bond length of C-C backbone. The static friction coefficient was found to be ~[Formula: see text] Pa·s, which is on the same order of magnitude as the dynamic viscosity of water, and increases with the droplet size. A nondimensional number defined by the ratio of the standard deviation of wetting velocity to the characteristic wetting velocity was put forward to signify the strength of the inherent contact line fluctuation and unveil the mechanism of enhanced energy dissipation in nanoscale, whereas such effect would become insignificant in macroscale. Moreover, regarding a liquid droplet on hydrophobic or superhydrophobic surfaces, an approximate solution to the base radius development was derived by an asymptotic expansion approach.

  3. Fabricating Super-hydrophobic Polydimethylsiloxane Surfaces by a Simple Filler-Dissolved Process

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2010-12-01

    The self-cleaning effect of super-hydrophobic surfaces has attracted the attention of researchers. Typical ways of manufacturing super-hydrophobic surfaces include the use of either dedicated equipment or a complex chemical process. In this study, a simple innovative filler-dissolved method is developed using mainly powder salt and rinsing to form hydrophobic surfaces. This method can produce large super-hydrophobic surfaces with porous and micro rib surface structures. It can also be applied to curved surfaces, including flexible membranes. The contact angle of the manufactured artificial hydrophobic surface is about 160°. Furthermore, water droplets roll off the surface readily at a sliding angle of less than 5°, resembling the nonwetting lotus like effect.

  4. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    International Nuclear Information System (INIS)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan

    2013-01-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO 3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 ). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  5. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan; Yin, Xiaoming; Zhang, Jijia [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Wang, Yaming [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Han, Zhiwu, E-mail: zwhan@jlu.edu.cn [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Ren, Luquan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China)

    2013-09-01

    As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO{sub 3} solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH{sub 3}(CH{sub 2}){sub 11}Si(OCH{sub 3}){sub 3}). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro–nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.

  6. Effects of surface hydrophobicity on the conformational changes of polypeptides of different length.

    Science.gov (United States)

    Mu, Yan

    2011-09-01

    We studied the effects of surface hydrophobicity on the conformational changes of different length polypeptides by calculating the free energy difference between peptide structures using the bias-potential Monte Carlo technique and the probability ratio method. It was found that the hydrophobic surface plays an important role in the stability of secondary structures of the polypeptides with hydrophobic side chains. For short GAAAAG peptides, the hydrophobic surface destabilizes the α helix but stabilizes the β hairpin in the entire temperature region considered in our study. Interestingly, when the surface hydrophobic strength ε(hpsf)≥ε(hp), the most stable structure in the low temperature region changes from α helix to β hairpin, and the corresponding phase transition temperature increases slightly. For longer GAAAAAAAAAAG peptides, the effects of the relatively weak hydrophobic surface (ε(hpsf) ε(hp)) may further disturb the formation of both α-helical and β structures. Moreover, the phase transition temperature between α-helical structures and random coils significantly decreases due to the helicity loss when ε(hpsf)>ε(hp). Our findings provide a basic and quantitative picture for understanding the effects of a hydrophobic surface on the conformational changes of the polypeptides with hydrophobic side chains. From an application viewpoint, the present study is helpful in developing alternative strategies of producing high-quality biological fibrillar materials and functional nanoscale devices by the self-assembly of the polypeptides on hydrophobic surfaces.

  7. Biofilm retention on surfaces with variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Revsbech, Niels Peter

    2011-01-01

    Biofilms on food processing equipment cause food spoilage and pose a hazard to consumers. The bacterial community on steel surfaces in a butcher’s shop was characterized, and bacteria representative of this community enriched from minced pork were used to study biofilm retention. Stainless steel......-gel, but the bacterial community contained fewer Pseudomonas cells. In conclusion, biofilm retention was affected more by surface roughness than chemical composition under the condition described in this study....

  8. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    NARCIS (Netherlands)

    Van der Mei, HC; de Vries, Jacob; Busscher, HJ

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose

  9. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben

    2015-01-01

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  10. INVESTIGATION OF MICRO AND NANOSTRUCTURE OF HYDROPHOBIC PLANTS SURFACE

    Directory of Open Access Journals (Sweden)

    M. V. Zhukov

    2014-03-01

    Full Text Available Micro and nanostructure of petals and flowers of pink rose family having super hydrophobic phenomenon known as "lotus effect" was studied by optical and scanning probe microscopy. Quasi-ordered corrugated structure was found on the surface of the rose petals. It represents the ensemble of smoothed shape peaks like a lotus leaf structure. Structure saving during dehydration of rose petal (for 5 days by drying in the air under normal conditions was found, the difference is apparent in the density of the arrangement and shape of the peaks, which in case of dehydrated rose petal have a smoother shape. Thus, the typical distance between the structure peaks of the native rose petal was 25-30 mkm, average peak height was 8 mkm, the peak width at half- height was about 15 mkm, peak top approximated by a sphere had a radius of about 2-3 mkm, the slope angle of the surface tangent to the peak axis was about 38-42º. Characteristic distance between the peaks for a dried rose petal is reduced to 20-25 mkm, the average peak height was 8 mkm, the width of the peak at half - height was about 18 mkm, peak top approximated by a sphere had a radius of about 5-6 mkm, the slope angle of the surface tangent to the peak axis was about 40-50º. A thin nanostructure of separate peak was examined on a dried petal, which consists of longitudinal bands of about 150-300 nm in height and about 2-3 mkm in width. While visualizing of rose stem leaves, a cellular structure with micro-pores and nanometer canals on the surface was discovered. The analysis of surface roughness on different parts of investigated objects was held. A single peak roughness was about 650 nm for a living rose petal, 300 nm for dried rose petal, roughness of the rose stem leaf was about 65-70 nm with sizes of scanned areas equal to 10x10 mkm. Studies were conducted on the integrated optical module Optem of Ntegra Aura microscope (NT-MDT, Russia and on the scanning probe microscope NanoEducator LE (NT

  11. Characterization and toxicological behavior of synthetic amorphous hydrophobic silica.

    Science.gov (United States)

    Lewinson, J; Mayr, W; Wagner, H

    1994-08-01

    During almost three decades of experience with hydrophobic silicas, no adverse health effects have been observed in manufacturing and applications with appropriate handling of the materials. The oral LD50 for rodents is > 7.9 g/kg body wt. Fumed or precipitated hydrophobic silicas do not produce inflammation of the skin or mucous membranes. Likewise, acute and chronic oral tests yielded no adverse systemic effects. A limited carcinogenesis study in rats did not induce tumors and the Ames test of a toluene extract was negative. Reproductive or developmental toxicity was not observed. In general, hydrophobic silicas provide a toxicological profile essentially the same as common silicas.

  12. Evaluation of Relative Yeast Cell Surface Hydrophobicity Measured by Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Lisa Colling

    2005-01-01

    Full Text Available Objective: To develop an efficient method for evaluating cell surface hydrophobicity and to apply the method to demonstrate the effects of fungal growth conditions on cell surface properties.

  13. An experimental investigation of evaporating sessile droplet on super-hydrophobic surface

    International Nuclear Information System (INIS)

    Shin, Dong Hwan; Lee, Seong Hyuk; Yoo, Jung Yul

    2008-01-01

    The objective of this study is to investigate the evaporation process of a water droplet on hydrophobic and hydrophilic surfaces. Time-dependent contact angle, height, radius, surface area, and volume were measured for three different surfaces, such as glass, OctadecylTrichloroSilane(OTS), and AlkylKetene Dimmer(AKD) using a digital image analysis technique. For hydrophilic surfaces, the measured contact angle, liquid volume, and height are also compared with numerical estimation. It is found that for super-hydrophobic surfaces, the contact line becomes no longer pinned during evaporation, and three distinct stages for hydrophobic surface cannot be found. For the super-hydrophobic surface, it takes the longest time for evaporation because the droplet maintains spherical shape even near the end of evaporation process

  14. Patterned hydrophobic and hydrophilic surfaces of ultra-smooth nanocrystalline diamond layers

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, M., E-mail: michael.mertens@uni-ulm.de [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Mohr, M.; Brühne, K.; Fecht, H.J. [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany); Łojkowski, M.; Święszkowski, W. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Łojkowski, W. [Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw (Poland)

    2016-12-30

    Highlights: • Hydrophobic and hydrophilic properties on fluorine-, hydrogen- and oxygen- terminated ultra-nanocrystalline diamond films. • Micropatterned - multi-terminated layers with both hydrophobic and hydrophilic areas on one sample. • Visualization of multi-terminated surfaces by e.g. SEM and LFM. • Roughness and friction investigations on different terminated surfaces. • Smooth and biocompatible surfaces with same roughness regardless of hydrophobicity for microbiological investigations. - Abstract: In this work, we show that ultra nanocrystalline diamond (UNCD) surfaces have been modified to add them hydrophobic and hydrophilic properties. The nanocrystalline diamond films were deposited using the hot filament chemical vapor deposition (HFCVD) technique. This allows growing diamond on different substrates which can be even 3D or structured. Silicon and, for optical applications, transparent quartz glass are the preferred substrates for UNCD layers growth. Fluorine termination leads to strong hydrophobic properties as indicated by a high contact angle for water of more than 100°. Hydrogen termination shows lesser hydrophobic behavior. Hydrophilic characteristics has been realised with oxygen termination. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) measurements confirm the oxygen and fluorine- termination on the nanocrystalline diamond surface. Further, by micropatterning using photolithography, multi-terminated layers have been created with both hydrophobic and hydrophilic areas. In addition, we have shown that retermination is achieved, and the properties of the surface have been changed from hydrophobic to hydrophilic and vice versa. Micro- roughness and stress in the grown film influences slightly the wetting angle as well. The opportunity to realize local differences in hydrophobicity on nanocrystalline diamond layers, in any size or geometry, offers interesting applications for example in

  15. Influence of cosolvents on the hydrophobic surface immobilization topography of Candida antarctica lipase B

    Science.gov (United States)

    The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., ...

  16. Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization

    Directory of Open Access Journals (Sweden)

    Chao-Hua Xue et al

    2008-01-01

    Full Text Available By coating fibers with titania sol to generate a dual-size surface roughness, followed by hydrophobization with stearic acid, 1H,1H,2H,2H-perfluorodecyltrichlorosilane or their combination, hydrophilic cotton fabrics were made superhydrophobic. The surface wettability and topology of cotton fabrics were studied by contact angle measurement and scanning electron microscopy. The UV-shielding property of the treated fabrics was also characterized by UV-vis spectrophotometry.

  17. Surface modification of cellulose isolated from Sesamun indicum underutilized seed: A means of enhancing cellulose hydrophobicity

    Directory of Open Access Journals (Sweden)

    Adewale Adewuyi

    2017-09-01

    Full Text Available Cellulose (SC isolated from sesame seed (SS was surface modified with the introduction of an ester functional group via a simple reaction to produce the modified product (SA. SS, SC and SA were characterized using Fourier transform infrared (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TG, particle size distribution (PSD, zeta potential and scanning electron microscopy (SEM. SC and SA were evaluated for their water holding capacity (WC, oil holding capacity (OC, swelling capacity (SW and their ability to adsorb heavy metals. The FTIR revealed peaks corresponding to the formation of the ester functional group at the surface of SA. The crystallinity of SC was 28.02% but after the modification, it increased to 77.03% in SA. The PSD of SC and SA was both monomodal with sizes of 10.1305 μm in SC and 10.2511 μm in SA. The adsorption capacity of SC towards Pb (II and Cu (II ions was higher than that of SA. However, SA was unable to adsorb Cu (II ions. SA exhibited the lower WC and SW values as compared to SC which suggested an improved hydrophobicity after the modification. This study has shown that hydrophobicity can be improved in cellulose via surface modification.

  18. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, N.P.; Norde, W.; Meil, H.C.; Busscher, H.J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F-prev) and to detach adhering bacteria (F-det) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  19. Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces

    NARCIS (Netherlands)

    Boks, Niels P.; Norde, Willem; van der Mei, Henny C.; Busscher, Henk J.

    2008-01-01

    Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion (F(prev)) and to detach adhering bacteria (F(det)) were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the

  20. Characterization of water repellency for hydrophobized grains with different geometries and sizes

    DEFF Research Database (Denmark)

    Wijewardana, N S; Kawamoto, K.; Møldrup, Per

    2015-01-01

    hydrophobized grains. To characterize the water repellency (WR) of dry and wet hydrophobized grains, initial solid-water contact angles (αi) were measured using the sessile drop method (SDM). Based on SDM results from the αi–HA content and αi–θg curves, useful WR indices were introduced as “Area_dry” and “Area...

  1. Characterization of solid surfaces

    National Research Council Canada - National Science Library

    Kane, Philip F; Larrabee, Graydon B

    1974-01-01

    .... A comprehensive review of surface analysis, this important volume surveys both principles and techniques of surface characterization, describes instrumentation, and suggests the course of future research...

  2. Super-hydrophobic surfaces from a simple coating method: a bionic nanoengineering approach

    International Nuclear Information System (INIS)

    Liu Yuyang; Chen Xianqiong; Xin, J H

    2006-01-01

    Inspired by the self-cleaning behaviour of lotus leaves in nature, we developed a simple coating method that can facilitate the bionic creation of super-hydrophobic surfaces on various substrates, thus providing a feasible way of fabricating super-hydrophobic surfaces for civil and industrial applications. Micro-nanoscale binary structured composite particles of silica/fluoropolymer were prepared using an emulsion-mediated sol-gel process, and then these composite particles were applied to various substrates to mimic the surface microstructures of lotus leaves. Super-hydrophobic surfaces with a water contact angle larger than 150 deg. are obtained, and these super-hydrophobic surfaces are expected to have potential applications for rusting-resistant, anti-fog and self-cleaning treatments

  3. Preparation and characterization of hydrophobic platinum-doped ...

    Indian Academy of Sciences (India)

    Administrator

    2013-05-31

    May 31, 2013 ... 0∙8 m3 (STP) s–1 m–3 was obtained for hydrogen isotope exchange in atmospheric pressure conditions. Keywords. Hydrophobic catalyst; carbon .... volume of packed catalyst bed under conditions of unit displacement. ... was fed at the top of the column and natural hydrogen gas. (~ 50 ppm D/H) was fed ...

  4. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  5. Water in contact with extended hydrophobic surfaces: Direct evidence of weak dewetting

    DEFF Research Database (Denmark)

    Jensen, Torben René; Jensen, Morten Østergaard; Reitzel, Niels

    2003-01-01

    X-ray reflectivity measurements reveal a significant dewetting of a large hydrophobic paraffin surface floating on water. The dewetting phenomenon extends less than 15 Angstrom into the bulk water phase and results in an integrated density deficit of about one water molecule per 25-30 Angstrom(2......) of water in contact with the paraffin surface. The results are supported by molecular dynamics simulations and related to the hydrophobic effect....

  6. Preparation of enhanced hydrophobic poly(L-lactide-co-ε-caprolactone) films surface and its blood compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Il; Lim, Jin Ik; Jung, Youngmee; Mun, Cho Hay [Division of Life and Health Science, Biomaterials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Ji Heung, E-mail: kimjh@skku.edu [Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University, Suwon, Kyunggi (Korea, Republic of); Kim, Soo Hyun, E-mail: soohkim@kist.re.kr [Division of Life and Health Science, Biomaterials Research Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul (Korea, Republic of)

    2013-07-01

    Hydrophobicity-enhanced poly(L-lactide-co-ε-caprolactone) (PLCL) (50:50) films were cast by using the solvent–nonsolvent casting method. PLCL (50:50) was synthesized by the well-known random copolymerization process and confirmed by {sup 1}H NMR analysis. The molecular weight of the synthesized PLCL was measured by gel permeation chromatography (GPC). Number-average (Mn), weight-average (Mw) molecular weights and polydispersity (Mw/Mn) were 7 × 10{sup 4}, 1.2 × 10{sup 5}, and 1.7, respectively. PLCL films were cast in vacuum condition with various nonsolvents and nonsolvent ratios. Tetrahydrofuran (THF) was used as the solvent and three different alcohols were used as the nonsolvent: methanol, ethanol, and isopropyl alcohol (IPA). Surface hydrophobicity was confirmed by water contact angle. The water contact angle was increased from 81° ± 2° to 107° ± 2°. Water contact angle was influenced by surface porosity and topography. The prepared film surfaces were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The change of crystalline property was characterized by X-ray diffraction (XRD). Platelet adhesion tests on the modified PLCL film surfaces were evaluated by platelet-rich plasma (PRP). The modified film surface exhibited enhanced hydrophobicity and reduced platelet adhesion ratio depending on the surface topography. One of the candidate products proposed as a potential blood compatible material showed a markedly reduced platelet adhesion property.

  7. Comparison of SF6 and CF4 Plasma Treatment for Surface Hydrophobization of PET Polymer

    Directory of Open Access Journals (Sweden)

    Matic Resnik

    2018-02-01

    Full Text Available The fluorination of the polymer polyethylene terephthalate in plasma created from SF6 or CF4 gas at various pressures was investigated. The surface was analysed by X-ray photoelectron spectroscopy and water contact angle measurements, whereas the plasma was characterized by optical emission spectroscopy. The extent of the polymer surface fluorination was dependent on the pressure. Up to a threshold pressure, the amount of fluorine on the polymer surface and the surface hydrophobicity were similar, which was explained by the full dissociation of the SF6 and CF4 gases, leading to high concentrations of fluorine radicals in the plasma and thus causing the saturation of the polymer surface with fluorine functional groups. Above the threshold pressure, the amount of fluorine on the polymer surface significantly decreased, whereas the oxygen concentration increased, leading to the formation of the hydrophilic surface. This effect, which was more pronounced for the SF6 plasma, was explained by the electronegativity of both gases.

  8. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui; Kuffel, E

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH 3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  9. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid

    Science.gov (United States)

    Wang, Lixin; Zhou, Qiang

    2016-01-01

    To investigate the hydrophobicity of slippery zones, static contact angle measurement and microstructure observation of slippery surfaces from two Nepenthes species and a hybrid were conducted. Marginally different static contact angles were observed, as the smallest (133.83°) and greatest (143.63°) values were recorded for the N. alata and N. miranda respectively, and the median value (140.40°) was presented for the N. khasiana. The slippery zones under investigation exhibited rather similar surface morphologies, but different structural dimensions. These findings probably suggest that the geometrical dimensions of surface architecture exert primary effects on differences in the hydrophobicity of the slippery zone. Based on the Wenzel and Cassie-Baxter equations, models were proposed to analyze the manner in which geometrical dimensions affect the hydrophobicity of the slippery surfaces. The results of our analysis demonstrated that the different structural dimensions of lunate cells and wax platelets make the slippery zones present different real area of the rough surface and thereby generate somewhat distinguishable hydrophobicity. The results support a supplementary interpretation of surface hydrophobicity in plant leaves, and provide a theoretical foundation for developing bioinspired materials with hydrophobic properties and self-cleaning abilities.

  10. Characterization of novel silane coatings on titanium implant surfaces

    NARCIS (Netherlands)

    Matinlinna, Jukka P; Tsoi, James Kit‐Hon; de Vries, Jacob; Busscher, Hendrik

    Objectives This in vitro study describes and characterizes a developed novel method to produce coatings on Ti. Hydrophobic coatings on substrates are needed in prosthetic dentistry to promote durable adhesion between luting resin cements and coated Ti surfaces. In implant dentistry the hydrophobic

  11. Characterization and modeling of nonlinear hydrophobic interaction chromatographic systems.

    Science.gov (United States)

    Nagrath, Deepak; Xia, Fang; Cramer, Steven M

    2011-03-04

    A general rate model was employed in concert with a preferential interaction quadratic adsorption isotherm for the characterization of HIC resins and the prediction of solute behavior in these separation systems. The results indicate that both pore and surface diffusion play an important role in protein transport in HIC resins. The simulated and experimental solute profiles were compared for two model proteins, lysozyme and lectin, for both displacement and gradient modes of chromatography. Our results indicate that a modeling approach using the generate rate model and preferential interaction isotherm can accurately predict the shock layer response in both gradient and displacement chromatography in HIC systems. While pore and surface diffusion played a major role and were limiting steps for proteins, surface diffusion was seen to play less of a role for the displacer. The results demonstrate that this modeling approach can be employed to describe the behavior of these non-linear HIC systems, which may have implications for the development of more efficient preparative HIC separations. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  13. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment

    International Nuclear Information System (INIS)

    Park, Heung Yeol; Kang, Byung Ju; Lee, Dohyung; Oh, Je Hoon

    2013-01-01

    We have obtained a wide range of surface wettabilities of PI substrate for inkjet printing by combining hydrophobic solution coating and O 2 or Ar plasma treatments. Experiments were conducted to investigate the variation in inkjet-printed dot diameters with different surface treatments. The change in chemical and physical characteristics of treated surfaces was evaluated using static contact angle measurements, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Only hydrophobic coated surface produces the smallest dot diameter and the largest contact angle. Dot diameter increases and contact angle decreases as the plasma treatment time increases. Since the removal of hydrophobic layer from the surface occurs due to the etching effect of O 2 and Ar plasma during the plasma treatments, F/C ratio decreases with increasing the plasma treatment time. Surface roughness variations are also observed after plasma treatments. The ranges of printed dot sizes for O 2 and Ar plasma treatments are 38 μm–70 μm and 38 μm–92 μm, respectively. Ar plasma treatment shows a wider range of surface wettability because of higher removal rate of the hydrophobic layer. This combination of hydrophobic coating and plasma treatment can offer an effective way to obtain a wide range of surface wettabilities for high quality inkjet-printed patterns. - Highlights: • Hydrophobic coating and plasma treatments were used to control surface wettability. • Inkjet-printed dot diameters increase with O 2 or Ar plasma treatment time. • Contact angles of Ag ink agree well with the variation tendency of dot diameters. • The removal of hydrophobic layer occurs during the plasma treatments. • Ar plasma treatment shows a wider range of surface wettability than O 2 plasma

  14. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.

  15. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    Energy Technology Data Exchange (ETDEWEB)

    Marczak, Jacek, E-mail: jacek.marczak@eitplus.pl [Wroclaw Research Centre EIT+ Ltd., 147 Stablowicka St., 54-066 Wrocław (Poland); Kargol, Marta [Wroclaw Research Centre EIT+ Ltd., 147 Stablowicka St., 54-066 Wrocław (Poland); Psarski, Maciej; Celichowski, Grzegorz [Department of Materials Technology and Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz (Poland)

    2016-09-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  16. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    International Nuclear Information System (INIS)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-01-01

    Graphical abstract: - Highlights: • Chemical structure of alkylsilanes and fluoroalkylsilanes can affect the hydrophobic and surface performance of the modified samples. • Wet chemical hydrophobization is relatively simple and inexpensive method to obtain hydrophobic/superhydrophobic coatings. • The samples degradation is not observed and hydrophobic coatings seem to be stable in UV light. - Abstract: Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient

  17. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow

    KAUST Repository

    Moretti, Manola

    2017-05-19

    The shear flow generated at the rim of a drop evaporating on a micro-fabricated super-hydrophobic surface has been used to suspend and orient single/few lysozyme amyloid fibrils between two pillars for substrate-free characterization. Micro Raman spectroscopy performed on extended fibers evidenced a shift of the Amide I band main peak to the value attributed to β-sheet secondary structure, characteristic of the amyloid fibers. In addition, given the orientation sensitivity of the anisotropic molecule, the Raman signal of the main secondary structure was nicely enhanced for a fiber alignment parallel to the polarization direction of the laser. The substrate-free sample generated by this suspending technique is suitable for other structural analysis methods, where fiber crystals are investigated. It could be further employed for generation of arrays and patterns in a controllable fashion, where bio-compatible material is needed.

  19. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  20. Ultra fast laser machined hydrophobic stainless ateel surface for drag reduction in laminar flows

    NARCIS (Netherlands)

    Jagdheesh, R.; Pathiraj, B.; Martin, A.G.; Del Cerro, D.A.; Lammertink, R.G.H.; Lohse, D.; Huis in 't Veld, A.J.; Römer, G.R.B.E.

    2010-01-01

    Hydrophobic surfaces have attracted much attention due to their potential in microfluidics, lab on chip devices and as functional surfaces for the automotive and aerospace industry. The combination of a dual scale roughness with an inherent low-surface-energy coating material is the pre-requisite

  1. Ultra fast laser machined hydrophobic stainless steel surface for drag reduction in laminar flows

    NARCIS (Netherlands)

    Radhakrishnan, J.; Pathiraj, B.; Gomez Marin, Alvaro; Arnaldo del Cerro, D.; Lammertink, Rob G.H.; Lohse, Detlef; Huis in 't Veld, Bert; Römer, Gerardus Richardus, Bernardus, Engelina

    2010-01-01

    Hydrophobic surfaces have attracted much attention due to their potential in microfluidics, lab on chip devices and as functional surfaces for the automotive and aerospace industry. The combination of a dual scale roughness with an inherent low-surface-energy coating material is the pre-requisite

  2. Non-invasive high throughput approach for protein hydrophobicity determination based on surface tension.

    Science.gov (United States)

    Amrhein, Sven; Bauer, Katharina Christin; Galm, Lara; Hubbuch, Jürgen

    2015-12-01

    The surface hydrophobicity of a protein is an important factor for its interactions in solution and thus the outcome of its production process. Yet most of the methods are not able to evaluate the influence of these hydrophobic interactions under natural conditions. In the present work we have established a high resolution stalagmometric method for surface tension determination on a liquid handling station, which can cope with accuracy as well as high throughput requirements. Surface tensions could be derived with a low sample consumption (800 μL) and a high reproducibility (content. The protein influence on the solutions' surface tension was correlated to the hydrophobicity of lysozyme, human lysozyme, BSA, and α-lactalbumin. Differences in proteins' hydrophobic character depending on pH and species could be resolved. Within this work we have developed a pH dependent hydrophobicity ranking, which was found to be in good agreement with literature. For the studied pH range of 3-9 lysozyme from chicken egg white was identified to be the most hydrophilic. α-lactalbumin at pH 3 exhibited the most pronounced hydrophobic character. The stalagmometric method occurred to outclass the widely used spectrophotometric method with bromophenol blue sodium salt as it gave reasonable results without restrictions on pH and protein species. © 2015 Wiley Periodicals, Inc.

  3. Hydrophobic and hydrophilic surface nano-modification of PET fabric by plasma process.

    Science.gov (United States)

    Paosawatyanyong, B; Kamlangkla, K; Hodak, S K

    2010-11-01

    Polyethylene terephthalate (PET) fabrics were treated by radio frequency inductively coupled plasma (RF-ICP) to modify their hydrophobic and hydrophilic properties. Types of gases which were SF6, O2, N2 and Ar, treatment time, pressure and RF power were varied systematically. The water droplet contact angle measurements showed that, treating with SF6 plasma would result in the increase of hydrophobicity of PET samples while treating with O2, N2 and Ar plasmas would yield hydrophilic properties. In both hydrophobic and hydrophilic cases, the surface morphology of PET fibers was roughened after exposed to plasma. Hence, it is not obvious that these surface roughness induced by plasma is sufficient to yield the increase in hydrophobicity by the well known lotus effect.

  4. Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact

    Science.gov (United States)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2017-11-01

    Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (µCT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a µCT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface.

  5. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  6. Fabrication and hydrophobic characteristics of micro / nanostructures on polydimethylsiloxane surface prepared by picosecond laser

    Science.gov (United States)

    Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei

    2018-03-01

    Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.

  7. Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic.

    Science.gov (United States)

    Rotenberg, Benjamin; Patel, Amish J; Chandler, David

    2011-12-21

    While individual water molecules adsorb strongly on a talc surface (hydrophilic behavior), a droplet of water beads up on the same surface (hydrophobic behavior). To rationalize this dichotomy, we investigated the influence of the microscopic structure of the surface and the strength of adhesive (surface-water) interactions on surface hydrophobicity. We have shown that at low relative humidity, the competition between adhesion and the favorable entropy of being in the vapor phase determines the surface coverage. However, at saturation, it is the competition between adhesion and cohesion (water-water interactions) that determines the surface hydrophobicity. The adhesive interactions in talc are strong enough to overcome the unfavorable entropy, and water adsorbs strongly on talc surfaces. However, they are too weak to overcome the cohesive interactions, and water thus beads up on talc surfaces. Surprisingly, even talc-like surfaces that are highly adhesive do not fully wet at saturation. Instead, a water droplet forms on top of a strongly adsorbed monolayer of water. Our results imply that the interior of hydrophobic zeolites suspended in water may contain adsorbed water molecules at pressures much lower than the intrusion pressure. © 2011 American Chemical Society

  8. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    Science.gov (United States)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-11-01

    A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings or adhesives, but also their adhesion in contact with hardened polymers.

  9. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    International Nuclear Information System (INIS)

    Corrales Ureña, Yendry Regina; Lisboa-Filho, Paulo Noronha; Szardenings, Michael; Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus

    2016-01-01

    Highlights: • Less than 10 nm layer formed on carbon based materials composed by laccase and maltodextrin. • Improvement of the wettability of carbon based materials. • A protein-polysaccharide biofilm layer formation at solid liquid interface. • Stable layers formed under buffer and water rinsing. - Abstract: A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings

  10. Formation and composition of adsorbates on hydrophobic carbon surfaces from aqueous laccase-maltodextrin mixture suspension

    Energy Technology Data Exchange (ETDEWEB)

    Corrales Ureña, Yendry Regina, E-mail: yendry386@hotmail.com [UNESP São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, São Paulo (Brazil); Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Lisboa-Filho, Paulo Noronha [UNESP São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Bauru, São Paulo (Brazil); Szardenings, Michael [Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103 Leipzig (Germany); Gätjen, Linda; Noeske, Paul-Ludwig Michael; Rischka, Klaus [Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2016-11-01

    Highlights: • Less than 10 nm layer formed on carbon based materials composed by laccase and maltodextrin. • Improvement of the wettability of carbon based materials. • A protein-polysaccharide biofilm layer formation at solid liquid interface. • Stable layers formed under buffer and water rinsing. - Abstract: A robust procedure for the surface bio-functionalization of carbon surfaces was developed. It consists on the modification of carbon materials in contact with an aqueous suspension of the enzyme laccase from Trametes versicolor and the lyophilization agent maltodextrin, with the pH value adjusted close to the isoelectric point of the enzyme. We report in-situ investigations applying Quartz Crystal Microbalance with Dissipation (QCM-D) for carbon-coated sensor surfaces and, moreover, ex-situ measurements with static contact angle measurements, X-ray Photoelectron Spectroscopy (XPS) and Scanning Force Microscopy (SFM) for smooth Highly Oriented Pyrolytic Graphite (HOPG) substrates, for contact times between the enzyme formulation and the carbon material surface ranging from 20 s to 24 h. QCM-D studies reveals the formation of rigid layer of biomaterial, a few nanometers thin, which shows a strongly improved wettability of the substrate surface upon contact angle measurements. Following spectroscopic characterization, these layers are composed of mixtures of laccase and maltodextrin. The formation of these adsorbates is attributed to attractive interactions between laccase, the maltodextrin-based lyophilization agent and the hydrophobic carbon surfaces; a short-term contact between the aqueous laccase mixture suspension and HOPG surfaces is shown to merely result in de-wetting patterns influencing the results of contact angle measurements. The new enzyme-based surface modification of carbon-based materials is suggested to be applicable for the improvement of not only the wettability of low energy substrate surfaces with fluid formulations like coatings

  11. Formation and Mechanism of Superhydrophobic/Hydrophobic Surfaces Made from Amphiphiles through Droplet-Mediated Evaporation-Induced Self-Assembly.

    Science.gov (United States)

    Dong, Fangyuan; Zhang, Mi; Tang, Wai-Wa; Wang, Yi

    2015-04-23

    Superhydrophobic/hydrophobic surfaces have attracted wide attention because of their broad applications in various regions, including coating, textile, packaging, electronic devices, and bioengineering. Many studies have been focused on the fabrication of superhydrophobic/hydrophobic surfaces using natural materials. In this paper, superhydrophobic/hydrophobic surfaces were formed by an amphiphilic natural protein, zein, using electrospinning. Water contact angle (WCA) and scanning electron microscopy (SEM) were used to characterize the hydrophobicity and surface morphology of the electrospun structures. The highest WCA of the zein electrospun surfaces could reach 155.5 ± 1.4°. To further understand the mechanism of superhydrophobic surface formation from amphiphiles using electrospinning, a synthetic amphiphilic polymer was selected, and also, a method similar to electrospinning, spray drying, was tried. The electrospun amphiphilic polymer surface showed a high hydrophobicity with a WCA of 141.4 ± 0.7°. WCA of the spray-dried zein surface could reach 125.3 ± 2.1°. The secondary structures of the zein in the electrospun film and cast-dried film were studied using ATR-FTIR, showing that α-helix to β-sheet transformation happened during the solvent evaporation in the cast drying process but not in the electrospinning process. A formation mechanism was proposed on the basis of the orientation of the amphiphiles during the solvent evaporation of different fabrication methods. The droplet-based or jet-based evaporation during electrospinning and spray drying led to the formation of the superhydrophobic/hydrophobic surface by the accumulation of the hydrophobic groups of the amphiphiles on the surface, while the surface-based evaporation during cast drying led to the formation of the hydrophilic surface by the accumulation of the hydrophilic groups of the amphiphiles on the surface.

  12. Anticorrosive behaviour of lumefantrine hydrophobic layer on mild steel surface

    Directory of Open Access Journals (Sweden)

    Pavithra M. Krishnegowda

    2016-06-01

    Full Text Available The surface modification of mild steel was achieved by chemical treatment in lumefantrine (LF solution. The surface morphology and wettability of modified surface was analysed by 3D profilometer and contact angle goniometer. The corrosion inhibition performance of modified mild steel surface in 1.0 M HCl solution was investigated by potentiodynamic polarization and electrochemical impedance techniques.Electroche­mical measurements illustrate that the corrosion of mild steel in acidic chloride medium get substantially reduced by introducing LF film on its surface (94 % efficiency. Quantum chemical parameters were evaluated by ab initio method and they confer appropriate theoretical support to the experimental findings.

  13. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane

    Science.gov (United States)

    Faiqotul Himma, Nurul; Kusuma Wardani, Anita; Gede Wenten, I.

    2017-05-01

    Polypropylene (PP) has been widely used for fabrication of hydrophobic microporous membrane due to its good thermal and chemical stability. However, the hydrophobicity of PP is inadequate to prevent membrane wetting which hinders its application in long-term operation of membrane contactor and other hydrophobic membrane processes. Endowing the membrane with superhydrophobicity has become an attractive way to improve wetting resistance. In this work, superhydrophobic PP membrane was prepared by coating with roughened polymer film. A simple technique of two-step dip-coating was used for deposition of the non-solvent solution and polymer solution. The effects of five non-solvent types were investigated, including ethanol, isopropyl alcohol (IPA), acetone, methyl ethyl ketone (MEK), and cyclohexanone. All non-solvents increased the surface roughness, leading to an improvement of membrane hydrophobicity. Superhydrophobic PP membranes with high water contact angle (WCA) of 150.4° and 151.3° have been successfully prepared by using IPA and MEK, respectively. Morphology characterization revealed that both modified membranes had more uniform and larger number of smaller aggregates which might minimize surface area in contact with liquid, resulting in increased contact angle. As the coating was conducted separately, the utilization of non-solvent could be more effective.

  14. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water.

    Science.gov (United States)

    Northcott, Kathy A; Bacus, Joannelle; Taya, Naoyuki; Komatsu, Yu; Perera, Jilska M; Stevens, Geoffrey W

    2010-11-15

    Hydrophobic zeolite was synthesized, modified and characterized for its suitability as a permeable reactive barrier (PRB) material for treatment of hydrocarbons in groundwater. Batch sorption tests were performed along with a number of standard characterization techniques. High and low ionic strength and pH tests were also conducted to determine their impact on hydrocarbon uptake. Further ion exchange tests were conducted to determine the potential for the zeolite to act as both a hydrocarbon capture material and nutrient a delivery system for bioremediation. The zeolite was coated with octadecyltrichlorosilane (C18) to change its surface properties. The results of the surface characterization tests showed that the underlying zeolite structure was largely unaffected by the coating. TGA measurements showed a reactive carbon content of 1-2%. Hydrocarbon (o-xylene and naphthalene) sorption isotherms results compared well with the behaviour of similar materials investigated by other researchers. Ionic strength and pH had little effect on hydrocarbon sorption and the treated zeolite had an ion exchange capacity of 0.3 mequiv./g, indicating it could be utilised as a nutrient source in PRBs. Recycle tests indicated that the zeolite could be used cleaned and reused at least three times without significant reduction in treatment effectiveness. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Droplet nucleation on a well-defined hydrophilic-hydrophobic surface of 10 nm order resolution.

    Science.gov (United States)

    Yamada, Yutaka; Ikuta, Tatsuya; Nishiyama, Takashi; Takahashi, Koji; Takata, Yasuyuki

    2014-12-09

    Water condensation on a hybrid hydrophilic-hydrophobic surface was investigated to reveal nucleation mechanisms at the microscale. Focused ion beam (FIB) irradiation was used to change the wettability of the hydrophobic surface with 10 nm order spatial resolution. Condensation experiments were conducted using environmental scanning electron microscopy; droplets, with a minimum diameter of 800 nm, lined up on the FIB-irradiated hydrophilic lines. The heterogeneous nucleation theory was extended to consider the water molecules attracted to the hydrophilic area, thereby enabling explanation of the nucleation mechanism under unsaturated conditions. Our results showed that the effective surface coverage of the water molecules on the hydrophilic region was 0.1-1.1 at 0.0 °C and 560 Pa and was dependent on the width of the FIB-irradiated hydrophilic lines and hydrophobic area. The droplet nucleation mechanism unveiled in this work would enable the design of new surfaces with enhanced dropwise condensation heat transfer.

  16. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mudan, E-mail: chenmudan@163.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Wei, E-mail: climentjw@126.com [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Fenghe [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng [National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core–shell composite material based on magnetic hollow Fe{sub 3}O{sub 4} nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe{sub 3}O{sub 4} nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  17. Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface

    Science.gov (United States)

    Chen, Mudan; Jiang, Wei; Wang, Fenghe; Shen, Ping; Ma, Peichang; Gu, Junjun; Mao, Jianyu; Li, Fengsheng

    2013-12-01

    The removal of organic contaminants, particularly oil spills from water surface is of great technological importance for environmental protection. In this article, we present a novel, economic and environment-friendly core-shell composite material based on magnetic hollow Fe3O4 nanoparticles (MNPs) that was fabricated by two-step process, which can fast and efficiently separate oils from water surface under a magnetic field. The magnetic Fe3O4 nanoparticles (MNPs) were coated with a polystyrene layer successfully to form water-repellent and oil-absorbing surfaces, which could float on water and selectively absorb lubricating oil up to 3 times of the particles’ weight while completely repelling water. More importantly, the oils could be readily removed from the surfaces of nanocomposites by a simple treatment and the nanocomposites still kept highly hydrophobic and superoleophilic characteristics, so the nanocomposites have an excellent recyclability in the oil-absorbent capacity. Several techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used in the characterization of the materials. In addition, magnetic force and oils removal capability tests were also performed. It will open up a potential and broad application in wastewater treatment.

  18. Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth.

    Science.gov (United States)

    Zhang, Shanshan; Chen, Xuerui; Yu, Jing; Hong, Biyuan; Lei, Qunfang; Fang, Wenjun

    2016-06-01

    To provide a biomimic environment for glial cell culture, glycerol tripalmitate (PPP) has been used as a raw material to prepare fractal surfaces with different degrees of hydrophobicity. The spontaneous formation of the hydrophobic fractal surfaces was monitored by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The surface morphologies were observed by a scanning electron microscope (SEM), and then the fractal dimension (FD) values of the surfaces were determined with the box-counting method. C6 glioma cells were cultured and compared on different hydrophobic PPP surfaces and poly-L-lysine (PLL)-coated surface. The cell numbers as a function of incubation time on different surfaces during the cell proliferation process were measured, and the cell morphologies were observed under a fluorescence microscope. Influences of hydrophobic fractal surfaces on the cell number and morphology were analyzed. The experimental results show that the cell proliferation rates decrease while the cell morphology complexities increase with the growth of the fractal dimensions of the PPP surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Salmonella Sofia differs from other poultry-associated Salmonella serovars with respect to cell surface hydrophobicity.

    Science.gov (United States)

    Chia, T W R; Fegan, N; McMeekin, T A; Dykes, G A

    2008-12-01

    Salmonella enterica is one of the most important foodborne pathogens. Salmonella enterica subsp. II 4,12:b:- (Salmonella Sofia) is commonly found in Australian poultry. It has been suggested that physicochemical properties such as surface charge and hydrophobicity may affect bacterial attachment to surfaces and their ability to persist in food systems. A possible link between hydrophobicity cell surface charge and persistence of Salmonella from the poultry system was examined. Hydrophobicity of Salmonella Sofia (n = 14), Salmonella Typhimurium (n = 6), Salmonella Infantis (n = 3), and Salmonella Virchow (n = 2) was assayed using hydrophobic interaction chromatography, bacterial adherence to hydrocarbons (BATH), using xylene or hexadecane, and the contact angle method (CAM). Cellular surface charge (CSC) of the isolates was determined using zeta potential measurements. The majority (12 of 14) of Salmonella Sofia isolates were found to be hydrophobic when assayed using BATH with xylene, except isolates S1635 and S1636, and the other serovars were found to be hydrophilic. Salmonella Sofia isolates were not significantly different (P > 0.05) from isolates of other serovars as measured by hydrophobic interaction, BATH with hexadecane, or the CAM. No significant differences (P > 0.05) in zeta potential measurements were observed between isolates. Principal component analysis using results from all four measures of hydrophobicity allowed clear differentiation between isolates of the serovar Salmonella Sofia (except S1635 and S1636) and those of other Salmonella serovars. Differences in physicochemical properties may be a contributing factor to the Salmonella Sofia serovar's ability to attach to surfaces and persist in a food system.

  20. Conformation of bovine submaxillary mucin layers on hydrophobic surface as studied by biomolecular probes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi I.; Madsen, Jan Busk; Lee, Seunghwan

    2015-01-01

    non-linear responses with increasing surface concentration. The results from this study support the conventional amphiphilic, triblock model of BSM in the adsorption onto hydrophobic surface from aqueous solution.The biomolecular probe-based approaches employed in this study, however, provided further...

  1. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  2. Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods.

    Science.gov (United States)

    Sankar, Sasidharan; Nair, Balagopal N; Suzuki, Takehiro; Anilkumar, Gopinathan M; Padmanabhan, Moothetty; Hareesh, Unnikrishnan Nair S; Warrier, Krishna G

    2016-03-09

    Metal oxides, in general, are known to exhibit significant wettability towards water molecules because of the high feasibility of synergetic hydrogen-bonding interactions possible at the solid-water interface. Here we show that the nano sized phosphates of rare earth materials (Rare Earth Phosphates, REPs), LaPO4 in particular, exhibit without any chemical modification, unique combination of intrinsic properties including remarkable hydrophobicity that could be retained even after exposure to extreme temperatures and harsh hydrothermal conditions. Transparent nanocoatings of LaPO4 as well as mixture of other REPs on glass surfaces are shown to display notable hydrophobicity with water contact angle (WCA) value of 120° while sintered and polished monoliths manifested WCA greater than 105°. Significantly, these materials in the form of coatings and monoliths also exhibit complete non-wettability and inertness towards molten metals like Ag, Zn, and Al well above their melting points. These properties, coupled with their excellent chemical and thermal stability, ease of processing, machinability and their versatile photo-physical and emission properties, render LaPO4 and other REP ceramics utility in diverse applications.

  3. Electrophoresis of a polarizable charged colloid with hydrophobic surface: A numerical study

    Science.gov (United States)

    Bhattacharyya, Somnath; Majee, Partha Sarathi

    2017-04-01

    We consider the electrophoresis of a charged colloid for a generalized situation in which the particle is considered to be polarizable and the surface exhibits hydrophobicity. The dielectric polarization of the particle creates a nonlinear dependence of the electrophoretic velocity on the applied electric field, and the core hydrophobicity amplifies the fluid convection in the Debye layer. Thus, a linear analysis is no longer applicable for this situation. The present analysis is based on the numerical solution of the nonlinear electrokinetic equations based on the Navier-Stokes-Nernst-Planck-Poisson equations coupled with the Laplace equation for the electric field within the dielectric particle. The hydrophobicity of the particle may influence its electric polarization by enhancing the convective transport of ions. The nonlinear effects, such as double-layer polarization and relaxation, are also influenced by the hydrophobicity of the particle surface. The present results compare well for a lower range of the applied electric field and surface charge density with the existing results for a perfectly dielectric particle with a hydrophobic surface based on the first-order perturbation analysis due to Khair and Squires [Phys. Fluids 21, 042001 (2009), 10.1063/1.3116664]. Dielectric polarization creates a reduction in particle electrophoretic velocity, and its impact is strong for a moderate range of Debye length. A quantitative measure of the nonlinear effects is demonstrated by comparing the electrophoretic velocity with an existing linear model.

  4. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength

    NARCIS (Netherlands)

    Vadillo Rodriguez, Virginia; Busscher, Hendrik; van der Mei, Henderina; Norde, Willem; de Vries, Jacob

    2005-01-01

    The S-layer present at the outermost cell surface of some lactobacillus species is known to convey hydrophobicity to the lactobacillus cell surface. Yet, it is commonly found that adhesion of lactobacilli to solid substrata does not proceed according to expectations based on cell surface

  5. Role of lactobacillus cell surface hydrophobicity as probed by AMF in adhesion to surfaces at low and high ionic strength

    NARCIS (Netherlands)

    Vadillo-Rodriguez, V.; Busscher, H.J.; Meij, van der H.C.; Vries, de J.; Norde, W.

    2005-01-01

    The S-layer present at the outermost cell surface of some lactobacillus species is known to convey hydrophobicity to the lactobacillus cell surface. Yet, it is commonly found that adhesion of lactobacilli to solid substrata does not proceed according to expectations based on cell surface

  6. Super-hydrophobic surfaces improve corrosion resistance of copper in seawater

    International Nuclear Information System (INIS)

    Liu, Tao; Yin, Yansheng; Chen, Shougang; Chang, Xueting; Cheng, Sha

    2007-01-01

    Pretreated by a n-tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) etch, the super-hydrophobic film was formed on the fresh copper surface. The film structure was probed with contact angle measurement and scanning electron microscopy (SEM). The results suggest that the structure of the film is similar to haulm or flower and the seawater contact angle is larger than 150 o . Moreover, the corrosion resistance of bare and modified samples in seawater were investigated by cyclic voltammograms (CV) and electrochemical impedance spectroscopy (EIS). Experimental results show that the corrosion rate of Cu with super-hydrophobic surface decreases dramatically because of its special microstructure

  7. ZnO nanowires coated hydrophobic surfaces for various biomedical ...

    Indian Academy of Sciences (India)

    71

    which is typically found in water and can cause special type of pneumonia known as. Legionnaries disease. Because, if the material surface is hydrophilic the bacteria's present in water may adhere to the biomaterial resulting in bio-film formation, which may cause pathogenesis [8-10]. For achieving antibacterial activity, ...

  8. Design of textured surfaces for super-hydrophobicity

    Indian Academy of Sciences (India)

    Prithvi Raj Jelia

    2017-11-11

    Nov 11, 2017 ... phobic surfaces. Phys. Fluids 21(5): 052001. [21] Xiu Y, Zhu L, Hess D and Wong C P 2006 Superhy- drophobicity and UV stability of polydimethylsiloxane/ polytetrafluoroethylene (PDMS/PTFE) coatings. In: Pro- ceedings of the 11th IEEE CPMT International Symposium and Exhibition on Advanced ...

  9. Standard Test Method for Hydrophobic Surface Films by the Water-Break Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces, the sensitivity of the test may be significantly decreased. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    Science.gov (United States)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  11. Standard Test Method for Hydrophobic Surface Films by the Atomizer Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1965-01-01

    1.1 This test method covers the detection of the presence of hydrophobic (nonwetting) films on surfaces and the presence of hydrophobic organic materials in processing ambients. When properly conducted, the test will enable detection of fractional molecular layers of hydrophobic organic contaminants. On very rough or porous surfaces the sensitivity of the test may be significantly decreased. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Molecular dynamics simulations study of nano bubble attachment at hydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Dang, Liem X.; Miller, Jan D.

    2018-01-01

    Bubble attachment phenomena are examined using Molecular Dynamics Simulations (MDS) for the first time. The simulation involves a nitrogen nano bubble containing 906 nitrogen molecules in a water phase with 74,000 water molecules at molybdenite surfaces. During a simulation period of 1 ns, film rupture and displacement occurs. The attached nanobubble at the hydrophobic molybdenite face surface results in a contact angle of about 90º. This spontaneous attachment is due to a “water exclusion zone” at the molybdenite face surface and can be explained by a van der Waals (vdW) attractive force, as discussed in the literature. In contrast, the film is stable at the hydrophilic quartz (001) surface and the bubble does not attach. Contact angles determined from MD simulations are reported, and these results agree well with experimental and MDS sessile drop results. In this way, film stability and bubble attachment are described with respect to interfacial water structure for surfaces of different polarity. Interfacial water molecules at the hydrophobic molybdenite face surface have relatively weak interactions with the surface when compared to the hydrophilic quartz (001) surface, as revealed by the presence of a 3 Å “water exclusion zone” at the molybdenite/water interface. The molybdenite armchair-edge and zigzag-edge surfaces show a comparably slow process for film rupture and displacement when compared to the molybdenite face surface, which is consistent with their relatively weak hydrophobic character.

  13. Interactions between nano-TiO2 and the oral cavity: impact of nanomaterial surface hydrophilicity/hydrophobicity.

    Science.gov (United States)

    Teubl, Birgit J; Schimpel, Christa; Leitinger, Gerd; Bauer, Bettina; Fröhlich, Eleonore; Zimmer, Andreas; Roblegg, Eva

    2015-04-09

    Titanium dioxide (TiO2) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle-cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO2 particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Science.gov (United States)

    Zheng, Rongbo; Tshabalala, Mandla A.; Li, Qingyu; Wang, Hongyan

    2015-02-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution. The morphology and the crystal structure of TiO2 coated on the wood surface were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The TiO2 morphology on the wood surface could be tuned by simply changing either the reaction time or pH value of the reaction mixture. After modification with perfluorodecyltriethoxysilane (PFDTS), the water contact angle (WCA) of the TiO2-treated wood (T1) surface increased to 140.0 ± 4.2°, which indicated a highly hydrophobic wood surface. In addition, compared with untreated control wood, PFDTS-TiO2 treatment (PFDTS-T1-treated) not only reduced liquid water uptake, but also delayed the onset of water saturation point of the wood substrate. The weight change of PFDTS-T1-treated wood after 24 h of water immersion was 19.3%, compared to 81.3% for the untreated control wood. After 867 h of water immersion, the weight change for the treated and untreated wood specimens was 117.1%, and 155.1%, respectively. The untreated control wood reached the steady state after 187 h, while the PFDTS-T1-treated wood did not reach the steady state until after 600 h of immersion.

  16. Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality.

    Science.gov (United States)

    Latour, Robert A; Rini, Christopher J

    2002-06-15

    At a fundamental level, protein adsorption to a synthetic surface must be strongly influenced by the interaction between the peptide residues presented by the protein's surface (primary protein structure) and the functional groups presented by the synthetic surface. In this study, semi-empirical molecular modeling was used along with experimental wetting data to theoretically approach protein adsorption at this primary structural level. Changes in enthalpy, entropy, and Gibbs free energy were calculated as a function of residue-surface separation distance for the adsorption of individual hydrophobic peptide residues (valine, leucine, phenylalanine) on alkanethiol self-assembled monolayers on gold [Au-S(CH(2))(15)-X; X = CH(3), OH, NH(3)(+), COO(-)]. The results predict that the adsorption of each type of hydrophobic residue is energetically favorable and entropy dominated on a methyl-terminated hydrophobic surface, energetically unfavorable and enthalpy dominated on a hydroxyl-terminated neutral hydrophilic surface, and very slightly favorable to unfavorable and enthalpy dominated on charged surfaces. These theoretical results provide a basis for understanding some of the fundamental effects governing protein adsorption to synthetic surfaces. This level of understanding is needed for the proactive design of surfaces to control protein adsorption and subsequent cellular response for both implant and tissue engineering applications. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 564-577, 2002

  17. Surface tension, hydrophobicity, and black holes: The entropic connection

    International Nuclear Information System (INIS)

    Callaway, D.J.

    1996-01-01

    The geometric entropy arising from partitioning space in a fluid open-quote open-quote field theory close-quote close-quote is shown to be linearly proportional to the area of an excluded region. The coefficient of proportionality is related to surface tension by a thermodynamic argument. Good agreement with experimental data is obtained for a number of fluids. The calculation employs a density-matrix formalism developed previously for studying the origin of black hole entropy. This approach may lead to a practical technique for the evaluation of thermodynamic quantities with important entropic components. copyright 1996 The American Physical Society

  18. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO{sub 2} nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yong-Li, E-mail: yylhill@163.com [College of Chemistry & Chemical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong [Langfang Branch of Research Institute of Petroleum Exploration & Development, Langfang 065007 (China)

    2017-02-28

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  19. Drag reduction in reservoir rock surface: Hydrophobic modification by SiO2 nanofluids

    International Nuclear Information System (INIS)

    Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong

    2017-01-01

    Graphical abstract: The micro-nanoscale hierarchical structures at the sandstone core surface are constructed by adsorption of the modified silica nanoparticles, which leads to the effect of drag reduction to improve the low injection rate in ultra-low permeability reservoirs. - Highlights: • A micro-nanoscale hierarchical structure is formed at the reservoir rock surface. • An inversion has happened from hydrophilic into hydrophobic modified by nanofluids. • The effect of drag reduction to improve the low injection rate is realized. • The mechanism of drag reduction induced from the modified core surface was unclosed. - Abstract: Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water

  20. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes

    Science.gov (United States)

    Zhang, Xi; Ren, Peng-Fei; Yang, Hao-Cheng; Wan, Ling-Shu; Xu, Zhi-Kang

    2016-01-01

    We report a novel approach toward the surface modification of commercial polymer membranes via co-deposition of tannic acid (TA) and diethlyenetriamine (DETA). Particle-free, superhydrophilic, and almost colorless coatings are fabricated on the surfaces of polypropylene, poly(vinylidene fluoride), and poly(tetrafluoroethlene) microfiltration membranes. Cross-linking between TA and DETA plays a crucial role during the co-deposition process, as well as the adhesion of TA on the hydrophobic membrane surfaces. Both the surface wettability and water permeation flux are dramatically improved for the studied membranes after the co-deposition. The results indicate that co-deposition of TA and DETA is great potential for the surface modification of hydrophobic membranes.

  1. Hydrophobization of track membrane surface by ion-plasma sputtering method

    Science.gov (United States)

    Kuklin, I. E.; Khlebnikov, N. A.; Barashev, N. R.; Serkov, K. V.; Polyakov, E. V.; Zdorovets, M. V.; Borgekov, D. B.; Zhidkov, I. S.; Cholakh, S. O.; Kozlovskiy, A. L.

    2017-09-01

    This article reviews the possibility of applying inorganic coatings of metal compounds on PTM by ion-plasma sputtering. The main aim of this research is to increase the contact angle of PTM surfaces and to impart the properties of a hydrophobic material to it. After the modification, the initial contact angle increased from 70° to 120°.

  2. Effect of Growth Conditions on Flocculation and Cell Surface Hydrophobicity of Brewing Yeast

    Czech Academy of Sciences Publication Activity Database

    Kopecká, J.; Němec, M.; Matoulková, D.; Čejka, P.; Jelínková, Markéta; Felsberg, Jürgen; Sigler, Karel

    2015-01-01

    Roč. 73, č. 2 (2015), s. 143-150 ISSN 0361-0470 Institutional support: RVO:61388971 Keywords : Ale and lager yeast * Cell surface hydrophobicity * FLO genes Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.492, year: 2015

  3. IMPLICATIONS OF MICROBIAL ADHESION TO HYDROCARBONS FOR EVALUATING CELL-SURFACE HYDROPHOBICITY .2. ADHESION MECHANISMS

    NARCIS (Netherlands)

    VANDERMEI, HC; VANDEBELTGRITTER, B; BUSSCHER, HJ

    1995-01-01

    Microbial adhesion to hydrocarbons (MATH) is generally considered to be a measure of the organisms cell surface hydrophobicity. Recent observations that the zeta potentials of hydrocarbons can be highly negative in the various solutions commonly used in MATH, have suggested that MATH may measure a

  4. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation

    DEFF Research Database (Denmark)

    Dynesen, Jens Østergaard; Nielsen, Jens

    2003-01-01

    Formation of pellets by Aspergillus nidulans is primarily due to agglomeration of the fungal conidiospores. Although agglomeration of conidiospores has been known for a long time, its mechanism has not been clearly elucidated. To study the influence of the fungal conidiospore wall hydrophobicity...... on conidiospore agglomeration, pellet formation of an A. nidulans wild type and strains deleted in the conidiospore-wall-associated hydrophobins DewA and RodA was compared at different pH values. From contact angle measurements, RodA was found to be more important for the surface hydrophobicity than Dew...

  5. Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres

    DEFF Research Database (Denmark)

    Guo, Zheng; Bai, Shu; Sun, Yan

    2003-01-01

    A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized...... with transmission and scanning electron microscopes, respectively. Magnetization of the microspheres could be described by the Langevin function. All the observations indicated that the microspheres were superparamagnetic. Magnetic sedimentation of the microspheres was achieved within 3 min, over 300 times faster...... recovered by magnetic separations....

  6. MS2 and Qβ bacteriophages reveal the contribution of surface hydrophobicity on the mobility of non-enveloped icosahedral viruses in SDS-based capillary zone electrophoresis.

    Science.gov (United States)

    Sautrey, Guillaume; Brié, Adrien; Gantzer, Christophe; Walcarius, Alain

    2018-01-01

    SDS is commonly employed as BGE additive in CZE analysis of non-enveloped icosahedral viruses. But the way by which SDS interacts with the surface of such viruses remains to date poorly known, making complicate to understand their behavior during a run. In this article, two related bacteriophages, MS2 and Qβ, are used as model to investigate the migration mechanism of non-enveloped icosahedral viruses in SDS-based CZE. Both phages are characterized by similar size and surface charge but significantly different surface hydrophobicity (Qβ > MS2, where '>' means 'more hydrophobic than'). By comparing their electrophoretic mobility in the presence or not of SDS on both sides of the CMC, we show that surface hydrophobicity of phages is a key factor influencing their mobility and that SDS-virus association is driven by hydrophobic interactions at the surface of virions. The CZE analyses of heated MS2 particles, which over-express hydrophobic domains at their surface, confirm this finding. The correlations between the present results and others from the literature suggest that the proposed mechanism might not be exclusive to the bacteriophages examined here. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    International Nuclear Information System (INIS)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun; Hong, Jungwoo; Shin, Jennifer H.; Byun, Doyoung

    2017-01-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  8. RF plasma based selective modification of hydrophilic regions on super hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaehyun; Hwang, Sangyeon; Cho, Dae-Hyun [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Hong, Jungwoo [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Shin, Jennifer H., E-mail: j_shin@kaist.ac.kr [Department of Mechanical Engineering, Graduate of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Byun, Doyoung, E-mail: dybyun@skku.edu [Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of)

    2017-02-01

    Highlights: • Simple and amenable reforming method for a substrate with disparate patterns of hydrophilic dots on super-hydrophobic surfaces is proposed. • Wettability characteristics and modification mechanism for the surfaces are conducted and revealed through SEM, AFM, WSI, and SIMS. • Several representative materials for various applications are successfully deposited. - Abstract: Selective modification and regional alterations of the surface property have gained a great deal of attention to many engineers. In this paper, we present a simple, a cost-effective, and amendable reforming method for disparate patterns of hydrophilic regions on super-hydrophobic surfaces. Uniform super-hydrophobic layer (Contact angle; CA > 150°, root mean square (RMS) roughness ∼0.28 nm) can be formed using the atmospheric radio frequency (RF) plasma on top of the selective hydrophilic (CA ∼ 70°, RMS roughness ∼0.34 nm) patterns imprinted by electrohydrodynamic (EHD) jet printing technology with polar alcohols (butyl carbitol or ethanol). The wettability of the modified surface was investigated qualitatively utilizing scanning electron microscopy (SEM), atomic force microscopy (AFM), and wavelength scanning interferometer (WSI). Secondary ion mass spectroscopy (SIMS) analysis showed that the alcohol addiction reaction changed the types of radicals on the super-hydrophobic surface. The wettability was found to depend sensitively on chemical radicals on the surface, not on surface morphology (particle size and surface roughness). Furthermore, three different kinds of representative hydrophilic samples (polystyrene nano-particle aqueous solution, Salmonella bacteria medium, and poly(3,4-ethylenediocythiophene) ink) were tested for uniform deposition onto the desired hydrophilic regions. This simple strategy would have broad applications in various research fields that require selective deposition of target materials.

  9. Forces and friction between hydrophilic and hydrophobic surfaces: influence of oleate species.

    Science.gov (United States)

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2007-09-15

    The atomic force microscope has been used to investigate normal surface forces and lateral friction forces at different concentrations of sodium oleate, a frequently used fatty acid in the deinking process. The measurements have been performed using the colloidal probe technique with bead materials consisting of cellulose and silica. Cellulose was used together with a printing ink alkyd resin and mica, whereas silica was used with a hydrophobized silica wafer. The cellulose-alkyd resin system showed stronger double layer repulsion and the friction was reduced with increasing surfactant concentration. The adhesive interaction disappeared immediately on addition of sodium oleate. The normal surface forces for cellulose-mica indicated no apparent adsorption of the sodium oleate however, the friction coefficient increased on addition of sodium oleate, which we ascribe to some limited adsorption increasing the effective surface roughness. The silica-hydrophobic silica system showed a completely different surface force behavior at the different concentrations. An attractive hydrophobic interaction was evident since the surfaces jumped into adhesive contact at a longer distance than the van der Waals forces would predict. The strong adhesion was reflected in the friction forces as a nonlinear relationship between load and friction and a large friction response at zero applied load. Indirect evidence of adsorption to the hydrophilic silica surface was also observed in this case, and QCM studies were performed to confirm the adsorption of material to both surfaces.

  10. Ions-induced nanostructuration: effect of specific ionic adsorption on hydrophobic polymer surfaces.

    Science.gov (United States)

    Siretanu, Igor; Chapel, Jean-Paul; Bastos-González, Delfi; Drummond, Carlos

    2013-06-06

    The effect of surface charges on the ionic distribution in close proximity to an interface has been extensively studied. On the contrary, the influence of ions (from dissolved salts) on deformable interfaces has been barely investigated. Ions can adsorb from aqueous solutions on hydrophobic surfaces, generating forces that can induce long-lasting deformation of glassy polymer films, a process called ion-induced polymer nanostructuration, IPN. We have found that this process is ion-specific; larger surface modifications are observed in the presence of water ions and hydrophobic and amphiphilic ions. Surface structuration is also observed in the presence of certain salts of lithium. We have used streaming potential and atomic force microscopy to study the effect of dissolved ions on the surface properties of polystyrene films, finding a good correlation between ionic adsorption and IPN. Our results also suggest that the presence of strongly hydrated lithium promotes the interaction of anions with polystyrene surfaces and more generally with hydrophobic polymer surfaces, triggering then the IPN process.

  11. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates by RF-sputtered polytetrafluoroethylene coatings

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2014-03-01

    Full Text Available In this work, we present a method of fabricating super-hydrophobic surface on aluminum alloy substrate. The etching of aluminum surfaces has been performed using Beck's dislocation etchant for different time to create micrometer-sized irregular steps. An optimised etching time of 50 s is found to be essential before polytetrafluoroethylene (PTFE coating, to obtain a highest water contact angle of 165±2° with a lowest contact angle hysteresis as low as 5±2°. The presence of patterned microstructure as revealed by scanning electron microscopy (SEM together with the low surface energy ultrathin RF-sputtered PTFE films renders the aluminum alloy surfaces highly super-hydrophobic.

  12. Construction of super - hydrophobic copper alloy surface by one - step mixed solution immersion method

    Science.gov (United States)

    Gu, Qiang; Chen, Ying; Chen, Dong; Zhang, Zeting

    2018-01-01

    This paper presents a method for preparing a super hydrophobic surface with a fast, simple, low-cost, one-step reaction by immersing copper alloy in an ethanol solution containing silver nitrate and myristic acid. The effects of reaction time, reaction temperature, reactant concentration and reaction time on the wettability of the material were studied. The surface wettability, appearance, chemical composition, durability and chemical stability of the prepared samples was measured by water contact angle (CA), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that when the reaction time is only 10min, the surface WCA of the prepared material can reach 154.9. This study provides an effective method for the rapid preparation of stable super hydrophobic surfaces.

  13. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Engineering durable hydrophobic surfaces on porous alumina ceramics using in-situ formed inorganic-organic hybrid nanoparticles

    NARCIS (Netherlands)

    Gu, Jianqiang; Wang, Junwei; Li, Yanan; Xu, Xin; Chen, Chusheng; Winnubst, Louis

    2017-01-01

    Hydrophobic surfaces are required for a variety of applications owing to their water repellent and self-cleaning properties. In this work, we present a novel approach to prepare durable hydrophobic surfaces on porous ceramics. A polydimethylsiloxane (PDMS) film was applied to a porous alumina wafer,

  15. Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices: The Electrostatic Origin of Polar Hydrophobicity.

    Science.gov (United States)

    Mayrhofer, Leonhard; Moras, Gianpietro; Mulakaluri, Narasimham; Rajagopalan, Srinivasan; Stevens, Paul A; Moseler, Michael

    2016-03-30

    Despite the pronounced polarity of C-F bonds, many fluorinated carbon compounds are hydrophobic: a controversial phenomenon known as "polar hydrophobicity". Here, its underlying microscopic mechanisms are explored by ab initio calculations of fluorinated and hydrogenated diamond (111) surfaces interacting with single water molecules. Gradient- and van der Waals-corrected density functional theory simulations reveal that "polar hydrophobicity" of the fully fluorinated surfaces is caused by a negligible surface/water electrostatic interaction. The densely packed C-F surface dipoles generate a short-range electric field that decays within the core repulsion zone of the surface and hence vanishes in regions accessible by adsorbates. As a result, water physisorption on fully F-terminated surfaces is weak (adsorption energies Ead 0.2 eV) that is dominated by electrostatic interactions. The suppression of electrostatic interactions also holds for perfluorinated molecular carbon compounds, thus explaining the prevalent hydrophobicity of fluorocarbons. In general, densely packed polar terminations do not always lead to short-range electric fields. For example, surfaces with substantial electron density spill-out give rise to electric fields with a much slower decay. However, electronic spill-out is limited in F/H-terminated carbon materials. Therefore, our ab initio results can be reproduced and rationalized by a simple classical point-charge model. Consequently, classical force fields can be used to study the wetting of F/H-terminated diamond, revealing a pronounced correlation between adsorption energies of single H2O molecules and water contact angles.

  16. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  17. Hydrophilic/hydrophobic surface modification impact on colloid lithography: Schottky-like defects, dislocation, and ideal distribution

    Science.gov (United States)

    Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy

    2018-03-01

    Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.

  18. Effects of Streptococcus sanguinis Bacteriocin on Cell Surface Hydrophobicity, Membrane Permeability, and Ultrastructure of Candida Thallus

    Directory of Open Access Journals (Sweden)

    Shengli Ma

    2015-01-01

    Full Text Available Candida albicans (C.a and Candida tropicalis (C.t were treated with Streptococcus sanguinis bacteriocin (S.s bacteriocin, respectively; the bacteriostatic dynamics of S.s bacteriocin, their effects on cell surface hydrophobicity, leakage of inorganic phosphorus and macromolecular substance, cytosolic calcium concentration, and ultrastructure changes of Candida thallus were detected and analyzed. The results showed that inhibitory effect of S.s bacteriocin on C.a and C.t reached peak level at 24 h, the cell-surface hydrophobicity decreased significantly (P < 0.05 after S.s bacteriocin treatment, and there was leakage of cytoplasmic inorganic phosphorus and macromolecular substance from C.a and C.t; cytosolic calcium concentration decreased greatly. After 24 h treatment by S.s bacteriocin, depressive deformity and defect could be found in the cell surface of C.a and C.t; the thallus displayed irregular forms: C.a was shrunken, there was unclear margins abutting upon cell wall and cell membrane, nucleus disappeared, and cytoplasm was inhomogeneous; likewise, C.t was first plasmolysis, and then the cytoplasm was shrunk, the ultrastructure of cell wall and cell membrane was continuously damaged, and the nucleus was karyolysis. It was illustrated that S.s bacteriocin had similar antifungal effect on C.a and C.t; their cell surface hydrophobicity, membrane permeability, and ultrastructure were changed significantly on exposure to S.s bacteriocin.

  19. Effect on cell surface hydrophobicity and susceptibility of Helicobacter pylori to medicinal plant extracts.

    Science.gov (United States)

    Annuk, H; Hirmo, S; Türi, E; Mikelsaar, M; Arak, E; Wadström, T

    1999-03-01

    Effects on aqueous extracts of medicinal plants on ten Helicobacter pylori strains were studied by the salt aggregation test to determine the possibility to modulate their cell surface hydrophobicity and by an agar diffusion assay for detection of antimicrobial activity. It was established that aqueous extracts of bearberry and cowberry leaves enhance cell aggregation of all H. pylori strains tested by the salt aggregation test, and the extract of bearberry possessed a remarkable bacteriostatic activity. Pure tannic acid showed a result similar to that of bearberry and cowberry extracts which contained a large amount of tannins. In contrast, extracts of wild camomile and pineapple-weed, which blocked aggregation of H. pylori, contained small amounts of tannins and did not reveal any antimicrobial activity. Tannic acid seems to be the component of bearberry and cowberry aqueous extracts with the highest activity to decrease cell surface hydrophobicity as well as in antibacterial activity against H. pylori.

  20. Temporal Changes in Extracellular Polymeric Substances on Hydrophobic and Hydrophilic Membrane Surfaces in a Submerged Membrane Bioreactor

    KAUST Repository

    Matar, Gerald Kamil

    2016-03-02

    Membrane surface hydrophilic modification has always been considered to mitigating biofouling in membrane bioreactors (MBRs). Four hollow-fiber ultrafiltration membranes (pore sizes ∼0.1 μm) differing only in hydrophobic or hydrophilic surface characteristics were operated at a permeate flux of 10 L/m2.h in the same lab-scale MBR fed with synthetic wastewater. In addition, identical membrane modules without permeate production (0 L/m2.h) were operated in the same lab-scale MBR. Membrane modules were autopsied after 1, 10, 20 and 30 days of MBR operation, and total extracellular polymeric substances (EPS) accumulated on the membranes were extracted and characterized in detail using several analytical tools, including conventional colorimetric tests (Lowry and Dubois), liquid chromatography with organic carbon detection (LC-OCD), fluorescence excitation - emission matrices (FEEM), fourier transform infrared (FTIR) and confocal laser scanning microscope (CLSM). The transmembrane pressure (TMP) quickly stabilized with higher values for the hydrophobic membranes than hydrophilic ones. The sulfonated polysulfone (SPSU) membrane had the highest negatively charged membrane surface, accumulated the least amount of foulants and displayed the lowest TMP. The same type of organic foulants developed with time on the four membranes and the composition of biopolymers shifted from protein dominance at early stages of filtration (day 1) towards polysaccharides dominance during later stages of MBR filtration. Nonmetric multidimensional scaling of LC-OCD data showed that biofilm samples clustered according to the sampling event (time) regardless of the membrane surface chemistry (hydrophobic or hydrophilic) or operating mode (with or without permeate flux). These results suggest that EPS composition may not be the dominant parameter for evaluating membrane performance and possibly other parameters such as biofilm thickness, porosity, compactness and structure should be considered

  1. Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2.

    Science.gov (United States)

    Tribedi, P; Sil, A K

    2014-02-01

    Polyethylene succinate (PES) contains hydrolysable ester bonds that make it a potential substitute for polyethylene (PE) and polypropylene (PP). Towards bioremediation of PES, we have already reported that a new strain of Pseudomonas, Pseudomonas sp. AKS2, can efficiently degrade PES and hypothesized that cell surface hydrophobicity plays an important role in this degradation process. In this study, our efforts were targeted towards establishing a correlation between cell surface hydrophobicity and PES degradation. We have manipulated cell surface hydrophobicity of AKS2 by varying concentrations of glucose and ammonium sulphate in the growth medium and subsequently examined the extent of PES degradation. We observed an increase in PES degradation by AKS2 with an increase in cell surface hydrophobicity. The increased surface hydrophobicity caused an enhanced biofilm formation on PES surface that resulted in better polymer degradation. The current study establishes a direct correlation between cell surface hydrophobicity of an organism and its potential to degrade a nonpolar polymer like PES. Cell surface hydrophobicity manipulation can be used as an important strategy to increase bioremediation of nonpolar polymer like PES. © 2013 The Society for Applied Microbiology.

  2. Hydrophobic modification on surface of chitin sponges for highly effective separation of oil.

    Science.gov (United States)

    Duan, Bo; Gao, Huimin; He, Meng; Zhang, Lina

    2014-11-26

    A highly hydrophobic and oleophilic chitin sponge was synthesized, for the first time, via a freeze-dried method and then by using a thermal chemical vapor deposition of methyltrichlorosilane (MTCS) at different relative humidity. Fourier-transform infrared, energy-dispersive X-ray spectra, and scanning electron microscopy confirmed that the silanization occurred on the pore wall surface of the chitin sponge. The MTCS-coated chitin sponge had interconnected open-cell structures with the average pore size from 20 to 50 μm, and the MTCS nanofilaments immobilized on the chitin matrix, leading to the high hydrophobicity, as a result of the existence of a solid/air composite rough surface. Cyclic compression test indicated that the hydrophobic chitin sponges exhibited excellent elasticity and high mechanical durability. The sponges could efficiently collect organics both on the surface and bottom from the water with the highest 58 times of their own weight absorption capacities through the combination of the particular wettability and great porosity. Furthermore, the biodegradation kinetics of the chitin sponge forecasted that the chitin could be completely biodegraded within 32 days by the microorganisms in the soil. This work provided a new pathway to prepare the chitin-based materials for highly effective removal of oil from water, showing potential application in the pollutant remediation field.

  3. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA

    Energy Technology Data Exchange (ETDEWEB)

    Fu Yanchun; Li Gang [Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Yu Haipeng, E-mail: yuhaipeng20000@yahoo.com.cn [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China); Liu Yixing, E-mail: yxl200488@sina.com [Key laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Material Science and Engineering College, Northeast Forestry University, Harbin 150040 (China)

    2012-01-15

    To convert the hydrophilic surface of wood into a hydrophobic surface, the present study investigated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) as a method of grafting methyl methacrylate (MMA) onto the wood surface. The wood treated with 2-bromoisobutyryl bromide and with the subsequently attached MMA via ARGET ATRP under different polymerization times (2 h, 4 h, 6 h, 8 h) were examined using scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. All the analyses confirmed that PMMA had been grafted onto the wood surface. Water contact angle measurement proved that the covering layer of PMMA on wood made the surface hydrophobic. Polymerization time had a positive influence on the contact angle value and higher contact angle can be produced with the prolongation of the polymerization time. When the reaction time was extended to 8 h, the contact angle of treated wood surface reached 130 Degree-Sign in the beginning, and remained at 116 Degree-Sign after 60 s. The ARGET ATRP method may raise an alteration on the wood surface modification.

  4. Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans.

    OpenAIRE

    Hazen, B W; Hazen, K C

    1988-01-01

    Expression of cell surface hydrophobicity (CSH) during initial growth of Candida albicans was monitored. CSH of hydrophobic and hydrophilic yeast cells changed within 30 min upon subculture into fresh medium. Morphologic evidence of germination was preceded by expression of CSH. These results indicate that CSH expression is important in C. albicans growth.

  5. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    Science.gov (United States)

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  6. Surface hydrophobicity and acidity effect on alumina catalyst in catalytic methanol dehydration reaction.

    Science.gov (United States)

    Osman, Ahmed I; Abu-Dahrieh, Jehad K; Rooney, David W; Thompson, Jillian; Halawy, Samih A; Mohamed, Mohamed A

    2017-12-01

    Methanol to dimethyl ether (MTD) is considered one of the main routes for the production of clean bio-fuel. The effect of copper loading on the catalytic performance of different phases of alumina that formed by calcination at two different temperatures was examined for the dehydration of methanol to dimethyl ether (DME). A range of Cu loadings of (1, 2, 4, 6, 10 and 15% Cu wt/wt) on Al 2 O 3 calcined at 350 and 550 °C were prepared and characterized by TGA, XRD, BET, NH 3 -TPD, TEM, H 2 -TPR, SEM, EDX, XPS and DRIFT-Pyridine techniques. The prepared catalysts were used in a fixed bed reactor under reaction conditions in which the temperature ranged from 180-300 °C with weight hourly space velocity (WHSV) = 12.1 h -1 . It was observed that all catalysts calcined at 550 °C (γ-Al 2 O 3 support phase) exhibited higher activity than those calcined at 350 °C (γ-AlOOH), and this is due to the phase support change. Furthermore, the optimum Cu loading was found to be 6% Cu/γ-Al 2 O 3 with this catalyst also showing a high degree of stability under steady state conditions and this is attributed to the enhancement in surface acidity and hydrophobicity. The addition of copper to the support improved the catalyst properties and activity. For all the copper modified catalysts, the optimum catalyst with high degree of activity and stability was 6% copper loaded on gamma alumina. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  7. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    International Nuclear Information System (INIS)

    Rathnayake, R.M.N.M.; Mantilaka, M.M.M.G.P.G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H.W.M.A.C.; Yoshimura, Masamichi; Pitawala, H.M.T.G.A.

    2017-01-01

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O 2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g −1 , which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.

  8. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rathnayake, R.M.N.M. [National Institute of Fundamental Studies, Kandy (Sri Lanka); Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Mantilaka, M.M.M.G.P.G. [Sri Lanka Institute of Nanotechnology, Nanotechnology and Science Park, Mahenwatte, Pitipana, Homagama (Sri Lanka); Hara, Masanori; Huang, Hsin-Hui [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Wijayasinghe, H.W.M.A.C., E-mail: athula@ifs.ac.lk [National Institute of Fundamental Studies, Kandy (Sri Lanka); Yoshimura, Masamichi [Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Pitawala, H.M.T.G.A. [Department of Geology, University of Peradeniya, Peradeniya (Sri Lanka)

    2017-07-15

    Highlights: • In this paper, it has been utilized a novel method to prepare a new composite material of PANI/NPG graphite composite, using NPG vein graphite variety. • It is found that the composite works as an anti-corrosive coating on steel surfaces. Further, the prepared composite shows good hydrophobic ability, which is very useful in preventing corrosion on metal surfaces. • The prepared PANI/NPG composite material shows a significantly high corrosion resistance compared to alkyd resin/PANI coatings or alkyd resin coatings, on steel surfaces. - Abstract: Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O{sub 2} penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g{sup −1}, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel

  9. Texture Analysis of Hydrophobic Polycarbonate and Polydimethylsiloxane Surfaces via Persistent Homology

    Directory of Open Access Journals (Sweden)

    Ali Nabi Duman

    2017-09-01

    Full Text Available Due to recent climate change-triggered, regular dust storms in the Middle East, dust mitigation has become the critical issue for solar energy harvesting devices. One of the methods to minimize and prevent dust adhesion and create self-cleaning abilities is to generate hydrophobic characteristics on surfaces. The purpose of this study is to explore the topological features of hydrophobic surfaces. We use non-standard techniques from topological data analysis to extract morphological features from the AFM images. Our method recovers most of the previous qualitative observations in a robust and quantitative way. Persistence diagrams, which is a summary of topological structures, witness quantitatively that the crystallized polycarbonate (PC surface possesses spherulites, voids, and fibrils, and the texture height and spherulite concentration increases with the increased immersion period. The approach also shows that the polydimethylsiloxane (PDMS exactly copied the structures at the PC surface but 80 to 90 percent of the nanofibrils were not copied at PDMS surface. We next extract a feature vector from each persistence diagram to show which experiments hold features with similar variance using principal component analysis (PCA. The K-means clustering algorithm is applied to the matrix of feature vectors to support the PCA result, grouping experiments with similar features.

  10. Superhydrophobic Polyimide via Ultraviolet Photooxidation: The Evolution of Surface Morphology and Hydrophobicity under Different Ultraviolet Intensities

    Directory of Open Access Journals (Sweden)

    Hongyu Gu

    2015-01-01

    Full Text Available Ultraviolet (UV photooxidation has recently been developed to fabricate superhydrophobic polyimide (PI films in combination with fluoroalkylsilane modification. However, it remains unclear whether the surface morphology and hydrophobicity are sensitive to technical parameters such as UV intensity and radiation environment. Herein, we focus on the effects of UV intensity on PI surface structure and wettability to gain comprehensive understanding and more effective control of this technology. Scanning electron microscopy (SEM and atomic force microscopy (AFM results showed that UV intensity governed the evolutionary pattern of surface morphology: lower UV intensity (5 mW/cm2 facilitated in-plane expansion of dendritic protrusions while stronger UV (10 and 15 mW/cm2 encouraged localized growth of protrusions in a piling-up manner. Surface roughness and hydrophobicity maximized at the intensity of 10 mW/cm2, as a consequence of the slowed horizontal expansion and preferred vertical growth of the protrusions when UV intensity increased. Based on these results, the mechanism that surface micro/nanostructures developed in distinct ways when exposed to different UV intensities was proposed. Though superhydrophobicity (water contact angle larger than 150° can be achieved at UV intensity not less than 10 mW/cm2, higher intensity decreased the effectiveness. Therefore, the UV photooxidation under 10 mW/cm2 for 72 h is recommended to fabricate superhydrophobic PI films.

  11. Molecular and supramolecular characterization of Ni(II)/losartan hydrophobic nanoprecipitate

    Science.gov (United States)

    Nascimento, Lorrayne O.; Goulart, Pedro P.; Correa, Jéssyca L.; Abrishamkar, Afshin; Da Silva, Jeferson G.; Mangrich, Antonio S.; de França, Amanda A.; Denadai, Ângelo M. L.

    2014-09-01

    In this work, a contribution to understanding of the formation of metal(II)/losartan hydrophobic nanoprecipitate is reported. A Ni(II)/Los system was prepared and characterized in solid state and in solution. Solubility studies confirmed the formation of hydrophobic precipitate. Obtained spectroscopic data suggest a sort of coordination between tetrazolic ring as well as OH, and a D4h geometry around the nickel cation. Thermodynamic studies demonstrated that complexation is a stepwise process, with equal enthalpic and entropic contributions for free energy of complexation. DLS and zeta potential titrations indicate the formation of stable nanoparticles of size and charge dependent on the molar ratio. Finally, rheological studies demonstrate a Bingham plastic behavior for Ni(II)/Los suspension.

  12. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees

    Directory of Open Access Journals (Sweden)

    Cristhian J. Yarce

    2017-01-01

    Full Text Available This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate, besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid (hydrophilic, sodium salt of poly(maleic acid-alt-octadecene (amphiphilic, poly(maleic anhydride-alt-octadecene (hydrophobic and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC. Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE using the semi-empirical models of Young–Dupré and  Owens-Wendt-Rabel-Käelbe (OWRK, respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism.

  13. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake.

    Science.gov (United States)

    Carrstensen, H; Müller, R H; Müller, B W

    1992-10-01

    Fat emulsions for parenteral nutrition, stabilized by egg lecithin, were characterized in terms of parameters relevant to uptake by the reticuloendothelial system (RES), e.g. size distribution, surface hydrophobicity and adsorption of serum components as a measure of the degree of opsonization. Adsorption of serum components was quantified by zeta potential measurement. Fat emulsions for nutrition were compared with emulsions used for drug delivery and model drug carries for intravenous injection. The emulsions for drug delivery were stabilized by the blockcopolymers Poloxamer 188 and 407 (Pluronic F68 and F127) and Poloxamine 908. Model drug carriers were hydrophobic and hydrophilic polystyrene latex particles. Hydrophilic particles were prepared by adsorption of Poloxamine 908 (coating) onto the particle surface. The hydrophobicity and serum protein adsorption decreased from hydrophobic latex particles to egg lecithin emulsions and blockcopolymer emulsions and particles. The data correlated with that in the literature concerning liver uptake in vivo showing complete RES clearance of hydrophobic latex particles, reduced uptake of egg lecithin emulsions and avoidance of RES uptake by Poloxamine 908 coated particles.

  14. Adsorption of an endoglucanase from the hyperthermophilic Pyrococcus furiosus on hydrophobic (polystyrene) and hydrophilic (silica) surfaces increases protein heat stability

    NARCIS (Netherlands)

    Koutsopoulos, S.; van der Oost, J.; Norde, Willem

    2004-01-01

    The interaction of an endoglucanase from the hyperthermophilic microorganism Pyrococcus furiosus with two types of surfaces, that is, hydrophobic polystyrene and hydrophilic silica, was investigated, and the adsorption isotherms were determined. The adsorbed hyperthermostable enzyme did not undergo

  15. Construction of Hydrophobic Wood Surface and Mechanical Property of Wood Cell Wall on Nanoscale Modified by Dimethyldichlorosilane

    Science.gov (United States)

    Yang, Rui; Wang, Siqun; Zhou, Dingguo; Zhang, Jie; Lan, Ping; Jia, Chong

    2018-01-01

    Dimethyldichlorosilane was used to improve the hydrophobicity of wood surface. The water contact angle of the treated wood surface increased from 85° to 143°, which indicated increased hydrophobicity. The nanomechanical properties of the wood cell wall were evaluated using a nanoindentation test to analyse the hydrophobic mechanism on the nano scale. The elastic modulus of the cell wall was significantly affected by the concentration but the influence of treatment time is insignificant. The hardness of the cell wall for treated samples was significantly affected by both treatment time and concentration. The interaction between treatment time and concentration was extremely significant for the elastic modulus of the wood cell wall.

  16. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  17. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  18. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    International Nuclear Information System (INIS)

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun; Kim, In-Ae; Seung Ko, Jea; Chung, Chong-Pyoung; Kim, Hyun-Man

    2005-01-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growth factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue

  19. Boundary layers of aqueous surfactant and block copolymer solutions against hydrophobic and hydrophilic solid surfaces

    International Nuclear Information System (INIS)

    Steitz, Roland; Schemmel, Sebastian; Shi Hongwei; Findenegg, Gerhard H

    2005-01-01

    The boundary layer of aqueous surfactants and amphiphilic triblock copolymers against flat solid surfaces of different degrees of hydrophobicity was investigated by neutron reflectometry (NR), grazing incidence small angle neutron scattering (GISANS) and atomic force microscopy (AFM). Solid substrates of different hydrophobicities were prepared by appropriate surface treatment or by coating silicon wafers with polymer films of different chemical natures. For substrates coated with thin films (20-30 nm) of deuterated poly(styrene) (water contact angle θ w ∼ 90), neutron reflectivity measurements on the polymer/water interface revealed a water depleted liquid boundary layer of 2-3 nm thickness and a density about 90% of the bulk water density. No pronounced depletion layer was found at the interface of water against a less hydrophobic polyelectrolyte coating (θ w ∼ 63). It is believed that the observed depletion layer at the hydrophobic polymer/water interface is a precursor of the nanobubbles which have been observed by AFM at this interface. Decoration of the polymer coatings by adsorbed layers of nonionic C m E n surfactants improves their wettability by the aqueous phase at surfactant concentrations well below the critical micellar concentration (CMC) of the surfactant. Here, GISANS experiments conducted on the system SiO 2 /C 8 E 4 /D 2 O reveal that there is no preferred lateral organization of the C 8 E 4 adsorption layers. For amphiphilic triblock copolymers (PEO-PPO-PEO) it is found that under equilibrium conditions they form solvent-swollen brushes both at the air/water and the solid/water interface. In the latter case, the brushes transform to uniform, dense layers after extensive rinsing with water and subsequent solvent evaporation. The primary adsorption layers maintain properties of the precursor brushes. In particular, their thickness scales with the number of ethylene oxide units (EO) of the block copolymer. In the case of dip-coating without

  20. Fabrication of large-area hydrophobic surfaces with femtosecond-laser-structured molds

    Science.gov (United States)

    Wu, P. H.; Cheng, C. W.; Chang, C. P.; Wu, T. M.; Wang, J. K.

    2011-11-01

    Fast replication of large-area femtosecond-laser-induced surface micro/nanostructures on plastic parts by injection molding is demonstrated. An STAVAX steel mold insert is irradiated by femtosecond laser pulses with linear or circular polarization to form periodic-like nanostructures or nanostructure-covered conical microstructures. It was then used for the process of thermal injection molding. The process provides high-volume manufacturing means to generate hydrophobic enhanced plastic parts, which is expected to be widely used in consumables and chemical/biomedical device industries.

  1. Numerical Simulation of Turbulent Half-corrugated Channel Flow by Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    M. R. Rastan

    2018-03-01

    Full Text Available In the first part of the present study, a two dimensional half-corrugated channel flow is simulated at Reynolds number of 104, in no-slip condition (hydrophilic surfaces( using various low Reynolds turbulence models as well as standard k-ε model; and an appropriate turbulence model (k-ω 1998 model( is proposed. Then, in order to evaluate the proposed solution method in simulation of flow adjacent to hydrophobic surfaces, turbulent flow is simulated in simple channel and the results are compared with the literature. Finally, two dimensional half-corrugated channel flow at Reynolds number of 104 is simulated again in vicinity of hydrophobic surfaces for varoius slip lengths. The results show that this method is capable of drag reduction in such a way that an increase of 200 μm in slip length leads to a massive drag reduction up to 38%. In addition, to access a significant drag reduction in turbulent flows, the non-dimensionalized slip length should be larger than the minimum.

  2. The interaction between fluid flow and ultra-hydrophobic surface in mini channel

    Directory of Open Access Journals (Sweden)

    Jasikova Darina

    2017-01-01

    Full Text Available Interaction of liquid with ultra-hydrophobic surface is accompanied by creation of layer of air. The effect of the air film has a potential of use in industry in many applications. The quality of the surface is influenced by matrix roughness, the character of physical or chemical cover. There was developed a method for analysis of the liquid flow and the air film using the lighting in volume, visualization with CCD camera and long distance microscope, and optical filters. There were prepared four stainless steel samples of inner channel of dimensions (80 × 8 × 8 mm and initial surface roughness Ra 0.33, Ra 1.0, Ra 2.0, and Ra 2.2. The inner channel was treated with plasma and commercial hydrophobic coating Greblon (WEILBURGER Coatings GmbH. There was realized study focused on the liquid flow velocity profile close to the air film. There are present results for laminar, transient and turbulent flows. The study also estimated the air film thickness depending on the Re number. The knowledge of the air film behaviour helps applied suitable degree of processing and cover for the target application.

  3. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    Science.gov (United States)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  4. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  5. A rheological study of hydrophobic-surface-active polymer systems structuration; Etude rheologique de la structuration de systemes polymere hydrophobe-tensioactif

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, E.

    1997-01-29

    This work deals with the study of the rheology and the structuration of hydrophobic polymer and surfactant systems. The used associative polymers are acrylamide/nonyl methacrylate copolymers and the surfactant is nonionic. They are particularly used for hydrocarbons extraction techniques as drilling (drilling fluids) or wells cementation. The studied materials are first characterized by different analytic techniques. This preliminary stage of the work gives a good insight of the physico-chemical parameters of the systems. The effect of surfactant was shown by studying the variation of Newtonian viscosity as a function of surfactant concentration. This yields bell curves, whose maximum determines the critical aggregation concentration (cac). The hydrophobic effect is analysed in different polymer concentration regimes, in quasi-static conditions, and under shear. The study of the dynamic visco-elasticity of semi-dilute solutions allows to observe the effect of the hydrophobic associations on the relaxation time of the chains. The system can be described as a superposition of two networks of junctions: the network of physical entanglements and a second one formed by the hydrophobic links. Phenomena of structuration have been observed at room temperature for surfactant concentrations close to the cac. The increase of viscosity or elastic modulus can be 3 to 4 orders of magnitude. The effect of the temperature on the structure of the systems is studied as well. The rheological characterization of the Sol-Gel transition is developed and the rheological behavior of the solutions in a structured state shows a critical stress for rupture of the structure. Microscopic observations of the birefringence of the solutions display the existence of lamellar vesicles, which leads to the following assumption: the formation of big spherulites create a rigidification of the macromolecular network. (author) 190 refs.

  6. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  7. Cellulose whiskers: preparation, characterization and surface modification

    International Nuclear Information System (INIS)

    Taipina, Marcia O.; Ferrarezi, Marcia M.F.; Goncalves, Maria C.

    2011-01-01

    The main objectives of this work were to produce cellulose whiskers (from cotton fibers) by acid hydrolysis and subsequently modify the surface of these whiskers with 3-iso-cyanate-propyltrietoxy-silane. Cellulose whiskers structures were characterized by X-ray diffraction and Fourier transform infrared and their morphologies were investigated by scanning and transmission electron microscopy. Due to the hydrophilic nature of native cellulose, the formation of cellulose whisker nanocomposites is limited to water-soluble polymers. The applied methodology for surface modification of the whiskers allowed to obtain nanofibers with surface features more appropriate to allow the adhesion at fiber-matrix interface, which may result in a better performance of these fibers as reinforcing agents of hydrophobic polymer matrices. (author)

  8. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  9. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces

    Science.gov (United States)

    Couston, Ruairidh G.; Skoda, Maximilian W.; Uddin, Shahid; van der Walle, Christopher F.

    2013-01-01

    One aspiration for the formulation of human monoclonal antibodies (mAb) is to reach high solution concentrations without compromising stability. Protein surface activity leading to instability is well known, but our understanding of mAb adsorption to the solid-liquid interface in relevant pH and surfactant conditions is incomplete. To investigate these conditions, we used total internal reflection fluorescence (TIRF) and neutron reflectometry (NR). The mAb tested (“mAb-1”) showed highest surface loading to silica at pH 7.4 (~12 mg/m2), with lower surface loading at pH 5.5 (~5.5 mg/m2, further from its pI of 8.99) and to hydrophobized silica (~2 mg/m2). The extent of desorption of mAb-1 from silica or hydrophobized silica was related to the relative affinity of polysorbate 20 or 80 for the same surface. mAb-1 adsorbed to silica on co-injection with polysorbate (above its critical micelle concentration) and also to silica pre-coated with polysorbate. A bilayer model was developed from NR data for mAb-1 at concentrations of 50–5000 mg/L, pH 5.5, and 50–2000 mg/L, pH 7.4. The inner mAb-1 layer was adsorbed to the SiO2 surface at near saturation with an end-on” orientation, while the outer mAb-1 layer was sparse and molecules had a “side-on” orientation. A non-uniform triple layer was observed at 5000 mg/L, pH 7.4, suggesting mAb-1 adsorbed to the SiO2 surface as oligomers at this concentration and pH. mAb-1 adsorbed as a sparse monolayer to hydrophobized silica, with a layer thickness increasing with bulk concentration - suggesting a near end-on orientation without observable relaxation-unfolding. PMID:23196810

  10. Droplets on porous hydrophobic surfaces perfused with gas: An air-table for droplets

    Science.gov (United States)

    Vourdas, Nikolaos; Stathopoulos, Vassilis; Laboratory of Chemistry; Materials Technology Team

    2016-11-01

    Wetting phenomena on porous hydrophobic surfaces are strongly related to the volume and the pressure of gas pockets resided at the solid-liquid interface. When the porous medium is perfused with gas by means of backpressure an inherently sessile pinned droplet undergoes various changes in its shape, contact angles and mobility. This provides an alternative method for active and controlled droplet actuation, without use of electricity, magnetism, foreign particles etc. Superhydrophobicity is not a prerequisite, electrode fabrication is not needed, the liquid is not affected thermally or chemically etc. In this work we explore this method, study the pertinent underlying mechanisms, and propose some applications. The adequate backpressure for droplet actuation has been measured for various hydrophobic porous surfaces. Backpressure for actuation may be as low as some tens of mbar for some cases, thus providing a rather low-energy demanding alternative. The droplet actuation mechanism has been followed numerically; it entails depinning of the receding contact line and movement, by means of a forward wave propagation reaching on the front of the droplet. Applications in valving water plugs inside open- or closed- channel fluidics will be provided.

  11. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    International Nuclear Information System (INIS)

    Zhou Zhou; Wang Jilong; Huang Xiao; Zhang Liwen; Moyo, Senelisile; Sun Shiyuan; Qiu Yiping

    2012-01-01

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  12. Ultimate Cavity Dynamics of Hydrophobic Spheres Impacting on Free Water Surfaces

    KAUST Repository

    Mansoor, Mohammad M.

    2012-12-01

    Cavity formation resulting from the water-entry of solid objects has been the subject of extensive research owing to its practical relevance in naval, military, industrial, sports and biological applications. The cavity formed by an impacting hydrophobic sphere normally seals at two places, one below (deep seal) and the other above the water surface (surface seal). For Froude numbers , the air flow into the resulting cavity is strong enough to suck the splash crown above the surface and disrupt the cavity dynamics before it deep seals. In this research work we eliminate surface seals by means of a novel practice of using cone splash-guards and examine the undisturbed transient cavity dynamics by impact of hydrophobic spheres for Froude numbers ranging . This enabled the measurement of extremely accurate pinch-off heights, pinch-off times, radial cavity collapse rates, and jet speeds in an extended range of Froude numbers compared to the previous work of Duclaux et al. (2007). Results in the extended regime were in remarkable agreement with the theoretical prediction of scaled pinch-off depth, and experimentally derived pinch-off time for . Furthermore, we investigated the influence of confinement on cavity formation by varying the cross-sectional area of the tank of liquid. In conjunction with surface seal elimination we observed the formation of multiple pinch-off points where a maximum of four deep seals were obtained in a sequential order for the Froude number range investigated. The presence of an elongated cavity beneath the first pinch-off point 5 resulted in evident "kinks" primarily related to the greatly diminished air pressure at the necking region caused by supersonic air flows (Gekle et al. 2010). Such flows passing through second pinch-offs were also found to choke the cavities beneath the first pinch- off depths causing radial expansion and hence disappearance of downward jets.

  13. Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2012-02-15

    Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Relation between acid back-diffusion and luminal surface hydrophobicity in canine gastric mucosa: Effects of salicylate and prostaglandin

    International Nuclear Information System (INIS)

    Goddard, P.J.

    1989-01-01

    The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E 2 to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa

  15. Pining phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces

    International Nuclear Information System (INIS)

    Yu, Dong In; Doh, Seung Woo; Park, Hyun Sun; Moriyama Kiyofumia; Kim, Moo Hwan; Kwak, Ho Jae; Ahn, Ho Seon

    2015-01-01

    When the decreased contact angle reaches the receding contact angle, the contact radius is reduced while maintaining a constant contact angle, i.e., this evaporation mode is known as the constant contact angle (CCA) mode. The emphasis of the droplet evaporation is that the transition from CCR to CCA modes is relative with the rate of the droplet evaporation, and it is markedly influenced by the surface wettability. In this study, it is focused on the evaporation mode transition. Especially, the transition from CCR to CCA modes is investigated on the hydrophobic microtextured surfaces. On the basis of the thermodynamics, the transition from CCR to CCA mode is theoretically analyzed. The thermodynamic model is developed to estimate the receding contact angle at the evaporation mode transition. Additionally, to compare between the theoretical model and experimental results, it is shown that the experimental receding contact angle is well estimated by the receding contact angle with the theoretical model. This study was performed to investigate the pinning phenomena of an evaporated droplet on the hydrophobic micro-textured surfaces. The pinning phenomena at the contact line were shown theoretically to be due to the most favorable thermodynamics process that caused the Gibbs free energy to rapidly reach an equilibrium state during droplet evaporation. The evaporation mode underwent a transition when the decrease in the Gibbs free energy was equivalent for the CCR and CCA modes. On the basis of the analysis described here, a theoretical model was developed to estimate the receding contact angle at the mode transition as a function of the surface conditions

  16. Design, construction, and characterization of a second-generation DARP in library with reduced hydrophobicity.

    Science.gov (United States)

    Seeger, Markus A; Zbinden, Reto; Flütsch, Andreas; Gutte, Petrus G M; Engeler, Sibylle; Roschitzki-Voser, Heidi; Grütter, Markus G

    2013-09-01

    Designed ankyrin repeat proteins (DARPins) are well-established binding molecules based on a highly stable nonantibody scaffold. Building on 13 crystal structures of DARPin-target complexes and stability measurements of DARPin mutants, we have generated a new DARPin library containing an extended randomized surface. To counteract the enrichment of unspecific hydrophobic binders during selections against difficult targets containing hydrophobic surfaces such as membrane proteins, the frequency of apolar residues at diversified positions was drastically reduced and substituted by an increased number of tyrosines. Ribosome display selections against two human caspases and membrane transporter AcrB yielded highly enriched pools of unique and strong DARPin binders which were mainly monomeric. We noted a prominent enrichment of tryptophan residues during binder selections. A crystal structure of a representative of this library in complex with caspase-7 visualizes the key roles of both tryptophans and tyrosines in providing target contacts. These aromatic and polar side chains thus substitute the apolar residues valine, leucine, isoleucine, methionine, and phenylalanine of the original DARPins. Our work describes biophysical and structural analyses required to extend existing binder scaffolds and simplifies an existing protocol for the assembly of highly diverse synthetic binder libraries. © 2013 The Protein Society.

  17. From Beetles in Nature to the Laboratory: Actuating Underwater Locomotion on Hydrophobic Surfaces.

    Science.gov (United States)

    Pinchasik, Bat-El; Steinkühler, Jan; Wuytens, Pieter; Skirtach, Andre G; Fratzl, Peter; Möhwald, Helmuth

    2015-12-29

    The controlled wetting and dewetting of surfaces is a primary mechanism used by beetles in nature, such as the ladybird and the leaf beetle for underwater locomotion.1 Their adhesion to surfaces underwater is enabled through the attachment of bubbles trapped in their setae-covered legs. Locomotion, however, is performed by applying mechanical forces in order to move, attach, and detach the bubbles in a controlled manner. Under synthetic conditions, however, when a bubble is bound to a surface, it is nearly impossible to maneuver without the use of external stimuli. Thus, actuated wetting and dewetting of surfaces remain challenges. Here, electrowetting-on-dielectric (EWOD) is used for the manipulation of bubble-particle complexes on unpatterned surfaces. Bubbles nucleate on catalytic Janus disks adjacent to a hydrophobic surface. By changing the wettability of the surface through electrowetting, the bubbles show a variety of reactions, depending on the shape and periodicity of the electrical signal. Time-resolved (μs) imaging of bubble radial oscillations reveals possible mechanisms for the lateral mobility of bubbles on a surface under electrowetting: bubble instability is induced when electric pulses are carefully adjusted. This instability is used to control the surface-bound bubble locomotion and is described in terms of the change in surface energy. It is shown that a deterministic force applied normal can lead to a random walk of micrometer-sized bubbles by exploiting the phenomenon of contact angle hysteresis. Finally, bubble use in nature for underwater locomotion and the actuated bubble locomotion presented in this study are compared.

  18. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  19. A facile method of hydrophobic surface modification for acrylonitrile-styrene-acrylate terpolymer based on the out-migration property of metallic soaps

    Science.gov (United States)

    Qi, Yanli; Chen, Tingting; Zhang, Jun

    2018-03-01

    Hydrophobic surface modification is conducted in this study by using additives with long alkyl chains. Several kinds of metallic soaps, such as calcium stearate (CaSt), zinc stearate (ZnSt), magnesium stearate (MgSt) and barium stearate (BaSt) were employed. Polymer matrix is acrylonitrile-styrene-acrylate (ASA) terpolymer due to its wonderful weather resistance property. The surface chemical characterization was studied by Fourier transformed infrared (FTIR) technology and X-ray photoelectron spectroscopy (XPS). Carboxylate (Osbnd Csbnd O-) indexes of composites in both transmittance and reflection modes were calculated according to FTIR results. As to the ratio of carboxylate index in reflection mode to that in transmittance mode, the sample added with 5 wt% ZnSt shows a higher value of 8.77, and a much higher value of 14.47 for the sample added with 10 wt% ZnSt. The corresponding Csbnd C/ Csbnd H /Cdbnd C peak areas of the samples added with 5 wt% or 10 wt% ZnSt are 75.4% and 77.3% respectively, much higher than other samples. This indicates ZnSt is much easier to out-migrate to material surface and therefore is more suitable for hydrophobic surface modification. In particular, the water contact angle of the ASA/ZnSt composite added with 10 wt% ZnSt significantly increased to 127o (40o increase in comparison with pure ASA), successfully converting the surface wettability from hydrophilic to hydrophobic.

  20. Hydrophobic thiol-ene surfaces fabricated via plasma activation and photo polymerization

    Science.gov (United States)

    Champathet, P.; Ervithayasuporn, V.; Osotchan, T.; Dangtip, S.

    2017-09-01

    Alumina, such as glazed alumina for electrical insulator, operated in an open field subjects to a very harsh condition; resulting in lifetime shortening. Coating hydrophobic layer on alumina surface can help prolonging its lifetime. In this study, 25 ×25 mm alumina sheets were used as substrates. The hydrophobic composite polymers were prepared from (3-mercaptopropyl)trimethoxysilane(MPTMS), 2,4,6,8-tetramethyl-2,4,6,8tetravinylcyclotetra siloxane(TMTVSi), pentaerythritoltetra(3-mercaptopropionate)(PETMP), 2,2-dimethoxy-2-phe nylaceto phenone(photoinitiator) and heptadecafluorodecylmethacrylate(HEFDMA) via the thiol-ene reaction. The alumina sheets were first activated by dielectric-barrier discharge plasma to improve its adhesion. All the polymers were found to optimize at the ratio of (MPTMS:TMTVSi:PETMP:HDFDMA) to 4:2:1:2 for coating on the alumina substrate. To enhance polymerization, 2,2-dimethoxy-2-phenylaceto phenome was also used as a photoinitiator A proper mixing sequence in the thiol-ene reaction results in film with excellent surface retention after prolong soaking in solvent such as acetone. FTIR shows that S-H and C=C functional groups have significantly changed after photopolymerization and thermally cured. The static contact angle increase from mere 53.0°±1.5° of the uncoated substrate to 120.0°±1.2° after coating. SEM shows the film with clear appearance of a few-micron thick. Under AFM, the coated surface roughness was about 9.3 nm with evenly distributed spikes of a few nanometer in height. The cross-cut test also confirmed the film was very smooth and none of the square of the films detached.

  1. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating.

    Science.gov (United States)

    Hoshian, Sasha; Jokinen, Ville; Somerkivi, Villeseveri; Lokanathan, Arcot R; Franssila, Sami

    2015-01-14

    Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion.

  2. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces.

    Science.gov (United States)

    Liu, Tianshuang; Xu, Changqi; Hong, Liang; Garcia-Godoy, Franklin; Hottel, Timothy; Babu, Jegdish; Yu, Qingsong

    2017-12-01

    Candida-associated denture stomatitis is the most common oral mucosal lesion among denture wearers. Trimethylsilane (TMS) plasma coating may inhibit the growth of Candida albicans on denture surfaces. The purpose of this in vitro study was to investigate whether TMS plasma coatings can effectively reduce C albicans adhesion on denture base acrylic resin surfaces. Sixty denture base acrylic resin disks with smooth and rough surfaces were prepared and were either left untreated (control group) or coated with TMS monomer (experimental group) by using plasma. Contact angles were measured immediately after TMS plasma coating. The morphology of C albicans adhesion was observed with scanning electron microscopy (SEM). Energy-dispersive spectroscopy (EDS) was used to characterize the elemental composition of the specimen surface. An adhesion test was performed by incubating the resin disk specimens in C albicans suspensions (1×10 7 cells/mL) at 37°C for 24 hours and further measuring the optical density of the C albicans by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay test. One-way ANOVA and 2-way ANOVA were followed by a post hoc test analysis (α=.05). The group with TMS coating exhibited a more hydrophobic surface than the control group. EDS analysis revealed successful TMS plasma coating. The difference in the mean contact angles between the uncoated group and the TMS-coated group was statistically significant (Pcoating than on the surfaces of the experimental group. In the adhesion test, the amount of C albicans adhering to the surface of denture base resin with the TMS coating was significantly less than that on the surfaces without TMS coating (Pcoating significantly reduced the adhesion of C albicans to the denture base resin and may reduce denture stomatitis. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  4. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation

    KAUST Repository

    Moretti, Manola

    2018-02-01

    Super-hydrophobic micro-patterned surfaces are ideal substrates for the controlled self-assembly and substrate-free characterization of biological molecules. In this device, the tailored surface supports a micro-volume drop containing the molecules of interest. While the quasi-spherical drop is evaporating under controlled conditions, its de-wetting direction is guided by the pillared microstructure on top of the device, leading to the formation of threads between the neighboring pillars. This effect has been exploited here to elucidate the mechanism triggering the formation of amyloid fibers and oligomers in tau related neurodegenerative diseases. By using Raman spectroscopy, we demonstrate that the fiber bridging the pillars contains β-sheets, a characteristic feature of amyloid aggregation. We propose that the combination of laminar flow, shear stress and molecular crowding taking place while the drop is evaporating on the SHMS, induces the reorganization of the tau protein secondary structure and we suggest that this effect could in fact closely mimic the actual mechanism occurring in the human brain environment. Such a straightforward technique opens up new possibilities in the field of self-assembly of biomolecules and their characterization by different methods (SEM, AFM, Raman spectroscopy, TEM), in a single device.

  5. An experimental study on the effects of rough hydrophobic surfaces on the flow around a circular cylinder

    Science.gov (United States)

    Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin

    2015-08-01

    The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.

  6. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds.

    Science.gov (United States)

    Long, Chao; Liu, Peng; Li, Ying; Li, Aimin; Zhang, Quanxing

    2011-05-15

    A hydrophobic hypercrosslinked polymer with poly (4-tert-butylstyrene-styrene-divinylbenzene) matrix (LC-1) was prepared as adsorbent for the removal of volatile organic compounds from gas streams. The content of oxygen-containing functional groups of LC-1 was about one-fourth that of commercial hypercrosslinked polymeric adsorbent (NDA-201). The results of the water vapor adsorption experiment indicated that LC-1 had a more hydrophobic surface than NDA-201. Three chlorinated volatile organic compounds (trichloroethylene, trichloromethane, and 1, 2-dichloroethane) were used to investigate the adsorption characteristics of LC-1 under dry and humid conditions. Equilibrium adsorption data in dry streams showed that LC-1 had good adsorption abilities for three chlorinated VOCs due to its abundant micropore structure. Moreover, the presence of water vapor in the gas stream had negligible effect on breakthrough time of three chlorinated VOCs adsorption onto LC-1 when values of relative humidity were equal to or below 50%; the breakthrough time of three chlorinated VOCs decreased less than 11% even if the relative humidity was 90%. Taken together, it is expected that LC-1 would be a promising adsorbent for the removal of VOCs vapor from the humid gas streams.

  7. Impact of air and water vapor environments on the hydrophobicity of surfaces.

    Science.gov (United States)

    Weisensee, Patricia B; Neelakantan, Nitin K; Suslick, Kenneth S; Jacobi, Anthony M; King, William P

    2015-09-01

    Droplet wettability and mobility play an important role in dropwise condensation heat transfer. Heat exchangers and heat pipes operate at liquid-vapor saturation. We hypothesize that the wetting behavior of liquid water on microstructures surrounded by pure water vapor differs from that for water droplets in air. The static and dynamic contact angles and contact angle hysteresis of water droplets were measured in air and pure water vapor environments inside a pressure vessel. Pressures ranged from 60 to 1000 mbar, with corresponding saturation temperatures between 36 and 100°C. The wetting behavior was studied on four hydrophobic surfaces: flat Teflon-coated, micropillars, micro-scale meshes, and nanoparticle-coated with hierarchical micro- and nanoscale roughness. Static advancing contact angles are 9° lower in the water vapor environment than in air on a flat surface. One explanation for this reduction in contact angles is water vapor adsorption to the Teflon. On microstructured surfaces, the vapor environment has little effect on the static contact angles. In all cases, variations in pressure and temperature do not influence the wettability and mobility of the water droplets. In most cases, advancing contact angles increase and contact angle hysteresis decreases when the droplets are sliding or rolling down an inclined surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study.

    Science.gov (United States)

    Amouamouha, Maryam; Badalians Gholikandi, Gagik

    2017-11-12

    Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride) (PVDF) and polyethersulfone (PES) surfaces by physical vapor deposition (PVD). The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscope (SEM) and atomic force microscopy (AFM) analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units) reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  9. Characterization and Antibiofouling Performance Investigation of Hydrophobic Silver Nanocomposite Membranes: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Maryam Amouamouha

    2017-11-01

    Full Text Available Biofouling is one of the drawbacks restricting the industrial applications of membranes. In this study, different thicknesses of silver nanoparticles with proper adhesion were deposited on poly(vinylidenefluoride (PVDF and polyethersulfone (PES surfaces by physical vapor deposition (PVD. The crystalline and structural properties of modified and pure membranes were investigated by carrying out X-ray diffraction (XRD and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Scanning electron microscope (SEM and atomic force microscopy (AFM analyses were employed to examine the surface morphology and the bacteria anti-adhesion property of the membranes. The morphology measurements confirmed that even though after silver grafting the surface became more hydrophobic, the homogeneity increased and the flux reduction decreased after coating. Moreover a comparison between PVDF and PES revealed that CFU (colony forming units reduced 64.5% on PVDF surface and 31.1% on PES surface after modification. In conclusion, PVD improved the performance of the membrane antibiofouling, and it is more promising to be used for PVDF rather than PES.

  10. Oil and gas pipelines with hydrophobic surfaces better equipped to deal with gas hydrate flow assurance issues

    DEFF Research Database (Denmark)

    Perfeldt, Christine Malmos; Sharifi, Hassan; von Solms, Nicolas

    2015-01-01

    Gas hydrate deposition can cause plugging in oil and gas pipelines with resultant flow assurance challenges. Presently, the energy industry uses chemical additives in order to manage hydrate formation, however these chemicals are expensive and may be associated with safety and environmental...... crystallizer. This indicates that 10 to 14 times less KHI is needed in the presence of a hydrophobically coated surface. These experimental studies suggest that the use of hydrophobic surfaces or pipelines could serve as an alternative or additional flow assurance approach for gas hydration mitigation...... and management....

  11. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures

    Science.gov (United States)

    Rongbo Zheng; Mandla A. Tshabalala; Qingyu Li; Hongyan Wang

    2015-01-01

    A convenient room temperature approach was developed for growing rutile TiO2 hierarchical structures on the wood surface by direct hydrolysis and crystallization of TiCl3 in saturated NaCl aqueous solution.The morphology and the crystal structure of TiO2 coated on the wood surface were characterized...

  12. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Simultaneous Dropwise and Filmwise Condensation on a Microstructured Surface without the Assistance of a Hydrophobic Coating

    Science.gov (United States)

    Orejon, Daniel; Shardt, Orest; Kumar Gunda, Naga Siva; Ikuta, Tatsuya; Takahashi, Koji; Mitra, Sushanta K.; Takata, Yasuyuki

    2017-11-01

    We demonstrate micropillar surfaces on which condensation occurs in a new mode with simultaneous dropwise/filmwise condensation (DWC/FWC). This is achieved without the assistance of a hydrophobic coating; the pillars and base surface are hydrophilic. By considering thermodynamic principles of droplet wetting and spreading, we designed microstructured surfaces where the condensate is able to spread through the structures. The geometry of the microstructures constrains the condensate between the pillars, the rise of condensate above the structures is not thermodynamically favorable and condensation takes place as FWC between pillars. At the same time, the continuous nucleation, growth and departure of droplets at the pillars' tops in a DWC fashion is observed. We propose a simple resistance based heat transfer model to support the greater heat transfer performance of the simultaneous DWC/FWC when compared to solely FWC. In addition we propose rational guidelines for the design of an optimum configuration that maximizes the heat transfer performance in the simultaneous DWC/FWC mode. The authors acknowledge the support of WPI-I2CNER and KAKENHI JSPS.

  14. Puddle jumping: Spontaneous ejection of large liquid droplets from hydrophobic surfaces during drop tower tests

    Science.gov (United States)

    Attari, B.; Weislogel, M.; Wollman, A.; Chen, Y.; Snyder, T.

    2016-10-01

    Large droplets and puddles jump spontaneously from sufficiently hydrophobic surfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such "drop shooters" as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical equilibrium interface computations. Water drop volumes of 0.04-400 ml at ejection speeds of -0.007-0.12 m/s are demonstrated herein. A sample application of the drop jump method is made to the classic problem of low-gravity phase change heat transfer for large impinging drops. Many other candidate problems might be identified by the reader.

  15. The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface

    Science.gov (United States)

    Yu, Yingtian; Krishnan, N. M. Anoop; Smedskjaer, Morten M.; Sant, Gaurav; Bauchy, Mathieu

    2018-02-01

    The surface reactivity and hydrophilicity of silicate materials are key properties for various industrial applications. However, the structural origin of their affinity for water remains unclear. Here, based on reactive molecular dynamics simulations of a series of artificial glassy silica surfaces annealed at various temperatures and subsequently exposed to water, we show that silica exhibits a hydrophilic-to-hydrophobic transition driven by its silanol surface density. By applying topological constraint theory, we show that the surface reactivity and hydrophilic/hydrophobic character of silica are controlled by the atomic topology of its surface. This suggests that novel silicate materials with tailored reactivity and hydrophilicity could be developed through the topological nanoengineering of their surface.

  16. The Influence of New Hydrophobic Silica Nanoparticles on the Surface Properties of the Films Obtained from Bilayer Hybrids

    Directory of Open Access Journals (Sweden)

    Cristian Petcu

    2017-02-01

    Full Text Available Ultra-hydrophobic bilayer coatings on a glass surface were fabricated by sol–gel process using hexadecyltrimethoxysilane (C16TMS and tetramethoxysilane (TMOS (1:4 molar ratio as precursors. After coating, silica nanoparticles (SiO2 NPs functionalized with different mono-alkoxy derivatives (methoxytrimethylsilane, TMeMS; ethoxydimethylvinylsilane, DMeVES; ethoxydimethylphenylsilane, DMePhES; and methoxydimethyloctylsilane, DMeC8MS were added, assuring the microscale roughness on the glass surface. Influences of the functionalized SiO2 NPs and surface morphology on the hydrophobicity of the hybrid films were discussed. The successful functionalization of SiO2 NPs with hydrophobic alkyl groups were confirmed by Fourier transform infrared spectroscopy (FTIR. The thermal stability of hydrophobic SiO2 NPs showed that the degradation of the alkyl groups takes place in the 200–400 °C range. Bilayer coating with C16TMS/TMOS and SiO2 NPs modified with alkoxysilane substituted with C8 alkyl chain (SiO2 NP-C8 has micro/nano structure. Hydrophobicity of functionalized SiO2 NPs-C8 and its higher degree of nanometer-scale roughness gave rise to ultra-hydrophobicity performance for bilayer coating C16TMS/TMOS + SiO2 NPs-C8 (145°, compared to other similar hybrid structures. Our synthesis method for the functionalization of SiO2 NPs is useful for the modification of surface polarity and roughness.

  17. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Dekker, A.; Reitsma, K.; Beugeling, T.; Beugeling, T.; Bantjes, A.; Bantjes, A.; Feijen, Jan; Kirkpatrick, C.J.; van Aken, W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact

  18. Fabrication of Super Hydrophobic Surfaces by fs Laser Pulses : How to Produce Self-Cleaning Surfaces

    NARCIS (Netherlands)

    Groenendijk, M.N.W.

    2008-01-01

    The chair of Applied Laser Technology of the University of Twente, The Netherlands, is performing research into applications of ultrashort pulsed lasers for micromachining. In a recent project, PhD student Max Groenendijk developed a method for the production of super water repellant surfaces by

  19. The five Ws (and one H) of super-hydrophobic surfaces in medicine

    KAUST Repository

    Gentile, F.

    2014-05-05

    Super-hydrophobic surfaces (SHSs) are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W), are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule. 2014 by the authors; licensee MDPI, Basel, Switzerland.

  20. The Five Ws (and one H of Super-Hydrophobic Surfaces in Medicine

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2014-05-01

    Full Text Available Super-hydrophobic surfaces (SHSs are bio-inspired, artificial microfabricated interfaces, in which a pattern of cylindrical micropillars is modified to incorporate details at the nanoscale. For those systems, the integration of different scales translates into superior properties, including the ability of manipulating biological solutions. The five Ws, five Ws and one H or the six Ws (6W, are questions, whose answers are considered basic in information-gathering. They constitute a formula for getting the complete story on a subject. According to the principle of the six Ws, a report can only be considered complete if it answers these questions starting with an interrogative word: who, why, what, where, when, how. Each question should have a factual answer. In what follows, SHSs and some of the most promising applications thereof are reviewed following the scheme of the 6W. We will show how these surfaces can be integrated into bio-photonic devices for the identification and detection of a single molecule. We will describe how SHSs and nanoporous silicon matrices can be combined to yield devices with the capability of harvesting small molecules, where the cut-off size can be adequately controlled. We will describe how this concept is utilized for obtaining a direct TEM image of a DNA molecule.

  1. Internal flow and evaporation characteristic inside a water droplet on a vertical vibrating hydrophobic surface

    International Nuclear Information System (INIS)

    Kim Hun; Lim, Hee Chang

    2015-01-01

    This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4

  2. Control of hydrophobic surface and wetting states in ultra-flat ZnO films by GLAD method

    Science.gov (United States)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-05-01

    Ultra-flat Zinc oxide (ZnO) films with natural hydrophobicity were sputtered onto glass substrates by glancing angle deposition (GLAD) method without addition of active oxygen at room temperature under different glancing angles relating to the sample holder. The sample holder was positioned at glancing angles of 0° and 30°, and the sputtering power was fixed at 75 W with low argon (Ar) pressure of 1 × 10-2 Torr during deposition process. According to analysis of surface composition and structure, the naturally hydrophobic wetting state can be attributed to the different grain structure and hydrocarbon adsorbates on the top of the film surface. On the other hand, the interfacial water molecules near the surface of ultra-flat ZnO films are confirmed belong to the hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. In addition, the water contact angle was significantly improved by a simple factor of glancing angle. The water contact angle value of ultra-flat ZnO films increased from 90° to 98° while the sample holder is with glancing angle of 30°. Moreover, our present ultra-flat ZnO films also exhibited excellent transparency over 80%, and the surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Then, the ZnO films could be freely and stably reversed back to hydrophobicity after stored in dark surroundings. This present study not only demonstrates that the natural wettability of ultra-flat ZnO films is strongly associated with surface composition and structure, but also provides an easy way to modulate and improve the surface wettability. This also extends the potential applications of ultra-flat ZnO thin films and aids a profound understanding for device design and material development.

  3. A bioluminescence ATP assay for estimating surface hydrophobicity and membrane damage of Escherichia coli cells treated with pulsed electric fields

    Science.gov (United States)

    Pulse Electric Field (PEF) treatments, a non-thermal process have been reported to injure and inactivate bacteria in liquid foods. However, the effect of this treatment on bacterial cell surface charge and hydrophobicity has not been investigated. Apple juice (AJ, pH 3.8) purchased from a wholesale ...

  4. Fabrication of a silver-ragwort-leaf-like super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning

    International Nuclear Information System (INIS)

    Miyauchi, Yasuhiro; Ding, Bin; Shiratori, Seimei

    2006-01-01

    Inspired by the self-cleaning silver ragwort leaf, we have recently fabricated a biomimetic super-hydrophobic fibrous mat surface comprising micro/nanoporous polystyrene (PS) microfibres via electrospinning. The rough surface of the silver ragwort leaf fibres, with nanometre-sized grooves along the fibre axis, was imitated by forming micro- and nanostructured pores on the electrospun fibre surface. The solvent composition ratios of tetrahydrofuran (THF) to N,N-dimethylformamide (DMF) in PS solutions were proved to be the key parameter to affect the fibre surface structures due to the various phase separation speeds of the solvents from PS fibres during electrospinning. The combination of the hierarchical surface roughness inherent in electrospun microfibrous PS mats and the low surface free energy of PS yielded a stable super-hydrophobicity with water contact angles as high as 159.5 0 for a 12 mg water droplet, exceeding that (147 0 ) of the silver ragwort leaf. Moreover, the hydrophobicity of the porous PS mat surface was found to increase on increasing the surface roughness of the microfibres

  5. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi.

    Science.gov (United States)

    Yoshida, S; Koitabashi, M; Nakamura, J; Fukuoka, T; Sakai, H; Abe, M; Kitamoto, D; Kitamoto, H

    2015-07-01

    To investigate the effects of mannosylerythritol lipids (MELs) on the hydrophobicity of solid surfaces, their suppressive activity against the early infection behaviours of several phytopathogenic fungal conidia, and their suppressive activity against disease occurrences on fungal host plant leaves. The changes in the hydrophobicity of plastic film surfaces resulting from treatments with MEL solutions (MEL-A, MEL-B, MEL-C and isoMEL-B) and synthetic surfactant solutions were evaluated based on the changes in contact angles of water droplets placed on the surfaces. The droplet angles on surfaces treated with MELs were verified to decrease within 100 s after placement, with contact angles similar to those observed on Tween 20-treated surfaces, indicating decreases in surface hydrophobicity after MEL treatments. Next, conidial germination, germ tube elongation and the formation of appressorium of Blumeria graminis f. sp. tritici, Colletotrichum dematium, Glomerella cingulata and Magnaporthe grisea were evaluated on plastic surfaces that were pretreated with surfactant solutions. On the surfaces of MEL-treated plastic film, inhibition of conidial germination, germ tube elongation, and suppression of appressoria formation tended to be observed, although the level of effect was dependent on the combination of fungal species and type of MEL. Inoculation tests revealed that the powdery mildew symptom caused by B. graminis f. sp. tritici was significantly suppressed on wheat leaf segments treated with MELs. MELs exhibited superior abilities in reducing the hydrophobicity of solid surfaces, and have the potential to suppress powdery mildew in wheat plants, presumably due to the inhibition of conidial germination. This study provides significant evidence of the potential for MELs to be used as novel agricultural chemical pesticides. © 2015 The Society for Applied Microbiology.

  6. Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens.

    Science.gov (United States)

    Karam, Layal; Jama, Charafeddine; Mamede, Anne-Sophie; Boukla, Samir; Dhulster, Pascal; Chihib, Nour-Eddine

    2013-12-01

    An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.

  7. Synthesis of sponge-like hydrophobic NiBi{sub 3} surface by 200 keV Ar ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Siva, Vantari; Datta, D.P. [School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050 (India); Chatterjee, S. [Colloids and Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Acharya Vihar, Bhubaneswar 751 013 (India); Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Sahoo, Pratap K., E-mail: pratap.sahoo@niser.ac.in [School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050 (India)

    2017-07-15

    Highlights: • A sponge-like hydrophobic NiBi{sub 3} surface has been synthesized using 200 keV Ar ion implantation. • A competition between amorphization and re-crystallization was observed in the existing phases owing to comparable magnitudes of nuclear and electronic energy depositions. • The relation between hydrophobic nature and sponge-like NiBi{sub 3} phase seems interesting, which is attributed to ion beam induced sputtering and mixing of the layers. - Abstract: Sponge-like nanostructures develop under Ar-ion implantation of a Ni–Bi bilayer with increasing ion fluence at room temperature. The surface morphology features different stages of evolution as a function of ion fluence, finally resulting in a planar surface at the highest fluence. Our investigations on the chemical composition reveal a spontaneous formation of NiBi{sub 3} phase on the surface of the as deposited bilayer film. Interestingly, we observe a competition between crystallization and amorphization of the existing poly-crystalline phases as a function of the implanted fluence. Measurements of contact angle by sessile drop method clearly show the ion-fluence dependent hydrophobic nature of the nano-structured surfaces. The wettability has been correlated with the variation in roughness and composition of the implanted surface. In fact, our experimental results confirm dominant effect of ion-sputtering as well as ion-induced mixing at the bilayer interface in the evolution of the sponge-like surface.

  8. Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation

    Science.gov (United States)

    Zhang, Ruiyang; Wan, Wenchao; Qiu, Lijuan; Wang, Yonghua; Zhou, Ying

    2017-10-01

    Macroscopic polyvinyl alcohol (PVA) aerogel is of great interest in environmental remediation due to its low cost and easy fabrication. However, the hydrophily of PVA aerogel limited its application in oil-water separation. In this work, boron nitride (BN)-modified PVA aerogel has been successfully prepared by a cost-effective frozen-drying method. PVA plays a role as a scaffold of aerogel to support BN nanosheets which can modify the surface properties of PVA aerogel, resulting in a dramatic change of wettability from hydrophily (0°) to hydrophobicity (94.9°-100.8°). Moreover, the obtained BN-modified PVA aerogel possesses a favorable porous structure, low density (41.8-60.0 mg/cm3) and good adsorption capacity (12-38 g/g), which make it a promising wastewater treatment material. Importantly, PVA aerogel with other functions can be easily fabricated through coupling with other inorganic materials by this strategy, which can provide various promising applications for environmental remediation.

  9. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification.

    Science.gov (United States)

    Wu, Zongmei; Wu, Jie; Zhang, Ruling; Yuan, Shichao; Lu, Qingliang; Yu, Yueqin

    2018-02-01

    Micelle properties of hydrophobic modified alginate (HM-alginate) in various dispersion media have been studied by surface tension, ζ-potential, and viscosity measurements. Effect of salt on micelle properties showed that the presence of counter ion weakened the repulsive interaction between surfactant ions, decreased the critical micelle concentration (CMC) value of the HM-alginate, reduced the effective volume dimensions of HM-alginate and hence viscosity, which coincide with the corresponding ζ-potential values. Soy oil-in-water emulsions, stabilized solely by HM-alginate, were produced in high speed homogenization conditions and their stability properties were studied by visual inspection, optical microscopy and droplet size measurements. The results showed that emulsions (oil-water ratio was 1:7) containing 15mg/mL HM-alginate presented better stability during 15days storage, which stating clearly that HM-alginate is an effective emulsifier to stabilize oil-in-water emulsions. The herein presented homogeneous method for preparation of emulsion has the potential to be used in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development and characterization of a hydrophobic treatment for jute fibres based on zinc oxide nanoparticles and a fatty acid

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, M.A. [CTT Group, Saint-Hyacinthe (Canada); Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada); Dolez, P.I., E-mail: pdolez@gcttg.com [CTT Group, Saint-Hyacinthe (Canada); Dubé, M.; David, É. [Department of Mechanical Engineering, Ecole de technologie supérieure, Montréal (Canada)

    2017-03-01

    Highlights: • A hydrophobic treatment based on zinc oxide nanoparticles and stearic acid was developed for recycled jute fibres. • The water contact angle was increased from 33° for the scoured fibre to 148° after the ZnO nanorod/stearic acid hydrothermal treatment. • The fibre thermal degradation temperature remained the same throughout the treatment at around 315 °C. • A reduction in the fibre breaking force of 32% was observed between the as-received and the ZnO nanorod/stearic acid treated fibres. - Abstract: This work aims at developing a hydrophobic treatment for jute fibres based on the grafting and growth of zinc oxide (ZnO) nanorods on the fibre surface. The first step consists in removing impurities from the fibre surface with a scouring treatment. In the second step, the jute fibres are coated with a layer of ZnO nanoseeds. A hydrothermal process is carried out as a third step to ensure a uniform growth of ZnO nanorods on the surface of the jute fibres. Finally, a hydrophobic treatment is performed on the ZnO nanorod-covered jute fibres using stearic acid (SA), i.e., a typical fatty acid. A large improvement in the fibre hydrophobicity was obtained without any negative effect on thermal stability and limited reduction in strength. Complementary measurements by scanning electron microscopy and X-ray diffraction were also performed and revealed a hexagonal system for the ZnO nanorods.

  11. Synthesis and characterization of liposomes nano-composite-particles with hydrophobic magnetite as a MRI probe

    Science.gov (United States)

    Han, Limin; Zhou, Xingping

    2016-07-01

    Nano-magnetic liposomes (MLs) consist of liposomes and magnetic nanoparticles (MNPs). Due to the active surfaces of liposomes, various functional groups can be attached for ligand-specific targeting. Here, we describe synthesis of magnetic nano-composite liposomes (HMLs) by a thin film dispersing method, based on hydrophobic magnetite (Fe3O4) nanoparticles. The results showed that the particle diameter of the HMLs containing Fe3O4sbnd OA NPs at a final Fe loading of 11.02 g/mol phosphatidylcholine (POPC) mainly in a sandwich-structure was 125.3 ± 12.9 nm determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). While the initial Fe concentration in the solution varied from 0.25 to 3.0 mg/mL, an effective Fe3O4 NPs loading was achieved, with encapsulation efficiency (EE%) from 91.0% to 71.0%. Subsequently, the HMLs were confirmed to be quite cytocompatible and hemocompatible in the applied concentration range by MTT and hemolysis assays. We also found that HMLs had more advantages than those liposomes with hydrophilic Fe3O4 NPs by comparing their EE% and r2 relaxivity. Finally, it was concluded that the analyzed Fe concentration in HMLs was sufficient to produce a pronouncedly weak signal for MRI in vitro to enhance the contrast between tumors and normal tissues.

  12. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Science.gov (United States)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  13. Hydrophobic surface functionalization of Philippine natural zeolite for a targeted oil remediation application

    Science.gov (United States)

    Osonio, Airah P.; Olegario-Sanchez, Eleanor M.

    2017-12-01

    The objective of this study is to modify and compare the oil sorption capacity on the surface of natural zeolite (NZ) and functionalized natural zeolite (FNZ) and to compare with activated charcoal samples. The NZ samples were surface modified via esterification process and characterized using XRD, SEM, and IR spectroscopy. The NZ, FNZ and activated charcoal were then tested using ASTM method F726-12 to validate the oil sorption capacity and TGA was used for the oil selectivity of the adsorbents. The results indicate that FNZ has an improved oil/water adsorption capacity than NZ when functionalized with ester and has a comparable capacity with activated charcoal.

  14. Hydrophobic dielectric surface influenced active layer thickness effect on hysteresis and mobility degradation in organic field effect transistors

    Science.gov (United States)

    Padma, N.

    2016-02-01

    Effect of active layer thickness, influenced by the hydrophobic dielectric surface, on the performance of copper phthalocyanine based organic field effect transistors (OFETs) was studied. While charge carrier mobility was found to be highest for an optimum thickness of 30 nm, hysteresis and threshold voltage shift were found to be minimum for 15 nm thick film which is attributed to the excess availability of photogenerated carriers, especially close to the dielectric/semiconductor interface, as this thickness is within the exciton quenching length in organic semiconductors. But prolonged bias stress resulted in larger decay in drain current for higher thickness indicating the dominant role played by the larger grain boundary density in the increased volume. These results were found to be different from that on unmodified SiO2 dielectric with higher surface energy and were suggested to be caused by the 3D growth mode of CuPc films on the hydrophobic surface. Mobility degradation at higher gate voltages also exhibited a dependence on the active layer thickness which was tuned by the hydrophobic surface induced growth mode at the dielectric/semiconductor interface.

  15. Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO{sub 2}/MgO bionanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Khalajabadi, Shahrouz Zamani [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group (MEDITEG), Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Izman, Sudin; Mohd Yusop, Mohd Zamri [Department of Materials, Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-01-01

    Highlights: • Mg/HA/TiO{sub 2}-based nanocomposite was produced using mechanical alloying. • The hydrophobic surface coverage was fabricated on the mechanical alloyed samples by annealing. • The morphological characteristics, phase evolution and wettability of nanocomposites and the hydrophobic surface coverage were investigated. • The activation energies and reaction kinetic of the powder mixture of nanocomposites were calculated. - Abstract: The effect of mechanical alloying and post-annealing on the phase evolution, microstructure, wettability and thermal stability of Mg–HA–TiO{sub 2}–MgO composites was investigated in this study. Phase evolution and microstructure analysis were performed using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, as well as the wettability determined by contact angle measurements with SBF. The 16-h mechanical alloying resulted in the formation of MgTiO{sub 3}, CaTiO{sub 3}, Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} phases and a decrease in wettability of the nanocomposites. A hydrophobic film with hierarchical structures comprising nanoflakes of MgTiO{sub 3}, nano-cuboids of CaTiO{sub 3}, microspheres of Mg{sub 3}(PO{sub 4}){sub 2} and Mg(OH){sub 2} was successfully constructed on the surface of the Mg-based nanocomposites substrates as a result of the post-annealing process. After 1-h annealing at 630 °C, the synthesized hydrophobic surface on the nanocomposite substrates decreased the wettability, as the 8-h-mechanically alloyed samples exhibited a contact angle close to 93°. The formation activation energies and reaction kinetics of the powder mixture were investigated using differential thermal analysis and thermal gravimetric analysis. The released heat, weight loss percentage and reaction kinetics increased, while the formation activation energies of the exothermic reactions decreased following an increase in the milling time.

  16. Influence of impurities and contact scale on the lubricating properties of bovine submaxillary mucin (BSM) films on a hydrophobic surface

    DEFF Research Database (Denmark)

    Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan

    2014-01-01

    Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively...... on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates.© 2014 Elsevier B.V. All rights reserved...

  17. Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Šátek, V.; Haslinger, Jaroslav; Fialová, S.; Pochylý, F.

    2017-01-01

    Roč. 139, č. 1 (2017), č. článku 011202. ISSN 0098-2202 Institutional support: RVO:68145535 Keywords : algebra * boundary conditions * hydrophobicity * Lagrange multipliers * Navier Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.437, year: 2016 http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532

  18. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array

    Science.gov (United States)

    Geng, Wenyan; Hu, Anmin; Li, Ming

    2012-12-01

    A surface with Ni micro-nano cones array (MCA) was fabricated with electro-deposition method and exhibited super-hydrophilic nature when freshly prepared. Spontaneous transition from super-hydrophilicity to super-hydrophobicity was observed when the surface was exposed in air at room temperature. The special surface structure of MCA played an important role in amplifying the surface wettability. Since the surface structure remained the same as the freshly prepared Ni MCA films during the storage, the transition was proved to be attributed to the change of surface chemical composition. Such wettability transition property of Ni MCA films might shed light on the high-tech areas of self-cleaners, anti-corrosion materials, anti-contamination materials, etc.

  19. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.

    Science.gov (United States)

    Zhong, Hua; Liu, Guansheng; Jiang, Yongbing; Brusseau, Mark L; Liu, Zhifeng; Liu, Yang; Zeng, Guangming

    2016-03-01

    The success of effective bioaugmentation processes for remediation of soil and groundwater contamination requires effective transport of the injected microorganisms in the subsurface environment. In this study, the effect of low concentrations of monorhamnolipid biosurfactant solutions on transport of Pseudomonas aeruginosa in an ideal porous medium (glass beads) with hydrophilic or hydrophobic surfaces was investigated by conducting miscible-displacement experiments. Transport behavior was examined for both glucose-grown and hexadecane-grown cells, with low and high surface hydrophobicity, respectively. A clean-bed colloid deposition model was used for determination of deposition rate coefficients. Results show that cells with high surface hydrophobicity exhibit greater retention than cells with low surface hydrophobicity. Rhamnolipid affects cell transport primarily by changing cell surface hydrophobicity, with an additional minor effect by increasing solution ionic strength. There is a good linear relation between k and rhamnolipid-regulated cell surface hydrophobicity presented as bacterial-adhesion-to-hydrocarbon (BATH) rate of cells (R(2)=0.71). The results of this study show the importance of hydrophobic interaction for transport of bacterial cells in silica-based porous media, and the potential of using low-concentration rhamnolipid solutions for facilitating bacterial transport in bioaugmentation efforts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Preparation and Characterization of Fluorinated Hydrophobic UV-Crosslinkable Thiol-Ene Polyurethane Coatings

    Directory of Open Access Journals (Sweden)

    Wenjing Xia

    2017-08-01

    Full Text Available The polyurethane prepolymer terminated with a double bond was synthesized using isophorone diisocyanate (IPDI, hydroxyl terminated polybutadiene (HTPB, 1,4-butanediol (BDO, and 2-hydroxyethyl acrylate (HEA. Then, a series of innovative UV-curable polyurethane coatings were prepared by blending ene-terminated polyurethane, fluoroacrylate monomer, and multifunctional thiol crosslinker upon UV exposure. The incorporation of fluoroacrylate monomer and multifunctional thiols into polyurethane coatings significantly enhanced the hydrophobic property, mechanical property, pencil hardness, and glossiness of the polyurethane coatings. This method of preparing UV crosslinkable, hydrophobic polyurethane coatings based on thiol-ene chemistry exhibited numerous advantages over other UV photocuring systems.

  1. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition

    Science.gov (United States)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki

    2017-11-01

    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  2. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    International Nuclear Information System (INIS)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-01-01

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  3. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  4. Optimum design of amphiphilic polymers bearing hydrophobic groups for both cell surface ligand presentation and intercellular cross-linking.

    Science.gov (United States)

    Takeo, Masafumi; Li, Cuicui; Matsuda, Masayoshi; Nagai, Hiroko; Hatanaka, Wataru; Yamamoto, Tatsuhiro; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Amphiphilic polymers bearing hydrophobic alkyl groups are expected to be applicable for both ligand presentation on the cell surface and intercellular crosslinking. To explore the optimum design for each application, we synthesized eight different acyl-modified dextrans with varying molecular weight, alkyl length, and alkyl modification degree. We found that the behenate-modified polymers retained on the cell surface longer than the palmitate-modified ones. Since the polymers were also modified with biotin, streptavidin can be presented on the cell surface through biotin-streptavidin recognition. The duration of streptavidin on the cell surface is longer in the behenate-modified polymer than the palmitate-modified one. As for the intercellular crosslinking, the palmitate-modified polymers were more efficient than the behenate-modified polymers. The findings in this research will be helpful to design the acyl-modified polymers for the cell surface engineering.

  5. Hydrophobic ZnO-TiO2 Nanocomposite with Photocatalytic Promoting Self-Cleaning Surface

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2015-01-01

    Full Text Available The hydrophobicity and self-cleaning are the important influence factors on the precision and environment resistance of quartz crystal microbalance (QCM in detecting organic gas molecules. In this paper, ZnO nanorod array is prepared via the in situ method on the QCM coated with Au film via hydrothermal process. ZnO nanorod array film on QCM is modified by β-CD in hydrothermal process and then decorated by TiO2 after being impregnated in P25 suspension. The results show that as-prepared ZnO-TiO2 nanocomposite exhibits excellent hydrophobicity for water molecules and superior self-cleaning property for organic molecules under UV irradiation.

  6. Overexpression of NRPS4 leads to increased surface hydrophobicity in Fusarium graminearum

    DEFF Research Database (Denmark)

    Hansen, Frederik Teilfeldt; Droce, Aida; Sørensen, Jens Laurids

    2012-01-01

    ). Most of these are unknown as F. graminearum contains 19 NRPS encoding genes, but only 3 have been assigned products. For the first time, we use deletion and overexpression mutants to investigate the functions and product of NRPS4 in F. graminearum. Deletion of NRPS4 homologues in Alternaria...... might suggest that the peptide product of NRPS4 could be an architectural factor in the cell walls of Fusarium or an indirect regulator of hydrophobicity....

  7. Characterization of molecular determinants of the conformational stability of macrophage migration inhibitory factor: leucine 46 hydrophobic pocket.

    Directory of Open Access Journals (Sweden)

    Farah El-Turk

    Full Text Available Macrophage Migration Inhibitory Factor (MIF is a key mediator of inflammatory responses and innate immunity and has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. The oligomerization of MIF, more specifically trimer formation, is essential for its keto-enol tautomerase activity and probably mediates several of its interactions and biological activities, including its binding to its receptor CD74 and activation of certain signaling pathways. Therefore, understanding the molecular factors governing the oligomerization of MIF and the role of quaternary structure in modulating its structural stability and multifunctional properties is crucial for understanding the function of MIF in health and disease. Herein, we describe highly conserved intersubunit interactions involving the hydrophobic packing of the side chain of Leu46 onto the β-strand β3 of one monomer within a hydrophobic pocket from the adjacent monomer constituted by residues Arg11, Val14, Phe18, Leu19, Val39, His40, Val41, Val42, and Pro43. To elucidate the structural significance of these intersubunit interactions and their relative contribution to MIF's trimerization, structural stability and catalytic activity, we generated three point mutations where Leu46 was replaced by glycine (L46G, alanine (L46A and phenylalanine (L46F, and their structural properties, stability, oligomerization state, and catalytic activity were characterized using a battery of biophysical methods and X-ray crystallography. Our findings provide new insights into the role of the Leu46 hydrophobic pocket in stabilizing the conformational state of MIF in solution. Disrupting the Leu46 hydrophobic interaction perturbs the secondary and tertiary structure of the protein but has no effect on its oligomerization state.

  8. A low-cost filler-dissolved process for fabricating super-hydrophobic poly(dimethylsiloxane) surfaces with either lotus or petal effect

    Science.gov (United States)

    Lin, Yung-Tsan; Chou, Jung-Hua

    2014-05-01

    A low-cost filler (salt) water-dissolved method is developed to produce large-area and flexible super-hydrophobic surfaces by using poly(dimethylsiloxane) (PDMS) material. Five levels of salt grain sizes are used to examine the filler size effect on fabricating the super-hydrophobic surfaces and on the hydrophobic mechanism involved. The results show that the surfaces fabricated using grain sizes of 53-74 and 74-104 µm exhibit the lotus effect (cell adhesion (CA) > 150° and self-adhesion (SA) 150° and high adhesion even upside-down). The super-hydrophobic characteristic is achieved mainly by the large micro rib-like structures, small micro rock-like bumps, and textures on the bump due to the fillers.

  9. Impact of hydrophilic and hydrophobic functionalization of flat TiO2/Ti surfaces on proteins adsorption

    Science.gov (United States)

    Fabre, Héloïse; Mercier, Dimitri; Galtayries, Anouk; Portet, David; Delorme, Nicolas; Bardeau, Jean-François

    2018-02-01

    Controlling adsorption of proteins onto medical devices is a key issue for implant-related infections. As self-assembled monolayers (SAMs) on titanium oxide represent a good model to study the surface-protein interactions, TiO2 surface properties were modified by grafting bisphosphonate molecules terminated with hydrophilic poly(ethylene glycol) groups and hydrophobic perfluoropolyether ones, respectively. Characterisation of the surface chemistry and surface topography of the modified surfaces was performed using XPS and atomic force microscopy (AFM). Quartz-crystal microbalance with dissipation (QCM-D) was used to determine the mass of adsorbed proteins as well as its kinetics. Poly(ethylene glycol)-terminated SAMs were the most effective surfaces to limit the adsorption of both BSA and fibrinogen in comparison to perfluorinated-terminated SAMs and non-modified TiO2 surfaces, as expected. The adsorption was not reversible in the case of BSA, while a partial reversibility was observed with Fg, most probably due to multilayers of proteins. The grafted surfaces adsorbed about the same quantity of proteins in terms of molecules per surface area, most probably in monolayer or island-like groups of adsorbed proteins. The adsorption on pristine TiO2 reveals a more important, non-specific adsorption of proteins.

  10. Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity.

    Science.gov (United States)

    Dailey, Lea Ann; Hernández-Prieto, Raquel; Casas-Ferreira, Ana Maria; Jones, Marie-Christine; Riffo-Vasquez, Yanira; Rodríguez-Gonzalo, Encarnación; Spina, Domenico; Jones, Stuart A; Smith, Norman W; Forbes, Ben; Page, Clive; Legido-Quigley, Cristina

    2015-02-01

    Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.e. pegylated lipid nanocapsules, polyvinyl acetate nanoparticles and polystyrene beads; listed in order of increasing hydrophobicity). Broncho-alveolar lavage (BAL) fluid was collected from mice exposed to nanoparticles at a surface area dose of 220 cm(2) and metabolite fingerprints were acquired via ultra pressure liquid chromatography-mass spectrometry-based metabolomics. Particles with high surface hydrophobicity were pro-inflammatory. Multivariate analysis of the resultant small molecule fingerprints revealed clear discrimination between the vehicle control and polystyrene beads (p < 0.05), as well as between nanoparticles of different surface hydrophobicity (p < 0.0001). Further investigation of the metabolic fingerprints revealed that adenosine monophosphate (AMP) concentration in BAL correlated with neutrophilia (p < 0.01), CXCL1 levels (p < 0.05) and nanoparticle surface hydrophobicity (p < 0.001). Our results suggest that extracellular AMP is an intermediary metabolite involved in adenine nucleotide-regulated neutrophilic inflammation as well as tissue damage, and could potentially be used to monitor nanoparticle-induced responses in the lung following pulmonary administration.

  11. Evolution and accumulation of organic foulants on hydrophobic and hydrophilic membrane surfaces in a submerged membrane bioreactor

    KAUST Repository

    Matar, Gerald

    2015-09-07

    Membrane surface modification is attracting more attention to mitigate biofouling in membrane bioreactors (MBRs). Five membranes differing in chemistry and hydrophobic/hydrophilic potential were run in parallel in a lab-scale MBR under the same conditions. Membranes were sampled after 1, 10, 20 and 30 days of MBR operation with synthetic wastewater. Subsequently, accumulated organic foulants were characterised using several chemical analytical tools. Results showed similar development of organic foulants with time, illustrating that membrane surface chemistry did not affect the selection of specific organic foulants. Multivariate analysis showed that biofilm samples clustered according to the day of sampling. The composition of organic foulants shifted from protein-like substances towards humics and polysaccharides-like substances. We propose that to control biofouling in MBRs, one should focus less on the membrane surface chemistry.

  12. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition.

    Science.gov (United States)

    Jafarzadeh, Shadi; Claesson, Per M; Pan, Jinshan; Thormann, Esben

    2014-02-04

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements.

  13. Drag penalty due to the asperities in the substrate of super-hydrophobic and liquid infused surfaces

    Science.gov (United States)

    Garcia Cartagena, Edgardo J.; Arenas, Isnardo; Leonardi, Stefano

    2017-11-01

    Direct numerical simulations of two superposed fluids in a turbulent channel with a textured surface made of pinnacles of random height have been performed. The viscosity ratio between the two fluids are N =μo /μi = 50 (μo and μi are the viscosities of outer and inner fluid respectively) mimicking a super-hydrophobic surface (water over air) and N=2.5 (water over heptane) resembling a liquid infused surface. Two set of simulations have been performed varying the Reynolds number, Reτ = 180 and Reτ = 390 . The interface between the two fluids is flat simulating infinite surface tension. The position of the interface between the two fluids has been varied in the vertical direction from the base of the substrate (what would be a rough wall) to the highest point of the roughness. Drag reduction is very sensitive to the position of the interface between the two fluids. Asperities above the interface induce a large form drag and diminish considerably the drag reduction. When the mean height of the surface measured from the interface in the outer fluid is greater than one wall unit, k+ > 1 , the drag increases with respect to a smooth wall. Present results provide a guideline to the accuracy required in manufacturing super-hydrophobic and liquid infused surfaces. This work was supported under ONR MURI Grants N00014-12-0875 and N00014-12- 1-0962, Program Manager Dr. Ki-Han Kim. Numerical simulations were performed on the Texas Advanced Computer Center.

  14. Investigating plantation-induced near-surface soil hydrophobicity and its impact on groundwater recharge in the Nebraska Sand Hills, USA

    Science.gov (United States)

    Adane, Z. A.; Nasta, P.; Gates, J. B.

    2014-12-01

    Although numerous studies in diverse environmental settings have demonstrated that plantations tend to reduce soil moisture and recharge rates, research on physical mechanisms affecting these linkages tend to focus mainly on the effects of evapotranspiration and interception. This study investigates the extent of soil hydrophobicity resulting from land use changes and its impact on groundwater recharge in a century-old experimental forest surrounded by grassland in the Northern High Plains (Nebraska National Forest). Water Drop Penetration Tests (WDPT) and Nuclear Magnetic Resonance (NMR) spectroscopy were used to investigate soil hydrophobicity on 50 cm soil cores collected from experimental plots beneath 5 land cover types. WDPT analysis indicated that most near-surface soils (0-12.5 and 12.5-25 cm) beneath pine plots were moderately to strongly hydrophobic. NMR spectroscopy analysis comparing ratios of hydrophobic (3.2-0.5 and 8.5-6.5 ppm) to hydrophilic (6.5-3.2 ppm) regions suggests that surface soils beneath the plantations were uniformly more hydrophobic than grasslands (by ~30 to 260%). Unsaturated zone soil cores were collected from beneath each experimental plot for comparison of hydrophobicity with recharge rates based on chloride and sulfate mass balance. Recharge estimates beneath the plantations (4-10 mm yr-1) represent reductions of 86-94% relative to the surrounding native grassland, suggesting a link between soil hydrophobicity and reduced infiltration beneath the plantations.

  15. Six-Year Survival and Early Failure Rate of 2918 Implants with Hydrophobic and Hydrophilic Enossal Surfaces.

    Science.gov (United States)

    Gac, Olivier Le; Grunder, Ueli

    2015-02-05

    The aim of this chart review was to obtain an objective, quantitative assessment of the clinical performance of an implant line used in an implantological office setting. Implants with hydrophilic (INICELL) and hydrophobic (TST; both: Thommen Medical AG, Grenchen, Switzerland) enossal surfaces were compared and the cumulative implant survival rate was calculated. The data of 1063 patients that received 2918 implants (1337 INICELL, 1581 TST) was included. The average follow up time was 2.1 (1.1-5.4) years for INICELL and 4.5 (1.3-5.9) years for TST implants (Thommen Medical AG, Switzerland). In the reported period 7 implants with INICELL (0.5%) and 23 TST implants (1.5%) failed. This difference was statistically significant. The analysis of cases treated and followed up in a single implantological office for 6 years confirmed the very good clinical outcome that was achieved with both used implant lines. Within the limitations of this retrospective analysis, the overall early failure rate of the hydrophilic implants was significantly lower than that of hydrophobic implants. The use of hydrophilic implants allows the clinician to obtain less early failures, hence the interest of an up-to-date surface for the daily work of an implant practice.

  16. Characterization and cytotoxicity studies on liposome-hydrophobic magnetite hybrid colloids.

    Science.gov (United States)

    Floris, Alice; Sinico, Chiara; Fadda, Anna Maria; Lai, Francesco; Marongiu, Francesca; Scano, Alessandra; Pilloni, Martina; Angius, Fabrizio; Vázquez-Vázquez, Carlos; Ennas, Guido

    2014-07-01

    The aim of this study was to highlight the main features of magnetoliposomes prepared by TLE, using hydrophobic magnetite, and stabilized with oleic acid, instead of using the usual hydrophilic magnetite surrounded by sodium citrate. These biocompatible magnetoliposomes (MLs) were prepared with the purpose of producing a magnetic carrier capable of loading either hydrophilic or lipophilic drugs. The effect of different liposome/magnetite weight ratios on the stability of magnetoliposomes was evaluated by monitoring the mean diameter of the particles, their polydispersity index, and zeta potential over time. The prepared magnetoliposomes showed a high liposome-magnetite association, with magnetoliposomes containing PEG (polyethylene glycol) showing the best magnetite loading values. To verify the position of magnetite nanoparticles in the vesicular structures, the morphological characteristics of the structures were studied using transmission electron microscopy (TEM). TEM studies showed a strong affinity between hydrophobic magnetite nanoparticles, the surrounding oleic acid molecules, and phospholipids. Furthermore, the concentration above which one would expect to find a cytotoxic effect on cells as well as morphological cell-nanoparticle interactions was studied in situ by using the trypan blue dye exclusion assay, and the Prussian Blue modified staining method. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  18. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  19. Light transmittance of 1-piece hydrophobic acrylic intraocular lenses with surface light scattering removed from cadaver eyes.

    Science.gov (United States)

    Werner, Liliana; Morris, Caleb; Liu, Erica; Stallings, Shannon; Floyd, Anne; Ollerton, Andrew; Leishman, Lisa; Bodnar, Zachary

    2014-01-01

    To assess the potential effect of surface light scattering on light transmittance of 1-piece hydrophobic acrylic intraocular lenses (IOLs) with or without a blue-light filter. John A. Moran Eye Center, University of Utah, Salt Lake City, Utah, USA. Experimental study. Intraocular lenses were obtained from human cadavers (49 IOLs total; 36 with blue-light filter) and from finished-goods inventory (controls). The IOLs were removed from cadaver eyes and the power and model matched to unused controls. After surface proteins were removed, the IOLs were hydrated for 24 hours at room temperature. Surface light scattering was measured with a Scheimpflug camera (EAS-1000 Anterior Segment Analysis System). Light transmittance was measured with a Lambda 35 UV/Vis spectrophotometer (single-beam configuration; RSA-PE-20 integrating sphere). Hydrated scatter values ranged from 4.8 to 202.5 computer-compatible tape (CCT) units for explanted IOLs with blue-light filter and 1.5 to 11.8 CCT units for controls; values ranged from 6.0 to 137.5 CCT units for explanted IOLs without a blue-light filter and 3.5 to 9.6 CCT units for controls. In both groups, there was a tendency toward increasing scatter values with increasing postoperative time. No differences in light transmittance were observed between explanted IOLs and controls in both groups (IOLs with blue-light filter: P=.407; IOL with no blue-light filter: P=.487; both paired t test). Although surface light scattering of explanted IOLs was significantly higher than that of controls and appeared to increase with time, no effect was observed on light transmittance of 1-piece hydrophobic acrylic IOLs with or without a blue-light filter. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. Flower-Like CuO/ZnO Hybrid Hierarchical Nanostructures Grown on Copper Substrate: Glycothermal Synthesis, Characterization, Hydrophobic and Anticorrosion Properties.

    Science.gov (United States)

    Beshkar, Farshad; Khojasteh, Hossein; Salavati-Niasari, Masoud

    2017-06-25

    In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG) at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac)₂ in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D) aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB), and polyethylene glycol (PEG) 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%.

  1. Flower-Like CuO/ZnO Hybrid Hierarchical Nanostructures Grown on Copper Substrate: Glycothermal Synthesis, Characterization, Hydrophobic and Anticorrosion Properties

    Directory of Open Access Journals (Sweden)

    Farshad Beshkar

    2017-06-01

    Full Text Available In this work we have demonstrated a facile formation of CuO nanostructures on copper substrates by the oxidation of copper foil in ethylene glycol (EG at 80 °C. On immersing a prepared CuO film into a solution containing 0.1 g Zn(acac2 in 20 mL EG for 8 h, ZnO flower-like microstructures composed of hierarchical three-dimensional (3D aggregated nanoparticles and spherical architectures were spontaneously formed at 100 °C. The as-synthesized thin films and 3D microstructures were characterized using XRD, SEM, and EDS techniques. The effects of sodium dodecyl sulphate (SDS, cetyltrimethylammonium bromide (CTAB, and polyethylene glycol (PEG 6000 as surfactants and stabilizers on the morphology of the CuO and ZnO structures were discussed. Possible growth mechanisms for the controlled organization of primary building units into CuO nanostructures and 3D flower-like ZnO architectures were proposed. The hydrophobic property of the products was characterized by means of water contact angle measurement. After simple surface modification with stearic acid and PDMS, the resulting films showed hydrophobic and even superhydrophobic characteristics due to their special surface energy and nano-microstructure morphology. Importantly, stable superhydrophobicity with a contact angle of 153.5° was successfully observed for CuO-ZnO microflowers after modification with PDMS. The electrochemical impedance measurements proved that the anticorrosion efficiency for the CuO/ZnO/PDMS sample was about 99%.

  2. Microbial colonization of irradiated pathogenic yeast to catheter surfaces: Relationship between adherence, cell surface hydrophobicity, biofilm formation and antifungal susceptibility. A scanning electron microscope analysis.

    Science.gov (United States)

    Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed

    2015-06-01

    Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.

  3. Particle Fabrication Using Inkjet Printing onto Hydrophobic Surfaces for Optimization and Calibration of Trace Contraband Detection Sensors

    Directory of Open Access Journals (Sweden)

    Greg Gillen

    2015-11-01

    Full Text Available A method has been developed to fabricate patterned arrays of micrometer-sized monodisperse solid particles of ammonium nitrate on hydrophobic silicon surfaces using inkjet printing. The method relies on dispensing one or more microdrops of a concentrated aqueous ammonium nitrate solution from a drop-on-demand (DOD inkjet printer at specific locations on a silicon substrate rendered hydrophobic by a perfluorodecytrichlorosilane monolayer coating. The deposited liquid droplets form into the shape of a spherical shaped cap; during the evaporation process, a deposited liquid droplet maintains this geometry until it forms a solid micrometer sized particle. Arrays of solid particles are obtained by sequential translation of the printer stage. The use of DOD inkjet printing for fabrication of discrete particle arrays allows for precise control of particle characteristics (mass, diameter and height, as well as the particle number and spatial distribution on the substrate. The final mass of an individual particle is precisely determined by using gravimetric measurement of the average mass of solution ejected per microdrop. The primary application of this method is fabrication of test materials for the evaluation of spatially-resolved optical and mass spectrometry based sensors used for detecting particle residues of contraband materials, such as explosives or narcotics.

  4. Thermodynamics and kinetics of reduction and species conversion at a hydrophobic surface for mitochondrial cytochromes c and their cardiolipin adducts

    International Nuclear Information System (INIS)

    Ranieri, Antonio; Di Rocco, Giulia; Millo, Diego; Battistuzzi, Gianantonio; Bortolotti, Carlo A.; Lancellotti, Lidia; Borsari, Marco; Sola, Marco

    2015-01-01

    Highlights: • Cytochrome c and its adduct with cardiolipin can be immobilized on a hydrophobic SAM. • Adsorbed cytochrome c and its adduct undergo extensive unfolding and axial ligand substitution. • An equilibrium between a six-coordinated and a five-coordinated form is observed in both cases. • The reduced five-coordinated form is stabilized by cardiolipin binding. • Immobilized cytochrome c exchanges electrons more slowly upon cardiolipin binding. - Abstract: Cytochrome c (cytc) and its adduct with cardiolipin (CL) were immobilized on a hydrophobic SAM-coated electrode surface yielding a construct which mimics the environment experienced by the complex at the inner mitochondrial membrane where it plays a role in cell apoptosis. Under these conditions, both species undergo an equilibrium between a six-coordinated His/His-ligated and a five-coordinated His/- ligated forms stable in the oxidized and in the reduced state, respectively. The thermodynamics of the oxidation-state dependent species conversion were determined by temperature-dependent diffusionless voltammetry experiments. CL binding stabilizes the immobilized reduced His/- ligated form of cytc which was found previously to catalytically reduce dioxygen. Here, this adduct is also found to show pseudoperoxidase activity, catalysing reduction of hydrogen peroxide. These effects would impart CL with an additional role in the cytc-mediated peroxidation leading to programmed cell death. Moreover, immobilized cytc exchanges electrons more slowly upon CL binding possibly due to changes in solvent reorganization effects at the protein-SAM interface

  5. Synthesis and Characterization of Hydrophilic-Hydrophobic Poly(Arylene Ether Sulfone) Random and Segmented Copolymers for Membrane Applications

    Science.gov (United States)

    Nebipasagil, Ali

    Poly(arylene ether sulfone)s are high-performance engineering thermoplastics that have been investigated extensively over the past several decades due to their outstanding mechanical properties, high glass transition temperatures (Tg), solvent resistance and exceptional thermal, oxidative and hydrolytic stability. Their thermal and mechanical properties are highly suited to a variety of applications including membrane applications such as reverse osmosis, ultrafiltration, and gas separation. This dissertation covers structure-property-performance relationships of poly(arylene ether sulfone) and poly(ethylene oxide)-containing random and segmented copolymers for reverse osmosis and gas separation membranes. The second chapter of this dissertation describes synthesis of disulfonated poly(arylene ether sulfone) random copolymers with oligomeric molecular weights that contain hydrophilic and hydrophobic segments for thin film composite (TFC) reverse osmosis membranes. These copolymers were synthesized and chemically modified to obtain novel crosslinkable poly(arylene ether sulfone) oligomers with acrylamide groups on both ends. The acrylamideterminated oligomers were crosslinked with UV radiation in the presence of a multifunctional acrylate and a UV initiator. Transparent, dense films were obtained with high gel fractions. Mechanically robust TFC membranes were prepared from either aqueous or water-methanol solutions cast onto a commercial UDELRTM foam support. This was the first example that utilized a water or alcohol solvent system and UV radiation to obtain reverse osmosis TFC membranes. The membranes were characterized with regard to composition, surface properties, and water uptake. Water and salt transport properties were elucidated at the department of chemical engineering at the University of Texas at Austin. The gas separation membranes presented in chapter three were poly(arylene ether sulfone) and poly(ethylene oxide) (PEO)-containing polyurethanes. Poly

  6. Surface analysis of PEGylated nano-shields on nanoparticles installed by hydrophobic anchors

    DEFF Research Database (Denmark)

    Ebbesen, M F; Whitehead, Bradley Joseph; Gonzalez, Borja Ballarin

    2013-01-01

    Purpose: This work describes a method for functionalisation of nanoparticle surfaces with hydrophilic "nano-shields" and the application of advanced surface characterisation to determine PEG amount and accumulation at the outmost 10 nm surface that is the predominant factor in determining protein....... Surface and bulk analysis was performed including X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) and zeta potential. Cellular uptake was investigated in RAW 264.7 macrophages by flow cytometry. Results: Sub-micron nanoparticles were formed and the combination of (NMR...

  7. Construction of super-hydrophobic iron with a hierarchical surface structure

    Science.gov (United States)

    Yuan, Zhiqing; Bin, Jiping; Wang, Xian; Wang, Menglei; Peng, Chaoyi; Xing, Suli; Xiao, Jiayu; Zeng, Jingcheng; Xiao, Ximei; Fu, Xin

    2014-04-01

    Wettability of an iron surface is crucial for the wide applications of iron in practice. In this work, a hierarchical structure highly similar to that of the underside of a bamboo leaf was constructed on an iron surface via the template method and controllable etching. After modification by stearic acid, the iron surface with hierarchical structure showed excellent water repellency, with an average contact angle of 156° and a sliding angle of 3°. X-ray diffraction (XRD) techniques and Fourier transform infrared spectroscopy (FTIR) are applied to examine the chemical components of an iron surface.

  8. Adsorption and nanowear properties of bovine submaxillary mucin films on solid surfaces: Influence of solution pH and substrate hydrophobicity

    DEFF Research Database (Denmark)

    Sotres, Javier; Madsen, Jan Busk; Arnebrant, Thomas

    2014-01-01

    The adsorption and mechanical stability of bovine submaxillary mucins (BSM) films at solid-liquid interfaces were studied with respect to both substrate hydrophobicity and solution pH. Dynamic light scattering revealed a single peak distribution in neutral aqueous solution (pH 7.4) and a small...... fraction with enhanced aggregation was observed in acidic solution (pH 3.8). Both substrate hydrophobicity and solution pH were found to affect the spontaneous adsorption of BSM onto solid surfaces; BSM adsorbed more onto hydrophobic surfaces than hydrophilic ones, and adsorbed more at pH 3.8 than at pH 7.......4. Thus, the highest "dry" adsorbed mass was observed for hydrophobic surfaces in pH 3.8 solution. However, a highest "wet" adsorbed mass, i.e. which includes the solvent coupled to the film, was observed for hydrophobic surfaces at pH 7.4. The mechanical stability of the films was studied...

  9. Surface analysis and anti-graffiti behavior of a weathered polyurethane-based coating embedded with hydrophobic nano silica

    Science.gov (United States)

    Rabea, A. Mohammad; Mohseni, M.; Mirabedini, S. M.; Tabatabaei, M. Hashemi

    2012-03-01

    In this study, a permanent anti-graffiti polyurethane coating was prepared using concomitant loading of an OH-functional silicone modified polyacrylate additive ranging from 2 to 15 mol% and hydrophobic silica nanoparticles from 1 to 5 wt%. UV-visible spectroscopy, contact angle measurement and dynamic mechanical thermal analysis (DMTA) analysis were conducted on selected samples to study the weathering performance of samples containing various amounts of silica nanoparticles before and after accelerated weathering conditions. The results showed that higher amounts of additive had inferior effects on the anti-graffiti performance of the coating samples after exposure. However, silica nanoparticles could positively affect the anti-graffiti performance against ageing cycles. This improvement was attributed to lower degradation of samples containing silica nanoparticles and barrier property of nanoparticles against graffiti penetration. The presence of silica nanoparticles did not have any significant effect on the surface free energy of the samples prior and after ageing.

  10. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2013-12-01

    Full Text Available In this article, nine hydrophobically modified polyacrylamides (HM-PAM nanolatexes, were synthesized by copolymerizing the acrylamide monomer and novel polymerizable surfactants (surfmers. The reaction was carried out by inverse microemulsion copolymerization technique. The copolymerization was initiated by redox initiators composed of potassium peroxodisulphate and sodium bisulfite. The emulsion was stabilized using mixed tween 85 and span 80 as nonionic emulsifiers. The prepared HM-PAMs were classified into three groups according to the surfmers used in the copolymerization. The chemical structures of the prepared HM-PAMs were confirmed by FT-IR, 1H NMR and 13C NMR. The thermal properties were estimated with the thermal gravimetric analysis (TGA. The size and morphology of the prepared latexes were investigated by the dynamic light scattering (DLS and the High Resolution Transmission Electron Microscope (HRTEM. Finally, the molecular weights of the prepared copolymers were determined by the GPC and the viscosity average molecular weight method. They were situated between 1.58 × 106 and 0.89 × 106.

  11. Comparative investigation on a hexane-degrading strain with different cell surface hydrophobicities mediated by starch and chitosan.

    Science.gov (United States)

    Chen, Dong-Zhi; Jiang, Ning-Xin; Ye, Jie-Xu; Cheng, Zhuo-Wei; Zhang, Shi-Han; Chen, Jian-Meng

    2017-05-01

    Bioremediation usually exhibits low removal efficiency toward hexane because of poor water solubility, which limits the mass transfer rate between the substrate and microorganism. This work aimed to enhance the hexane degradation rate by increasing cell surface hydrophobicity (CSH) of the degrader, Pseudomonas mendocina NX-1. The CSH of P. mendocina NX-1 was manipulated by treatment with starch and chitosan solution of varied concentrations, reaching a maximum hydrophobicity of 52%. The biodegradation of hexane conformed to the Haldane inhibition model, and the maximum degradation rate (ν max ) of the cells with 52% CSH was 0.72 mg (mg cell) -1 ·h -1 in comparison with 0.47 mg (mg cell) -1 ·h -1 for cells with 15% CSH. The production of CO 2 by high CSH cells was threefold higher than that by cells at 15% CSH within 30 h, and the cumulative rates of O 2 consumption were 0.16 and 0.05 mL/h, respectively. High CSH was related to low negative charge carried by the cell surface and probably reduced the repulsive electrostatic interactions between hexane and microorganisms. The FT-IR spectra of cell envelopes demonstrated that the methyl chain was inversely proportional to increasing CSH values, but proteins exhibited a positive effect to CSH enhancement. The ratio of extracellular proteins and polysaccharides increased from 0.87 to 3.78 when the cells were treated with starch and chitosan, indicating their possible roles in increased CSH.

  12. Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL: “Herniated” HDL, a common feature in diabetes

    Science.gov (United States)

    Amigó, Núria; Mallol, Roger; Heras, Mercedes; Martínez-Hervás, Sergio; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles; Plana, Núria; Yanes, Óscar; Masana, Lluís; Correig, Xavier

    2016-01-01

    Recent studies have shown that pharmacological increases in HDL cholesterol concentrations do not necessarily translate into clinical benefits for patients, raising concerns about its predictive value for cardiovascular events. Here we hypothesize that the size-modulated lipid distribution within HDL particles is compromised in metabolic disorders that have abnormal HDL particle sizes, such as type 2 diabetes mellitus (DM2). By using NMR spectroscopy combined with a biochemical volumetric model we determined the size and spatial lipid distribution of HDL subclasses in a cohort of 26 controls and 29 DM2 patients before and after two drug treatments, one with niacin plus laropiprant and another with fenofibrate as an add-on to simvastatin. We further characterized the HDL surface properties using atomic force microscopy and fluorescent probes to show an abnormal lipid distribution within smaller HDL particles, a subclass particularly enriched in the DM2 patients. The reduction in the size, force cholesterol esters and triglycerides to emerge from the HDL core to the surface, making the outer surface of HDL more hydrophobic. Interestingly, pharmacological interventions had no effect on this undesired configuration, which may explain the lack of clinical benefits in DM2 subjects. PMID:26778677

  13. Fabrication and characterization of size-controlled starch-based nanoparticles as hydrophobic drug carriers.

    Science.gov (United States)

    Han, Fei; Gao, Chunmei; Liu, Mingzhu

    2013-10-01

    Acetylated corn starch was successfully synthesized and optimized by the reaction of native corn starch with acetic anhydride and acetic acid in the presence of sulfuric acid as a catalyst. The optimal degree of substitution of 2.85 was obtained. Starch-based nanoparticles were fabricated by a simple and novel nanoprecipitation procedure, by the dropwise addition of water to acetone solution of acetylated starch under stirring. Fourier transform infrared spectrometry showed that acetylated starch had some new bands at 1750, 1375 and 1240 cm(-1) while acetylated starch nanoparticles presented the identical peaks as the drug-loaded acetylated starch nanoparticles and the acetylated starch. Wide angle X-ray diffraction indicated that A-type pattern of native starch was completely transformed into the V-type pattern of Acetylated starch and starch-based nanoparticles show the similar type pattern with the acetylated starch. The scanning electron microscopy showed that the different sizes of pores formed on the acetylated starch granules were utterly converted into the uniform-sized spherical nanoparticles after the nanoprecipitation. The encapsulation efficiency and diameter of nanoparticle can be adjusted by the degree of substitution, the volume ratio of nonsolvent to solvent and the weight ratio of acetylated starch to drug. It was also depicted that the release behaviors of drug-loaded nanoparticles depend on the size of nanoparticles and the degree of substitution of the acetylated starch. Release studies prove that the starch-based nanoparticles with uniform size can be used for the encapsulation of hydrophobic drug and attained the sustained and controllable drug release carriers.

  14. Characterizations of oil-in-water emulsion stabilized by different hydrophobic maize starches.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Jiang, Bo; Hamaker, Bruce R; Jin, Zhengyu; Zhang, Tao

    2017-06-15

    The molecular structure, rheological properties, microstructure and physical stability of oil-in-water emulsions using octenyl succinic-sugary maize soluble starch (OS-SMSS) were investigated and compared with two commercial OS-starches (HI-CAP 100 and Purity Gum 2000). The degree of substitution (DS), weight-average molecular weight (Mw) and z-root mean square radius of gyration (Rz) of OS-SMSS, HI-CAP 100 and Purity Gum 2000 were 0.0050, 223.4×10 5 g/mol and 38.8nm, 0.0037, 9.6×10 5 g/mol and 29.3nm, and 0.0031, 31.3×10 5 g/mol and 39.6nm, respectively. FT-IR spectra showed two new absorption bands at 1725 and 1570cm -1 from OS ester linkage in all tested samples. The emulsion with OS-SMSS exhibited a pseudoplastic behavior over the whole shear rate range, whereas other two emulsions showed a similar Newtonian fluid. All hydrophobic starch stabilized emulsions satisfied the Herschel-Bulkley model. All emulsions displayed storage modulus (G') was higher than loss modulus (G″), and only G' and G″ of OS-SMSS stabilized emulsion were independent of frequency. The volume-average droplet size (d 43 ) value of emulsions stabilized by three modified starches was 27.9, 15.2 and 24.4μm, respectively. During 4 weeks storage, lower change in d 43 of emulsion with OS-SMSS was observed. The above results with schematic models of emulsions suggested that an emulsion with high stability could be prepared using 3% of OS-SMSS due to the formation of high density and thick nanoparticle layer at the interface, indicating OS-SMSS was a Pickering emulsion stabilizer for good long-term stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Wang, Yaming; Liu, Hao; Liu, Yan; Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu

    2016-01-01

    Highlights: • A hydrophobic micro-nano roughness surface on magnesium was fabricated. • Micro-nano structure derives from duplicating ‘over growth’ regions by MAO. • 7–9 μm micro-scale big pores insetting with nano-scale fine pores were fabricated. • Hydrophobicity of micro-nano surface was improved by chemical decoration and stearic treatment. - Abstract: Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic ‘lotus leaf’ hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO 3 aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7–9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured ‘over growth’ oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO 3 and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from −1.521 V of the bare magnesium to −1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily extended to the

  16. The fabrication and hydrophobic property of micro-nano patterned surface on magnesium alloy using combined sparking sculpture and etching route

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Wang, Yaming, E-mail: wangyaming@hit.edu.cn [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Hao [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Liu, Yan [Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022 (China); Guo, Lixin; Jia, Dechang; Ouyang, Jiahu; Zhou, Yu [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China)

    2016-12-15

    Highlights: • A hydrophobic micro-nano roughness surface on magnesium was fabricated. • Micro-nano structure derives from duplicating ‘over growth’ regions by MAO. • 7–9 μm micro-scale big pores insetting with nano-scale fine pores were fabricated. • Hydrophobicity of micro-nano surface was improved by chemical decoration and stearic treatment. - Abstract: Magnesium alloy with micro-nano structure roughness surface, can serve as the loading reservoirs of medicine capsule and industrial lubricating oil, or mimic ‘lotus leaf’ hydrophobic surface, having the potential applications in medical implants, automobile, aerospace and electronic products, etc. Herein, we propose a novel strategy to design a micro-nano structure roughness surface on magnesium alloy using combined microarc sparking sculpture and etching in CrO{sub 3} aqueous solution. A hydrophobic surface (as an applied example) was further fabricated by chemical decorating on the obtained patterned magnesium alloy surface to enhance the corrosion resistance. The results show that the combined micro-nano structure of 7–9 μm diameter big pores insetting with nano-scale fine pores was duplicated after etched the sparking sculptured ‘over growth’ oxide regions towards the magnesium substrate. The micro-nano structure surface was chemically decorated using AgNO{sub 3} and stearic acid, which enables the contact angle increased from 60° to 146.8°. The increasing contact angle is mainly attributed to the micro-nano structure and the chemical composition. The hydrophobic surface of magnesium alloy improved the corrosion potential from −1.521 V of the bare magnesium to −1.274 V. Generally, the sparking sculpture and then etching route demonstrates a low-cost, high-efficacy method to fabricate a micro-nano structure hydrophobic surface on magnesium alloy. Furthermore, our research on the creating of micro-nano structure roughness surface and the hydrophobic treatment can be easily

  17. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding

    Science.gov (United States)

    Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can

    2018-01-01

    Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.

  18. Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

    Science.gov (United States)

    Hensel, Jennifer K; Carpenter, Andrew P; Ciszewski, Regina K; Schabes, Brandon K; Kittredge, Clive T; Moore, Fred G; Richmond, Geraldine L

    2017-12-19

    Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structure of regular (oil in water) and reverse (water in oil) nanoemulsions stabilized with the surfactant dioctyl sodium sulfosuccinate (AOT). Vibrational sum-frequency scattering spectroscopy (VSFSS) is used to measure the vibrational spectroscopy of these AOT stabilized regular and reverse nanoemulsions. Complementary studies of AOT adsorbed at the planar oil-water interface are conducted with vibrational sum-frequency spectroscopy (VSFS). Jointly, these give comparative insights into the orientation of interfacial water and the molecular characterization of the hydrophobic and hydrophilic regions of AOT at the different oil-water interfaces. Whereas the polar region of AOT and surrounding interfacial water molecules display nearly identical behavior at both the planar and droplet interface, there is a clear difference in hydrophobic chain ordering even when possible surface concentration differences are taken into account. This chain ordering is found to be invariant as the nanodroplets grow by Ostwald ripening and also with substitution of different counterions (Na:AOT, K:AOT, and Mg:AOT) that consequently also result in different sized nanoparticles. The results paint a compelling picture of surfactant assembly at these relatively large nanoemulsion surfaces and allow for an important comparison of AOT at smaller micellar (curved) and planar oil-water interfaces.

  19. Spontaneous Structuration of Hydrophobic Polymer Surfaces in Contact with Salt Solutions

    NARCIS (Netherlands)

    Sîretanu, Igor; Saadaoui, Hassan; Chapel, Jean Paul; Drummond, Carlos; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2015-01-01

    It has been described in previous chapters how spontaneous instabilities related to interfacial phenomena can be used to produce controlled patterns on polymer surfaces. Strategies of polymer patterning assisted by dewetting or water drop condensation were described. In this chapter we present a

  20. Structural changes and molecular interactions of hydrophobin SC3 in solution and on a hydrophobic surface

    NARCIS (Netherlands)

    Wang, X.; Vocht, M.L. de; Poolman, B.; Robillard, G.T.; Wang, [No Value; Jonge, J. de

    2002-01-01

    The hydrophobin SC3 belongs to a class of small proteins functioning in the growth and development of fungi. Its unique amphipathic property and remarkable surface activity make it interesting not only for biological studies but also for medical and industrial applications. Biophysical studies have

  1. Bacterial adhesion and biofilm formation on surfaces of variable roughness and hydrophobicity

    DEFF Research Database (Denmark)

    Tang, Lone; Pillai, Saju; Iversen, Anders

    L.Biofilm formation on surfaces in food production and processing can deteriorate the quality of food products and be a hazard to consumers. The food industry currently uses a number of approaches to either remove biofilm or prevent its formation. Due to the inherent resilience of bacteria...

  2. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces

    DEFF Research Database (Denmark)

    Kapp, Sebastian J; Larsson, Iben; van de Weert, Marco

    2015-01-01

    , such as infusion bags and i.v. lines. Total internal reflection fluorescence and quartz crystal microbalance with dissipation monitoring were used to follow and quantify this. Furthermore, the influence of the nonionic surfactant polysorbate 80 (PS80) on the adsorption process of these two antibodies...... was investigated. Despite belonging to two different IgG subclasses, both antibodies displayed comparable adsorption behavior. Both antibodies readily adsorbed in the absence of PS80, whereas adsorption was reduced in the presence of 30 mg/L surfactant. The sequence of exposure of the surfactant and protein...... to the surface was found to have a major influence on the extent of protein adsorption. Although only a fraction of adsorbed protein could be removed by rinsing with 30 mg/L surfactant solution, adsorption was entirely prevented when surfaces were pre-exposed to PS80. © 2014 Wiley Periodicals, Inc...

  3. Engineering of Nanoscale Antifouling and Hydrophobic Surfaces on Naval Structural Steel HY-80 by Anodizing

    Science.gov (United States)

    2015-06-01

    form a biofilm—an assemblage of attached cells, which is commonly referred to as slime [29]. These microorganisms adhere to the surface by...extracellular polymeric substances (EPS). So the biofilm, which is the result of micro fouling, comprises both the microorganisms and the EPS, and thus the... sponges , anemones, tunicates, and hydroids, whilst hard fouling comprises invertebrates such as barnacles, mussels, and tubeworms. The specific

  4. Synthesis and Characterization of PEDOT:P(SS-co-VTMS with Hydrophobic Properties and Excellent Thermal Stability

    Directory of Open Access Journals (Sweden)

    Wonseok Cho

    2016-05-01

    Full Text Available Hydrophobic and comparatively thermally-stable poly(3,4-ethylenedioxythiophene, i.e., poly(styrene sulfonate-co-vinyltrimethoxysilane (PEDOT:P(SS-co-VTMS copolymer was successfully synthesized via the introduction of silane coupling agent into the PSS main chain to form P(SS-co-VTMS copolymers. PSS and P(SS-co-VMTS copolymers were successfully synthesized via radical solution polymerization, and PEDOT:P(SS-co-VTMS was synthesized via Fe+-catalyzed oxidative polymerization. The characterization of PEDOT:P(SS-co-VTMS was performed through an analysis of Fourier transform infrared spectroscopy (FTIR results, water contact angle and optical images. The electrical properties of conductive PEDOT:P(SS-co-VTMS thin films were evaluated by studying the influence of the VTMS content on the electrical and physical properties. The conductivity of PEDOT:P(SS-co-VTMS decreased with an increase in the VTMS content, but was close to that of the PEDOT:PSS, 235.9 S·cm−1. The introduction of VTMS into the PSS copolymer improved the mechanical properties and thermal stability and increased the hydrophobicity. The thermal stability test at a temperature over 240 °C indicated that the sheet resistance of PEDOT:PSS increased by 3,012%. The sheet resistance of PEDOT:P(SS-co-VTMS, on the other hand, only increased by 480%. The stability of PEDOT:P(SS-co-VTMS was six-times higher than that of the reference PEDOT:PSS.

  5. Preparation and Characterization of a Hydrophobic Metal-Organic Framework Membrane Supported on Thin Porous Metal Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Canfield, Nathan L.; Liu, Wei

    2016-02-29

    A hydrophobic metal-organic framework (MOF) UiO-66-CH3 is prepared and its solvothermal stability is investigated in comparison to UiO-66. It is confirmed that the MOF stability is enhanced by introduction of the two methyl groups, while the water adsorption is reduced. Given its hydrophobicity and stability, UiO-66-CH3 is proposed as an attractive membrane material for gas separation under moisture conditions. The UiO-66-CH3 membrane is prepared on a 50µm-thin porous Ni support sheet for the first time by use of a secondary growth method. It is found that uniform seed coating on the support is necessary to form a continuous membrane. In addition to growth time and temperature, presence of a modulator in the growth solution is found to be useful for controlling hydrothermal membrane growth on the seeded support. A dense, inter-grown membrane layer is formed by 24-h growth over a temperature range from 120 oC to 160 oC. The membrane surface comprises 500 nm octahedral crystals, which are supposed to grow out of the original 100 nm spherical seeding crystals. The separation characteristics of resulting membranes are tested with pure CO2, air, CO2/air mixture, and humid CO2/air mixture. CO2 permeance as high as 1.9E-06 mol/m2/s/Pa at 31oC is obtained. Unlike the hydrophilic zeolite membranes, CO2 permeation through this membrane is not blocked by the presence of water vapor in the feed gas. The results suggest that this MOF framework is a promising membrane material worth to be further investigated for separation of CO2 and other small molecules from humid gas mixtures.

  6. Surface characterization protocol for precision aspheric optics

    Science.gov (United States)

    Sarepaka, RamaGopal V.; Sakthibalan, Siva; Doodala, Somaiah; Panwar, Rakesh S.; Kotaria, Rajendra

    2017-10-01

    In Advanced Optical Instrumentation, Aspherics provide an effective performance alternative. The aspheric fabrication and surface metrology, followed by aspheric design are complementary iterative processes for Precision Aspheric development. As in fabrication, a holistic approach of aspheric surface characterization is adopted to evaluate actual surface error and to aim at the deliverance of aspheric optics with desired surface quality. Precision optical surfaces are characterized by profilometry or by interferometry. Aspheric profiles are characterized by contact profilometers, through linear surface scans to analyze their Form, Figure and Finish errors. One must ensure that, the surface characterization procedure does not add to the resident profile errors (generated during the aspheric surface fabrication). This presentation examines the errors introduced post-surface generation and during profilometry of aspheric profiles. This effort is to identify sources of errors and is to optimize the metrology process. The sources of error during profilometry may be due to: profilometer settings, work-piece placement on the profilometer stage, selection of zenith/nadir points of aspheric profiles, metrology protocols, clear aperture - diameter analysis, computational limitations of the profiler and the software issues etc. At OPTICA, a PGI 1200 FTS contact profilometer (Taylor-Hobson make) is used for this study. Precision Optics of various profiles are studied, with due attention to possible sources of errors during characterization, with multi-directional scan approach for uniformity and repeatability of error estimation. This study provides an insight of aspheric surface characterization and helps in optimal aspheric surface production methodology.

  7. No relationship between the cell surface hydrophobicity of coagulase-negative staphylococci and their ability to adhere onto fluorinated poly(ethylene-propylene)

    NARCIS (Netherlands)

    Brokke, P.; Brokke, P.; Dankert, J.; Hogt, A.H.; Feijen, Jan

    1992-01-01

    The cell surface hydrophobicity of 14 encapsulated and 21 non-encapsulated coagulase-negative staphylococci (CN staph) as determined with the salt aggregation test (SAT) as well as with the xylene-water method ranged widely. Non-encapsulated strains adhered well onto fluorinated

  8. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  9. Comparative Analysis of Structural Responses of Rat Subcutaneous Fat on the Implantation of Samples of Polymethyl Methacrylate with Hydrophobic and Hydrophilic Surface.

    Science.gov (United States)

    Kudasova, E O; Vlasova, L F; Semenov, D E; Lushnikova, E L

    2017-03-01

    Morphological analysis of the subcutaneous fat was performed in rats after subcutaneous implantation of basic dental plastic materials with different hydrophobic and hydrophilic properties. It was shown that subcutaneous implantation of dental plastics with mostly hydrophobic surface and low biocompatibility induced destructive and inflammatory processes of various intensities, sometimes with allergic component; morphological signs of processes persisted for 6 weeks. Modification of basic plastics using glow-discharge plasma and enhancement of their hydrophilicity and biocompatibility significantly reduced the intensity of destructive and inflammatory processes and ensured more rapid (in 2 weeks) repair of the destroyed tissues with the formation of fibrous capsule around the implant.

  10. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

    Science.gov (United States)

    Alarifi, Ibrahim M; Alharbi, Abdulaziz; Khan, Waseem S; Swindle, Andrew; Asmatulu, Ramazan

    2015-10-14

    This paper presents an idea of using carbonized electrospun Polyacrylonitrile (PAN) fibers as a sensor material in a structural health monitoring (SHM) system. The electrospun PAN fibers are lightweight, less costly and do not interfere with the functioning of infrastructure. This study deals with the fabrication of PAN-based nanofibers via electrospinning followed by stabilization and carbonization in order to remove all non-carbonaceous material and ensure pure carbon fibers as the resulting material. Electrochemical impedance spectroscopy was used to determine the ionic conductivity of PAN fibers. The X-ray diffraction study showed that the repeated peaks near 42° on the activated nanofiber film were α and β phases, respectively, with crystalline forms. Contact angle, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) were also employed to examine the surface, thermal and chemical properties of the carbonized electrospun PAN fibers. The test results indicated that the carbonized PAN nanofibers have superior physical properties, which may be useful for structural health monitoring (SHM) applications in different industries.

  11. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    Science.gov (United States)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  12. From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion

    Science.gov (United States)

    Cheng, Zhongjun; Du, Ming; Lai, Hua; Zhang, Naiqing; Sun, Kening

    2013-03-01

    In this paper, a convenient approach based on the reaction between an alkyl thiol and hierarchical structured Cu(OH)2 substrates is reported for the fabrication of super-hydrophobic surfaces with controlled adhesion. This reaction can etch the Cu(OH)2 microstructures and simultaneously introduce a coating with low surface energy. By simply controlling the reaction time or the chain length of the thiol, super-hydrophobic surfaces with controlled adhesion can be achieved, and the adhesive force between the surface and the water droplet can be adjusted from extreme low (~14 μN) to very high (~65 μN). The tunable effect of the adhesion is ascribed to the different wetting states for the droplet on the surface that results from the change of the morphology and microstructure scale after the thiolate reaction. Noticeably, the as-prepared surfaces are acid/alkali-resisting; the acidic and basic water droplets have similar contact angles and adhesive forces to that of the neutral water droplet. Moreover, we demonstrate a proof of water droplet transportation for application in droplet-based microreactors via our surfaces. We believe that the results reported here would be helpful for the further understanding of the effect of wetting states on the surface adhesion and the fabrication principle for a super-hydrophobic surface with controlled adhesion.In this paper, a convenient approach based on the reaction between an alkyl thiol and hierarchical structured Cu(OH)2 substrates is reported for the fabrication of super-hydrophobic surfaces with controlled adhesion. This reaction can etch the Cu(OH)2 microstructures and simultaneously introduce a coating with low surface energy. By simply controlling the reaction time or the chain length of the thiol, super-hydrophobic surfaces with controlled adhesion can be achieved, and the adhesive force between the surface and the water droplet can be adjusted from extreme low (~14 μN) to very high (~65 μN). The tunable effect of the

  13. Constructing Fluorine-Free and Cost-Effective Superhydrophobic Surface with Normal-Alcohol-Modified Hydrophobic SiO2 Nanoparticles.

    Science.gov (United States)

    Ye, Hui; Zhu, Liqun; Li, Weiping; Liu, Huicong; Chen, Haining

    2017-01-11

    Superhydrophobic coatings have drawn much attention in recent years for their wide potential applications. However, a simple, cost-effective, and environmentally friendly approach is still lacked. Herein, a promising approach using nonhazardous chemicals was proposed, in which multiple hydrophobic functionalized silica nanoparticles (SiO 2 NPs) were first prepared as core component, through the efficient reaction between amino group containing SiO 2 NPs and the isocyanate containing hydrophobic surface modifiers synthesized by normal alcohols, followed by simply spraying onto various substrates for superhydrophobic functionalization. Furthermore, to further improve the mechanical durability, an organic-inorganic composite superhydrophobic coating was fabricated by incorporating cross-linking agent (polyisocyanate) into the mixture of hydrophobic-functionalized SiO 2 NPs and hydroxyl acrylic resin. The hybrid coating with cross-linked network structures is very stable with excellent mechanical durability, self-cleaning property and corrosion resistance.

  14. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    International Nuclear Information System (INIS)

    Yang Ji; Cao Limei; Guo Rui; Jia Jinping

    2010-01-01

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m 2 g -1 , the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  15. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  16. Radioactive Ions for Surface Characterization

    CERN Multimedia

    2002-01-01

    The collaboration has completed a set of pilot experiments with the aim to develop techniques for using radioactive nuclei in surface physics. The first result was a method for thermal deposition of isolated atoms (Cd, In, Rb) on clean metallic surfaces. \\\\ \\\\ Then the diffusion history of deposited Cd and In atoms on two model surfaces, Mo(110) and Pd(111), was followed through the electric field gradients (efg) acting at the probe nuclei as measured with the Perturbed Angular Correlation technique. For Mo(110) a rather simple history of the adatoms was inferred from the experiments: Atoms initially landing at terrace sites diffuse from there to ledges and then to kinks, defects always present at real surfaces. The next stage is desorption from the surface. For Pd a scenario that goes still further was found. Following the kink stage the adatoms get incorporated into ledges and finally into the top surface layer. For all these five sites the efg's could be measured.\\\\ \\\\ In preparation for a further series o...

  17. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  18. Optical Characterization of Nanostructured Surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft

    Micro- and nanostructured surfaces are interesting due to the unique properties they add to the bulk material. One example is structural colors, where the interaction between surface structures and visible light produce bright color effects without the use of paints or dyes. Several research groups...... modeling to evaluate the dimensions of subwavelength gratings, by correlating the reflected light measured from the structures with a database of simulations. A new method is developed and termed color scatterometry, since compared to typical spectroscopic scatterometry, which evaluates the full reflection...... spectrum; the new method only evaluates the color of the reflected light using a standard RGB color camera. Color scatterometry provides the combined advantages of spectroscopic scatterometry, which provides fast evaluations, and imaging scatterometry that provides an overview image from which small...

  19. Multiscale Characterization of Joint Surface Roughness

    Science.gov (United States)

    Nigon, Benoit; Englert, Andreas; Pascal, Christophe; Saintot, Aline

    2017-12-01

    Recent studies provided detailed characterizations of fault (i.e., shear fracture) roughness at different length scales. Similar investigation for joints (i.e., tensile fractures) are seldom and not as detailed. The present study aims at characterizing joint plumose patterns. We investigated the scale-dependent surface roughness properties of S-type plumoses. Joint surface measurements at relatively large scales were carried out with Light Detection and Ranging (LiDAR) technology. Joint surface measurements at the microscopic scale were carried out based on a noncontact optical method, using a Keyence VHX-2000D microscope. Three parameters were used to characterize fracture surface elevation, standard deviation, Hurst exponent, and correlation length through 3 scale length orders of magnitude. Our study showed that standard deviation and correlation length decrease with scale, similarly to previous findings on faults. In addition, the range of Hurst exponents as a function of scale for the studied joint surface agrees well with those previously found for faults. However, directional analysis showed that correlation length and Hurst exponent of joint surfaces at scales smaller than 1 dm differ significantly from the ones of fault surfaces. In contrast to fault surface ornaments that are mainly characterized by linear structures, plumose structures show marked variability in orientation and anisotropy as a function of position on the joint surface.

  20. Surface characterization based upon significant topographic features

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, J; Grime, D; Blateyron, F, E-mail: fblateyron@digitalsurf.fr [Digital Surf, 16 rue Lavoisier, F-25000 Besancon (France)

    2011-08-19

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  1. Surface characterization based upon significant topographic features

    International Nuclear Information System (INIS)

    Blanc, J; Grime, D; Blateyron, F

    2011-01-01

    Watershed segmentation and Wolf pruning, as defined in ISO 25178-2, allow the detection of significant features on surfaces and their characterization in terms of dimension, area, volume, curvature, shape or morphology. These new tools provide a robust way to specify functional surfaces.

  2. Fractal characterization of the coal surface

    Directory of Open Access Journals (Sweden)

    Miklúšová Viera

    1998-09-01

    Full Text Available The aim of this paper is to point up to the characterization of the brown coal using the fractal theory. On the base of BET measurements on the adsorption surface, the surface fractal dimension of crushed and milled coal samples have been determined. These values of the fractal dimension are used in the estimation of the processes by the energy input.

  3. Effect of surface hydrophobicity on the dynamics of water at the nanoscale confinement: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Choudhury, Niharendu

    2013-01-01

    Highlights: • We present atomistic MD simulation of water confined between two paraffin-like plates. • Effect of plate hydrophobicity on the confined water dynamics is investigated. • Diffusivity of confined water is calculated from mean squared displacements. • Rotational dynamics of the confined water has bimodal nature of relaxation. • Monotonic dependence of translational and rotational dynamics on hydrophobicity. - Abstract: We present detailed molecular dynamics simulations of water in and around a pair of plates immersed in water to investigate the effect of degree of hydrophobicity or hydrophilicity of the plates on dynamics of water confined between the two plates. The nature of the plate has been tuned from hydrophobic to hydrophilic and vice versa by varying plate-water dispersion interaction. Analyses of the translational dynamics as performed by calculating mean squared displacements of the confined water reveal a monotonically decreasing trend of the diffusivity with increasing hydrophilicity of the plates. Orientational dynamics of the confined water also follows the same monotonic trend. Although orientational time constant almost does not change with the increase of plate-water dispersion interaction in the hydrophobic regime corresponding to the smaller plate-water attraction, it changes considerably in the hydrophilic regime corresponding to larger plate-water dispersion interactions

  4. Effects of content and surface hydrophobic modification of BaTiO3 on the cooling properties of ASA (acrylonitrile-styrene-acrylate copolymer)

    Science.gov (United States)

    Xiang, Bo; Zhang, Jun

    2018-01-01

    For the field of cool material, barium titanate (BaTiO3, BT) is still a new member that needs to be further studied. Herein, the effects of both content and surface hydrophobic modification of BT on the cooling properties of acrylonitrile-styrene-acrylate copolymer (ASA) were detailedly investigated, aiming to fabricate composited cool material. Butyl acrylate (BA) was employed to convert the surface of BT from hydrophilic to hydrophobic. The addition of unmodified BT could significantly improve the solar reflectance of ASA, especially when the addition amount is 3 vol%, the near infrared (NIR) reflectance increased from 22.02 to 72.60%. However, serious agglomeration occurred when the addition amount increased to 5 vol% and therefore led to a relatively smaller increase in solar reflectance and an obvious decline in impact strength. After surface hydrophobic modification, the modified BT (M-BT) presented better dispersibility in ASA matrix, which contributed to the improvement of both solar reflectance and impact strength. In addition, the temperature test provided a more sufficient and intuitive way to evaluate the cooling effect of the composited cool materials, and a significant decrease (over 10 °C) could be achieved in the temperature test when M-BT particles were introduced.

  5. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.

    Science.gov (United States)

    Panjwani, Bharat; Sinha, Sujeet K

    2012-11-01

    Tribological properties of perfluoropolyether (PFPE) coated 3-glycidoxypropyltrimethoxy silane (GPTMS) SAMs (self-assembled monolayers) onto Ti6Al4V alloy substrate were studied using ball-on-disk experiments. GPTMS SAMs deposition onto a Ti6Al4V alloy surface was carried out using solution phase method. Ultra-thin layer of PFPE was dip-coated onto SAMs modified specimens. Tribological tests were carried out at 0.2 N normal load and rotational speed of 200 rpm using track radius of 2 mm. Wear track and counterface surface conditions were investigated using optical microscopy. PFPE modified specimens were baked at 150 °C for 1h to investigate the effect of thermal treatment on tribological properties. Surface characterization tests such as contact angle measurement, AFM morphology and X-ray photoelectron spectroscopy were carried out for differently modified specimens. PFPE overcoat meets the requirements of cytotoxicity test using the ISO 10993-5 elution method. PFPE top layer lowered the coefficient of friction and increased wear durability for different specimens (with and without GPTMS intermediate layer). PFPE overcoat onto GPTMS showed significant increase in the wear resistance compared with overcoat onto bare Ti6Al4V specimens. The observed improvement in the tribological properties can be attributed to the change in the interaction of PFPE molecules with the substrate surface due to the GPTMS intermediate layer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Significance of the rdar and bdar morphotypes in the hydrophobicity and attachment to abiotic surfaces of Salmonella Sofia and other poultry-associated Salmonella serovars.

    Science.gov (United States)

    Chia, T W R; McMeekin, T A; Fegan, N; Dykes, G A

    2011-11-01

    To investigate the relative role of the red dry and rough (rdar) and brown dry and rough (bdar) morphotypes on hydrophobicity and ability to attach to abiotic surfaces of poultry-associated Salmonella strains with a focus on S. Sofia. Cellulose synthase gene null mutants were constructed in five Salmonella strains converting them from rdar to bdar morphotypes. One S. Sofia null mutant displayed reduced hydrophobicity and attachment to Teflon® relative to its parent strain. The S. Virchow and S. Infantis null mutants attached less well to glass relative to their parent strains. The rdar or bdar morphotype may influence S. Sofia persistence but did not explain why bdar strains predominate in this serotype. This work provides some insight into why some Salmonella strains survive in poultry environments and may ultimately contribute to their control. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  7. Hydrophobic and hydrophilic control in polyphosphazene materials

    Science.gov (United States)

    Steely, Lee Brent

    This thesis is the culmination of several recent studies focused on the surface characterization of polyphosphazenes specifically the properties of water repellency or hydrophobicity. Chapter 1 is a background account of polyphosphazene chemistry and the hydrophobicity of polyphosphazenes. Chapter 2 provides an examination of the role of surface morphology on hydrophobicity. This study deals in depth with the electrospinning of poly[bis(2,2,2-trifluoroethoxy)phosphazene] in tetrahydrofuran. This process yields fiber mats or bead and fiber mats which exhibit roughness in continuous contact with the water droplet (fiber mats) or discontinuous contact (bead and fiber mats). These surface roughness types are compared to spun cast films using water contact angles to measure the air-water-polymer interface. The influence of aromatic moieties and fluorine content on the air-water-polymer interface is examined in Chapter 3. This study examines the influence of fluorine content and aryloxy groups on the hydrophobicity of a polyphosphazene surface via static water contact angle measurements on a goniometer. Polymer surfaces of spun cast and electrospun mats were probed with advancing, receeding, and static water contact angle and dip coated slides of the same materials were also examined with a Langmuir-Blogett trough. Chapter 4 is a description of the environmental plasma surface treatments of polyphosphazenes as a method of functionalizing solid polymer surfaces. The treatment procedure of functionalizing spun cast and electrospun poly[bis(2,2,2-trifluoroethoxy)phosphazene] surfaces with plasma gases of oxygen, nitrogen, methane, and tetrafluoromethane is detailed. The resulting functionalization of the surface is examined with XPS and water contact angle data. In Chapter 5 fluoroalkoxy polyphosphazenes were processed with liquid carbon dioxide into foams. The foams were then tested for flame retardance and hydrophobicity. Appendixes A-C contain studies on moisture

  8. In Vitro Effects of Plantago Major Extract, Aucubin, and Baicalein on Candida albicans Biofilm Formation, Metabolic Activity, and Cell Surface Hydrophobicity.

    Science.gov (United States)

    Shirley, Karina Pezo; Windsor, L Jack; Eckert, George J; Gregory, Richard L

    2017-08-01

    To determine the in vitro effectiveness of Plantago major extract, along with two of its active components, aucubin and baicalein, on the inhibition of Candida albicans growth, biofilm formation, metabolic activity, and cell surface hydrophobicity. Twofold dilutions of P. major, aucubin, and baicalein were used to determine the minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and the minimum biofilm inhibitory concentration (MBIC) of each solution. Separately, twofold dilutions of P. major, aucubin, and baicalein were used to determine the metabolic activity of established C. albicans biofilm using a 2,3-bis (2- methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-carboxanilide reduction assay. Twofold dilutions of P. major, aucubin, and baicalein were used to determine the cell surface hydrophobicity of treated C. albicans biofilm by a two-phase assay using hexadecane. The hydrophobicity percentage of the cell surface was then calculated. A mixed-model ANOVA test was used for intergroup comparisons. The MICs of P. major extract (diluted 1:2 to 1:8), aucubin (61 to 244 μg/ml), and baicalein (0.0063 to 100 μg/ml) on the total growth of C. albicans were noticeable at their highest concentrations, and the inhibition was dose dependent. The MFC was evaluated after 48 hours of incubation, and aucubin (244 μg/ml) exhibited a strong fungicidal activity at its highest concentration against C. albicans growth. The MBIC indicated no growth or reduced growth of C. albicans biofilm at the highest concentrations of aucubin (61 to 244 μg/ml) and baicalein (25 to 100 μg/ml). Similarly, the effects of these reagents on C. albicans biofilm metabolic activity and hydrophobicity demonstrated high effectiveness at their highest concentrations. P. major extract, aucubin, and baicalein caused a dose-dependent reduction on the total growth, biofilm formation, metabolic activity, and cell surface hydrophobicity of C. albicans. This demonstrates their

  9. Recent experimental advances on hydrophobic interactions at solid/water and fluid/water interfaces.

    Science.gov (United States)

    Zeng, Hongbo; Shi, Chen; Huang, Jun; Li, Lin; Liu, Guangyi; Zhong, Hong

    2015-03-15

    Hydrophobic effects play important roles in a wide range of natural phenomena and engineering processes such as coalescence of oil droplets in water, air flotation of mineral particles, and folding and assembly of proteins and biomembranes. In this work, the authors highlight recent experimental attempts to reveal the physical origin of hydrophobic effects by directly quantifying the hydrophobic interaction on both solid/water and fluid/water interfaces using state-of-art nanomechanical techniques such as surface forces apparatus and atomic force microscopy (AFM). For solid hydrophobic surfaces of different hydrophobicity, the range of hydrophobic interaction was reported to vary from ∼10 to >100 nm. With various characterization techniques, the very long-ranged attraction (>100 nm) has been demonstrated to be mainly attributed to nonhydrophobic interaction mechanisms such as pre-existing nanobubbles and molecular rearrangement. By ruling out these factors, intrinsic hydrophobic interaction was measured to follow an exponential law with decay length of 1-2 nm with effective range less than 20 nm. On the other hand, hydrophobic interaction measured at fluid interfaces using AFM droplet/bubble probe technique was found to decay with a much shorter length of ∼0.3 nm. This discrepancy of measured decay lengths is proposed to be attributed to inherent physical distinction between solid and fluid interfaces, which impacts the structure of interface-adjacent water molecules. Direct measurement of hydrophobic interaction on a broader range of interfaces and characterization of interfacial water molecular structure using spectroscopic techniques are anticipated to help unravel the origin of this rigidity-related mismatch of hydrophobic interaction and hold promise to uncover the physical nature of hydrophobic effects. With improved understanding of hydrophobic interaction, intrinsic interaction mechanisms of many biological and chemical pathways can be better

  10. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase.

    Science.gov (United States)

    Wang, H; Zhang, L; Liddington, R; Fu, H

    1998-06-26

    14-3-3 proteins bind to a diverse group of regulatory molecules such as Raf-1, Cbl, and c-Bcr that are involved in signal transduction pathways. The crystal structure of 14-3-3zeta reveals a conserved amphipathic groove that may mediate the association of 14-3-3 with diverse ligands. Consistently, mutations on the charged surface of the groove (Lys-49, Arg-56, and Arg-60) decrease the binding of 14-3-3zeta to the ligands tested (Zhang, L., Wang, H., Liu, D., Liddington, R., and Fu, H. (1997) J. Biol. Chem. 272, 13717-13724). Here we report that mutations that altered the hydrophobic property of the groove, V176D, L216D, L220D, and L227D, disrupted the interaction of 14-3-3zeta with Raf-1 kinase. The reduced binding of the 14-3-3zeta mutants to Raf-1 was apparently not because of gross structural changes in the mutants as judged by their ability to form dimers, by partial proteolysis profiles, and by circular dichroism analysis. These hydrophobic residues appeared to be required for the binding of 14-3-3zeta to distinct activation states of Raf-1 because mutations V176D, L216D, L220D, and L227D reduced the interaction of 14-3-3zeta with Raf-1 from both phorbol 12-myristate 13-acetate-stimulated and unstimulated Jurkat T cells. These same mutations also disrupted the association of 14-3-3zeta with other regulatory molecules such as Cbl and c-Bcr, suggesting that the hydrophobic surface of the amphipathic groove represents part of a binding site shared by a number of 14-3-3-associated proteins. The conservation of the hydrophobic residues Val-176, Leu-216, Leu-220, and Leu-227 among known 14-3-3 family members implies their general importance in ligand binding.

  11. Effect of Eugenol on Cell Surface Hydrophobicity, Adhesion, and Biofilm of Candida tropicalis and Candida dubliniensis Isolated from Oral Cavity of HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Suelen Balero de Paula

    2014-01-01

    Full Text Available Most Candida spp. infections are associated with biofilm formation on host surfaces. Cells within these communities display a phenotype resistant to antimicrobials and host defenses, so biofilm-associated infections are difficult to treat, representing a source of reinfections. The present study evaluated the effect of eugenol on the adherence properties and biofilm formation capacity of Candida dubliniensis and Candida tropicalis isolated from the oral cavity of HIV-infected patients. All isolates were able to form biofilms on different substrate surfaces. Eugenol showed inhibitory activity against planktonic and sessile cells of Candida spp. No metabolic activity in biofilm was detected after 24 h of treatment. Scanning electron microscopy demonstrated that eugenol drastically reduced the number of sessile cells on denture material surfaces. Most Candida species showed hydrophobic behavior and a significant difference in cell surface hydrophobicity was observed after exposure of planktonic cells to eugenol for 1 h. Eugenol also caused a significant reduction in adhesion of most Candida spp. to HEp-2 cells and to polystyrene. These findings corroborate the effectiveness of eugenol against Candida species other than C. albicans, reinforcing its potential as an antifungal applied to limit both the growth of planktonic cells and biofilm formation on different surfaces.

  12. Surface science tools for nanomaterials characterization

    CERN Document Server

    2015-01-01

    Fourth volume of a 40volume series on nano science and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Surface Science Tools for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

  13. Experimental Investigation on the Effect of Size and Pitch of Hydrophobic Square Patterns on the Pool Boiling Heat Transfer Performance of Cylindrical Copper Surface

    Directory of Open Access Journals (Sweden)

    Sujith Kumar C. S.

    2018-03-01

    Full Text Available In this work, pool boiling heat transfer tests were conducted for investigating the effects of the size and pitch of the hydrophobic square patterns on a copper test piece with the following dimensions: 40 mm long, 25 mm outer diameter, and 18 mm inner diameter. The size of the square patterns and the pitch were varied with an increment of 0.5 mm from 1 mm to 3 mm and from 4.5 to 5.5 mm, respectively. Among the various square patterns of different size and pitch, the 2 mm size square pattern with 5 mm pitch (inter-distance 3 mm was found to be the best because it gives the advantage of bubble coalescence behavior and also the rewetting phenomenon. The observed bubble departure diameter was 2.35 mm, and using this diameter, we predicted the maximum inter-distance between the patterns for producing inter coalescence of bubbles in the axial direction was 3.12 mm. Therefore, a side-by-side distance of 3 mm, which was closed to the estimated inter-distance graphically, can avoid the earlier inter coalescence of the bubbles between patterns on the surface in the axial direction. This results in better pool boiling heat transfer performance. Highlights: (1 Heterogeneous wettable structures were obtained on the copper surface using screen printing techniques; (2 The effect of the size and pitch of the hydrophobic patterns on the bubble dynamics was determined; (3 The wall superheats of all the heterogeneous wettable surfaces were less than the plain copper surface; (4 The highest heat transfer coefficient was obtained from the hydrophobic pattern with 2 mm size and 5 mm pitch.

  14. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma

    International Nuclear Information System (INIS)

    Zheng Zhiwen; Ren Li; Feng Wenjiang; Zhai Zhichen; Wang Yingjun

    2012-01-01

    In order to study the surface characterization and protein adhesion behavior of polyethylene terephthalate film, low temperature ammonia plasma was used to modify the film. Effects of plasma conditions of the surface structures and properties were investigated. Results indicated that surface hydrophilicity of polyethylene terephthalate was significantly improved by ammonia plasma treatment. Ammonia plasma played the role more important than air treatment in the process of modification. Furthermore, by Fourier Transform Infrared spectra some new bonds such as -N=O and N-H which could result in the improvement of the surface hydrophilicity were successfully grafted on the film surface. Atom force microscope experiments indicated that more protein adsorbed on hydrophobic surfaces than hydrophilic ones, and the blobs arranged in a straight line at etching surface by plasma. Modified membrane after ammonia plasma treatment had a good cell affinity and could be effective in promoting the adhesion and growth of cells on the material surface. Timeliness experiments showed that the plasma treatment gave the material a certain performance only in a short period of time and the hydrophobicity recovered after 12 days.

  15. A hydrophobic gold surface triggers misfolding and aggregation of the amyloidogenic Josephin domain in monomeric form, while leaving the oligomers unaffected.

    Directory of Open Access Journals (Sweden)

    Alessandra Apicella

    Full Text Available Protein misfolding and aggregation in intracellular and extracellular spaces is regarded as a main marker of the presence of degenerative disorders such as amyloidoses. To elucidate the mechanisms of protein misfolding, the interaction of proteins with inorganic surfaces is of particular relevance, since surfaces displaying different wettability properties may represent model systems of the cell membrane. Here, we unveil the role of surface hydrophobicity/hydrophilicity in the misfolding of the Josephin domain (JD, a globular-shaped domain of ataxin-3, the protein responsible for the spinocerebellar ataxia type 3. By means of a combined experimental and theoretical approach based on atomic force microscopy, Fourier transform infrared spectroscopy and molecular dynamics simulations, we reveal changes in JD morphology and secondary structure elicited by the interaction with the hydrophobic gold substrate, but not by the hydrophilic mica. Our results demonstrate that the interaction with the gold surface triggers misfolding of the JD when it is in native-like configuration, while no structural modification is observed after the protein has undergone oligomerization. This raises the possibility that biological membranes would be unable to affect amyloid oligomeric structures and toxicity.

  16. Hydrophobic nano-carrier for lysozyme adsorption

    Indian Academy of Sciences (India)

    phobic interaction chromatography' to describe the separation of proteins adsorbed onto hydrophobic medium by salts [19]. HIC is based on the interaction between hydrophobic ligand carrying support material and hydrophobic amino acids bear- ing non-polar regions of protein surface [20]. The main driv- ing force for this ...

  17. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav

    2011-11-28

    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  18. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  19. Infrared active thermography for surface layer characterization

    International Nuclear Information System (INIS)

    Semerok, A.; Fomichev, S.; Farcage, D.; Sortais, C.; Courtois, X.

    2006-05-01

    Deposited layer characterization was stated as the main goal of our studies for 2006. The investigations by DRFC/SIPP/GCFP (CEA Cadarache) were performed with the procedure of surface temperature measurements based on infrared thermography with synchronous demodulation (Lock-in Thermography). It was applied to provide the temperature surface monitoring during the modulated heating by illumination. The obtained 2D-cartography revealed the zones with a weak heat transfer resulting from a low layer/surface adhesion or poor layer thermal conductivity. The obtained lock-in cartography data should be regarded only as qualitative. For deposited layers characterization (layer depth, adhesion with the substrate), the active laser pyrometer measurements with the developed experimental device were made in LILM laboratory (CEA Saclay). Active surface pyrometry with repetitive laser heating can provide both qualitative and quantitative data on the first layer and the interface with the substrate. A 3D-numerical model of graphite deposited layer heating by a pulsed high repetition rate laser beam was developed to determine the heated surface temperature with a high temporal and spatial resolution. The theoretical data obtained with 3D-numerical model for surface heating were compared with the experimental results. It was demonstrated that for the given optical and thermo-physical parameters of materials, the theoretical temperatures may be fitted with the experimental results to assess certain unknown parameters of the layer (thermal contact resistance, diffusivity, thickness, porosity, ). Based on the comparison of the obtained experimental and theoretical results, the deposited layer characterization was made. The results of the investigations on Active Laser Pyrometry and Lock-in Thermography demonstrated that the methods can provide qualitative and quantitative data on the deposited layer and on the layer/substrate interface. The correlation and cross-check of the results

  20. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  1. Structural and Mechanical Properties of Thin Films of Bovine Submaxillary Mucin versus Porcine Gastric Mucin on a Hydrophobic Surface in Aqueous Solutions

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Sotres, Javier; Pakkanen, Kirsi I.

    2016-01-01

    The structural and mechanical properties of thin films generated from two types of mucins, namely, bovine submaxillary mucin (BSM) and porcine gastric mucin (PGM) in aqueous environment were investigated with several bulk and surface analytical techniques. Both mucins generated hydrated films...... on hydrophobic polydimethylsiloxane (PDMS) surfaces from spontaneous adsorption arising from their amphiphilic characteristic. However, BSM formed more elastic films than PGM at neutral pH condition. This structural difference was manifested from the initial film formation processes to the responses to shear...... stresses applied to the films. Acidification of environmental pH led to strengthening the elastic character of BSM films with increased adsorbed mass, whereas an opposite trend was observed for PGM films. We propose that this contrast originates from that negatively charged motifs are present for both...

  2. How Much Surface Coating of Hydrophobic Azithromycin Is Sufficient to Prevent Moisture-Induced Decrease in Aerosolisation of Hygroscopic Amorphous Colistin Powder?

    Science.gov (United States)

    Zhou, Qi Tony; Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-Ping; Gengenbach, Thomas; Denman, John A; Li, Jian; Chan, Hak-Kim

    2016-09-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprises two drugs in the designed mass ratio, which is supported by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) data. XPS and ToF-SIMS measurements also revealed that 50% by weight (or 35% by molecular fraction) of azithromycin in the formulation provided a near complete coating of 96.5% (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in fine particle fraction (FPF)recovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20% w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture.

  3. How much surface coating of hydrophobic azithromycin is sufficient to prevent moisture-induced decrease in aerosolisation of hygroscopic colistin powder?

    Science.gov (United States)

    Zhou, Qi (Tony); Loh, Zhi Hui; Yu, Jiaqi; Sun, Si-ping; Gengenbach, Thomas; Denman, John A.; Li, Jian; Chan, Hak-Kim

    2017-01-01

    Aerosolisation performance of hygroscopic particles of colistin could be compromised at elevated humidity due to increased capillary forces. Co-spray drying colistin with a hydrophobic drug is known to provide a protective coating on the composite particle surfaces against moisture-induced reduction in aerosolisation performance; however, the effects of component ratio on surface coating quality and powder aerosolisation at elevated relative humidities are unknown. In this study, we have systematically examined the effects of mass ratio of hydrophobic azithromycin on surface coating quality and aerosolisation performance of the co-spray dried composite particles. Four combination formulations with varying drug ratios were prepared by co-spray drying drug solutions. Both of the drugs in each combination formulation had similar in vitro deposition profiles, suggesting that each composite particle comprise two drugs in the designed mass ratio, which is supported by XPS and ToF-SIMS data. XPS and ToF-SIMS measurements also revealed that 50 % by weight (or 35 % by molecular fraction) of azithromycin in the formulation provided a near-complete coating of 96.5 % (molar fraction) on the composite particle surface, which is sufficient to prevent moisture-induced reduction in FPFrecovered and FPFemitted. Higher azithromycin content did not increase coating coverage, while contents of azithromycin lower than 20 %w/w did not totally prevent the negative effects of humidity on aerosolisation performance. This study has highlighted that a critical amount of azithromycin is required to sufficiently coat the colistin particles for short-term protection against moisture. PMID:27255350

  4. Liquid extraction surface analysis (LESA) of hydrophobic TLC plates coupled to chip-based nanoelectrospray high-resolution mass spectrometry.

    Science.gov (United States)

    Himmelsbach, Markus; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-01-01

    Direct identification and structural characterization of analyte spots on TLC plates have always been of great interest and the development of interfaces that allow TLC to be combined with MS is making steady progress. The recently introduced liquid extraction surface analysis (LESA) approach has the potential to hyphenate TLC with MS. A mixture of lipid standards was separated on HPTLC RP-18 glass plates using chloroform:methanol :acetonitrile 2:1:1 (v:v:v) as mobile phase. After visualization with primuline dye (0.02% in acetone:water 8:2 (v:v)), LESA was performed, followed by a chip-based nanoflow infusion in combination with FTICRMS. The optimized extraction solvent composition was methanol:chloroform:water:formic acid 52:24:24:0.2 (v:v:v:v). A nanoelectrospray voltage of 1.6 kV and a gas pressure of 0.2 psi were applied in all experiments. All phospholipids were extracted successfully and detected unambiguously using the optimized TLC-LESA-FTICRMS procedure. Sampling the tricaprylin spot gave the most intense signals and also tricaprin was detected. Three other triacylglycerols of higher molecular mass have logP values between 15.5 and 21.6, which are the highest among all investigated compounds and are not detected from their corresponding spots, due to the fact that the solubility of very apolar lipids is not high enough in the extraction solvent. It was demonstrated that TLC can be elegantly combined with mass spectrometry based on the LESA approach. In general, apart from the analysis of lipids, TLC-LESA-MS has a high potential for medium-polar compounds separated on reversed-phase TLC plates, but limitations are present when very apolar compounds have to be extracted.

  5. Nanoscale surface characterization using laser interference microscopy

    Science.gov (United States)

    Ignatyev, Pavel S.; Skrynnik, Andrey A.; Melnik, Yury A.

    2018-03-01

    Nanoscale surface characterization is one of the most significant parts of modern materials development and application. The modern microscopes are expensive and complicated tools, and its use for industrial tasks is limited due to laborious sample preparation, measurement procedures, and low operation speed. The laser modulation interference microscopy method (MIM) for real-time quantitative and qualitative analysis of glass, metals, ceramics, and various coatings has a spatial resolution of 0.1 nm for vertical and up to 100 nm for lateral. It is proposed as an alternative to traditional scanning electron microscopy (SEM) and atomic force microscopy (AFM) methods. It is demonstrated that in the cases of roughness metrology for super smooth (Ra >1 nm) surfaces the application of a laser interference microscopy techniques is more optimal than conventional SEM and AFM. The comparison of semiconductor test structure for lateral dimensions measurements obtained with SEM and AFM and white light interferometer also demonstrates the advantages of MIM technique.

  6. Structural characterization and plasmonic properties of two-dimensional arrays of hydrophobic large gold nanoparticles fabricated by Langmuir-Blodgett technique

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takuya; Tachikiri, Yuki; Sako, Takayuki [Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Takahashi, Yukina, E-mail: yukina@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Yamada, Sunao, E-mail: yamada@mail.cstm.kyushu-u.ac.jp [Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan); Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2017-05-15

    Highlights: • Hydrophobic gold nanoparticles (AuNPs) by our method were large and stable enough. • Two-dimensional (2D) arrays of the AuNPs were obtained by Langmuir-Blodgett method with polyethylene glycol. • The plasmon resonant wavelength of the 2D arrays can be controlled by the diameter. - Abstract: We have succeeded in fabricating two-dimensional (2D) arrays of larger gold nanoparticles (AuNPs) (diameters 17, 28, and 48 nm) by Langmuir-Blodgett (LB) method. Although the particle size of AuNPs is one of the most important factors in order to control the optical properties of 2D arrays, there have been reported only the size of less than ∼20 nm. This is a first report on the bottom-up fabrication of 2D arrays consisting of hydrophobic AuNP with the diameter of ∼50 nm, of which the size is expected to obtain maximum near-field effects. Octadecylthiolate-capped AuNPs (ODT-AuNPs) which were prepared by our method could be re-dispersed in chloroform even after drying completely, realizing the spreading of the colloidal chloroform solution onto the water surface. Accordingly, densely-packed 2D LB films of ODT-AuNPs could be fabricated on an indium-tin-oxide substrate, when water as the subphase and polyethylene glycol (PEG) as an amphiphilic agent were used. PEG played an important role to form densely-packed film uniformly due to increasing affinity between hydrophobic AuNP and water. Absorption spectra of the films revealed that the resonance wavelengths of plasmon oscillation through interparticle plasmon coupling were clearly correlated with the particle sizes rather than deposition densities.

  7. Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D.

    Science.gov (United States)

    Iturri, Jagoba; Vianna, Ana C; Moreno-Cencerrado, Alberto; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José Luis

    2017-01-01

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved.

  8. Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

    Directory of Open Access Journals (Sweden)

    Jagoba Iturri

    2017-01-01

    Full Text Available Quartz crystal microbalance with dissipation monitoring (QCM-D has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP as found in bacteria. Complementary atomic force microscopy (AFM experiments corroborate these findings and reveal the impact on the final structure achieved.

  9. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area

    DEFF Research Database (Denmark)

    Krintel, Christian; Mörgelin, Matthias; Logan, Derek T

    2009-01-01

    Hormone-sensitive lipase (EC 3.1.1.79; HSL) is a key enzyme in the mobilization of fatty acids from stored triacylglycerols. HSL activity is controlled by phosphorylation of at least four serines. In rat HSL, Ser563, Ser659 and Ser660 are phosphorylated by protein kinase A (PKA) in vitro as well...... as in vivo, and Ser660 and Ser659 have been shown to be the activity-controlling sites in vitro. The exact molecular events of PKA-mediated activation of HSL in vitro are yet to be determined, but increases in both Vmax and S0.5 seem to be involved, as recently shown for human HSL. In this study......, the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) was found to inhibit the hydrolysis of triolein by purified recombinant rat adipocyte HSL, with a decrease in the effect of bis-ANS upon PKA phosphorylation of HSL. The interaction of HSL with bis-ANS was found to have...

  10. Phenomenological Model of Hydrophobic and Hydrophilic Interactions

    Science.gov (United States)

    Menshikov, L. I.; Menshikov, P. L.; Fedichev, P. O.

    2017-12-01

    Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that

  11. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    International Nuclear Information System (INIS)

    Gong Changyang; Wei Xiawei; Wang Xiuhong; Wang Yujun; Guo Gang; Mao Yongqiu; Luo Feng; Qian Zhiyong

    2010-01-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  12. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    Science.gov (United States)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  13. A plateau-valley separation method for multifunctional surfaces characterization

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A.; De Chiffre, Leonardo

    2012-01-01

    Turned multifunctional surfaces are a new typology of textured surfaces presenting a flat plateau region and deterministically distributed lubricant reservoirs. Existing standards are not suitable for the characterization of such surfaces, providing at times values without physical meaning. A new...

  14. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    Science.gov (United States)

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (poral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (poral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of fluconazole treatment of mice infected with fluconazole-susceptible and -resistant Candida tropicalis on fungal cell surface hydrophobicity, adhesion and biofilm formation

    Directory of Open Access Journals (Sweden)

    R L Kanoshiki

    2015-01-01

    Full Text Available Background : The incidence of Candida tropicalis less susceptible to fluconazole (FLC has been reported in many parts of the world. Objectives : The aim of this study was to examine the changes of putative virulence attributes of Candida tropicalis accompanying the development of resistance to FLC in vitro and in vivo. Materials and Methods : A FLC-resistant strain (FLC-R was obtained after sequential exposure of a clinical isolate FLC-sensitive (FLC-S to increasing concentrations of the antifungal. The course of infection by both strains was analyzed in BALB/c mice. Analyses of gene expression were performed by real-time polymerase chain reaction PCR. The cell surface hydrophobicity, adhesion and biofilm formation were also determined. Results : Development of resistance to FLC could be observed after 15 days of subculture in azole-containing medium. Overexpression of MDR1 and ERG11 genes were observed in FLC-R, and this strain exhibited enhanced virulence in mice, as assessed by the mortality rate. All mice challenged with the FLC-R died and FLC-treatment caused earlier death in mice infected with this strain. All animals challenged with FLC-S survived the experiment, regardless of FLC-treatment. Overall, FLC-R derivatives strains were significantly more hydrophobic than FLC-S strains and showed greater adherence and higher capacity to form biofilm on polystyrene surface. Conclusions : The expression of virulence factors was higher in FLC-R-C. tropicalis and it was enhanced after FLC-exposure. These data alert us to the importance of identifying microorganisms that show resistance to the antifungals to establish an appropriate management of candidiasis therapy.

  16. Proteolytic Degradation of Bovine Submaxillary Mucin (BSM) and Its Impact on Adsorption and Lubrication at a Hydrophobic Surface

    DEFF Research Database (Denmark)

    Madsen, Jan Busk; Svensson, Birte; Abou Hachem, Maher

    2015-01-01

    The effects of proteolytic digestion on bovinesubmaxillary mucin (BSM) were investigated in terms ofchanges in size, secondary structure, surface adsorption, and lubricating properties. Two proteases with distinctly different cleavage specificities, namely trypsin and pepsin, were employed. SDS...

  17. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  18. Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang-Seok; Lim, Hee-Chang [Pusan Nat’l Univ., Busan (Korea, Republic of)

    2017-01-15

    Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.

  19. A variant surface glycoprotein of Trypanosoma brucei is synthesized with a hydrophobic carboxy-terminal extension from purified glycoprotein.

    NARCIS (Netherlands)

    J.C. Boothroyd; G.A.M. Cross; J.H.J. Hoeijmakers (Jan); P. Borst (Piet)

    1980-01-01

    textabstractSequential expression of variant surface glycoproteins (VSGs) enables the parasitic protozoan Trypanosoma brucei to evade the immune response of its mammalian hosts. Studies of several VSGs, which have been isolated as soluble molecules following disruption of cells in the absence of

  20. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  1. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  2. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    International Nuclear Information System (INIS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-01-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R 2 range, 0.94–0.965, 0.934–0.972, and 0.874–0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  3. The Role of Hydrophobicity and Surface Receptors at Hyphae of Lyophyllum sp. Strain Karsten in the Interaction with Burkholderia terrae BS001 – Implications for Interactions in Soil

    Science.gov (United States)

    Vila, Taissa; Nazir, Rashid; Rozental, Sonia; dos Santos, Giulia M. P.; Calixto, Renata O. R.; Barreto-Bergter, Eliana; Wick, Lukas Y.; van Elsas, Jan Dirk

    2016-01-01

    The soil bacterium Burkholderia terrae strain BS001 can interact with varying soil fungi, using mechanisms that range from the utilization of carbon/energy sources such as glycerol to the ability to reach novel territories in soil via co-migration with growing fungal mycelia. Here, we investigate the intrinsic properties of the B. terrae BS001 interaction with the basidiomycetous soil fungus Lyophyllum sp. strain Karsten. In some experiments, the ascomycetous Trichoderma asperellum 302 was also used. The hyphae of Lyophyllum sp. strain Karsten were largely hydrophilic on water-containing media versus hydrophobic when aerial, as evidenced by contact angle analyses (CA). Co-migration of B. terrae strain BS001 cells with the hyphae of the two fungi occurred preferentially along the - presumably hydrophilic - soil-dwelling hyphae, whereas aerial hyphae did not allow efficient migration, due to reduced thickness of their surrounding mucous films. Moreover, the cell numbers over the length of the hyphae in soil showed an uneven distribution, i.e., the CFU numbers increased from minima at the inoculation point to maximal numbers in the middle of the extended hyphae, then decreasing toward the terminal side. Microscopic analyses of the strain BS001 associations with the Lyophyllum sp. strain Karsten hyphae in the microcosms confirmed the presence of B. terrae BS001 cells on the mucous matter that was present at the hyphal surfaces of the fungi used. Cell agglomerates were found to accumulate at defined sites on the hyphal surfaces, which were coined ‘fungal-interactive’ hot spots. Evidence was further obtained for the contention that receptors for a physical bacterium-fungus interaction occur at the Lyophyllum sp. strain Karsten hyphal surface, in which the specific glycosphingolipid ceramide monohexoside (CMH) plays an important role. Thus, bacterial adherence may be mediated by heterogeneously distributed fungal-specific receptors, implying the CMH moieties. This

  4. Extraction of agar from Gelidium sesquipedale (Rhodopyta) and surface characterization of agar based films.

    Science.gov (United States)

    Guerrero, P; Etxabide, A; Leceta, I; Peñalba, M; de la Caba, K

    2014-01-01

    The chemical structure of the agar obtained from Gelidium sesquipedale (Rhodophyta) has been determined by (13)C nuclear magnetic resonance ((13)C NMR) and Fourier transform infrared spectroscopy (FTIR). Agar (AG) films with different amounts of soy protein isolate (SPI) were prepared using a thermo-moulding method, and transparent and hydrophobic films were obtained and characterized. FTIR analysis provided a detailed description of the binding groups present in the films, such as carboxylic, hydroxyl and sulfonate groups, while the surface composition was examined using X-ray photoelectron spectroscopy (XPS). The changes observed by FTIR and XPS spectra suggested interactions between functional groups of agar and SPI. This is a novel approach to the characterization of agar-based films and provides knowledge about the compatibility of agar and soy protein for further investigation of the functional properties of biodegradable films based on these biopolymers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Characterization of phosphate films on aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B.; Ramamurthy, S.; McIntyre, N.S. [Univ. of Western Ontario, London, Ontario (Canada)

    1997-08-01

    A thin layer of phosphate conversion coating was formed on pure aluminum in a commercial zinc-manganese phosphating bath. A number of surface analytical techniques were used to characterize the phosphate thin films formed after immersion times ranging from 30 s to 10 min. The coating contained mainly a crystalline structure with dispersed micrometer-scale cavities. The major constituents of the phosphate film were zinc, phosphorus, and oxygen; a small amount of manganese was also detected. Based on these results, a three-stage mechanism was proposed for the formation and the growth of phosphate conversion coatings on aluminum. Electrochemical impedance spectroscopy was used to evaluate the corrosion performance of phosphated and uncoated aluminum samples in 0.50 M Na{sub 2}SO{sub 4} and 0.10 M H{sub 2}SO{sub 4} solutions. Both types of samples exhibited a passive state in the neutral solution and general corrosion behavior in the acid solution.

  6. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    Science.gov (United States)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  7. An ellipsometry study on the effect of aluminium chloride and ferric chloride formulations on mucin layers adsorbed at hydrophobic surfaces.

    Science.gov (United States)

    Hamit-Eminovski, Jildiz; Eskilsson, Krister; Arnebrant, Thomas

    2010-07-01

    Ellipsometry was used to investigate the effect of polyaluminium chloride (PAC) formulations of different degrees of hydrolysation on an adsorbed mucin film. The results were compared to the effect of aluminium chloride (AlCl(3)) and ferric chloride. A compaction of the mucin film took place upon addition of the formulations and this occurred to different extents and at different concentrations for the different formulations. The compaction of PAC of a low degree of hydrolysis behaved similarly to AlCl(3). PAC of a high degree of hydrolysis showed a greater compaction effect than the other aluminium formulations. The initial compaction concentration was found to be 0.001 mM which is less than previously found for aluminium-mucin complex formation in bulk. The reversibility of the compaction was also investigated. The compaction of the mucin film was found to be partly reversible for AlCl(3) and PAC of low degree of hydrolysis. No reversibility was observed for the formulations of PAC of high hydrolysis grade or for ferric chloride. The results are consistent with previously observed effects of PAC of a low degree of hydrolysis on bacterial surfaces where a compaction of surface polymers was indicated by the reduced range of repulsive steric interactions.

  8. Experimental study of the Marangoni flow in evaporating water droplet placed on vertical vibration and heated hydrophobic surface

    Science.gov (United States)

    Park, Chang Seok; Lim, Hee Chang

    2015-11-01

    In general, the heated surface generates a Marangoni flow inside a droplet yielding a coffee stain effect in the end. This study aims to visualize and control the Marangoni flow by using periodic vertical vibration. While the droplet is evaporating, the variation of contact angle and internal volume of droplet was observed by using the combination of a continuous light and a DSLR still camera. Regarding the internal velocity, the PIV(Particle Image Velocimetry) system was applied to visualize the internal Marangoni flow. In order to estimate the temperature gradient inside and surface tension on the droplet, a commercial software Comsol Multiphysics was used. In the result, the internal velocity increases with the increase of the plate temperature and both flow directions of Marangoni and gravitational flow are opposite so that there seems to be a possibility to control the coffee stain effect. In addition, the Marangoni flow was controlled at relatively lower range of frequency 30 ~ 50Hz. Work supported by Korea government Ministry of Trade, Industry and Energy KETEP grant No. 20134030200290, Ministry of Education NRF grant No. NRF2013R1A1A2005347.

  9. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of

  10. Biological and environmental surface interactions of nanomaterials: characterization, modeling, and prediction.

    Science.gov (United States)

    Chen, Ran; Riviere, Jim E

    2017-05-01

    The understanding of nano-bio interactions is deemed essential in the design, application, and safe handling of nanomaterials. Proper characterization of the intrinsic physicochemical properties, including their size, surface charge, shape, and functionalization, is needed to consider the fate or impact of nanomaterials in biological and environmental systems. The characterizations of their interactions with surrounding chemical species are often hindered by the complexity of biological or environmental systems, and the drastically different surface physicochemical properties among a large population of nanomaterials. The complexity of these interactions is also due to the diverse ligands of different chemical properties present in most biomacromolecules, and multiple conformations they can assume at different conditions to minimize their conformational free energy. Often these interactions are collectively determined by multiple physical or chemical forces, including electrostatic forces, hydrogen bonding, and hydrophobic forces, and calls for multidimensional characterization strategies, both experimentally and computationally. Through these characterizations, the understanding of the roles surface physicochemical properties of nanomaterials and their surface interactions with biomacromolecules can play in their applications in biomedical and environmental fields can be obtained. To quantitatively decipher these physicochemical surface interactions, computational methods, including physical, statistical, and pharmacokinetic models, can be used for either analyses of large amounts of experimental characterization data, or theoretical prediction of the interactions, and consequent biological behavior in the body after administration. These computational methods include molecular dynamics simulation, structure-activity relationship models such as biological surface adsorption index, and physiologically-based pharmacokinetic models. WIREs Nanomed Nanobiotechnol 2017

  11. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  12. Synthesis and characterization of a porous and hydrophobic cellulose-based composite for efficient and fast oil-water separation.

    Science.gov (United States)

    Wang, Xiangyun; Xu, Shimei; Tan, Yun; Du, Juan; Wang, Jide

    2016-04-20

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, silanized cellulose was prepared by sol-gel reaction between microcrystalline cellulose (MCC) and hexadecyltrimethoxysilane (HDTMS) using for oil-water separation. The silanized cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). A higher mass ratio of HDTMS to MCC made silanized cellulose become looser, and showed lower water absorbency. The silanized cellulose exhibited specific separation performance towards vegetable oil-water mixture (not for mineral oil-water mixture) with separation efficiency of 99.93%. Moreover, the separation was fast with a water flux of 4628.5Lm(-2)h(-1). The separation efficiency still remained at 99.77% even after recycling for 10 times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  14. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies.

    Science.gov (United States)

    Yuan, Hua; Chi, Hai; Yuan, Weizhong

    2016-08-20

    Novel and well-defined graft copolymer with block copolymer side chain, ethyl cellulose-graft-(poly(ε-caprolactone)-block-poly(N,N-dimethylaminoethylmeth acrylate)) (EC-g-(PCL-b-PDMAEMA)) with a lower critical solution temperature (LCST) was successfully synthesized via the combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). EC-g-(PCL-b-PDMAEMA) copolymers with various PCL-b-PDMAEMA block lengths were obtained by adjusting the molar ratios of the N,N-dimethylaminoethyl methacrylate monomer to ε-caprolactone. The EC-g-(PCL-b-PDMAPS) with an upper critical solution temperature (UCST) was obtained via facile quaternization reaction of PDMAEMA with 1,3-propane sultone. EC-g-(PCL-b-PDMAEMA) and EC-g-(PCL-b-PDMAPS) micelle solutions showed opposite thermoresponsiviness and hydrophilic-hydrophobic surface. Moreover, the tunable crystalline morphologies could be obtained from these graft copolymers through changing the polymer structure and PDMAEMA contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.

    Science.gov (United States)

    Khan, Mohiuddin Md Taimur; Stewart, Philip S; Moll, David J; Mickols, William E; Nelson, Sara E; Camper, Anne K

    2011-02-01

    Biofouling is a major reason for flux decline in the performance of membrane-based water and wastewater treatment plants. Initial biochemical characterization of biofilm formation potential and biofouling on two commercially available membrane surfaces from FilmTec Corporation were investigated without filtration in laboratory rotating disc reactor systems. These surfaces were polyamide aromatic thin-film reverse osmosis (RO) (BW30) and semi-aromatic nanofiltration (NF270) membranes. Membrane swatches were fixed on removable coupons and exposed to water with indigenous microorganisms supplemented with 1.5 mg l(-1) organic carbon under continuous flow. After biofilms formed, the membrane swatches were removed for analyses. Staining and epifluorescence microscopy revealed more cells on the RO than on the NF surface. Based on image analyses of 5-μm thick cryo-sections, the accumulation of hydrated biofoulants on the RO and NF surfaces exceeded 0.74 and 0.64 μm day(-1), respectively. As determined by contact angle the biofoulants increased the hydrophobicity up to 30° for RO and 4° for NF surfaces. The initial difference between virgin RO and NO hydrophobicities was ∼5°, which increased up to 25° after biofoulant formation. The initial roughness of RO and NF virgin surfaces (75.3 nm and 8.2 nm, respectively) increased to 48 nm and 39 nm after fouling. A wide range of changes of the chemical element mass percentages on membrane surfaces was observed with X-ray photoelectron spectroscopy. The initial chemical signature on the NF surface was better restored after cleaning than the RO membrane. All the data suggest that the semi-aromatic NF surface was more biofilm resistant than the aromatic RO surface. The morphology of the biofilm and the location of active and dead cell zones could be related to the membrane surface properties and general biofouling accumulation was associated with changes in the surface chemistry of the membranes, suggesting the validity of

  16. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models.

    Science.gov (United States)

    van der Westen, Rebecca; Sharma, Prashant K; De Raedt, Hans; Vermue, Ijsbrand; van der Mei, Henny C; Busscher, Henk J

    2017-09-27

    A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio)colloids to obtain viscoelastic bond properties is still a subject of debate. Here, we analyze the QCM-D output to analyze the bond between two hydrophilic streptococcal strains 91 nm long and without fibrillar surface appendages and micron-sized hydrophobic polystyrene particles on QCM-D crystal surfaces with different hydrophobicities, using the Kelvin-Voigt model and the Maxwell model. A Poisson distribution was implemented in order to determine the possible virtues of including polydispersity when fitting model parameters to the data. The quality of the fits did not indicate whether the Kelvin-Voigt or the Maxwell model is preferable and only polydispersity in spring-constants improved the fit for polystyrene particles. The Kelvin-Voigt and Maxwell models both yielded higher spring-constants for the bald streptococcus than for the fibrillated one. In both models, the drag coefficients increased for the bald streptococcus with the ratio of electron-donating over electron-accepting parameters of the crystal surface, while for the fibrillated strain the drag coefficient was similar on all crystal surfaces. Combined with the propensity of fibrillated streptococci to bind to the sensor crystal as a coupled-resonator above the crystal surface, this suggests that the drag experienced by resonator-coupled, hydrophilic particles is more influenced by the viscosity of the bulk water than by interfacial water adjacent to the crystal surface. Hydrophilic particles that lack a surface tether are mass-coupled just above the crystal surface and accordingly probe the drag due to the thin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Hydrophobic particles without a surface tether are also mass

  17. Leachate characterization and assessment of surface and ...

    African Journals Online (AJOL)

    The environment can be impacted negatively by leachates from these dumpsites if not properly managed. This study aimed at assessing the characteristics of municipal solid waste leachate and its contamination potential on surface and groundwater. Leachate, groundwater and surface water samples were collected from ...

  18. Egypt satellite images for land surface characterization

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay

    Satellite images provide information on the land surface properties. From optical remote sensing images in the blue, green, red and near-infrared part of the electromagnetic spectrum it is possible to identify a large number of surface features. The report briefly describes different satellite...

  19. Mimicking the nanostructure of bamboo leaves (backside) for hydrophobicity using polydimethylsiloxane moulding and nano-imprint lithography.

    Science.gov (United States)

    Hwang, Jaeyeon; Hong, Sung-Hoon; Lee, Heon

    2009-06-01

    Extensive studies have revealed that various kinds of plant leaf have a hydrophobic property which arises from the micro- and nano-scale structure of the leaves. As the self-cleaning capability of plant leaves, termed the lotus effect, is based on their micro- and nano-scale structure, this hydrophobic property can be obtained on various other surfaces by duplication of the leaves' structure. In this study, the hydrophobic structure on bamboo leaves (Pseudosasa japonica) was successfully replicated on a glass substrate using polydimethylsiloxane (PDMS) molding technique and UV nano-imprint lithography. The replicated nano structure, made of perfluorinated acrylate imprint resin, was characterized by scanning electron microscopy (SEM) and its hydrophobicity was evaluated by contact angle measurements which confirmed that the hydrophobic nature and self-cleaning capability of the original bamboo leaves were also replicated.

  20. Fabricated super-hydrophobic film with potentiostatic electrolysis method on copper for corrosion protection

    International Nuclear Information System (INIS)

    Wang Peng; Qiu Ri; Zhang Dun; Lin Zhifeng; Hou Baorong

    2010-01-01

    A novel one-step potentiostatic electrolysis method was proposed to fabricate super-hydrophobic film on copper surface. The resulted film was characterized by contact angle tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FE-SEM) and electrochemical measurements. It could be inferred that the super-hydrophobic property resulted from the flower-like structure of copper tetradecanoate film. In the presence of super-hydrophobic film, the anodic and cathodic polarization current densities are reduced for more than five and four orders of magnitude, respectively. The air trapped in the film is the essential contributor of the anticorrosion property of film for its insulation, the copper tetradecanoate film itself acts as a 'frame' to trap air as well as a coating with inhibition effect. The super-hydrophobic film presents excellent inhibition effect to the copper corrosion and stability in water containing Cl - .

  1. Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition

    International Nuclear Information System (INIS)

    Hang Tao; Hu Anmin; Ling Huiqin; Li Ming; Mao Dali

    2010-01-01

    Super-hydrophobic nickel films were prepared by a simple and low cost electrodepositing method. The surface morphologies of the films characterized by scanning electronic microscope exhibit hierarchical structure with micro-nanocones array, which can be responsible for their super-hydrophobic characteristic (water contact angle over 150 o ) without chemical modification. The wettability of the film can be varied from super-hydrophobic (water contact angle 154 o ) to relatively hydrophilic (water contact angle 87 o ) by controlling the size of the micro-nanocones. The mechanism of the hydrophobic characteristic of nickel films with this unique structure was illustrated by several models. Such micro-nanostructure and its special wettability are expected to be applied in the practical industry.

  2. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    F of the elastomer-on-coating couples to less than 50% of the elastomer-on-steel couples in all conditions. These consolidated results indicate that general improvements in maintenance of seal integrity and functional lifetimes for other sliding joints exposed to potentially abrasive biofouling media can be obtained by coating the more-rigid seal-plate surfaces with low-CST, hydrophobic, wear-resistant materials such as the silicone-epoxy system characterized here.

  3. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.

    Science.gov (United States)

    Trick, Jemma L; Song, Chen; Wallace, E Jayne; Sansom, Mark S P

    2017-02-28

    It is desirable that nanopores that are components of biosensors are gated, i.e., capable of controllable switching between closed (impermeable) and open (permeable) states. A central hydrophobic barrier within a nanopore may act as a voltage-dependent gate via electrowetting, i.e., changes in nanopore surface wettability by application of an electric field. We use "computational electrophysiology" simulations to demonstrate and characterize electrowetting of a biomimetic nanopore containing a hydrophobic gate. We show that a hydrophobic gate in a model β-barrel nanopore can be functionally opened by electrowetting at voltages that do not electroporate lipid bilayers. During the process of electrowetting, voltage-induced alignment of water dipoles occurs within the hydrophobic gate region of the nanopore, with water entry preceding permeation of ions through the opened nanopore. When the ionic imbalance that generates a transbilayer potential is dissipated, water is expelled from the hydrophobic gate and the nanopore recloses. The open nanopore formed by electrowetting of a "featureless" β-barrel is anionic selective due to the transmembrane dipole potential resulting from binding of Na + ions to the headgroup regions of the surrounding lipid bilayer. Thus, hydrophobic barriers can provide voltage-dependent gates in designed biomimetic nanopores. This extends our understanding of hydrophobic gating in synthetic and biological nanopores, providing a framework for the design of functional nanopores with tailored gating functionality.

  4. Multivariate analysis of hydrophobic descriptors

    Directory of Open Access Journals (Sweden)

    Stefan Dove

    2014-04-01

    Full Text Available Multivariate approaches like principal component analysis (PCA are powerful tools to investigate hydrophobic descriptors and to discriminate between intrinsic hydrophobicity and polar contributions as hydrogen bonds and other electronic effects. PCA of log P values measured for 37 solutes in eight solvent-water systems and of hydrophobic octanol-water substituent constants p for 25 meta- and para-substituents from seven phenyl series were performed (re-analysis of previous work. In both cases, the descriptors are repro­duced within experimental errors by two principal components, an intrinsic hydrophobic component and a second component accounting for differences between the systems due to electronic interactions. Underlying effects were identified by multiple linear regression analysis. Log P values depend on the water solubility of the solvents and hydrogen bonding capabilities of both the solute and the solvents. Results indicate different impacts of hydrogen bonds in nonpolar and polar solvent-water systems on log P and their dependence on isotropic and hydrated surface areas. In case of the p-values, the second component (loadings and scores correlates with electronic substituent constants. More detailed analysis of the data as p-values of disubstituted benzenes XPhY has led to extended symmetric bilinear Hammett-type models relating interaction increments to cross products pX sY, pY sX and sX sY which are mainly due to mutual effects on hydrogen-bonds with octanol.

  5. Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments

    Science.gov (United States)

    Akbari, A.; Ghoshal, S.

    2016-12-01

    We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could

  6. Synthesis, characterization, Hirshfeld surface and theoretical ...

    Indian Academy of Sciences (India)

    ALI HARCHANI

    2017-09-06

    Sep 6, 2017 ... model. The PM3 and PM6 semiempirical models were parameterized for most transition metals, and they usually provided good results.13 Hirshfeld surfaces computational analysis and associated 2D fingerprint plots14 were carried out using the Crystal Explorer 3.1 software15 and TONTO16 system. 3.

  7. Characterization of polychlorinated biphenyls in surface sediments ...

    African Journals Online (AJOL)

    The distribution and concentrations of 6 indicator polychlorinated biphenyl (PCB) congeners, nos. 28, 52, 101, 138, 153 and 180, were determined in surface sediments from the North End Lake in Port Elizabeth, South Africa. Forty-two surficial sediment samples were collected from different locations covering the region that ...

  8. Characterization of high surface area silicon oxynitrides

    International Nuclear Information System (INIS)

    Lednor, P.W.; DeRuiter, R.; Emeis, K.A.

    1992-01-01

    In heterogenous catalysis, liquid or gaseous feedstocks are converted over a solid catalyst into more desirable products. Such processes form an essential part of the oil and petrochemical industries. The solid catalyst usually consists of an inorganic phase, with or without metal particles on the surface. Examples include platinum particles on gamma alumina (a reforming catalyst used in oil processing), chromium particles on silica (an ethylene polymerization catalyst) and zeolites or amorphous silica-aluminas (used as solid acids).Oxides have been widely investigated in catalysis, and silica, alumina, and aluminosilicates find application commercially on a large scale. On the other hand, non-oxide materials such as nitrides, carbides and borides have been relatively little investigated. The main reason for this has been the lack of routes to the high surface area forms usually required in catalysis. However, this situation has changed significantly in recent years, due to the interest in high surface area non-oxides as precursors to fully dense ceramics; in this paper, the authors have reviewed synthetic routes to high surface area non-oxides

  9. Characterization of multifunctional surfaces during fabrication

    DEFF Research Database (Denmark)

    Godi, Alessandro; Friis, Kasper Storgaard; De Chiffre, Leonardo

    2011-01-01

    The multifunctional surfaces herein studied are intended for carrying high loads as well as providing lubrication. They are produced by hard turning, creating a periodic pattern that will constitute the lubricant channels, followed by accurate Robot Assisted Polishing to smooth the tops of the cu...

  10. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    Page 1. Electronic Supplementary Material. Graphical abstract. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings by Vairamuthu Raj and Mohamed Sirajudeen Mumjitha. (pp 1411–1418).

  11. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    OpenAIRE

    Hendrik C. Swart

    2017-01-01

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and al...

  12. Characterization of Surface Properties of Glass Vials Used as Primary Packaging Material for Parenterals.

    Science.gov (United States)

    Ditter, Dominique; Mahler, Hanns-Christian; Roehl, Holger; Wahl, Michael; Huwyler, Joerg; Nieto, Alejandra; Allmendinger, Andrea

    2018-01-10

    The appropriate selection of adequate primary packaging, such as the glass vial, rubber stopper, and crimp cap for parenteral products is of high importance to ensure product stability, microbiological quality (integrity) during storage as well as patient safety. A number of issues can arise when inadequate vial material is chosen, and sole compliance to hydrolytic class I is sometimes not sufficient when choosing a glass vial. Using an appropriate pre-treatment, such as surface modification or coating of the inner vial surface after the vial forming process the glass container quality is often improved and interactions of the formulation with the surface of glass may be minimized. This study aimed to characterize the inner surface of different type I glass vials (Exp33, Exp51, Siliconized, TopLyo TM and Type I plus®) at the nanoscale level. All vials were investigated topographically by colorimetric staining and Scanning Electron Microscopy (SEM). Glass composition of the surface was studied by Time-of-Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS), and hydrophobicity/hydrophilicity of the inner surface was assessed by dye tests and surface energy measurements. All containers were studied unprocessed, as received from the vendor, i.e. in unwashed and non-depyrogenized condition. Clear differences were found between the different vial types studied. Especially glass vials without further surface modifications, like Exp33 and Exp51 vials, showed significant (I) vial-to-vial variations within one vial lot as well as (II) variations along the vertical axis of a single vial when studying topography and chemical composition. In addition, differences and heterogeneity in surface energy were found within a given tranche (circumferential direction) of Exp51 as well as Type I plus® vials. Most consistent quality was achieved with TopLyo TM vials. The present comprehensive characterization of surface properties of the

  13. A method for detecting hydrophobic patches protein

    NARCIS (Netherlands)

    Lijnzaad, P.; Berendsen, H.J.C.; Argos, P.

    1996-01-01

    A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented, it delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent-accessible surface,

  14. Super-hydrophobic fluorine containing aerogels

    Science.gov (United States)

    Coronado, Paul R [Livermore, CA; Poco, John F [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  15. Evaporation rate of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  16. Synthesis, surface characterization and optical properties of 3 ...

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  17. Synthesis, surface characterization and optical properties of 3

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  18. Topographic characterization of nanostructures on curved polymer surfaces

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Petersen, Jan C.; Taboryski, Rafael J.

    2014-01-01

    method with a portable instrument that can be used in a production environment, and topographically characterize nanometer-scale surface structures on both flat and curved surfaces. To facilitate the commercialization of injection moulded polymer parts featuring nanostructures, it is pivotal...

  19. Characterization of silicon carbide and nitride powder surfaces

    International Nuclear Information System (INIS)

    Rahaman, M.N.; Boiteux, Y.; DeLohgne, L.C.

    1985-01-01

    The surfaces of SiC and Si 3 N 4 powders have been characterized using high resolution TEM, XPS and SIMS techniques. XPS is shown to be a powerful technique once a valid means of referencing the peaks is found. Attempts to manipulate the silica layer and its effect on surface properties are discussed

  20. Experimental characterization of micromilled surfaces by large range AFM

    DEFF Research Database (Denmark)

    Bariani, Paolo; Bissacco, Giuliano; Hansen, Hans Nørgaard

    2004-01-01

    of workpiece material, particularly when sub-micrometer chip thicknesses are considered and when machining hard materials. Quantification of surface topography is of fundamental importance for the evaluation of the generated surface; high resolution and wide measuring range being highly desirable...... for the evaluation of the distinctive behaviour of the ball end mill. The combination of the two demands is to date not matched by any measuring instrument. The paper describes an experimental investigation of surface topography of such micromachined surfaces. Accurate characterization of fine surface details...

  1. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H.; Kawasaki, K.; Okumura, N.; Kambara, M.; Norde, W.

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen*s egg. The wettability (hydrophobicity/hydrophilicity) and the surface

  2. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H; Kawasaki, K; Okumura, N; Kambara, M; Norde, W

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen's egg. The wettability (hydrophobicity/hydrophilicity) and the surface

  3. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  4. Surface modification and characterization Collaborative Research Center at ORNL

    International Nuclear Information System (INIS)

    1986-01-01

    The Surface Modification and Characterization Collaborative Research Center (SMAC/CRC) is a unique facility for the alteration and characterization of the near-surface properties of materials. The SMAC/CRC facility is equipped with particle accelerators and high-powered lasers which can be used to improve the physical, electrical, and/or chemical properties of solids and to create unique new materials not possible to obtain with conventional ''equilibrium'' processing techniques. Surface modification is achieved using such techniques as ion implantation doping, ion beam mixing, laser mixing, ion deposition, and laser annealing

  5. Characterization of Pectin Nanocoatings at Polystyrene and Titanium Surfaces

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna; Dirscherl, Kai; Yihua, Yu

    2013-01-01

    The titanium implant surface plays a crucial role for implant incorporation into bone. A new strategy to improve implant integration in a bone is to develop surface nanocoatings with plant-derived polysaccharides able to increase adhesion of bone cells to the implant surface. The aim of the present...... study was to physically characterize and compare polystyrene and titanium surfaces nanocoated with different Rhamnogalacturonan-Is (RG-I) and to visualize RG-I nanocoatings. RG-Is from potato and apple were coated on aminated surfaces of polystyrene, titianium discs and titanium implants...... wettability, without any major effect on surface roughness (Sa, Sdr). Furthermore, we demonstrated that it is possible to visualize the pectin RG-Is molecules and even the nanocoatings on titanium surfaces, which have not been presented before. The comparison between polystyrene and titanium surface showed...

  6. New insight in the structural features of haloadaptation in α-amylases from halophilic Archaea following homology modeling strategy: folded and stable conformation maintained through low hydrophobicity and highly negative charged surface

    Science.gov (United States)

    Zorgani, Mohamed Amine; Patron, Kevin; Desvaux, Mickaël

    2014-07-01

    Proteins from halophilic archaea, which live in extreme saline conditions, have evolved to remain folded, active and stable at very high ionic strengths. Understanding the mechanism of haloadaptation is the first step toward engineering of halostable biomolecules. Amylases are one of the main enzymes used in industry. Yet, no three-dimensional structure has been experimentally resolved for α-amylases from halophilic archaea. In this study, homology structure modeling of α-amylases from the halophilic archaea Haloarcula marismortui, Haloarcula hispanica, and Halalkalicoccus jeotgali were performed. The resulting models were subjected to energy minimization, evaluation, and structural analysis. Calculations of the amino acid composition, salt bridges and hydrophobic interactions were also performed and compared to a set of non-halophilic counterparts. It clearly appeared that haloarchaeal α-amylases exhibited lower propensities for helix formation and higher propensities for coil-forming regions. Furthermore, they could maintain a folded and stable conformation in high salt concentration through highly negative charged surface with over representation of acidic residues, especially Asp, and low hydrophobicity with increase of salt bridges and decrease in hydrophobic interactions on the protein surface. This study sheds some light on the stability of α-amylases from halophilic archaea and provides strong basis not only to understand haloadaptation mechanisms of proteins in microorganisms from hypersalines environments but also for biotechnological applications.

  7. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials.

    Science.gov (United States)

    Swart, Hendrik C

    2017-08-04

    The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS), time of flight scanning ion mass spectrometry (TOF-SIMS) and High resolution transmission electron microscopy (HRTEM) for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS) for nanoparticle characterization is also pointed out.

  8. Surface Sensitive Techniques for Advanced Characterization of Luminescent Materials

    Directory of Open Access Journals (Sweden)

    Hendrik C. Swart

    2017-08-01

    Full Text Available The important role of surface sensitive characterization techniques such as Auger electron spectroscopy (AES, X-ray photo electron spectroscopy (XPS, time of flight scanning ion mass spectrometry (TOF-SIMS and High resolution transmission electron microscopy (HRTEM for the characterization of different phosphor materials is discussed in this short review by giving selective examples from previous obtained results. AES is used to monitor surface reactions during electron bombardment and also to determine the elemental composition of the surfaces of the materials, while XPS and TOF-SIMS are used for determining the surface chemical composition and valence state of the dopants. The role of XPS to determine the presence of defects in the phosphor matrix is also stated with the different examples. The role of HRTEM in combination with Energy dispersive spectroscopy (EDS for nanoparticle characterization is also pointed out.

  9. Definition and display of steric, hydrophobic, and hydrogen-bonding properties of ligand binding sites in proteins using Lee and Richards accessible surface: validation of a high-resolution graphical tool for drug design.

    Science.gov (United States)

    Bohacek, R S; McMartin, C

    1992-05-15

    The accessible surface, described by Lee and Richards (the L&R surface: J. Mol. Biol. 1971, 55, 379), has remarkably useful properties for displaying ligand-protein interactions. The surface is placed one van der Waals radius plus one probe radius away from the protein atoms. The ligands are displayed in skeletal form. With a suitable probe radius, those parts of the ligand in good van der Waals contact with the protein binding site are found superimposed on the L&R surface. Display of the surface using parallel contours therefore provides a very powerful guide for interactive drug design because only ligand atoms lying on or close to the surface are in low-energy contact. The ability of the surface to accurately display steric complementarity between ligands and proteins was optimized using data from small molecule crystal structures. The possibility of displaying the chemical specificity of the binding site was also investigated. The surface can be colored to give precise information about chemical specificity. Electrostatic potential, electrostatic gradient, and distance to hydrogen-bonding groups were tested as methods of displaying chemical specificity. The ability of these methods to describe the complementarity actually observed in the interior of proteins was compared. High-resolution crystal data for ribonuclease and trypsin was used. The environment surrounding extended peptide chains in the protein was treated as a virtual binding site. The peptide chain served as a virtual ligand. This large sample of experimental data was used to measure the correlation between type of ligand atom and the calculated property of the nearest binding site surface. The best correlation was obtained using hydrogen-bonding properties of the binding site. Using this parameter the surface could be divided into three separate zones representing the hydrophobic, hydrogen-bond-acceptor, and hydrogen-bond-donor properties of the binding site. The percentage of hydrophobic ligand

  10. Surface Nanostructures Formed by Phase Separation of Metal Salt-Polymer Nanocomposite Film for Anti-reflection and Super-hydrophobic Applications

    Science.gov (United States)

    Con, Celal; Cui, Bo

    2017-12-01

    This paper describes a simple and low-cost fabrication method for multi-functional nanostructures with outstanding anti-reflective and super-hydrophobic properties. Our method employed phase separation of a metal salt-polymer nanocomposite film that leads to nanoisland formation after etching away the polymer matrix, and the metal salt island can then be utilized as a hard mask for dry etching the substrate or sublayer. Compared to many other methods for patterning metallic hard mask structures, such as the popular lift-off method, our approach involves only spin coating and thermal annealing, thus is more cost-efficient. Metal salts including aluminum nitrate nonahydrate (ANN) and chromium nitrate nonahydrate (CNN) can both be used, and high aspect ratio (1:30) and high-resolution (sub-50 nm) pillars etched into silicon can be achieved readily. With further control of the etching profile by adjusting the dry etching parameters, cone-like silicon structure with reflectivity in the visible region down to a remarkably low value of 2% was achieved. Lastly, by coating a hydrophobic surfactant layer, the pillar array demonstrated a super-hydrophobic property with an exceptionally high water contact angle of up to 165.7°.

  11. Experimental study on the flow/ heat transfer performance of micro-scale pin fin coating with super-hydrophobic surface adding Nano particle

    Science.gov (United States)

    Hua, Junye; Duan, Yuanyuan; Li, Gui; Xu, Qiong; Li, Dong; Wu, Wei; Zhao, Xiaobao; Qiu, Delai

    2018-02-01

    The experimental studies on heat transfer and flow resistance characteristics of ellipse-shape micro pin fin have been conducted which is drafted with hydrophobic material, holding the various contact angles fulfilled by adjusting the amount of Nano particle. The results show that with the increases of contact angle(83°,99.5°, 119.5°and 151.5°), the bottom wall temperature rises under the same flow rate. Under a certain heating condition with heating power as 100 W, the average convective heat transfer coefficient decreases with the increase of contact angle with the same Re. The value of Nu for ellipse-shape micro pin fin increases with a higher Re, with the maximum value under experimental condition of Nu as 25. Besides, the friction coefficient of micro pin fin experimental section drafted hydrophobicity treatment significantly decreases, compared with the smooth micro pin fin experimental section (θ = 83°). While the higher contact angle has obvious positive influences on friction coefficient under the same Re. Generally, the flow resistance performance of ellipse-shape micro pin fin drafted with hydrophobic material is better than that without any treatment.

  12. Lectures on Modification, Characterization and Modeling of Surfaces. Vol. I

    International Nuclear Information System (INIS)

    1997-01-01

    The field of surfaces and thin films is now so broad that has applications in protective coatings, electronic devices, displays, sensors, optical equipment, bio-compatible coatings for surgical implants, odontological and cardiovascular use, and numerous other technologies that depend on the deposition processes. Even though there exist well established methods for both, production and characterization of high-quality surfaces, the interest in finding alternative methods more reliable and less expensive is one of the challenges of present technologies. In this special issue the attention is focused on some areas concerning surface modification, characterization and modeling of surfaces. The volume contains reviews and articles on plasma processing, nitriding, nitrocarburising, diamond-like films, laser and ion-beam surface modification,texture in films and coatings, nuclear techniques in surface analysis, electron spectroscopies, ion scattering spectroscopy, secondary ion mass spectroscopy, STM and AFM applications to surface science, nano structure preparation magnetic and electric properties, surface modeling, calculation of electric and magnetic properties, statistical thermodynamics of surfaces

  13. Drops on hydrophobic surfaces & vibrated fluid surfaces

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein

    of a droplet is then given, after which we set up a 2D computational Finite-Element Method (FEM) model for a neutrally buoyant drop immersed in another liquid. The model is validated by considering the volume loss over time. Subsequent to an introduction to the physics of wetting, the developed FEM model......-leap dynamics, exotic trajectories and the emergence of statistical behavior when the forcing is near the Faraday threshold....

  14. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    Science.gov (United States)

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Hydrophobicity of carbohydrates and related hydroxy compounds.

    Science.gov (United States)

    Buttersack, Christoph

    2017-06-29

    The hydrophobic interaction of carbohydrates and other hydroxy compounds with a C18-modified silica gel column was measured with pure water as eluent, thereby expanding the range of measurements already published. The interaction is augmented by structure strengthening salts and decreasing temperature. Although the interaction of the solute with the hydrophobic interface is expected to only imperfectly reflect its state in aqueous bulk solution, the retention can be correlated to hydration numbers calculated from molecular mechanics studies given in the literature. No correlation can be established towards published hydration numbers obtained by physical methods (isentropic compressibility, O-17 NMR relaxation, terahertz spectroscopy, and viscosity). The hydrophobicity is discussed with respect to the chemical structure. It increases with the fraction and size of hydrophobic molecular surface regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  17. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  18. Preparation of surface enhanced Raman substrate and its characterization

    Science.gov (United States)

    Liu, Y.; Wang, J. Y.; Wang, J. Q.

    2017-10-01

    Surface enhanced Raman spectroscopy (SERS) is a fast, convenient and highly sensitive detection technique, and preparing the good effect and repeatable substrate is the key to realize the trace amount and quantitative detection in the field of food safety detection. In this paper, a surface enhanced Raman substrate based on submicrometer silver particles structure was prepared by chemical deposition method, and characterized its structure and optical properties.

  19. New horizons in selective laser sintering surface roughness characterization

    Science.gov (United States)

    Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.

    2017-12-01

    Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.

  20. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    Science.gov (United States)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  1. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0 . Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  2. Bulk and surface characterization of novel photoresponsive polymeric systems

    Science.gov (United States)

    Venkataramani, Shivshankar

    This dissertation presents a detailed characterization of two important classes of photoresponsive polymers-polydiacetylenes (PDAs) and azopolymers. Bulk and surface characterization techniques were used to evaluate the structure-property relationships of the PDAs and surface characterization, in particular-atomic force microscopy (AFM) was used to characterize the azopolymers. PDAs from bis-alkylurethanes of 5,7 dodecadiyn 1,12-diol (viz.,) ETCD, IPUDO and PUDO are of particular interest in view of reports of reversible thermochromic and photochromic phase transitions in these materials. Thermochromism in the above PDAs is associated with a first order phase transition involving expansion of the crystallographic unit cell, the preservation of the urethane hydrogen bonding and possibly some relief of mechanical strain upon heating. Insights into thermochromism obtained from studies of nonthermochromic forms of PDA-ETCD are discussed. Some of the bulk characterization experiments reported In the literature are repeated. The motivation to investigate the surface morphology of the PDA single crystals using AFM was derived from Raman spectroscopy studies of various PDAs in which dispersion of the Raman spectrum indicating surface heterogeneity was observed. Micron scale as well as molecularly resolved images were obtained The micron scale images indicated a variable surface of the crystals. The molecularly resolved images showed a well defined 2-D lattice and are interpreted in terms of known crystallographic data. The surface parameters obtained from AFM measurements are similar to those determined from X-ray diffraction. During an attempt of AFM imaging of IPUDO crystals exposed to 254 nm ultraviolet light, it was observed that these crystals undergo a "macroscopic shattering". In the interest of rigorously defining conditions for photochromism, this research has undertaken a combined study of the surface morphology of the above mentioned PDA crystals by AFM and the

  3. Formation and surface characterization of nanostructured Al2O3 ...

    Indian Academy of Sciences (India)

    Administrator

    1411. Formation and surface characterization of nanostructured Al2O3–TiO2 coatings. VAIRAMUTHU RAJ* and MOHAMED SIRAJUDEEN MUMJITHA. Advanced Materials ... of the coatings (thickness, growth rate, coating ratio) showed a linear regime with current density and electro- ..... Electronic Supplementary Material.

  4. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    Science.gov (United States)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  5. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  6. Fabrication and characterization of multi-level hierarchical surfaces.

    Science.gov (United States)

    Bhushan, Bharat; Lee, Hyungoo

    2012-01-01

    A nanostructured surface may exhibit low adhesion or high adhesion depending upon fibrillar density, and it presents the possibility of realizing eco-friendly surface structures with desirable adhesion by mimicking the mechanics of fibrillar adhesive surfaces of biological systems. The current research uses a patterning technique to fabricate smart adhesion surfaces: one-, two- and three-level hierarchical synthetic adhesive structure surfaces with various fibrillar densities and diameters. The contact angles and contact angle hysteresis were measured to characterize the wettability. A conventional and a glass ball attached to an atomic force microscope (AFM) tip were used to obtain the adhesive forces via force-distance curves and to study the buckling behavior of a single fiber on the hierarchical structures.

  7. Characterization of the damage produced on different materials surfaces

    International Nuclear Information System (INIS)

    Dellavale Clara, Hector Damian

    2004-01-01

    In the present work the characterization techniques of surfaces ULOI and RIMAPS have been applied on laboratory samples made from aluminium, stainless steel and material based on fiberglass.The resultant surfaces of, chemical etching with corrosive agents Keller and Tucker, mechanic damage from the wear and tear of abrasive paper and sandrubbing with alumina particles, are analyzed to different level of damage.The systematic application of the above mentioned techniques is carried out with the objective of finding information, which allows to characterize the superficial damage, both in its incipient state as in the extreme situation revealed by the presence of etch pits. Important results have been obtained, in the characterization of the incipient stage of the chemical etching, using the curves of the normalized area.In addition, it was possible to verify the capacity of the techniques in the early detection of the preferential directions generated by the etch pits

  8. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  9. Effect of material flexibility on the thermodynamics and kinetics of hydrophobically induced evaporation of water.

    Science.gov (United States)

    Altabet, Y Elia; Haji-Akbari, Amir; Debenedetti, Pablo G

    2017-03-28

    The evaporation of water induced by confinement between hydrophobic surfaces has received much attention due to its suggested functional role in numerous biophysical phenomena and its importance as a general mechanism of hydrophobic self-assembly. Although much progress has been made in understanding the basic physics of hydrophobically induced evaporation, a comprehensive understanding of the substrate material features (e.g., geometry, chemistry, and mechanical properties) that promote or inhibit such transitions remains lacking. In particular, comparatively little research has explored the relationship between water's phase behavior in hydrophobic confinement and the mechanical properties of the confining material. Here, we report the results of extensive molecular simulations characterizing the rates, free energy barriers, and mechanism of water evaporation when confined between model hydrophobic materials with tunable flexibility. A single-order-of-magnitude reduction in the material's modulus results in up to a nine-orders-of-magnitude increase in the evaporation rate, with the corresponding characteristic time decreasing from tens of seconds to tens of nanoseconds. Such a modulus reduction results in a 24-orders-of-magnitude decrease in the reverse rate of condensation, with time scales increasing from nanoseconds to tens of millions of years. Free energy calculations provide the barriers to evaporation and confirm our previous theoretical predictions that making the material more flexible stabilizes the confined vapor with respect to liquid. The mechanism of evaporation involves surface bubbles growing/coalescing to form a subcritical gap-spanning tube, which then must grow to cross the barrier.

  10. Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies.

    Science.gov (United States)

    Ling, Edwin J Y; Servio, Phillip; Kietzig, Anne-Marie

    2016-02-01

    Biomimetic hierarchical surface structures that exhibit features having multiple length scales have been used in many technological and engineering applications. Their surface topographies are most commonly analyzed using scanning electron microscopy (SEM), which only allows for qualitative visual assessments. Here we introduce fractal and lacunarity analyses as a method of characterizing the SEM images of hierarchical surface structures in a quantitative manner. Taking femtosecond laser-irradiated metals as an example, our results illustrate that, while the fractal dimension is a poor descriptor of surface complexity, lacunarity analysis can successfully quantify the spatial texture of an SEM image; this, in turn, provides a convenient means of reporting changes in surface topography with respect to changes in processing parameters. Furthermore, lacunarity plots are shown to be sensitive to the different length scales present within a hierarchical structure due to the reversal of lacunarity trends at specific magnifications where new features become resolvable. Finally, we have established a consistent method of detecting pattern sizes in an image from the oscillation of lacunarity plots. Therefore, we promote the adoption of lacunarity analysis as a powerful tool for quantitative characterization of, but not limited to, multi-scale hierarchical surface topographies.

  11. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  12. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  13. Surface characterization of industrial flexible polyvinyl(chloride) films

    Science.gov (United States)

    Quesne, Bertrand; Reverdy-Bruas, Nadège; Beneventi, Davide; Chaussy, Didier; Belgacem, Mohamed Naceur

    2014-03-01

    Surface properties of industrial coated plasticized PVC flooring films have been investigated, with the aim of establishing possible additives migration, which causes chemical surface modification of the film and consequently its adhesion behavior. The storage period, from the production time to the converting operations (printing, laminating…) can also promote the additives migration. The surface of these films was extracted with acetone and water and the organic fraction was identified by surface tension, FTIR and GC/MS. These techniques established clearly that the extracted molecules are issuing from the plasticizers. Virgin and aged films were characterized by contact angle measurement and the surface chemistry was directly studied by XPS analyses. The first technique showed stable wettability properties of the films during storage. The contact angle of water droplet was found to decrease step wisely indicating that some surfactant-type molecules were extracted during the measurements, as confirmed by surface tension measurements. XPS established that a higher concentration of the chlorine-free additives was localized on the surface, which points out a probable enrichment of the surface by the plasticizers and the other additives. This suggests that migration kinetic of plasticizers is very high during the production, because of the high processing temperature.

  14. Structure stability and corrosion inhibition of super-hydrophobic film on aluminum in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Yin Yansheng [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China)], E-mail: yys2003ouc@163.com; Liu Tao; Chen Shougang; Liu Tong; Cheng Sha [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2008-12-30

    A novel and stable super-hydrophobic film was prepared by myristic acid (CH{sub 3}(CH{sub 2}){sub 12}COOH, mya) chemically adsorbed onto the anodized aluminum surface. The static contact angle for seawater on the surface was measured to be 154 deg. As evidenced by molecular dynamics (MD) simulations and electrochemical impedance spectroscopy (EIS), the effect of ethanol solvent on the film stability was proved. The surface structure and composition were then characterized by means of scanning electron microscopy (SEM) with energy dispersive X-ray spectrum (EDS) and atomic force microscope (AFM). The electrochemical measurements showed that the super-hydrophobic surface significantly decreased the corrosion currents densities (i{sub corr}), corrosion rates and double layer capacitance (C{sub dl}), as simultaneously increased the values of polarization resistance (R{sub ct}) of aluminum in sterile seawater.

  15. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  16. Surface characterization of self-assembled N-Cu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Lucila J.; Moreno-Lopez, Juan C. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Sferco, Silvano J. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Fisica, Facultad de Bioquimica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria, C.C. 242, (S3000ZAA) Santa Fe (Argentina); Passeggi, Mario C.G.; Vidal, Ricardo A. [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Ferron, Julio, E-mail: jferron@intec.unl.edu.ar [Laboratorio de Superficies e Interfaces, Instituto de Desarrollo Tecnologico para la Industria Quimica (CONICET-UNL), Gueemes 3450, (S3000GLN) Santa Fe (Argentina); Departamento de Materiales, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829,(S3000AOM) Santa Fe (Argentina)

    2012-01-01

    We report on the process of low energy N{sub 2}{sup +} implantation and annealing of a Cu(0 0 1) surface. Through AES we study the N diffusion process as a function of the substrate temperature. With STM and LEIS we characterize the surface morphology and the electronic structure is analyzed with ARUPS. Under annealing (500 < T < 700 K) N migrates to the surface and reacts forming a Cu{sub x}N compound that decomposes at temperatures above 700 K. LEIS measurements show that N locates on the four-fold hollow sites of the Cu(0 0 1) surface in a c(2 Multiplication-Sign 2) arrangement. Finally, a gap along the [0 0 1] azimuthal direction is determined by ARUPS. DFT calculations provide support to our conclusions.

  17. Surface Characterization of Nanoparticles: Critical Needs and Significant Challenges

    International Nuclear Information System (INIS)

    Baer, Donald R.

    2011-01-01

    There is a growing recognition that nanoparticles and other nanostructured materials are sometimes inadequately characterized and that this may limit or even invalidate some of the conclusions regarding particle properties and behavior. A number of international organizations are working to establish the essential measurement requirements that enable adequate understanding of nanoparticle properties for both technological applications and for environmental health issues. Our research on the interaction of iron metal-core oxide-shell nanoparticles with environmental contaminants and studies of the behaviors of ceria nanoparticles, with a variety of medical, catalysis and energy applications, have highlighted a number of common nanoparticle characterization challenges that have not been fully recognized by parts of the research community. This short review outlines some of these characterization challenges based on our research observations and using other results reported in the literature. Issues highlighted include: (1) the importance of surfaces and surface characterization, (2) nanoparticles are often not created equal - subtle differences in synthesis and processing can have large impacts; (3) nanoparticles frequently change with time having lifetime implications for products and complicating understanding of health and safety impacts; (4) the high sensitivity of nanoparticles to their environment complicates characterization and applications in many ways; (5) nanoparticles are highly unstable and easily altered (damaged) during analysis.

  18. Fast Characterization of Moving Samples with Nano-Textured Surfaces

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Zalkovskij, Maksim

    2015-01-01

    Characterization of structures using conventional optical microscopy is restricted by the diffraction limit. Techniques like atomic force and scanning electron microscopy can investigate smaller structures but are very time consuming. We show that using scatterometry, a technique based on optical...... diffraction, integrated into a commercial light microscope we can characterize nano-textured surfaces in a few milliseconds. The adapted microscope has two detectors, a CCD camera used to easily find an area of interest and a spectrometer for the measurements. We demonstrate that the microscope has...

  19. Fabrication and characterization of fully depleted surface barrier detectors

    International Nuclear Information System (INIS)

    Ray, A.

    2010-01-01

    Fabrication of fully depleted surface barrier type thin detectors needs thin silicon wafer of 20 - 30 μm thickness and flatness of ± 1 μm. Process has been developed for thinning silicon wafers to achieve thickness up to 20 - 30 μm from thicker (0.5 - 0.8 mm) silicon samples. These samples were used to fabricate fully depleted surface barrier detectors using Au contacts on n-type silicon. The detectors were characterized by measuring forward and reverse I-V characteristics and alpha energy spectra of Am-Pu source. (author)

  20. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pruna, R., E-mail: rpruna@el.ub.edu; Palacio, F.; López, M. [SIC, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain); Pérez, J. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Mir, M. [Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, E-08028 Barcelona (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5 Pabellón 11, E-28029 Madrid (Spain); Blázquez, O.; Hernández, S.; Garrido, B. [MIND-IN" 2UB, Departament d' Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-08-08

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  1. Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces

    International Nuclear Information System (INIS)

    Pruna, R.; Palacio, F.; López, M.; Pérez, J.; Mir, M.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Blázquez, O.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Hernández, S.; 2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" data-affiliation=" (MIND-IN2UB, Departament d'Enginyeries: Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona (Spain))" >Garrido, B.

    2016-01-01

    The electroactivity of nanostructured indium tin oxide (ITO) has been investigated for its further use in applications such as sensing biological compounds by the analysis of redox active molecules. ITO films were fabricated by using electron beam evaporation at different substrate temperatures and subsequently annealed for promoting their crystallization. The morphology of the deposited material was monitored by scanning electron microscopy, confirming the deposition of either thin films or nanowires, depending on the substrate temperature. Electrochemical surface characterization revealed a 45 % increase in the electroactive surface area of nanostructured ITO with respect to thin films, one third lower than the geometrical surface area variation determined by atomic force microscopy. ITO surfaces were functionalized with a model organic molecule known as 6-(ferrocenyl)hexanethiol. The chemical attachment was done by means of a glycidoxy compound containing a reactive epoxy group, the so-called 3-glycidoxypropyltrimethoxy-silane. ITO functionalization was useful for determining the benefits of nanostructuration on the surface coverage of active molecules. Compared to ITO thin films, an increase in the total peak height of 140 % was observed for as-deposited nanostructured electrodes, whereas the same measurement for annealed electrodes resulted in an increase of more than 400 %. These preliminary results demonstrate the ability of nanostructured ITO to increase the surface-to-volume ratio, conductivity and surface area functionalization, features that highly benefit the performance of biosensors.

  2. Asteroid surface materials: mineralogical characterizations from reflectance spectra

    International Nuclear Information System (INIS)

    Gaffey, M.J.; McCord, T.B.

    1978-01-01

    The interpretation of diagnostic parameters in the spectral reflectance data for asteroids provides a means of characterizing the mineralogy and petrology of asteroid surface materials. An interpretive technique based on a quantitative understanding of the functional relationship between the optical properties of a mineral assemblage and its mineralogy, petrology and chemistry can provide a considerably more sophisticated characterization of a single material than any matching or classification technique for those objects bright enough to allow spectral reflectance measurements. Albedos derived from radiometry and polarization data for individual asteroids can be used with spectral data to establish the spectral albedo, to define the optical density of the surface material and, in general to constrain mineralogical interpretations. (Auth.)

  3. Synthesis and Characterization of Micelle-Forming PEG-Poly(Amino Acid) Copolymers with Iron-Hydroxamate Cross-Linkable Blocks for Encapsulation and Release of Hydrophobic Drugs.

    Science.gov (United States)

    Sill, Kevin N; Sullivan, Bradford; Carie, Adam; Semple, J Edward

    2017-06-12

    Described is the development of a polymeric micelle drug delivery platform that addresses the physical property limitations of many nanovectors. The system employs triblock copolymers comprised of a hydrophilic poly(ethylene glycol) (PEG) block, and two poly(amino acid) (PAA) blocks: a stabilizing cross-linking central block, and a hydrophobic drug encapsulation block. Detailed description of synthetic strategies and considerations found to be critical are discussed. Of note, it was determined that the purity of the α-amino acid-N-carboxyanhydrides (NCA) monomers and PEG macroinitiator are ultimately responsible for impurities that arise during the polymerization. Also, contrary to current beliefs in the field, the presence of water does not adversely affect the polymerization of NCAs. Furthermore, we describe the impact of poly(amino acid) conformational changes, through the incorporation of d-amino acids to form mixed stereochemistry PAA blocks, with regard to the physical and pharmacokinetic properties of the resulting micelles.

  4. Surface characterization of nickel titanium orthodontic arch wires

    Science.gov (United States)

    Krishnan, Manu; Seema, Saraswathy; Tiwari, Brijesh; Sharma, Himanshu S.; Londhe, Sanjay; Arora, Vimal

    2015-01-01

    Background Surface roughness of nickel titanium orthodontic arch wires poses several clinical challenges. Surface modification with aesthetic/metallic/non metallic materials is therefore a recent innovation, with clinical efficacy yet to be comprehensively evaluated. Methods One conventional and five types of surface modified nickel titanium arch wires were surface characterized with scanning electron microscopy, energy dispersive analysis, Raman spectroscopy, Atomic force microscopy and 3D profilometry. Root mean square roughness values were analyzed by one way analysis of variance and post hoc Duncan's multiple range tests. Results Study groups demonstrated considerable reduction in roughness values from conventional in a material specific pattern: Group I; conventional (578.56 nm) > Group V; Teflon (365.33 nm) > Group III; nitride (301.51 nm) > Group VI (i); rhodium (290.64 nm) > Group VI (ii); silver (252.22 nm) > Group IV; titanium (229.51 nm) > Group II; resin (158.60 nm). It also showed the defects with aesthetic (resin/Teflon) and nitride surfaces and smooth topography achieved with metals; titanium/silver/rhodium. Conclusions Resin, Teflon, titanium, silver, rhodium and nitrides were effective in decreasing surface roughness of nickel titanium arch wires albeit; certain flaws. Findings have clinical implications, considering their potential in lessening biofilm adhesion, reducing friction, improving corrosion resistance and preventing nickel leach and allergic reactions. PMID:26843749

  5. Characterization of EGF coupling to aminated silicone rubber surfaces.

    Science.gov (United States)

    Klenkler, Bettina J; Sheardown, Heather

    2006-12-20

    Tethering of growth factors to biomaterial substrates via a polyethylene glycol (PEG) spacer has been established as a means of controlling dosage and conformation of the protein at the material surface, while retaining biological activity. However, the extent of modification through a comparison of bound versus unbound protein has not generally been characterized. In this work, covalent tethering of epidermal growth factor (EGF) to allylamine plasma modified polydimethylsiloxane (PDMS) substrates is characterized to determine the nature of the bound growth factor and to optimize the conditions for the reaction. Tethering is achieved via conjugation of EGF with homobifunctional N-hydroxysuccinimide (NHS) ester of PEG-butanoic acid (SBA2-PEG) in solution, followed by exposure of the pegylated EGF to the aminated surfaces (solution first reaction). SDS-PAGE analysis indicates that a low ratio of EGF:PEG is required to maximize the yield of the EGF-PEG reaction; a relatively short reaction time is needed to limit hydrolysis of the NHS ester. With increasing amounts of PEG and a higher reaction time, a higher fraction of the EGF can be covalently tethered to the surfaces, as shown by binding of 125I-labeled EGF and subsequent washing with sodium dodecyl sulfate (SDS) to remove adsorbed protein. However, even under the optimal reaction conditions established by the SDS-PAGE analysis, higher molecular weight EGF-PEG complexes are observed by SDS-PAGE and matrix-assisted laser desorption/ionization (MALDI). The presence of these complexes, as well as unreacted growth factor, can lead to a surface of heterogeneous composition. While these surfaces were found to have biological activity, stimulating the adhesion and growth of corneal epithelial cells versus PDMS controls, further optimization of reaction conditions, including the use of a homobifunctional PEG linker and possibly separation of reaction species are required to achieve a uniformly active and well

  6. Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    DEFF Research Database (Denmark)

    Sing, M.; Schwingenschlögl, U.; Claessen, R.

    2003-01-01

    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)(2)PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray-induced photoemission spectroscopy turns out to be a valuable nondestructive d...

  7. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  8. Surface characterization of low-temperature grown yttrium oxide

    Science.gov (United States)

    Krawczyk, Mirosław; Lisowski, Wojciech; Pisarek, Marcin; Nikiforow, Kostiantyn; Jablonski, Aleksander

    2018-04-01

    The step-by-step growth of yttrium oxide layer was controlled in situ using X-ray photoelectron spectroscopy (XPS). The O/Y atomic concentration (AC) ratio in the surface layer of finally oxidized Y substrate was found to be equal to 1.48. The as-grown yttrium oxide layers were then analyzed ex situ using combination of Auger electron spectroscopy (AES), elastic-peak electron spectroscopy (EPES) and scanning electron microscopy (SEM) in order to characterize their surface chemical composition, electron transport phenomena and surface morphology. Prior to EPES measurements, the Y oxide surface was pre-sputtered by 3 kV argon ions, and the resulting AES-derived composition was found to be Y0.383O0.465C0.152 (O/Y AC ratio of 1.21). The SEM images revealed different surface morphology of sample before and after Ar sputtering. The oxide precipitates were observed on the top of un-sputtered Y oxide layer, whereas the oxide growth at the Ar ion-sputtered surface proceeded along defects lines normal to the layer plane. The inelastic mean free path (IMFP) characterizing electron transport was evaluated as a function of energy in the range of 0.5-2 keV from the EPES method. Two reference materials (Ni and Au) were used in these measurements. Experimental IMFPs determined for the Y0.383O0.465C0.152 and Y2O3 surface compositions, λ, were uncorrected for surface excitations and approximated by the simple function λ = kEp at electron energies E between 500 eV and 2000 eV, where k and p were fitted parameters. These values were also compared with IMFPs resulting from the TPP-2 M predictive equation for both oxide compositions. The fitted functions were found to be reasonably consistent with the measured and predicted IMFPs. In both cases, the average value of the mean percentage deviation from the fits varied between 5% and 37%. The IMFPs measured for Y0.383O0.465C0.152 surface composition were found to be similar to the IMFPs for Y2O3.

  9. Defining the Ail Ligand-Binding Surface: Hydrophobic Residues in Two Extracellular Loops Mediate Cell and Extracellular Matrix Binding To Facilitate Yop Delivery.

    Science.gov (United States)

    Tsang, Tiffany M; Wiese, Jeffrey S; Alhabeil, Jamal A; Usselman, Lisa D; Thomson, Joshua J; Matti, Rafla; Kronshage, Malte; Maricic, Natalie; Williams, Shanedah; Sleiman, Naama H; Felek, Suleyman; Krukonis, Eric S

    2017-04-01

    Yersinia pestis , the causative agent of plague, binds host cells to deliver cytotoxic Yop proteins into the cytoplasm that prevent phagocytosis and generation of proinflammatory cytokines. Ail is an eight-stranded β-barrel outer membrane protein with four extracellular loops that mediates cell binding and resistance to human serum. Following the deletion of each of the four extracellular loops that potentially interact with host cells, the Ail-Δloop 2 and Ail-Δloop 3 mutant proteins had no cell-binding activity while Ail-Δloop 4 maintained cell binding (the Ail-Δloop 1 protein was unstable). Using the codon mutagenesis scheme SWIM (selection without isolation of mutants), we identified individual residues in loops 1, 2, and 3 that contribute to host cell binding. While several residues contributed to the binding of host cells and purified fibronectin and laminin, as well as Yop delivery, three mutations, F80A (loop 2), S128A (loop 3), and F130A (loop 3), produced particularly severe defects in cell binding. Combining these mutations led to an even greater reduction in cell binding and severely impaired Yop delivery with only a slight defect in serum resistance. These findings demonstrate that Y. pestis Ail uses multiple extracellular loops to interact with substrates important for adhesion via polyvalent hydrophobic interactions. Copyright © 2017 American Society for Microbiology.

  10. Characterization and conditioning of SSPX plasma facing surfaces

    International Nuclear Information System (INIS)

    Buchenauer, D.A.; Mills, B.E.; Wood, R.; Woodruff, S.; Hill, D.N.; Hooper, E.B.; Cowgill, D.F.; Clift, M.W.; Yang, N.Y.

    2001-01-01

    The Sustained Spheromak Physics Experiment (SSPX) will examine the confinement properties of spheromak plasmas sustained by DC helicity injection. Understanding the plasma-surface interactions is an important component of the experimental program since the spheromak plasma is in close contact with a stabilizing wall (flux conserver) and is maintained by a high current discharge in the coaxial injector region. Peak electron temperatures in the range of 400 eV are expected, so the copper plasma facing surfaces in SSPX have been coated with tungsten to minimize sputtering and plasma contamination. Here, we report on the characterization and conditioning of these surfaces used for the initial studies of spheromak formation in SSPX. The high pressure plasma-sprayed tungsten facing the SSPX plasma was characterized in situ using β-backscattering and ex situ using laboratory measurements on similarly prepared samples. Measurements showed that water can be desorbed effectively through baking while the removal rates of volatile impurity gases during glow discharge and shot conditioning indicated a large source of carbon and oxygen in the porous coating

  11. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  12. Facet Model and Mathematical Morphology for Surface Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Abidi, B.R.; Goddard, J.S.; Hunt, M.A.; Sari-Sarraf, H.

    1999-11-13

    This paper describes an algorithm for the automatic segmentation and representation of surface structures and non-uniformities in an industrial setting. The automatic image processing and analysis algorithm is developed as part of a complete on-line web characterization system of a papermaking process at the wet end. The goal is to: (1) link certain types of structures on the surface of the web to known machine parameter values, and (2) find the connection between detected structures at the beginning of the line and defects seen on the final product. Images of the pulp mixture (slurry), carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. This characterization algorithm succeeded where conventional contrast and edge detection techniques failed due to a poorly controlled environment. The images obtained have poor contrast and contain noise caused by a variety of sources. After a number of enhancement steps, conventional segmentation methods still f ailed to detect any structures and are consequently discarded. Techniques tried include the Canny edge detector, the Sobel, Roberts, and Prewitt's filters, as well as zero crossings. The facet model algorithm, is then applied to the images with various parameter settings and is found to be successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image computed. Carefully tailored morphological operators are then applied to detect and segment regions of interest. Those regions are then selected according to their size, elongation, and orientation. Their bounding rectangles are computed and represented. Also addressed in this paper are aspects of the real time implementation of this algorithm for on-line use. The algorithm is tested on over 500 images of slurry and is found to segment and characterize nonuniformities on all 500 images.

  13. Laser surface textured titanium alloy (Ti–6Al–4V): Part 1 – Surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Pfleging, Wilhelm [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Karlsruhe Nano Micro Facility, H.-von-Helmholtz-Pl. 1, 76344 Egg.-Leopoldshafen (Germany); Kumari, Renu [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India); Besser, Heino [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany); Scharnweber, Tim [Karlsruhe Institute of Technology, IBG-1, P.O. Box 3640, 76021 Karlsruhe (Germany); Majumdar, Jyotsna Dutta, E-mail: jyotsna@metal.iitkgp.ernet.in [Department of Metal. and Maters. Eng., I. I. T. Kharagpur, WB 721302 (India)

    2015-11-15

    Highlights: • Texturing of Ti–6Al–4V with linear and dimple patterns are developed with ArF laser. • Linear textures have width of 25 μm and are at an interval of 20 μm. • Dimple textures are equi-spaced and have a diameter of 60 μm. • Significant refinement of microstructure in textured zone as compared to substrate. • Increased wettability of the textured surface against simulated body fluid. - Abstract: In the present study, a detailed study of the characterization of laser-surface textured titanium alloy (Ti–6Al–4V) with line and dimple geometry developed by using an ArF excimer laser operating at a wavelength of 193 nm with a pulse length of 5 ns is undertaken. The characterization of the textured surface (both the top surface and cross section) is carried out by scanning electron microscopy, electron back scattered diffraction (EBSD) technique and X-ray diffraction techniques. There is refinement of microstructure along with presence of titanium oxides (rutile, anatase and few Ti{sub 2}O{sub 3} phase) in the textured surface as compared to as-received one. The area fractions of linear texture and dimple texture measured by image analysis software are 45% and 20%, respectively. The wettability is increased after laser texturing. The total surface energy is decreased due to linear (29.6 mN/m) texturing and increased due to dimple (67.6 mN/m) texturing as compared to as-received Ti–6Al–4V (37 mN/m). The effect of polar component is more in influencing the surface energy of textured surface.

  14. Microanalytical characterization of surface decoration in Majolica pottery

    International Nuclear Information System (INIS)

    Padilla, R.; Schalm, O.; Janssens, K.; Arrazcaeta, R.; Espen, P. van

    2005-01-01

    This paper presents the results of the characterization of the surface finishing works in archaeological pottery fragments belonging to several Majolica types. The homogeneity, thickness and inclusions of both ground glaze and color decorations were, among other characteristics, inspected by scanning electron microscopy X-ray analysis (SEM-EDX). The identification of the main constituents in the decoration motifs was performed by means of scanning micro X-ray fluorescence analysis. Additionally, compositional classification based on non-destructive quantitative analysis of the ground glaze was performed

  15. Comparison of optical methods for surface roughness characterization

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Hansen, Poul Erik; Pilny, Lukas

    2015-01-01

    We report a study of the correlation between three optical methods for characterizing surface roughness: a laboratory scatterometer measuring the bi-directional reflection distribution function (BRDF instrument), a simple commercial scatterometer (rBRDF instrument), and a confocal optical profiler...... of the scattering angle distribution (Aq). The twenty-two investigated samples were manufactured with several methods in order to obtain a suitable diversity of roughness patterns.Our study shows a one-to-one correlation of both the Rq and the Rdq roughness values when obtained with the BRDF and the confocal...

  16. Raman and Surface-Enhanced Raman Scattering for Biofilm Characterization

    Directory of Open Access Journals (Sweden)

    Seda Keleştemur

    2018-01-01

    Full Text Available Biofilms are a communal way of living for microorganisms in which microorganism cells are surrounded by extracellular polymeric substances (EPS. Most microorganisms can live in biofilm form. Since microorganisms are everywhere, understanding biofilm structure and composition is crucial for making the world a better place to live, not only for humans but also for other living creatures. Raman spectroscopy is a nondestructive technique and provides fingerprint information about an analyte of interest. Surface-enhanced Raman spectroscopy is a form of this technique and provides enhanced scattering of the analyte that is in close vicinity of a nanostructured noble metal surface such as silver or gold. In this review, the applications of both techniques and their combination with other biofilm analysis techniques for characterization of composition and structure of biofilms are discussed.

  17. Localization and quantification of hydrophobicity: The molecular free energy density (MolFESD) concept and its application to sweetness recognition

    Science.gov (United States)

    Jäger, Robert; Schmidt, Friedemann; Schilling, Bernd; Brickmann, Jürgen

    2000-10-01

    A method for the localization, the quantification, and the analysis of hydrophobicity of a molecule or a molecular fragment is presented. It is shown that the free energy of solvation for a molecule or the transfer free energy from one solvent to another can be represented by a surface integral of a scalar quantity, the molecular free energy surface density (MolFESD), over the solvent accessible surface of that molecule. This MolFESD concept is based on a model approach where the solvent molecules are considered to be small in comparison to the solute molecule, and the solvent can be represented by a continuous medium with a given dielectric constant. The transfer energy surface density for a 1-octanol/water system is empirically determined employing a set of atomic increment contributions and distance dependent membership functions measuring the contribution of the increments to the surface value of the MolFESD. The MolFESD concept can be well used for the quantification of the purely hydrophobic contribution to the binding constants of molecule-receptor complexes. This is demonstrated with the sweeteners sucrose and sucralose and various halogen derivatives. Therein the relative sweetness, which is assumed to be proportional to the binding constant, nicely correlates to the surface integral over the positive, hydrophobic part of the MolFESD, indicating that the sweetness receptor can be characterized by a highly flexible hydrophobic pocket instead of a localized binding site.

  18. Surface characterization and clinical review of two commercially available implants.

    Science.gov (United States)

    Galli, Silvia; Jimbo, Ryo; Andersson, Martin; Bryington, Matthew; Albrektsson, Tomas

    2013-10-01

    To characterize topographically and chemically the surfaces of 2 commercially available implants. Furthermore, to gather an overview of the clinical results of these implant systems. Two commercially available oral implants were analyzed using optical interferometry, scanning electron microscopy, and energy dispersive spectroscopy. In addition, a literature search for all the clinical articles on the same implants was performed. No significant differences of topographical parameters were found between the 2 implants, except for the hybrid parameter Sdr presenting significant higher values for the Ankylos implants. Both surfaces had a homogenous microporosity. At higher magnifications of scanning electron microscope images, evenly distributed nanostructures (approximately 10 nm) were visible. Chemically, mainly titanium, oxygen and carbon were detected. Fifty-six clinical articles were included for the review. The implant survival rates (minimum follow-up: 5 years) ranged between 87.7% and 100%. The examined commercially available implants showed a moderately rough surface, with a homogenous microporosity. Nanofeatures were detected on the surface of both implants. The clinical performances of these implants were comparable to that of other commercialized implant systems.

  19. Surface characterization and stability of an epoxy resin surface modified with polyamines grafted on polydopamine

    Science.gov (United States)

    Schaubroeck, David; Vercammen, Yannick; Van Vaeck, Luc; Vanderleyden, Els; Dubruel, Peter; Vanfleteren, Jan

    2014-06-01

    This paper reports on polydopamine and polyamine surface modifications of an etched epoxy cresol novolac (ECN) resin using the 'grafting to' method. Three different polyamines are used for the grafting reactions: branched polyethyleneimine (B-PEI), linear polyethyleneimine (L-PEI) and diethylenetriamine (DETA). These modifications are compared to control materials prepared via direct deposition of polyamines. The stability of the modifications toward a concentrated hydrochloric acid (HCl) environment is evaluated. The modified surfaces are characterized with scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectroscopy (TOF-S-SIMS).

  20. Textural and surface characterization of cork-based sorbents for the removal of oil from water

    OpenAIRE

    Ariana Pintor; A.M. Silvestre-Albero; Catarina Ferreira; Joana Pereira; Vitor Vilar; Cidália Botelho; F. Rodríguez-Reinoso; Rui Boaventura

    2013-01-01

    This study evaluates the possibility of adding value to cork granulates, byproducts of cork processing, by using them as biosorbents and precursors of activated carbons. Activation was carried out by impregnation with phosphoric acid followed by pyrolysis under N2 flow. Furthermore, biosorbents were treated with a cationic surfactant and activated carbons were subject to a second pyrolysis under propene with the objective of improving hydrophobicity. Physico-chemical, textural, and surface ch...

  1. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  2. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification.

    Science.gov (United States)

    Smistad, Gro; Nyström, Bo; Zhu, Kaizheng; Grønvold, Marthe Karoline; Røv-Johnsen, Anne; Hiorth, Marianne

    2017-08-01

    Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Surface modification of seawater desalination reverse osmosis membranes: Characterization studies & performance evaluation

    KAUST Repository

    Matin, Asif

    2014-06-01

    In this work we report surface modification of commercial reverse osmosis membranes by depositing ultrathin copolymer coatings, which could potentially enhance the biofouling resistance of RO membranes. Hydrophilic monomer hydroxyethyl methacrylate (HEMA) and a hydrophobic monomer, perfluorodecyl acrylate (PFDA) were copolymerized directly on the active layer of commercial aromatic polyamide reverse osmosis (RO) membranes using an initiated Chemical Vapor Deposition (iCVD) technique. Attenuated total reflective Fourier transform infrared spectra (ATR-FTIR) verified the successful modification of the membrane surfaces as a new FTIR adsorption band around 1730cm-1 corresponding to carbonyl groups in the copolymer film appeared after the deposition. X-ray Photoelectron spectroscopy (XPS) analysis also confirmed the presence of the copolymer film on the membrane surface by showing strong fluorine peaks emanating from the fluorinated alkyl side chains of the PFA molecules. Contact angle measurements with deionized water showed the modified membrane surfaces to be initially very hydrophobic but quickly assumed a hydrophilic character within few minutes. Atomic Force Microscopy (AFM) revealed that the deposited films were smooth and conformal as the surface topology of the underlying membrane surface remained virtually unchanged after the deposition. FESEM images of the top surface also showed that the typical ridge-and-valley structure associated with polyamide remained intact after the deposition. Short-term permeation tests using DI water and 2000ppm NaCl water showed that the deposited copolymer coatings had negligible effect on permeate water flux and salt rejection. © 2013 Elsevier B.V.

  4. Surface characterization of GSH-CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, J.L., E-mail: juan.gautier@usach.cl [Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Monrás, J.P. [Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Vicuña Mackena 20, Santiago (Chile); Osorio-Román, I.O. [Departamento de Química Inorgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Av. V. Mackenna 4860, Santiago (Chile); Vásquez, C.C. [Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. L. B. O' Higgins 3363, Santiago (Chile); Bravo, D. [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Av. Vicuña Mackena 20, Santiago (Chile); Herranz, T.; Marco, J.F. [Instituto de Química Física “Rocasolano” CSIC, c/Serrano 119, 28006 Madrid (Spain); and others

    2013-06-15

    The surface characterization of CdTe QDs synthesized by a novel procedure using glutathione (GSH), low temperatures (60–90 °C) and K{sub 2}TeO{sub 3} as the –Te precursor is reported. Fluorescence of the produced QDs is stable in the pH range 6–13 and QDs inside eukaryotic cells are highly fluorescent. The surface composition of GSH-CdTe QDs with different spectroscopic properties and particle size distributions was determined by XPS. The XPS analysis indicated that the QDs are essentially CdTe, although all nanoparticles contain 12–24% of CdO (and in one case also TeO{sub 2}). GSH decomposes with reaction time releasing small amounts of S{sup −2} ions that react with Cd(Te) to yield Cd(Te)S in a smaller amount than that of CdTe. Finally, the use of QDs in fluorescence mediated immunodetection of bacterial pathogens has been evaluated. - Highlights: • Stable CdTe QDs of different sizes were synthesized by reacting thiol GSH and K{sub 2}TeO{sub 3} at 90 °C. • XPS analysis shows that the QDs contain CdTe, Cd(Te)S and CdO at the surface. • Small amounts of TeO{sub 2} were also observed. • Sulphur allows the binding of the QDs at biomolecules.

  5. Surface characterization of GSH-CdTe quantum dots

    International Nuclear Information System (INIS)

    Gautier, J.L.; Monrás, J.P.; Osorio-Román, I.O.; Vásquez, C.C.; Bravo, D.; Herranz, T.; Marco, J.F.

    2013-01-01

    The surface characterization of CdTe QDs synthesized by a novel procedure using glutathione (GSH), low temperatures (60–90 °C) and K 2 TeO 3 as the –Te precursor is reported. Fluorescence of the produced QDs is stable in the pH range 6–13 and QDs inside eukaryotic cells are highly fluorescent. The surface composition of GSH-CdTe QDs with different spectroscopic properties and particle size distributions was determined by XPS. The XPS analysis indicated that the QDs are essentially CdTe, although all nanoparticles contain 12–24% of CdO (and in one case also TeO 2 ). GSH decomposes with reaction time releasing small amounts of S −2 ions that react with Cd(Te) to yield Cd(Te)S in a smaller amount than that of CdTe. Finally, the use of QDs in fluorescence mediated immunodetection of bacterial pathogens has been evaluated. - Highlights: • Stable CdTe QDs of different sizes were synthesized by reacting thiol GSH and K 2 TeO 3 at 90 °C. • XPS analysis shows that the QDs contain CdTe, Cd(Te)S and CdO at the surface. • Small amounts of TeO 2 were also observed. • Sulphur allows the binding of the QDs at biomolecules

  6. Free surface BCP self-assembly process characterization with CDSEM

    Science.gov (United States)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  7. Insights into the Hendra virus NTAIL-XD complex: Evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions.

    Science.gov (United States)

    Erales, Jenny; Beltrandi, Matilde; Roche, Jennifer; Maté, Maria; Longhi, Sonia

    2015-08-01

    The Hendra virus is a member of the Henipavirus genus within the Paramyxoviridae family. The nucleoprotein, which consists of a structured core and of a C-terminal intrinsically disordered domain (N(TAIL)), encapsidates the viral genome within a helical nucleocapsid. N(TAIL) partly protrudes from the surface of the nucleocapsid being thus capable of interacting with the C-terminal X domain (XD) of the viral phosphoprotein. Interaction with XD implies a molecular recognition element (MoRE) that is located within N(TAIL) residues 470-490, and that undergoes α-helical folding. The MoRE has been proposed to be embedded in the hydrophobic groove delimited by helices α2 and α3 of XD, although experimental data could not discriminate between a parallel and an antiparallel orientation of the MoRE. Previous studies also showed that if the binding interface is enriched in hydrophobic residues, charged residues located close to the interface might play a role in complex formation. Here, we targeted for site directed mutagenesis two acidic and two basic residues within XD and N(TAIL). ITC studies showed that electrostatics plays a crucial role in complex formation and pointed a parallel orientation of the MoRE as more likely. Further support for a parallel orientation was afforded by SAXS studies that made use of two chimeric constructs in which XD and the MoRE were covalently linked to each other. Altogether, these studies unveiled the multiparametric nature of the interactions established within this complex and contribute to shed light onto the molecular features of protein interfaces involving intrinsically disordered regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Coating with genetic engineered hydrophobin promotes growth of fibroblasts on a hydrophobic solid

    NARCIS (Netherlands)

    Janssen, M.I.; Leeuwen, M.B.M. van; Scholtmeijer, K.; Kooten, T.G. van; Dijkhuizen, L.; Wösten, H.A.B.

    2002-01-01

    Class I Hydrophobins self-assemble at hydrophilic-hydrophobic interfaces into a highly insoluble amphipathic film. Upon self-assembly of these fungal proteins hydrophobic solids turn hydrophilic, while hydrophilic materials can be made hydrophobic. Hydrophobins thus change the nature of a surface.

  9. Planetary surface characterization from dual-polarization radar observations

    Science.gov (United States)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  10. Characterization of the Actinobacillus pleuropneumoniae SXT-related integrative and conjugative element ICEApl2 and analysis of the encoded FloR protein: hydrophobic residues in transmembrane domains contribute dynamically to florfenicol and chloramphenicol efflux.

    Science.gov (United States)

    Li, Yinghui; Li, Yanwen; Fernandez Crespo, Roberto; Leanse, Leon G; Langford, Paul R; Bossé, Janine T

    2018-01-01

    To characterize ICEApl2, an SXT-related integrative and conjugative element (ICE) found in a clinical isolate of the porcine pathogen Actinobacillus pleuropneumoniae, and analyse the functional nature of the encoded FloR. ICEApl2 was identified in the genome of A. pleuropneumoniae MIDG3553. Functional analysis was done using conjugal transfer experiments. MIDG3553 was tested for susceptibility to the antimicrobials for which resistance genes are present in ICEApl2. Lack of florfenicol/chloramphenicol resistance conferred by the encoded FloR protein was investigated by cloning and site-directed mutagenesis experiments in Escherichia coli. ICEApl2 is 92660 bp and contains 89 genes. Comparative sequence analysis indicated that ICEApl2 is a member of the SXT/R391 ICE family. Conjugation experiments showed that, although ICEApl2 is capable of excision from the chromosome, it is not self-transmissible. ICEApl2 encodes the antimicrobial resistance genes floR, strAB, sul2 and dfrA1, and MIDG3553 is resistant to streptomycin, sulfisoxazole and trimethoprim, but not florfenicol or chloramphenicol. Cloning and site-directed mutagenesis of the floR gene revealed the importance of the nature of the hydrophobic amino acid residues at positions 160 and 228 in FloR for determining resistance to florfenicol and chloramphenicol. Our results indicate that the nature of hydrophobic residues at positions 160 and 228 of FloR contribute dynamically to specific efflux of florfenicol and chloramphenicol, although some differences in resistance levels may depend on the bacterial host species. This is also, to our knowledge, the first description of an SXT/R391 ICE in A. pleuropneumoniae or any member of the Pasteurellaceae. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  11. The new view of hydrophobic free energy.

    Science.gov (United States)

    Baldwin, Robert L

    2013-04-17

    In the new view, hydrophobic free energy is measured by the work of solute transfer of hydrocarbon gases from vapor to aqueous solution. Reasons are given for believing that older values, measured by solute transfer from a reference solvent to water, are not quantitatively correct. The hydrophobic free energy from gas-liquid transfer is the sum of two opposing quantities, the cavity work (unfavorable) and the solute-solvent interaction energy (favorable). Values of the interaction energy have been found by simulation for linear alkanes and are used here to find the cavity work, which scales linearly with molar volume, not accessible surface area. The hydrophobic free energy is the dominant factor driving folding as judged by the heat capacity change for transfer, which agrees with values for solvating hydrocarbon gases. There is an apparent conflict with earlier values of hydrophobic free energy from studies of large-to-small mutations and an explanation is given. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Characterizing bars in low surface brightness disc galaxies

    Science.gov (United States)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  13. Surface Characterization of a Paper Web at the Wet End

    International Nuclear Information System (INIS)

    Abidi, B.R.; Goddard, J.S.; Sari-Sarraf, H.

    1999-01-01

    We present an algorithm for the detection and representation of structures and non-uniformities on the surface of a paper web at the wet end (slurry). This image processing/analysis algorithm is developed as part of a complete on-line web characterization system. Images of the slurry, carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. The images have very poor contrast and contain noise from a variety of sources. Those sources include the acquisition system itself, the lighting, the vibrations of the moving table being imaged, and the scattering water from the same table's movement. After many steps of enhancement, conventional edge detection methods were still inconclusive and were discarded. The facet model algorithm, is applied to the images and is found successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image is computed based on the general appearance and characteristics of the structures in question. Morphological operators are applied to detect and segment regions of interest. Those regions are then filtered according to their size, elongation, and orientation.Their bounding rectangles are computed and superimposed on the original image. Real time implementation of this algorithm for on-line use is also addressed in this paper. The algorithm is tested on over 500 images of slurry and is found to detect nonuniformities on all 500 images. Locating and characterizing all different size structures is also achieved on all 500 images of the web

  14. Surface Characterization of a Paper Web at the Wet End

    Energy Technology Data Exchange (ETDEWEB)

    Abidi, B.R.; Goddard, J.S.; Sari-Sarraf, H.

    1999-06-23

    We present an algorithm for the detection and representation of structures and non-uniformities on the surface of a paper web at the wet end (slurry). This image processing/analysis algorithm is developed as part of a complete on-line web characterization system. Images of the slurry, carried by a fast moving table, are obtained using a stroboscopic light and a CCD camera. The images have very poor contrast and contain noise from a variety of sources. Those sources include the acquisition system itself, the lighting, the vibrations of the moving table being imaged, and the scattering water from the same table's movement. After many steps of enhancement, conventional edge detection methods were still inconclusive and were discarded. The facet model algorithm, is applied to the images and is found successful in detecting the various topographic characteristics of the surface of the slurry. Pertinent topographic elements are retained and a filtered image is computed based on the general appearance and characteristics of the structures in question. Morphological operators are applied to detect and segment regions of interest. Those regions are then filtered according to their size, elongation, and orientation.Their bounding rectangles are computed and superimposed on the original image. Real time implementation of this algorithm for on-line use is also addressed in this paper. The algorithm is tested on over 500 images of slurry and is found to detect nonuniformities on all 500 images. Locating and characterizing all different size structures is also achieved on all 500 images of the web.

  15. Super-hydrophobicity fundamentals: implications to biofouling prevention.

    Science.gov (United States)

    Marmur, Abraham

    2006-01-01

    The theory of wetting on super-hydrophobic surfaces is presented and discussed, within the general framework of equilibrium wetting and contact angles. Emphasis is put on the implications of super-hydrophobicity to the prevention of biofouling. Two main lines of thought are discussed, viz. i) "mirror imaging" of the Lotus effect, namely designing a surface that repels biological entities by being super-hydrophilic, and ii) designing a surface that minimises the water-wetted area when submerged in water (by keeping an air film between the water and the surface), so that the suspended biological entities have a low probability of encountering the solid surface.

  16. Surface, interface and bulk materials characterization using Indus synchrotron sources

    International Nuclear Information System (INIS)

    Phase, Deodatta M.

    2014-01-01

    Synchrotron radiation sources, providing intense, polarized and stable beams of ultra violet, soft and hard x-ray photons, are having great impact on physics, chemistry, biology, materials science and other areas research. In particular synchrotron radiation has revolutionized materials characterization techniques by enhancing its capabilities for investigating the structural, electronic and magnetic properties of solids. The availability of synchrotron sources and necessary instrumentation has led to considerable improvements in spectral resolution and intensities. As a result, application scope of different materials characterization techniques has tremendously increased particularly in the analysis of solid surfaces, interfaces and bulk materials. The Indian synchrotron storage ring, Indus-1 and Indus-2 are in operation at RRCAT, Indore. The UGC-DAE CSR with the help of university scientist had designed and developed an angle integrated photoelectron spectroscopy (AlPES) beam line on Indus-1 storage ring of 450 MeV and polarized light beam line for soft x-ray absorption spectroscopy (SXAS) on Indus-2 storage ring of 2.5 GeV. (author)

  17. Interfacial characterization and analytical applications of chemically-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianhong [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    The goal of this work is to explore several new strategies and approaches to the surface modification and the microscopic characterization of interfaces in the areas mainly targeting sensor technologies that are of interest to environmental control or monitoring, and scanning probe microscopies techniques that can monitor interfacial chemical reactions in real time. Centered on the main theme, four specific topics are presented as four chapters in this dissertation following the general introduction. Chapter 1 describes the development of two immobilization schemes for covalently immobilizing fluoresceinamine at cellulose acetate and its application as a pH sensing film. Chapter 2 investigates the applicability of SFM to following the base-hydrolysis of a dithio-bis(succinimidylundecanoate) monolayer at gold in situ. Chapter 3 studies the mechanism for the accelerated rate of hydrolysis of the dithio-bis(succinimidylundecanoate) monolayer at Au(111) surface. Chapter 4 focuses on the development of an electrochemical approach to the elimination of chloride interference in Chemical Oxygen Demand (COD) analysis of waste water. The procedures, results and conclusions are described in each chapter. This report contains the introduction, references, and general conclusions. Chapters have been processed separately for inclusion on the data base. 95 refs.

  18. Characterization of nanoparticle formation and aggregation on mineral surfaces

    International Nuclear Information System (INIS)

    Glenn Waychunas; Young-Shin Jun

    2007-01-01

    The research effort in the Waychunas group is focused on the characterization and measurement of processes at the mineral-water interfaces specifically related to the onset of precipitation. This effort maps into one of the main project groups with the Penn State University EMSI (CEKA) known as PIG (Precipitation Interest Group), and involves collaborations with several members of that group. Both synchrotron experimentation and technique development are objectives, with the goals of allowing precipitation from single molecule attachment to sub-monolayer coverage to be detected and analyzed. The problem being addressed is the change in reactivity of mineral interfaces due to passivation or activation by precipitates or sorbates. In the case of passivation, fewer active sites may be involved in reactions with environmental fluids, while in the activated case the precipitate may be much more reactive than the substrate, or result in the creation of a higher density of active sites. We approach this problem by making direct measurements of several types of precipitation reactions: iron-aluminum oxide formation on quartz and other substrates from both homogeneous (in solution) nucleation, and heterogeneous (on the surface) nucleation; precipitation and sorption of silicate monomers and polymers on Fe oxide surfaces; and development of grazing-incidence small angle x-ray scattering (GISAXS) as a tool for in-situ measurement of precipitate growth, morphology and aggregation. We expect that these projects will produce new fundamental information on reactive interface growth, passivation and activation, and be applicable to a wide range of environmental interfaces

  19. Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A

    NARCIS (Netherlands)

    Rodrigues, Ligia R.; Teixeira, Jose A.; van der Mei, Henny C.; Oliveira, Rosario

    2006-01-01

    Isolation and characterization of the surface active components from the crude biosurfactant produced by Streptococcus thermophilus A was studied. A fraction rich in glycolipids was obtained by the fractionation of crude biosurfactant using hydrophobic interaction chromatography. Molecular (by

  20. Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system

    Science.gov (United States)

    Matsubara, Keisuke; Danno, Masato; Inoue, Mitsuhiro; Nishizawa, Hideki; Honda, Yuji; Abe, Takayuki

    2013-11-01

    In this study, tetrafluoromethane (CF4) plasma-treatments of polymethylmethacrylate (PMMA) powder were performed using a polygonal barrel-plasma-treatment system to improve the PMMA's hydrophobicity. Characterization of the treated samples showed that the PMMA particle surfaces were fluorinated by the CF4 treatment. The smooth surfaces of the particles changed into nano-sized worm-like structures after the plasma-treatment. The hydrophobicity of the treated PMMA samples was superior to that of the untreated samples. It was noted that the hydrophobicity of the treated samples and the surface fluorination level depended on the plasma-treatment time and radiofrequency (RF) power; high RF power increased the sample temperature, which in turn decreased the hydrophobicity of the treated samples and the surface fluorination because of the thermal decomposition of PMMA. The water-repellent effects were evaluated by using paper towels to show the application of the plasma-treated PMMA particles, with the result that the paper towel coated with the treated sample was highly water-repellent.

  1. Hydrophobization of polymer particles by tetrafluoromethane (CF{sub 4}) plasma irradiation using a barrel-plasma-treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Keisuke; Danno, Masato; Inoue, Mitsuhiro; Nishizawa, Hideki; Honda, Yuji; Abe, Takayuki, E-mail: tabe@ctg.u-toyama.ac.jp

    2013-11-01

    In this study, tetrafluoromethane (CF{sub 4}) plasma-treatments of polymethylmethacrylate (PMMA) powder were performed using a polygonal barrel-plasma-treatment system to improve the PMMA's hydrophobicity. Characterization of the treated samples showed that the PMMA particle surfaces were fluorinated by the CF{sub 4} treatment. The smooth surfaces of the particles changed into nano-sized worm-like structures after the plasma-treatment. The hydrophobicity of the treated PMMA samples was superior to that of the untreated samples. It was noted that the hydrophobicity of the treated samples and the surface fluorination level depended on the plasma-treatment time and radiofrequency (RF) power; high RF power increased the sample temperature, which in turn decreased the hydrophobicity of the treated samples and the surface fluorination because of the thermal decomposition of PMMA. The water-repellent effects were evaluated by using paper towels to show the application of the plasma-treated PMMA particles, with the result that the paper towel coated with the treated sample was highly water-repellent.

  2. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    Science.gov (United States)

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  3. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    was performed on the laser-machined polymer using an Alicona InfiniteFocus® microscope. Based on previous experiments, bearing area curve and its parameters are chosen to characterize the surface. In this paper, by comparison of plateable and non-plateable surfaces, and two types of plateable surface made...

  4. Gas solubility in hydrophobic confinement.

    Science.gov (United States)

    Luzar, Alenka; Bratko, Dusan

    2005-12-01

    Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the

  5. Surface and Electrical Characterization of Conjugated Molecular Wires

    Science.gov (United States)

    Demissie, Abel Tesfahun

    This thesis describes the surface and electrical characterization of ultrathin organic films and interfaces. These films were synthesized on the surface of gold by utilizing layer by layer synthesis via imine condensation. Film growth by imine click (condensation) chemistry is particularly useful for molecular electronics experiments because it provides a convenient means to obtain and extend ?-conjugation in the growth direction. However, in the context of film growth from a solid substrate, the reaction yield per step has not been characterized previously, though it is critically important. To address these issues, my research focused on a comprehensive characterization of oligophenyleneimine (OPI) wires via Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), reflection-absorption infrared spectroscopy (RAIRS), and cyclic voltammetry (CV). In addition, we had the unique opportunity of developing the first of its kind implementation of nuclear reaction analysis (NRA) to probe the intensity of carbon atoms after each addition step. Overall the combination of various techniques indicated that film growth proceeds in a quantitative manner. Furthermore, the NRA experiment was optimized to measure the carbon content in self-assembled monolayers of alkyl thiols. The results indicated well-resolved coverage values for ultrathin films with consecutive steps of 2 carbon atoms per molecule. Another fundamental problem in molecular electronics is the vast discrepancy in the values of measured resistance per molecule between small and large area molecular junctions. In collaboration with researchers at the National University of Singapore, we addressed these issues by comparing the electrical properties of OPI wires with the eutectic gallium indium alloy (EGaIn) junction (1000 mum2), and conducting probe atomic force microscopy (CP-AFM) junction (50 nm2). Our results showed that intensive (i.e., area

  6. Dewetting-induced collapse of hydrophobic particles.

    Science.gov (United States)

    Huang, X; Margulis, C J; Berne, B J

    2003-10-14

    A molecular dynamics study of the depletion of water (drying) around a single and between two hydrophobic nanoscale oblate plates in explicit water as a function of the distance of separation between them, their size, and the strength of the attraction between the plates and the water molecules is presented. A simple macroscopic thermodynamic model based on Young's law successfully predicts drying between the stacked plates and accounts for the free-energy barriers to this drying. However, because drying around a single plate is not macroscopic, a molecular theory is required to describe it. The data are consistent with the rate-determining step in the hydrophobic collapse of the two plates being a large-scale drying fluctuation, characterized by a free-energy barrier that grows with particle size.

  7. Solution properties of hydrophobically modified

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-12-01

    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  8. Hydrophobic properties of hexamethyldisilazane modified nanostructured silica films on glass: effect of plasma pre-treatment of glass and polycondensation features

    Science.gov (United States)

    Terpilowski, K.; Goncharuk, O.

    2018-01-01

    Effects of pre-treating the surface by oxygen and argon plasma, conditions of the sol-gel synthesis of hydrophobic films and modification by silica nanoparticles were studied for two types of sol-gel compositions resulting in coatings of different topology. Wetting study and profilometry were used for characterization of the films hydrophobicity and surface roughness. It was shown that the variation in the amount of acid in the reaction mixture significantly affects the hydrophobicity of the synthesized films due to changing the surface texture upon interactions with HMDS. For the series of films produced at high acid contents, the contact angle (CA) with water is 91.67°-98.98° while reducing the amount of acid allows to obtain films with the CA of 127.88°-132.68°. Modifying films with the silica nanoparticles can further increase hydrophobicity of the obtained films by the influence on their topography. Pre-treatment of the glass surface by air and argon plasma has a significant impact on the structure of the glass, however a significant effect on hydrophobicity of the applied film is not observed.

  9. A novel method to fabricate water-soluble hydrophobic agent and super-hydrophobic film on pretreated metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Liqun [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Haidian District, Beijing 100083 (China)]. E-mail: zhulq@buaa.edu.cn; Jin Yan [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Haidian District, Beijing 100083 (China)]. E-mail: jinyan2080@hotmail.com

    2007-01-30

    This paper demonstrated a convenient method to prepare water-soluble hydrophobic agent and create super-hydrophobic film on the basic material of phosphating film and electroless Ni-P composite coating on carbon steels. Water contact angles and rolling angles of super-hydrophobic films were 155-168{sup o} and 2-3{sup o} on phosphating films, respectively, 145-155 deg. and 15-20 deg. on electroless Ni-P composite coatings, respectively. This water-soluble hydrophobic agent was white latex and had lots of micro-particles suspending in it. The thickness of the single-layer super-hydrophobic film with good corrosion resistance and stability was about 2-3 {mu}m. The microstructure of super-hydrophobic film was discussed using XRD, EDS, optical and electronic microscope as analytical methods. This kind of super-hydrophobic film had a great many micro-particles dispersing in the surface, which contained F and Si and greatly increased the roughness of the surface.

  10. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  11. Surface characterization and direct bioelectrocatalysis of multicopper oxidases

    International Nuclear Information System (INIS)

    Ivnitski, Dmitri M.; Khripin, Constantine; Luckarift, Heather R.; Johnson, Glenn R.; Atanassov, Plamen

    2010-01-01

    Multicopper oxidases (MCO) have been extensively studied as oxygen reduction catalysts for cathodic reactions in biofuel cells. Theoretically, direct electron transfer between an enzyme and electrode offers optimal energy conversion efficiency providing that the enzyme/electrode interface can be engineered to establish efficient electrical communication. In this study, the direct bioelectrocatalysis of three MCO (Laccase from Trametes versicolor, bilirubin oxidase (BOD) from the fungi Myrothecium verrucaria and ascorbate oxidase (AOx) from Cucurbita sp.) was investigated and compared as oxygen reduction catalysts. Protein film voltammetry and electrochemical characterization of the MCO electrodes showed that DET had been successfully established in all cases. Atomic force microscopy imaging and force measurements indicated that enzyme was immobilized as a monolayer on the electrode surface. Evidence for three clearly separated anodic and cathodic redox events related to the Type 1 (T1) and the trinculear copper centers (T2, T3) of various MCO was observed. The redox potential of the T1 center was strongly modulated by physiological factors including pH, anaerobic and aerobic conditions and the presence of inhibitors.

  12. Surface characterization and direct bioelectrocatalysis of multicopper oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitski, Dmitri M., E-mail: ivnitski@unm.ed [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States)] [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States); Khripin, Constantine [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States); Luckarift, Heather R. [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States)] [Universal Technology Corporation, 1270 N. Fairfield Road, Dayton, OH 45432 (United States); Johnson, Glenn R. [Air Force Research Laboratory, AFRL/RXQL, Microbiology and Applied Biochemistry, Tyndall Air Force Base, FL 32403 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Chemical and Nuclear Engineering, University of New Mexico, Albuquerque 87131 (United States)

    2010-10-01

    Multicopper oxidases (MCO) have been extensively studied as oxygen reduction catalysts for cathodic reactions in biofuel cells. Theoretically, direct electron transfer between an enzyme and electrode offers optimal energy conversion efficiency providing that the enzyme/electrode interface can be engineered to establish efficient electrical communication. In this study, the direct bioelectrocatalysis of three MCO (Laccase from Trametes versicolor, bilirubin oxidase (BOD) from the fungi Myrothecium verrucaria and ascorbate oxidase (AOx) from Cucurbita sp.) was investigated and compared as oxygen reduction catalysts. Protein film voltammetry and electrochemical characterization of the MCO electrodes showed that DET had been successfully established in all cases. Atomic force microscopy imaging and force measurements indicated that enzyme was immobilized as a monolayer on the electrode surface. Evidence for three clearly separated anodic and cathodic redox events related to the Type 1 (T1) and the trinculear copper centers (T2, T3) of various MCO was observed. The redox potential of the T1 center was strongly modulated by physiological factors including pH, anaerobic and aerobic conditions and the presence of inhibitors.

  13. Preparation of TiO2-coated barite composite pigments by the hydrophobic aggregation method and their structure and properties.

    Science.gov (United States)

    Sun, Sijia; Ding, Hao; Zhou, Hong

    2017-08-30

    We obtained hydrophobic barite (BaSO 4 ) and rutile titanium dioxide (TiO 2 ) particles (as raw materials) by organic surface modification. Subsequently, TiO 2 -coated barite composite pigments were prepared via the hydrophobic aggregation of heterogeneous particles in a water medium. The pigment properties of the TiO 2 -coated barite composite pigments were characterized and evaluated by determining their hiding power, oil absorption value and whiteness. The optical properties were determined by obtaining their UV-vis diffuse reflectance spectra and using the CIE-L*a*b* method. The morphology and bonding properties were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy (IR). The results show the similarity between the composite pigment and pure rutile TiO 2 : when the mass ratio of rutile TiO 2 in the composite pigment was 60%, the hiding power of the TiO 2 -coated barite composite pigment was 90.81% of that of pure rutile TiO 2 . Moreover, the surfaces of the barite particles were uniformly and firmly coated by TiO 2 , with a hydrophobic association occurring between the hydrophobic carbon chains on the surfaces of barite and TiO 2 particles.

  14. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrey, E-mail: andrey.shchukarev@umu.se [Department of Chemistry, Umeå University, Umeå SE-90187 (Sweden); Malekzadeh, Behnosh Öhrnell [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Ransjö, Maria [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Tengvall, Pentti [Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Westerlund, Anna [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden)

    2017-04-15

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  15. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    International Nuclear Information System (INIS)

    Shchukarev, Andrey; Malekzadeh, Behnosh Öhrnell; Ransjö, Maria; Tengvall, Pentti; Westerlund, Anna

    2017-01-01

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  16. Surface characterization and cytocompatibility evaluation of silanized magnesium alloy AZ91 for biomedical applications

    Directory of Open Access Journals (Sweden)

    Agnieszka Witecka, Akiko Yamamoto, Henryk Dybiec and Wojciech Swieszkowski

    2012-01-01

    Full Text Available Mg alloys with high Al contents have superior corrosion resistance in aqueous environments, but poor cytocompatibility compared to that of pure Mg. We have silanized the cast AZ91 alloy to improve its cytocompatibility using five different silanes: ethyltriethoxysilane (S1, 3-aminopropyltriethoxysilane (S2, 3-isocyanatopyltriethoxysilane (S3, phenyltriethoxysilane (S4 and octadecyltriethoxysilane (S5. The surface hydrophilicity/hydrophobicity was evaluated by water contact angle measurements. X-ray photoelectron analysis was performed to investigate the changes in surface states and chemical composition. All silane reagents increased adsorption of the albumin to the modified surface. In vitro cytocompatibility evaluation revealed that silanization improved cell growth on AZ91 modified by silane S1. Measurement of the concentration of Mg2+ ions released during the cell culture indicated that silanization does not affect substrate degradation.

  17. Surface mineralization and characterization of tobacco mosaic virus biotemplated nanoparticles

    Science.gov (United States)

    Freer, Alexander S.

    The genetically engineered tobacco mosaic virus (TMV) has been utilized as a biotemplate in the formation of nanoparticles with the intent of furthering the understanding of the biotemplated nanoparticles formed in the absence of an external reducing agent. Specifically, the work aims to provide better knowledge of the final particle characteristics and how these properties could be altered to better fit the need of functional devices. Three achievements have been accomplished including a method for controlling final particle size, characterizing the resistivity of palladium coated TMV, and the application of TMV as an additive in nanometric calcium carbonate synthesis. Until the last 5 years, formation of metal nanoparticles on the surface of TMV has always occurred with the addition of an external reducing agent. The surface functionalities of genetically engineered TMV allow for the reduction of palladium in the absence of an external reducing agent. This process has been furthered to understand how palladium concentration affects the final coating uniformity and thickness. By confirming an ideal ratio of palladium and TMV concentrations, a uniform coat of palladium is formed around the viral nanorod. Altering the number of palladium coating cycles at these concentrations allows for a controllable average diameter of the final nanorods. The average particle diameter was determined by small angle x-ray scattering (SAXS) analysis by comparing the experimental results to the model of scattering by an infinitely long cylinder. The SAXS results were confirmed through transmission electron microscopy images of individual Pd-TMV nanorods. Secondly, methodologies to determine the electrical resistivity of the genetically engineered TMV biotemplated palladium nanoparticles were created to provide valuable previously missing information. Two fairly common nanoelectronic characterization techniques were combined to create the novel approach to obtain the desired

  18. Spinorial